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1. Introduction

Habitat niche difference is an important mechanism for
maintaining local species diversity in tropical tree communities
(Davies et al., 2005; Gunatilleke et al., 2006; John et al., 2007)
among other mechanisms, such as trade-offs between colonization
and competition (Coomes and Grubb, 2003), maximum size and
recruitment (Kohyama, 1993), stress-tolerance and growth
(Wright et al., 2003), conspecific density-dependent mortality
(Janzen, 1970; Connell, 1971), and stochastic processes (Hubbell,
2001). These mechanisms are not mutually exclusive and do
function simultaneously in a community. It is therefore significant
to quantify the relative importance of each mechanism within and
among various tropical forests. One possible way to evaluate the
relative importance of habitat niche difference is to calculate the

proportion of species that show statistically significant habitat
associations. We may expect that more species show significant
habitat associations in communities where habitat difference plays
a larger role. We should note that the proportion will depend on
the alpha-level set for the significance test.

Habitat associations of individual species do not necessarily
indicate habitat difference among species, since these species
possibly associated with the same habitat (Noguchi et al., 2007).
Thus, analysis of species habitat associations is only the first step in
quantitative analysis of habitat difference. Although we are
cognizant of this issue, habitat association tests are discussed in
this paper because we believe that the proportion of habitat
specialist species strongly supports the potential role of habitat
difference in a community, and because appropriate habitat
association tests are useful as a first step in the analysis of habitat
difference.

In using habitat association tests, we often face two major
problems: (1) spatial autocorrelation and (2) definition of habitats.
The problem of spatial autocorrelation is due to the spatially
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A B S T R A C T

Habitat difference is an important mechanism for maintenance of tree diversity in tropical forests. The

first step in studies of habitat difference is to statistically analyze whether the spatial distributions of tree

populations are skewed to species-specific habitats; this is called a habitat association test. We propose a

novel habitat association test on the basis of the probability of tree occurrence along a continuous habitat

variable. The test uses torus shift simulations to obtain a statistical significance level. We applied this test

to 55 common dipterocarp species in a 52-ha plot of a Bornean forest to assess habitat associations along

an elevation gradient. The results were compared to those of three existing habitat association tests

using the same torus shift simulations. The results were considerably different from one another. In

particular, the results of two existing tests using discrete habitat variables varied with differences in

habitat definitions, specifically, differences in elevation break points, and the number of habitat classes.

Thus, definitions of habitats must be taken into account when habitat association tests with discrete

habitat variables are used. Analyses of artificial populations independent of habitat showed that all of the

tests used were robust with respect to spatial autocorrelation in tree distributions, although one existing

test had a higher risk of Type I errors, probably due to the use of multiple tests of significance. Power

analysis of artificial populations in which distributions were skewed to certain elevations showed that

the novel test had comparable statistical power to the most powerful existing test. Statistical power was

affected not by the total number of a given tree but by the number of clumps in a plot, suggesting that>5

clumps were required for a reliable result.
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aggregated distributions observed for many tropical tree species
(Condit et al., 2000). Most conventional statistical tests, such as the
Chi-squared test, are invalid for habitat association analysis of
spatially aggregated populations (Legendre, 1993; Itoh et al.,
2006). For example, the conventional Chi-squared test determines
whether the numbers of trees observed in different habitats are
consistent with the null hypothesis that the tree distribution is
independent of habitat differences if complete spatial randomness
(CSR) applies. The null hypothesis is rejected either when the tree
distribution does not follow CSR or when the tree distribution is
affected by habitat differences. Therefore, the null hypothesis for
autocorrelated tree distributions may be rejected because they do
not follow CSR, even if there is no significant relationship between
the habitat and tree distribution.

For a proper habitat association analysis, it is better to use the
following null hypothesis: the observed relationship between the
habitat and tree distribution is consistent with a ‘‘stationary’’
distribution model that generates spatial patterns, which are
caused by factors independent of habitat. The term ‘‘stationary’’
here means that the expected point density is the same at any
location within the study area, and therefore the expected tree
density is similar in any habitat (no habitat associations). CSR is a
stationary point process with no spatial autocorrelation. However,
tree distributions are often spatially autocorrelated at least partly
due to factors independent to habitat, such as limited seed
dispersal. We therefore need to use stationary point processes that
have spatially autocorrelated distributions. We should note that
we assume that spatial autocorrelation is caused only by factors
independent to habitat under the null hypothesis. However, spatial
autocorrelation are often caused by both habitat difference and
limited dispersal. It is impossible to separate effects of these factors
only from spatial patterns. Therefore, the assumption in the null
hypothesis may underestimate the effect of habitat difference in
structuring the spatial patterns of tree populations.

A general procedure for habitat association tests is as follows:

1. Select an appropriate stationary point process model that
results in autocorrelated patterns similar to the observed tree
distribution.

2. Simulate tree distributions many times using the selected point
process model.

3. Calculate certain statistics indicating the relationships between
habitat and tree distribution, such as the Chi-squared value,
based on simulated tree distributions and the observed habitat
distribution map.

4. Compare the observed and simulated statistics to estimate the
probability that the observed value is obtained by the stationary
model.

To generate stationary and autocorrelated distributions, some
recent studies on tropical trees have adopted the Poisson cluster
model (e.g., Plotkin et al., 2000; John et al., 2007), while others used
the torus shift (toroidal shift) simulations (e.g., Webb and Peart,
2000; Harms et al., 2001; Itoh et al., 2003; Gunatilleke et al., 2006).
Plotkin et al. (2000) demonstrated that the Poisson cluster model
successfully simulated tree distributions that were similarly
autocorrelated to those observed for most populations in a 50-
ha plot of a tropical rain forest at Pasoh, Malaysia. For the Poisson
cluster model, values of model parameters need to be estimated
from observed tree distributions. The torus shift is technically
easier to use because estimation of parameters is not necessary. In
the torus shift, an original tree map for a rectangular plot is shifted
randomly on a two-dimensional torus. The torus shift retains the
overall autocorrelated patterns, except for trees that cross the plot
edges. The expected tree density is the same at any location within
the plot due to the torus shift, hence it is stationary (Fortin and

Dale, 2005). Note that there are two theoretically equivalent
methods for torus shift simulation: in the first, the tree map shifts
and the habitat map is held as the original; in the other, the habitat
map shifts and the tree map is retained. In this study, we applied a
torus shift of the habitat map to obtain null relationships between
the trees and habitats. This was because the spatial resolution was
larger for the habitat map (20 m) than tree distributions (0.1 m) in
our study. Torus shifts of tree distributions by <20 m are not
equivalent to those >20 m because the former torus shifts
maintain many trees within the original habitat. By shifting the
habitat map by 20-m steps, we avoided torus shifts of <20 m.

Habitat definitions are also critical in habitat association tests
because different habitat criteria can produce different results.
Many previous habitat association studies have used a priori fixed
discrete habitats (e.g., Plotkin et al., 2000; Webb and Peart, 2000;
Harms et al., 2001; Itoh et al., 2003; Davies et al., 2005; Gunatilleke
et al., 2006), and two have used continuous habitat variables (Itoh
et al., 2006; John et al., 2007). Boundaries between habitats have
often been defined by selecting break points for continuous habitat
variables such as elevation, water content and soil fertility in a
more or less arbitrary manner. However, it is sometimes difficult to
define appropriate break points for continuous habitat variables.
Inadequate break points and/or an inadequate number of habitat
categories may produce misleading results if the manner of habitat
classification significantly affects the habitat association tests.
However, it is not yet clear how the number and values of the break
points selected affect the results of habitat association tests.

In this paper, we propose a novel habitat association test based
on a continuous habitat variable. We compared this test to three
previously published habitat association tests using a common
dataset, specifically, distributions of Dipterocarpaceae species
along an elevation gradient within a 52-ha plot of a Bornean rain
forest. Of the four statistical tests compared, two use continuous
habitat variables and the other two use discrete variables. We
analyzed how the results of tests using discrete variables are
affected by differences in the break points and number of habitats.
Finally, we compared the statistical power and the probability of
Type I errors (i.e., the probability that habitat generalists are
judged wrongly as specialists) among the four tests, using
simulated tree distributions.

2. Materials and methods

2.1. Tree distribution data

Tree distribution data were obtained within a 52-ha permanent
plot (1040 � 500 m) established in 1992 in a mixed dipterocarp
forest located within the Lambir Hills National Park (48120N,
1148000E; c. 60–450 m a.s.l.) in Sarawak, Malaysia. The average
annual rainfall is 2725 mm (1967–1998) at Miri Airport, approxi-
mately 20 km north of Lambir. There is no distinct dry season,
although the period February–August has relatively less rainfall. The
topography of the study site is hilly, with undulating terrain with
steep slopes, including scars caused by small landslides (Ohkubo
et al., 2007). All trees�1 cm diameter at breast height (dbh; 1.3 m) in
the plot were individually labeled, mapped, identified to species, and
measured for dbh. Elevations were measured at 20� 20-m grid
points within the plot (Yamakura et al., 1995). Tree enumerations
have been conducted four times, in 1992, 1997, 2002, and 2007–
2008. In this study, we used data for 55 common Dipterocarpaceae
species (n � 100 in the plot) obtained in 1997.

2.2. Statistical tests of habitat association

All of the tests use the torus shift simulations to obtain
significance levels, but each test applies a different statistic to
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evaluate the degree of habitat association. In this paper, we refer to
these tests as the ‘‘Chi-squared test,’’ ‘‘Tree-density test,’’ ‘‘SD test,’’
and ‘‘Adjusted-SD test’’ based on the statistics used in the tests. The
latter test is the novel test proposed in this study. The Chi-squared
and Tree-density tests use discrete habitat variables, while the SD
and Adjusted-SD tests use continuous habitat variables.

For the torus shift simulations, we used an elevation map with
1300 20 � 20-m squares within the 52-ha study plot. The map was
shifted along the x- and/or y-coordinates by 20-m steps on a two-
dimensional torus, for the 1300 possible combinations. We also
used mirror and rotated maps of each shifted image following
Harms et al. (2001). As a result, we generated a total of 5200 habitat
maps, including the original map. The test statistics for each of the
habitat tests were then calculated for all of the shifted maps as a
null distribution of the statistics.

The Chi-squared test uses the statistic X2, which is the same as
that used in the conventional Chi-squared test:

X2 ¼
Xn

i¼1

ðOi � EiÞ2

Ei
; (1)

where Ei and Oi are the expected and observed numbers of trees in
the ith habitat (elevation class in this study), respectively, and n is
the total number of categories for the discrete habitat variable. The
value of Ei is calculated from the total tree number of a focal species
in the study plot multiplied by the proportion of the area of the ith
habitat in the plot. Habitat association is considered to be
statistically significant (p < 0.05) if the observed X2-value is within
the largest 5% of X2-values obtained by the torus shift simulations. In
this paper, we refer to a species that shows a significant habitat
association as ‘‘a specialist species’’ or merely ‘‘a specialist,’’ and one
that shows non-significant habitat association as ‘‘a generalist
species’’ or ‘‘a generalist.’’ Examples of the use of this test can be
found in Cannon and Leighton (2004) and Noguchi et al. (2007).

The Tree-density test is a modified version of the Torus-
translation test of Harms et al. (2001). Harms et al. used the relative
number of trees (the proportion of trees of a focal species to the
total number of trees) observed in each category of discrete habitat
as the test statistic. The Tree-density test uses the actual numbers
of trees rather than relative ones, because the actual number of
trees is equivalent to Oi in Eq. (1), which allows easy comparison to
the other tests. The observed number of trees is compared to that
obtained by the torus shift simulations for each habitat class. A
species is considered a specialist if the observed number of trees is
either larger than the largest 2.5% of values obtained by torus shift
simulation or smaller than the smallest 2.5% of values in at least
one of the habitat classes used. Because this test applies the
significance test for each habitat class, it may suffer from multiple
testing which inflates the probability of Type I errors. Examples of
the use of this test can be found in Harms et al. (2001) and
Gunatilleke et al. (2006).

The SD test uses the standard deviation (SD) of a continuous
habitat variable (elevation in this study). A value for the habitat
variable is assigned to each individual tree within a study plot and
the SD is then calculated for each species. A species is considered a
specialist if the observed SD is smaller than the smallest 5% of
values of the simulations. Previous studies using this test (e.g.,
Enoki and Abe, 2004; Itoh et al., 2006; John et al., 2007) adopted the
species mean as well as the SD as test statistics. However, for the
purposes of analyzing habitat associations, evaluation of the SD is
sufficient and using two statistics in one test invokes the problem
of multiple tests. Thus, we used only the SD in our test.

2.3. Adjusted-SD test

Here, we propose a novel habitat association test, the Adjusted-
SD test. In the SD test, the SD for a focal species is calculated based

on the observed frequency of habitat variables for individual trees.
Therefore, the value of the SD should be affected by the frequency
distribution of a habitat variable in the study plot. For example, the
SD would become smaller if a large area of the plot was occupied by
one habitat, as opposed to the case in which all habitats are
distributed evenly within the plot, even if there is no relationship
between tree distribution and habitat. To address this problem, we
adjusted the SD based on the conditional probability of tree
occurrence (E) given a habitat variable x, notated as p(Ejx). For
example, when we use elevation for the habitat variable and select
a point randomly within the study plot, p(Ejx) represents the
probability that a focal species exists at the selected point when
the elevation of the point is x m. We can use p(Ejx) as an index of
habitat niche of a species. Values of p(Ejx) are not affected by
differences in habitat distribution within a study plot, although the
probability that the randomly selected point is at x m should vary
among plots with different habitat distributions. We therefore
calculated the SD of p(Ejx), or Adjusted-SD, as the test statistic.

We can estimate p(Ejx) from the field data on the habitat
structure and tree distributions within a study plot. The condi-
tional probability p(Ejx) is:

pðEjxÞ ¼ pðxjEÞ pðEÞ
pðxÞ ; (2)

where p(xjE) is the conditional probability of x when a tree exists at
the selected point, p(E) is the probability that a tree exists at the
point, and p(x) is the probability that the point is within habitat x.
We can think of p(E) as a constant in terms of x, because:

pðEÞ ¼
Zxmax

xmin

pðEjxÞ pðxÞdx; (3)

where xmin and xmax are the minimum and maximum elevations in
the plot. Therefore:

pðEjxÞ/ pðxjEÞ
pðxÞ (4)

We can determine the shape of p(Ejx) if we know the density
functions of p(xjE) and p(x).

When we use discrete habitat variables, p(xjE)/p(x) in Eq. (4) is
proportional to the tree density at habitat x, hence p(Ejx) is also
proportional to the tree density. Therefore, this method is
conceptually similar to those using the weighted mean of the
tree occurrence over different discrete habitat types, widely used
in vegetation analysis. However, for continuous habitat variables,
more complex methods to estimate p(Ejx) are required.

We used kernel-based nonparametric probability density
estimation (Silverman, 1986) to estimate p(xjE) and p(x). The
observed frequency distribution of elevation at the 20 � 20-m grid
points was used to estimate p(x). The frequency distribution of
elevations where trees of a focal species existed within the 52-ha
study plot was used to estimate p(xjE). The estimation was
carried out using the ‘‘density’’ function in the R-package ‘‘stats’’
ver. 2.9.1 in R ver. 2.9.1 (R Development Core Team, 2009). We
used a Gaussian kernel window with a bandwidth parameter
(bw = ‘‘nrd0’’), which follows Silverman’s ‘‘rule of thumb’’ (Silver-
man, 1986). To handle the boundary problem, we adopted
Schuster’s (1985) mirror image correction. We created mirror
images of the data on the outer side of the upper and lower bound
of x for the habitat and tree data. After applying the R ‘‘density’’
function on the created data, we re-normalized the tails of p(xjE)
and p(x) numerically using values at 512 equally spaced points
from the maximum and minimum elevations. Although the mirror
boundary correction is not perfect (Cowling and Hall, 1996), it may
be a reasonable assumption that tree density is similar on both
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sides of a boundary, at least near the boundary. The boundary
correction resulted in only small changes for our observed and
simulated dataset; values of p(xjE) became slightly higher after the
boundary correction when most trees were aggregated near the
lowest or highest elevations. Comparison to preliminary analyses
without the boundary correction indicated that the results were
generally very similar with and without the boundary correction,
suggesting a limited boundary problem at least in our case.

For convenience in among-species comparison using p(Ejx)
graphics, we also re-normalized p(Ejx) numerically using estimated
values of p(Ejx) at 512 equally spaced points to satisfy the equation:

Zxmax

xmin

pðEjxÞdx ¼ 1: (5)

Examples of tree distributions and estimated density functions
are shown in Fig. 1. For Shorea macroptera subsp. bilonii (Fig. 1a),
trees were abundant at intermediate elevations; hence, p(xjE),
labeled as ‘‘Tree’’ in Fig. 1, had higher values at intermediate
elevations. However, this was mostly because these elevations
were more abundant in the study plot [see p(x) in Fig. 1a]. Thus,
p(Ejx), labeled as ‘‘Niche’’, was nearly flat at a large elevation range,
indicating very weak or no habitat association. Fig. 1b shows the
results for Shorea quadrinervis, which had a clearly unimodal shape
for p(Ejx), indicating a strong habitat association with higher
elevations.

Because a habitat specialist may have a higher probability of
p(Ejx) within a certain range of x than in other habitats, such as in
the case of S. quadrinervis (Fig. 1b), we would expect a small SD of
p(Ejx) for a specialist species. Thus, we used the SD of p(Ejx) as the

Fig. 1. Two examples of tree distribution maps in a 52-ha Lambir plot and functions of the Adjusted-SD test along an elevation gradient. See text for details of the functions,

p(x), p(xjE) and p(Ejx).
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statistic for the significance test. A species was considered a
specialist if the observed SD was smaller than the smallest 5% of
values obtained by torus simulation.

2.4. Effect of habitat classifications

To evaluate the effects of different habitat classifications, we
compared the results of the Chi-squared and Tree-density tests for
various habitat classifications. First, we divided the plot into two
elevation habitats. We used eight different elevations as the break
point: 140, 150, 160, 170, 180, 190, 200, and 210 m. Second, we
divided the plot into various numbers of even-interval elevation
classes: 2, 3, 4, 5, 6, 7, 8, and 9 classes. Thereafter, we applied the
Chi-squared and Tree-density tests for each classification and
compared the number of specialist species identified by the results.
We also calculated Jaccard similarity indices for the specialists for
all classification pairs to evaluate how the species compositions of
the specialists varied among the different habitat classifications.

2.5. Statistical power

To compare the risk of Type I errors, or the risk of incorrectly
identifying a generalist as a specialist, we applied the four tests to
artificial generalists. Generalist populations were created using the
Poisson cluster model (Neyman and Scott, 1958; Plotkin et al., 2000).
First, we randomly selected x–y coordinates for parent points using a
Poisson process from the study plot with intensity r (ha�1). Second,
each parent produced ‘‘offspring,’’ the number of which was
determined by a Poisson process with intensity m (per parent).
The positions of the offspring relative to the parent were derived
from random points following a radially symmetric two-dimen-
sional normal distribution with variance s2 (m2). The offspring
simulation was applied on a two-dimensional torus to avoid
offspring points being located outside of the plot. Finally, we deleted
the parent points. This procedure generates clumped distributions. A
largerr results in a larger number of clumps, and a larger m results in
a larger number of points in each clump. A larger s2 results in a larger
clump area, and therefore a less clumped distribution. The Poisson
cluster model produces aggregated but non-habitat-dependent
distributions (Plotkin et al., 2000). Therefore, this simulation can
create artificial populations of generalist species with various
individual numbers and clumping intensities.

To evaluate the effects of clump size and clump number on the
habitat test results, we selected 36 combinations of six values of r
(0.05, 0.1, 0.2, 0.4, 0.8, and 1.6 ha�1) and s2 (10, 50, 100, 500, 1000,
and 5000 m2). The value of m was chosen as 4/r, which held the
mean total number of points constant at 4 ha�1 (see Appendix A
for examples). We simulated 100 populations for each parameter
combination (3600 populations in total), and then counted the
number of populations that were incorrectly judged as specialists
(Type I error) using each statistical method.

To evaluate the statistical power of the four tests, we analyzed
100 artificial specialist populations and counted the number of
cases that were correctly judged as specialists as an index of
statistical power. The specialist populations were produced using a
modified Poisson cluster model; in this model, parent points were
not chosen randomly, but rather were selected so that their
distributions were skewed to a certain elevation. To generate
parent points, we first sampled 20 � 20-m squares equal to the
target parent number from the 1300 squares in the plot, with
replacement that depended on the following probability:

NðxijM; SD2Þ � pðxiÞ; (7)

where xi is the mean elevation of the ith square, N(xijM, SD2) is the
density of xi in a normal distribution with a mean equal to M (m)

and a standard deviation equal to SD (m), and p(xi) is the
probability of the ith elevation in the plot calculated by p(x) in
Eq. (2). Then, the position of the parent point (x- and y-coordinates)
within the sampled square was randomly chosen. This procedure is
equivalent to requiring the p(Ejx) of parent points to follow a
normal distribution with mean = M and standard deviation = SD.
The degree of specialization was determined by changing the SD
value; a smaller SD represents a stronger habitat specialization. For
each population, a value of M was randomly chosen within the
range of elevation in the study plot (180–245 m). The sampling of
squares was conducted using the ‘‘sample’’ function in the R-
package ‘‘base’’ (ver. 2.9.1). In the offspring simulations, we did not
apply a two-dimensional torus; offspring points falling outside of
the plot were discarded, because the torus method produced some
points at elevations greatly different from those of the parents.

To determine the statistical power with the degree of
specialization, we used six SD values: 10, 20, 30, 40, 50, and
60 m. For each SD value, we used various combinations of
parameters (m, s2, and r) of the Poisson cluster model to evaluate
the effects of sample size and spatial aggregation. We changed one
of the three parameters (m = 2.5, 5, 10, 20, 40, and 80 per parent;
s2 = 10, 50, 100, 500, 1000, and 5000 m2; r = 0.05, 0.1, 0.2, 0.4, 0.8,
and 1.6 ha�1) while holding the values of the other parameters
constant (m = 20; s2 = 500; r = 0.2). In total, we simulated 10,800
specialist populations (see Appendices B–D for examples).

3. Results and discussion

3.1. Habitat associations for Dipterocarpaceae

Of the 55 species analyzed, 28 (50.9%) and 34 (61.8%) were
judged as habitat specialists by the SD and Adjusted-SD tests,
respectively (Table 1). We should note that the number of
specialists and generalists will change with the alpha-level used
in the significance test. For example, when we set the alpha-level
as 0.01 instead of 0.05, only 12 and 13 species were specialists by
the SD and Adjusted-SD tests, respectively. All of the specialist
species identified by the SD test were judged as specialists by the
Adjusted-SD test. Six species were judged as specialists only by the
Adjusted-SD test; most of them had low mean elevations (Fig. 2).
This was probably because only a small proportion of the study
plot was occupied by lower elevations (Fig. 1). The difference in the
SD between the SD and Adjusted-SD tests is larger for species
whose distribution is aggregated to less abundant habitats by
definition (Eq. (2)).

The number of specialist species determined by the Chi-
squared and Tree-density tests varied depending both on the break
point for the two elevation classes and on the number of elevation
classes (Fig. 3). The number of specialist species was largest for the
break point elevations of 150 and 160 m in the Tree-density test
(Fig. 3a). Break points at high elevation, i.e., 200 and 220 m, had a
small number of specialists in both tests. The numbers of specialist
species were fairly constant (32–36 species) in the Tree-density
test for various numbers of habitats, except for the two habitat
categories for which only 17 species were judged as specialists
(Fig. 3b). The number of specialists in the Chi-squared test
decreased with an increasing number of habitat classes. For all
break point elevations and habitat numbers other than the two
habitats with a break point elevation of 170 m, fewer species were
judged as specialists by the Chi-squared test than by the Tree-
density test.

The species composition of the specialists also varied among
different habitat categorizations. There were only five and three
species that were judged as specialists for all habitat definitions
(16 cases) in the Tree-density and Chi-squared tests, respectively.
The means of the Jaccard similarity indices between pairs of
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different break point elevations (n = 28 pairs) were 0.527 (range:
0.161–0.947) and 0.499 (range: 0.143–0.900) for the Tree-density
and Chi-squared tests, respectively (Table 2). This indicates that,
on average, only 50% of the specialist species were common among
habitat classifications with different break points. The mean
Jaccard indices between different habitat numbers were 0.647
(0.650–0.900) and 0.771 (0.472–0.795) for the Tree-density and
Chi-squared tests, respectively (Table 3). These similarities were
higher than for different break points; however, 23–35% of the
specialist species still were not shared between pairs of different
habitat classifications.

The numbers of specialists identified by the Tree-density tests
were similar to those identified by the Adjusted-SD test (34
species) for >3 habitat categories (Fig. 3b). However, of the 34

specialist species identified by the Adjusted-SD test, 9–11 species
(26–31%) were judged as generalists by the Tree-density test,
indicating a large difference in the species composition of
specialists between the Tree-density and Adjusted-SD tests.

These results clearly show that the way we define discrete
habitats within a study area greatly affects the results of habitat
association analysis. Therefore, care must be used in justifying
habitat definitions when we divide continuous habitats into
discrete habitats for habitat association analysis.

3.2. Probability of Type I errors

Fig. 4 shows the proportions of Type I errors for the four habitat
association tests based on simulations with artificial generalist

Table 1
Results of habitat association analysis of 55 common dipterocarp species at Lambir, Sarawak, by the SD and Adjusted-SD tests along an elevation gradient.

Species No. trees (/52-ha) Adjusted-SD test SD test Statistics of p(Ejx)

Mean (m) SD (m) Mode (m)

Anisoptera grossivenei 153 * * 184.3 23.9 169.7

Cotylelobium melanoxylon 929 * * 207.5 22.0 240.3

Dipterocarpus confertus 291 ns ns 168.1 31.4 203.7

Dipterocarpus crinitus 409 * * 206.8 20.1 225.3

Dipterocarpus geniculatus 361 ns * 192.2 25.0 215.3

Dipterocarpus globosus 3,094 * * 204.2 25.1 224.0

Dipterocarpus kunstleri 118 * * 129.5 4.7 131.0

Dipterocarpus palembanicus subsp. bornensis 546 * * 194.5 18.5 205.7

Dipterocarpus palembanicus subsp. palembanicus 251 ns ns 141.5 24.5 108.6

Dryobalanops aromatica 10,720 * * 196.2 23.6 202.9

Dryobalanops lanceolata 920 ns * 128.7 14.8 108.6

Hopea beccariana 193 ns ns 179.9 43.4 236.9

Hopea bracteata 405 * * 174.5 20.3 191.3

Hopea dryobalanoides 839 ns ns 139.4 14.3 147.5

Hopea mesuoides 665 * * 126.0 9.8 108.6

Hopea pterygota 1,065 ns * 132.7 15.7 130.0

Parashorea parvifolia 449 ns * 130.1 19.7 110.7

Shorea acuta 1,052 * * 202.8 25.9 227.9

Shorea amplexicaulis 2,631 * * 192.1 26.3 190.5

Shorea asahi 157 ns ns 217.6 19.1 226.3

Shorea atrinervosa 235 ns ns 171.3 19.1 168.4

Shorea biawak 3,798 * * 199.3 22.4 206.5

Shorea curtisii 174 * * 192.5 24.5 176.1

Shorea exelliptica 100 ns ns 180.3 26.8 195.2

Shorea faguetiana 117 ns ns 186.1 21.9 194.4

Shorea falciferoides 466 ns ns 154.2 32.1 135.9

Shorea ferruginea 172 ns ns 166.1 25.0 167.4

Shorea flemmichii 192 * * 183.2 22.8 164.5

Shorea geniculata 519 ns ns 172.6 7.1 171.7

Shorea havilandii 837 * * 183.2 24.6 188.5

Shorea kunstleri 186 * * 200.2 28.4 230.7

Shorea laxa 3,066 * * 213.6 19.3 216.6

Shorea macrophylla 104 ns * 129.5 7.4 126.7

Shroea macroptera subsp. billonii 788 ns ns 168.1 31.9 204.7

Shorea macroptera subsp. macropterifolia 1,440 * * 158.1 31.6 123.8

Shorea multiflora 322 ns ns 207.9 30.3 240.3

Shorea ovalis 144 ns ns 193.9 21.7 206.3

Shorea ovata 440 * * 215.0 19.1 222.2

Shorea parvifolia 511 ns ns 166.1 33.8 108.6

Shorea patoiensis 772 ns ns 151.7 29.8 124.6

Shorea polyandra 283 ns ns 166.8 31.3 172.3

Shorea pubistyle 343 * * 187.1 22.7 194.4

Shorea scrobiculata 453 ns ns 189.3 28.6 203.9

Shroea almon 124 ns ns 179.6 32.0 203.7

Shroea ochraceae 125 ns ns 157.3 31.0 178.7

Shroea quadrinervis 513 ns * 200.6 23.0 223.5

Shroea rubella 283 * * 166.8 31.3 172.3

Shroea xantophylla 290 * * 134.0 14.0 130.0

Vatica badiifolia 1,017 * * 188.7 24.3 189.3

Vatica micrantha 6,153 * * 211.6 19.8 223.8

Vatica nitens 174 * * 192.5 24.5 176.1

Vatica cf. oblongifolia 113 * * 181.1 20.3 170.5

Vatica oblongifolia sbusp. crassiobata 159 * * 175.5 21.0 168.4

Vatica oblingifolia sbusp. oblongifolia 775 ns ns 172.1 34.4 200.1

Vatica sarawakensis 293 * * 174.9 30.7 171.0

* Stands for a specialist at p<0.05; ns p>0.05.
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distributions with various degrees of clumping. The results of
conventional Chi-squared tests (Fig. 4e) were also shown to assess
the effectiveness of the torus shift. For the conventional Chi-
squared test, the probability of Type I error increased with
decreasing s2 values, indicating that generalists were wrongly
judged as specialists more often when the degree of clumping was
higher. Nearly all populations with s2 of 10–50 m2 were judged as
specialists. No inflation in the number of Type I errors was
observed in the other four tests, even for highly clumped

distributions, indicating that the torus shift procedure successfully
overcame the spatial autocorrelation problem.

The mean proportions of Type I errors were slightly less than 5%
in all tests other than the Tree-density test (8.6%). This was
reasonable because we adopted p < 0.05 for significance tests. The
larger Type I errors in the Tree-density test may have occurred
because this test repeated multiple significance tests for each
population (see Section 2). Thus, we need to bear in mind that the
Tree-density test may slightly overestimate the statistical sig-
nificance of habitat associations, especially when we use many
habitat classes.

3.3. Statistical power

Fig. 5 shows the results of the power analysis. The order of
statistical power among the four tests was Tree-densi-
ty > Adjusted-SD > SD > Chi-squared, based on the mean values
of statistical power for the same artificial dataset. The higher
statistical power of the Tree-density test may be due, at least in
part, to its multiple significance tests.

The values of m and s2 had very little effect on the statistical
power in any test, while smaller r values reduced the statistical
power of each test (Fig. 5). Thus, all of the tests were robust in
relation to differences in clump size and tree density within a clump,
but were affected by the number of clumps within the plot. Only 40–
44% of the cases were successfully judged as specialists for the most
specialized populations (SD = 10 m) when r was 0.05 ha�1 or 2.6/
52-ha plot. Thus, we cannot expect sufficient power to detect habitat
associations if the number of clumps within a study plot is too small,
and should determine the number of clumps rather than the number
of individual trees before analyzing habitat associations. Results
may not be reliable if there are very few clumps in the study plot,
even if there are many individuals.

Accordingly, we evaluated the number of clumps for our study
populations. We assumed that the distributions of the study
species followed the Poisson cluster model (Neyman and Scott,
1958; Plotkin et al., 2000). Model parameters were estimated for
each species based on the Reply’s K-statistic, K(d), expected from
the Poisson cluster model according to the following equation
(Diggle, 1983; Cressie, 1991; Plotkin et al., 2000):

KðdÞ ¼ pd2 þ r�1 1� exp � d2

4s2

 ! !
; (8)

where d is the distance (m) and r and s2 are parameters of the
Poisson cluster model. For estimation of the parameters, we
used the ‘‘pcp’’ function in the R-package ‘‘splancs’’ ver. 2.01.

Fig. 2. Relationships between standard deviation (SD) and mean in (a) the SD test

and (b) the Adjusted-SD test for 55 dipterocarp species along an elevation gradient

in a 52-ha Lambir plot. Open and filled symbols are generalist and specialist species,

respectively. Filled squares in (b) stand for the species that were specialists by the

Adjusted-SD test but generalist by the SD test.

Fig. 3. Numbers of specialist species judged by the Tree-density (closed circles) and Chi-squared (open circles) tests for 55 dipterocarp species with various habitat

definitions: (a) two elevation classes with variations in the break elevations and (b) various numbers of regular elevation classes.
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We set the parameters for the function as the upper limit of
distance (h0 in the ‘‘pcp’’ function) = 250 m, the number of
distance intervals (n.int) = 100, and the tuning constant
expo = 0.25 (Plotkin et al., 2000).

Fig. 6 shows the relationship between the r values and SDs in
the Adjusted-SD test for the 55 study species (Table 1). The range
for r was 0.02–0.95 ha�1, indicating that the numbers of clumps of
each species were approximately 1–50 within the 52-ha plot. As

Table 2
Jaccard similarity indices between specialist species of two discrete habitat classes with various break points of elevation. The values above and below the diagonal are indices

of the Tree-density and Chi-square tests, respectively.

Break elevation (m) Break elevation (m)

140 150 160 170 180 190 200 210

140 0.786 0.690 0.640 0.667 0.519 0.407 0.200

150 0.833 0.833 0.567 0.586 0.469 0.375 0.161

160 0.667 0.727 0.643 0.608 0.484 0.387 0.167

170 0.591 0.583 0.818 0.947 0.727 0.591 0.227

180 0.571 0.565 0.810 0.900 0.762 0.619 0.238

190 0.391 0.400 0.542 0.609 0.667 0.842 0.286

200 0.227 0.250 0.391 0.391 0.429 0.706 0.333

210 0.167 0.143 0.238 0.238 0.263 0.353 0.500

Fig. 4. Proportion of Type I errors in the results of five habitat association tests with 100 artificial generalist populations of various degrees of clumping determined by values

of r and s2 in a Poisson cluster model (see text for details of the model). (a) Adjusted-SD test; (b) Tree-density test; (c) SD test; (d) Chi-squared test; and (e) conventional Chi-

squared test.

Table 3
Jaccard similarity indices between specialist species of discrete habitats with various numbers of elevation classes. The values above and below the diagonal are indices of the

Tree-density and Chi-square tests, respectively.

Number of elevation classes Number of elevation classes

2 3 4 5 6 7 8 9

2 0.529 0.500 0.486 0.472 0.486 0.486 0.500

3 0.652 0.634 0.690 0.725 0.614 0.690 0.795

4 0.889 0.714 0.707 0.700 0.707 0.795 0.605

5 0.714 0.900 0.789 0.674 0.682 0.682 0.698

6 0.700 0.800 0.778 0.889 0.674 0.714 0.732

7 0.684 0.700 0.765 0.778 0.875 0.762 0.622

8 0.737 0.750 0.824 0.833 0.824 0.706 0.738

9 0.722 0.650 0.813 0.722 0.706 0.800 0.867
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expected, species with smaller SDs were generally judged as
specialists by the Adjusted-SD tests. However, the marginal SD
values between the generalists and specialists decreased with
decreasing r values, probably due to low statistical power for

species with a small r (Fig. 6e). Based on the power analysis and
the results for the 55 Dipterocarpaceae species, the Adjusted-SD
test can judge species with SD < 20 m as specialists when their r
values are larger than 0.1 ha�1 (>5 clumps in a study plot). More
specialized distributions (smaller SDs) are needed for species with
fewer clumps to qualify as specialists using this test.

4. Conclusions

This study demonstrated that all of the habitat association tests
considered were robust with respect to spatial autocorrelation of
the tree distributions. However, their results were not completely
consistent among one another. We should use care regarding the
definition of habitat when using discrete habitats, because
different classifications provide different results. If possible, it is
preferable to adopt methods using continuous habitat variables,
especially if there is no clear rationale for ideal habitat classifica-
tion. In contrast, we may obtain a straightforward interpretation
with methods using discrete habitats when a plot includes
qualitatively different habitats. It is also noted that the Tree-
density test may overestimate, though probably not by much, the
number of specialist species, due to its multiple significance
testing. On the other hand, the SD and Chi-squared tests may
underestimate habitat associations because of their lower
statistical power. The Adjusted-SD test attained reasonable
statistical power without using multiple tests.

Fig. 5. Statistical power (proportion of specialist species) of four habitat association tests with 100 artificial specialist populations with various degrees of specialization (SD)

and clumping (m, r and s2), determined by a Poisson cluster model (see text for details of the model). The first (a–c), second (d–f), third (g–i) and fourth (j–l) columns from the

left are, respectively, for the results of the Adjusted-SD, SD, Tree-density, and Chi-squared tests.

Fig. 6. Relationship between mean clump density (r) and degree of habitat

specialization (SD) in terms of elevation for 55 dipterocarp species in a 52-ha

Lambir plot. Closed and open circles are specialist and generalist species,

respectively, based on the Adjusted-SD test. See text for details of r and SD.
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