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Abstract. Clustering at multiple critical scales may be common for plants since many
different factors and processes may cause clustering. This is especially true for tropical rain
forests for which theories explaining species coexistence and community structure rest heavily
on spatial patterns. We used point pattern analysis to analyze the spatial structure of Shorea
congestiflora, a dominant species in a 25-ha forest dynamics plot in a rain forest at Sinharaja
World Heritage Site (Sri Lanka), which apparently shows clustering at several scales. We
developed cluster processes incorporating two critical scales of clustering for exploring the
spatial structure of S. congestiflora and interpret it in relation to factors such as competition,
dispersal limitation, recruitment limitation, and Janzen-Connell effects.

All size classes showed consistent large-scale clustering with a cluster radius of ;25 m.
Inside the larger clusters, small-scale clusters with a radius of 8 m were evident for recruits and
saplings, weak for intermediates, and disappeared for adults. The pattern of all trees could be
divided into two independent patterns: a random pattern (nearest neighbor distance . 8 m)
comprising ;12% of the trees and a nested double-cluster pattern. This finding suggests two
independent recruitment and/or seed dispersal mechanisms. Saplings were several times as
abundant as recruits and may accumulate several recruit generations. Recruits were only
weakly associated with adults and occupied about half of the large-scale clusters, but saplings
almost all. This is consistent with recruitment limitation. For ;70% (95%) of all juveniles the
nearest adult was less than 26 m away (53 m), suggesting a dispersal limitation that may also
be related to the critical large-scale clustering.

Our example illustrates the manner in which the use of a specific and complex null
hypothesis of spatial structure in point pattern analysis can help us better understand the
biology of a species and generate specific hypotheses to be further investigated in the field.

Key words: Janzen-Connell; multiple clustering; pair correlation function; point pattern analysis;
Ripley’s K function; Shorea congestiflora; Sinharaja Forest Dynamics Plot, Sri Lanka; spatial point
processes.

INTRODUCTION

Patchiness, or the degree to which plant individuals

are aggregated or dispersed, co-determines how a species

uses resources, how it is used as a resource, and how it

reproduces (Condit et al. 2000). In ecology there has

been an increasing interest in the study of spatial

patterns (e.g., Turner 1989, Levin 1992, Dale 1999,

Liebhold and Gurevitch 2002). Spatial patterns have

been a particularly important theme in tropical ecology

and theories for explaining species coexistence and

community structure rest heavily on spatial patterns.

For example, niche assembly theories hypothesize that

environmental heterogeneity and biological interactions

may cause spatial clustering (Ashton 1969, Grubb 1977),

dispersal–assembly theories predict that dispersal limi-

tation can account itself for the emergence of spatial

clustering (Wong and Whitmore 1970, Hubbell 1997,

2001), and the Janzen-Connell hypothesis (Janzen 1970,

Connell 1971) predicts that wide dispersion and

transportation of seeds away from parent plants is

essential in avoiding the detrimental influence of

pathogens, herbivores, seed predators, and seedling

competition.

Prerequisite to the evaluation and testing of ecological

theories regarding spatial patterns are methodologies for

describing and analyzing spatial patterns. Methods for

spatial pattern analysis have undergone a rapid devel-

opment (Ripley 1981, Stoyan and Stoyan 1994, Dale

1999, Diggle 2003, Møller and Waagepetersen 2003).

Point patterns, i.e., data sets consisting of mapped

locations of plants, are especially important in plant

ecology since plants can be approximated in many

circumstances as points (but see Wiegand et al. 2006).
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Second-order statistics such as the pair correlation

function or Ripley’s K, which are based on the

distribution of distances of pairs of points (Ripley

1981), describe the characteristics of point patterns over

a range of distances and can therefore potentially detect

mixed patterns (e.g., occurrence of clustering at several

critical spatial scales).

Detecting mixed patterns is especially important in

ecological systems in which different processes may

operate at different spatial scales (Levin 1992). For

example, many factors and processes may cause

clustered spatial patterns in tropical forests. However,

since there is no a priori reason to assume that they all

act at the same spatial scale, spatial pattern may show

clustering at multiple scales, and the relative importance

of the critical scales may change with size, age, or

species. Thus, for interpreting spatial patterns of tropical

tree species due to habitat niche, Janzen-Connell effects,

dispersal constraints, and so on, it is critical to precisely

determine the critical scale of clustering of the patterns.

However, recent studies in tropical forests have assigned

only a single scale of aggregation to each species (e.g.,

Condit et al. 2000, He and Gaston 2000, Plotkin et al.

2000), even though species in tropical forests are

frequently aggregated at several scales simultaneously

(Plotkin et al. 2000).

In this article, we analyzed the spatial structure of

Shorea congestiflora, a dominant species at a 25-ha plot

in a rain forest at Sinharaja World Heritage Site (Sri

Lanka), which apparently shows clustering at several

scales. To describe multiple scale of clustering we

developed point processes that accommodate two

critical scales of clustering. We used these processes

and other null models to explore the spatial structure of

S. congestiflora and interpret it in relation to competi-

tion, dispersal limitation, recruitment limitation, and

Janzen-Connell effects. This example illustrates how the

use of a specific and complex null hypothesis of spatial

structure in point pattern analysis can help to better

understand the biology of a species.

METHODS

Study site and study species

The area studied is the 25-ha Sinharaja Forest

Dynamics Plot (FDP), a 500 3 500 m permanent study

plot (Fig. 1). The Sinharaja FDP is located in the

lowland rain forest of the Sinharaja UNESCO World

Heritage Site at the center of the ever-wet southwestern

region of Sri Lanka at 6821–260 N and 80821–340 E. The

Sinharaja FDP is representative of the ridge–steep

slope–valley landscape of the lowland and mid-eleva-

tional rain forests of southwestern Sri Lanka (see

Plate 1). The forest has been classified as a Mesua–

Doona community (de Rosayro 1942), and on a regional

scale it represents a mixed dipterocarp forest (Ashton

1964, Whitmore 1984). The floristic ecology and forest

structure within the plot as a whole have been

documented in Gunatilleke et al. (2004). The elevation

at the Sinharaja FDP ranges between 424 m and 575 m

above sea level and includes a valley lying between two

FIG. 1. (A) The spatial pattern of Shorea congestiflora trees in relation to the topography of the 5003 500 m Sinharaja Forest
Dynamics Plot, Sri Lanka. Adults are shown as solid circles; recruits, saplings, and intermediates are shown as open circles. (B) The
same as (A) for the related species Shorea affinis, which shows a strong habitat association.
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slopes, a steeper higher slope facing the southwest, and a

less steep slope facing the northeast (Fig. 1). Tree species

at this topographically structured site show varying

degree of associations to habitat types defined through

elevation, slope, and convexity (Gunatilleke et al. 2006).

The study species, Shorea congestiflora, is a medium-

large-sized tree up to 40 m tall and 2 m girth with low

concave buttresses. In contrast to many other species at

this site, S. congestiflora shows only minor habitat

association, being slightly biased against the low-

elevation habitats (,460 m; Gunatilleke et al. 2006).

Fig. 1A shows the spatial distribution of S. congestiflora

in relation to topography; there is no apparent strong

habitat association as, e.g., observed for the related

species Shorea affinis (Fig. 1B). Flowering occurs

gregariously in August–September. Shorea congestiflora

fruits have three wings and disperse from the tree by

gyrating to the ground. Due to wind they may be carried

just a short distance away from the crown; however,

washing down the steep slopes with surface runoff may

happen. Animal predation of Shorea seeds is minimal as

they are highly resinous.

Vegetation sampling

The established methodology of Hubbell and Foster

(1983) and Manokaran et al. (1990) was followed to

maintain uniformity in the establishment and sampling

of similar plots within the network of the Center for

Tropical Forest Science (CTFS). The Sinharaja FDP

was established in 1993 when it was demarcated on the

horizontal plane into 625 plots of 20 3 20 m (400 m2)

each. The trees in the plot were censused over the period

1994–1996, when the diameter of all freestanding stems

�1 cm diameter at breast height (dbh) was measured.

Each stem was mapped and identified to species, using

the National Herbarium of Sri Lanka and Dassanayake

and Fosberg (1980–2000).

The trees were categorized by size into four classes:

small saplings (1–5 cm dbh), large sapling (.5–10 cm

dbh), intermediate (.10–20 cm dbh), and adult (.20 cm

dbh, range up to 80 cm). Recruits and dead trees were

determined in a second census approximately six years

later. We classified as recruits all trees .1 cm dbh that

appeared in the first census but were too small to be

measured. All trees � 1 cm dbh that were alive in the

first census but dead (or alive but broken below 1.3 m on

the trunk) were classified as dead.

Point pattern analysis

The pair correlation function and Ripley’s K function,

which are based on the distribution of distances of pairs

of points, are powerful tools used to describe the second-

order structure of a spatial point pattern, i.e., the small-

scale spatial correlation structure of the point pattern.

Ripley’s K function can be defined using the quantity

kK(r), which has the intuitive interpretation of the

expected number of further points within distance r of

an arbitrary point of the process that is not counted

(Ripley 1976), where k is the intensity of the pattern in

the study area. The pair correlation function g(r) is

related to the derivative of the K function, i.e., g(r) ¼
K0(r)/(2pr) (Ripley 1977, Stoyan and Stoyan 1994).

Bivariate extensions of K(r) and g(r) follow intuitively

(e.g., Diggle 2003, Wiegand and Moloney 2004).

We followed the grid-based approach of Wiegand and

Moloney (2004) and Condit et al. (2000) for implemen-

tation of Ripley’s K(r) and the pair correlation function

g(r). We used a grid size of 1 m2 and a ring width of 3 m

for estimation of the pair correlation functions. This is a

sufficiently fine resolution compared to the 5003 500 m

size of the study plot (Fig. 1) and sufficient to respond to

our objectives.

We used the distribution n(y) of the distances y to the

nearest neighbor and the corresponding accumulative

distribution G(y) (Diggle 2003) to describe the charac-

teristic of the patterns not captured by the second-order

statistics. The quantity kK(r) is the mean number of

points located within a given distance r of each sampled

point. However, the same mean [i.e., kK(r)] may arise if

many points have no neighbor but few points many

neighbors or if all points have more or less the same

number of neighbors. The distribution of nearest

neighbor distances thus provides complementary infor-

mation of how the number of points located within a

given distance r of each point are distributed. We

calculated n(y) and G(y) without edge correction

(Diggle 2003).

We used a Monte-Carlo approach for construction of

confidence limits of a given null model. Each of the n

simulations of point process underlying the null model

generates a g (or G) function, and approximate two-

sided confidence limits with a¼ 0.02 are calculated from

the highest and lowest values of 99 simulations of the g

(or G) function if the pattern had more than 300 points

and from the tenth highest and tenth lowest values of

999 simulations otherwise (Stoyan and Stoyan 1994).

The univariate Thomas process

Examples for point processes that include an explicit

clustering mechanism are Poisson cluster processes, Cox

processes, or Gibbs processes (Tomppo 1986, Stoyan

and Stoyan 1994, Diggle 2003); however, only a few

have the advantage that the second-order statistics can

be calculated analytically. Our primary interest was in

constructing simple null models to be contrasted to our

data, which nevertheless accommodate multiple scales of

clustering. We therefore used the simplest family of

cluster processes that can be solved analytically, so-

called Thomas processes (Thomas 1949), as a basic

module and combine them to yield point processes with

multiple clustering. Univariate cluster processes have

been used sporadically in ecological applications (e.g.,

Cressie 1991, Batista and Maguire 1998, Plotkin et al.

2000, Dixon 2002, Diggle 2003, Potts et al. 2004).

The univariate Thomas process (Fig. 2A, B; Thomas

1949) assumes that (1) the parents follow a homoge-
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neous Poisson process with intensity q, (2) each parent

produces a random number of offspring following a

Poisson distribution with mean l¼k/q (k is the intensity

of offspring), (3) the locations of the offspring, relative

to the parents, have a bivariate Gaussian distribution

h(r, r) with variance r2 (Stoyan and Stoyan 1994). The

pair correlation function g(r) of the Thomas process

yields

gðr;r; qÞ ¼ 1þ 1

q
expð�r2=4r2Þ

4pr2
: ð1Þ

The unknown parameters q and r are usually fitted by

comparing the empirical K̂(r) with the theoretical K

function using minimum contrast methods (Stoyan and

Stoyan 1994, Diggle 2003). The Thomas process is a

special case of the more general Neyman-Scott processes

(sometimes also called Poisson cluster processes since

the parents form a homogeneous Poisson process) in

which the density function of the distances of the

offspring from the parent and the distribution of points

per cluster are not further specified.

Note that the Thomas process assumes a random

distribution of clusters in the study area (i.e., a

homogeneous pattern). In reality, however, this assump-

tion may be violated for many species due to environ-

mental heterogeneity and habitat association (e.g.,

Gunatilleke et al. 2006). If habitat association can be

quantified by covariates such as altitude, Thomas

processes could be applied in combination with inho-

mogeneous K functions (Baddeley et al. 2000).

The radius rC¼ 2r, in which 86% of all offspring are

located away from the parent, can be used to describe

the typical size of the clusters of the Thomas process

(Fig. 2B). The approximate area covered by the cluster is

thus AC¼ pr2
C ¼ 4pr2. Because formally distinct clusters

may coalesce it is difficult to identify the sets of offspring

with any confidence (Fig. 2B).

A useful characteristic of the Thomas process

describing the overall degree of clustering is given by

gC¼ (1/q)(1/AC)¼ g(r¼ 0)� 1 (Fig. 2E). This equation

reflects the intuitive fact that the degree of clustering

may increase if there are fewer clusters or if the area

FIG. 2. Univariate nested double-cluster process and pair correlation functions. The process was simulated within a 5003 500
m plot with parameters r1¼13.3, r2¼3.18, Aq1¼35, and Aq2¼157 (see Table 1 for an explanation of variable abbreviations). (A)
First-generation parents (n ¼ 35). The rectangle in the corner shows the maximal scale r ¼ 50 for which the pair correlation
functions are calculated. (B) Second-generation parents, constructed with the first-generation parents shown in (A). The larger scale
clusters are represented by circles with radius 2r1 ¼ 26.6. (C) The final double-cluster process, constructed with the second-
generation parents shown in the upper left rectangle of (B). The small-scale clusters are represented by circles with radius 2r2¼ 6.4,
and the large-scale clusters are represented by circles with radius 2r1¼ 26.6. (D) Pair correlation function of the first-generation
parents (data points) and confidence limits for complete spatial randomness (CSR) constructed from 999 simulations (gray lines).
(E) Pair correlation functions (data points, simulated data; line, ‘‘real process’’) and range of association of the pattern shown in (B)
together with confidence limits for CSR. The gray bold vertical line at r ¼ 0 indicates gC1, the overall degree of clumping of the
process. (F) Same as (E) but for the final double-cluster pattern.
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covered by individual clusters is smaller. The range of

association r0 of the Thomas process is the distance for

which g(r) ¼ 1 for all r . r0 (Stoyan and Stoyan 1994;

Fig. 2E). Loosely speaking, this is the scale at which the

clustering becomes small. It can be assessed approxi-

mately from a plot of the g function (e.g., Fig. 2E),

although for empirical pair correlation functions irreg-

ular fluctuations of g(r) around 1 may occur. Using Eq. 1

and the definitions of rC and gC, the range of association

can be approximated as r0¼ rC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðgCÞ � lnðdÞ
p

where d
is a small ‘‘tolerance’’ with g(r0) ¼ 1 þ d. However, the

value of r0 does not provide direct information regarding

the significance of a departure from complete spatial

randomness (CSR); this can be assessed by simulated

confidence limits.

Fig. 2B shows a realization of the Thomas process

with 35 parents and cluster size rC ¼ 26.6, an overall

degree of clumping gC¼ 3.4 and a range r0¼ 45.6 (using

d ¼ 0.15).

Nested double-cluster process

Double-cluster processes are rarely used, but see

Stoyan and Stoyan (1996), Diggle (2003), and Watson

et al. (2007). The Thomas process can be extended to a

‘‘multigeneration’’ process in which the offspring be-

comes the parent of the next generation. The offspring

of the second generation forms the univariate point

pattern. Indicating the parameters k, q, and r of the first

generation by subscript 1 and those of the second

generation with subscript 2, the pair correlation function

of the double-cluster process yields

g22ðr;r1; q1;r2; q2Þ ¼ 1þ 1

q2

exp �r2=4r2
2

� �

2pr2
2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

same second - generation parents

þ 1

q1

exp �r2=4r2
sum

� �

4pr2
sum

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

same first but different second - generation parents

with

r2
sum ¼ r2

1 þ r2
2 ð2Þ

(see Appendix A). The properties rC, gC, and r0 defined

for the Thomas process can be generalized for the single

components of nested cluster processes that are based on

the Thomas process (Fig. 2F).

Fig. 2C shows a realization of a nested double-cluster

process with 35 first-generation parents (Fig. 2A) and

157 second-generation parents (Fig. 2B). This pattern

has a small-scale cluster size rC2¼ 6.4, an overall degree

of small-scale clumping gC2 ¼ 12.5, and a range r02 ¼
13.4 (using d¼ 0.15). Fig. 2F shows the pair correlation

function of the original process (solid line) together with

the pair correlation function of the simulated process

(data points). Note that the simulated process does not

reproduce the second-order characteristics of the orig-

inal process perfectly; some smaller departures occur.

The two scales of clustering can only be separated if

the second-generation clustering r2 is smaller than the

first-generation clustering r1. In the other extreme if r1

� r2 we find rsum ’ r2, and Eq. 2 approximates the

pair correlation function of the Thomas process (Eq. 1)

with parents intensity (1/q2 þ 1/q1).
If the second-generation parents are known, the

bivariate pair correlation function yields

g12ðr;r1; q1;r2; q2Þ ¼ 1þ 1

q2

exp �r2=2r2
2

� �

4pr2
2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

same second - generation parents

þ 1

q1

expð�r2=4r2
sumÞ

4pr2
sum

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

same first but different second - generation parents

with

r2
sum ¼ r2

1 þ
1

2
r2

2 ð3Þ

(see Appendix A).

This process is useful for situations in which a

hypothesis exists about the second-generation parents.

For example, when studying the association of recruits

to adult trees (which itself follow a Thomas process) an

obvious hypothesis would be that the recruits are

clustered in a shadow-like manner around the adults.

Superposition of cluster processes

The other extreme situation for a pattern showing two

distinct critical scales of clustering is a situation in which

the patterns are not nested as in Eq. 2, but results from

the independent superposition of two Thomas processes

with relative intensities p1 and p2 (¼ 1� p1) (Stoyan and

Stoyan 1996). Indicating the parameters q and r for two

Thomas processes with subscripts 1 and 2, the pair

correlation function of the superposition process yields

gðr;r1; q1;r2; q2Þ ¼ 1þ p2
2

1

q2

expð�r2=4r2
2Þ

4pr2
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contribution of Thomas process 2

þ 1� p2ð Þ2 1

q1

expð�r2=4r2
1Þ

4pr2
1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contribution of Thomas process 1

ð4Þ

(see Appendix A).

Comparison of Eq. 4 with the pair correlation

function of the nested double-cluster process (Eq. 2)

shows that both have the same functional form.

However, the intensities q1 and q2 of the superposed

process can only be estimated if the relative intensity p1
of process 1 is known. Additionally, the estimate of r1

will yield a slightly smaller value than rsum.

Another superposition process of interest is a process

in which a random pattern is superposed to the nested

double-cluster process (Eq. 2). Denoting pC as the
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proportion of the points belonging to the nested double-

cluster component process, the pair correlation function

of the superposition process yields the following:

gðr;r1; q1;r2; q2Þ ¼ 1þ p2
C

1

q2

expð�r2=4r2
2Þ

4pr2
2

þ p2
C

1

q1

expð�r2=4r2
sumÞ

4pr2
sum

with

r2
sum ¼ r2

1 þ r2
2 ð5Þ

(see Appendix A).

Again, the pair correlation function of the superpo-

sition (Eq. 5) yields the same functional form as the pair

correlation function of the nested double-cluster process

(Eq. 2). Thus, superposition with a random pattern does

not affect the estimates of parameters r1 and r2, but the

estimates of the intensities q�1 ¼ q1/p2
C and q�2 ¼ q2/p2

C of

the first- and second-generation parents, respectively,

are by factor 1/p2
C larger than the true ones (q1 and q2).

Distinguishing between the nested and the superposed

double-cluster processes is thus not possible based only

on second-order characteristics. One possibility for the

diagnosis of possible superposition is to analyze

additional characteristics of the pattern, such as the

distribution G(y) of the nearest neighbor distances y

(Stoyan and Stoyan 1994, Diggle 2003). If the pattern is

a true nested double-cluster process, most points will

have their nearest neighbor within the same cluster, thus

yielding nearest neighbor distances ,2r2. However,

under superposition larger nearest neighbor distances

will occur. A good indication may also be provided by

visualization of the pattern. In the case of superposition

small-scale clusters or isolated points would be scattered

without forming characteristic larger clusters. Further

evidence can be given by interpretation of the fitted

parameters q1 and q2 (see Appendix A).

Parameter fitting

For parameter fit we followed the minimal contrast

method, e.g., described in Stoyan and Stoyan (1994) and

Diggle (2003). However, we fitted both the g function

and the L function simultaneously because the g

function is especially sensitive at smaller scales and the

K function at larger scales. Details of the fitting

procedure are provided in Appendix B.

A potential problem when using the K function for

parameter estimation is that the K function has a

memory (Wiegand and Moloney 2004). The problem

arises here when fitting a Thomas process to a point

pattern that shows an additional small-scale clustering

with range r02. In this case the observed values of the K

function are influenced by this small-scale clustering,

even for r . r02. This may produce biased estimates of

the parameters of the cluster process (Stoyan and Stoyan

1996) and leads to the observation that the parameter

estimates depend sensitively on the upper limit rmax at

which the K function is fitted (e.g., Batista and Maguire

1998, Plotkin et al. 2000).

To overcome this limitation we developed a transfor-

mation of the K function to remove the memory. We

used the transformed K function,

Ktðr; r � r0Þ ¼ K0 � Kðr0Þ þ KðrÞ ð6Þ

for the fitting procedure instead of the common K(r)

function, which shows memory effects. K0 is the

observed value at scale r0 (i.e., K̂(r0) ¼ K0), and K(r0)

is the value of the K function of the theoretical point

process at scale r0.

Separation of the scales of clustering (i.e., r2
1 � r2

2 in

Eq. 2) suggests a convenient approach to fit the four

parameters of the double-cluster process. In a first step

we fitted the parameters r2
sum and q1 of the overall

larger-scale clustering using a Thomas process (Eq. 1),

but we fitted only for scales r larger than the range r02 of

the small-scale clustering. We assessed the range r02 of

the small-scale clustering from comparing the plot of the

estimated pair correlation function and the fitted pair

correlation function (e.g., Fig. 2F). In the second step we

used the estimates of r2
sum and q1 and fitted the two

unknown parameters r2
2 and q2 of the small-scale

clustering using the full double-cluster model.

BIOLOGICAL QUESTIONS AND NULL MODELS

Double cluster structure (analysis 1)

Our working hypothesis was that S. congestiflora

showed nested clustering at several critical scales. To test

this hypothesis we first analyzed the spatial pattern of all

trees, fitting the nested double-cluster process (Eq. 2) to

the data. To find out whether this process describes the

data well or a superposition process would be more

likely, we performed Monte Carlo simulations of the

fitted process and compared the resulting confidence

limits with the pair correlation function and the

distribution of nearest neighbor distances of the data.

Next we analyzed the univariate patterns of each

individual size class to find out whether the critical

scales changed with life stage.

Smaller trees are more aggregated

than larger trees (analysis 2)

A frequent observation in forests is that recruits are

clustered at small scales, but lose this clustering with

increasing size due to self-thinning. We used the results

of the univariate analyses of the different size classes to

find out whether clustering changes with size class.

Recruit–adult and juvenile–adult associations (analysis 3)

Shorea congestiflora seeds disperse from the tree by

gyrating to the ground. Due to wind they may be carried

only short distances away from the crown. This suggests

a seed shadow around the stems of adult trees.

Analyzing the distribution of the distances to the nearest
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adult from juvenile trees (i.e., trees with a dbh ,10 cm)

will provide indirect evidence for the shape of the seed

shadow, although competition with adults and Janzen-

Connell processes may reduce survival in the neighbor-

hood of adults overproportionally. Our special interest

was to find indications for possible dispersal limitation

(i.e., only few juvenile are found further away than a

certain distance from an adult) and to relate this to the

scales of clustering. To avoid edge effects we used here

only juveniles more than 50 m away from the border of

the plot.

To explore whether other processes (e.g., limited

availability of regeneration sites, competition, Janzen-

Connell processes) substantially changed the presumed

spatial pattern of the seed shadow, we contrasted the

bivariate recruit–adult patterns to the null model of

independence (Goreaud and Pelissier 2003). In case

there was positive association, we further contrasted the

bivariate patterns to the null model where the recruits

are distributed as shadow around the adult trees (Eq. 3).

Association between size classes (analysis 4)

The spatial relationship between subsequent size

classes should contain information about the spatial

organization of the population. To find out whether

trees of subsequent size classes tended to co-occur in the

same clusters, thus producing a positive association, we

contrasted the bivariate patterns to the null model of

independence.

RESULTS

Double-cluster structure (analysis 1)

Univariate analysis of all trees.—Fit of the Thomas

process (Eq. 1) for scales r . 15 m to the data of all trees

yielded parameter estimates rsum¼ (r2
1þr2

2)
0.5¼ 13.3 m

and a total number of Aq1¼44.3 larger scale clusters. By

fitting the nested double-cluster process (Eq. 2) for scales

r ¼ 1–100 we estimated the parameters of small-scale

clustering component as r2¼ 3.8 m (indicating a cluster

size of rC2 ¼ 2r2 ¼ 7.6 m) and Aq2 ¼ 224 small-scale

clusters. The range of small-scale clustering r02 yielded

14.6 m, confirming our selection of r0 ¼ 15 (Table 1).

Using the estimate of r2 the larger scale cluster size

yields rC1 ¼ 2r1 ¼ 2(r2
1 � r2

2)
0.5 ¼ 25.5 m. Thus, the

estimated radius of the larger scale clusters was roughly

four times that of the small clusters. The range of the

larger scale clustering was r01¼ 44 m (Table 1).

Fig. 3D shows that the empirical pair correlation

function of all trees was well within the confidence limits

of the fitted double-cluster process, indicating that the

second-order properties of this process cannot be

distinguished from that of our data. However, the

empirical distribution of nearest neighbor distances did

not agree well with that of the fitted process (small inset

of Fig. 3D): some 10–20% of the trees had no nearest

neighbors within 8 m, as expected by the fitted process,

thus suggesting a superposition pattern.

To explore whether the pattern of all trees might be a

superposition pattern we divided the pattern of all trees

into two component patterns, one comprising trees for

which the distance y to the nearest neighbor was smaller

than 8 m (Fig. 3B) and a second component comprising

the trees with at least one nearest neighbor within 8 m

(Fig. 3C). We found that about n¼119 trees (¼12%) had

no nearest neighbor closer than 8 m. Fig. 3E shows that

this pattern was a random pattern and the small inset of

Fig. 3E shows that the two component patterns were

independent (except small-scale repulsion caused by the

way the patterns were constructed). Thus, the pattern of

TABLE 1. Univariate analyses using the Thomas process (Eq. 1) and the univariate double-cluster model (Eq. 2).

Pattern

Patterns of compound larger-scale clustering Patterns of small-scale clustering

n
Dead
(%) rsum Aq1 l1 gC1 r01 er

gC2/
gC1 r2 Aq2 l2 gC2 r02 er

All trees 986 14 13.3 44.3 22.3 2.8 43.5 0.003 2.3 3.8 223.9 4.4 6.2 14.6 0.0006
Component� 867 10 13.4 34.0 25.5 3.5 45.7 0.003 2.4 3.8 163.0 5.3 8.6 15.2 0.0029
Recruits 112 13.3 23.3 4.8 5.3 48.1 0.004 4.8 3.8 55.9 2.0 25.3 17.0 0.0046
Small saplings 626 17 13.3 35.2 17.8 3.4 45.6 0.001 3.7 3.2 157.8 4.0 12.5 13.4 0.0022
Large saplings 97 7 13.3 45.7 2.1 2.7 43.3 0.024 5.6 3.8 89.6 1.1 15.1 16.5 0.0122
Intermediates 64 13 14.6 44.3 1.4 2.7 43.9 0.024 4.1 5.3 64.0 1.0 11.1 22.0 0.0110
Adult� 87 20 12.8 20.9 4.2 5.8 49.0 0.015 0.0 ��� ��� ��� ��� ��� ���
Dead� 136 ��� 6.7 50.6 2.7 8.8 27.0 0.013 0.0 ��� ��� ��� ��� ��� ���

Notes: The variable abbreviations (where subscripts 1 and 2 refer to the small-scale and the large-scale component process,
respectively) are: n, number of points of the pattern; dead, the percentage of dead trees in the size class; A, size of the study area; q1,
q2, the intensity of the parents pattern; Aq, the number of parents in the plot of size A¼ (5003500 m); r2, parameter describing the
cluster size (in meters); rsum: parameter describing the cluster size of a double-cluster process (in meters); l1¼n/(Aq1), l2¼n/(Aq2),
the mean number of points in a cluster; gC1, gC2, the overall degree of clustering; r01, r02, range of clustering (in meters); er, fraction
of the total sum of squares of the empirical g and L function not explained by the fit (combined as geometric mean; see Appendix
B). We first analyzed the pattern of all trees and assumed in the analyses of individual size classes that they show the same larger-
scale cluster size as the pattern of all trees together (i.e., we fixed r1¼12.8). We fitted the remaining parameter q1 of the larger-scale
clustering using the Thomas process (Eq. 1) for scales r ¼ 15–100. Next we used the double-cluster process (Eq. 2) to fit the
parameters r2 and q2 to the small-scale clustering.

� The component pattern of the pattern of all trees that have at least one nearest neighbor within 8 m.
� For this size class only a Thomas process (Eq. 1) was fitted to the data for scales r ¼ 1–50, but no double cluster process.
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all trees fulfills the assumption for superposition of a

nested double-cluster process with a random pattern,

and the pair correlation function of the pattern of all

trees should follow Eq. 5.

The second component pattern comprising only trees

with at least one nearest neighbor within 8 m showed

visually a clearer double-cluster structure than the

pattern of all trees (cf. Fig. 3A, C). This allowed us to

reconstruct the clusters qualitatively (see Appendix C).

Repeating the fit with the double-cluster process yields

parameters rsum ¼13.4, Aq1 ¼ 34, r2 ¼ 3.8, and Aq1 ¼
163. The proportion of points with at least one neighbor

closer than 8 m was pC¼ 0.88. Thus the inflation factor

of the number of parents due to superposition with the

random pattern yielded 1/p2
C ¼ 1.29, which was well

confirmed by comparing the estimates of the number of

first- and second-generation parents derived for the

pattern of all trees and for the double-cluster component

pattern (Table 1): 44.3/34.0 ¼ 1.30 and 223.9/163.0 ¼
1.37. Comparison of the empirical distribution of

nearest neighbor distances with that of the fitted process

(inset of Fig. 3F) showed some smaller discrepancies

that may stem from points that belong to the random

component pattern but were accidentally close to a

cluster and could therefore not be detected.

Univariate analysis of individual size classes.—The 119

trees that had no neighbor within 8 m distance were

proportionally distributed among life stages, although

they were slightly overrepresented in the intermediate

and adult stages. They comprised 9% of the recruits (10

trees), 11% of the small saplings (72 trees), 8% of the

large saplings (8 trees), 16% of the intermediates (10

trees), and 22% of the adults (19 trees). For all size

classes, except small saplings for which the same results

as for all trees hold (not shown), the sample sizes were

too small to separate the patterns in the same way as

done for the pattern of all trees. Because the superpo-

sition did not affect estimation of the cluster sizes and

biased the estimates of the number of clusters in a

predictable way, we analyzed the univariate patterns of

individual size classes without dividing the pattern into

two components, but we considered possible superposi-

tion in the interpretation of the parameter estimates.

FIG. 3. Analyses of the pattern of all trees. (A) Spatial pattern of all Shorea congestiflora trees within the 500 3 500 m plot.
(B) Component pattern of (A) comprising only trees that have no neighbor within 8 m. (C) Component pattern comprising only
trees with at least one neighbor within 8 m. (D) Empirical pair correlation function (data points) of the pattern shown in (A)
together with the fitted double-cluster process (gray line) and the confidence limits (solid line). The inset shows the analysis of the
distribution G(y) of the nearest neighbor (NN) distances y. (E) Empirical pair correlation function (data points) and confidence
limits of the pattern shown in (C). The inset shows the bivariate pair correlation function g12(r) of the two component patterns and
confidence limits constructed using 99 simulations of a toriodal shift null model testing for independence. (F) Same as (D), but for
the pattern shown in (C). The confidence limits in (D) and (F) were constructed from 99 simulations of the fitted double-cluster
process, and those in (E) from 999 simulations of complete spatial randomness (CSR). The ring width was 3 m in all analyses.
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For a given size class we estimated the intensity q1 of
first-generation parents and the parameters r2 and q2 of
the small-scale clustering mechanism under the assump-

tion r1 ¼ 12.8 (i.e., we assumed that the larger scale

cluster size was the same for all size classes). For all size

classes the fit with the Thomas process for scales r . 15

m showed an error coefficient er , 0.03, indicating that

,3% of the total sum of squares of the empirical g and L

functions was not explained by the fitted functions

(Table 1). This can be considered a good fit that justifies

a posteriori our choice of r1 ¼ 12.8.

For recruits and saplings the fit with the double-

cluster process showed for all classes an error coefficient

er , 0.013, again indicating a good fit (see also Fig. 4).

However, for adults and dead, the Thomas process

yielded already a good fit (Table 1). Our analyses

detected for all juvenile size classes clear indications for

an additional small-scale clustering with cluster size of

;8 m (Fig. 4, Table 1). Simulating the processes with the

fitted parameters was then used to confirm that our data

cannot be distinguished from the fitted processes. As

expected by the low error coefficients, we found no

significant departures of the pair correlation function

from the confidence limits of the simulated processes

(Fig. 4). Note that it is not obvious a priori that a fitted

process describes the data well, especially in cases in

which the fit is poor. However, dead trees did not show

the signal of the common larger scale clustering; instead

the Thomas process fitted the data well (er ¼ 0.013;

Table 1, Fig. 4F), yielded for scales r¼1–50 a cluster size

of rC1 ¼ 2r1 ¼ 13.4 m and some Aq1 ¼ 51 clusters.

The empirical distribution of nearest neighbor dis-

tances showed for all size classes the expected departure

from the simulations of the fitted process due to a

superposition (small insets in Fig. 4). For the recruits

and saplings patterns with strong small-scale clustering

the departure occurred at smaller scales (note that G( y)

is accumulative) and for intermediates and adults with

weak or no small-scale clustering at larger scales.

Smaller trees are more aggregated

than larger trees (analysis 2)

Our analyses clearly supported the hypothesis that

smaller trees (i.e., recruits and saplings) were aggregated

at two critical scales (Fig. 4A–C). Intermediates still

showed a signal of the two scales of clustering (Fig. 4D)

FIG. 4. Univariate point pattern analysis of the different size classes of Shorea congestiflora. The pair correlation functions
estimated from the data (data points) are contrasted to a null model that assumes a common larger scale clustering with parameter
r1¼12.8 and additional small-scale clustering for recruits, saplings, and intermediates. The confidence limits (gray lines) of the null
models were constructed using 999 Monte Carlo simulations of univariate double-cluster models (Eq. 2) and the Thomas process
(Eq. 1) with parameters given in Table 1 [in (B) we used 99 simulations]. The fitted pair correlation function of the Thomas process
is shown as gray solid lines, and that of the double-cluster model as a solid black line. The ring width was 3 m. The small inset figures
show the empirical distribution G(y) of the nearest neighbor (NN) distances (data points) together with confidence limits (lines).

THORSTEN WIEGAND ET AL.3096 Ecology, Vol. 88, No. 12



but yielded a somewhat unstable fit, probably due to the

low number of points (n¼ 64), and the pattern of adult

trees did not show significant small-scale clustering

(Fig. 4E). Interestingly, the small-scale cluster size was

the same for recruits and the two sapling size classes and

only slightly larger for intermediates (Table 1).

Given that the estimated large-scale cluster size was

the same for all size classes, the monotonous decrease in

the estimated overall degree gC1 of larger scale clustering

from recruits (gC1 ¼ 5.3) to intermediates (gC1 ¼ 2.7)

(Fig. 4, Table 1) was therefore probably caused by an

increase in the number of occupied clusters (Table 1). A

test with qualitatively reconstructed clusters confirmed

this finding (Appendix C).

The estimated degree gC2 of small-scale clustering was

largest for recruits and approximately half of that for

saplings and intermediates (Table 1). The stronger

clustering of recruits might therefore be caused by

having fewer clusters rather than having a smaller

cluster size. However, note that care is required with

these interpretations because the estimates of gC1 and

gC2 may be biased if the patterns would be superposition

of a nested double-cluster process and a random pattern

as suggested above (see Double-cluster structure [anal-

ysis 1]: Univariate analysis of all trees).

The pair correlation functions of the recruits (Fig. 4A)

and saplings (Fig. 4B, C) show that recruits were more

clustered than saplings. The much higher abundance of

small saplings (n ¼ 626) compared to recruits (n ¼ 112)

suggest that small saplings may accumulate several

recruit generations. The observed differences in cluster-

ing between recruits and saplings could be caused by

scarce and short-lived regeneration sites. Following this

hypothesis, recruits should show fewer small-scale

clusters than saplings.

Recruit–adult and juvenile–adult associations (analysis 3)

Shorea congestiflora seeds disperse from the tree by

gyrating to the ground, but not very far from the crown.

They should therefore accumulate under the canopy.

However, we found that only 10% of all juveniles were

located within a 5-m distance from the nearest adults

(Fig. 5A). This might be due to competition from adults

directly under the canopy or by Janzen-Connell effects.

The most frequent nearest neighbor distances occurred

between 4 and 25 m, and 95% of all juveniles were

located within some 53 m from the nearest adult.

Interestingly, the large-scale cluster size q1 ¼ 25.5 m is

just the scale at which the juvenile–adult distances

become less frequent (Fig. 5A). This scale should

coincide with the maximum distance gyrating seeds

disperse by wind away from the stem. However, ;30%

of the juveniles, mostly small saplings, were located

further than 26 m away from an adult tree (Fig. 5A). For

some of these saplings the parent tree may have died

before the census started, but also a secondary seed

dispersal mechanism (e.g., washing down the slopes with

surface runoff) could be involved.

The pair correlation function shows a pronounced

peak in the intensity of recruits about 4–7 m away from

the adult stems (Fig. 5B). Application of the null model

of independence showed that the tendency of positive

association between recruits and adults was not signif-

icant for scales r ¼ 10–40, but significant for scales

between 5 and 7 m (Fig. 5B). We therefore proceeded in

testing the more specific hypothesis that the adults were

the cluster centers of the recruits. However, the fit with

the model Eq. 3, which assumes that adults are the

parents of the recruits, failed: the parameter estimates

yielded some 71 parents and r2 ¼ 21, which was not

consistent with the results of the univariate analysis.

Thus, although there is a positive and significant small-

scale association between recruits and adults, we found

evidence that additional processes such as competition

to adults or Janzen-Connell processes may have

modified the seed shadow in a nonrandom way.

Association between subsequent size classes (analysis 4)

Small sapling and recruits.—Application of the null

model of independence showed that there was a

tendency to positive association between recruits and

small saplings at scales r , 40 and a significant positive

association for scales r , 10 (Fig. 5C). Interestingly, the

bivariate pair correlation function describing the asso-

ciation of small saplings around recruits was for scales

r . rC2 ¼ 6.4, basically the same as the univariate pair

correlation function describing the association of small

saplings around small saplings (open discs in Fig. 5C).

Thus, outside the range of the small-scale clustering,

small saplings surrounded recruits in the same way as

small saplings surrounded small saplings. However, at

scales r , rC2 saplings were more strongly associated to

saplings (g22 in Fig. 5C) than saplings to recruit (g12 in

Fig. 5C) or recruits to recruits (g11, not shown). Thus,

although recruits and small saplings were not randomly

mixed in small clusters (in this case we would expect g12
’ g11 ’ g22), they co-occurred frequently enough in the

same cluster to yield a clear positive small-scale

association.

Small and large saplings.—We found a significant

positive association between small and large saplings at

scales r , 25 (Fig. 5D). The bivariate pair correlation

function describing the association of small saplings

around large saplings was for scales r . 3 basically the

same as the univariate pair correlation function describ-

ing the association of small saplings around small

saplings. Thus, small saplings occurred at small scales

quite often around large saplings (cf. g12 and g22 in

Fig. 5D), but not as frequently as small saplings

occurred around small saplings.

Intermediates and large saplings.—For scales r , 17

there was a significant positive association between large

saplings and intermediates (Fig. 5E). Again, g12 and g22
were quite similar outside the small clusters. Large

saplings showed a significant positive association to

intermediates, which, however, was clearly weaker than
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clustering of large saplings around large saplings (cf. g12
and g22 in Fig. 5E).

Adults and intermediates.—Application of the null

model of independence revealed a significant positive

association between adults and intermediates for most

scales r , 18 (Fig. 5F). Comparing g12 and g22 showed

that intermediates were, within their small-scale clusters,

more associated to intermediates than to adults.

FIG. 5. Bivariate analyses. (A) Non-accumulative distribution n( y) of the distances y from juveniles to the nearest adult
neighbor (bars) and accumulative distribution G( y) (line). (B–F) Bivariate pair correlation function g12(r) (solid lines with circles)
and confidence limits (solid black lines) for independence were based on 999 simulations in (B), (E), and (F), but on 99 in (C) and
(D). The pair correlation functions g11(r) and g22(r) for one univariate component pattern are shown as gray lines with open circles.
The ring width was 3 m.
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However, the relatively low sample size for both life

stages prevented a too literal interpretation of the
relative shapes of the two pair correlation functions.

DISCUSSION

Our analyses demonstrated how the use of a specific

and more complex null hypothesis of spatial structure in
point pattern analysis can lead to a better understanding

of the biology of a species. Our working hypothesis was
that our study species S. congestiflora would show

nested clustering at multiple critical scales. Double-
cluster processes, which allowed for more realistic

spatial structures, were critical ingredients of our
approach and allowed us to escape the limitations in

the current use of point pattern analysis in ecology, e.g.,
outlined by Plotkin et al. (2002). Standard null models

such as complete spatial randomness, or even the

Thomas process which incorporates one scale of
clustering, often do not allow for a meaningful analysis

in explorative point pattern analysis because they cannot
address the complexity of real world data sets (Stoyan

and Stoyan 1996, Plotkin et al. 2002).

Spatial structure of Shorea congestiflora

Our analyses provided a clear picture of the spatial

structure of our study species. For most size classes we

found strong evidence for two nested scales of cluster-
ing; a larger scale clustering with a cluster size of some

26 m for all live stages and a small-scale clustering with a

consistent cluster size of some 8 m that persisted from

recruits up to the intermediate stage. Interestingly, we
found indications that the spatial pattern of S. congesti-

flora trees could be a superposition of two independent
patterns. One component pattern (trees without a

nearest neighbor within 8 m), comprising about 12%

of the trees, was a random pattern. The second
component could be approximated well by a nested

double-cluster process. A hypothesis to explain this
finding is that S. congestiflora has two dispersal

mechanisms: primary dispersal, in which seeds gyrate
to the ground, and secondary dispersal, in which seeds

are occasionally washed down the steep slopes with
surface runoff and are entrapped in the process. This

hypothesis could be tested in the field. Secondary
dispersal by animals is less likely because Shorea seeds

are highly resinous.

Although there was a consistent scale of larger scale
clustering among all size classes, our analyses suggested

that not all larger scale clusters were occupied by all size
classes. This caused differences in the overall degree of

clustering. Recruits and adults may occupy about half of
the larger scale clusters, small saplings 80%, and large

saplings and intermediates all (Table 1). These results
were consistent with a qualitative reconstruction of the

large-scale clusters. We found that a substantial

proportion of the clusters was not occupied by recruits
and adults, whereas saplings occupied most clusters

(Fig. 1C). Our results suggest that the large-scale cluster

PLATE 1. View from a lowland hilltop into the canopy of the mixed dipterocarp forests at middle altitudes (400–700 m) of
southwestern Sri Lanka which form, together with Western Ghats, a global biodiversity hotspot. Over 60% of the tree species in
these forests are endemic to Sri Lanka and, despite habitat reduction and degradation, still retain some relict signatures of
Gondwana ancestry. Photo credit: N. Gunatilleke.
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size of 26 m might be related to a dispersal limitation of

S. congestiflora. The distribution of distances from

juveniles to the next adult (Fig. 5A) showed that for

70% of the juveniles the next adult was closer than 2r1¼
26 m. This distance should be the maximal primary seed

dispersal distance by gyrating. The juveniles that had

nearest neighbors further away than 26 m could be

additionally dispersed by runoff or their parent trees

were already dead at the time of the first census.

The finding that recruits do not occupy all clusters but

saplings occupy most clusters is consistent with patchy

recruitment due to limited regeneration sites that may

not be present at any time (Hubbell et al. 1999). A high

occupancy of larger scale clusters by saplings would

arise if this size class accumulated several recruitment

generations. Clusters without adults may appear because

the ‘‘founder’’ adult already died, or it may indicate

interspecific competition with large trees of other species

(Condit et al. 2000) or it might be explained by patch

mortality of cohorts, a large-scale Janzen-Connell effect

rarely examined and, admittedly, difficult to ‘‘prove.’’

However, it would be necessary to look at the precise

locations of each patch to give more precise biological

interpretations of this finding.

The larger scale clustering was overlaid by smaller

scale clustering with a radius of ;8 m. Recruits showed

a strong small-scale clustering that persisted up to the

intermediate stage, but disappeared for adults. Thus, a

classical self-thinning was evident for our study species;

larger trees were less aggregated than smaller trees. The

consistent 8-m small-scale cluster size may correspond to

the typical size of gaps produced by dead canopy trees

(Hubbell et al. 1999).

Subsequent size classes occurred frequently enough

together in the same small-scale clusters to produce a

significant positive small-scale association (Fig. 4C–E).

This result is consistent with recruitment limitation in

which the locations of the regeneration sites change for

each recruit generation and where the temporal window

of a recruitment site was large enough to allow for a

certain overlap of subsequent size classes causing the

overall positive smaller scale association.

Because S. congestiflora seeds are dispersed by

gyrating there should be many recruits under the canopy

of adult trees. However, recruits were only weakly

associated with adults and few recruits occurred close to

the stem of adult trees, but the peak density of recruits

around adults occurred at ;5–7 m distance from the

stem (Fig. 5B). Potential processes to explain this finding

are competition from adults or Janzen-Connell effects in

which pathogens, herbivores, and seed predators elim-

inate seedlings in the immediate neighborhood of adult

trees. The latter would be consistent with work

elsewhere (Wills and Condit 1999, Condit et al. 2000,

Harms et al. 2000) that has shown that the greater part

of Janzen-Connell mortality occurs below that size of 1

cm dbh. The lack of positive association at scales .8 m

is consistent with our hypothesis of limited and short-

lived regeneration sites.

Assumptions of our approach

Our approach of using simple and mathematically

tractable point processes is a reasonable parsimonious

approach since we used them as null models and did not

intend to fit all idiosyncrasies of the real world patterns.

The double-cluster processes based on the Thomas

process capture the essence of multiple clustering in a

simple way and should therefore be suitable null models

for most practical application in ecology. Clearly, if data

are scarce (in the order of a few hundred points) one

may not be able to distinguish statistically among

structurally similar candidate point processes. However,

if strong biological evidence suggests violation of critical

assumptions or if there is a substantial departure from

the null model, other null models are required.

A critical assumption of our analyses that may

frequently be violated in real data sets is large-scale

homogeneity of the pattern. If the data stem from a

single realization of the underlying process there is a

fundamental ambiguity between clustering and hetero-

geneity; both cannot be distinguished statistically

without additional biological information (Bartlett

1964, Diggle 2003). This is intuitively clear since both

clustering and environmental heterogeneity generate

patterns with locally elevated point densities. In general,

however, large-scale aggregation is attributed to envi-

ronmental heterogeneity, whereas small-scale clustering

is attributed to point–point interactions. Thus, double-

cluster processes might be used, within certain limits, to

describe clustering due to environmental heterogeneity.

This can be done if the broadest level of heterogeneity

shows no clear large-scale trend in the study region, but

can be considered as determined by randomly distrib-

uted intermediately sized patches displaying a clear

mode in their size distribution. Our approach cannot be

applied to the related species S. affinis, which showed a

strong association to elevation and a large-scale trend in

environmental heterogeneity (Fig. 1B).

Although we found evidence that the larger scale

clustering was related to a dispersal limitation, a weak

habitat association of S. congestiflora (it occurred less

frequently at a habitat called ‘‘low less-steep gullies’’ in

an elevation range between 424 and 460 m and a

moderate slope; Gunatilleke et al. 2006) might be

present. However, the spatial structure of the habitat

was virtually not related to the size of the clusters

(Fig. 1A). Large-scale heterogeneity of the pattern was

therefore not a critical issue in our analysis. A

considerable challenge for further development, howev-

er, is to expand our methods for heterogeneous cluster

processes.

Point pattern analysis, hypotheses, and null models

Point-pattern analysis is most commonly used as a

tool to assess departure from the simplest null models
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(CSR for univariate null models and independence or

random labeling for bivariate null models). However, an

alternative, much richer approach is setting up explicit

hypotheses prior to pattern analyses (e.g., Schurr et al.

2004) and to develop specific null models to test these

hypotheses. This allows for a precise description of the

properties of patterns, can provide deeper insight into

the biology of the species, and can generate specific

hypothesis to be tested in the field. We followed this

approach and derived specific hypotheses on the spatial

organization of our size-structured tree population.

Monte Carlo simulations of the null model provided a

rigorous test for detecting departure from these hypoth-

eses if the null models had no unknown parameters.

However, our working hypothesis that the patterns of

different size classes showed two distinct scales of

clustering required use of null models with four

unknown parameters to be estimated by fitting the

model to the data. Rejection of this hypothesis for adults

and dead trees was unambiguous since the null model

with only one critical scale of clustering yielded a good

fit of the data. Similarly, rejection of the bivariate

hypothesis that the adults were the cluster centers of the

small-scale clusters of recruits was unambiguous since

the formal fit yielded results inconsistent with the

univariate analyses. Our general observation was that

attempts to fit a double-cluster process to data that do

not have a double-cluster structure failed either because

the fitting algorithm did not find a solution or because

the fitted parameters indicated only a single-cluster

process (e.g., r2 ! ‘ or q2 ! ‘). Thus, the first step of

evidence against or in favor of our working hypotheses

was provided by the fitting procedure itself. The next

step, in case that the fitting seemed successful (i.e., for

smaller size classes), was to perform Monte Carlo

simulations of the null model with the fitted parameters

to confirm that the fit was indeed satisfying (i.e., that we

cannot distinguish several features of the data from the

realizations of the fitted process). Stoyan and Stoyan

(1994:300–302) discuss goodness-of-fit tests for fitted

point processes in more detail; the probability of an

error of type I is certainly greater than the chosen a.
One general problem with this approach is that one

has usually only one realization of the process on hand,

but different realizations of point processes may not

always show exactly the same properties as the

underlying process (e.g., Fig. 2F). The best we can do

in this situation is to use the cluster processes to describe

the spatial structure of our data, but be aware that the

fitted parameters may only approximate the real

parameters of the overall process.

We emphasize that our approach does not allow

inferring process unambiguously from observed pattern.

We cannot exclude the possibility that there may be

other point processes that fit the data equally well, but

that may suggest a different biological interpretation.

This is, e.g., illustrated by the different double-cluster

processes (Eqs. 2, 4, 5) that may arise by nested

clustering or superposition processes. Therefore it is

important to formulate the null hypothesis with care and
make it as specific as possible and to use complementary

information as, e.g., provided by the distribution of
nearest neighbor distances. Point pattern analysis
techniques are descriptive and inductive, i.e., they can

test whether an observed pattern is well described by a
given null model and suggest causal relationships that,

however, must be proven experimentally (Levin 1992,
Silvertown and Wilson 1994, Crawley 1997). We

therefore view the techniques developed here more as
tools for exploratory data analysis and for generating

new hypotheses that can be tested in the field.
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