1	Original Research Article	
2		
3	Phaeophytin a and Triterpenoids from Brachystelma togoense Schltr, a	
4	Nigerian Medicinal Herb	
5		
6	ABSTRACT	
7	The medicinal herb, Brachystelma togoense schtlr (Apocynaceae) is used traditionally for	
8	treatment of ailments. The secondary metabolites, phaeophytin a , α -amyrin and lupeol were	
9	isolated and identified from MeOH and CH ₂ Cl ₂ extracts of Brachystelma togoense. The	
10	structures were elucidated using ¹ H, ¹³ C and 2D NMR. These phytochemicals have shown to	
11	possess various biological activities such as anti-inflammatory, anti-fungal, anti-	
12	inflammatory and anti-cancer. Therefore, the uses of Brachystelma togoense for medicinal	Comment [PM1]: This is work done by other authors (Gallo et al).
13	purpose in Nigeria is because of the presence of phaeophytin a , α -amyrin and lupeol.	
14		
15	Keywords: Secondary metabolites; phaeophytin <i>a</i> ; α-amyrin; lupeol; <i>Brachystelma togoense</i>	Formatted: Font: Italic
16	schtlr	
17		
18	1. INTRODUCTION	Comment [PM2]: The introduction could include more information regarding the use of Brachystelma
19	Brachystelma was first described by Robert Brown in 1822. The genus Brachystelma R. Br.	as a herb.
20	(Apocynaceae: Asclepiadoideae) is represented by about 100-120 species (1). It is an erect	
21	perennial herb, growing up to 30 cm high. The genus Brachystelma is chiefly distributed in	
22	South Africa, South-East Asia and Australasia (2). A total of 18 species are known in India	
23	(3) and out of them, 3 species in Maharashtra. <u>Brachystelma is found</u> from Ghana to Nigeria,	
24	in lowlands to montane areas (Reference needed). The raw tuber is said to be edible_(4).	

- 25 Many of the tuberous *Brachystelma* are known to be used medicinally for the treatment of
- 26 headache, stomach ache and colds in children (Reference needed).

27 **2. MATERIAL AND METHOD**

28 **2.1 Collection**

- 29 The aerial parts of *Brachystelma togoense* was collected <u>during</u> April 2018 from the
- 30 Ugbokolo forest in <u>Okpokwu, which is the local government area of Benue State-Nigeria</u>.
- 31 The <u>collected specimen</u> was <u>positively identified</u> by Mr. Namadi Sanusi as <u>Brachystelma</u>
- 32 togoense. A specimen (no. 25856) had been retained at the Department of Biological
- 33 Sciences, Ahmadu Bello University, Zaria-Nigeria (Figure 1).

34 2.2 Extraction and isolation

- 35 Air dried *B. togoense* (1000 g) was successfully extracted on a shaker at room temperature
- 36 <u>using a 100 % dichloromethane (CH₂Cl₂) and 100 % methanol (CH₃OH) for 72 h.</u> The
- 37 extracts were concentrated using <u>a rotary</u> evaporator at 40°-C resulting in a brown gum-like
- texture (32 g). The CH_2Cl_2 extract (32 g) was separated by flash chromatography (Biotage
- 39 system) over silica gel using three solvents. Firstly, a hexane/ CH_2Cl_2 gradient, starting with
- 40 100 % hexane and gradually increasing the polarity to 100 % CH₂Cl₂. Secondly,
- 41 CH₂Cl₂/EtO<u>H</u>/Ac from a 100 % CH₂Cl₂ to 50 % EtO<u>H</u>/Ac and to 100 % EtO<u>H</u>/Ac to yield
- 42 compounds **1** (51.0 mg), **2** (32.0 mg) and **3** (28.0 mg).
- 43 **2.3 General experimental procedure**
- Nuclear magnetic resonance (NMR) spectra were recorded in CD₃OD or CDCl₃ on a
 400MHz or 500 MHz Bruker AVANCE III NMR instrument at room temperature. Highresolution electron impact mass spectrometry (HREIMS) was recorded on an Agilent
 Technologies 6550 iFunnel Q-TOF LC/MS with samples dissolved in CH₂Cl₂. Optical
 rotations were determined in CH₂Cl₂ on a JASCO P-1020 polarimeter and the infrared
- 49 spectra were recorded using a Perkin-Elmer (2000 FTIR) spectrometer on NaCl plates.

Comment [PM3]: At what time of the day was the material collected? How was the material stored until required for preparation?

Comment [PM4]: Who is Mr Sanusi? Is he a botanist? Where does he work?

Comment [PM5]: How was the air-dried plant material prepared for extraction? Ground, chopped, powder, etc.

Comment [PM6]: What do you mean by "successfully extracted"?

Comment [PM7]: What was the ration between plant material and extraction solvent? What was the ratio between dichloromethane and methanol? Was it two separate extractions, one using methanol and one using dichloromethane or a mixture of the two solvents?

Comment [PM8]: How many replicates? If any

Comment [PM9]: This section needs to include more detail of how the plant material was extracted.

50 4. Results and Discussion

51	The <u>air-dried</u> aerial parts <i>B. togoense</i> (1000 g) collected at Ugbokolo forest (Okpokwu local
52	government area of Benue State-Nigeria) were extracted with dichloromethane and methanol.
53	A combination of flash chromatography (biotage system), column chromatography and thin-
54	layer chromatography of these extracts yielded <u>phaeophytin a (51.0 mg; 0.16 %)</u> , <u>α-amyrin</u>
55	(32.0 mg; 0.10 %) and <u>lupeol</u> (28.0 mg; 0.09 %). The compounds (Figure 2) were elucidated
56	based on comparison of previous data (5–9). <u>Previously</u> , pheophytin a has been reported to
57	possess strong antimicrobial activity against Candida albicans (ATCC 90028) and C. lbicans
58	(ATCC 76615) (10) as well as antioxidant activity (11). <u>Amyrin (α)</u> has been reported to
59	exhibit antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Calbicans,
60	Staphylococcus aureus and Trichophyton mentagrophytes (12). Antiprotozoal, anti-
61	inflammatory, antitumor and antimicrobial activity had been reported for lupeol (13).

62 Conclusion

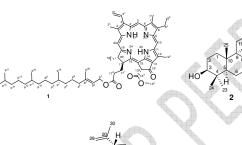
This was <u>a first report of the phytochemical compound quantification in B. togoense in</u>
Nigeria. These secondary metabolites, i.e. phaeophytin a, α-amyrin, and lupeol were reported
to show various biological activities. Therefore, the results of chemical compound analysis of *B. togoense* suggested the ethnomedicinal uses of this plant in Nigeria.

67 .Competing Interests

68 Authors have declared that no competing interests exist.

This is work reported by Gallo et al. If you are the author of this paper (Gallo) you should say previous work done by the author regarding the biological activity of B. togoense etc

Comment [PM10]: Where are these results?


69

70

71 Figure 1: Brachystelma togoense in its natural habitat (14)

72

73

74 | Fig.2: <u>Structures of isolated compounds</u> **1-3** from *B. togoense* schtlr (Please acknowledge

4

- 75 <u>source of the structures</u>)
- 76 1. Phaeophytin *a*
- 77 2. α-<u>A</u>myrin
- 78 3. <u>L</u>upeol

79

80 **References**

81

Comment [PM11]: You are not consistent in writing of the references. Should the journal names be abbreviated or not? Some are abbreviated and some are not abbreviated. Space between author initials or not?

82	1.	Bruyns P V.? (space between initials or not) Three New Species of Brachystelma
83		(Apocynaceae, Asclepiadoideae, Ceropegieae) from South Tropical and Southern
84		Africa. Vol. 19. SPIE; 2009. 5 p.
85	2.	Ollerton J, Masinde S, Meve U, Picker M, Whittington A. Fly pollination in Ceropegia
86		(Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives. Ann
87		Bot. 2009;103(9):1501–14.
88	3.	Britto SJ, Bruyns P V? (space between initials or not). Three new species of
89		Brachystelma from Tamil Nadu, India. Haseltonia. 2016;(22):48–54.
90	4.	Kew Royal Botanical Gardens. Electronic Plant Information Centre (ePIC) [Internet].
91		2019 [cited 2019 Feb 7]. Available from: http://epic.kew.org/index.htm
92	5.	Xueyan R, Jia Y, Xuefeng Y, Lidan T, Qingjun K. Isolation and purification of five
93		phenolic compounds from the Xinjiang wine grape (Vitis Vinifera) and determination
94		of their antioxidant mechanism at cellular level. Eur Food Res Technol [Internet].
95		2018;244(9):1569–79. Available from: https://doi.org/10.1007/s00217-018-3070-z
96	6.	De Britto J, Soosai Manickam V, Gopalakrishnan S, Ushioda T, Tanaka N. Chemical
97		and chemotaxonomical studies of ferns. Determination of aglycone chirality in
98		dihydroflavonol 3-OALPHAL-rhamnosides by 1H-NMR spectroscopy [Internet].
99		Vol. 43. 1995. 338-339 p. Available from:
100	0.	https://www.jstage.jst.go.jp/article/cpb1958/43/2/43_2_338/_pdf
101	7.	Silva ATM e, Magalhães CG, Duarte LP, Mussel W da N, Ruiz ALTG, Shiozawa L, et
102		al?. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer
103		cell growth. Brazilian J Pharm Sci [Internet]. 2018 Feb 1 [cited 2019 Feb 19];53(3).
104		Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-
105		82502017000300621&lng=en&tlng=en
106	8.	Abreu VG da C, Corrêa GM, Lagos IA dos S, Silva RR, Alcântara AF de C.

1

Formatted: Font: Italic

107		Pentacyclic triterpenes and steroids from the stem bark of <i>uchi</i> (Sacoglottis uchi,
108		Humiriaceae). Acta Amaz. 2013;43:525–8.
109	9.	Schwikkard SL, Mulholland DA, Hutchings A. Phaeophytins from Tapura fischeri.
110		Phytochemistry. 1998;49(8):2391-4.
111	10.	Gomes RA, Teles YCF, Pereira F de O, Rodrigues LA de S, Lima E de O, Agra M de
112		F, et al?. Phytoconstituents from Sidastrum micranthum (A. StHil.) Fryxell
113		(Malvaceae) and antimicrobial activity of pheophytin <i>a</i> . Brazilian J Pharm Sci Formatted: Form
114	I	[Internet]. 2015;51:861–7. Available from:
115		http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-
116		82502015000400861&nrm=iso
117	11.	Kusmita L, Puspitaningrum I, Limantara L. Identification, isolation and antioxidant
118		activity of pheophytin from green tea (Camellia sinensis (L.) Kuntze). Procedia Chem
119		[Internet]. 2015;14:232–8. Available from:
120		https://dx.doi.org/10.1016/j.proche.2015.03.033
121	12.	Ragasa CY, Puno MRA, Sengson JMAP, Shen C-C, Rideout JA, Raga DD. Bioactive
122		triterpenes from <i>Diospyros blancoi</i> . 2009;23(13):1252-8. Available from:
123		https://dx.doi.org/10.1080/14786410902951054
124	13.	Gallo M, Miranda- bullet?, Sarachine? J. Biological activities of lupeol. In:
125		International Journal of Biomedical and Pharmaceutical Sciences. 2009. p. 46-66.
126	14.	Erpenbach A. West African Plants - A Photo Guide - Brachystelma togoense Schltr.
127		[Internet]. 2009 [cited 2019 Feb 18]. Available from:
128		http://www.westafricanplants.senckenberg.de/root/index.php?page_id=14&id=4246
129	L	Comment [PM1
130		

Italic