Pharmacology of *Ficus*: A review

Maizatul Akma Ibrahim^{1, *} and Nor Hafizah Zakaria¹

¹Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang.

*Corresponding author: maizatulakma@iium.edu.my

ABSTRACT

Ficus is a medicinal plant that is commonly used in Malaysia, China, India, Thailand, South Africa, and other countries due to its pharmacological properties such as anticancer. anti-inflammatory, antioxidant. antimicrobial. anagelsic, and antihypertensive activities. Based on the ethnological reports, this genus has been used to treat fever, skin diseases, hypertension, diabetes, cardiovascular diseases, and diarrhea. Women also have used the decoction of the whole plant as an herbal drink to recover after childbirth. It also improves blood circulation and regains body strength, as well as treats disorders related to the menstrual cycle. Recently, there were a lot of researches about the isolation of the chemical constituents in the Ficus genus to understand the functions and the mechanisms of these constituents that attributed to the pharmacological properties of the plant. These chemical constituents, such as flavonoids, triterpenoids, steroids, and furocoumarins, have shown diverse applications in the pharmacotherapeutic field. Therefore, this comprehensive review summarises the background and pharmacological properties of the Ficus genus.

Keywords: Ficus; pharmacology; phytochemicals; extract

INTRODUCTION

The genus *Ficus* of the Moraceae family includes a large number of species, which is more than 800 species (Berg, 2003), mostly found in tropical areas of East Asia. The leaves are usually simple and waxy, and most exude white or yellow latex when

broken. Many species have aerial roots, and a number are epiphytic. The unusual fruit structure, known as a syconium, is hollow, enclosing an inflorescence with tiny male and female flowers lining the inside. The growth forms of *Ficus* are varied, including shrubs, woody lianas, hemiepiphytes, epiphytes, and trees. Some indoor varieties of *Ficus*, such as fiddle-leaf fig and Audrey fig can be grown as outdoor ornamental plants as well (Al-Boudi and Afifi, 2011). *Ficus* species are rich in nutritional components and used as a source of food in Egypt, India, south China, Turkey, and Malaysia. Not all fruits from this genus can be eaten. For example, mistletoe fig or *F. deltoidea*, a tropical shrub that has rounded leaves and readily bears small fruits, unfortunately inedible. Only a handful with fruits considered edible such as *Ficus* carica L. or common fig, which is the only *Ficus* species that is cultivated for its fruit (Figure 1). This species is native to southwest Asia and the Mediterranean region. Other species like *F. erecta* often cultivated as pot plants in Taiwan, Indonesia and Japan (Aghel et al., 2009).

Fig. 1: Fruit of the common fig (Ficus carica) (Peter Firus, 2021)

ECOLOGY

Ficus trees are ecologically significant keystone species because they provide food and shelter to many seed-dispersing animals in tropical forest ecosystems. A large number of vertebrates feed on their fruits more than other plants. Shanahan et al. (2001) stated that figs are the most widely eaten fruit because approximately >10% of the world's birds and >6% of the world's mammals consume figs. The fruits are an important food resource to some frugivores, including fruit bats, capuchin monkeys, gibbons, and orangutans. Other than that, bird species like hornbill, Asian barbets, pigeons, and fig-parrot rely on fig fruits as their source of food. High levels of carbohydrate and calcium in figs make them attractive to frugivorous birds and mammals (Kinnaird and O'Brien, 2005). Fig wasp plays an important role in the pollination system in tropical forest ecology. The fruit ripens quickly after the pollenbearing wasp leaves a *Ficus* plant, providing a rich feast that attracts a host of mammals and birds. If the plants were to be cut out of a forest or the fig wasps were removed, there would certainly be a dramatic change in the animal population, as reported by the reduction of population densities of fruit-eating mammals on small islands that lack *Ficus* species (Shanahan et al., 2001). The taxonomy of *Ficus* is described in Table 1.

KingdomPlantaeSubkingdomViridaeplantaePhylumTracheophytaSubphylumEuphyliophytinaDivisionMagnoliophyteClassDilleniidaeSubclassDilleniidaeFamilyMoracaeaFribeFiceaeGenusFicus	Domain	Eukaryota
SubkingdomViridaeplantaePhylumTracheophytaSubphylumEuphylophytaDivisionMagnoliophytaClassMagnoliophytaSubclassDilleniidaeProtectMoracaeaFamilyMoracaeaClassFiceaeGenusFiceaeSubphylumFiceae	Kingdom	Plantae
PhylumTracheophytaSubphylumEuphyliophytinaDivisionMagnoliophyteClassMagnoliophytaSubclassDilleniidaeOrderUrticalesFamilyMoracaeaTibeFiceaeGenusFicus	Subkingdom	Viridaeplantae
SubphylumEuphyliphyliphyliphyliphyliphyliphyliphyli	Phylum	Tracheophyta
DivisionMagnoliophyteClassMagnoliopsidaSubclassDilleniidaeOrderUrticalesFamilyMoracaeaTribeFiceaeGenusFicus	Subphylum	Euphyllophytina
ClassMagnoliopsidaSubclassDilleniidaeOrderUrticalesFamilyMoracaeaTribeFiceaeGenusFicus	Division	Magnoliophyte
SubclassDilleniidaeOrderUrticalesFamilyMoracaeaTribeFiceaeGenusFicus	Class	Magnoliopsida
OrderUrticalesFamilyMoracaeaTribeFiceaeGenusFicus	Subclass	Dilleniidae
FamilyMoracaeaTribeFiceaeGenusFicus	Order	Urticales
TribeFiceaeGenusFicus	Family	Moracaea
Genus Ficus	Tribe	Ficeae
	Genus	Ficus

 Table 1: Taxonomy of Ficus (Gupta and Singh, 2012)

Phytochemical constituents

Ficus genus is reported to be responsible for the treatment of various disease conditions because it contains a number of biologically active compounds, which are also known as phytochemicals. These bioactive compounds are naturally expressed by the plant in response to biotic and abiotic stresses (Chawla et al., 2012). The major phytochemicals such as flavonoids and phenolic compounds are reported to be concentrated in the leaves, fruit pulp, roots, stem bark or wood, peel and seeds of different species of *Ficus* plant along with polyphenol, polysterols and triterpenoids (Mandal et al., 1999). Fig fruit, especially the skin or exocarp and seeds, consist of monosaccharide sugars and a mix of phytochemicals such as gallic acid, flavonoids, rutin, chlorogenic acid and epicatechin. Various pigments like polyphenols, flavonoids, and anthocyanins are responsible for the various colors shown in different species of *Ficus* (Ahmed and Urooj, 2010).

Species name	Locality	Phytochemical	Part	Pharmacological
		compound	used	properties
F. abutilifolia	Nigeria	Tannins, saponins and	Leaves	Antimicrobial activity
		flavanoids		(Taiwo et al., 2016)
F. afzelii	Egypt	Tannins, flavonoids and phenolics	Pulp and leaves	Antioxidant activity (Abdel-Hameed, 2009)
F. amplissima	India	Sterols, phenolic acids and triterpenoids	Bark and fruit	Antidiabetic and antioxidant activities (Arunachalam and Parimelazhagan, 2013)
F. arnottiana	India	Alkaloids, glycosides, saponins, flavonoids,	Leaves	Mucoprotective activity and gastric secretory (Babu et al., 2017)

Table 2. List of *Ficus* species

		carbohydrates.		
F. asperifolia	Africa	Flavonoids, alkaloids, tannins and phenolic acids	Roots and stem	Antioxidant, antiulcer, anticancer activities (Okwu, 2004)
F. auriculata	China	Phenolic acids, flavonols and sterols	Fruit and leaves	Hepatoprotective and antidiabetic activities (El-Fishawy et al., 2011)
F. beecheyana	Taiwan	Sterols and gallic acids	Rhizome and roots	Antidiabetic, antioxidant and anticancer properties (Yen et al., 2017)
F. benghalensis	India, Pakistan and Nepal	Amino acids, pigments, furocoumarins, steroids and triterpenes	Bark, fruit, root and whole	Antioxidant, hypolipidemic, antibacterial, anti inflammatory, analgelsic and anticancer activities (Aswar et al., 2008)
F. benjamina	Hawaii and Australia	Steroids, flavonoids and phenolic acids	Leaves	Antioxidant, antimicrobial and antidiarrheal activities (Jain et al., 2013)
F. capensis	Tropical Africa, Cape Island	Polyphenols	Stem bark and leaves	Antibacterial, antiulcer, antidiarrheal, immune-boosting properties (Oyeleke et al., 2008)

F. caprefolia	South Africa	Phenolics	Leaves and latex	Antidiabetic activity (Olaokun et al., 2013)
F. carica	Asia, South America and Europe	Furocoumarins, flavonoids, phenolic acids and coumarins	Leaves, latex, fruit and roots	Hepatoprotective, laxative, antidysenteric activities (Jeong et al., 2009)
F. chlamydocarp a	Cameroon	Triterpenoids and flavonoids	Stem bark	Antimicrobial, hepatoprotective and antioxidant activities (Donfack et al., 2010)
F. cordata	Egypt, Saudi Arabia and Africa	Flavonoids, coumarins, phenolics and terpenoids	Leaves and stem bark	Antioxidant activity (Ahmed et al., 2017)
F. craterostoma	South Africa	Phenolics	Leaves	Antibacterial (Oyeleke et al., 2008)
F. crocata	Mexico	Triterpenoids and sterols	Leaves	Anticancer, antioxidant and analgelsic activities (Sánchez-Valdeolívar et al., 2020)
F. decora	Egypt	Phenolics, flavonoids and tannins	Leave	Antioxidant activity (Abdel-Hameed, 2009)
F. dekdekena	Africa and Senegal	Phenolics	Roots and leaves	Antioxidant activity (Olaokun et al., 2013)
F. deltoidea	Malaysia and	Triterpenoids, terpenoids and	Roots and	Antidiabetic, anti inflammatory,

	Indonesia	flavonoids	leaves	anticancer,
				antibacterial
				(Zakaria et al., 2012)
F. drupacea	Vietnam	Triterpenoids	Stem	Antimalaria,
		and steroids	bark,	anticancer,
			leaves	antimicrobial
				activities
				(Yessoufou et al.,
				2016)
F. elastica	India	Phenolic,	Leaves	Antioxidant and
		flavonoids and		antimicrobial
		tannins		activities
				(Preeti et al., 2015)
F. exasperata	Asia and	Phenolics and	Leaves	Antidiabetic,
	South	tannins		anticonvulsant,
	Africa			antiinflammatory,
				antimicrobial,
				hypolipidemic,
				antioxidant and
				(A hmod at al. 2012)
				(Annied et al., 2012)
F. foveolata	Thailand	Coumarins,	Stem	Antimicrobial
	and	flavonoids and	bark	activity
	Pakistan	triterpenoids		(Meerungrueang et
				al., 2014)
F. glumosa	Ivory Coast	Flavanoid,	Roots	Hypolipidemic, anti
	and Central	alkaloids and	and stem	inflammatory and
	African	tannins	bark	hyperglicemic
				activities
				(Abu et al., 2020)
F. hirta	China	Furocoumarins,	Roots	Anticancer and
		steroids and		antifungal properties
		triterpenoids		(Wan et al., 2017)

F. hispida	India, Malaysia	Flavonoids, sterols and phenols	Leaves, stem bark and roots	Antiulcerogenic, cardioprotective and antidiabetic activties (Ali and Chaudhary, 2012)
F. ingens	Zimbabwe, Nigeria and Southen Arabia	Tannins and phenols	Stem bark and leaves	Analgelsic and antimicrobial activities (Olayinka et al., 2017)
F. insipida	Bolivia, Amazon	Triterpenoids	Leaves and fruits	Antianaemic and antipyretic activities (Gonzales et al., 2019)
F. lacor	India	Steroids and triterpenoids	Roots	Antiarthritic activity (Sindhu and Arora, 2013)
F. lutea	South Africa	Phenolics	Leaves	Antioxidant activity (Olaokun et al., 2013)
F. lyrata	Egypt	Flavonoids, tannins and phenolics	Leaves	Antibacterial and antioxidant activities (Abdel-Hameed, 2009)
F. mollis	India	Triterpenoids and flavonoids	Leaves and stem bark	Hypoglicemic and hypolipidemic activities (Munna and Saleem, 2013)
F. mysorensis	Egypt	Sterols and triterpenoids	Leaves	Antiinflammatory and anticancer activities

(Abbass et al., 2015)

F. natalensis	Uganda and Nigeria	Flavonoids, alkaloids, saponins and steroids	Leaves	Antimicrobial activity (Sheyin et al., 2018)
F. nitida	Egypt	Flavonoids, tannins and phenolics	Leaves	Antioxidant activity (Abdel-Hameed, 2009)
F. nymphaefolia	Brazil	Isoflavones	Stem bark and latex	Wound healing (Darbour et al., 2007)
F. oligodon	China	Flavonoids and phenolics	Leaves	Antioxidant activity (Shi et al., 2011)
F. palmata	Mid- Himalayan region, Somalia and Sudan	Sterols, anthocyanins, flavonoids, furocoumarins and terpenoids	Stem bark, leave and roots	Antimicrobial, hepatoprotective and antiulcer activities (Joshi et al., 2014)
F. pandurata	Egypt	Steroids and triterpenes	Leaves	Analgelsic and antipyretic activities (Khedr et al., 2015)
F. platyphylla	Nigeria	Saponins and tannins	Stem bark	Antimicrobial and anticonvulsant properties (Kubmawara et al., 2009)
F. polita	Sourthen Africa	Phenolic acids and antocyanins	Leaves and roots	Antiviral, antimalaria and antimicrobial activities (Kuete et al., 2011)

F. pomifera	India	Phenols, tannins and triterpenoids	Leaves	Anticancer property (Wangkheirakpam et al., 2015)
F. pumila	South china and Malaysia	Steroids and flavonoids	Stem and leaves	Analgelsic and anti inflammatory activities (Liao et al., 2012)
F. racemosa	India, Pakistan, Sri Lanka	Steroids and triterpenoids	Whole plant	Hypoglicemic, anti cancer, hepatoprotective activities (Ahmed and Urooj, 2010)
F. religiosa	Nepal, Pakistan and India	Alkaloids, polyphenols, furocoumarin, steroids and triterpenoids	Leave, fruit and bark	Cardioprotective, antidiabetic, antitumor, antioxidant, antihelmintic, antimicrobial and antiparasitic activities (Damanpreet and Rajesh, 2009)
F. retusa	Peninsular Malaysia and India	Polyphenols	Leaves and stem barks	Hepatoprotective properties (Jaya Raju and Sreekanth, 2011)
F. semicordata	Iraq, India, Bangladesh and Myanmar	Tannins, alkaloids and steroids	Leaves, fruit and latex	Antidiarrheal and antioxidant activities (Gupta and Acharya, 2019)
F. septica	Papua new guinea	Alkaloids and tannins	Leaves	Antimicrobial activity (Damu et al., 2005)

F. sur	Somalia, Yemen and Nigeria	Saponins, tannins and phenols	Stem bark	Anticonvulsant activity (Ishola et al., 2013)
F. sycomorus	Israel and Zimbabwe	Flavonoids, phenolic acids and sterols	Whole plant	Antibacterial activity (Mohamed et al., 2010)
F. thonningii	Nigeria, Senegal, Angola and Mali	Alkaloids, terpenoids, flavonoids and tannins	Leaves, stem bark and roots	Antimicrobial and antidiarrheal activities (Dangarembizi et al., 2012)
F. tikoua	China	Phenolics and isoflavonoids	Stem bark	Anti-diarrheal, antioxidant and antifungal activities (Jiang et al., 2013)
F. tinctoria	India	Flavonoids, alkaloids, glycosides, tannins and saponins	Whole plant	Antioxidant, antiulcer and antidiabetic properties (Gini <i>et al.</i> , 2017)
F. tsiela	India	Alkalaoids flavanoids coumarins saponins and terpenoids	Leaves	Antipneumonia and antimicrobial activities (Vaya and Mahmood, 2006).
F. ulmifolia	Philippine	Steroids, terpenoids and sterols	Leaves	Antioxidant activity (Ragasa et al., 2009)
F. umbelatte	Africa	Coumarins	Stem bark	Menapousal problem (Zingue et al., 2016)

F. vallis-	Ivory Coast	Triterpenoids	Leaves,	Anticonvulsant,
choudae	and	and sterols	stem	antifungal and anti
	Cameroon			inflammatory
				properties
				(Bnakeu et al., 2017)
F. virens	Pakistan	Phenolics and	Bark,	Antioxidant, anti
	and Egypt	flavonoids	latex and	diabetic properties
			leaves	(Orabi and Orabi,
				2016)

Pharmacological properties

Due to their great pharmacological benefits, *Ficus* species have been described by many authors in both traditional and modern medicines.

Antioxidant activity

The presence of flavonoids in *F. carica* leaves could be responsible for the antioxidant activity, as reported by Ali et al. (2012). In another report by Konyaltoğlu et al. (2015), antioxidant capacity based on the TAC method revealed tocopherol equivalents/g dry mass ranged from 14.04 ± 1.42 to 23.51 ± 1.15 mM in *F. carica* leaves extract of methyl alcohol, ethyl alcohol, *n*-hexane, ethyl acetate, and water. The highest antioxidant activity was evident from the water extract of *F. carica* leaves. Using well-established modified DPPH (2,2-diphenyl-1-picrylhydrazyl) method, the highest polarity of crude extract of *F. carica* and *F. sycomorous* detected a high content of flavonoids and phenol compounds which contributed to the antioxidant activity in *Ficus* (Al-Matani et al., 2015; Weli et al., 2015). In the research conducted by Kaur et al. (2010), the DPPH test revealed antioxidant activity ranging from 6.34 to 13.35% for *F. religiosa* in different concentrations of ethanolic extract of *F. glomerata*, the investigation revealed high antioxidant activity in the stem bark extract (Channabasavaraj et al., 2008).

Another research done by Jahan et al. (2009), antioxidant efficacy of *F*. *racemosa* fruits extract was proven using in vitro assay of DPPH free radical scavenging capacities. Five ethanolic extracts of *Ficus* species, namely *F. auriculata*, *F. virens*, *F. callosa* and *F. vasculosa* were tested for antioxidant efficacy via in vitro assay. Both *F. auriculata* and *F. virens* have shown IC₅₀ values of 0.3 mg/ml, which were higher than other *Ficus* extracts, making them the most promising species for antioxidant activity (Shi et al., 2011). Meanwhile, Omar et al. (2011) investigated the flavonoids and phenolic compounds extracted from the leaf of *F. deltoidea*. The chromatographic method on a reversed-phase C_{12} column revealed a high total of flavonoid content. The result of the HPLC method exhibited that 85% of total antioxidant activity was produced by the leaf extract.

Antimicrobial activity

F. religiosa has shown antimicrobial activity against a various type of pathogenic microorganisms (Salehi et al., 2020). In other works, a minimum inhibitory concentration (MIC) was tested in several bacteria namely, *Shigella flexneri, Enterococcus faecalis, Shigella dysenteriae, Proteus vulgaris, Shigella sonnie* and *Staphylococcus saprophyticus* using ethanolic extract of *F. religiosa*. The result showed that the extract can inhibit these bacterial with the MIC value ranged from 250 to 500μ g/ml (Rahman et al., 2014). Antibacterial activity of the ethanolic fruit extract from *F. religiosa* also has been done in India. The researchers reported that this extract had shown an inhibition against *S. aureus* and *S. epidermidis* with MIC of 15 mg/ml. This extract also showed inhibition against *K. pneumoniae* and *P. vulgaris* with an effective MIC of 30 mg/ml (Kumar Goyal et al., 2014).

The methanolic extract and a compound, namely ficusoside isolated from the root of *F. elastica*. Ficusoside showed a MIC of 4.9 μ g/mL, which lower than gentamicin and fluconazole (25 μ g/mL) against *S. aureus, E. coli, P. vulgaris* and *C. albicans*. In comparison, the methanolic extract showed a MIC of 39.1 μ g/mL (Mbosso et al., 2017). Acetone leaf and stem bark extract of *F. sycomorous* showed a good antibacterial activity by inhibiting resistant *A. baumannii*. The leaf extract

recorded a MIC of 2.5 mg/ml, whereas stem bark showed 4.9 mg/ml of MIC (Saleh et al., 2015). Manimozhi et al. (2012) reported the antibacterial activity of the flavonoids extracted from the bark of *F. bengalensis*. The evaluation showed that the flavonoids are excellent in inhibiting the growth of *P. vulgaris, S. aureus* and *P. aeruginosa* with MIC ranging from 25 to 100 mg/ml. Evaluation of antibacterial activities of methanol bark extract of *F. microcarpa* showed that the extract was effective against the tested gram-negative and gram-positive bacteria. The result of inhibition zones against *B. brevis, B. cereus, B. subtilis, E. coli* and *A. polymorph* were 18.0, 15.5, 16.5, 16.0 and 8.0 mm, respectively (Ao et al., 2008).

Wound healing activity

The healing property of the root extract of *F. racemosa* in albino rats was evaluated. In aqueous and ethanolic root extract of treated groups, the application of extract increased the breaking strength of the incision wounds was which may be due to the presence of an individual or combined action of phytochemicals such as saponins, flavonoids, alkaloids and tannins (Murti and Kumar, 2012). In other studies, 5% and 10% of hydroalcoholic leaf extract of *F. religiosa* has exhibited a healing process in the incision wound, excision wound and burn wound induced to the rats (Naira et al., 2009). Aqueous extract of *F. racemosa* was found to possess a wound healing property. When a 10% dose of the extract was applied to the wound, the healing process was accelerated (Mehta et al., 2012).

The wound-healing efficacy of ethanolic and aqueous extracts of F. *benghalensis* was evaluated in albino rats (Garg and Paliwal, 2011). It was evident that the 200 mg/kg b.w. dose of the extract showed a healing activity by the improvement in the wound region. In the wound healing experiment, the aqueous extract of F. *deltoidea* was used in induced wounds of rats. The evaluation has shown that the wounds applied with 5% and 10% of F. *deltoidea* extract significantly promoted the rate of wound healing compared to wounds treated with sterile deionized water or dressed with blank placebo (Abdulla et al., 2010). Murti et al. (2011) also investigated the healing activity of F. *bengalensis* in albino rats. The healing process in the excision, incision and dead space wound was accelerated with

the treatment of the aqueous and ethanolic root extract. The extracts showed that the period of epithelialization reduced, the breaking strength increased, the rate of wound contraction increased and the hydroxyproline content elevated.

Hypoglycemic activity

 β -Sitosterol-D-glycoside was isolated from the root bark of *F. religiosa* and *F. glomerata.* This compound could be responsible for hypoglycemic activity in *Ficus.* The concentration of 25, 50 and 100 mg/kg of dose were administered orally in induced diabetic rats and normal rats. A significant decrease in blood glucose was observed using the dose of 50 and 10mg/kg compared to 25mg/kg (Chandrasekar et al., 2010). In combination with *F. racemosa* extract and hypoglycemic drug, hypoglycemic activity was studied in diabetic patients. The extract and the drug were taken orally for 15 days. The result showed that the blood glucose level was significantly reduced. The renal and liver functions were also tested to rule out the herb toxicity, which was observed to be in the normal range (Gul-e-Rana et al., 2012).

Isolated flavonoids from the stem bark of *F. racemosa* were evaluated for antidiabetic activity. At 100mg/kg dose, the flavonoids were administered to streptozotocin (STZ) rats. The level of blood glucose was measured on different days (1st, 3rd, 5th and 7th days). The finding showed that the flavonoids able to reduce the blood glucose level, which could be useful as a supplementary drug for future diabetic therapy (Keshari et al., 2016). The methanolic extract of the bark of *F. amplissima* was tested for hypoglycemic activity in streptozotocin-induced diabetic rats. At 50mg/kg and 100mg/kg of dose, the extract has exhibited a reduction in total cholesterol, blood glucose level and serum triglyceride and (Arunachalam et al., 2013). In other research conducted by Gayathri and Kannabiran, (2008), an aqueous extract from the bark of *F. benghalensis* was evaluated in diabetic rats. The result showed that the extract significantly reduces glucose levels. The level of hepatic cytochrome P450 dependent enzyme, blood electrolytes and systems glycolytic enzymes were also restored.

Hyperlipidemic activity

The hyperlipidemic activity of ethanolic extract of F. racemosa bark in alloxaninduced diabetic rats was investigated. The finding showed that 300 mg/kg dose able to restore the level of lipids and lipoproteins to near normal range (Sophia and Manoharan, (2007). This showed that this extract could be a potent supplementary drug in combination with the standard reference drug, glibenclamide. In the research of dexamethasone-induced hyperlipidemia in rats, ethyl acetate leaf extract of F. mollis was tested using two different doses, 200 and 400 mg/kg. The extract reverted the hyperlipidemia caused by dexamethasone in a dose-dependent manner. The extract showed a similar effect with the reference standard, glibenclamide (Munna and Saleem, 2013). In the experiment of Triton WR 1339-induced hyperlipidemia in swiss albino mice, leaf and twig extract of F. carica were evaluated. After administration of doses 150 and 300 mg/kg, the hyperlipidemic effect was examined by the various parameter of lipid profile. The result showed that the extracts cause a reduction in the level of serum total cholesterol, triglycerides and low-density lipoprotein (LDL) (Boukhalfa et al., 2018). In other research, isolated a-amyrin acetate from aerial roots of F. bengalensis was administered orally to db/db mice for ten days. At 50 mg/kg dose, the extract shows a reduction in triglycerides, cholesterol and LDL-C by 21.5%, 24.1% and 21.2%, respectively (Singh et al., 2009).

Anti-inflammatory effect

Ethanolic extract of *F. religiosa* leaf showed a significant anti-inflammatory property in the study conducted by Charde et al. (2010). The edema was induced in Wistar rat using carrageenan, and the extract was administered topically. At a concentration of 300 μ g/ml, the edema decreased as the extract could be inhibiting the release of serotonin, histamine, kinins and prostaglandins. The effect was similar with the application of ibuprofen as a control. An aqueous extract from the leaves of *F. racemosa* was tested for the anti-inflammatory property on serotonin, histamine, carrageenan and dextran-induced hind paw edema model in Wistar rats. The extract (400mg/kg) showed maximum inhibition of 32%, 34%, 30%, and 31% in serotonin, histamine, carrageenan, and dextran-induced rats, respectively. A similar effect was also observed with the standard drug, phenylbutazone (Mandal et al., 2000).

In other studies, the anti-inflammatory effect of chloroform, petroleum ether and ethanol extracts from *F. carica* the leaves was studied on a carrageenan-induced rat paw edema model. The ethanol extract (600mg/kg) showed a maximum antiinflammatory effect (76%) in acute inflammation and granuloma weight has exhibited a decrease of 72% (Patil and Patil, 2011). The anti-inflammatory effect of ethanolic bark extract of *F. bengalensis* was better than petroleum ether. Carrageenan was used to induce hind paw edema in rats and the oral administration was done with the dose of 300 and 600 mg/kg. Both ethanolic extracts for 300 and 600 mg/kg have shown an inhibitory effect against carrageenan-induced edema, which indicated that these extracts possess an anti-inflammatory effect for acute inflammation (Patil et al., 2009).

Hepatoprotective activity

The hepatoprotective activity of methanolic and petroleum ether of *F. racemosa* stem bark was tested in CCl₄-induced hepatic damage in rats. The administration of CCl₄ reduced the level of albumin, serum total protein and urea and increased the total bilirubin associated with an increment in alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities as compared to control rats. Both methanol and petroleum ether extracts restored albumin and total protein to near normal levels. Both extracts also reduced the level of ALT, AST and ALP. Total bilirubin content also reduced from 2.1 mg/dL to 0.3 mg/dL. These results showed that *F. racemosa* possesses potent hepatoprotective effects against CCl₄induced hepatic damage in rats.

The hepatoprotective effect of *F. religiosa* latex on cisplatin-induced liver injury in Wistar rats was investigated. The increase of serum ALP, ALT, AST and hepatocytes cells degeneration inflammatory infiltrate and necrosis were due to the cisplatin-induced liver impairment. The methanolic extract of *F. religiosa* latex restored serum ALP, ALT, AST, lipid peroxidation, SOD and GSH of the liver to

near normal levels. Generally, *F. religiosa* latex is effective in protection and improvement against cisplatin-induced liver injury (Yadav, 2015). Leaf ethanolic extract of *F. carica* was tested in CCl₄-induced hepatic damage in albino rats. Liver markers and histopathological changes were examined. The result showed that the dose of the extract (200 mg/kg) had improved the hepatic damage by CCl₄- (Aghel et al., 2011). Joshi et al. (2014) also reported the hepatoprotective effect of total extract of *F. palmata* in animals with hepatic toxicity. The elevated AST, ALT, GGT, ALP and bilirubin have exhibited a significant reduction at a dose of 400 mg/kg body weight.

Antiulcer activity

The objectives of the antiulcer treatment are to accelerate the healing process, improve the symptoms, prevent ulcer recurrence, and eradicate the presence of *H. pylori*. In the study of antiulcer activity, stomach lesion was induced in the rats with the treatment of ethanol. The total extract of *F. palmata* was used at 200 and 400 mg/kg against 80% of ethanol-induced stomach lesion. The result showed that the best protection against ulcer was achieved by the highest dose (400 mg/kg), where the ulcer index was 2.00 ± 0.57 (Alqasoumi et al., 2014). In other works, hydroalcoholic and ethanolic of *F. religiosa* of leaves and stem bark extract were tested for antiulcer activity in Sprague–Dawley rats with gastric ulcer induced by aspirin, ethanol, and ligated pylorus (Saha and Goswami, 2010). A significant reduction in ulcer index can be seen when applying 250 and 500 mg/kg body weight of extract at the ulcer area. This effect was equivalent to the standard drug reference, antacid.

Antiulcer activity of *F. religiosa* ethanolic leaf extract was evaluated in albino mice. Treatment with the extract has shown a significantly reduced gastric lesion formation and submucosal edema similar to the ranitidine-treated mice. The result also showed that there was no sign of toxicity and mortality at the high dose of 2 000 mg/kg, which indicated that the extract was safe and non-toxic even at high concentrations (Gregory et al., 2013). According to Sivaraman and Muralidhara,

(2010), the application of *F. hispida* extract has reduced gastric ulceration in rats. An investigation of antiulcer efficacy has been done on methanolic extract of *F. hispida* with doses of 200 and 400 mg/kg. These doses were found to be effective in healing the ulcer by 64% (200mg/kg) and 69% (400mg/kg) and reducing free and total acidity as well.

Anticancer activity

Some species of the *Ficus* genus show the anticancer property in cell lines of several cancer types. Hexane, dichloromethane and acetone extract of *F. crocata* have been evaluated for antiproliferative activity in cell line of breast cancer. Dichloromethane extract showed the strongest effect in reducing the proliferation of MDA-MB-231 cells (Sánchez-Valdeolívar et al., 2020). *F. carica* also showed anticancer activity when the methanolic extract of leaf and fruit were evaluated against Huh7it liver cancer cells using MTT assay (Purnamasari et al., 2019). The result showed that the extracts had IC₅₀ values >653 µg/mL for the leaf extract and >2000 µg/mL for the fruit extract. A higher percentage of Huh7it apoptosis and necrosis in the leaf compared with fruit extracts was also observed.

In another work by Bunawan et al. (2014), the anticancer activity of ethanolic and aqueous extracts of *F. deltoidea* was tested against human ovarian carcinoma cell line A2780 using MTT assay. The ethanolic and aqueous extracts gave IC₅₀ values of 143.03 \pm 20.21 µg/ml and 224.39+6.24 µg/ml, respectively. Both extracts also showed an apoptosis at 1000 µg/mL. It can be found that the ethanolic extract reduced cell proliferation, while aqueous extract induced cell detachment. Various phytochemical contents in the extracts could be attributed to this finding.

Antidiarrheal activity

Mandal and Kumar (2002) investigated the antidiarrheal activity in leaves extract of *F. hispida*. Diarrhea in rats was induced with castor oil and PEG₂. The result showed that the methanol leaves extract could be used as an antidiarrheal agent as it inhibited the activities of diarrhoea and enteropooling in rats. It was

assumed that tannins might be responsible for the antidiarrheal activity as it denatures the protein and forms protein tannate, which minimizes the intestinal mucosa permeability. Meanwhile, the leaf extract of *F. microcarpa* has been used in investigating the effect of antidiarrheal activity in rats. Castor oil was used to induce diarrhea in rats. The oral administration of the extract at doses of 300 and 600 mg/kg produced a significant antidiarrheal effect in rats. At 300 mg/kg, the percentage of inhibition based on the number and weight of faeces was 79% and 66%. While, at 600 mg/kg, the values for both number and weight were 32%. Based on the volume and weight of intestinal content, there was also a reduction in anti-enteropooling activity (Bairagi et al., 2014).

Cardioprotective effect

Leaf extract of *F. hispida* was prepared to investigate the cardioprotective effect on cyclophosphamide mediated myocardial injury due to oxidative stress in rat heart (Shanmugarajan et al., 2008). This finding revealed that lipid peroxidation was inhibited significantly. There was also an increased concentration of glutathione reductase, superoxide dismutase, glutathione peroxidase, catalase, and glutathione-S-transferase. Glutathione activity in heart tissue also decreased caused by cyclophosphamide. Its cardioprotective activity could be due to antioxidant constituents, which could be responsible for this finding such as hispidin, β -sitosterol, β -amyrin, and bergaptin.

The extract of *F. religiosa* showed an improvement in oxidative stress, diabetic markers, and inflammatory and cardiac markers in streptozotocin-induced diabetic cardiomyopathy rats. The control of cytokine, diabetes and modulation of oxidative marker could be attributed to the cardioprotective role of *F. religiosa* (Singh et al., 2011). The extract of *F. thonningii* was prepared to investigate the myocardial contractile performance on rat isolated atrial muscle strips. The result showed that there were negative inotropic and chronotropic effects on both spontaneously beating and electronically driven atrial muscle strips (Musabayane et al., 2007). According to

Baur and Sinclair, (2006). The resveratrol in *F. thonningii* could be attributed to the cardioprotective effects of *F. thonningii*. Other than cardiovascular diseases, resveratrol is also responsible for delaying the aging process and prevent the progression of various diseases, which include obesity, cancers and neurodegenerative disorders (Ramawat et al., 2009).

CONCLUSION

This review covers various pharmacological properties of *Ficus* spp., in vitro and in vivo trials including antiproliferative, antioxidant, antimicrobial and antiinflammatory activities. The review also exposed the discovery and isolation of the plant metabolites such as sterols, flavonoids, terpenoids, saponins, coumarins and alkaloids, which could be contributed to the therapeutic potential of the plant. This plant also can be considered safe and non-toxic as no severe side effects were reported.

REFERENCES

- Abbass, H. S., Ragab, E. A., Mohammed, A. E. I. & El-Hela, A. A. (2015). Investigation of *Ficus mysorensis* cultivated in Egypt. *Journal of Pharmaceutical, Chemical and Biological*, 3(3), 396-407.
- Abdel-Hameed, E. S. S. (2009). Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. *Food Chemistry*, 114(4), 1271-1277.
- Abdulla, M. A., Ahmed, K. A., Abu-Luhoom, F. M. & Muhanid, M. (2010). Role of *Ficus deltoidea* extract in the enhancement of wound healing in experimental rats. *Biomedical Research*, 21(3), 241-245.
- Abu, M. S., Yakubu, O. E., Boyi, R. N., Mayel, M. H. & Haibu, C.O. (2020).
 Phytochemical constituents, acute toxicity and free radical scavenging activity of methanol extract of *Ficus glumosa* leaves. *Anchor University Journal of*

Science and Technology, 1(1), 16-22.

- Aghel, N., Kalantari, H. & Rezazadeh, S. (2011). Hepatoprotective Effect of *Ficus* carica leaf extract on mice intoxicated with carbon tetrachloride. *Iranian Journal of Pharmaceutical Research*, 10 (1), 63-68.
- Ahmed, F. A., Mohamed, M. A., Abdel-Aziem, A. & El-Azab, M. M. (2016). Phytochemical composition of *Ficus cordata* Thunb. subsp. salicifolia (Vahl) and its antioxidant activity with lead induced testicular toxicity in rats. *International Journal of Innovative Science, Engineering & Technology, 4*(10), 64-82.
- Ahmed, F., Mueen-Ahmed, K. K., Abedin, M. Z. & Karim, A. A. (2012). Traditional uses and pharmacological potential of *Ficus exasperata* Vahl. *Systematic Reviews in Pharmacy*, 3(1), 15-23.
- Ahmed, F. & Urooj, A. (2010). Traditional uses, medicinal properties, and phytopharmacology of *Ficus racemosa*: A review. *Pharmaceutical Biology*, 48(6), 672-681.
- Al-Aboudi, A. & Afifi, F. U. (2011). Plants used for the treatment of diabetes in Jordan: A review of scientific evidence. *Pharmaceutical Biology*, 49(3), 221-239.
- Al-Matani, S. K., Al-Wahaibi, R. N. S. & Hossain, M. A. (2015). In vitro evaluation of the total phenolic and flavonoid contents and the antimicrobial and cytotoxicity activities of crude fruit extract with different polarities from *Ficus sycomorus*. *Pacific Science Review A: Natural Science and Engineering*, 17(3), 103–108.
- Ali, M. & Chaudhary, N. (2011). *Ficus hispida* Linn.: A review of its pharmacognostic and ethnomedicinal properties. *Pharmacognosy reviews*, 5(9), 96–102.

- Alqasoumi, S. I., Basudan, O. A., Al-Rehaily, A. J. & Abdel-Kader, M. S. (2014). Phytochemical and pharmacological study of *Ficus palmata* growing in Saudi Arabia. *Saudi Pharmaceutical Journal*, 22(5), 460–471.
- Arunachalam, K. & Parimelazhagan, T. (2013). Antidiabetic activity of *Ficus* amplissima Smith. bark extract in streptozotocin induced diabetic rats. *Journal* of Ethnopharmacology, 147(2), 302-310.
- Aswar, M., Aswar, U., Watkar, B., Vyas, M., Wagh, A. & Gujar, K. N. (2008). Anthelmintic activity of *Ficus benghalensis*. *International Journal of Green Pharmacy*, 2(3), 170-172.
- Babu, A., Anand, D. & Saravanan, P. (2017). Phytochemical analysis of *Ficus* arnottiana (Miq.) Miq. leaf extract using GC-MS analysis. International Journal of Pharmacognosy and Phytochemical Research, 9(6), 775-779.
- Bairagi, S. M., Aher, A. A, Nema, N. & Pathan I. B. (2014). Evaluation of antidiarrhoeal activity of the leaves extract of *Ficus microcarpa* L. (Moraceae). *Marmara Pharmaceutical Journal*, 18, 135-138.
- Bankeu, J. J. K., Dawé, A., Mbiantcha, M., Feuya, G. R. T., et al., (2017). Characterization of bioactive compounds from *Ficus vallis-choudae* Delile (Moraceae). *Trends in Phytochemical Research*, 1(4), 235-242.
- Baur, J. A. & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The *in vivo* evidence. *Nature Reviews Drug Discoveries*, *5*, 493-506.
- Berg, C. C. (2003). Flora Malesiana precursor for the treatment of Moraceae 1: The Main subdivision of Ficus: The subgenera. *Blumea-Biodiversity, Evolution and Biogeography of Plants, 48*(1), 166–177.

- Boukhalfa, F., Kadri, N., Bouchemel, S., Ait Cheikh, S., Chebout, I., Madani, K. & Chibane, M. (2018). Antioxidant activity and hypolipidemic effect of *Ficus carica* leaf and twig extracts in Triton WR-1339-induced hyperlipidemic mice. *Mediterranean Journal of Nutrition and Metabolism*, 11(1), 37-50.
- Bunawan, H., Mat Amin, N., Bunawan, S. N., Baharum, S. N. & Mohd Noor, N. (2014). *Ficus deltoidea* Jack: A review on its phytochemical and pharmacological importance. *Evidence-Based Complementary and Alternative Medicine*.
- Cagno, V., Civra, A., Kumar, R., Pradhan, S., Donalisio, M., Sinha, B. N., Ghosh, M. & Lembo, D. (2015). *Ficus religiosa* L. bark extracts inhibit human rhinovirus and respiratory syncytial virus infection in vitro. *Journal of Ethnopharmacology*, 24(176), 252-257.
- Chandrasekar, S. B., Bhanumathy, M., Pawar, A. T. & Somasundaram, T. (2010). Phytopharmacology of *Ficus religiosa*. *Pharmacognosy reviews*, *4*(8), 195–199.
- Changwei, A. O., Li, A., Elzaawely, A. A., Xuan, T. D. & Tawata, S. (2008) Evaluation of antioxidant and antibacterial activities of *Ficus microcarpa* L. fil. Extract. *Food Control*, 19(10), 940-948.
- Channabasavaraj, K. P., Badami, S. & Bhojraj, S. (2008). Hepatoprotective and antioxidant activity of methanol extract of *Ficus glomerata*. *Journal of Natural Medicines*, 62(3), 379–383.
- Chawla, A., Kaur, R. & Sharma, A.K. (2012). Ficus carica Linn, a review on its pharamacognostic, phytochemical and pharmacologica aspects. International Journal of Pharmaceutical and Phytopharmacology Research, 1, 215–32.
- Dangarembizi, R., Erlwanger, K. H., Moyo, D. & Chivandi, E. (2012). Phytochemistry, pharmacology and ethnomedicinal uses of *Ficus thonningii*

(Blume Moraceae): a review. *African Journal of Traditional and Complementary Alternative Medicine*, 10(2), 203-212.

- Damanpreet, S. & Rajesh, K. G. (2009). Anti-convulsant effect of *Ficus religiosa*: role of serotonergic pathways. *Journal of Ethnopharmacology*, *123*(2), 330-334.
- Damu, A. G., Kuo, P. C., Shi, L. S., Li, C. Y., Kuoh, C. S. Wu, P. L. & Wu, T. S. (2005). Phenanthroindolizidine alkaloids from the stems of *Ficus septica*. Natural Product, 68(7), 1071–1075.
- Darbour, N., Bayet, C., Rodin-Bercion, S., Elkhomsi, Z., Felix Lurel, F., Chaboud, A.
 & David Guilet, D. (2007). Isoflavones from *Ficus nymphaefolia*. *Natural Product Research*, 21(5), 461-464.
- Donfack, J. H., Simo, C. C. F., Ngameni, B., Tchana, A. N., *et al.* (2010). Antihepatotoxic and antioxidant activities of methanol extract and isolated compounds from *Ficus chlamydocarpa*. *Natural Product Communications*, 5(10), 1607-1612.
- El-Fishawy, A., Zayed, R. & Afifi, S. (2011). Phytochemical and pharmacological studies of *Ficus auriculata* Lour. *Journal of Natural Products*. *4*,184-195.
- Garg, V. K., & Paliwal, S. K. (2011). Wound-healing activity of ethanolic and aqueous extracts of *Ficus benghalensis*. *Journal of Advanced Pharmaceutical and Technology Research*, 2(2), 110-114.
- Gini, E. J., Sivakkumar, T. & Kuppuswami, S. (2017). Determination of antioxidant activity of different extracts of *Ficus gibbosa* Blume, isolation and characterization of flavonoid from ethanol extract by column chromatography. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 8(4), 888-898.

- Gonzales, A. P. P. F., Santos, G. G. & Tavares-Dias, M. (2019). Anthelminthic potential of the *Ficus insipida* latex on monogeneans of *Colossoma macropomum* (Serrasalmidae), a medicinal plant from the Amazon. Acta Parasitology, 64, 927–931.
- Gregory, M., Divya, B., Mary, R. A., Viji, M. M. H., Kalaichelvan, V. K. & Palanivel, V. (2013). Anti-ulcer activity of *Ficus religiosa* leaf ethanolic extract. *Asian Pacific Journal of Tropical* Biomedicine, 3(7), 554–556.
- Gul-e-Rana, Karim, S., Khurhsid, R., Saeed-ul-Hassan, S., Tariq, I., Sultana, M., Rashid, A. J., Shah, S. H. & Murtaza, G. (2013). Hypoglycemic activity of *Ficus racemosa* bark in combination with oral hypoglycemic drug in diabetic human. *Acta Poloniae Pharmaceutica-Drug Research*, 70(6), 1045-1049.
- Gupta, S. & Acharya, R. (2019). Antioxidant and nutritional evaluation of *Bhu Udumbara (Ficus semicordata Buch.-Ham. ex Sm.)* leaves and fruits: An extra pharmacopoeial drug of Ayurveda. *Ayu, 40*(2), 120–126.
- Gupta, C. & Singh, S. (2012). Taxonomy, phytochemical composition and pharmacological prospectus of *Ficus religiosa* linn. (Moraceae)- A review. *Journal of Phytopharmacology*, 1(1), 57-70.
- Ishola, I. O., Olayemi, S. O., Yemitan, O. K. & Ekpemandudiri, N. K. (2013). Mechanisms of anticonvulsant and sedative actions of the ethanolic stem-bark extract of *Ficus sur* Forssk (Moraceae) in rodents. *Pakistan Journal of Biological Science*, 16(21), 1287-94.
- Jahan, I. A., Nahar, N., Mosihuzzaman, M., Rokeya, B., Ali, L., Azad Khan, A. K. & Iqbal Choudhary, M. (2009). Hypoglycaemic and antioxidant activities of *Ficus racemosa* Linn. Fruits. *Natural Product Research*, 23(4), 399–408.

- Jain, A., Ojha, V., Kumar, G., Karthik, L., Venkata, K. & Rao, B. (2013).
 Phytochemical composition and antioxidant activity of methanolic extract of *Ficus benjamina* (Moraceae) Leaves. *Research Journal of Pharmaceutical and Technology* 6(11),1184-1189.
- Jaya Raju, N. & Sreekanth, J. (2011). Investigation of hepatoprotective activity of Ficus retusa (moraceae). International Journal of Research in Ayurveda and Pharmacy, 2 (1), 166-169.
- Jeong, M. R., Kim, H. Y. & Cha, J. D. (2009). Antimicrobial activity of methanol extract from *Ficus carica* leaves against oral bacteria. *Journal of Bacteriology* and Virology. 39(2), 97-102.
- Jiang, Z. Y., Li, S. Y., Li, W. J., Guo, J. M., Tian, K., Hu, Q. F. & Huang, X .Z. (2013). Phenolic glycosides from *Ficus tikoua* and their cytotoxic activities. *Carbohydrate Research*, 15(382), 19-24.
- Kaur, H., Singh, D., Singh, B. & Goel, R. K. (2010). Anti-amnesic effect of *Ficus religiosa* in scopolamine-induced anterograde and retrograde amnesia. *Pharmaceutical Biology*, 48(2), 234–240.
- Keshari, A. K., Kumar, G., Kushwaha, P. S., Bhardwaj, M., Kumar, P., Rawat, A., Kumar, D., Prakash, A., Ghosh, B. & Saha, S. (2016). Isolated flavonoids from *Ficus racemosa* stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. *Journal of Ethnopharmacology*. 181, 252-62.
- Khedr, A. I. M., Allam, A. E., Nafady, A. M., Ahmad, A. S. & Ramadan, M. A. (2015). Phytochemical and biological screening of the leaves of *Ficus* pandurata Hance. cultivated in Egypt. *Journal of Pharmacognosy and Phytochemistry*, 3(6), 50-54.

- Kinnaird, M. F. & O'brien, T.G. (2005). Fast Foods of the Forest: The Influence of Figs on Primates and Hornbills Across Wallace's Line. In: Dew J. L., Boubli J. P. (eds) Tropical Fruits and Frugivores. Springer, Dordrecht. 155-184.
- Konyalıoğlu, S., Sağlam, H. and Kıvçak, B. (2005). α-Tocopherol, Flavonoid, and phenol contents and antioxidant activity of *Ficus carica*. Leaves, Pharmaceutical Biology. 43:8: 683-686.
- Kubmarawa, D., Khan, M. E., Punah, A. M. & Hassan, M. (2009). Phytochemical and antimicrobial screening of *Ficus platyphylla* against human/animal pathogens. *The Pacific Journal of Science and Technology*, 10(1), 382-386.
- Kuete, V., Kamga, J., Sandjo, L. P. *et al.* (2011). Antimicrobial activities of the methanol extract, fractions and compounds from *Ficus polita* Vahl. (Moraceae). *BMC Complementary Alternative Medicine*, 11(6), 1-6.
- Kumar Goyal, A., Sharma, R., Kaur, R. & Kaushik, D. (2014). In vitro studies on antibiotic activity of *Ficus religiosa* fruits extract against human pathogenic Bacteria. *Journal of Chemical and Pharmaceutical Research*, 6(11), 80–84.
- Liao, C., Kao, C., Peng, W., Chang, Y., Lai, S. & Ho, Y. (2012). Analgesic and antiinflammatory activities of methanol extract of *Ficus pumila* L. in Mice. *Evidence-Based Complementary and Alternative Medicine*.
- Mandal, S. C., Maity, T. K., Das, J., Saba, B. P. & Pal, M. (2000). Antiinflammatory evaluation of *Ficus racemosa* Linn. Leaf extract. *Journal of Ethnopharmacology*, 72(1–2), 87–92.
- Mandal, S. C. & Kumar, C. K. (2002). Studies on antidiarrhoeal activity of *Ficus hispida* leaf axtract in rats. *Fitoterapia*. 73, 663–667.
- Manimozhi, D. M., Sankaranarayanan, S. & Sampathkumar, G. (2012). Evaluating

the antibacterial activity of flavonoids extracted from *Ficus benghalensis*. *International Journal of Pharmaceutical and Biological Research*, 3(1), 7–18.

- Mbosso, T. J. E. Noundou, X. S., Fannang, S., Meyer, F., Vardamides, J. C., Mpondo, E., Mpondo, R. W. M., Krause, A. G. B. & Azebaze, J. C. A. (2017). In vitro antimicrobial activity of the methanol extract and compounds from the wood of *Ficus elastica* Roxb. ex Hornem. aerial roots. *South African Journal of Botany*, *111*, 302-306.
- Meerungrueang, W. & Panichayupakaranant, P. (2014). Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from *Ficus foveolata*. *Pharmaceutical Biology*, 52(9),1104-1109.
- Mehta, D. S., Kataria, B. C. & Chhaiya, S. B. (2012). Wound healing and antiinflammatory activity of extract of *Ficus racemosa* linn. bark in albino rats. *International Journal of Basic & Clinical Pharmacology*, 1(2), 111-115.
- Mohamed, A. E. H. H., El-Sayed, M. A., Hegazy, M. E., Helaly, S. E., Esmail, A. M.
 & Mohamed, N. S. (2010). Chemical constituents and biological activities of Artemisia herba-alba. *Records of Natural Products*. 4(1), 1-25.
- Munna, S. & Saleem, M. T. (2013). Hypoglycemic and hypolipidemic activity of *Ficus mollis* leaves. *Brazilian Journal of Pharmacognosy*, 23, 687-691.
- Murti, K. & Kumar, U. (2012). Enhancement of wound healing with roots of *Ficus racemosa* L. in albino rats. *Asian Pacific Journal of Tropical Biomedicine*, *2*(4), 276–280.
- Musabayane, C. T., Gondwe, M., Kadyamaapa, D. R., Chuturgoon, A. A. & Ojewole, J. A. O. (2007). Effects of *F. [stp]thonningii* (Blume) Moraceae stem bark ethanolic extract on blood glucose, cardiovascular and kidney cell lines of [stp]the

proximal (LLC-PK1) and distal tubules (MDBK). *Renal Failure*, 29, 389-397.

- Naira, N., Rohini, R. M., Syed, M. B. & Amit, K. D. (2009). Wound healing activity of the hydro alcoholic extract of *Ficus religiosa* leaves in rats. *International Journal of Alternative Medicine*, 6, 2-7.
- Okwu, D. E. (2004). Phytochemicals and vitamin content of indigenous species of South Eastern Nigeria. *Journal of Sustainable Agriculture and Environment*, 6, 30–34.
- Olaokun, O. O. McGaw, L. J., Eloff, J. N. & Naidoo, V. (2013). Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. *BMC Complementary and Alternative Medicine*, 13(1), 94.
- Olayinka, B. U., Abdulkareem, A. K., Adeyemi, S. B., Anwo, I. O., Lawal, A. R., Akinwunmi, M. A. & Etejere, E. O. (2017). *Ficus ingens* (Miq.) Miq. (Moraceae): phytochemical and proximate composition. *Annals of West University of Timişoara, ser. Biology. 20* (2), 153-158.
- Omar, M. H., Mullen, W. & Crozier, A. (2011). Identification of pro- anthocyanidin dimers and trimers, flavone C-glycosides, and antioxidants in *Ficus deltoidea*, a Malaysian herbal tea. *Journal of Agricultural and Food Chemistry*, 59(4), 1363– 1369.
- Orabi, M. A. A. & Orabi, E. A. (2016). Antiviral and antioxidant activities of flavonoids of *Ficus virens*: Experimental and theoretical investigations. *Journal of Pharmacognosy and Phytochemistry*. 5(3), 120-128.

- Oyeleke, S., Dauda, B., & Boye, O. (2008). Antibacterial activity of *Ficus capensis*. *African Journal of Biotechnology*. 7(10), 1414-1417.
- Patil, V. V., Pimprikar, R. B. & Patil, V. R. (2009). Pharmacognostical studies a nd evaluation of anti-inflammatory activity of *Ficus bengalensis* Linn. *Journal of Young Pharmacists*, 1:49-53.
- Peter, F. (2019). Fig. https://www.britannica.com/plant/fig (Accessed on 9 March 2021)
- Purnamasari, R., Winarni, D., Permanasari, A. A., Agustina, E., Hayaza, S., & Darmanto, W. (2019). Anticancer activity of methanol extract of *Ficus carica* leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. *Cancer Informatics*, 18, 1-7.
- Rahman, M., Khatun, A., Khan, S., Hossain, F. & Khan, A. (2014). Phytochemical, cytotoxic and antibacterial activity of two medicinal plants of Bangladesh. *Pharmacology*, 1(5), 3–10.
- Ramawat, K. G., Doss, S. & Mathura, M. (2009). The chemical diversity of bioactive molecules and Therapeutic potential of medicinal plants. In: Ramawat, K.G., (eds.), Herbal Drugs Ethnomedicine to Modern Medicine, Springer-Verlag Berlin Heidelberg, pp. 7-31.
- Saha, S. & Goswami, G. (2010). Study of anti ulcer activity of *Ficus religiosa* L. on experimentally induced gastric ulcers in rats. *Asian Pacific Journal of Tropical Medicine*, 3(10), 791–793.
- Sánchez-Valdeolívar, C. A., Alvarez-Fitz, P., Zacapala-Gómez, A. E. *et al.* (2020). Phytochemical profile and antiproliferative effect of *Ficus crocata* extracts on triple-negative breast cancer cells. *BMC Complementary Medicine and Therapy*, 20(1), 191.

- Shanahan, M., So, S., Compton, S. G. & Corlett, R. T. (2001). Fig-eating by verterbrate frugivores: A global review. *Biological Reviews*, 76(4), 529-537.
- Sheyin, F. T, Ndukwe, G. I, Iyun, O. R. A, Anyam, J. V. & Habila J. D. (2018). Phytochemical and antimicrobial screening of crude extracts of natal fig (*Ficus Natalensis* Kraus). *Journal of Applied Science and Environmental Management*, 22(9), 1457–1460.
- Shi, Y. X., Xu, Y. K., Hu, H. B., Na, Z. & Wang, W. H. (2011). Preliminary assessment of antioxidant activity of young edible leaves of seven Ficus species in the ethnic diet in Xishuangbanna, Southwest China. *Food Chemistry*, 128(4), 889-894.
- Sindhu, R. K. & Arora, S. (2013). Therapeutic effect of *Ficus lacor* aerial roots of various fractions on adjuvant-induced arthritic rats. *International Scholarly Research Notices*.
- Singh, D., Singh, B. & Goel, R. K. (2011). Traditional uses, phytochemistry and pharmacology of *Ficus religiosa*: a review. *Journal of Ethnopharmacology*, 134(3), 565-583.
- Sivaraman, D. & Muralidharan, P. (2011). Anti-ulcerogenic evaluation of root extract of *Ficus hispida* linn: In aspirin ulcerated rats. *African Journal of Pharmaceutical and Pharmacology*, 4, 72–82.
- Sophia, D. & Manoharan, S. (2007). Hypolipidemic activities of *Ficus racemosa* Linn. bark in alloxan induced diabetic rats. *African Journal of Traditional, Complementary, and Alternative Medicines, 4*(3), 279–288.

Taiwo, F. O., Fidelis, A. A. & Oyedeji, O. (2016). Antibacterial activity and

phytochemical profile of leaf extracts of *Ficus abutilifolia*. British Journal of *Pharmaceutical Research*. 11(6), 1-10.

- Vaya, J. & Mahmood, S. (2006). Flavanoid content in leaf extracts of the fig (*Ficus carica* L.) carob (*Ceratonia siliqua* L.) and Pistachio (*Pistacia lentiscus* L.), *Biofactors*, 28, 169–75.
- Wangkheirakpam, S. D., Wadawal, A., Leishangthem, S. S., Gurumayum, J. S. & Laitonjam, W. S. (2015). Cytotoxic triterpenoids from *Ficus pomifera* Wall. *Indian Journal of Chemistry*. 54, 676-681.
- Wan, C., Chen, C., Li, M., Yang, Y., Chen, M. & Chen, J. (2017). Chemical constituents and antifungal activity of *Ficus hirta* Vahl. fruits. *Plants*. 6(4), 44.
- Weli, A. M., Al-Blushi, A. A. M. & Hossain, M. A. (2015). Evaluation of antioxidant and antimicrobial potential of different leaves crude extracts of Omani *Ficus carica* against food borne pathogenic bacteria. *Asian Pacific Journal of Tropical Disease*, 5(1), 13–16.
- Yadav, Y. C. (2015). Hepatoprotective effect of *Ficus religiosa* latex on cisplatin induced liver injury in Wistar rats. *Brazilian Journal of Pharmacognosy*, 25(3), 278-283.
- Yen, G. C., Chen, C. S., Chang, W. T., Wu, M. F., Cheng, F. T., Shiau, D. K. & Hsu, C.L. (2017). Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of *Ficus beecheyana* and their phenolic components. *Journal of Food and Drug Analysis*, 1-11.
- Yessoufou, K., Elansary, H. O., Mahmoud, E. A. E. & Skalicka-Woźniak, K. (2016). Antifungal, antibacterial and anticancer activities of *Ficus drupacea* L. stem bark extract and biologically active isolated compounds. *Industrial Crops and Products*, 74, 752–758.

- Zakaria, Z. A., Hussain, M. K., Mohamad, A. S., Abdullah, F. C. & Sulaiman, M. R.
 (2012). Anti-inflammatory activity of the aqueous extract of *Ficus deltoidea*. *Biological Research for Nursing*, 14(1), 90-7. [see]
- Zingue, S., Michel, T., Tchatchou, J., Chantal Beatrice Magne, N., Winter, E., Monchot, A., Awounfack, C. F., Djiogue, S., Clyne, C., Fernandez, X., Creczynski-Pasa, T. B. & Njamen, D. (2016). Estrogenic effects of *Ficus umbellata* Vahl. (Moraceae) extracts and their ability to alleviate some menopausal symptoms induced by ovariectomy in Wistar rats. *Journal of Ethnopharmacology*, 17(179), 332-44.