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1 Introduction

The previous survey documented 2,448 naturally occurring organohalogen com-

pounds, both biogenic and abiotic (1). In the intervening years an additional 2,266

compounds have been identified from a myriad of natural sources, which include

chlorine-, bromine-, iodine-, and fluorine-containing organic compounds. The

organization herein follows that used earlier so as to provide continuity. Numerous

reviews covering natural organohalogens, both very general and highly specialized,

have appeared since 1994 (2–72). Others will be cited in the appropriate section.

While the furor over “chlorine” has abated to some extent, there remains an

underlying “chlorophobia” – an irrational fear of chlorine and organochlorine

compounds. It is hoped that the present review along with the references cited herein

will help to balance the need to regulate persistent organic organohalogen pollutants

(e.g., “POPs”) against the clearly demonstrated important role of organohalogens –

both natural and anthropogenic – in our society and in the environment.

G.W. Gribble, Naturally Occurring Organohalogen Compounds – A Comprehensive
Update, Progress in the Chemistry of Organic Natural Products, Vol. 91,

DOI 10.1007/978-3-211-99323-1_1, # Springer-Verlag/Wien 2010
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2 Origins

The ubiquitous abundance of the four halides (Table 2.1) has resulted in the

evolution of organohalogens in all regions of our earth, both biogenic and abiotic

(73–77).

2.1 Marine Environment

As will be seen, most naturally occurring organohalogen compounds are unique to

individual marine organisms and are not widely dispersed in the environment.

However, the more volatile haloalkanes, which have several marine sources, are

important contributors to the atmosphere. The salinity of Earth’s early ocean was

probably twice that of the present value (77), and sea-salt spray is the major

atmospheric source of reactive halogens (Cl2, Br2, BrCl, HOCl, HOBr) that are

subsequently converted to chlorine oxide and bromine oxide. This atmosphere

chemistry is exceedingly complex and beyond the scope of this review (78–85).
The formation of reactive chlorine and bromine in sea-salt aerosols, for which there

is compelling evidence, may explain the low ozone concentrations that are often

observed above the oceans (86–94). The importance of bromine oxide to both

tropospheric and stratospheric bromine-ozone chemistry has been stressed (95–100).
Not surprising is the observation of similar bromine oxide-ozone interactions

over the Dead Sea (101), and both bromine oxide and chlorine oxide chemical

reactions with ozone over the Great Salt Lake (102), with concomitant ozone

depletion in both areas. Although less studied, iodine in the marine boundary

layer is well known and can involve the photolysis of marine biogenic organoiodine

compounds (103, 104). Moreover, it appears that the global aerosol load has a major

contribution from marine organohalogen aerosols with the inevitable formation

of reactive halogens (105).
As abundantly illustrated in the first survey, marine organisms produce and

sequester an enormous number of organohalogens. It is estimated that more than

15,000 marine natural products of all types have been described (106). This author

G.W. Gribble, Naturally Occurring Organohalogen Compounds – A Comprehensive
Update, Progress in the Chemistry of Organic Natural Products, Vol. 91,

DOI 10.1007/978-3-211-99323-1_2, # Springer-Verlag/Wien 2010
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has determined from the published literature (1998–2005) that 15–20% of all

newly discovered marine natural products are organohalogens (107). Given the

salinity of the world’s oceans, which occupy more than 70% of the earth’s surface

and over 90% of the volume of the crust (108), it is not surprising that organohalo-

gens are plentiful in the 500,000 estimated species of marine organisms spread

over 30 phyla (109). This figure includes 100,000 marine invertebrates (110),
80,000 molluscs (111), 15,000 sponges (112), and 4,000 species of bryozoa

(moss animals) (113).
Perhaps due to their accessibility (and visibility!), sponges – the simplest and

earliest multicellular organisms that evolved about one billion years ago (114) –
have been widely examined for their chemical content, and new sponge species

are still being discovered (115). However, to acquire significant quantities of

biologically active sponge metabolites, it is necessary to develop “farming”

methods (116, 117) or to employ cell culture and gene cluster tactics (118). A
major sponge research area has been to explore the now well-established sponge-

bacteria symbiosis (119–123). Such studies of sponges include Aplysina cavernicola
(124–126), Aplysina aerophoba (126–128), Theonella swinhoei (128), Rhopa-
loeides odorabile (129, 130), and Xestospongia muta and X. testudinaria (131),
all of which have associated active bacterial communities that may produce the

metabolite.

Even older than sponges are cyanobacteria (blue-green algae, Fig. 2.1), which

date back 2.8 billion years (132). As will be seen in Chap. 3 (Occurrence), the 2,000
species of cyanobacteria produce a multitude of organohalogen and other metabo-

lites (133–135), which are often highly toxic to humans (136–138). The cyanobac-
terium Oscillatoria spongeliae is a common symbiont of the sponges Dysidea
herbacea and Dysidea granulosa (Fig. 2.2) (139–144), but the actual producer of

the organohalogen metabolites remains uncertain.

As will be presented in Chap. 3 (Occurrence), other marine organisms such as

molluscs (145), sea hares (146), mussels (147), bryozoans (148), tunicates, and soft
corals (149) produce a myriad of organohalogen metabolites. Interestingly, symbi-

otic bacteria can also be associated with these organisms (123). Marine phyto-

plankton (150) and macroalgae (151, 152) are rich sources of organohalogens,

particularly volatile haloalkanes. Two relatively new areas for ocean exploration

are marine bacteria and fungi (108, 153–155, 178). Finally, as more remote and

deeper regions of the oceans are explored, new marine species are being discov-

ered; for example, the new genus, Osedax, of marine worms (156).

Table 2.1 Distribution of halides/mg kg�1 in the environment

Halide Oceans

(73, 74)
Sedimentary

rocks (66, 74)
Fungi

(75)
Wood pulp

(218)
Plants

(74, 76)

Cl– 19,000 10–320 70–2100 200–10,000

Br– 65 1.6–3 100

I– 0.05 0.3

F– 1.4 270–740
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2.2 Terrestrial Environment

Organohalogens are present in many terrestrial environments: sediments, soils,

plants, fungi, lichen, volcanoes, biomass combustion, bacteria, insects, and higher

organisms. The high concentration and dispersal of chloride in minerals, soils,

Fig. 2.1 Chroococcus turgidus, a species of cyanobacteria, which are prolific producers of

organohalogens (Photo: A. D. Wright)

Fig. 2.2 Dysidea granulosa, a cyanobacterium containing sponge (Photo: F. J. Schmitz)
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and plants results in a multitude of both biogenic and abiotic organochlorine

compounds in these terrestrial environments (37, 157–167). Humic forest lake sedi-

ments (168) and peatlands (169–171) contain large quantities of organohalogens,

including organoiodines that form during humification in peatlands (171).
Peatlands that comprise 2% of the earth’s continental surface are a major reser-

voir of organically bound iodine in the terrestrial environment (171), accumulat-

ing 280–1,000 million tons of organochlorines during the postglacial period

(169). Likewise, 91% of the bromine found in peat is organically bound (170).
X-ray absorption spectroscopy has revealed the formation of organochlorine

compounds from chloride and chloroperoxidase in “weathering” plant material

(172–174). Moreover, this technique has uncovered the bromide-to-organobromine

conversion in environmental samples (174). In addition to chloroperoxidase

mediated chlorination, the abiotic chlorination in soils and sediments involving

the alkylation of halides during Fe(III) oxidation of natural organic phenols in soils

and sediments has been discovered (175–177).
Other terrestrial organisms frequently contain organohalogens. Lichens dating

back 400 million years are a rich source of chlorinated phenolics (1, 178, 179). The
even older fungi, which date back one billion years (180), perhaps number 1.5

million species of which only 70,000 are described (181). Basidiomycetes fungi are

ubiquitous producers of organohalogens (182), and fungi, bacteria, and lichen

engage in symbiosis (183, 184). Tundra fungi under snow-cover (185) and insect

pathogenic fungi (186) are of recent interest and undoubtedly will yield novel

natural products. Slime molds (myxomycetes) (187) and bryophytes (liverworts,

mosses, hornworts) (188, 189) possess a rich assortment of natural products,

including organohalogens, but terrestrial bacteria remain king of the biosynthesi-

zers (190).
Volcanoes have been comparatively little studied for their chemical content.

However, a few studies have provided some astonishing results as will be described

later in Chap.3 (Occurrence) (1). The origin of volcanic organohalogens may

simply be a result of the halides present in sediments and minerals reacting with

organic matter within the volcano at the high temperatures and pressures during

eruptions and outgassing. The four halides are known to be entombed in rocks and

sediments (190–199), and also in the ocean mantle (200, 201). Volcanic emissions

invariably contain massive quantities of HCl and HF (1). Recent studies of Mt. Etna

(202–205), Mt. Pinatubo (206), Soufriere Hills (207, 208), Popocatépetl (209),
Villarrica (210), Satsuma-Iwojima (211), Sakurajima (212), and Laki (213) confirm
their ubiquity of gaseous HCl and HF. Reactive bromine (BrO) and iodine emis-

sions are also reported (206, 208, 211, 212). The largest known point source of both
HCl and HF is the 1997 Mt. Etna eruption, with emission rates of 8.6 and 2.2 kg s–1,

respectively (203). Newer detection techniques such as solar occultation spectros-

copy (203) and remote infrared spectroscopy (214) will obviously lessen the

hazards of sampling. The role that these halogens play in depleting ozone has

been discussed (215).
Only two studies of organohalogen volcanic gases were reported since the last

survey, those of Vulcano (Fig. 2.3) (216) and Kuju, Satsuma-Iwojima, Mt. Etna,
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and Vulcano (217). These results will be described in Chap. 3 (Occurrence). The

mysterious chemistry that occurs in volcanoes has been addressed with regard both

to halogen (218) and hydrocarbon formation (219). An interesting personal account
of the Kamchatka hot springs, which are a rich source of organohalogens (1, 218),
has appeared (220). A novel volcanic source of HCl stems from the heating and

evaporation of seawater by molten lava from the Hawaiian volcano Kilauea, which

has been in continuous eruption since 1986, leading to highly acidic plumes (“acid

rain”) estimated at 3–30 tons of HCl daily (221).
A related pyrolytic source of HCl, HBr, and low molecular weight haloalkanes is

biomass combustion. Human controlled fires may date back 790,000 years (222),
but natural forest and grass fires presumably date from the time vegetation first

appeared on earth (350–400 million years ago), and continue unabated today

(223–225). Recent massive fires include those in Indonesia 1997 (226), Northern
Alberta 1998 (227), Alaska 2004 (228), and Russia 2002–2005 (229). In Canada

alone some 10,000 forest fires occur annually (230), and forest fires have plagued

the Western United States for decades (225, 231). The 1988 Yellowstone fire,

which burned more than 3 months, consumed 600,000 ha (225). Interestingly, a
model study revealed that heating a mixture of methane, hydrogen chloride, and

oxygen forms haloalkanes, chlorinated aromatics, dioxins, and many other organo-

chlorines (232), indicating the plausibility of finding such compounds in volcanic

Fig. 2.3 A volcano on Stromboli, an island in the Tyrrhenian Sea off the north coast of Sicily

(Photo: F. M. Schwandner)

2.2 Terrestrial Environment 7



plumes and biomass combustion fires. Cigarette smoke contains 30–66 mg kg�1 of

unidentified organochlorines (233).

2.3 Extraterrestrial Environment

Although both HCl (234) and HF (235) are present in interstellar space, it came as a

stunning surprise when meteorites were found to contain organohalogen com-

pounds (236). The several earlier claims of meteoritic organochlorines were only

cautiously advanced and perhaps even viewed with skepticism (237–240). In

various forms, chlorine has been detected in and around Io, Jupiter’s largest

moon (241–245).
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3 Occurrence

3.1 Simple Alkanes

No other class of natural organohalogens has the wide diversity of sources, as do

the simple halokanes – marine, terrestrial biogenic, terrestrial abiotic, biomass

combustion, and volcanoes. However, since the previous survey, only a few

newly discovered natural simple halogenated alkanes have been reported.

3.1.1 Chloromethane

Chloromethane is the most abundant organohalogen – anthropogenic or natural – in

the atmosphere. The myriad natural sources of CH3Cl dwarf the anthropogenic

contribution (Table 3.1). Subsequent to the previous survey (1) a number of new

natural sources of CH3Cl have been identified, and other reviews have appeared

(42, 246, 247).

3.1.1.1 Marine

Laboratory cultures of marine phytoplankton (Phaeodactylum tricornutum, Phaeo-
cystis sp., Thalassiosira weissflogii, Chaetoceros calcitrans, Isochrysis sp., Por-
phyridium sp., Synechococcus sp., Tetraselmis sp., Prorocentrum sp., and Emiliana
huxleyi) produce CH3Cl, but in relatively insignificant amounts (248, 249). Simi-

larly, low production of CH3Cl was observed from several macroalgae (Fucus
vesticulosus, Enteromorpha compressa, Ulva lactuca, and Corallina officinalis)
but not for two others (250). Another laboratory study of micro- and macroalgae

failed to detect CH3Cl in 58 species, although CH3Br and CH3I were observed

(251). An extensive study of 30 species of polar macroalgae revealed the release of

significant amounts of CH3Cl in only Gigartina skottsbergii and Gymnogongrus
antarcticus (152). In contrast to these studies, ten species of salt marsh (notably

G.W. Gribble, Naturally Occurring Organohalogen Compounds – A Comprehensive
Update, Progress in the Chemistry of Organic Natural Products, Vol. 91,

DOI 10.1007/978-3-211-99323-1_3, # Springer-Verlag/Wien 2010
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Salicornia sp., Batis maritima, and Frankenia grandifolia) produce large amounts

of CH3Cl, perhaps constituting the largest natural terrestrial source (Table 3.1)

(252).
Chloromethane has a strong atmospheric presence, particularly over the oceans

and ice packs (253–259). A new technique has been reported for the determination

of CH3Cl in ice cores (260). The measured CH3Cl concentration of 528 � 26 pptv

in pre-industrial and/or early industrial ice cores is similar both to present day

concentrations in the remote atmosphere and to concentrations measured from ice

cores dating back 300 years. These results support previous conclusions that the

CH3Cl concentration has remained relatively constant over the past few hundred

years. Interesting is the finding that a strong source of CH3Cl is warm coastal areas,

such as tropical islands (261).

3.1.1.2 Terrestrial Biogenic

Both new and preexisting terrestrial sources of CH3Cl have been reported since the

previous survey. Rice paddies (262–266), peatlands (Fig. 3.1) (267), tropical plants
(268), shrublands (269), wetlands (270), woodrot fungi (271, 272), root fungi (273),
forest leaf litter (274), and coastal wetlands (275) are significant and, in some cases,

major sources of atmospheric CH3Cl (Table 3.1). Higher plants such as potato

Table 3.1 Sources and estimated amountsa,b of chloromethane/Gg y�1

Source Best estimate Rangec References

Biomass combustion 910 650–1,120 (285, 286)
Biomass combustion 611 � 38 – (295)
Biomass combustion 515 226–904 (283)
Savanna fires 420 – (285)
Asian tropical plantsc 910 820–8,200 (268)
Oceanic 650 325–1,300 (253)
Oceanic – 200–400 (300)
Salt marshes 170 65–440 (252)
Wood rotting fungi 160 43–470 (271, 295)
Industrial incineration 162 – (296)
Coal combustion 105 5-205 (287)
Conifer forest floor 84.7 38.7–130.8 (267)
Leaf litter – 75–2,500 (281)
Fossil fuel combustion 75 5–145 (296)
Wetlands 48 6–270 (270)
Waste incineration 32 15–75 (296)
Other industry 7 – (296)
Peatlands 5.5 0.9–43.3 (267)
Macroalgae 0.14 – (250)
Volcanoes 0.074 � 0.045 – (216)
Volcanoes 0.012 – (217)
a1 Gg (gigagram) = 109 g ffi 1,000 tons
bFor excellent compilations of these data and discussions of the missing CH3Cl, see (279, 280, 287,
295, 297)
cSome of these ranges (uncertainties) were taken from those cited in (280)
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tubers (Solanum tuberosum) (276, 277) and the saltwort (Batis maritima) (277)
(also mentioned in Sect. 3.1.1.1) yield CH3Cl, as do other terrestrial plants (278–
280). It is quite possible that the “missing” CH3Cl source may have its origin in

tropical green plants (278, 280).

3.1.1.3 Terrestrial Abiotic

It is proposed that the CH3Cl missing source (vide supra) may be the abiotic

methylation of chloride in plants and soils (280, 281). This methylation by plant

pectin in senescent and dead leaves efficiently produces CH3Cl and shows a

positive correlation with temperature. Plants studied include Norway maple,

horse chestnut, cherry, oak, beech, a Eucalyptus sp., and a salt marsh (Batis
maritima) (281). This important study complements that of Myneni (172–174)
and Keppler et al. (175, 176), cited earlier, and Öberg (298, 299).

3.1.1.4 Biomass Combustion

Biomass combustion is a major global source and may even be the major source of

atmospheric CH3Cl (223, 282–288). These studies indicate that CH3Cl production

is maximized in low intensity fires, from incomplete combustion, and by increased

chloride concentration. It is estimated that six billion tons of biomass are consumed

Fig. 3.1 A peatbog in Ireland that is a rich source of natural organohalogens (Photo: H. Falk)
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by fire per year (282). The actual mechanism of CH3Cl formation during biomass

combustion may be similar to the abiotic formation of CH3Cl in plants (281).

3.1.1.5 Volcanic Emissions

As described previously, volcanoes liberate a myriad of organic chemicals includ-

ing CH3Cl (1) and two recent studies confirm the earlier findings (216, 217). Thus,
Vulcano, Mt. Etna, Kuju, and Satsuma-Iwojima all emit CH3Cl from both the

fumaroles and the lava gas.

3.1.1.6 Biogenesis

In addition to the abiotic mechanism suggested for CH3Cl formation (vide supra),

there is compelling evidence for biosynthetic pathways (289–292). The salt marsh

plant Batis maritima contains the enzyme methyl chloride transferase that catalyzes

the synthesis of CH3Cl from S-adenosine-L-methionine and chloride (291). This
protein has been purified and expressed in E. coli, and seems to be present in other

organisms such as white rot fungi (Phellinus pomaceus), red algae (Endocladia
muricata), and the ice plant (Mesembryanthemum crystallium), each of which is a

known CH3Cl producer (291, 292).
A vexing factor in understanding CH3Cl sources is the observation that the bac-

terial conversion of CH3Br to CH3Cl with chloride has been reported in a biotrans-

halogenation SN2 reaction (293). Since bromide is a better nucleophile than chloride

in aqueous media (294), the reverse biotranshalogenation reaction is plausible.

3.1.2 Dichloromethane

Dichloromethane is a widely used industrial and academic laboratory solvent. New

natural sources are recognized subsequent to the previous review, although the

amounts are small compared to industrial emissions (Table 3.2). These include

estimates of biomass combustion (256, 283, 286), oceanic sources (250, 253, 256,
275, 302), wetlands (275), and volcanoes (216, 217). Macroalgae (Desmarestia

Table 3.2 Sources and estimated amountsa,b of dichloromethane/Gg y�1

Source Best estimate Rangec References

Industryc 650 – (259)
Biomass combustion 60 50–70 (256)
Oceanic 190 100–290 (256)
Macroalgae 0.32 – (250)
Volcanoes 0.021 � 0.013 – (216)
aThe latest estimates are provided
bSee (253, 283, 286, 287, 301)
cSee also (301)
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antarctica, Lambia antarctica, Laminaria saccharina, and Neuroglossum ligula-
tum) release substantial amounts of CH2Cl2, surpassing bromoform in some cases

(302). Interestingly, CH2Cl2 forms when CH4 and HCl are heated in the presence of

oxygen (232).

3.1.3 Trichloromethane

Trichloromethane (chloroform) is a widely used industrial and academic laboratory

solvent. In contrast to CH2Cl2, CHCl3 has a multitude of natural sources, both

biogenic and abiotic (1), and several excellent reviews are available (303–305).
Noteworthy is the estimate that greater than 90% of atmospheric CHCl3 is of

natural origin (Table 3.3).

3.1.3.1 Marine

Trichloromethane is produced by brown seaweeds (Laminaria digitata, Laminaria
saccharina, Fucus serratus, Pelvetia canalicuta, Ascophyllum nodosum), red sea-

weeds (Gigartina stellata, Corallina officinalis, Polysiphonia lanosa), and green

seaweeds (Ulva lactuca, Enteromorpha sp., Cladophora albida) (306). Similarly,

the macroalga Eucheuma denticulatum, which is cultivated and harvested on a large
scale for carrageenan production, produces CHCl3 (307), as do Hypnea spinella,
Falkenbergia hillebrandii, and Gracilara cornea along with seven indigenous

macroalgae inhabiting a rock pool (308). These studies show increased CHCl3
production with increased light intensity, presumably when photosynthesis is

at a maximum. Trichloromethane is also produced by the brown alga Fucus
vesiculosus, the green algae Cladophora glomerata, Enteromorpha ahlneriana,

Table 3.3 Sources and estimated amountsa of trichloromethane/Gg y�1

Source Best estimate Range References

Oceanic 360 210–510 (256)
Soil/fungi 235 110–450 (256, 259)
Termites 100 10–100 (327)
Peatlands 4.7 0.1–151.9 (267)
Biomass combustion 2 0.9–4 (283)
Rice paddies 23 7.7–50 (304)
Volcanoes 0.095 0.067–0.12 (216)
Microalgae 23 7.9–49 (304)
Macroalgae (non-kelp) 0.25 – (250)
Macroalgae (non-kelp) 10 – (308)
Macroalgae (non-kelp) 0.06 – (306)
Macroalgae (kelp) 0.17 – (306)
Macroalgae 0.84 0.009–3.1 (304)
Industry 66 40–100 (256, 259)
aSee also (253, 286, 287, 303–305)
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Enteromorpha flexuosa, and Enteromorpha intestinalis, and the diatom Pleurosira
laevis (309). Other studies observe CHCl3 in Fucus serratus, Fucus vesiculosis,
Corallina officinalis, Cladophora pellucida, and Ulva lactuca (250), and Desma-
restia antarctica, Lambia antarctica, Laminaria saccharina, Neuroglossum ligula-
tum (302). The yields of CHCl3 often vary widely in these studies. Microalgae are

also emitters of CHCl3, as first found with laboratory cultures of Porphyridium
purpureum and Dunaliella tertiolecta (310, 311). Oceanic atmospheric trichloro-

methane measurements provide the estimate of 320–360 Gg y�1 for ocean emis-

sions (253, 256, 259, 287, 312) (Table 3.3). A new source of CHCl3 arises from the

sediments of salt lakes that harbor halobacteria capable of biosynthesizing volatile

chloroalkanes (312).

3.1.3.2 Terrestrial Biogenic

Subsequent to the seminal work of Asplund and Grimvall (313), it is now well

established that CHCl3, trichloroacetic acid, and other simple organochlorides are

naturally produced in soil, perhaps involving both biogenic and abiotic pathways

(278, 303–305, 314–323). A study with Na37Cl demonstrated isotopic enrichment

in the CHCl3 (316), and numerous worldwide remote forest sites (spruce, beech,

Douglas fir, grasslands) all generate trichloromethane, a process believed to involve

a microbial enzymatic origin (317–322). One particular spruce forest was found

to liberate CHCl3 at a rate of 12 mg m
�2 day�1 (319). Another forest site with a rich

humic layer emits 24 mg m�2 day�1 (321). As will be presented in later sections,

CHCl3 formation is believed to involve chloroperoxidase-mediated chlorination of

phenolic structures in soil humic acid, followed by ring rupture, and degradation

to afford both CHCl3 and trichloroacetic acid, along with other organic products

(317, 324). The laboratory chlorination of resorcinol yielding CHCl3 is an under-

graduate experiment (325).
Other terrestrial biogenic sources of CHCl3 exist. The fungi Mycena metata,

Peniophora pseudopini, and Caldariomyces fumago produce 0.07–70 mg L�1 cul-

ture per day for the latter fungus and 0.7–40 ng L�1 culture per day for the first two

fungi. The fungi Agaricus arvensis, Bjerkandera sp. BOS55, and Phellinus pini
produce CHCl3, but only in incidental cases (326). Nevertheless, the authors of this
latter study conclude that fungi are important sources of soil air CHCl3. Coastal

wetlands and grassland areas in Tasmania produce CHCl3, and a major contributor

is the eucalypt soil-plant material site, probably due to the high chloride content of

eucalyptus leaves (275). Irish peatlands are significant sources of CHCl3 (267), as
is leaf litter from aspen and willow trees (274). It is estimated that termites

worldwide produce less than 15% (<100 Gg y�1) of the atmospheric CHCl3. Six

termite species (Coptotermes lacteus, Amitermes laurensis, Nasutitermes magnus,
Nasutitermes triodiae, Drepanotermes perniger, Tumulitermes pastinator) pro-
duce CHCl3 within their mounds, and in the mound of one species, Coptotermes
lacteus, the CHCl3 concentration is 1,000 times higher than the ambient concen-

tration (327).
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3.1.3.3 Biomass Combustion

The combustion of biomass, which invariably contains carbon and chloride, pro-

duces CHCl3, although the amount is much less than that recorded for CH3Cl and

CH2Cl2 (283, 286) and is a minor emission source of CHCl3 (<1%) (303–305)
(Table 3.3). The high temperature (700�C) reaction of methane, HCl, and oxygen

furnishes trichloromethane (232).

3.1.3.4 Volcanic Emissions

Following the pioneering studies of Isidorov (218), other investigations find CHCl3
in several Italian (Vulcano, Mt. Etna) and Japan (Kuju, Satsuma-Iwojima) volca-

noes (216, 217), but the amounts are relatively small (216).

3.1.4 Tetrachloromethane (Carbon Tetrachloride)

Tetrachloromethane (carbon tetrachloride, CCl4) is a toxic industrial chemical with

several natural sources (1). The solfataras and hydrothermal vents of Kamchatka

(328) and the thermal springs in Ashkhabad (Turkmenia) and Tskhaltubo (Georgia)

(329) emit CCl4. The carbonaceous black shales from Central Asia contain CCl4
(330), consistent with earlier studies of similar abiotic sources (218). Volcanic
emissions contain CCl4 (216, 217), and one study determined a global volcanic

emission rate of 0.00341 Gg y�1 (216). A larger global emission rate is estimated

for biomass combustion of 3 Gg y�1 on the average (283). Thermolysis of a mixture

of CH4, HCl, and O2 also produces CCl4 (232). Forest soil has been reported to emit

CCl4 at low levels or not at all (274, 278, 318, 319), but it has been suggested that

the presence of CCl4 in these studies “is probably due to an equilibrium with

atmospheric concentrations of anthropogenic origin” (278). The commercially

important seaweed Eucheuma denticulatum, which is used to make the food

thickener carrageenan, emits CCl4 (307). Other studies of marine algae and salt

lakes are inconclusive with regard to CCl4 (308, 312, 392).

3.1.5 Bromomethane

Unlike other simple haloalkanes, bromomethane (methyl bromide, CH3Br) has very

large natural and anthropogenic sources. Indeed, CH3Br is an outstanding pesticide

(e.g., soil fumigant) for which there are no suitable alternatives (331–334).
Although CH3Br is now banned in the United States because of its presumed

toxicity (335), it is still used by some farmers for selective applications (334).
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In previous years some 20,000 metric tons of CH3Br was used annually in the US

as a soil pesticide (331).
Despite the low abundance of bromide relative to chloride in sediments, soil, and

the ocean (Table 3.4), the ease with which nature can manipulate bromide (reduc-

tion potentials: E� = 1.09 V for Br– vs. 1.36 V for Cl–, 0.54 V for I–, and 2.87 V for

F– (2671)) results in a multitude of natural organobromine compounds especially in

the oceans (41, 45) (Table 3.5).

3.1.5.1 Marine

Perhaps because of its volatility (boiling point, 4�C), CH3Br has not been identified

in marine organisms (i.e., algae) as frequently as bromoform and other bromoalk-

anes. Nevertheless, CH3Br is released from both Antarctic and Arctic cultivated

macroalgae, including brown algae, red algae, and green algae (152, 336–338).
Several macroalgae from the north coast of Norfolk, England, yield CH3Br (250).
Methyl bromide is also found in cultures of marine microalgae (248, 249, 251, 311,
339, 340). The several reported atmospheric measurements of CH3Br are consistent

with oceanic sources (252, 254, 255, 259, 341–346). Methyl bromide originates

from the vegetation zones of coastal salt marshes (252), and CH3Br is

Table 3.5 Sources and estimated amountsa of bromomethane/Gg y�1

Source Best estimate Range References

Oceanic 60 – (531)
Biomass burning 20 10–50 (285)
Salt marshes 14 7–29 (252)
Macroalgae 0.056 – (250)
Rice paddies – 0.5–0.9 (266)
Litter decomposition (fungi) 1.7 0.5–5.2 (350)
Wetlands 4.6 – (270)
Peatlands 0.9 0.1–3.3 (267)
Automobiles 1.5 – (352)
Creosote bush (Larrea tridentata) 0.2 – (269)
Brassica plantsb 7 – (347)
Fumigation 47 – (42)
Phytoplankton – 2.6–47.0 (340)
Volcanoes 0.00098 � 0.00047 (216)
aSee also (288, 353)
bRapeseed and cabbage

Table 3.4 Distribution of halides/mg kg�1 in the environment

Halide Oceans (73,
74)

Sedimentary rocks (66,
74)

Fungi

(75)
Wood pulp

(218)
Plants (74,
76)

Cl– 19,000 10–320 70–2,100 200–10,000

Br– 65 1.6–3 100

I– 0.05 0.3

F– 1.4 270–740
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supersaturated over part of the northeast Atlantic due in large measure to the

phytoplankton Phaeocystis (343).

3.1.5.2 Terrestrial Biogenic

In addition to the emission of CH3Br from coastal salt marshes (vide supra) (252),
which could be considered a terrestrial source, shrublands and wetlands near coastal

sites also emit CH3Br (269, 270, 275). Extraordinary is the observation that higher

plants (e.g., rapeseed, mustard, cabbage, broccoli, turnip, radish, alyssum, etc.)

produce significant amounts of CH3Br from natural soil bromide, estimated to be

6.6 Gg y�1 CH3Br from rapeseed worldwide (347). It might be noted that plants are

also a sink for both CH3Br (348) and bromide (347, 349). Peatlands are a source of
CH3Br (267) as are rice paddies (262–266) and fungi (273). Wood-rotting fungi are

another source of CH3Br, but of low significance (350) (Table 3.5).

3.1.5.3 Terrestrial Abiotic

The abiotic bromination involving the alkylation of bromide during Fe(III) oxida-

tion of natural organic phenols in organic matter is a pathway to CH3Br that has

been demonstrated in the laboratory (175).

3.1.5.4 Biomass Combustion

Where there is halide, carbon, oxygen, and fire there will be organohalogens. Such

is the case with bromide giving rise to CH3Br in forest fires (223, 284, 285, 288).
Indeed, vegetation fires are a major source of CH3Br (285).

3.1.5.5 Volcanic Emissions

Studies of volcanoes (Vulcano, Mt. Etna, Kuju, and Satsuma-Iwojima) have found

CH3Br in the fumarolic emissions (216, 217).

3.1.6 Other Simple Bromoalkanes

3.1.6.1 Marine

Marine algae biosynthesize and emit several other simple bromoalkanes, including

dibromomethane (CH2Br2), tribromomethane (bromoform, CHBr3), bromoethane
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(CH3CH2Br), and 1,2-dibromoethane (BrCH2CH2Br) (1). Indeed, CHBr3 is a promis-

cuous marine metabolite and is invariably produced by both macro- and microalgae

(152, 250, 302, 306–309, 336–339, 342, 344–346, 354–370), and is the major con-

tributor of organic bromine to the atmosphere. Bromoform may supply reactive bro-

mine (e.g., BrO) to the upper troposphere and lower stratosphere for reaction with and

destruction of ozone (371, 372). Macroalgae may contribute 70% of the world’s

CHBr3 (373). An estimate of a global emission rate of 220 Gg y�1 (50–390) is
proposed for CHBr3 (373). Studies of brown, red, and green macroalgae from the

polar region show that CHBr3 is released by all 30 species examined (152). Dibro-
momethane frequently accompanies CHBr3 in marine algae emissions, although

usually with lower release rates (152, 250, 302, 306, 308, 309, 336, 337, 339, 342,
345, 346, 354–366, 368–370). In one polar algae study cited above, only 12 of 30

species were reported to emit CH2Br2 (152). Likewise, bromoethane is only occa-

sionally reported as a marine algae volatile (152, 250, 336, 337, 345). The previous
survey listed 1,2-dibromoethane as a tentative marine algae metabolite (1), but sub-
sequent independent studies clearly establish 1,2-dibromoethane (BrCH2CH2Br, 1) as
a bona fide natural product (359, 362). This organobromine, which has anthropogenic

sources (359), is emitted by several algae species (152, 250, 336, 337, 359, 360, 362).

Br

Br

Br

Br

Br
1

C4H9Br

2

Br

3

CBrCl3

4

3.1.6.2 Volcanic Emissions

Several simple organobromines are emitted from Mt. Etna, Vulcano, Kuju, and

Satsuma-Iwojima, including CH2Br2, CHBr3, CH3CH2Br, each of which has large

biogenic (marine algae) contributions, and the new compound bromobutane (2,
isomer unknown) (217, 216). 1,1,2,2-Tetrabromoethane (3) is present in carbona-

ceous black shale (330).

3.1.7 Mixed Bromochloromethanes

The mixed bromochloromethanes, chlorobromomethane (CH2BrCl), chlorodibro-

momethane (CHBr2Cl), and bromodichloromethane (CHBrCl2), often accompany

CHBr3 and CH2Br2 in marine algae (1). Both macro- and microalgae produce

CH2BrCl (152, 250, 309, 336, 337, 346, 358, 365), CHBr2Cl (152, 250, 306–309,
336, 342, 344, 345, 346, 354–362, 364, 365, 368, 373), and CHBrCl2 (152, 250,
302, 306, 309, 336, 337, 342, 346, 356, 357–362, 365). Volcanic emissions of

bromochloromethanes include the known CH2BrCl, CHBr2Cl, and CHBrCl2, along

with the previously unreported CBrCl3 (4) (217).
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3.1.8 Iodomethanes

3.1.8.1 Marine

The widely used organic chemical reagent, iodomethane (CH3I, methyl iodide), has

a large biogenic source in worldwide marine algae (1). Like CH3Br and CHBr3,

CH3I is often detected in emissions from algae and in the oceanic atmosphere (152,
248–251, 255, 302, 306–311, 338, 339, 342, 344–346, 356, 357, 359, 361, 365).
Diiodomethane also has numerous marine algae sources (152, 307, 309, 336, 337,
339, 342, 344, 345, 356, 357, 359–362, 365, 367, 369), but iodoform (CHI3) has not

been described in nature following its report in Asparagopsis taxiformis (1). Diio-
domethane is a more significant source of iodine in the atmosphere than CH3I (365).

3.1.8.2 Terrestrial

Iodomethane has several terrestrial biogenic and abiotic sources (Table 3.6). It is

emitted from volcanoes (216, 217), fungi (273), wetlands (275), peatlands (267),
rice paddies (262–266, 374), and oat plants (374). Biomass combustion also

accounts for some CH3I (284, 285, 288). The abiotic soil source cited earlier can

also produce CH3I (175).

3.1.9 Other Simple Iodoalkanes

Given the dearth of iodide in the ecosystem relative to chloride and bromide

(Table 3.4), it is perhaps surprising that several other alkyl iodides are found in

the environment.

3.1.9.1 Marine

Marine algae are a rich source of iodoethane (CH3CH2I) (152, 250, 309, 336, 337,
339, 344, 357, 365, 367), 1-iodopropane (CH3CH2CH2I) (152, 309, 342, 356, 357,
365, 367), 2-iodopropane ((CH3)2CHI) (152, 308, 309, 356, 357, 365, 367),

Table 3.6 Sources and estimated amountsa of iodomethane/Gg y�1

Source Best estimate Range References

Oceanic – 128–335 (375)
Biomass burning < 10 – (285)
Rice paddies – 16–29 (266)
Peatlands 1.4 0.1–12.8 (267)
Macroalgae – 0.00092–0.011 (365)
Macroalgae 0.28 – (250)
aSee also (42)
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1-iodobutane (CH3(CH2)3I) (152, 307–309, 357, 361, 365, 367), 2-iodobutane
(CH3CH2CH(CH3)I) (152, 307, 309, 357, 365), and the new 1-iodo-2-methylpro-

pane (5) (152, 365).

3.1.9.2 Volcanic Emissions

An examination of the emissions from Mt. Etna, Vulcano, Kuju, and Satsuma-

Iwojima has revealed the presence of ethyl iodide (217).

3.1.10 Mixed Iodomethanes

By unknown biogenetic mechanisms (perhaps nucleophilic substitution reactions?),

marine algae produce several iodomethanes containing chlorine or bromine (1).
Recent studies confirm the oceanic presence of chloroiodomethane (CH2ClI) (152,
250, 307–309, 336, 337, 339, 342, 344, 345, 355–357, 359, 360, 362, 365, 367, 369),
bromoiodomethane (BrCH2I) (339, 344, 345), dibromoiodomethane (CHBr2I) (345),
and the new dichloroiodomethane (Cl2CHI) (6) (345). Volcanic emissions from

Mt. Etna, Vulcano, Kuju, and Satsuma-Iwojima are reported to contain CH2ClI (217).

3.1.11 Simple Alkenes

While the carbon–carbon double bond is a common functional group in complex

natural products, it is far rarer in simple natural compounds.

3.1.11.1 Marine

The chemically productive red algae Asparagopsis taxiformis and Asparagopsis
armata, which are prized by Hawaiians for flavor and aroma (“limu kohu”, supreme

seaweed) (1), contain the novel (E)-1,2-dibromoethylene (7a), (Z)-1,2-dibro-
moethylene (7b), and tribromoethylene (8) (364). Trichloroethylene (TCE) (301,
307–309, 312, 361, 376, 377) and tetrachloroethylene (PERC) (307–309, 312, 376,
377) continue to be found in marine algae in concentrations larger than anticipated,

but their origin remains controversial (253, 278, 301, 307–309, 376–378). Initially,
TCE and PERC were found in 27 species of macroalgae (376).

Br

Br

Br Br Br

Br

Br
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ClI

Cl
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3.1.11.2 Terrestrial Biogenic

One of the most intriguing newly discovered natural organohalogens is 1-chloro-3-

methyl-2-butene (9) from a secretion of a male flying fox (Pteropus giganteus)
(380). Since this compound is known to be a powerful lachrymator (personal

experience), it may function as a chemical defensive agent (“allomone”) for the fox.

3.1.11.3 Terrestrial Abiotic

Vinyl chloride is obviously essential for the manufacture of poly(vinyl chloride)

polymer (PVC), and is a known human liver carcinogen. Therefore, it is surprising

that vinyl chloride (10) (CH2 = CHCl) is produced abiotically in soil, during the

oxidative degradation of soil matter (381), similar to the proposed abiotic soil

formation of CH3Cl (vide supra). Model experiments with catechol (1,2-dihydroxy-

benzene), Fe(III), and chloride yield both vinyl chloride and CH3Cl. It might be

noted that CH3CCl3, TCE, and PERC are not formed under these conditions (381).
The latter observations are consistent with field studies of spruce forests (319, 322);
for a review, see (278). Both TCE and PERC are reported in biomass fires (283).

3.1.11.4 Volcanic Emissions

Several chlorinated and brominated alkenes are present in emissions of Mt. Etna,

Vulcano, Kuju, and Satsuma-Iwojima (217). In addition to vinyl chloride (10),
TCE, PERC, and 1,1-dichloroethylene, compounds 11–57 were detected in these

emissions. For many of these compounds, exact structures remain unknown.
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3.1.12 Simple Alkynes

Although acetylenes are widely used in organic synthesis, and are present both in

pharmaceuticals and in interstellar space, simple halogenated acetylenes are virtu-

ally unknown in nature.

3.1.12.1 Terrestrial Abiotic

In model experiments with catechol, Fe(III), and chloride, and in soil emission

studies, it is found that chloroethyne (chloroacetylene) (58) is produced (382). The
natural formation of 58 parallels that of vinyl chloride, which is also found in these

experiments. The in vitro and in vivo mechanisms are unknown, but the authors

propose the path shown in Scheme 3.1 (382). Both chloroethyne and vinyl chloride

are emitted from three soil types (coastal salt marsh, peatland, and a deciduous

forest).

Cl

40, 41

Cl2
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Cl Cl2

45-47 48, 49
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51 54-56
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BrBr
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Cl– O2

–CO2
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CH3CH2Cl

CH3CH2CH2Cl

CH3CH2CH2CH2Cl

58

10

Abiotic formation of organochlorines from catechol (382).

Scheme 3.1
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3.1.12.2 Volcanic Emissions

A study of Mt. Etna, Vulcano, Kuju, and Satsuma-Iwojima volcanoes reveals the

presence of several halogenated alkynes 59–77 (217).

3.1.13 Simple Organofluorines

Following the early reports of chlorofluorocarbons (CFCs) in volcanic and drill well

emissions (1), more recent work confirms these studies (216, 217), although the

emission rates of CFCl3 and CF2Cl2 are very small compared to the anthropogenic

sources of these compounds (383). Tetrafluoromethane occurs in natural fluorites

and granites (384, 385) and has been detected in natural gas (385). The global

emission rate from cold degassing from the Earth’s crust is negligible at 0.0001–

0.01 Gg y�1 compared to anthropogenic emissions (383), but, because it has the

very long atmospheric lifetime of 200,000 years, about half of the present CF4 is

from natural sources (384, 385). In this study, tetrafluoroethylene was also found

(384), which had been previously found in volcanic emissions (1). Further study of
fluorites, plutonites, and other rocks reveals the presence of CF4, CF2Cl2, CFCl3,

and SF4, along with CHF3 and the previously unreported CF3Cl (78) (386). Both
CFCl3 and CF2Cl2 are emitted from the Kamchatka solfataras and hydrothermal

vents (328) and other thermal springs (329). The novel CF3CF2CF2H (79) is found
in carbonaceous black shales (330).
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3.1.14 Other Simple Organochlorines

Another controversial compound is 1,1,1-trichloroethane (methyl chloroform,

CH3CCl3), which may or may not have significant natural sources (253, 286,
287). A few studies reveal emissions of CH3CCl3 from marine algae (307) and
halobacteria (312), but studies of biomass burning (283, 286, 387) and forest soil

emissions (318) do not indicate a significant natural source for CH3CCl3. The

carbonaceous black shales from Central Asia are reported to contain the novel

CCl3CCl3 (80) and CCl3CHCl2 (81) (330). The meteorites, Orgueil and Cold

Bokkeveld, have yielded the long-chain chloroalkanes, 1-chlorododecane (82), 1-
chlorotridecane (83), 1-chlorotetradecane (84), 1-chloropentadecane (85), 1-chloro-
hexadecane (86), 1-chloroheptadecane (87), and 1-chlorooctadecane (88) (388).
The closely related long-chain chloroalkanes, 1-chlorononadecane (89), 1-chloro-
icosane (90), 1-chlorohenicosane (91), 1-chlorodocosane (92), 1-chlorotricosane
(93), 1-chlorotetracosane (94), 1-chloropentacosane (95), 1-chlorohexacosane (96),
1-chloroheptacosane (97), 1-chlorooctacosane (98), and 1-chlorononacosane

(99), are found in three salt marsh plants (Suaeda vera, Sarcocornia fruticosa,
Halimione portulacoides) (389).

n-C12H25Cl n-C13H26Cl n-C14H29Cl n-C15H31Cl n-C16H33Cl n-C17H35Cl

82 83 84 85 86 87

n-C18H37Cl n-C19H39Cl n-C20H41Cl n-C21H43Cl n-C22H45Cl n-C23H47Cl

88 89 90 91 92 93

n-C24H49Cl n-C25H51CI n-C26H53Cl n-C27H55Cl n-C28H57Cl n-C29H59Cl

94 95 96 97 98 99

An examination of several marine worms (Marenzellaria viridis, Polydora
socialis, Scolelepsis squamata, Spiophanes bombyx, and Streblospio benedicti)
has tentatively identified alkyl and alkenyl halides 100–105 (390).
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3.2 Simple Functionalized Acyclic Organohalogens

Several simple functionalized natural organohalogens do not reasonably fit into

categories such as terpenes, alkaloids, or fatty acids (1) and are therefore included

here.

The prolific red seaweed Asparagopsis taxiformis has afforded eight new halo-

genated carboxylic acids 106–113 (391) in addition to several already described (1).
In some cases the double bond stereochemistry or the exact location of the halogens

has not been established. Another study of this seaweed has identified the two

heavily brominated enol esters 114 and 115, the structures of which were confirmed

by synthesis (392). These compounds, which are aldose reductase inhibitors, are

two of the most heavily halogenated natural compounds known. This brings to over

100 the number of halogenated compounds found in this alga (1). An Antarctic

collection of the red alga Delisea fimbriata yielded two new brominated acetates

116 and 117, in addition to four brominated furanones and two bromooctenones that

were previously known from this alga (393). Five Antarctic sponges (Phorbas
glaberrima, Kirkpatrickia variolosa, Artemisina apollinis, Halichondria sp., and

Leucetta antarctica) contain the known 1,1,2-tribromooct-1-en-3-one (394). The
Okinawan alga Wrangelia sp. has afforded the simple tribromoacetamide (118),
which displays potent biofilm inhibition against Rhodospirillum salexigens and

cytotoxicity towards P388 leukemia (395). An unidentified fungus on the surface

of the red algaGracillaria verrucosa has furnished the novel brominated keto esters

119 and 120 (396).
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Pinicoloform (121), which has antibiotic and cytotoxic activities, was isolated

from the fungus Resinicium pinicola (397). The edible wild milk cap (Lactarius
spp.) contains 1-chloro-5-heptadecyne (122) (398). In addition to containing the

toxic alkaloid coniine, the Yemenese plant Aloe sabaea has afforded the novel N-40-
chlorobutylbutyramide (123), which is the first report of a chlorinated compound in

the Aloeaceae family (399). Several polychlorinated acetamides (124–128) were
characterized from the cyanobacterium Microcoleus lyngbyaceus (400). The novel
fosfonochlorin (chloroacetylphosphonic acid) (129) was isolated from four fungi

(Fusarium avenaceum, Fusarium oxysporum, Fusarium tricinctum, and Talaro-
myces flavus) (401). The remarkable previously known bromoester A [2-octyl 4-

bromo-3-oxobutanoate], which is present in mammalian cerebrospinal fluid and is

involved in REM-sleep (1, 402), has been synthesized and investigated further in

comparison with synthetic analogues (403, 404).

OHO

Cl

Cl

Cl

121  (pinicoloform)

Cl

122

N
H

O

Cl

123

Cl
P(OH)2

O

O

129  (fosfonochlorin)

O
Br

O O

A

Cl

Cl
Cl

R
Cl

NHAc

Cl

R
Cl

Cl

Cl
Cl

NHAc Cl

Cl
Cl

NHAc

124  R = H
125  R = Cl
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All three chloroacetic acids (chloroacetic acid [MCA], dichloroacetic acid

[DCA], and trichloroacetic acid [TCA]) are naturally occurring (1), with TCA

being identified in the environment most frequently (reviews: (278, 405–408)).
However, these chlorinated acetic acids also have anthropogenic sources. The

major source of natural TCA appears to be the enzymatic (chloroperoxidase) or

abiotic degradation of humic and fulvic acids, which ultimately leads to chloroform

and TCA. Early studies (409) and subsequent work confirm both a biogenic and an

abiotic pathway. Model experiments with soil humic and fulvic acids, chloroper-

oxidase, chloride, and hydrogen peroxide show the formation of TCA, chloroform,

and other chlorinated compounds (317, 410–412). Other studies reveal an abiotic

source of TCA (412, 413).
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3.3 Simple Functionalized Cyclic Organohalogens

3.3.1 Cyclopentanes

The previously known cryptosporiopsinol (B) (1) is also found in the marine fungus

Coniothyrium sp. living on the sponge Ectyplasia perox (414), and its biosynthesis

has been investigated (415, 416). These results reveal that chlorination occurs early

in the sequence and a ring contraction from an isocoumarin seems to be involved.

An asymmetric synthesis of (–)-cryptosporiopsin (130), the antipode of the previ-

ously described natural product (1), has been reported (417). The known (+)-

cryptosporiopsin was found in cultures of the fungus Pezicula livida (418). The
chlorinated isonitrile MR566A (131) is a melanin synthesis inhibitor produced by

Trichoderma harzianum (419, 420). This same fungus found on the sponge

Halichondria okadai has yielded trichodenones B (132) and C (133), which show

significant cytotoxicity against P388 leukemia (421); total syntheses have estab-

lished their stereochemistry (422). Metabolite 134 was isolated from a culture of the

ascomycete A23-98 (423). The diastereomeric cyclopentenones VM 4798-1a (135)
and VM 4798-1b (136) were obtained from the fungus Dasyscyphus sp. A47-98

found growing on tree bark (424). The pentachlorinated cyclopentenone A11-99-1

(137) was isolated from cultures of the ascomycete Mollisia melaleuca and displays

inhibition of human TNF-a promoter activity and synthesis (425). The Madagascan

plant Samadera madagascariensis contains the quassinoid 2-chlorosamaderine A

(138), which has a 2-chlorocyclopentenone ring (426).
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3.3.2 Cyclitols and Benzoquinones

The halogenated natural products in this section are mainly fungal metabolites

that are cyclohexene derived via a shikimate or polyketide pathway (1). The
simple inhibitor of rat brain neutral sphingomyelinase activity, chlorogentisyl-

quinone (139), is produced by the marine fungus FOM-8108 found on beach sand

in Japan (427). The structure of the cytotoxic (+)-pericosine A (140), which was

isolated from a marine fungus (Periconia byssoides) in a sea hare (Aplysia
kurodai) (428), was revised by total synthesis (429, 430). Because of its pro-

nounced antitumor activity, the previously reported Maui acorn worm (Ptycho-
dera) (+)-bromoxone (C) (1) has been of synthetic interest (431–433; review,
434). The antipode (–)-mycorrhizin A (141) of the previously reported (+)-

mycorrhizin A was isolated from the fungi Pezicula carpinea and Pezicula livida
(418). Some “forced” brominated metabolites of mycorrhizin A, chloromycor-

rhizin A, and the related lachnumons were characterized from cultures of Lach-
num papyraceum (e.g., D) (435, 436), but these are not counted as natural

products. Chlovalicin (142) from Sporothrix sp. inhibits interleukin 6 (437,
438), and a Cytospora sp. produces cytosporin B (143) an antagonist of angioten-

sin II (439).

Several new fungal metabolites (“azaphilones”, having an affinity for nitrogen

nucleophiles) related to the well-known sclerotiorin (1) have been reported in

recent years. Studies of the fungus Talaromyces luteus have uncovered luteusins

A–E (144–148) (440–443). Luteusins A and B were originally named TL-1 and TL-

2, and the stereochemistry of C and D was later revised (443). These metabolites

have monoamine oxidase inhibitory properties. The related fungus Talaromyces
helicus has furnished helicusins A–D (149–152) (444).
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A full account and structures are reported for isochromophilones I (E) and II (F)
from Penicillium multicolor FO-2338 (445, 446). The latter study also confirms the

structure of sclerotiorin. The ACAT inhibitors isochromophilones III-VI (153–156)
are found in cultures of Penicillium multicolor FO-3216 (447) and isochromophi-

lones VII and VIII (157, 158) are produced by Penicillium sp. FO-4164 (448).
These azaphilones inhibit cholesteryl ester transfer protein (CETP), which pro-

motes the exchange and transfer of neutral lipids between plasma lipoproteins, and

is involved in atherosclerosis. Thus, CETP is a logical target for anti-atherosclerotic

drugs (449). A study of Penicillium sclerotiorum has reported 5-chloroisorotiorin

(159), which may be isochromophilone III (153) (450). Unnatural brominated

azaphilones (“forced metabolites”) are produced when bromide is added to the

cultures (451). The novel GABA-containing isochromophilone IX (160) is found in
cultures of Penicillium sp. (452).
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A new family of azaphilones, the RP-1551s (161–168), is produced by Peni-
cillium sp. SPC-21609 and they inhibit the binding of PDGF to its receptor (453).
RP-1551-7 is identical to luteusin A (144). RP-1551-1 (161) and RP-1551-6 (166)
are diastereomers and are different stereoisomers from luteusins C (146) and D

(147).
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The novel 8-O-methylsclerotiorinamine (169) was isolated from a strain of

Penicillium multicolor and is a strong antagonist of the Grb2-SH2 domain (454).
A Fusarium sp. fungus has yielded the cyclopeptide chlorofusin (170), which is a

p53-MDM2 antagonist (455). The biosynthesis of chlorofusin involves an aceto-

genic origin coupled with an aminodecanoic acid piece (456). A total synthesis

has established the absolute configuration (2657). Fluostatin E (171) is a minor

member of the fluostatin family of metabolites from Streptomyces sp. (457, 458).
The epoxide (fluostatin C) corresponding to 171 is also isolated; the authors

cannot exclude fluostatin E as an artifact arising from HCl ring opening of

fluostatin C.
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3.4 Terpenes

The first survey of natural organohalogens documented 570 halogenated terpenes

(1). The present update describes many additional new members of this important

class of marine and terrestrial natural products.

3.4.1 Monoterpenes

3.4.1.1 Acyclic Monoterpenes

A review on halogenated monoterpenes has appeared (459). The structure of the

previously known plocamenone (incorrectly named plocamenone A in (1)) from a

Plocamium red alga has been revised to G (460). A collection of Plocamium
cartilagineum from the Antarctic has yielded the new monoterpene 172 along

with two known halogenated compounds (461). The previously isolated H (now

named halomon) from Portieria hornemannii (1) has been fully characterized (462)
and synthesized from myrcene (463). Halomon has broad range activity against

human cancer cell lines and has undergone clinical evaluation. A subsequent study

of this seaweed afforded isohalomon (I), which was isolated previously but with
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undefined stereochemistry (1), and the new metabolites 173 and 174. In addition,

the stereochemistry of the known metabolites J and K was established (464).
A Portuguese collection of Plocamium cartilagineum contains the novel 175 and

176 (465); the former is the first natural halogenated dimethyloctadiene with a

(Z)-alkene.

The Spanish sea hare Aplysia punctata contains the four novel acetates 177–180,
which are perhaps biotransformation products of dietary algae compounds (466).
A study of the Antarctic red alga Pantoneura plocamioides uncovered the novel

pantoneurotriols (181, 182) and 183, in addition to establishing the stereochemistry

of the previously isolated 172 (467). A Tasmanian collection of Plocamium costa-
tum yielded the new 184 and three known halogenated monoterpenes, some of

which deter barnacle larvae settlement (468). A detailed survey of six samples of

Plocamium hamatum from the Great Barrier Reef identified 11 known halogenated

monoterpenes, the occurrence of which differed significantly between locations. In

this study the previously reported monoterpene L (1) was obtained for the first time

in pure form (469). A collection of Plocamium cartilagineum from Tasmania

uncovered two new polyhalogenated monoterpenes 185 and 186 (470).
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Three plocamenols A–C (187–189) were isolated from a Chilean collection of

Plocamium cartilagineum (471), and this seaweed also yielded prefuroplocamioid

(190) (472), 191 (473), 192, and 193 (474). The alga Plocamium corallorhiza from
Cape Town, South Africa, has afforded plocoralides A–C (194–196), which display
some cytotoxicity toward esophageal cancer cells (475). Anverene (197) was found
in an Antarctic collection of Plocamium cartilagineum (476). The Madagascar red

alga Portieria hornemannii has yielded the new monoterpenes 198–200 along with

halomon and two other known compounds (477). The knownmarine alga metabolite

M (1) is found in several fish, monk seals, hooded seals, and harp seals, presumably

as a bioaccumulative compound (478). It is also present in Norwegian predatory bird
eggs (white-tailed eagle, osprey, goshawk, golden eagle, and merlin) (479).
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Many polyhalogenated monoterpenes have potent biological activity (1). In
addition to cytotoxic activity, several compounds display insect repellent and

antifeedant activity, and selective insect cell toxicity (480). To acquire sufficient

quantities of these and other target metabolites for biological evaluation, the

laboratory cultivation of marine algae – “bioprocess engineering” – is under intense

exploration (481–483).

3.4.1.2 Alicyclic Monoterpenes

The halogenated acyclic marine monoterpenes are often considered to be the

biogenetic precursors of the alicyclic monoterpenes that are presented in this

section. Many of the preceding algae species also contain cyclic monoterpenes.

As was the case in preceding sections only newly characterized compounds are

numbered and the reader is referred to the first survey for structures of previously

isolated compounds (1).
The halomon-containing red alga Portieria hornemannii contains the new cyclic

trichloro metabolite 201 (462), and another study of this seaweed has furnished

202–205 (464). The prolific Plocamium cartilagineum from the Portuguese coast

produces epoxide 205, which is the first natural alicyclic polyhalogenated epoxy-

monoterpene to be isolated (484). The absolute configuration of the previously

known N (1) was determined (469). A Guam collection of Portieria hornemannii
contains the novel apakaochtodenes A (206) and B (207) (485), which are effective
feeding deterrents toward herbivorous reef fish (486). The Japanese red seaweed

Carpopeltis crispata contains the new ochtodenes 208–212 (487). Several known
antifeedant alicyclic monoterpenes are found in the sea hare Aplysia punctata that

are apparently diet derived and used for chemical defense (488). An alicyclic

polyhalogenated monoterpene (as yet unidentified) has been detected in fish, seal,

and birds (478, 479, 489). The known monoterpenes mertensene and violacene, and

some synthetic derivatives, found in Plocamium cartilagineum have insecticidal

activity (490).
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Two different Okinawan collections of Portieria hornemanni have yielded the

novel cyclohexadienones 213–217 (491). The previously known Portieria horne-
manni metabolite O has been characterized from the cyanobacterium Lyngbya
majuscula (492). Several cyclic monoterpene ethers are seaweed metabolites,

presumably derived by cyclization of a proximate hydroxyl group (i.e., “neighbor-

ing group participation”). For example, the Antarctic Pantoneura plocamioides
has yielded pantofuranoids A–F (218–223) (493) and pantoisofuranoids A–C

(224–226) (494). The Antarctic Plocamium cartilagineum contains furoploca-

mioids A–C (227–229), which possess the unusual bromochlorovinyl moiety

(495), and also 230a and 230b (473).

Cl

Cl Cl

201

Br

Cl

Br Br

203

Cl Cl

202

Br
Cl

Br Cl

204

Cl

Br

O

Cl
Cl

Br Cl

Cl

Br Cl

Cl
Cl

206 (apakaochtodene A)

207 (apakaochtodene B) 

205

ClBr

ClBr

Cl

Br

Cl Br

Cl

208

Br

Br Cl

OAc

209

Br

OAc
Cl

Br

Br

OAc
Cl

Br

210 211

Br

OAc
Cl

Cl

212

N

36 3 Occurrence



The pyran metabolites, pantopyranoids A–C (231–233), have been isolated from
the Antarctic alga Pantoneura plocamioides (494). This seaweed and Plocamium
cartilagineum contain plocamiopyranoid (234) and 235, and pantoneurines A

(236) and B (237) (496). The Pakistani herb Mentha longifolia has yielded the

novel chlorinated menthone longifone 238 (497), one of the few known terrestrial

halogenated monoterpenes.
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3.4.2 Sesquiterpenes

In addition to the myriad natural marine halogenated sesquiterpenes (vide infra),

the terrestrial plant kingdom is also a major source of halogenated (chlorinated)

sesquiterpenes, most of which possess the guaianolide skeleton (498).

3.4.2.1 Terrestrial Sesquiterpene Lactones

Although the first survey listed 45 natural chlorinated sesquiterpene lactones,

several such compounds were omitted in that coverage (1) and are described

here. The novel sesquiterpene lactone chlorochrymorin (239) was isolated from

Chrysanthemum morfolium (499), and the chlorohydrin graminichlorin (240) is

found in Liatris graminifolia (500). The antibacterial AA-57 (241), which is related
to pentalenolactone, is produced by a Streptomyces sp. (501). The plant Eupatorium
chinense var. simplicifolium has yielded eupachifolin D (242) (502) (side-chain
double bond stereochemistry revised (518)), and the new guaianolide andalucin

(243) was characterized from Artemisia lanata (503). The previously known

chlorohyssopifolins (1) have been studied for cytostatic activity, and the presence

of one and even two chlorine atoms amplifies this activity (504).
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It should be noted that at least some of these chlorohydrin sesquiterpenes could

be artifacts (505) formed by epoxide ring opening during isolation. It is essential

that acid and acid-forming reagents (e.g., CHCl3) be avoided during isolation of

these compounds when epoxides might also be present, and that investigators be

cognizant of this potential problem. Unless otherwise indicated, the following new

compounds were isolated in the absence of chlorinated solvents.

HO

O

HO

H

O

O

Cl

HO

HO

H

O

Cl

H

O

O

Cl

HO

H

O
OH

O
OH

244 (epicebellin J) 245 (epicentaurepensin) 

3.4 Terpenes 39



The new epicebellin J (244) was isolated from Centaurea glatifolia along with

several known guaianolides (506). Centaurea conifera has yielded the C-17 epimer

of the previously known chlorohyssopifolin A (centaurepensin) (245), and the

previously described chlorohyssopifolin A and chlorojanerin (507). The high alti-

tude Argentinean plant Stevia sanguinea contains the new 246 and 247 (508).
Another study of Centaurea scoparia has identified the new 248 and 249 (509).
The eastern India medicinal plant Enhydra fluctuans has yielded two new chlori-

nated melampolides 250 and 251 (510). The South American plant Bejaranoa
balansae contains the novel furanoheliangolides 252–254, and Bejaranoa semi-
striata has afforded 255 (511).

The plant Achillea clusiana from the mountains of Bulgaria contains the new 2-

epi-chloroklotzchin (256), which is the first report of a halogenated sesquiterpene

lactone from Achillea genus (512). Chloroform was used to process the plant. The

Egyptian medicinal plant Ambrosia maritima, which is still used to treat renal colic
and other aliments, has afforded 11b-hydroxy-13-chloro-11,13-dihydrohymenin

(257) (513). Eupaglehnins E (258) and F (259) are novel germacranolides isolated
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from the Japanese plant Eupatorium glehni (514, 515). In addition to containing the
new guaianolide 260, a Greece collection of Achillea ligustica has uncovered the

seco-tanapartholide 261 (516). The first chlorinated sesquiterpene lactone glucoside
to be isolated is 262, 13-chloro-3-O-b-D-glucopyranosylsolstitialin, from Leonto-
don palisae (517).
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The Chinese Eupatorium chinense has afforded ten new sesquiterpenoids, three

of which are chlorinated, eupachinilides C (263), E (264), and F (265) (518). The
Chinese medicinal plant Eupatorium lindleyanum contains the chlorinated guaianes

eupalinilides A (266), D (267), E (268), and H (269), amongst other non-chlori-

nated eupalinilides and nine known sesquiterpenoids (519). The Oregon coastal

perennial plant Artemisia suksdorfii contains four novel chlorinated sesquiterpene

lactones 270–273 (520).
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The Balkan Peninsula plant Achillea depressa contains the previously dis-

cussed 260 and its novel hydroxy derivative 274 (521), which is apparently a

diastereomer of the known bibsanin (1). Centaurea acaulis from Algeria has

afforded 14-chloro-10b-hydroxy-10(14)-dihydrozaluzanin D (275) (522). The

widely distributed medicinal herbaceous perennial plant Cynara scolymus con-
tains the new cynarinin B (276) as one of nine related sesquiterpenoids (523).
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Examination of the Montenegro Achillea clavennae reveals the presence of three
new chlorine-containing guaianolides 277–279 in addition to several known ana-

logues (524). The first investigation of the Chinese medicinal plant Vernonia
chinensis has uncovered the new chlorinated sesquiterpene lactones vernchinilides

A (280), B (281), C (282) and E (283) (525). Vernchinilides B and E exhibit potent

cytotoxic activity against the P-388 and A-549 cell lines. The structurally simi-

lar vernolide C (284) was found in the Cambodian traditional medicinal plant

Vernonia cinera (fever, colic, malaria) (526). Indeed, vernolide C could be identi-

cal with vernchinilide A.
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3.4.2.2 Indanone Sesquiterpenes

A review on the isolation, chemistry, and biochemistry of the bracken fern (Pte-
ridium aquilinum) carcinogen ptaquiloside (P) has been published (527). This fern
and others contain the pterosins that were summarized previously (1). No new

examples were reported in the interim.

3.4.2.3 Other Terrestrial Sesquiterpenes

The toxic plant Illicium tashiroi is the source of many novel sesquiterpenes and one

new chlorine derivative, 12-chloroillifunone C (285) (528). A subsequent investiga-

tion of this plant revealed 12-chloroillicinone E (286) and (2R)-12-chloro-2,3-dihy-
droillicinone E (287) (529). The latter metabolite increases choline acetyltransferase

activity and thus may find use in the treatment of Alzheimer’s disease. The common

Pakistani weedPluchea arguta has yielded 3,4-di-epi-30-chloro-20-hydroxyarguticinin
(288) (530), which is a diastereomer of a compound previously reported in this plant

(1), andPluchea carolonesis fromHaiti contains the eudesmane 289 (531). Five novel
chlorinated bisabolanes 290–294 were characterized from the Himalayan plant Cre-
manthodium discoideum, the genus of which is used as a Tibetan traditional herbal

medicine for the treatment of fever, pain, inflammation, and other ailments. Com-

pound 290 shows antibacterial activity againstBacillus acidilatici andBacillus subtilis
(532). The related bisabolane 295was isolated from the roots of Ligularia cymbulifera
(533).Aswith the previous studies in this section, no chloroform orHClwas employed

in the isolation process, which might otherwise convert the corresponding epoxides to

these chlorohydrins. The fungusPhomopsis sp., whichwas found growing on the plant
Adenocarpus foliolosus, produces the sesquiterpene acid 296 (534).
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Fig. 3.2 Laurencia subopposita, an example of the widespread red alga genus Laurencia (Photo:

W. Fenical)
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3.4.2.4 Marine Sesquiterpenes

The first survey covered more than 200 halogenated marine sesquiterpenes (1), and
these extraordinarily structurally diverse natural products continue to be discovered

from marine organisms. The red algal genus Laurencia (Rhodomelaceae,
Ceramiales) is a large genus comprising at least 140 species distributed throughout

the world’s oceans, but mainly in warm waters. Laurencia is a treasure trove of

halogenated (i.e., brominated) metabolites, and the morphology of this genus is of

great interest (Fig. 3.2) (535–538).

Sesquiterpene skeletons from Laurencia spp. (553).

aristolane aromadendrane bisabolane brasilenane

cadinane chamigrane cuparane eudesmane

germacrane guaiane guimarane humulane

maaliane perforane poitane oppositane

Scheme 3.2
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The diversity of ring systems found in Laurencia is shown in Scheme 3.2 (553),
although the present organization of marine sesquiterpenes does not follow these

categories, but rather continues the previous one (1).

Monocyclic and Other Simple Sesquiterpenes

The new red algal species Laurencia mariannensis from the Great Barrier Reef

provides the novel sesquiterpene 297, along with the known pacifenol and deoxy-

prepacifenol, which are now fully characterized by NMR for the first time (539).
The Philippine Laurencia majuscula has furnished 13 novel halogenated sesqui-

terpenes 298–310, of which the major components are the majapolenes A (298,
299) (two diastereomers), which are also found in Laurencia caraibica (540). Most

of these compounds occur as inseparable diastereomers. A collection of Laurencia
majuscula from the South China Sea has yielded the cedrene-type sesquiterpene

majusin (311) (541). A new sesquiterpene dichloroimine, stylotellane A (312), was
isolated from the sponge Stylotella aurantium (Fig. 3.3) (542).

Feeding experiments with carbon-14 reagents revealed the incorporation of both

cyanide and thiocyanate into 312. Three new dichloroimines were isolated from the

sponge Axinyssa sp., axinyssimides A–C (313–315), and possess strong larval settle-
ment inhibitory activity against the infamous barnacle Balanus amphitrite (543). The
Australian sponge Ulosa spongia has furnished the new carbonimide dichlorides

ulosins A (316) and B (317) (544), and 316 was isolated independently from the

sponge Stylotella aurantium along with the new 318 (545). This sponge has also

yielded the novel stylotellane D (319) (546). Biosynthetic labeling studies have been
performed with these dichloroimine sesquiterpenes (542, 547, 548).

Fig. 3.3 Stylotella aurantium, a sponge that produces the dichloroimine stylotellane A (312)
(Photo: A. Flowers)
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Laurencia seaweeds continue to be a rich source of brominated sesquiterpenes.

The Okinawan Laurencia luzonensis contains the new isopalisol (320), luzonensol
(321), luzonensol acetate (322), luzonensin (323), and triene bromohydrin 324
(549). A collection of Laurencia obtusa from Turkey has furnished the b-snyderol
analogues 325 and 326 and ketone 327 (550), whereas Laurencia scoparia from

Brazil contains the novel b-bisabolenes 328–330, the first b-bisabolenes from the

genus Laurencia (551). Bromocyclococanol (331) from Laurencia obtusa in Cuba,

has a novel fused cyclopropane-cyclopentane ring system (552). The authors

propose a biogenesis involving an interesting cyclopropyl carbinyl cation interme-

diate (332).

317 (ulosin B)  

N

OH OH

Cl

Cl

Cl

Cl

N

Cl

Cl

319  (stylotellane D)

Br

OH

Br

RO
Br

Br

HO
Br

320 (isopalisol) 321 R = H (luzonensol)  
322 R = Ac  (luzonensol acetate)  

323 (luzonensin)  

324

Br

Br

OH

325

Br

Br

OH

326

Br

O

OH

327

Cl

Br

OH

OH
328

Cl

Br

OH

329

OH

Cl

Br

OH
OH

330

Br

OH

331 (bromocyclococanol)  

Br

332

3.4 Terpenes 49



Sea hares and nudibranchs feed on seaweeds to acquire their chemicals for

defense. The common sea hare Aplysia dactylomela from Spain contains puerti-

tol-B acetate (333) (554), whereas this animal collected off the coast of South

Africa affords the new algoane (334), 1-deacetoxyalgoane (335), 1-deacetoxy-8-
deoxyalgoane (336), and ibhayinol (337) (555, 556). Investigation of this sea hare

from La Palma has uncovered the new 338 along with two other halogenated

compounds shown in section “Eudesmane and Other Types” (557).

An Okinawan collection of Laurencia luzonensis has yielded five new sesqui-

terpenes, luzonenone (339), luzofuran (340), 3,4-epoxypalisadin B (341), 1,2-

dehydro-3,4-epoxypalisadin B (342), and 15-hydroxypalisadin A (343 (558). In
addition, the relative stereochemistry of luzonensol (321) (vide supra) (549) was
assigned by conversion to the known palisadin B (P) (1). The novel fused bisabo-

lene aldingenins A (344), B (345), C (346), and D (347) were isolated from

Laurencia aldingensis (559, 560). The interesting chlorotriol 348 was found in a

Turkish Laurencia obtusa (561).
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Chamigrene and Related Types

The halogenated spiro-chamigrene, and related metabolites represent a huge class

of marine natural products, mainly from Laurencia seaweeds. The initial survey

documented 85 examples (1).
Many of these chamigrenes are found in sea hares, presumably from their diet of

algae, and the new 10-bromo-b-chamigren-4-one (349) was isolated from an

Aplysia sp. (562). The Hawaiian red alga Laurencia cartilaginea has yielded the

new ma’ilione (350) and allo-isoobtusol (351) (563). The latter is a diastereomer of

isoobtusol. However, this assignment has been questioned and allo-isoobtusol
should be reassigned as Q and renamed as cartilagineol (564), a correction that

has now been confirmed (565). An Australian collection of Laurencia rigida
contains the new (–)-10a-bromo-9b-hydroxy-a-chamigrene (352), rigidol (353),
and (+)-(10S)-10-bromo-b-chamigrene (354) (566), for which the latter metabolite

was subjected to detailed NMR analysis (567). It should be noted that extensive

NMR studies have been performed on several known halogenated chamigrenes

(e.g., prepacifenol epoxide, johnstonol, pacifenediol, pacifidiene, pacifenol, etc.)

(568–570). Furthermore, dynamic NMR conformational analysis studies have

been described with the polyhalogenated a-chamigrenes (571, 572). Laurencia
claviformis, which is endemic to Easter Island, has afforded the new claviol (355)
in addition to a suite of known halogenated chamigrenes (573). The Oahu red

seaweed Laurencia nidifica contains the new 356 and 357, along with ten known
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halogenated chamigranes (574). Tribrominated ma’iliohydrin (358) was isolated

from a Philippine Laurencia sp. (575). Mailione (359) and isorigidol (365), which
are found in Laurencia scoparia, were subjected to X-ray crystallography (576). It
is not clear if 350 = 359 from the data provided (563, 576). Laurencia mariannensis
contains 9-deoxyelatol (360) (2658).

Whereas Okinawan Laurencia cartilaginea and Laurencia concreta yielded no

halogenated metabolites, Laurencia majuscula from these waters afforded

(6R,9R,10S)-10-bromo-9-hydroxychamigra-2,7(14)-diene (361) (577), which

Br

O
349 (10-bromo-b-chamigren-4-one) 

O

HO

Br

HO

Br

Br

Cl

350 (ma'ilione) 351 (allo-isoobtusol) 

HO

Br

Cl

Q  (cartilagineol = "allo-isoobtusol") 

Br

HO

Br

Br

Br

HO

OH

352

354

353 (rigidol)  

Cl
Br

Cl
Br

OHBr

O

O

Br

356

357

Br

HO

OH

Br

Br

358 (ma'iliohydrin)  359 (mailione) 

Br

O

OH

355 (claviol)  

O

Br
HO

Cl

Br

360 (9-deoxyelatol)

52 3 Occurrence



appears to be an epimer of the known deschloroelatol (1). A Malaysian Laurencia
pannosa contains the new pannosanol (362) and pannosane (363) (578). The new

5-acetoxy-2,10-dibromo-3-chloro-7,8-epoxy-a-chamigrene (364) is found in both

Laurencia filiformis and the sea hare Aplysia parvula from Tasmania (579). The
NMR spectra of the known 2,10-dibromo-3-chloro-7-chamigrene are assigned for

the first time. A Brazilian collection of Laurencia scoparia has yielded three new

halogenated chamigrenes, isorigidol (365), (+)-3-(Z)-bromomethylidene-10b-
bromo-b-chamigrene (366), and (–)-3-(E)-bromomethylidene-10b-bromo-b-cha-
migrene (367) (580). A South China Sea collection of Laurencia majuscula
afforded the simple 8-bromo-chamigren-1-en (368) (581). Oxachamigrene (369)
and 5-acetoxyoxachamigrene (370) were found in Laurencia obtusa from Cuba,

metabolites that are proposed to arise from a g-bisabolene (582). The sea hare

Aplysia dactylomela contains the novel and highly strained aplydactone (371)
(583). The authors propose a biosynthesis of 371 via a formal (2 + 2) cycloaddition
from 349, which is also found in this sea hare (562). Sea hares from La Palma Island

have furnished the new compounds 372–374 (584). It should be noted that several

of these chamigrenes have both cytotoxic and antibacterial activity (584–586). The
chemical diversity of halogenated chamigrenes within four Japanese Laurencia
species has been compared and contrasted (587).
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Eudesmane and Other Types

Nearly 40 halogenated eudesmanes and related halogenated sesquiterpenes were

documented in the first survey (1), and terrestrial eudesmanes of all types are well

represented with some 100 known examples (588).
The sea hare Aplysia dactylomela contains lankalapuols A (375) and B (376),

which interestingly have opposite absolute configurations (589). The tropical green
alga Neomeris annulata has yielded the three novel brominated sesquiterpenes

377–379, which are effective feeding deterrents (590), and an Okinawan collection
of Laurencia intricata contains itomanol (380), which is a diastereomer of lanka-

lapuol A (375) (591). The Elba Island Laurencia microcladia has afforded the novel
6,8-cycloeudesmanes calenzanol (381) (553, 592) and 382 (592, 593), which

feature the new sesquiterpene skeleton, calenzanane (553, 592). A study of Lau-
rencia obtusa from the Aegean Sea, Greece, has revealed the presence of four new

perforatone analogs 383–386 (594), and, from a different location in the Aegean

Sea, the new perforenol B (387) and 388 (595). The sea hare Aplysia punctata
contains the new perforatol (389) (596).
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An examination of the red seaweed Laurencia obtusa from Symi Island in

the Aegean Sea has uncovered the brasilanes 390–392 (597). The soft coral

Paralemnalia thyrsoides from Taiwan has afforded the chlorinated norsesquiter-

penoid paralemnolin A (393) (598), and the Australian sponge Euryspongia sp.

provides the sesquiterpene quinone (E)-chlorodeoxyspongiaquinone (394) and

related hydroquinone (E)-chlorodeoxyspongiaquinol (395) (599). Several new
sesquiterpene chlorohydrins and carbonimidic dichlorides (600) have been

found in the sponge Stylotella aurantium (Fig. 3.3), 396–398 (545, 546), and from
the nudibranch Reticulidia fungia (Fig. 3.4), reticulidins A (399) and B (400)
(601). A biosynthetic pathway to these sesquiterpene dichloroimines involving

farnesyl isocyanide and isothiocyanate is supported by labeling experiments

(548). The sea hare Aplysia dactylomela contains caespitenone (401) and 8-

acetylcaespitol (402) (554), and Aplysia punctata has yielded punctatol (403)
(596). The former mollusc also contains deschlorobromocaespitol (404) and

furocaespitanelactol (405) (557).
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Fig. 3.4 Reticulidia fungia, a nudibranch collected in Manza, Okinawa, that contains reticuli-

dins A and B (399 and 400) (Photo: J. Tanaka)
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Cuparene, Laurene, and Other Aromatic Types

Some 50 marine aromatic halogenated sesquiterpenes were documented in the first

survey (1). In the interim a number of new examples have been reported, mainly

from Laurencia red algae.

A study of Laurencia tristicha from the South China Sea has discovered the

hydroxylated aplysins, 10-hydroxyepiaplysin (406) and 10-hydroxyaplysin (407)
(602), and 4-bromo-1,1-epoxylaur-11-ene (408), which was previously synthe-

sized but not found naturally (603). Laurencia microcladia from the North Aegean

Sea has yielded the new 409 and 410, which exhibit significant cytotoxicity

against two lung cancer cell lines (604). This red alga also contains the dimeric

cyclolaurane 411 (595). An East China Sea collection of Laurencia okamurai has
led to the isolation of the novel laureperoxide (412) and 10-bromoisoaplysin (413)
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(605), and “3b-hydroxyaplysin” and “laurokamurene A” (606), which would

appear to be identical to 10-hydroxyaplysin (407) and 410, respectively. Speci-
mens of the sea hare Aplysia kurodai from the Sea of Japan have afforded the new

laurinterol acetate (414) (607). It should be noted that syntheses of these haloge-

nated cuparane and asplysin sesquiterpenes are known (608, 609). The previously
known laurinterol, isolaurinterol, aplysinal, and aplysin (1) show pronounced

cytotoxicity against the A549, SK-OV-3, SK-MEL-2, XF498, and HT15 cell

lines (610).

The green alga Cymopolia barbata from Cuba contains the new prenylated

hydroquinones 30-methoxy-7-hydroxycymopol (415), 3-hydroxycymopolone

(416), 3,7-dihydroxycymopolone (417), 7-hydroxycymopochromanone (418), 7-
hydroxycymopochromenol (419), 6-hydroxycymopochromenol (420) (611), and a

Jamaican collection of this alga yielded 7-hydroxycymopol (421) (612). The latter
compound was previously described as a synthetic intermediate (613). The struc-

turally similar known brominated cacoxanthenes from the sponge Cacospongia are
found in the blubber of monk seal, in commercial fish samples and mussels (489).
The sponge Spirastrella hartmani fromMartinique has yielded the two halogenated

heliananes 422 and 423 (614). The New Zealand sponge Hamigera tarangaensis
produces hamigeran A (424), hamigeran B (425), 4-bromohamigeran B (426),
hamigeran C (427), hamigeran D (428), and hamigeran E (429) (615). The structure
of hamigeran E was revised from that reported earlier (616), and the structures of

424, 425, and 426 have been confirmed by total synthesis (617, 618).
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The Hawaiian sponge Hyrtios sp. from Oahu has furnished 21-chloropuupehe-

nol (430), while the same sponge from Maui contains molokinenone (431) (619).
The absolute configuration of these drimane-phenolic metabolites has been

assigned as shown based on that of puupehenone (620). The South Georgia Island

soft coral Alcyonium paessleri produces several novel illudalane sesquiterpenoids,
including the chlorinated alcyopterosins A (432), D (433), K (434), and L (435)
(621).
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3.4.3 Diterpenes

3.4.3.1 Terrestrial Diterpenes

As was illustrated in the first survey, all known halogenated terrestrial diterpenes

are chlorohydrins (1), and that continues to be mainly the case. Obviously, one must

be alert to the possibility of artifact formation from ring opening of the

corresponding epoxide during isolation. Many nonhalogenated terrestrial diterpe-

noids also continue to be isolated (622).
The Brazilian plant Vellozia bicolor contains the isopimarane diterpene 12-

chloroillifunone C (436). The corresponding epoxide, which is also found in this

plant, is not converted to 436 under the isolation conditions (623). Teuracemin

(437), a novel neo-clerodane diterpene, was isolated from Teucrium racemosum
and is the 7-hydroxy derivative of the known tafricanin A (624). Examination of

fresh plant material revealed the presence of 437. The new neo-clerodane ajugarin-I
chlorohydrin (438) has been characterized from the Indian plant Ajuga parviflora
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(625). The wood resin of Excoecaria agallocha has furnished several labdane-type

diterpenes including the chlorinated excoercarin F (439), which is the first example

of a chlorine-containing metabolite from this “shore plant” (626). Another investi-
gation of this mangrove plant from India revealed the labdanes agallochins A (440),
B (441), and C (442) in the roots (627). Another mangrove plant, Bruguiera
gymnorrhiza, from China contains the ent-kaurane 443 (628).
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The novel chloroenone quassinoid eurycolactone B (444) was characterized from
the roots of Eurycoma longifolia from Malaysia (629). This is the first halogenated
quassinoid discovered in a plant. A series of norditerpene dilactones, including the

chlorinated rakanmakilactones E (445), G (446), and 447, were isolated from the

leaves of Podocarpus macrophyllus from Japan (630, 631). These represent the first
halogenated norditerpene dilactones found in the Podocarpaceae.
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3.4.3.2 Marine Diterpenes

In contrast to the small number of known halogenated (chlorinated) terrestrial

diterpenes (vide supra), the number of marine diterpenes is very large, and more

than 130 were documented in the initial survey (1).

Diterpenes of Aplysia

Sea hares of genus Aplysia continue to be the source of new halogenated and

nonhalogenated diterpenes, and a review of diterpenes from marine opisthobranch

molluscs has appeared (632). The Tenerife Aplysia dactylomela contains isopin-

natol B (448) and dactylopyranoid (449) (554). Aplysia punctata from Sardinia

has afforded the novel neopargueroldione (450), which may arise from the

previously known isoparguerol, and deacetylparguerol (451) (596). Most prob-

ably all of these brominated diterpenes originate from the Laurencia and other

algae diet of the sea hare.
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Diterpenes of Laurencia

Laurencia red seaweeds produce a large and varied assortment of halogenated

(mainly brominated) diterpenes (1), and this trend continues with the present

survey. Five new parguerenes, 452–456, are found in the Southern Australian

Laurencia filiformis, along with a plausible biogenic precursor R (633). A collec-

tion of Laurencia nipponica from Russian waters in the Sea of Japan has identified

the new pargueranes 457 and 458, where the former metabolite appears to be a

diastereomer of 455 (634). The new Laurencia japonensis species contains anhy-
droaplysiadiol (459) along with the known aplysiadiol and a halogenated chami-

grene (635). A collection of Laurencia paniculata from the Arabian Gulf furnished

the ent-labdane paniculatol (460), which contains an unusual tetrahydropyran ring

and is closely related to the known ent-isoconcinndiol isolated from Aplysia
kurodai (636). The closely related ent-labdanes 461 and 462 were found in an

Okinawan Laurencia sp. collection, and are the first labdane bromoditerpenoids to

be functionalized at C-1 (637). Two collections of Laurencia sp. in different

locations in Japanese waters have yielded 463, closely related to paniculatol

(460) (638).
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The Okinawan Laurencia luzonensis contains 3-bromobarekoxide (464), a

novel seven-membered ring diterpene (549, 639). Equally unprecedented are the

labdanes 465 and 466 from Laurencia obtusa gathered in the Ionean Sea (640).
This source of Laurencia obtusa has also yielded the new prevezols A (467) and B

(468), which are marginally related to the known obtusadiol and rogioldiol A (vide

infra) (641). This red alga also contains the new prevezols C-E (469–471) and
neorogioldiol B (472) (642). Prevezol B (468) was revised (642) from the original

assignment (641).
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The neoirieane diterpene neoirietetraol (473) is found in the new Laurencia
yonaguniensis species (643), and the novel luzodiol (474) was isolated from

Laurencia luzonensis found in Okinawa (558). A study of Laurencia microcladia
from the coast of Tuscany has yielded rogioldiol A (475), rogiolal (476), isorogiolal
477 (644), rogioldiols B (478), and C (479) (645). Further studies of this seaweed
identified neorogioldiol (480), rogioldiol D (481), and 482 (646).
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Sphaerococcus and Other Red Algae Diterpenes

The Mediterranean red alga Sphaerococcus coronopifolius, which was seen to be a

rich source of novel bromine-containing diterpenes in the first survey (1), has
furnished some new examples. A Naples collection of this seaweed has afforded

norsphaerol (483), and sphaerolabdadiene-3,14-diol (484) and bromosphaerone

(485) were characterized from a Morocco version of this alga (648). The novel

and unprecedented iodinated diterpenes tasihalides A (486) and B (487) were

isolated from a Symploca cyanobacterium associated with an unidentified red

alga (649). The Fijian red alga Callophycus serratus produces the nine novel

bromophycolides A–I (488–496), which contain a diterpene-benzoate skeleton

(650, 651).
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Sponge Diterpenes

Relatively few sponge diterpenes are known and these are typified by the isocyano

kalihinanes (600, 652), such as the kalihinols that were presented in the first survey
(1, 653, 654). The absolute configuration of kalihinol A has been determined (655)
and it is correct as shown in the first survey (1). Sponges of genus Acanthella from

the Pacific Ocean are the producers of the kalihinanes. Investigations of Acanthella
cavernosa in Pacific waters south of Tokyo (Yakushima Island) have uncovered the

new kalihinenes X (497), Y (498), and Z (499) (656), and a total synthesis of

kalihinene X (497) has established its relative and absolute configuration (657).
A collection from a slightly different location revealed 10b-formamidokalihinol-A

(500), 10b-formamidokalihinol-E (501), 10b-formamido-5-isocyanatokalihinol-A

(502), and 10b-formamido-5b-isothiocyanatokalihinol-A (503) (658). The Yaku-

shima sample also yielded kalihipyran B (504) (659). All of these metabolites

display potent antifouling activity against larvae of the barnacle Balanus amphi-
trite, suggesting a natural function for these compounds in the sponge. An Okina-

wan collection of Acanthella sp. contains the new D9-kalihinol Y (505) and 10-

epikalihinol I (506) (660). This paper also describes the powerful antimalarial

activity of kalihinol A. The Philippines sponge Phakellia pulcherrima, which is
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in the same family as Acanthella cavernosa, contains several known kalihinols,

including 505 (661).
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The first report of isocyanide diterpenes occurring in nudibranchs (sea slugs) has

appeared, which describes the known kalihinol A and kalihinol E, along with

nonchlorinated metabolites, in Phyllidiella pustulosa from the South China Sea

(662). This supports the notion that nudibranchs feed on sponges and thereby

acquire metabolites for their own purposes, giving new meaning to the term “lazy

slugs”. A nudibranch from South Africa, Chromodoris hamiltoni, contains the

novel hamiltonins A–D (507–510) (663). The Mediterranean dorid nudibranch

Doris verrucosa has afforded several novel diterpene isocopalane verrucosins,

including the chlorinated verrucosins-7 (511) and -9 (512) (664).
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Gorgonian Diterpenes

Gorgonians produce the largest complement of chlorine-containing marine meta-

bolites – more than 50 were illustrated in the first survey (1) – and many more

nonchlorinated gorgonian diterpenes are known (665–667). There is evidence to

indicate that these gorgonian diterpenoids are feeding deterrents to reef fishes.

Gorgonian corals can achieve densities of up to 20 colonies per square meter on

the reef (668, 669).
The stereochemistry of the diterpenoid praelolide, which was originally isolated

from Plexaureides praelonga from the South China Sea (1) and subsequently from

the Indian Ocean gorgonian Gorgonella umbraculum (670) and the Taiwanese

Junceella fragilis and Junceella juncea (671), has now been confirmed as S (670,
671). Likewise the structure of junceellin, which was incorrect in the first survey

(1), is corrected as T (670, 671). The stereochemistry of the previously known

solenolides C and D are proposed to be revised as U and V (672). Several new
chlorinated briareins have been identified from the common Caribbean gorgonian

Briareum asbestinum, including briareins B (513), C (514), D (515), E (516), F
(517), G (518), and J (519) (673). Although briarein B was isolated some years

previously, its structure was not positively established at that time (674, 675).
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A Bahamian collection of Briareum asbestinum (Fig. 3.5) has provided the

new 11-hydroxybrianthein V (520), 11-hydroxybrianthein U (521), 11-hydroxy-
brianthein Y (522), 3,4-dihydro-11-hydroxybrianthein V (523), and 3,4-dihydro-
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11-hydroxybrianthein U (524) (676), whereas a study of Briareum excavatum from

Taiwan yielded a series of excavatolides, one of which is chlorinated, excavatolide

A (525) (677). This latter gorgonian collection also contains seven chlorinated

briaexcavatolides E (526), F (527), G (528), H (529), I (530), J (531) (678), and
M (532) (679).

Fig. 3.5 Briareum asbestinum, a Caribbean gorgonian soft coral that produces numerous chlori-

nated diterpenes such as the briareins (513–519) and briantheins (520–524) (Photo: W. Fenical)
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The Micronesian soft coral Briareum stechei (Fig. 3.6) has furnished a series

of milolides, including 16-chloromilolide B (533), milolide C (534), 4-hydroxymi-

lolide C (535), milolide D (536), milolide E (537) (680), and milolide L (538) (681).
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The stereochemistry of solenolide C (U) is also revised in this study (680). The new
briviolides B (539) and C (540) were characterized from a Japanese collection of

Briareum sp. (682). A study of octocorals from Pohnpei and Ant atoll in Micronesia

led to the novel nui-inoalides A–D (541–544) (683). The absolute configuration of

juncin E (W) was also established by these researchers.
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Fig. 3.6 Briareum stechei, a Western Pacific octocoral that produces the milolides (533–538)
(Photo: F. J. Schmitz)
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Another prolific gorgonian is Junceella, and these animals contributed 15

chlorinated briarane diterpenoids to the first survey. A series of juncins A–F from

the Red Sea Junceella juncea were presented earlier, although C and F were not
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precisely defined (1). The Indian Ocean Junceella juncea contains the new juncins

G (545) and H (546), along with the antipodes of the previously known gemmaco-

lides A (547) and B (548) (684). The same research group isolated chlorinated

juncins L (549) and M (550) from this collection of Junceella juncea (685).
Chemical extraction of this octocoral living in Taiwan waters furnished juncin N

(551) (686), and the chlorine-containing juncins O (552) and P (553) were char-

acterized from a South China Sea Junceella juncea (687), which also afforded

juncins R (554), S (555), and ZI (556), along with seven new non-chlorinated

briaranes (688). The Taiwanese Junceella juncea is also the source of juncenolides

A (557) (689), F (558), and G (559) (690).
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Junceella fragilis from Indonesia contains the novel antipode (+)-junceelloide A

(560) of the known (–)-junceelloide A (drawn incorrectly in (1)) (691). A collection

of Junceella fragilis from the South China Sea yielded junceellonoid A (561) (692)
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and junceellonoids C–E (562–564) (693), and a Papuan sample of this coral led to

(–)-2-deacetyljunceellin (565) and (–)-3-deacetyljunceellin (566) (absolute config-
uration shown) (694).
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The common Caribbean octocoral Erythropodium caribaeorum has yielded

several additional chlorinated diterpenes since the first survey (1).
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The structure of the novel erythrolide K (567), which was isolated from Erythro-
podium caribaeorum (Fig. 3.7) collected in Tobago, was confirmed by synthesis

from the known erythrolide A (695). A Jamaican source of this soft coral has

afforded the new 568 and 569 in addition to six known erythrolides (696). These
two new compounds are acetyl derivatives of erythrolides E and I. The Tobagoan

Erythropodium caribaeorum also contains the three new chlorinated erythrolides L

(570), P (571), and Q (572) (697). A survey of Erythropodium caribaeorum from

Dominica has revealed the new erythrolides R (573), T (574), U (575), V (576), and
aquariolides B (577) and C (578) (698). Aquariolide A (579) was earlier isolated
from cultured (aquarium grown) Erythropodium caribaeorum (699). On the basis of
these studies, the authors suggest a biogenesis of: briaranes to erythranes (i.e.,

erythrolides) then to aquarianes (i.e., aquariolides), involving sequential di-p-meth-

ane and vinyl cyclopropane rearrangements (699), the first transformation of which

was mentioned previously (1).

Fig. 3.7 Erythropodium caribaeorum, a common Caribbean octocoral that produces chlorinated

diterpenes such as the erythrolides and aquariolides (567–574) (Photo: W. Fenical)
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The Indian Ocean gorgonian Gorgonella umbraculum has yielded the new

umbraculolides C (580) and D (581) (700). The Okinawan sea whip Ellisella sp.

(Fig. 3.8) furnished the four new briaranes 582–585, and the sea pen Pteroeides sp.
(Fig. 3.9) was likewise found to contain the novel 586 and 587 (701). Renillins A
(588) and B (589) were isolated from the sea pansy Renilla reniformis (702). These

O

AcO

H

O

Cl
O

H

RO
HO AcO

571 R = H   (erythrolide P) 
572 R = Ac  (erythrolide Q) 

570 R = COCH2OAc  (erythrolide L) 

O

OR

O

O

AcO
H

OH

OAc

Cl

H
Cl

O

O

AcO
O

573 (erythrolide R) 

OAc

HO

OH

H
Cl

O

O

AcO
O

574 (erythrolide T)

OAc
O

OAc

OH

80 3 Occurrence



new compounds with an unprecedented oxygenation pattern deterred feeding by the

predatory blue crab, Callinectes similis, and two nonchlorinated renillins were

deterrents to the predatory mummichog fish, Fundulus heteroclitus. The soft coral
Pachyclavularia violacea has furnished pachyclavulide D (590) along with three

nonchlorinated analogs (703). The sponge Psammaplysilla purpurea contains bis

(deacetyl)solenolide D (591) (704). Examination of the Pohnpei octocoral

Fig. 3.8 Ellisella sp., a briarane-containing sea whip, collected in Alor, Indonesia (Photo:

J. Tanaka)
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Eleutherobia sp. led to several known briareins. This study also found that mina-

bien-6 is identical to 11-hydroxyptilosarcenone and that minabein-4 and nui-inoa-

lide D are the same except they are epimeric at C-2 (705).

Fig. 3.9 Pteroeides sp., a sea pen from Flores, Indonesia, that contains the novel diterpenes 586
and 587 (Photo: J. Tanaka)
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New diterpenoids of the dolabellane class have been reported, such as clavinflol B

(592) from the Taiwanese soft coral Clavularia inflata (706). This metabolite has

comparable cytotoxicity against the KB cell line to doxorubicin. A sea whip of the

genus Eunicea has yielded the cembrane 593 (707). Both 592 and 593 are considered
to be natural since no chlorinated solvents were used in the isolation process, and in

both metabolites the chlorine is attached to the less substituted carbon, opposite to

what is expected for acid-induced epoxide ring opening. A Kenyan soft coral, Sinu-
laria erecta, contains the norcembrane sinularectin (594) (708).
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The New Caledonian ascidian Lissoclinum voeltzkowi has yielded several cyto-

toxic labdane diterpenes. Dichlorolissoclimide was described earlier (1) and the

related chlorolissoclimide (595) was isolated subsequently (709). The C-7 hydroxy
stereochemistry was more recently revised as shown for both 595 and dichlorolis-

soclimide (710). The antiproliferative activity of these compounds on a non-small-

cell bronchopulmonary carcinoma cell line has been investigated (711). The lisso-
climides are believed to be involved in human food poisoning from the consump-

tion of oysters contaminated by Lissoclinum voeltzkowi (709). An Okinawan

Lissoclinum sp. has yielded an array of chlorinated lissoclimide-type diterpenoids,

the haterumaimides (712–715). This collection includes haterumaimides A–E

(596–600) (712). Both C (598) and D (599) were detected in the animal and are

not considered to be artifacts of B (597). Haterumaimides F-I (601–604) are also

present, and both collections also produced the known chloro- (595) and dichlor-

olissoclimides (713). Heating G (602) and treating H (603) with p-toluenesulfonic
acid resulted in no conversion to H (603) or I (604), respectively, supporting the

natural origin of H and I. Haterumaimides J (605) and K (606) (714), and N (607), O
(608), and P (609) (715) complete this metabolite collection. Only one compound in

this set, haterumaimide Q, is not chlorinated. Some of the haterumaimides have

sub-nanogram cytotoxicity and a structure–activity relationship is known; e.g., a

chlorine atom at C-2 is essential for maximum activity (715). Haterumaimides L

(610) and M (611), and 3b-hydroxychlorolissoclimide (612) were isolated from the

molluscs Pleurobranchus albiguttatus (610–612) and Pleurobranchus forskalii
(610, 611) from the Philippines (716). The mechanism of cytotoxicity ascribed to

the chlorolissoclimides seems to involve protein synthesis inhibition (717).

84 3 Occurrence



7

595 (chlorolissoclimide) 

OH

Cl OAc
H

H
NO

O

Cl

Cl

OH

H

H
NO

O

O

Cl

O

H
N

Cl

H

H
Cl

O

O

O H
N

Cl

H
Cl

O

O

O

OH

H
N

Cl

H
Cl

OH

O

O

OH

H
N

Cl

H
OH

O

O

OH

H
N

Cl

H
O

O

O

OH

H
N

Cl

H
O

O

O

OH

O

H
N

Cl

H
O

O

O

596 (haterumaimide A) 597 (haterumaimide B) 
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Cl

611 (haterumaimide M)

Cl HO

3.4.4 Higher Terpenes

Although the numbers are relatively small, several new halogenated triterpenes and

other higher terpenes have been described since the earlier review (1). Accounts of
marine polyether triterpenes (718) and heterocyclic triterpenes (719) have been

published. The novel pentacyclic triterpene squalene-derived enshuol (613) is

found in the new species Laurencia omaezakiana from central Japan Pacific waters

(720). The first study of Laurencia living in Vietnamese waters has led to callicla-

dol (614) from Laurencia calliclada (721). The Canary Islands Laurencia viridis,
also a new species, has yielded several novel brominated polyether squalene-

derived metabolites (722–724). These include thyrsenols A (615) and B (616)
(722), isodehydrothrysiferol (617) and 10-epidehydrothyrsiferol (618) (723), and
dehydrovenustatriol (619), 15,16-dehydrovenustatriol (620), 16-hydroxydehy-

drothyrsiferol (621), and 10-epi-15,16-dehydrothyrsiferol (622 (724). The Canary

Islands Laurencia pinnatifida contains dehydrothyrsiferol (623) (725). Two later

collections of Laurencia viridis from around the Canary Islands revealed the

presence of dioxepandehydrothyrsiferol (624), 16-epi-hydroxydehydrothyrsiferol
(625) (726), clavidol (626), and 3-epi-dehydrothyrsiferol (627) (727).
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The sea hare Dolabella auricularia has furnished aurilol (628), which is cyto-

toxic (728) and for which the structure has now been fully assigned by total

synthesis (729). The Indian Ocean red alga Chondria armata, a member of the

Laurencia family, contains armatols A–F (629–634) (730).

O

O

O

OBr

628 (aurilol)

OH

OH

OH
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Despite their stereochemical complexity, a few brominated polyethers have

succumbed to total synthesis. In addition to aurilol (628), discussed above (728),
the previously described thyrsiferol and thyrsiferyl 23-acetate (1) have been

synthesized (731), as has (unnatural) 7,11-epi-thyrsiferol (732). Several other

synthetic studies are known (733). The cytotoxicity of thyrsiferyl 23-acetate

and some of the other Laurencia polyether terpenoids has generated considerable

interest into the biological mechanisms and possible drug development (734–
738). A marine fungus of the genus Fusarium found on driftwood in a Bahamas

mangrove habitat produces the halogenated sesterterpenes neomangicols A (635)
and B (636), which have some activity against several human cancer cell lines

(740). These compounds are the first natural halogenated sesterterpenes. A

subsequent study tentatively identified this fungus as Fusarium heterosporum
(741). The medicinal terrestrial plant Turraea pubescens has yielded turrapubesin

A (637) (742), and the Okinawan sponge Ircinia sp. contains the new furanoses-

terterpenes 638 and 639 (743). An Aspergillus sp. culture has yielded ICM0301C

(640) and ICM0301D (641), along with several nonchlorinated analogs

(744, 745).

O O
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OHBr

629 (armatol A)

O O
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Br

630 R1 = Me, R2 = OH, R3 = H, R4 = Br (armatol B)
631 R1 = OH, R2 = Me, R3 = H, R4 = Br (armatol C)
632 R1 = Me, R2 = OH, R3 = Br, R4 = H (armatol D)
633 R1 = OH, R2 = Me, R3 = Br, R4 = H (armatol E)
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The Chinese plant Amoora yunnanensis contains dammaranes 642 and 643
(746), and oleanane 644 was isolated as a triacetate from Mentha villosa (747). It
is conceivable that 644 is an artifact formed by HCl acting on the corresponding

unsaturated carboxylic acid, since this type of acid-catalyzed lactone formation is

well known (748).
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3.5 Steroids

Because most natural halogenated steroids are chlorohydrins, which are usually

accompanied by the corresponding epoxide, one must ensure that the former are not

artifacts formed during the isolation process.

The structure of physalin H (645) from the plant Physalis angulata has been

revised to the chlorohydrin shown (749). The Argentinian Jaborosa sativa has

afforded the new jaborosalactone T (646) (750), and Jaborosa runcinata contains

jaborosalactones 3 (647) and 6 (648) (751). Another Argentina collection of

Jaborosa odonelliana revealed jaborosalactone 10 (649), which was present in

plants collected in December but not in April (752). The Argentinian Jaborosa
bergii contains chlorohydrins 650–652 in addition to nonchlorinated withanolides

(753). As a group these steroids and the corresponding chlorohydrins display

interesting biological activity. Several withanolides induce quinone reductase

(754) and inhibit the growth of human cancer cell lines (755). Physalin H (645)
has potent leishmanicidal activity (756).
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Several new halogenated marine steroids have been characterized. An Okinawan

marine sponge of Xestospongia sp. contains aragusteroketal C (653), which has

nanogram activity against KB cells (757). Since methanol was not used in the

isolation procedure, this compound, along with the corresponding nonchlorinated

epoxide, are rare examples of natural dimethylketals. Yonarasterols G (654), H
(655), and I (656) were isolated from the Okinawan soft coral Clavularia viridis
(758). The epoxide corresponding to chlorohydrin 655was heated in methanol for 3

days in the presence of NaCl with and without silica gel, but remained unaffected.

Another Okinawan sponge, Terpios hoshinota, contains nakiterpiosin (657) and
nakiterpiosinone (658), novel mixed bromochloro nor-steroids that show potent

cytotoxicity against P388 leukemia cells (759, 760). It might be noted that CH2Cl2
was not employed in the isolation and purification process.
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The polychlorinated androstanes clionastatins A (659) and B (660) were isolated
from the burrowing sponge Cliona nigricans (Fig. 3.10) collected in two locations

along the Italian coast (761). These unique metabolites have good cytotoxic activity

against murine and human cancer cell lines. The eastern Pacific octocoral Carijoa
multiflora has yielded the unusual chlorinated pregnanes 661 and 662 in a chloro-

form-free isolation process (762).

OH

R

H H

O

661 R = a-Cl 
662 R = b-Cl 

R

O
O

Cl

H

Cl

Cl

659 R = H (clionastatin A)
660 R = Cl (clionastatin B)

H

Another group of natural chlorinated steroids are the products of enzymatic

(or anthropogenic) chlorination of cholesterol, estrone, and other natural steroids.

Thus, the well known myeloperoxidase–H2O2–chloride system in white blood cells

(763, 764) targets cholesterol leading to at least three chlorohydrins (765–769), the
structures of which have now been confirmed (663–665) (769). These studies also
show that the same chlorohydrins are produced when HOCl and cholesterol are

allowed to react. Interestingly, three chlorinated estrones have been identified in

wastewater effluents treated with hypochlorous acid (770), although these products

are not considered to be naturally occurring for the present survey.
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Fig. 3.10 Cliona nigricans, a boring sponge found in the Ligurian Sea, Italy, that contains the

clionastatins A and B (659 and 660). The brown color is due to symbiotic zooxanthellae (Photo:

C. Cerrano)
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3.6 Marine Nonterpenes: C15 Acetogenins

When chemists began to explore the oceans for novel natural products, halo-

genated C15 acetogenins were an unknown class of compounds. But since the

initial discovery of laurencin from Laurencia glandulifera in 1965, a large

number of these compounds have been found – 130 examples in the first survey

(1). This number continues to grow, especially as produced by the prolific

Laurencia red algae. The biological properties and synthesis of allenic natural

products, of which many are bromoallene C15 acetogenins, have been published

(771).
A collection of Laurencia elata from the coast of Victoria has provided the

pyrano[3,2-b]pyranyl vinyl acetylene elatenyne (666) (772), which is related to the

known (Z)-dactomelyne (1). Japonenynes A (667), B (668), and C (669), which
possess a furo[3,2-b]pyranyl framework, were isolated from Laurencia japonensis
(773). Compound 669 may be an isolation (methanol) artifact although it is

isolated as a single compound. The report of “aplysiallene” from the sea hare

Aplysia kurodai (774) is erroneous and this compound is actually a known

bromoallene (775) described earlier (1). The Vietnamese Laurencia pannosa
contains pannosallene (670), which is closely related to the known laurallene

(776). During this investigation the authors discovered that their earlier proposed

structure of epilaurallene must be incorrect. A new isomer of pannosallene,

nipponallene (671), along with the novel neonipponallene (672) was isolated

from Laurencia nipponica collected off the Russian shore of the Sea of Japan

(777). The sea hare Aplysia parvula has yielded aplyparvunin (673), which has

potent fish toxicity (778). Laurencia intricata has furnished itomanallenes A (674)
and B (675); the former is an epimer of the known neolaurallene (591). Chinzal-
lene (676) was characterized from a Japanese Laurencia sp. (638). The stereo-

chemistry of chinzallene is not fully established.
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The C15 acetogenin (E)-dihydrorhodophytin (677), an isomer of the previously

known (Z)-isomer (1), is found in Laurencia pinnatifida from the Canary Islands

(779). An Easter Island variety of Laurencia claviformis has afforded (3Z)-13-
epipinnatifidenyne (678) (780). Likewise, an epimer of the previously known

laurencienyne, 13-epilaurencienyne (679), is found in Laurencia obtusa from the

Aegean coast (781). This same seaweed and locale yielded laurencienyne B (680),
the cis isomer of laurencienyne (782), and the acetate 681 (783). This Aegean Sea

Laurencia obtusa has also provided (3Z)-13-epilaurencienyne (682), (3E)-13-epi-
pinnatifidenyne (683) (revised in (785)), 684, and 685 (784). The (Z)-diastereomers

682 and 685 showed very potent insecticidal activity. Three enantiomers of known

compounds were identified in the sea hare Aplysia dactylomela, (–)-(3E,6R,7R)-
pinnatifidenyne (686), (+)-(3E,6R,7R)-obtusenyne (687), and (+)-(3Z,6R,7R)-obtu-
senyne (688) (785).
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Laurencia obtusa from the western coast of Ireland has afforded scanlone-

nyne (689), the first reported study of Laurencia red algae from Irish waters

(786). A Japanese Laurencia sp. contains the new bisezakyne-A (690) and -B

(691) (787). The red alga Ptilonia magellanica is the source of pyranosylma-

gellanicus A–C (692–694) and the linear 695, a possible biogenetic precursor

(788).
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Several new halogenated bicyclic acetogenins of the laurefucin type have

been discovered in marine organisms since the first survey (1). Thus, the Coral

Sea red seaweed Dasyphila plumariodes contains the new isolaurefucin methyl

ether (696) (789). Neoisoprelaurefucin (697) was characterized from a Japanese

687 ((3E,6R,7R )-obtusenyne)  688 ((3Z,6R,7R )-obtusenyne) 

O

Br Cl

O

Br Cl
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Laurencia nipponica (790), and the structure and absolute configuration were

confirmed by total synthesis (791). This new compound is a stereoisomer of

the known (3Z)-isoprelaurefucin. A Malaysian Laurencia pannosa has yielded

(3Z)-chlorofucin (698) (578), and (3Z)-bromofucin (699), which is also a new

C15-acetogenin, is found in a South African sea hare, Aplysia parvula (792).
The (3E)-neoisoprelaurefucin (700) was found in Laurencia obtusa collected in

Turkish waters (557).

697 (neoisoprelaurefucin)

698 R = Cl ((3Z )-chlorofucin) 
699 R = Br ((3Z )-bromofucin)

OBr

OCl
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O O

Br

696

700 ((3E )-neoisoprelaurefucin)

O

Br

O
Br

O

O

Br

Br

The sea hare Aplysia dactylomela from the Canary Islands contains dactylal-

lene (701), which is highly toxic to the mosquito fish (Gambusia affinis) at

10 ppm and deters feeding by the golden fish (Carassius auratus) at low con-

centrations (793). Dactylallene is a stereoisomer of the known obtusallene II.

Obtusallene IV (702) was isolated from Laurencia obtusa collected in Turkish

waters (794). This study also describes the conformational properties of several

obtusallenes as does a subsequent investigation, which reports the isolation of

five new obtusallenes from Laurencia obtusa, V–IX (703–707) (795). An unre-

corded Malaysian Laurencia species has afforded the novel lembyne-A (708)
and lembyne-B (709), the former of which is a (Z)-diastereomer of the known

cis-maneonene C, while the latter is a stereoisomer of isomaneonene A (796).
The related (12E)-lembyne A (710) has been isolated from an Okinawan Lau-
rencia mariannensis (577). This metabolite appears to be a stereoisomer of cis-
maneonene C.
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Only a few of the many reported total syntheses of the halogenated C15

acetogenins are listed here. The first total synthesis of (+)-isolaurepinnacin (X)
confirms the proposed structure, notably the (S)-configuration at C-3, and

corrects the rotation of natural X as being dextrorotatory (797). Total syntheses
of (–)-trans-kumausyne (Y) (798) and (–)-kumausallene (Z) (799) support the

proposed structures and absolute configurations of these compounds. Several

syntheses of (+)-obtusenyne (AA) have been described (800), and the absolute

configurations were established for “Norte’s obtusenynes” (BB) and (CC) (801).
Several syntheses of (+)-laurencin (DD) have been described (802), as has the

first total synthesis of (+)-(Z)-laureatin (EE), which confirms its absolute config-

uration (803). Likewise, the first total syntheses of (+)-rogioloxepane A (FF)
(804) and (–)-isolaurallene (GG) (805) validate the proposed structures of these

Laurencia metabolites. Although the antipode (HH) was synthesized earlier, the

first total synthesis of (+)-laurenyne (II) was described later (806). A second total

synthesis of (+)-rogioloxepane A (FF) (807) and syntheses of both (+)-(3E)- (JJ)
and (+)-(3Z)-pinnatifidenyne (KK) (808) confirm the proposed structures. An

asymmetric synthesis of (–)-panacene (LL) has corrected its relative configura-

tion as shown (809). In contrast to these and other successful syntheses, some

synthetic efforts expose incorrectly proposed structures for natural products.

Total syntheses of elatenyne (MM) and NN reveal that the proposed structures

for these pyrano[3,2-b]pyrans are probably incorrect (810). The authors suggest a

2,20-bifuranyl core for MM and NN. Unfortunately, space does not permit a full

presentation of the many other elegant total syntheses of the halogenated C15

acetogenins.
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3.7 Iridoids

Iridoids are a large group of plant metabolites that are mevalonate-derived in origin

and isoprenoid in carbon skeleton (811). A dozen chlorinated iridoids were cited in

the first review (1), all of which are chlorohydrins. Phloyoside II (711) was isolated
from the roots of Phlomis younghusbandii from Tibet (812). The South American

shrub Mentzelia cordifolia contains the novel mentzefoliol (712) and glucosyl-

mentzefoliol (713) in addition to the known 7-chlorodeutziol (813). The full paper
describing the isolation, characterization of the previously reported glutinoside has

appeared (814). Stegioside I (714) is found in Physostegia virginiana ssp. virgini-
ana, and is a dehydroxylinarioside (815). The Okinawan plant Premia subscandens
has furnished the four novel 10-O-acyl derivatives of the known asystasioside E

(715–718) (816). Likewise, 719 and 720 from Calalpae fructus are 4-hydroxyben-
zoyl esters of known iridoid glucosides (817). Urphoside B (721), which is closely

related to 719, was isolated from a Turkish collection of Veronica pectinata var.

glandulosa (818). Similarly, piscroside A (722) is a methoxy analogue of 720 and

was characterized from the roots of the Chinese plant Neopicrorhiza scrophularii-
flora (819). Globularioside (723), with a unique beta-chlorine atom, has been

isolated from the Moroccan plant Globularia alypum (820). A collection of the

parasitic plant Cistanche tubulosa has yielded kankanoside C (724) and kankanol

(725) along with several other new nonchlorinated iridoids (821). A 13C NMR

analysis of iridoids is available (822).
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3.8 Lipids and Fatty Acids

The evaluation of halogenated lipids and fatty acids is rendered difficult because

many examples of chlorinated fatty acids are indisputably man-made and do not

have clear natural sources. The order of presentation follows that adopted in the

first survey. As before, only newly isolated and characterized compounds are

numbered. Studies of the toxic (contaminated) edible mussel Mytilus gallopro-
vincialis from the Adriatic Sea have led to the isolation of three novel chlorosul-

folipids 726–728 (823–825). These cytotoxic compounds are found in the

digestive glands of the animals and are antiproliferative against several cell

lines (J774, WEHI164, P388).
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Halogenated fatty acids have both anthropogenic and natural sources (826–830),
and the distinction is not always unambiguous, particularly with chlorinated fatty

acids (826–829). Nevertheless, an abundance of natural halogenated fatty acids is

beyond dispute (830). Several new members of the class of bromine-containing fatty

acids, which numbered 14 in the first survey (1), have been identified from both

marine and terrestrial sources. An Indonesian sponge, Oceanapia sp., has furnished

the two novel bromo acids 729 and 730 (831), and the Australian sponge Amphime-
don terpenensis contains 6-bromo-(5E,9Z)-tetracosadienoic acid (731) and 6-bromo-

(5E,9Z)-pentacosadienoic acid (732) (832, 833). In addition to the latter two bro-

moacids, the Caribbean sponge Agelas (Fig. 3.11) has afforded 733 and 734 (834).
The sea anemone Stoichactis helianthus contains 6-bromo-(5E,9Z)-heneicosadienoic
acid (735) and 6-bromo-(5E,9Z)-docosadienoic acid (736) (835). The phospholipid

extracts of both the sea anemone Condylactis gigantea and the zoanthid Palythoa
caribaeorum furnished the novel 6-bromo-(5E,9Z)-eicosadienoic acid (double bond

stereochemistry assumed) (737) (836).

CO2HBr

Br Br

729

Br

Br

730

CO2H
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CO2H
Br

(CH2)n

733 n = 12 
734 n = 13 

CO2H
Br

CH3(CH2)n

731 n = 13 
732 n = 14 
735 n = 10 
736 n = 11 
737 n = 9

Fig. 3.11 Agelas sp. An example of a very common marine sponge that produces a wide variety of

halogenated metabolites such as the brominated fatty acids 733 and 734 (Photo: J. R. Pawlik)
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Sponges of genus Xestospongia are rich suppliers of brominated fatty acids.

An Okinawan sampling of this sponge yielded 14 new brominated fatty acids

(738–751), along with three previously identified examples (837). A study of

this sponge from the Indian Ocean characterized the novel 752–754 (838). The
new xestosterol esters 755 and 756 were discovered in Xestospongia testudi-
naria from Australia, which had previously been found to contain xestosterol

(839).
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Br
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Surrounding a fresh water lake in Central Asia, which has a high salt content (up

to 5,800 ppm), is the lichen Acorospora gobiensis. This lichen yielded the novel

bromo acids 757 and 758 (840). Further study of this lichen and others collected

around Lake Issyk-Kul in Central Asia (Cladonia furcata, Lecanora fructulosa,
Leptogium saturninum, Parmelia linctina, Parmelia comtseliadalis, Peltigera
canina, and Xanthoria sp.) uncovered six additional new brominated fatty acids,

759–764 (841). Another study of these and other lichens around this lake led to the

first natural bromoallenic fatty acids 765 and 766 (842). The new lichens examined

were Rhizoplaca peltata, Xanthoparmelia camtschadalis, Xanthoparmelia tinctina,
and Xanthoria elegans.
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A collection of the red alga Plocamium cartilagineum from Corsica and the

Maltese Islands has yielded the four new halogenated homosesquiterpenic fatty

acids 767–770 (843). The Pohnpei sponge Dysidea fragilis contains the novel (4E)-
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(S)-antazirine (771) and (4Z)-antazirine (772) (844). Majusculoic acid (773) is a

novel metabolite isolated from a Bahamian cyanobacterial mat microbial community

(845). A further cyclopropane fatty acid, grenadadiene (774), was found in the marine

blue-green alga (cyanobacterium) Lyngbya majuscula from Grenada (846), a

seaweed implicated in causing contact dermatitis (“swimmer’s itch”) (847, 848).
Another genus of cyanobacteria,Nostoc, can also cause severe health problems (849).
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In addition to producing grenadadiene (774), Lyngbya majuscula is an amazing-

ly prolific source of diverse fatty acid metabolites (1). An Okinawan collection of

this cyanobacterium has yielded the novel malyngamide I (775), and this study led

to the revision of the previously reported stylocheilamide as the acetate OO (850).
The latter metabolite was originally isolated from the sea hare Stylocheilus longi-
cauda, which feeds on Lyngbya majuscula (1). An assemblage of this blue-green

alga from Curacao contains malyngamides K (776) and L (777) (851), a Madagas-

can sample yielded malyngamides Q (778) and R (779) (852), and a Puerto Rican

specimen afforded malyngamide T (780) (853). The Hawaiian sea hare Stylocheilus
longicauda, which feeds on Lyngbya majuscula, contains malyngamides O (781)
and P (782) (854), and the New Zealand sea hare Bursatella leachii has yielded
malyngamide S (783), which displays some antiinflammatory and cytotoxic activity

(855). This animal is also known to feed on Lyngbya majuscula. The Hawaiian red

alga Gracilaria coronopifolia, known as the source of the toxic aplysiatoxin,

contains malyngamides M (784) and N (PP), the latter of which is a revised

structure of deacetoxystylocheilamide (856), a compound described earlier (1).
Malyngamide M is the first natural aromatized malyngamide. The authors suggest

that an associated cyanobacterium actually produces the malyngamides.
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The Hawaiian Lyngbya majuscula has afforded isomalyngamides A (785) and B
(786) (857), isomeric with the known malyngamide A, and the previously unre-

ported malyngamide B (787) (858). The novel pitiamide A (788) was isolated from
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a mixed cyanobacterial sample of Lyngbya majuscula andMicrocoleus sp. growing
on the hard coral Porites cylindra from Guam (859). The structure and absolute

configuration were confirmed by total synthesis (860). A homologue, pitiamide B,

with one additional methylene group remains unidentified (859). A Jamaican strain

of Lyngbya majuscula has yielded jamaicamides A (789), B (790), and C (791)
(861, 862). The sea hare Stylocheilus longicauda from Oahu contains the unprece-

dented makalika ester (792) and makalikone ester (793) (863). The South African

red alga Gracilaria verrucosa has furnished the two chlorohydrins 794 and 795
(864), and the related a-chloro divinyl ethers, maracens A (796), B (797), C (798),
and D (799), were isolated from Sorangium cellulosum and display some activity

against mycobacteria, related to the cause of tuberculosis (865).
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Blue-green algae are not the sole producers of halogenated fatty acid metabo-

lites; several marine sponges and associated fungi have furnished new examples.

The fungus Gymnasella dankaliensis from the sponge Halichondria japonica has

supplied the novel gymnastatins A–H, most of which are chlorinated (A, 800; B,
801; C, 802; D, 803; E, 804; F, 805; G, 806) (866–868). Gymnastatin A (800) has
been synthesized (869). Several of these metabolites have pronounced cytotoxic

and cytostatic activity. It should be noted that gymnastatins A, D, and E are each

mixtures of two hemiacetals. The related aranochlors A (807) and B (808) were
isolated from the fungus Pseudoarachniotus roseus (870). It seems possible that

these hemiacetals also each exist as two epimers.
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The sponge metabolites aurantosides A (QQ) and B (RR) were described in the

first survey (1); subsequently, several new aurantosides have been isolated. Thus,

aurantoside C (809) is found in the sponge Homophymia conferta and has the same

absolute configuration as aurantosides A and B (871). The stereochemistry about

the terminal double bond in the latter two compounds was revised as shown (QQ,

RR) in a report that described the isolation of the new aurantosides D (810), E
(811), and F (812), which have both antifungal and cytotoxic activity, from the

sponge Siliquariaspongia japonica (872). The Papua New Guinea sponge Theo-
nella swinhoei has afforded aurantosides G (813), H (814), and I (815) (873). A
series of related tetramic acid glycosides, rubrosides A–H (816–823), was char-

acterized from the Japanese sponge Siliquariaspongia japonica (874). Several of

these rubrosides have antifungal (Aspergillus fumigatus, Candida albicans) and
cytotoxic (P388) activity.
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812 (aurantoside F)
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The novel polyketides, bitungolides A–D (824–827), were characterized from

the Indonesian sponge Theonella cf. swinhoei (Fig. 3.12), compounds that inhibit

dual-specificity phosphatase VHR (875). The first chlorine-containing compound

found in a Caribbean Plakoris sponge (Plakoris simplex) is plakortether C (828),
along with several non-halogenated analogs (876). In addition to the known

clathrynamide A, the Okinawan sponge Psammoclemma sp. has afforded the new

(6E)-clathrynamide A (829) (877). Moreover, the absolute stereochemistry

of clathrynamide A was established as shown for 829. The marine bacterium

Pseudoalteromonas sp. F-420 produces korormicin analog 830 (878).

Fig. 3.12 Theonella cf. swinhoei, a sponge collected at Bitung, Indonesia, that contains the

bitungolides A–D (824–827) (Photo: J. Tanaka)
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The myxobacterium Chondromyces crocatus contains the novel chondrochlo-

rens A (831) and B (832) (879). A marine Streptomyces species has afforded the

manumycin antibiotics chinikomycins A (833) and B (834) (880). While inactive in

antiviral, antimicrobial, and phytotoxicity screens, these chinikomycins display

some cytotoxic activity.
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The absolute configuration of the previously described enacyloxin IIa (former-

ly named enacyloxin II) (1) has now been partially established as SS (881),
following earlier structural studies (882). This same bacterium Frateuria sp. W-

315 produces enacyloxin IVa (835) (883). Several studies on the biological

activity of enacyloxin IIa reveal that it inhibits protein biosynthesis (884–887).
Two iodolactones found in the thyroid gland of dogs were presented in the first

survey (1). The novel 2-iodohexadecanal (836) is present in the horse, dog, and

rat thyroid (888). Studies indicate that 836 serves as a “mediator of some of the

regulatory actions of iodide on the thyroid gland” (889, 890). The aforementioned

iodolactones (1) seem to have a different role than 836 in the thyroid gland

(891, 892).
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3.9 Fluorine-Containing Carboxylic Acids

The infamous fluoroacetic acid and the equally toxic naturally occurring even-num-

beredo-fluorinated fatty acids were discussed in detail earlier (1), and several reviews
are available (34, 44, 66). Although not counted as being natural in the earlier survey
(1), 4-fluorothreonine (837) is now considered to be a bona fide natural metabolite of

Streptomyces cattleya (893), the stereochemistry of which has been confirmed by

synthesis (894). In addition to the five o-fluorinated fatty acids presented earlier (1),
new studies of the seed oil of Dichapetalum toxicarium have uncovered 16-fluoro-

palmitoleic acid (838), 18-fluorostearic acid (839), 18-fluorolinoleic acid (840),
20-fluoroarachidic acid (841), 20-fluoroeicosenoic acid (842), 18-fluoro-9,10-epoxy-
stearic acid (843) (895), (Z)-16-fluorohexadec-7-enoic acid (844), (Z)-18-fluoroocta-
dec-9-enoic acid (845), and (Z)-20-fluoroicos-9-enoic acid (846) (896).

CO2H

NH2

OH

F

837

CO2H
F

838 (16-fluoropalmitoleic acid)
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Extensive and elegant biosynthetic studies on these fluorine-containing metabo-

lites have revealed some additional natural organofluorines produced by Strepto-
myces cattleya, and, more importantly, provide a comprehensive understanding of

the biosynthesis of fluoroacetate and 4-fluorothreonine (895, 897–913). A summary

of this biosynthesis is shown in Scheme 3.3 and reviews are available (914, 915).
The first step in this pathway involves SN2 displacement by fluoride on S-

adenosine-L-methionine (SAM) catalyzed by the newly discovered enzyme fluor-

inase (905–910), which also can function as a chlorinase (912). Fluorinase has been
isolated and characterized, and the gene has been cloned (916). Both 50-fluoro-50-
deoxyadenosine (847) and 50-fluoro-50-deoxy-D-ribose-1-phosphate (848) have

been identified as intermediates (905–908). Fluoroacetaldehyde (850) is the imme-

diate precursor, presumably via fluororibulose-1-phosphate (849) (915), to both

fluoroacetate and 4-fluorothreonine (837) (901). The requisite enzymes fluoroace-

taldehyde dehydrogenase (902) and L-threonine transaldolase-PLP (903) have been
isolated and purified. The steps from 848 to 850 remain to be established but are

based on known biochemistry. The pronounced toxicity of fluoroacetic acid

F CO2H

839 (18-fluorostearic acid)

F CO2H

840 (18-fluorolinoleic acid)

F

841 (20-fluoroarachidic acid)

CO2H

842 (20-fluoroeicosenoic acid)

F
CO2H

F CO2H

843 (18-fluoro-9,10-epoxystearic acid)

O

CO2H

844 ((Z)-16-fluorohexadec-7-enoic acid)

F

CO2H

845 ((Z)-18-fluorooctadec-9-enoic acid)

F

846 ((Z)-20-fluoroicos-9-enoic acid)

CO2H
F
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(fluoroacetate) is still of major concern, especially with the realization that it is a

metabolite of several fluorinated drugs, pesticides, and other industrial chemicals,

and thus may pose an environmental threat to aquatic organisms (917). A study

of genetically modified ruminal bacteria, with a gene encoding fluoroacetate deha-

logenase, indicates promise in protecting sheep against fluoroacetate poisoning

(918). The mechanism of fluoroacetate toxicity, which is known to involve conver-

sion to fluorocitrate, has been shown to entail further transformation to 4-hydroxy-

(E)-aconitate, which then binds to aconitase (919). While it has been known as an

Proposed abbreviated biosynthesis of fluoroacetic acid
and 4-fluorothreonine (909, 915, 2395).
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anthropogenic atmospheric pollutant for a long time, trifluoroacetic acid (851) is
now considered to have (unknown) natural sources with an ocean concentration of

about 200 ng L�1 (920).

851

CF3CO2H

3.10 Prostaglandins

The first survey identified 15 marine halogenated prostaglandins, some of which

display striking biological activity (1), and a review is available on the occurrence,

biological activity, and biogenesis of these interesting organohalogen compounds

(921).
A practical racemic synthesis of the known chlorovulone II from the Okinawan

soft coral Clavularia viridis has been accomplished (922). This coral has more

recently afforded the new prostanoids 852–856 (923), 857–871 (924), and, from a

Taiwanese collection, 872, 873 in addition to 857 and 858 (925). The absolute

configuration of the previously known punaglandin 8 (852, X = Cl) was determined

as shown (923). This soft coral also contains several non-halogenated possible

biosynthetic precursors to these halogenated metabolites (926).

CO2Me
X

O

OH

OAc

CO2Me

X

O

OH

OAc

852  X = I
853  X = Br

854  X = I
855  X = Br
856  X = Cl

CO2Me

I

O

OH

857  (iodovulone II)

I

O

OH

858  (iodovulone III)

CO2Me

I

O

OH

859  (iodovulone IV)

CO2Me

CO2Me

X

O

OAc

860  X = I    (12-O -acetyliodovulone II)
861  X = Br  (12-O -acetylbromovulone II)
862  X = Cl  (12-O -acetylchlorovulone II)
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X

O

OAc

CO2Me

863 X = I (12-O-acetyliodovulone III)
864 X = Br (12-O-acetylbromovulone III)
865 X = Cl (12-O-acetylchlorovulone III)

CO2Me
Cl

O

OAc

866 (12-O-acetylchlorovulone I)

CO2Me
X

O

OH

867 X = I (10,11-epoxyliodovulone II)
868 X = Br (10,11-epoxybromovulone II)
869 X = Cl (10,11-epoxychlorovulone II)

O

870 X = I (10,11-epoxyliodovulone I)
871 X = Br (10,11-epoxybromovulone I)

X

O

OH
O

CO2Me

Br

O

OH

872 (bromovulone II)

Br

O

OH

873 (bromovulone III)

CO2Me

CO2Me

A Red Sea collection of the soft corals Dendrophyllia sp., Dendronephthya
sp. (red variety), Dendronephthya sp. (yellow variety), and Tubipora musica
revealed the eight new brominated oxylipins 874–881 (927). The brown alga

Eisenia bicyclis, which was gathered around the coast of Japan, has afforded

eiseniachlorides A–C (882–884), eiseniaiodides A (885) and B (886), and

887 (928). The eastern Pacific octocoral Carijoa multiflora contains the

novel prostanoid carijenone (888) (929). Both natural punaglandins and syn-

thetic analogs can function as Michael reaction acceptors to inhibit ubiquitin

isopeptidase activity, which may represent a target for anticancer agents

(930, 931).
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874 R = H
875 R = a -D-glucopyranosyl

876 R = H
877 R = b -D-glucopyranosyl

878 879

880 881
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885 (eiseniaiodide A)

Cl
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884 (eiseniachloride C)
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3.11 Furanones

Red algae of the genus Delisea enriched the first survey with 40 mainly brominated

furanones, some of which have powerful antibacterial activity (1). The absolute

configuration of the previously known Delisea pulchra furanone TT, and others by
extension, has been determined (932). While the only new examples of these

heavily brominated furanones appear to be the pulchralides A–C (889–891) from
an Antarctic collection of Delisea pulchra (476), these compounds have been

extensively studied from a biological standpoint (933–945). Most notably, these

halogenated furanones inhibit bacterial colonization (933–942, 944), and this

quorum-sensing inhibitory activity may lead to drugs for the treatment of bacterial

infections. These furanones also display feeding deterrence to herbivores (943) and
show cytotoxic, antimicrobial, and antiplasmodial activity (945). The sea hare

Aplysia parvula feeds on Delisea pulchra to acquire halogenated furanones for

chemical defense (946).

OO
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Br
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Br Br

R3
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OAc
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R R1

889 R = R1 = OAc, R2 = R3 = H (pulchralide A)
890 R = R1 = R2 = R3 = H (pulchralide B)
891 R = OAc, R1 = R2 = R3 = H (pulchralide C)
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Six new halogenated rubrolides I (892), J (893), K (894), L (895), M (896), and
N (897) were characterized from the Spanish ascidian Synoicum blochmanni (947).
Several of these compounds exhibit significant cytotoxicity against these tumor cell

lines: HT-29, MEL-28, P-388, and A-549, with rubrolide M (895) showing the

greatest activity. A New Zealand variety of Synoicum sp. has provided rubrolide O

as a mixture of Z (898) and E (899) isomers, which display some antiinflammatory

activity (948). The previously known rubrolides C and E have been efficiently

synthesized (949).

O

O
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R2

HO

Br

OH

O

O
R

Br

HO

Br

OH

Br
892 R = Cl (rubrolide I)
893 R = H (rubrolide J)

894 R1 = Cl, R2 = Br (rubrolide K)
895 R1 = Cl, R2 = H (rubrolide M)
896 R1 = Br, R2 = Cl (rubrolide N)

O

O
Cl

HO

Br

OH

Br

897 (rubrolide L)

O

O
Cl

Br

HO

Br

OH

Br

898 ((Z )- rubrolide O)

O

O
Cl

Br

HO

899 ((E )-rubrolide O)

HO
Br

Br

An Indonesian ascidian of the genus Botryllus contains the novel cadiolides

A (900) and B (901) (950). The tetraphenolic bis-spiroketals prunolides A (902,
903) and B (904, 905) were characterized from an Australian ascidian Synoicum
prunum (951).
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900 X = H (cadiolide A)
901 X = Br (cadiolide B)
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Br OH
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902, 903 R = Br (prunolide A; racemic mixture)
904, 905 R = H (prunolide B; racemic mixture)

Br Br

The ant-cultivated fungus Lepiota sp. produces the antibacterial lepiochlorin

(906), which is racemic, perhaps due to ring-opening tautomerism (952). The mush-

roomClitocybe flaccida (Fig. 3.13), which is repugnant to the banana slug (Ariolimax
columbianus) (Fig. 3.14), secretes clitolactone (907) (953). Control experiments

clearly demonstrate the potent antifeedant properties of clitolactone to these slugs

(Fig. 3.15). The Asian shrub Prinsepia utilis affords lactone 908 (954). An Aspergil-
lus sp. fungus from the sponge Jaspis cf. coriacea has yielded chlorocarolides

A (909) and B (910) (955). Another marine-derived fungus, Aspergillus ostianus,
from Pohnpei has provided chlorinated furanones 911 and 912 (956). A related

pyrone from this organism is shown later in Sect. 3.14.8 (Pyrones and Chromones).
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Fig. 3.13 Clitocybe flaccida, the mushroom that contains the antifeedant clitolactone (907)
(Photo: W. F. Wood)

Fig. 3.14 The banana slug (Ariolimax columbianus) feeding on the mushroom Russula roscea
(¼ R. sanguinea) (Photo: W. F. Wood)
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3.12 Amino Acids and Peptides

Halogenated amino acids and peptides represent an enormous class of natural

products. The first survey counted nearly 100 such examples of marine and

terrestrial bacterial origin (1). One of the first halogenated natural products to

be characterized, chloramphenicol, continues to draw attention (2656). The

new analog 30-O-acetylchloramphenicol (913), which is a possible intermediate

in the biosynthesis of chloramphenicol, has been isolated from Streptomyces
venezuelae (957). The antifungal acrodontiolamide (914) is produced by Acro-
dontium salmoneum (958, 959). The dichloromethyl ether moiety is unique

amongst natural products and is expected to be a potent alkylating agent,

assuming that this structure is correct. An enantioselective synthesis of (–)-

(1R,2R)-chloramphenicol has been reported (960), and the genes required for

its biosynthesis by Streptomyces venezuelae have been identified (961, 962),
including those required for the dichloroacetyl unit (962). Synthetic derivatives

of bactobolin (1), which also contains a dichloromethyl group, show less

activity than the natural product in various cytotoxicity and antibacterial assays

(963).

O2N

913

OH

NHCOCHCl2

OAc

NH2

O Cl

ClOH

O

914 (acrodontiolamide)

Cl CO2H

NH2

915

O2N

Mushrooms are a source of simple chlorinated amino acids (1), and several new

examples are known. Thus, Amanita vergineoides has furnished (2S,4Z)-2-amino-

5-chloro-4-pentenoic acid (915) (964), and a full account of the isolation of (2S)-2-

Fig. 3.15 The banana slug (Ariolimax columbianus) tasting and being repelled by clitolactone-

treated lettuce (Photo: W. F. Wood)

134 3 Occurrence



amino-5-chloro-4-hydroxy-5-hexenoic acid from Amanita gymnopus (1) and other

Amanita species has been published (965, 966). Likewise, a full report on the

isolation of 2-amino-5-chloro-5-hexenoic acid from Amanita miculifera (1) has

appeared (967). Interestingly, the related amino acid 915 was isolated as a racemate

from Amanita castanopsidis (968). The biosynthesis of the known armentomycin

(2-amino-4,4-dichlorobutyric acid) from Streptomyces armentosus var. armentosus
was studied using radiolabelling and the results support a pathway of pyruvate to

acetyl-CoA and perhaps dichloropyruvate, followed by condensation and conver-

sion to armentomycin along known amino acid pathways (969).
Cyanobacteria blooms can pose an extremely serious threat to human health (970–

972), and some of the causative toxins contain halogen. The fresh water toxic cyano-

bacterium Oscillatoria agardhii produces oscillaginin A (916), which features

the novel 3-amino-10-chloro-2-hydroxydecanoic acid, and is the source of the micro-

cystins, which are heptatoxins (973). The prolific cyanobacterium Lyngbya majuscula
from Curacao has furnished the novel barbamide (917) (974) and dechlorobarbamide

(918) (975). Extensive biosynthetic studies show that the amino acids leucine, cysteine,

and phenylalanine are involved in barbamide production (976–982). The chlorination
of leucine is of great interest and may involve a radical mechanism (976, 980–983).

917 (barbamide)

Cl
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N
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N S
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N S
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The marine sponge Dysidea herbacea, perhaps in association with its cyanobac-

terial symbiont Oscillatoria spongeliae, is responsible for furnishing some 20 poly-

chlorinated amino acid-derived metabolites (1). A Papua New Guinea sample of

Dysidea herbacea, which contains Oscillatoria spongeliae, has yielded the novel

herbamide A (919) (984), whereas a collection of this sponge from the Great Barrier
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Reef provided 920–922, and the absolute configuration of the latter metabolite was

established as shown (985). Dysidea fragilis from the South China Sea has yielded

dysamide D (923) (986), and Dysidea chlorea from Micronesia afforded 12 new

polychlorinated diketopiperazines, dysamides I-T (924–935) (987). In addition,

this study (987) confirmed the structure of dysamide E (936) (988). Based on

previous assignments the absolute configurations of 924–936 are believed to be

those indicated. A Pacific Ocean collection of Dysidea sp. provided dysamide U

(937), which is the first trichlorinated member of the diketopiperazine family to

be identified (989).
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The simple herbacic acid (938) was isolated from Dysidea herbacea from the

Great Barrier Reef, and may be a precursor to more complex trichloromethyl

metabolites (990). Another collection of Dysidea sp. from Australia’s Great Barrier

Reef yielded five new metabolites (939–943) for which the absolute stereochemis-

try was determined by correlation with (–)-(S)-4,4,4-trichloro-3-methylbutanoic

acid (991). Dysidea herbacea from the Great Barrier Reef contains (–)-neodyside-

nin (944), which is an isomer of the well-known and often isolated dysidenin.

Cl3C ON

NO

Cl2HC
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This new metabolite belongs to the L-series of trichloroleucine peptides and is a rare

example of a non-N-methylated trichloroleucine amino acid (992). Another sample

of this sponge from the same locale has yielded the new thiazoles 945 and 946,
which are also related to dysidenin (993). The Panamanian Lyngbya majuscula has
afforded the new dysidenamide (947), pseudodysidenin (948), and nordysidenin

(949), which is the first report of dysidenin-like compounds from a free-living

cyanobacterium (994).

N CCl3Cl3C

OR

N CXCl2Cl2XC
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939 R = CO2Me
940 R = CO2H

941 X = Cl, R = CO2Me
942 X = H, R = CO2Me
943 X = Cl, R = CO2H
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A study of a Philippines Dysidea sp. has yielded the novel proline analogs of

dysidenin, dysideaprolines A–F (950–955) and barbaleucamides A (956) and B

(957), which are reminiscent of barbamide (995). Also from the Philippines was

isolated the novel pyrrolidone 958 from the nudibranch Asteronotus cespitosus
(996), which is the first example of a Dysidea-type polychlorinated metabolite

found in a carnivorous mollusc. An Indonesian collection of Dysidea sp. has

furnished dysithiazolamide (959), having the suggested absolute configuration

shown (997).

N
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R2 OX

X

YY

N S
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950 R1 = H, R2 = Me, X = Y = Cl (dysideaproline A)
951 R1 = R2 = Me, X = Y = Cl (dysideaproline B)
952 R1 = R2 = H, X = Y = Cl (dysideaproline C)
953 R1 = H, R2 = Me, X = H, Y = Cl (dysideaproline D)
954 R1 = H, R2 = Me, X = Cl, Y = H (dysideaproline E)
955 R1 = H, R2 = Me, X = Cl, Y = H,Cl (dysideaproline F)
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The Red Sea sponge Lamellodysidea herbacea contains the new dysidamides

D–H (960–965) and ring-opened analogs 966 and 967 (998). As has been pointed

out several times (999), the determination of absolute stereochemistry of the

Dysidea polychlorinated peptides has been difficult and revisions are not uncom-

mon. The X-ray crystal structure of a zinc chelate of dechlorinated dysidenin has

confirmed its absolute configuration as (5S,13S) as shown in UU (999).

Dysidenin is a strong inhibitor of iodide transport in dog thyroid, and the

trichloromethyl group is recognized by the binding site (1000, 1001). Interestingly,
the configuration at C-5 has no influence on this biological activity. The relation-

ship between Dysidea and other sponges and the cyanobacterium Oscillatoria
spongeliae continues to be studied (1002, 1003), revealing that only certain strains

of this cyanobacterium are capable of producing either polychlorinated metabolites

or polybrominated diphenyl ethers but not both (1003).
Several other, more complex cysteine-derived polychlorinated peptide meta-

bolites are known to arise in marine organisms. Dolabellin (968) was charac-

terized from the Japanese sea hare Dolabella auricularia (1004). The absolute

960  R1 = CCl3, R2 = CHCl2  (dysidamide D)
961  R1 = CHCl2, R2 = CCl3  (dysidamide E)
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configuration was established by chemical degradation and a total synthesis of

dolabellin. A Guamanian strain of the cyanobacterium Lyngbya majuscula has

yielded lyngbyabellins A (969) (1005) and B (970) (1006). The latter metabolite

was independently isolated from a collection of this alga in Florida (1007).
Lyngbyabellin A has been synthesized (1008) and the absolute configuration of

lyngbyabellin B is as shown (1006). A Palauan variety of Lyngbya sp. contains

lyngbyabellin C (971) (1009), and the structurally related hectochlorin (972) was
isolated from a Panamanian sample of Lyngbya majuscula and its absolute

configuration was determined (1010). Hectochlorin has been synthesized (1011)
and has potent inhibitory action against the fungus Candida albicans and displays

inhibition of cell growth (1010). The Thai sea hare Bursatella leachii contains
deacetylhectochlorin (973), which is more potent than hectochlorin against

human carcinoma cell lines (1012).
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Additional collections of Guamanian Lyngbya sp. led to the discovery of

lyngbyabellin D (974), having the absolute configuration shown and which

displays good cytotoxicity against the KB cell line (1013). Lyngbyabellins E-I

(975–979), which exhibit significant cytotoxicity against cancer cell lines, were

characterized from Lyngbya majuscula from Papua New Guinea (1014). The
absolute configurations of E (975) and H (978) were established via degradation

products.
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978 R = H (lyngbyabellin H)
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The chlorophenolic peptide resormycin (980), which was isolated from cultures

of Streptomyces platensis, displays herbicidal and fungicidal activities (1015,
1016). Kaitocephalin (981) is produced by the fungus Eupenicillium shearii and
is a glutamate receptor antagonist (1017, 1018). The original structure has been

slightly revised (1019) and confirmed by total synthesis (1019–1022). The unique
zinc-containing antibiotic transvalencin A (982) was isolated from Nocardia trans-
valensis found in a human clinical patient (1023, 1024).

A series of proline-containing cyclopentapeptides was disclosed in the first

review (1), and subsequent work has shown that islanditoxin and cyclochlorotine

are identical metabolites; the latter is the correct structure (1025). A new member

of this group, astin I (983), has been isolated from Aster tataricus (1026), which is
the source of several previously known astins (1). A full account of the structure

determination of the known astins A–C has appeared (1027), and the antitumor

activity of the astins seems to be related to the conformation of the dichloropro-

line unit in astins A–C (1028, 1029). A total synthesis of astin G, which is the only

non-chlorinated astin, has been reported (1030). A cyclic pentapeptide related to

the astins is destruxin-A4 chlorohydrin (984), which was found in the fungal

culture OS-F68576 (1031). This chlorohydrin induces erythropoietin gene ex-

pression. The marine-derived fungus Beauveria felina has afforded [b-Me-Pro]

destruxin E chlorohydrin (985) (1032).

NH2 N
H

H
N

NH2 O

OH

O CO2H

HO

Cl

OH

980 (resormycin)

981 (kaitocephalin) 982 (transvalencin A)

O

Cl
N

O

N

S

N S

N

S

O

OH

H

O

O

ZnO

NH

HO2C N
H

CO2H

CO2H
H2N

OH

HO

Cl

Cl
H

3.12 Amino Acids and Peptides 143



N
H

H
N

N

Cl

OH

NH
H
N

O
O

O

O

OOH

Ph

983 (astin I)

N
O

HN N

OO

O

O

N

O

NH

Cl

O

OH

984 (destruxin-A4 chlorohydrin)

985

N

O

H
N

N
O

O

OO

N O

N
H

Cl

O OH

The freshwater blue-green alga Microcystis aeruginosa is the source of novel

peptides, several of which contain chlorine. Aeruginosin 98-A (986) was isolated
from Microcystis aeruginosa (NIES-98), and this compound inhibits trypsin, plas-

min, and thrombin (1033). The cyanobacterium Oscillatoria agardhii produces
glycopeptides aeruginosins 205A (987) and 205B (988), which are also potent

inhibitors of trypsin and thrombin (1034). A Japanese bloom of Microcystis aeru-
ginosa (NIES-299) yielded microginins 299-A (989) and 299-B (990), which are

leucine aminopeptidase inhibitors. The absolute stereochemistries are indicated

(1035). From another strain of Microcystis aeruginosa (NIES-478) there were

isolated micropeptins 478-A (991) and 478-B (992), which inhibit plasmin but

not trypsin, thrombin, papain, chymotrypsin, or elastase at 10 mg mL�1 (1036).
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The new chlorinated microginins 99-A (993), 99-B (994), and 299-D (995) were
isolated from two blooms of Microcystis aeruginosa (1037). Structurally similar to

aeruginosin 98-A (986), the new aeruginosins 98-C (996), 101 (997), 89-A (998), and
89-B (999) were isolated from different strains ofMicrocystis aeruginosa (1038). The
absolute configurations are as shown. A subsequent investigation of this blue-green

alga revealed the presence of the new microginins 91-A (1000), 91-B (1001), 91-D
(1002), and 91-E (1003) (1039). The total synthesis of the non-chlorinated aerugino-
sin 298-A has corrected a stereocenter; thus, D-leucine and not L-leucine is incor-

porated in this compound (1040), which may apply to other aeruginosins.
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996 R1 = Br, R2 = H (aeruginosin 98-C)
997 R1 = R2 = Cl (aeruginosin 101)
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Another cultivation of Microcystis aeruginosa NIVA Cya 43 yielded the new

cyanopeptolin 954 (1004), which is a chymotrypsin inhibitor (1041). The newly

isolated chlorodysinosin A (1005), from a Dysidea sponge, has been synthesized

and its structure confirmed (1042).
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A disease of oats in North America is caused by the fungus Cochliobolus
victoriae (Helminthosporium victoriae) and the major causal agent is victorin C.

After considerable work on degradation products (1043, 1044) the structure of

victorin C (1006) was finally established (1045). Additional study of this fungus

has afforded the minor victorins B, D, and E (1007–1009) and victoricine (1010)
(1046). The victorin binding protein from oats has been identified (1047, 1048).
The fungal pathogen Periconia circinata, which causes milo disease of grain,

produces peritoxins A (1011) and B (1012), and periconins A (1013) and B (1014)
(1049).
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1010 (victoricine)

1006 R1 = CHCl2, R2 = OH (victorin C)
1007 R1 = CH2Cl, R2 = OH (victorin B)
1008 R1 = CHCl2, R2 = H (victorin D)
1009 R1 = CCl3, R2 = OH (victorin E)
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The monamycins are a group of 15 antibiotic cyclodepsipeptides from Strepto-
myces jamaicensis. After much structural elucidation work on the hydrolysis and

degradation products (1050, 1051), the structures of the six chlorine-containing

monamycins G1 (1015), G2 (1016), G3 (1017), H1 (1018), H2 (1019), and I (1020)
were determined (1052).
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1015 R1 = R2 = H, R3 = Me  (monamycin G1)
1016 R1 = R3 = H, R2 = Me  (monamycin G2)
1017 R1 = Me, R2 = R3 = H  (monamycin G3)
1018 R1 = R3 = Me, R2 = H  (monamycin H1)
1019 R1 = H, R2 = R3 = Me  (monamycin H2)
1020 R1 = R2 = R3 = Me  (monamycin I)
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1012 R1 = OH, R2 = H (peritoxin B)
1013 R1 = H, R2 = OH (periconin A)

3.12 Amino Acids and Peptides 149



Some 15 halogenated tryptophan-derived peptides were described in the first

account (1), and several new examples have been discovered in the interim.

Chondramides A–D, two of which are the chlorinated B (1021) and D (1022),
were isolated from a strain of myxobacteria (Chondromyces crocatus), and

possess antifungal and cytostatic activity (1053, 1054). The chondramides,

which are structurally related to jasplakinolide (= jaspamide) but which can be

produced in large quantities by fermentation, exhibit antiproliferative activity

against carcinoma cell lines (1055). Two new jasplakinolides, B (1023) and C

(1024) (Fig. 3.16), have been characterized from the Vanuatu sponge Jaspis
splendans (1056). The well-known jasplakinolide has been the object of

biological studies (e.g., actin cytoskeleton disruptor) (1057, 1058), conformation-

al studies with and without lithium (1059), and synthesis and biological evalua-

tion of analogs (1060, 1061). A new celenamide, celenamide E (1025), was found
in the Patagonian sponge Cliona chilensis (1062). This metabolite may be the

biosynthetic precursor of the known celenamides A–C (1), as it contains an

unusual N-terminal dehydroamino acid.

Fig. 3.16 Auletta cf. constricta, a brownish sponge that contains jasplakinolide, which is related

to jasplakinolides B and C (1023 and 1024)–to make sure which of the two organisms of the

picture are addressed (Photo: P. Crews)
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1021 R = OMe (chondramide B)
1022 R = H (chondramide D)

1023 R = =O (jasplakinolide B)
1024 R = OH (jasplakinolide C)
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Fig. 3.17 Psammocinia aff. bulbosa, a Papua New Guinea sponge that produces cyclocinamide A

(1026) (Photo: P. Crews)
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A Psammocinia sp. (Fig. 3.17) sponge from Papua New Guinea has yielded the

potent cytotoxic cyclocinamide A (1026) (1063). The novel 6-chlorotryptophan

derivatives, microsclerodermins C (1027) and D (1028), were characterized from a

Philippines Theonella sp. sponge (1064). The related dehydromicrosclerodermins

C (1029) and D (1030) are found in the sponge Theonella cupola from Okinawa

(1065).
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The stereochemistry of the modified tryptophan amino acids in the previously

known konbamide and keramamide A sponge metabolites (1) has been deter-

mined to be L for both 2-bromo-5-hydroxytryptophan and 6-chloro-5-hydroxy-N-
methyltryptophan, respectively (1066). However, based on synthetic studies,

doubt has been raised as to the structure of konbamide (1067). A series of

investigations of Okinawan Theonella sp. sponges has uncovered the new halo-

genated keramamides, E (1031), H (1032) (1068), L (1033) (1069), M (1034), and
N (1035) (1070).
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The polychlorinated cyclic hexadepsipeptides kutznerides 1–9 (1036–1044),
which contain both the novel 6,7-dichlorohexahydropyrrolo[2,3-b]indole core and
several unusual amino acids, are found in the actinomycete Kutzneria sp. 744

inhabiting the roots of Picea abies (1071, 1072). These compounds show moderate

activity against root-rotting fungi. Another chlorinated hexahydropyrrolo[2,3-b]
indole cyclohexapeptide is the dimeric chloptosin (1045) isolated from a Streptomy-
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ces strain (1073). This unique metabolite induces apoptosis and shows strong

antimicrobial activity against Gram-positive bacteria including methicillin-resistant

Staphylococcus aureus.

One major recent development in the area of natural products is the discovery

and subsequent medicinal application of the toxic peptides from cone snails. These

Conus peptides, several of which contain a 6-bromotryptophan amino acid, are

finding utility for the treatment of neuropathic pain and other neurological condi-

tions (1074–1078). For example, o-conopeptide MVIIA (Ziconotide, trade name

Prialt) has been approved by the US FDA since 2004 for the treatment of severe

pain. It is estimated that the 500–700 species of cone snails (Conus genus) contain
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1036 R1 = a-OH, R2 = R3 = R4 = H, R5 = Me (kutzneride 1)
1037 R1 = a-OH, R2 = Cl, R3 = R4 = H, R5 = Me  (kutzneride 2)
1038 R1 = b -OH, R2 = R3 = R4 = H, R5 = Me  (kutzneride 3) 
1039 R1 = b-OH, R2 = H, R3 = R4 = π bond, R5 = Me  (kutzneride 4) 
1040 R1 = b-OH, R2 = R3 = R4 = R5 = H  (kutzneride 5) 
1041 R1 = b-OH, R2 = OH, R3 = R4 = π bond, R5 = Me  (kutzneride 6) 
1042 R1 = a-OH, R2 = R3 = R4 = R5 = H  (kutzneride 7) 
1043 R1 = b-OH, R2 = Cl, R3 = R4 = H, R5 = Me (kutzneride 8) 
1044 R1 = a-OH, R2 = H, R3 = R4 = π bond, R5 = Me (kutzneride 9) 
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more than 50,000 distinct toxins, since the venom in each snail consists of 40–200

individual peptides with a specific biological action (1074, 1077, 1080). However,
relatively few of these toxic peptides have been characterized. The venomous

worm-hunting cone snail Conus imperialis contains the heptapeptide 1046 in

which 6-bromotryptophan is present, and Conus radiatus produces a 33-amino

acid peptide 1047 that also contains 6-bromotryptophan (1081, 1988). The venom
from this latter snail has also furnished the octapeptide bromocontryphan (1048)
(1082). Numerous conotoxins contain 6-bromotryptophan, such as a 31-amino acid

peptide (1049) and others from Conus textile (1083, 1984–1987), and several

peptides from other Conus species (1084), including Conus delessertii (1989) and
Conus monile (1990).

Other marine organisms contain peptides and proteins with 6-bromotryptophan.

The ascidian Phallusia mammillata has a polypeptide morulin Pm (1050) that

includes 6-bromotryptophan (1085). In fact, this amino acid is the major residue

in the peptide. Similarly, the solitary ascidian Styela clava produces styelin D

(1051), another 6-bromotryptophan-containing 32-amino acid peptide (1086,
1087). Styelin D shows excellent activity against marine bacteria and human

pathogens (1087). Three cathelicidins, HFIAP-1 (1052), HFIAP-2 (1053), and
HFIAP-3 (1054), each containing one or two 6-bromotryptophans, were isolated

from the Atlantic hagfish (Myxine glutinosa) (1088). This report suggests that the
role of 6-bromotryptophan in these and other peptides (vide supra) is to block

proteolytic degradation. Thus, the large bromine atom makes the peptide a poor fit

for chymotrypsin, which normally would cleave tryptophan residues (1088).
One of the more interesting and structurally complex indole-containing peptides

is the previously described diazonamide (A and B) from the ascidian Diazona

Pca–cys–gly–gln–ala–Brtrp–cys–NH2

1046

[Pca = pyroglutamic acid]
Brtrp

1047 (33-amino acid peptide) 1049 (31-amino acid peptide)

gly–cys–hyp–D-trp–glu–pro–Brtrp–cys-NH2

[hyp =trans-4-hydroxyproline]1048 (bromocontryphan)

(1050-1054 are not shown)
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chinensis, which is now named Diazona angulata (1). However, as shown by

synthesis, the originally proposed structure of the diazonamides (1) is incorrect

(1089). Reevaluation of the data, X-ray analysis, and biogenetic considerations led

to structure VV for diazonamide A (1090, 1091), which has been confirmed by total

synthesis (1092–1094). Diazonamide A and synthetic analogs continue to find

interest as potential anticancer agents (1095).
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Although iodine-containing natural products are exceedingly rare, the previ-

ously described geodiamolides A–F are a group of marine sponge cyclic peptides

containing chlorine, bromine, and iodine (1). Several new examples are known,

such as geodiamolide G (1055) from a Cymbastela sp. Papua New Guinea sponge

(1096), H (1056) and I (1057) from the sponge Geodia sp. in Trinidad (1097), and
from a Papua New Guinea Cymbastela sp. J (1058), K (1059), L (1060), M (1061),
N (1062), O (1063), P (1064), and R (1065) (1098). Five of these new metabolites

contain iodine, and several are cytotoxic (1096–1098). The related geodiamolide

TA (1066) was isolated from the sponge Hemiasterella minor, and it has the same

configuration as the geodiamolides (1099). It is also quite cytotoxic against P388.

Related to the geodiamolides (i.e., D) is the iodinated neosiphoniamolide A (1067)
from the New Caledonian sponge Neosiphonia superstes (1100).
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1055 X = I (geodiamolide G)
1058 X = Br (geodiamolide J)
1059 X = Cl (geodiamolide K)
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1056 X = I (geodiamolide H)
1057 X = Br (geodiamolide I)
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Closely related to the geodiamolides are the seragamides A–F (1068–1073)
isolated from the Okinawan sponge Suberites japonicus (Fig. 3.18) (1101). Seraga-
mide A promotes G-actin polymerization and stabilizes F-actin filaments. A different

group of cyclic depsipeptides,miuraenamides A (1074) and B (1075), are produced by
the halophilic myxobacterial strain, SMH-27-4, and are potent and selective inhibitors

of the phytopathogenic Phytophthora sp. (1102). Interest in the previously known

chlorine-containing pepticinnamin E, which is an inhibitor of farnesyl-protein trans-

ferase isolated from a Streptomyces strain (1), has extended to its total synthesis, and
the synthesis of diastereomers (1103) and compound libraries (1104–1106).

1060 X = I, R1 = CH2OH, R2 = Me (geodiamolide L)
1061 X = Br, R1 = CH2OH, R2 = Me (geodiamolide M)
1062 X = Cl, R1 = CH2OH, R2 = Me (geodiamolide N)
1063 X = I, R1 = Me, R2 = CH2OH (geodiamolide O)
1064 X = Br, R1 = Me, R2 = CH2OH (geodiamolide P)
1065 X = l, R1 = CH2OH, R2 = H (geodiamolide R)
1066 X = I, R1 = CHMe2, R2 = Me (geodiamolide TA)
1067 X = I, R1 = CHMe2, R2 = H (neosiphoniamolide A)
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1069  X = Br, R = Me  (seragamide B)
1070  X = Cl, R = Me  (seragamide C)
1071  X = I, R = H  (seragamide D)
1072  X = I, R = CH2OH  (seragamide E)
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The extraordinarily biologically active and clinically promising cryptophycins,

which were discovered in a Nostoc sp. terrestrial blue-green alga (1), continue to be
isolated from this genus of filamentous cyanobacteria (1107–1109). The ecology of
Nostoc has been reviewed (849). The previously recorded cryptophycins A (WW)

and C (XX) (1) have been shown by total synthesis to have the absolute configura-

tion corresponding to the D-series of 3-chloro-O-methyltyrosine (1110). A study of

Nostoc sp. GSV 224 has uncovered 22 new chlorine-containing cryptophycins

HN
O

O

N O

NH

O

HO

X

O

O

1074  X = Br  (miuraenamide A)
1075  X = I  (miuraenamide B)

Fig. 3.18 Suberites japonicus, a sponge collected in Zampa, Okinawa, that contains seragamides

A–F (1068–1073) (Photo: J. Tanaka)
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(which are now designated by numbers): cryptophycin-30 (1076), -28 (1077), -16
(1078), -23 (1079), -31 (1080), -17 (1081), -45 (1082), -175 (1083), -46 (1084), -29
(1085), -21 (1086), -176 (1087), -40 (1088), -326 (1089), -38 (1090), and -18

(1091), -49 (1092), -50 (1093), -54 (1094), -19 (1095), -26 (1096), and -327

(1097) (1111–1113).
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1078 R = H, X = H  (cryptophycin-16)
1079 R = H, X = Cl  (cryptophycin-23)
1080 R = Me, X = Cl  (cryptophycin-31)

X

O

HNO Cl

RN
H

O

O
O

O

1081 R = H, X = H  (cryptophycin-17)
1082 R = H, X = Cl  (cryptophycin-45)
1083 R = Me, X = Cl  (cryptophycin-175)

1085 (cryptophycin-29)

O

HNO Cl

ON
H

O

O
O

O

1084 (cryptophycin-46)

O

HNO

ON
H

O

O
O

O

Cl

3.12 Amino Acids and Peptides 161



1086  R1 = Me, R2 = X = H  (cryptophycin-21)
1087  R1 = R2 = X = H  (cryptophycin-176)
1088  R1 = R2 = Me, X = H  (cryptophycin-40)
1089  R1 = Me, R2 = H, X = Cl  (cryptophycin-326)
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1091 R = Me  (cryptophycin-18)
1092 R = H  (cryptophycin-49) 

1095 (cryptophycin-19)

1093  R = H (cryptophycin-50)
1094  R = Me (cryptophycin-54)
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The striking cytotoxic activity of some cryptophycins, comparable or superior

to taxol and vincristine in some cell lines, has generated intense synthetic interest

(1107, 1109, 1114, 1115). A synthetic analog, cryptophycin-52 (the C6 gem-
dimethyl analog of cryptophycin 1 (= cryptophycin A); not shown), has been

selected for clinical evaluation (1116–1119). Unfortunately, neurotoxicity may

preclude further development of cryptophycin-52 (1118, 1119). The simple fungal

metabolite (–)-xylariamide A (1098), which resembles the “right-half” of the

cryptophycins, is produced by the terrestrial fungus Xylaria sp. (1120). The

structure of 1098 has been confirmed by synthesis (1121).

Perthamide B (1099) is a novel cyclic octapeptide found in a Theonella sp.

sponge near Perth, Australia (1122). A collection of the Japanese sponge Halichon-
dria cylindrata has afforded halicylindramides A–E (1100–1103), and the absolute

configurations are shown (1123, 1124). Each compound features a 4-bromophenyl-

alanine residue.
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Theonellamides A–E (1104–1108), which are analogs of the previously isolated

theonellamide F (1), were characterized from the Japanese sponge Theonella sp.

(1125). The related theopalauamide (= P951) (1109) was isolated from Theonella
swinhoei found in both Palau and Mozambique (1126, 1127). It should be noted that
a minor structural correction (misplaced methyl group) has been reported for the

previously known theonegramide (1128).
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1109 R = D-galactose  (theopalauamide = P-951)
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1104 R1 = OH, R2 = Me, R3 = Br, R4 = H  (theonellamide B)
1105 R1 = R2 = R3 = H, R4 = Br  (theonellamide C)
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1106 R1 = OH, R2 = Me, R3 = H, X = b-D-Gal  (theonellamide A)
1107 R1 = R2 = H, R3 = Br, X = b-L-Ara  (theonellamide D)
1108 R1 = R2 = H, R3 = Br, X = b-D-Gal  (theonellamide E)
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Studies of Theonella swinhoei sponges from Papua New Guinea and Indo-

nesia revealed the presence of the chloroleucine-containing cyclolithistide A

(1110) (1129). Anabaenopeptilide 90B (1111) is a cyclic depsipeptide pro-

duced by the cyanobacterium Anabaena strain 90 (1130). An Indonesian

collection of the sponge Sidonops microspinosa yielded microspinosamide

(1112), a novel HIV-inhibitory cyclic depsipeptide (1131). Structurally sim-

ilar to cyclolithistide A (1110) are phoriospongins A (1113) and B (1114)
found in the Australian sponges Phoriospongia sp. and Callyspongia bilamel-
lata (1132).
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The prevalent Microcystis aeruginosa has afforded the plasmin inhibitors

micropeptins 478-A (1115) and 478-B (1116) (1133). The terrestrial cyano-

bacterium Scytonema hofmanni PCC 7110 gives rise to scyptolins A (1117)
and B (1118), which contain the 3-chloro-N-methyltyrosine residue (1134).
The binding of 1117 to pancreatic elastase has been determined by X-ray

crystallography (1135). Myriastramide B (1119) was isolated from the Philip-

pine sponge Myriastra clavosa and features a novel chlorinated ether moiety

(1136).
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The novel peptide takaokamycin (1120) was isolated from a Streptomyces sp.
culture (1136), but it subsequently became clear that this antibiotic was identical to

hormaomycin (= 1120) (1137), which was isolated independently from Streptomy-
ces griseoflavus (1138, 1139). The structure of hormaomycin was later confirmed

(1140), and it has been synthesized (1141). Two chlorinated actinomycins, Z3

(1121) and Z5 (1122), were isolated from cultures of Streptomyces fradiae and

are more active than the non-chlorinated actinomycin D (1142). Streptomyces
iakyrus provides the new actinomycin G2 (1123), which is the major component

of this family of actinomycins and the most biologically active (1143). Although no
new examples of syringomycins and syringtoxins have been described, the synthe-

sis and study of synthetic analogs reveal the importance of 4-chlorothreonine

residues for antibiotic activity (1144). The biological chlorination of threonine in

syringomycin involves a non-haem halogenase, SyrB2 (1145, 1146), and a mecha-

nism is presented in Chap. 4 (Biohalogenation).
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1122  R = H  (actinomycin Z5) 
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An exciting development in the area of halogenated natural products is the

isolation and characterization of salinosporamide A (1124) from a new genus of

marine bacteria, Salinospora (1147) (subsequently renamed Salinispora). Salino-
sporamide A displays potent cytotoxicity against a number of human cell lines

(HCT-116 colon, NCI-H226 non-small cell lung, SK-MEL-28 melanoma, and

others) and is now in phase I clinical trials (as NPI-0052) for the treatment of

cancer (1148). Additional studies of Salinispora tropica yielded salinosporamides

C (1125) (1149), F (1126), I (1127), and J (1128) (1150). Several degradation
products and non-chlorinated salinosporamides were also isolated in both studies.

Cytotoxicity data indicate that the chloroethyl substituent is crucial for activity

(1149–1151). The mechanism of action of salinosporamide A seems to involve

nucleophilic addition of a threonine in the 20S proteasome to the lactone carbonyl

group followed by attack on the chloroethyl group leading to a cyclic ether and

irreversible binding (1152). As anticipated, synthetic interest in the salinospora-

mides has been intense (1153, 2655).
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A marine-derived fungus, Trichoderma virens, has yielded the novel chlorinated
trichodermamide B (1129), which displays significant cytotoxicity towards HCT-

116 human colon carcinoma (1154). Interestingly, trichodermamide A is devoid of

both chlorine and biological activity in all of the assays tested. A Helicomyces
fungal strain (No. 19353) produces the gluconeogenesis inhibitors FR225659

(1130), FR225656 (1131), and the related 1132–1134 (1155–1158).
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1130  R = Me  (FR225659)
1131  R = Et   (FR225656)
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3.13 Alkaloids

This section and the section on alkaloids in the first survey (1) are artificially small

since many halogenated alkaloids are presented in the sections on pyrroles, indoles,

carbolines, tyrosines, and other nitrogen heterocycles. It might be noted that the

very large number of brominated alkaloids that are obviously tyrosine-derived are

now included in Sect. 3.22.3 (Tyrosines).

The previously known novel frog alkaloid epibatidine (1), continues to be of

pharmacological (1159, 1160) and synthetic interest (1161), including the synthesis
of many analogs (1162). The new clolimalongine (1135), a hasubanan type alkaloid
related to the previously described chlorine-containing acutumine (1), was char-

acterized from Limacia oblonga (1163). Two new epimers of known alkaloids are

dauricumine (1136) and dauricumidine (1137) isolated from plant cultures of

Menispermum dauricum (1164). The known acutumine (1), which is an epimer of

1136, incorporates 14C-labelled L-tyrosine (1165), and it along with 1136 and 1137
incorporate 36Cl when this radiolabel is fed to the roots (1164). An extraction of the
Brazilian plant Senecio selloi yielded 18-hydroxyjaconine (1138) (1166). Plants of
this genus are infamous for their armament of poisonous pyrrolizidine alkaloids;

five chlorinated examples were cited earlier (1).
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Petrosamine B (1139), an isomer of the known petrosamine (1), was character-
ized from the Australian sponge Oceanapia sp. (1167). The structure of the tetra-

cyclic brominated alkaloid pantherinine (1) has been confirmed by total synthesis

(1168). The novel aporphine alkaloids romucosine F (1140) from Annona purpurea
(1169) and romucosine B (1141) from Rollinia mucosa (1170) have antiplatelet

aggregation activity. Interestingly, synthetic halogenated boldine (1171) and pro-

toberberine alkaloids (1172) show enhanced biological activity (monoamine recep-

tor selectivity and cytotoxicity, respectively) over their non-halogenated

counterparts. For boldine the order of activity is I > Br > Cl, and it is suggested

that both increased lipophilicity and interaction with aromatic residues are involved

in the mode of action (1171).
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A Papua New Guinea sponge, Pseudoceratina sp., contains the unusual alkaloids
ceratamines A (1142) and B (1143), and a biogenesis involving histidine and

tyrosine is proposed (1173). The fermentation broth from Aspergillus fischeri var.
thermomutatus has yielded CJ-12662 (1144) and UK-88051 (1145) (1174). The
former metabolite was confirmed by X-ray spectroscopy and partial synthesis. A

marine-derived Streptomyces sp. produces the novel pyrrolizidine 5-chlorobohem-

amine C (1146), which was shown not to be an isolation artifact (1175). The
Chinese medicinal plant Huperzia serrata has furnished 2-chlorohyperzine E

(1147) (1176).
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Three novel related marine alkaloids, halichlorine (1148) from the sponge

Halichondria okadai (1177, 1178) and pinnaic acid (1149) and tauropinnaic acid

(1150) from the bivalve Pinna muricata (1179), have been the objects of much

synthetic interest in view of their pronounced biological activity (inhibition of the

vascular cell adhesion molecule-1) (1180). Synthesis of these alkaloids led to both

revision and confirmation of the original structures (1181, 1182). The syntheses of the
previously known chlorine-containing cylindricines have been reviewed (1183).
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3.14 Heterocycles

3.14.1 Pyrroles

The abundance of proline (and therefore pyrroles) in the biosphere, coupled with

the enormous reactivity of pyrrole towards electrophilic substitution (i.e., haloge-

nation), portends an abundance of naturally occurring halogenated pyrroles (2668).
The first survey documented more than 70 such compounds (1), including the

prototypical pyoluteorin and pyrrolnitrin, which continue to receive attention.

The latter metabolite is produced by both Pseudomonas bacteria and, as recently

discovered, Enterobacter agglomerans (1184). Pyrrolnitrin is active against a wide

range of bacteria and fungi (1184), such as Mycobacterium tuberculosis (1185).
The biological activity of pyrrolnitrin involves blocking the electron-transport

system of the respiratory chain (1186), and this metabolite seems to play an

important role in the biocontrol of pathogenic fungi (1187). Pyrrolnitrin is also

used clinically to treat dermatophytosis (1188).
The biosynthesis of pyrrolnitrin has been extensively investigated for 40 years

and the current state of affairs is summarized in Chap. 4 (Biohalogenation) (1189).
Noteworthy is that the chlorination of tryptophan by tryptophan 7-halogenase is the

first step in the sequence (1190, 1191). Although less well studied, the biosyntheses

of other members of this family (pyoluteorin, dioxapyrrolomycin, and pentabro-

mopseudilin) will be briefly presented in Chap. 4 (Biohalogenation). A culture of

Streptomyces fumanus has yielded the new pyrrolomycin G (1151), H (1152), I
(1153), and J (1154) (1192). The absolute configuration of G and H was deter-

mined as (S). A compound missed in the earlier survey is pentachloropseudilin

(1155) (1193), the chlorine analog of the known pentabromopseudilin (1).
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1152 R = Me  (pyrrolomycin H)

1153 R = H  (pyrrolomycin I)
1154 R = Cl  (pyrrolomycin J)
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A Streptomyces sp. has yielded the novel TAN-876 A (1156) and TAN-876 B

(1157), where the former compound is a unique example of the chromeno[2,3-b]
pyrrole ring system (1194). These metabolites exhibit strong antibacterial activity

against Gram-positive and Gram-negative bacteria and fungi. The pyralomicins 1a

(1158), 1c (1159), 1d (1160), 1b (1161), 2a (1162), 2c (1163), and 2b (1164) were
isolated from cultures of Microtetraspora (formerly Actinomadura) spiralis
(1195–1198). Cultures of Streptomyces armeniacus produce streptopyrrole (1165)
(1199), and Streptomyces rimosus has afforded an additional six streptopyrroles

1166–1171 (1200).
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1164 (pyralomicin 2b)1162 R = Me  (pyralomicin 2a)
1163 R = H  (pyralomicin 2c) 
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1160 R1 = Cl, R2 = H  (pyralomicin 1d) 
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The sodium sulfamate salt 1172 of the previously known marine acorn worm

metabolite 2,3,4-tribromopyrrole was isolated from Saccoglossus kowalevskii
(1201). This compound may serve as the stable, non-toxic, and non-volatile precur-

sor to 2,3,4-tribromopyrrole, which is probably the actual deterrent to predators.

The Tasmanian bryozoan Bugula dentata has afforded the new bipyrroles tambja-

mines G-J (1173–1176) (1202). Several new analogs of the polybrominated 2,20-
bipyrrole that was described earlier (1) have been isolated from seabird eggs (gulls,

petrel, albatross, puffin, bald eagle) (1203). As the isolated amounts were too small

to be identified, total synthesis verified the two major compounds as 1177 and 1178
(1204). Further confirmation was provided by X-ray crystallography (1205).
Subsequent studies reveal that 1177, 1178 and other analogs (1179–1184) are

ubiquitous in the marine environment, being present in zooplankton, fish, seabirds,

seal, porpoise, dolphin, and whale (1206–1209). Porpoise and whale blubber also

contain the less heavily halogenated 1181–1184, which have not yet been fully

characterized (1209). Given their structural similarity to polychlorinated biphenyls

(PCBs), it is not surprising that these polyhalogenated bipyrroles bioaccumulate in

the food chain.
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N NHCH2R
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Br

1173 R = CH3  (tambjamine G)
1174 R = CH2CH3  (tambjamine H)
1175 R = CH(CH3)2  (tambjamine I)
1176 R = CH(CH3)CH2CH3  (tambjamine J)
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An investigation of marine samples (penguin and skua eggs, in whale and seal

blubber, deep sea fish, and human milk) from Antarctica and Africa uncovered

“Q1”, a novel heptachloro-10-methyl-1,20-bipyrrole (1185) (1210–1213), which
was confirmed by total synthesis (1214). The discovery of Q1 in human milk

samples from women of the Faeroe Islands who consume whale blubber indicates

that Q1 is the first natural bioaccumulative compound to move up the food chain to

humans, in levels up to 230 mg kg�1 (1213). Examination of worldwide marine

samples shows that Q1 is widespread in the environment, particularly in marine

mammals and birds, but also in a green turtle and a python in Australia (1215). Q1 is
also present in the eggs of five different Norwegian predatory birds (white-tailed

sea eagle, golden eagle, merlin, osprey, and goshawk) (479). The environmental

occurrence and structure of Q1 are reviewed (1216, 1217). The highest concentra-
tion measured to date is 14 mg kg�1 in an Australian dolphin (1217). As might be

expected for a nonplanar PCB-like compound, Q1 has low biological activity and

only modest affinity as an AHR ligand (1218). Three brominated derivatives

(1186–1188) of Q1 have been isolated from the blubber of nine New England

marine mammals (species of dolphin, porpoise, whale, seal, and a squid) (1219,
1220). Concentrations of 1186–1188 in a squid (Loligo pealei) were measured up to

2.7 mg kg�1 (1219). Marine samples from Australia and Antarctica (melon-headed

whale, pygmy sperm whale, common dolphin, bottlenose dolphin) contain 22 new

polyhalogenated Q1 analogs in addition to 1186 and 1187 (1221). These are 1189–
1210, with varying numbers of bromines and chlorines and different isomers. An

important complementary finding is that Q1, several brominated analogs (1186–
1188), and the new 1211 were discovered in archived whale oil collected in 1921

from the last voyage of the whaling ship Charles W. Morgan, a sample of oil that

predates large-scale industrial manufacture of organohalogen compounds (1222).
This oil was found not to contain PCBs, DDT, or DDE. Equally noteworthy is that
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1181
HBr4Cl
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N
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HBr2Cl3
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radiocarbon analysis of both Q1 (1185) and 1178 reveals that these compounds

originate naturally and are not anthropogenic (petroleum-derived) (1223). It is
highly likely that Q1 and brominated Q1s have been isolated and misidentified in

the past. A case in point could be the “halogenated naphthols” isolated from a

white-sided dolphin (1224).

N NCl

Cl Cl
Cl

Cl

ClCl
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Br6Cl

N N
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HBr5Cl
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N N
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N N

1198-1202 Br4Cl3

N N
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Br5Cl2

N N
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HBr6

N N
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A Streptomyces strain isolated from Brazilian (Maytenus aquifolia) and South

African (Putterlickia retrospinosa, Putterlickia verrucosa) plants has furnished

celastramycin A (1212) (1225). A new isomer of the known rumbrin (1) was

isolated from an Australian soil ascomycete, Gymnoascus reessii, and named

(12E)-isorumbrin (1213) (1226). Somewhat earlier, the three related auxarconju-

gatins A, B, and (30Z)-A (1214–1216) were characterized from an Arizona soil

microorganism Auxarthron conjugatum (1227). A basidiomycete fungus from a

New Zealand forest, Chamonixia pachydermis, produces pachydermin (1217)
(1228).

N
H

Cl

Cl
O OH

HO
Cl

1212  (celastramycin A)
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Decatromicins A (1218) and B (1219) are produced by an Actinomadura sp. and
are active against Gram-positive bacteria including methicillin-resistant Staphylo-
coccus aureus (1229, 1230). These compounds are closely related to pyrrolosporin

A (1220) fromMicromonospora sp. (1231, 1232). The ascidian Polycitor africanus
fromMadagascar has afforded the new polycitone B (1221) (1233), which is related
to the known polycitone A (1), a potent inhibitor of retroviral reverse transcriptases
and cellular DNA polymerases (1234). The known polycitrin B was synthesized for

the first time (1235).

Most of the known natural brominated pyrrole alkaloids are found in sponges,

and several new examples were isolated since the first survey (1). Reviews are

available that discuss the occurrence and syntheses of these metabolites (1236–
1238). The Papua New Guinea sponge Agelas nakamurai has yielded the new

simple pyrroles 1222 and 1223 (1239). The dibromo analog (1224) of 1223 along

with enantiomeric lactams 1225/1226, which were separated by chiral HPLC, and

1218 R = H  (decatromicin A)
1219 R = Cl  (decatromicin B)
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racemic longamide, previously isolated as the (+)-isomer (vide infra), were all

characterized from the Japanese sponge Homaxinella sp. (1240). Interestingly,
lactam ester (+)-(S)-1225 was isolated from Agelas ceylonica collected in India

(1241), and (+)-(S)-longamide (1227) was first described from Agelas longissima
(1242). The (racemic) ethyl ester of methyl esters 1225/1226 is known as hanishin

(1228/1229), and was isolated from the Red Sea (Hanish Islands) sponge

Acanthella carteri, along with amide 1230 (1243), an isomer of 1222. A debromo

analog (1231) of 1225 was isolated from the Indian sponge Axinella tenuidigitata
(1244). Longamide B (1232) was found in the Caribbean sponge Agelas dispar
(1245). Debromolongamide 1233 was isolated from the Micronesian Axinella
carteri (1246), and the same compound as “mukanadin C” was found in Agelas
nakamurai (1247). Total syntheses of hanishin (1228), longamide B (1232), and
longamide B methyl ester (1225) show that the levorotary enantiomers of these

natural products have the (S)-configuration (1267).

1222 R = X = H 
1223 R = CH2OMe, X = H
1224 R = CH2OMe, X = Br 

N
H

Br

H
N

R

O
N

NH

CO2Me

O

Br

Br
N

NH

CO2Me

O

Br

Br

12261225

N
NH

O

Br

HO

Br

1227 (longamide) 1228 (hanishin) 

N
H

Br

CONH2

1230

N
NH

CO2Me

OBr

1231

1233 (debromolongamide = mukanadin C)

1232 (longamide B)

N
NH

O

Br

HO

N
NH

CO2H

O

Br

Br

X

N
NH

CO2Et

O

Br

Br N
NH

CO2Et

O

Br

Br

1229 (hanishin)

184 3 Occurrence



The aforementioned Caribbean collection of Agelas dispar affords the novel

clathramides C (1234) and D (1235) (1245), which are demethylated examples of

the earlier isolated clathramides A (1236) and B (1237) (1248). The zwitterionic

alkaloid agelongine (1238) was isolated from the Caribbean sponge Agelas longis-
sima and displays antiserotonergic activity (1249). This sponge and three others

from the Caribbean (Agelas conifera, Agelas clathrodes, and Agelas dispar) have
afforded dispacamide (1239) and its monobromo analog (dispacamide B) 1240
(1250). These two metabolites are the first of many new bromopyrroles to be

isolated that are related to oroidin. These same four Agelas sponges produce

dispacamides C (1241) and D (1242) (1251). The latter bromopyrrole was also

isolated from Agelas nakamurai as “mukanadin A” with the new mukanadin B

(1243) (1247). Along with the latter compound, mukanadin D (1244) was found in

the Jamaican sponge Didiscus oxeata (1252).
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1234 R1 = H, R2 = CO2  (clathramide C)
1235 R1 = CO2  , R2 = H  (clathramide D)
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1238 (agelongine) 1239 R = Br  (dispacamide)
1240 R = H  (dispacamide B)

1243 R = H  (mukanadin B)
1244 R = Br  (mukanadin D)

1241 R = Br  (dispacamide C)
1242 R = H  (dispacamide D)

1236 R1 = H, R2 = CO2    (clathramide A)
1237 R1 = CO2 , R2 = H  (clathramide B)
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The antifouling sponge metabolite pseudoceratidine (1245) was characterized

from the Japanese Pseudoceratina purpurea (1253). This spermidine derivative

has excellent larval settlement and metamorphosis inhibitory activity against the

barnacle Balanus amphitrite (ED50 ¼ 8.0 mg cm�3), and is the first example of

an antifouling spermidine derivative. The four tauroacidins A (1246/1247) and B

(1248/1249), with tyrosine kinase inhibitory activity, were isolated from the
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Okinawan sponge Hymeniacidon sp. (1254). The closely related taurodispacamide

A (1250) is found in the Mediterranean sponge Agelas oroides (1255). This

compound exhibits good antihistaminic activity. A Florida collection of Agelas
wiedenmayeri contains the bromopyrrole homoarginine 1251, which may be a

biosynthetic precursor to hymenidin and oroidin derivatives (1256). The decar-

boxylated version of 1251, laughine (1252), was isolated from the Dominican

sponge Eurypon laughlini (1257). The arginine (1253) and lysine (1254) analogs
of 1251 were found in the Bahamanian sponge Stylissa caribica (1258). A total

synthesis of 1251 confirms its structure (1259). Sventrin (1255) (N-methyloroidin)

is present in the Bahamanian sponge Agelas sventres, and is a feeding deterrent to

the reef fish Thalassoma bifasciatum (1260). Four analogs of known bromopyrrole

alkaloids (1256–1259) were isolated from the Corsican sponge Axinella verrucosa
(1261). Thus, compound 1256 is 9-hydroxymukanadin B, 1257 is 9-methoxydis-

pacamide B, 1258 is 2-debromotaurodispacamide A, and 1259 is the 2-debromo

analog of 1224.
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The cyclized slagenins A–C (1260–1262) were discovered in the sponge

Agelas nakamurai living in Okinawan waters (1262). Slagenins A and B are

active in the L1210 murine leukemia screen. The absolute configurations of

1260–1262 were established by total synthesis (1263). A Japanese collection of

Agelas mauritiana yielded mauritiamine (1263) (1264). This novel oroidin dimer

inhibits barnacle growth (Balanus amphitrite). Cyclooroidin (1264) was isolated

from the Mediterranean Agelas oroides (1255), and ugibohlin (1265) was found

in the Philippines sponge Axinella carteri (1265). Total synthesis confirms the

assigned structure of 1264 and establishes its absolute configuration as shown

(1266). Ageladine A (1266) was isolated from the sponge Agelas nakamurai, and
is a potent inhibitor of matrix metalloproteinases (1268). Ageladine A has been

synthesized (1269, 1270).
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Agesamides A (1267) and B (1268) were isolated from an Okinawan sponge

Agelas sp. (1271), and the interesting oxocyclostylidol (1269) was found in the

Bahamian sponge Stylissa caribica, and is structurally related to cyclooroidin

(1272). Some new examples of the hymenialdisine-axinohydantoin bromopyrrole

class have been discovered since the first survey (1). The prolific sponge Axinella
carteri from Indonesia contains 3-bromohymenialdisine (1270) (1273). The

Palauan sponge Stylotella aurantium has furnished the (10E)-diastereomer of

hymenialdisine (1271) (1274), and the (10Z)-diastereomer of axinohydantoin

(1272) was also isolated from the sponge Stylotella aurantium (1275). An Okina-

wan sponge Hymeniacidon sp. has afforded the new spongiacidins A (1273) and B

(1274), along with 1272 (“spongiacidin D”) (1276). Spongiacidin A is the (10E)-di-
astereomer of 1270. The Indonesian sponge Stylissa carteri yielded 2-debromoste-

vensine (1275) and 2-debromohymenin (1276) (1277). Syntheses of several

axinohydantoins (1278) and hymenialdisines (1279) have been reported.
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Latonduines A (1277) and B (1278), which have a novel ring system, were

isolated from the Indonesian sponge Stylissa carteri and the structures confirmed

by total synthesis (1280). Some new phakellin-type bromopyrroles have been

characterized. The Indian Ocean sponge Phakellia mauritiana contains dibro-

mophakellstatin (1279), which is the principal antineoplastic component of this

sponge and shows activity against ovarian, brain, kidney, lung, colon, and

melanoma human cell lines (1281). The sponge Stylissa caribica from the

Bahamas produces N-methyldibromoisophakellin (1280), which displays excel-

lent feeding deterrent activity against the common reef fish Thalassoma bifas-
ciatum (1282). This metabolite is more active than oroidin in this assay. The

related monobromoisophakellin (1281) was identified in an Agelas sp. sponge

from the Bahamas (1283). Syntheses of dibromophakellstatin (1284–1286) and
dibromoisophakellin (1284) confirm the proposed structures. The Japanese

sponge Axinella brevistyla produces four new pyrrole-derived alkaloids (1287).
In addition to the simple 3-bromomaleimide (1282) and 3,4-dibromomaleimide

(1283), N-methylmanzacidin C (1284) and 12-chloro-11-hydroxydibromoisopha-

kellin (1285) were characterized from this sponge. The two new phakellin

alkaloids, (–)-7-N-methyldibromophakellin (1286) and (–)-7-N-methylmonobro-

mophakellin (1287), are present in the Papua New Guinea sponge Agelas sp.

(1288).
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The Pohnpei sponge Astrosclera willeyana has furnished seven new N-methyl-

ageliferins: N(10)-methylageliferin (1288), N(1),N(10)-dimethylageliferin (1289),
N(10)-methylisoageliferin (1290), N(1),N(10)-dimethylisoageliferin (1291), N(10)-
methyl-2-bromoageliferin (1292), N(10)-methyl-20-bromoageliferin (1293), and N
(10)-methyl-2,20-dibromoageliferin (1294) (1289). The Indonesian sponge Agelas
nakamurai contains the sceptrin-related nakamuric acid (1295) and the

corresponding methyl ester, which is considered to be an isolation artifact (1290).
The new bromosceptrin (1296) was characterized from the Florida sponge Agelas
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conifera (1291). The ageliferin and sceptrin families of bromopyrroles have been of

synthetic interest (1292, 1293).
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The new agelastatins C (1297) and D (1298) were discovered in the Indian Ocean
sponge Cymbastela sp. (1294). The absolute configurations are as shown. The known
agelastatin A, which has been the object of synthesis (1295–1298), was also isolated
in this study and shown to have insecticidal activity against larvae of beet army worm

and corn rootworm (1294). A series of nagelamides A–H (1299–1306) was character-
ized in the Okinawan sponge Agelas sp., along with the new 9,10-dihydrokeramadine

(1307) (1299). All of the nagelamides display antibacterial activity and nagelamide G

(1305) inhibits protein phosphatase 2A. The structurally complex stylissadines A

(1308) and B (1309) were isolated from the sponge Stylissa caribica collected in the
Bahamas (1300). The stylissadines appear to be dimers of massadine (1314).
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1297  R1 = OH, R2 = Me  (agelastatin C)
1298 R1 = R2 = H  (agelastatin D) 
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1299  R = H  (nagelamide A)
1300  R = OH  (nagelamide B)
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1301 (nagelamide C)
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1302 (nagelamide D)
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1303 X = Y = H  (nagelamide E)
1304 X = Br, Y = H  (nagelamide F)
1305 X = Y = Br  (nagelamide G)
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An Australian sponge Axinella sp. has afforded the novel axinellamines A–D

(1310–1313), which exhibit activity againstHelicobacter pylori (1301). The similar

massadine (1314) from the Japanese sponge Stylissa aff. massa inhibits geranylger-
anyltransferase type I and the fungus Candida albicans (1302). Like many of these

2-aminoimidazole alkaloids, 1310–1314 were isolated as acid salts; trifluoroacetic

acid salts in these cases.
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1308, 1309 (stylissadines A and B) (epimeric at C-2')
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1310 R = H (axinellamine A)  
1312 R = Me (axinellamine C)  
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The stunningly complex and intricate palau’amine (1315) was isolated from the

South Pacific sponge Stylotella agminata (renamed as Stylotella aurantium) (1303,
1304), along with 4-bromopalau’amine (1316) and 4,5-dibromopalau’amine (1317)
(1304). This sponge has also yielded styloguanidine (1318), 3-bromostyloguanidine

(1319), and 2,3-dibromostyloguanidine (1320), which are potent antifouling com-

pounds against barnacles (1305). These three compounds were also identified in a

previous examination of Stylotella aurantium as “isopalau’amines” (1304). The
related konbu’acidin A (1321), having cyclin dependent kinase activity, was

isolated from the Okinawan sponge Hymeniacidon sponge (1306).
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1311 R = H  (axinellamine B)  
1313 R = Me  (axinellamine D) 
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Three independent studies present evidence that palau’amine, styloguanidine,

and derivatives need to be revised at three stereocenters (i.e. (12R,7S,20S)
(1307–1309)). Based on these studies the revised structure of palau’amine is

shown as YY, and the other structures (1316–1321) may need to be reconsidered

as well. The Australian sponge Stylissa flabellata contains stylissadines A (1308)
and B (1309), which were initially named “flabellazoles A and B”, respectively

(1307). This study also uncovered the new konbu’acidin B (1322), and reported that
1308 and 1309 are the most potent natural product P2X7 antagonists to be isolated

to date (1307). The Bahamaian sponge Stylissa caribica contains tetrabromostylo-

guanidine (1323) (1308), and Stylissa carteri has yielded carteramine A, which

appears to be 1323 (same optical rotation) (1309). Related to nagelamides A–H

(1299–1300), the new nagelamide J (1324) was isolated from an Okinawan Agelas
sponge (2659).
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1318  R1 = R2 = H  (styloguanidine)
1319  R1 = Br, R2 = H
1320  R1 = R2 = Br 
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3.14.2 Indoles

Like pyrrole, the enormous reactivity of indole guarantees a large number of natural

halogenated indoles. The earlier survey documented nearly 200 halogenated

indoles, not including halogenated carbazoles, carbolines, and related fused indoles

(1). Simple halogenated indoles, both previously known and new, continue to be

identified in natural sources. The Palauan ascidian Distaplia regina contains 3,6-

dibromoindole (1310), which was earlier misidentified (1). The previously known

1-methyl-2,3,5-tribromoindole was identified in the Indian red alga Nitophyllum
marginata (1311), and the marine acorn worm metabolite 3-chloroindole (1) has
now been found in the mushroom Hygrophorus paupertinus (1312). The common

oyster Crassostrea virginica contains two dibromoindoles and one tribromoindole,

which are not yet identified (1313). In addition to the previously reported 3,6- and

4,6-dibromoindoles (1), both the open ocean and sediments from the North and

Baltic Seas contain 4-bromoindole (1325), 5-bromoindole (1326), 6-bromoindole

(1327), and 3,4-dibromoindole (1328) (1314). Three new bromoindoles, 3,5,6-

tribromoindole (1329), 1-methyl-3,5,6-tribromoindole (1330), and 2,3,6-tribro-

moindole (1331) were isolated from the red alga Laurencia similis collected off

the coast of Hainan Island, China (1315). The muricid gastropod Drupella fragum,
a predator of Madreporaria corals, contains in its mid-intestinal gland novel bro-

minated hydroxyindoles, 6-bromo-5-hydroxyindole (1332), 6-bromo-4,5-dihy-

droxyindole (1333), and 5-bromo-4,7-dihydroxyindole (1334) (1316). Indole

1332 is comparable to BHT and superior to a-tocopherol for antioxidative activity,
and the structure of 1332 is confirmed by synthesis. The unusual sulfate-sulfamate

indoles ancorinolates A (1335) and C (1336) were isolated from the sponge

Ancorina sp. (1317). These indoles show weak HIV-inhibitory activity. The For-

mosan red alga Laurencia brongniartii has yielded three new sulfur-containing

polybromoindoles, 1337–1339, and two related dimeric polybromoindoles, 1340
and 1341 (1318).
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1335 R = SO3Na  (ancorinolate A) 
1336 R = H (ancorinolate C)  
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Several new brominated tryptamines and tryptophans have been described.

The Tasmanian bryozoan Amathia convoluta contains convolutindole A (1342)
(1319), and the North Sea bryozoan Flustra foliacea (Fig. 3.19) has afforded

deformylflustrabromine B (1343) (1320), 1344, 1345, and deformylflustrabromine

(1346) (1321). A Philippine sponge Smenospongia sp. contains 5-bromotryptophan

(1347), 5-bromoabrine (1348), 5,6-dibromoabrine (1349), and 5-bromoindole-3-

acetic acid (1350) (1322). A study of the sponge Thorectandra sp. has furnished

5-bromo-N,N-dimethyltryptophan (1351), 5-bromohypaphorine (1352), and aply-

sinopsin 1353 (1323), while the Papua New Guinea sponge Smenospongia sp.

produces methyl 6-bromoindole-3-carboxylate (1354) (1323). The novel iodinated

Br
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OH

1332 R = H 
1333 R = OH 
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plakohypaphorines A–F (1355–1360) were isolated from the Caribbean sponge

Plakortis simplex (1324, 1325). These novel compounds are the first examples of

naturally occurring iodine-containing indoles. The Pacific Coast snail Calliostoma
canaticulatum secretes the disulfide-linked dimer of 6-bromo-2-mercaptotrypt-

amine (1361) that repels the predatory starfish Pycnopodia helianthoides (1326).

1342 (convolutindole A) 1343 (deformylflustrabromine B)

1345

1346  (deformylflustrabromine)

1344

1347 R1 = R2 = H
1348 R1 = Me, R2 = H  (5-bromoabrine)
1349 R1 = Me, R2 = Br  (5,6-dibromoabrine)

1350 1351
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1352  (5-bromohypaphorine)

1354

1353  (aplysinopsin)

1355 R1 = R2 = H, R3 = I  (plakohypaphorine A)
1356  R1 = H, R2 = R3 = I  (plakohypaphorine B)
1357  R1 = R3 = I, R2 = H  (plakohypaphorine C)
1358  R1 = I, R2 = I, R3 = H  (plakohypaphorine D)
1359  R1 = I, R2 = I, R3 = I  (plakohypaphorine E)
1360  R1 = I, R2

 = H, R3 = Cl  (plakohypaphorine F) 

1361
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Fig. 3.19 Flustra foliacea, a North Sea bryozoan and a producer of many bromotryptamines and

brominated indole alkaloids, such as 1343–1346 (Photo: A. D. Wright)
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Barettin (1362) was isolated from the Swedish sponge Geodia baretti (1327),
and the structure was subsequently revised (1328) after a synthesis of the proposed
structure proved it incorrect (1329). Dihydrobarettin (1363) is also found in this

sponge (1330). The three novel amino acid derivatives 1364–1366 were identified

in the New Caledonian ascidian Leptoclinides debius (1331). The latter metabolite

features the rare amino acid enduracididine. Four new bromotryptamine peptides,

alternatamides A (1367), B (1368), C (1369), and D (1370), were characterized

from the bryozoan Amathia alternata collected along the North Carolina coast

(1332). The absolute stereochemistry of the previously known chelonin B (1) has
been determined as (S) by total synthesis (1333). The sponge Hyrtios erecta
contains the new (Z)-5,6-dibromo-20-demethylaplysinopsin (1371) and (E)-5,6-
dibromo-20-demethylaplysinopsin (1372) (1334). The New Zealand ascidian Pyc-
noclavella kottae has furnished the four kottamides A–D (1373–1376), which
display antiinflammatory, antimetabolic, and antitumor activity to varying degrees

(1335). This same marine animal also contains kottamide E (1377), which incor-

porates an unusual 1,2-dithiolane moiety (1336).
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1367  R = Me, X1 = X2 = Br  (alternatamide A)
1368  R = H, X1 = X2 = Br  (alternatamide B)
1369  R = X1 = H, X2 = Br  (alternatamide C)
1370  R = X2 = H, X1 = Br  (alternatamide D) 
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1371 1372

1373 R1 = R2 = Br (kottamide A)
1374 R1 = Br, R2 = H (kottamide B)
1375 R1 = H, R2 = Br   (kottamide C)
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An Antarctica collection of the sponge Psammopemma sp. has yielded the new
4-hydroxyindole alkaloids, psammopemmins A (1378), B (1379), and C (1380),
which embody the unique 2-bromopyrimidine unit (1337). The related meridia-

nins B (1381), C (1382), D (1383), E (1384), and F (1385) were found in the

tunicate Aplidium meridianum collected at 100 m near the South Georgia Islands

(1338, 1339). These protein kinase inhibitors have been synthesized (1340). The
sponge Discodermia polydiscus has afforded 6-hydroxydiscodermindole (1386)
(1341).

1378 R1 = R2 = H (psammopemmin A)
1379 R1 = H, R2 = Br (psammopemmin B)
1380 R1 = Br, R2 = H (psammopemmin C) 

1381 R1 = OH, R2 = R4 = H, R3 = Br  (meridianin B)
1382 R1 = R3 = R4 = H, R2 = Br (meridianin C)
1383 R1 = R2 = R4 = H, R3 = Br (meridianin D)
1384 R1 = OH, R2 = R3 = H, R4 = Br (meridianin E)
1385 R1 =  R4 = H, R2 = R3 = Br (meridianin F) 

1386 (6-hydroxydiscodermindole)
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Numerous halogenated bis-indole natural products have been described since the

early discovery of Tyrian purple, the dibrominated analog of indigo (1). A new

example of the topsentin family has been isolated, isobromotopsentin (1387), from
the deep water Australian sponge Spongosorites sp. (1342). The Caribbean man-

grove ascidian Didemnum conchyliatum (Fig. 3.20) has provided four new didem-

nimides, two of which, didemnimides B (1388) and D (1389), contain bromine
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(1343). The latter is a potent feeding deterrent against mangrove-specific carnivo-

rous fish. The structure of 1388 is confirmed by total synthesis (1344). The Korean
sponge Spongosorites genitrix has afforded the new bromodeoxytopsentin (1390)
and isobromodeoxytopsentin (1391), which display moderate cytotoxicity against

human leukemia K-562 (1345). The Okinawan tunicate Rhopalaea sp. has yielded

four rhopaladins, two of which, rhopaladins A (1392) and C (1393), are brominated

(1346), and all four rhopaladins have been synthesized (1347). The Mediterranean

sponge Rhaphisia lacazei produces seven new bis-indoles of the topsentin and

hamacanthin classes, cis-3,4-dihydrohamacanthin B (1394), 60-debromo-cis-3,4-
dihydrohamacanthin B (1395), 6"-debromo-cis-3,4-dihydrohamacanthin B

(1396), cis-3,4-dihydrohamacanthin A (1397), trans-3,4-dihydrohamacanthin A

(1398), 60-debromo-trans-3,4-dihydrohamacanthin A (1399), and 6"-debromo-

trans-3,4-dihydrohamacanthin A (1400) (1348). A Korean collection of the sponge

Spongosorites sp. has afforded (R)-6"-debromohamacanthin A (1401), (R)-60-de-
bromohamacanthin A (1402), dibromodeoxytopsentin (1403) (1349), (R)-6"-debro-
mohamacanthin B (1404) (1350), (R)- and (S)-60-debromohamacanthin B (1405,
1406), spongotine A (1407), spongotine B (1408), and spongotine C (1409) (1351).
The previously reported "(S)-6"-debromohamacanthin B" (1349) has been reas-

signed as spongotine B (1408) (1351). The absolute configuration of spongotine

A (1407) is established as (S) by total synthesis (2670) (and assumed for 1408 and

1409). Some of these bis-indoles have significant antibacterial activity against

methicillin-resistant Staphylococcus aureus and pathogenic fungi (1352). Synth-
eses of the hamacanthins have been accomplished (1353, 1354).

1387 (isobromotopsentin) 
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1388 R = H (didemnimide B) 
1389 R = Me (didemnimide D)  

1390 R1 = Br, R2 = H (bromodeoxytopsentin)  
1391 R1 = H, R2 = Br (isobromodeoxytopsentin) 
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1392 R = OH (rhopaladin A) 
1393 R = H (rhopaladin C)  

1394 R1 = R2 = Br  (cis - 3,4-dihydrohamacanthin B)
1395 R1 = H, R2 = Br (6'-debromo-cis-3,4-dihydrohamacanthin B)
1396 R1 = Br, R2 = H (6''-debromo-cis-3,4-dihydrohamacanthin B) 
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1397 (cis-3,4-dihydrohamacanthin A)

1398 R1 = R2 = Br (trans-3,4-dihydrohamacanthin A)
1399 R1 = H, R2 = Br  (6'-debromo-trans-3,4-dihydrohamacanthin A) 
1400 R1 = Br, R2 = H (6''-debromo-trans-3,4-dihydrohamacanthin A) 

1402 R1 = H, R2 = Br ((R)-6'-debromohamacanthin A)
1401 R1 = Br, R2 = H ((R)-6''-debromohamacanthin A)
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The deep water New Caledonian sponge Dragmacidon sp. contains the novel

nortopsentin D (1410), which is inactive on KB cancer cells (1355). However, a
polymethylated synthetic derivative (seven methyl groups) is highly cytotoxic.

Another deep-water sponge, Spongosorites sp., collected from the southern coast

of Australia, has provided dragmacidin E (1411) (1356). Dragmacidin F (1412) was
isolated from the Mediterranean sponge Halicortex sp. (1357). This complex

metabolite, as well as other dragmacidins, has yielded to total synthesis (1358).
One of the few calcareous hard corals to be investigated for secondary metabolites

is Tubastraea sp. from Japan, and this stony coral has yielded tubastrindole

A (1413), a novel bis-indole (1359).

1403 (dibromodeoxytopsentin)
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1405 ((R)-6'-debromohamacanthin B)
1406 ((S)-6'-debromohamacanthin B)

1409 R1 = R2 = Br (spongotine C)
1408 R1 = H, R2 = Br (spongotine B)
1407 R1 = Br, R2 = H (spongotine A)
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Several new halogenated polyindole gelliusines were isolated from the deep-

water New Caledonian sponge Orina sp. (1360). These include the racemic (�)-

gelliusine C (1414, 1415), (�)-gelliusine D (1416, 1417), (�)-gelliusine E

(1418, 1419), and (�)-gelliusine F (1420, 1421). Echinosulfonic acids B
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(1422) and C (1423) along with echinosulfone A (1424) are produced by the

Southern Australian sponge Echinodictyum sp. (1361). Echinosulfonic acid A

(1422, ethoxy in place of methoxy) is probably an artifact produced during

storage of the sponge in ethanol. The New Caledonian sponge Psammoclemma
sp. has afforded echinosulfonic acid D (1425) along with echinosulfonic acid B

(1422) (1362). The Papua New Guinea sponge Coscinoderma sp. contains

coscinamides A (1426) and C (1427), which are the first reported alkaloids

from this genus (1363).

1418, 1419 R1 = OH, R2 = H (gelliusine E)
1420, 1421 R1 = H, R2 = Br (gelliusine F)

1414, 1415 (gelliusine C) 

1416, 1417  (gelliusine D)
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An Okinawan collection of the red alga Laurencia brongniartii yielded the five
new polybromoindoles 1428–1432 (1364); the latter compound is similar to 1340
and 1341. Halogenated biindole 1433 was isolated from the South China Sea

green alga Chaetomorpha basiretorsa (1365). The Okinawan sponge Dictyoden-
drilla sp. provided the novel brominated bis-tryptamine dendridine A (1434)
(1366). The colonial Philippine ascidian Perophora namei produces the complex

fused indole perophoramidine (1435), which is the first metabolite to be reported

from the genus Perophora (1367). The Antarctica tunicate Aplidium cyaneum
(Fig. 3.21) produces aplicyanins A–F (1436–1440) (1368), which are related to

the meridianins (1381–1385). Aplicyanins B (1437), D (1439), E (1440a), and F

(1440b) exhibit cytotoxic and antimiotic activities. Aplicyanin E (1440a) was
readily acetylated to aplicyanin F (1440b).

1426 R = H (coscinamide A)
1427 R = OH (coscinamide C)

1422 R = Me  (echinosulfonic acid B)
1423 R = H  (echinosulfonic acid C)

R = Et  (echinosulfonic acid A)

1424 (echinosulfone A)

1425 (echinosulfonic acid D)
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The most famous halogenated bis-indole is Tyrian purple, the dibromo analog of

indigo (1). This colorful mollusc metabolite, which was the major component of the

ancient dye, continues to receive attention (1369–1374). Additional studies of

Tyrian purple from various molluscs have revealed the presence of 6,60-dibromoin-

dirubin (1441) (1375), 6-bromoindigotin (1442) (1375, 1376), 6-bromoisatin

(1443) (1377, 1378), 6-bromoindoxyl (1444) (1378), 1445 (1378), 1446 (1378),
6-bromoindirubin (1447) (1379), and 60-bromoindirubin (1448) (1379). The bromi-

nated indirubins are potent and selective kinase inhibitors (1379). A direct-exposure

1428  R1 = R2 = H
1429  R1 = H, R2 = Br
1430  R1 = Br, R2 = H
1431  R1 = R2 = Br

1432

1433 1434  (dendridine A)

N N
H

Cl

Cl

Br

N N

1435  (perophoramidine)1436  R1 = R2 = R3 = H  (aplicyanin A)
1437  R1 = Ac, R2 = R3 = H  (aplicyanin B)
1438  R1 = R3 = H, R2 = OMe  (aplicyanin C)
1439  R1 = Ac, R2 = OMe, R3 = H  (aplicyanin D)
1440a  R1 = H, R2 = OMe, R3 = Br  (aplicyanin E)
1440b  R1 = Ac, R2 = OMe, R3 = Br  (aplicyanin F)
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mass spectrometry technique has been developed to characterize the constituents of

indigo and Tyrian purple extracts (1380). A Streptomyces sp. has furnished the

chlorinated indigo glycosides akashins A–C (1449–1451), which display significant
antitumor activity against various human cell lines (1381).

As illustrated in the first survey, marine bryozoans (“moss animals”) are preem-

inent practitioners of organic synthesis, particularly in the production of haloge-

nated indoles. Thus, the North Sea bryozoan Securiflustra securifrons produces

N

H
NCl

O

O
Cl

O
HO

NHR2

R1O

1449 R1 = R2  = H  (akashin A)
1450 R1 = H, R2 = COCH3   (akashin B)
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1451 (akashin C)

1442  (6-bromoindigotin )1441   (6,6'-dibromoindirubin)

Br N O

O

1443 1444 1445

1446 1447 R1 = H, R2  = Br  (6-bromoindirubin)
1448 R1 = Br, R2  = H  (6-bromoindirubin)
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securamines A-G (1452–1458). Compounds A (1452) and B (1453) are in equilib-

rium with their tautomers, securines A and B, as shown (1382, 1383). The prolific
North Sea bryozoan Flustra foliacea (Fig. 3.19) has yielded the new hexahydro-

pyrrolo[2,3-b]indole 1459 (1321). Total syntheses of the structurally related and

previously known flustramines A–C and flustramides A and B have been achieved

(1384–1386), as has the total synthesis of the known chartelline C (1387, 1388).

1452  R = H (securamine A)
1453  R = Br (securamine B)

1454  R = Br (securamine C)
1455  R = H (securamine D)
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Several species of blue-green algae contain four groups of complex halogenated

(and nonhalogenated) indoles: hapalindoles, ambiguines, fischerindoles, and wel-

witindolinones (1). New examples of these interesting metabolites have been

discovered, such as 12-epi-hapalindole G (1460) from the blue-green alga Hapa-
losiphon laingii (1389) and ambiguine G nitrile (1461) from Hapalosiphon delica-
tulus, the first nitrile found in the Stigonemataceae (1390). The terrestrial

Fischerella muscicola contains 3-hydroxy-N-methylwelwitindolinone C isonitrile

(1462) and 3-hydroxy-N-methylwelwitindolinone C isothiocyanate (1463) (1391).
The welwitindolinones can reverse P-glycoprotein mediated multiple drug resis-

tance (1392, 1393). Total syntheses of the previously known welwitindolinone A

and fischerindoles I and G have been accomplished (1394, 2648). The first ergoline
marine alkaloids, pibocins A (1464) and B (1465), were isolated from the Far

Eastern ascidian Eudistoma sp. (1395, 1396).

A new halogen-containing member of the penitrem family of indole-diterpe-

noids, which have insecticidal activity (1397), is thomitrem A (1466) from Penicil-
lium crustosum (1398). The novel dichlorinated calmodulin inhibitor,

malbrancheamide (1467), was characterized from the fungus Malbranchea auran-
tiaca (1399). The microbe Streptomyces rugosporus produces pyrroindomycin B

(1468), which is active against both methicillin-resistant Staphylococcus aureus
and vancomycin-resistant Enterococci (1400). The Chinese shrub Acacia confusa
has yielded the unusual chlorotryptamine alkaloid 1469, which does not appear to

be an artifactual dichloromethane adduct (1401).

1461 (ambiguine G nitrile)
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1464 R = H  (pibocin A)
1465 R = OMe  (pibocin B)

1460  (12-epi-hapalindole G)
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The earlier survey documented a number of indoloquinones and related com-

pounds, the discorhabins, makaluvamines, and batzellines (1), which have antican-

cer activity and are DNA topoisomerase II inhibitors (1402). Several new examples

of these fused indoles have been uncovered in the interim (1403, 1404). The
Antarctic sponge Latrunculia apicalis contains the novel discorhabdin G (1470),
which is a feeding deterrent towards the sea star Perknaster fuscus, the major

Antarctic sponge predator (1405, 1406). A South African undescribed latrunculid

sponge has afforded 14-bromodiscorhabdin C (1471) and 14-bromodihydrodiscor-

habdin C (1472), which are the first discorhabdins having a 2-bromoindole unit

(1407). Discorhabdin P (1473) is present in the Bahamian sponge Batzella sp., and

inhibits phosphatase activity (1408). The Australian sponges Latrunculia purpurea,
Zyzzya massalis, Zyzzya fuliginosa, and Zyzzya spp. contain discorhabdin Q (1474)
(1409). Discorhabdins S (1475), T (1476), and U (1477) were isolated from the

deep-water Caribbean sponge Batzella sp. (1410). The newly classified South

African sponges Tsitsikamma pedunculata, Tsitsikamma favus, Latrunculia bellae,
and Strongylodesma algoensis yielded 3-dihydro-7,8-dehydrodiscorhabdin C

1468  (pyrroindomycin B)
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(1478), 14-bromo-3-dihydro-7,8-dehydrodiscorhabdin C (1479), discorhabdin V

(1480), and 14-bromo-1-hydroxydiscorhabdin V (1481) (1411). The novel dimeric

discorhabdin W (1482) is present in the New Zealand sponge Latrunculia sp. and

exhibits potent cytotoxicity against the P388 murine leukemia cell line (1412). The
total synthesis of the previously known discorhabdin A has been achieved (1413,
1414), as have semi-syntheses of discorhabdins P (1473) and U (1477) (1415).

1471 R1,R2 = O
1472 R1 = OH, R2 = H
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Related to the discorhabdins are epinardins B–D (1483–1485), which were

isolated from undetermined deep-water green demosponges from pre-Antarctic

Indian Ocean waters (1416). Epinardin C (1485) is strongly cytotoxic towards

doxorubicin-resistant L1210/DX tumor cells. The Philippino sponge Zyzzya fuligi-
nosa contains makaluvamine N (1486) in addition to five related known compounds

(1417). A study of this sponge from Papua New Guinea has yielded batzelline D

(1487) and isobatzelline E (1488) (1418). Four collections of Zyzzya were analyzed
for antitumor activity and three nonhalogenated makaluvamines were the most

potent (1419). A deep-water Batzella sponge from the Bahamas has furnished

secobatzelline A (1489), which is a potent inhibitor of the phosphatase activity of

calcineurin and the peptidase function of CPP32 (1420). The Jamaican sponge

Smenospongia aurea contains makaluvamine O (1490) (1421).

1486 (makaluvamine N)

1483 R = H (epinardin B)
1484 R = OMe (epinardin D) 1485 (epinardin C)

1489 (secobatzelline A)
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Several halogenated metabolites with an oxidized indole ring have been dis-

covered since the first survey (1). Indisocin (1491) was isolated from cultures of

the actinomycete Nocardia blackwellii and displays strong antimicrobial activity

against a range of both Gram-positive and Gram-negative bacteria and fungi

(1422). The Floridian bryozoan Amathia convoluta produces convolutamydines

A–E (1492–1496) (1423–1425), and total syntheses of convolutamydines A and B
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established their absolute configuration (1426–1428). The Indian Ocean sponge

Iotrochota purpurea contains matemone (1497), which inhibits division of sea-

urchin eggs (1429). Cynthichlorine (1498) was isolated from the Moroccan

tunicate Cynthia savignyi and displays both antifungal and antibacterial activity

(1430).

1492 (convolutamydine A)

1493 (convolutamydine B)

1495 (convolutamydine D)

1494 (convolutamydine C)

1491  (indisocin)

1496 (convolutamydine E)

1498 (cynthichlorine)1497  (matemone)
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3.14.3 Carbazoles

Newly discovered halogenated carbazoles will be presented in a future volume.

3.14.4 Indolocarbazoles

Although no new natural halogenated indolocarbazoles were reported following the

1996 survey (1), an enormous effort has focused on the discovery of synthetic

analogs of the chlorine-containing rebeccamycin (1431, 1432), comprising fluoro-

indolocarbazoles (1432, 1433), sugar analogs (1434), and others (1435, 1436),
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including combinatorial biosynthesis (1437). A synthetic rebeccamycin analog is in

phase II trials for metastatic renal cell cancer (1438). The biosynthesis of rebecca-
mycin is also of interest (1439–1441).

3.14.5 Carbolines

The previous survey presented more than 20 halogenated carbolines from ascidians

of genus Eudistoma, Ritterella, and others (1). The Mariana Islands ascidian

Didemnum sp. has afforded didemnolines A (1499) and C (1500), along with two

nonhalogenated analogs (1442). A Western Australia Eudistoma sp. ascidian con-

tains 19-bromoisoeudistomin U (1501) (1443), and the Australian ascidian Pseu-
dodistoma aureum provided eudistomin V (1502) (1444). A Palau Eudistoma
gilboverde has afforded 2-methyleudistomin D (1503), 2-methyleudistomin J

(1504), and 14-methyleudistomidin C (1505) (1445). The latter metabolite displays

excellent cytotoxicity towards four different human tumor cell lines. The Palauan

sponge Plakortis nigra, which was collected at a depth of 380 feet, contains

plakortamines A–D (1506–1509). These compounds are active against the HCT-

116 human colon cell line with 1507 being the most active (1446). Total syntheses
of several eudistomins are known (1447, 1448).

1503 R1 = Br, R2 = H (2-methyleudistomin D)
1504 R1 = H, R2 = Br (2-methyleudistomin J) 1505 (14-methyleudistomidin C)
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N

N

1506 (plakortamine A) 1507 (plakortamine B)

1508 (plakortamine C)

1509 (plakortamine D)
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Studies of the sponge Fascaplysinopsis reticulata and the tunicate Didemnum
sp. (Fig. 3.20) have identified several brominated derivatives of the previously

known nonbrominated fascaplysin and reticulatine, including 3-bromofascaply-

sin (1510), 14-bromoreticulatine (1511), and 14-bromoreticulatate (1512) (1449).
Further investigation of these organisms uncovered 10-bromofascaplysin (1513),
3,10-dibromofascaplysin (1514), 3-bromohomofascaplysin B (1515), 3-bromoho-

mofascaplysin B-1 (1516), 3-bromohomofascaplysin C (1517), 7,14-dibromoreti-

culatine (1518), 14-bromoreticulatol (1519), 3-bromosecofascaplysin A (1520),
and 3-bromosecofascaplysin B (1521) (1450). The fresh water cyanobacterium

Nostoc 78-12A has provided nostocarboline (1522), which was synthesized for

structural confirmation (1451, 1452). Nostocarboline is a potent butyrylcholines-

terase inhibitor, comparable to the Alzheimer’s disease drug galanthamine. This b-
carboline and some derivatives are also potent algicides (1452).

1510 R1 = H, R2 = Br  (3-bromofascaplysin) 
1513 R1 = Br, R2 = H  (10-bromofascaplysin)
1514 R1 = R2 = Br  (3,10-bromofascaplysin)
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3.14.6 Quinolines and Other Nitrogen Heterocycles

Unlike p-excessive nitrogen heterocycles (pyrroles, indoles), p-deficient nitrogen
heterocycles are much less reactive towards electrophilic halogenation, and rela-

tively few halogenated p-deficient heterocycles are found naturally (1). The Thai

spiny herb Acanthus ilicifolius contains several benzoxazinoid glucosides, includ-

ing the chlorine-containing 1523 (1453). This medicinal plant is distributed in the

mangroves of southern Thailand. The N-hydroxy derivative, 1524, of 1523 is found
in the medicinal mangrove plant Acanthus ebracteatus (1454). The sponge Hyrtios
erecta has furnished the novel quinolones 1525 and 1526 (1334). A collection of

a Puerto Rican Lyngbya majuscula cyanobacterium has yielded 1527 (853), and
three novel tetrahydroquinolines, 1528–1530, were characterized from the red

alga Rhodomela confervoides (1455). The Palau bryozoan Caulibugula intermis

1515  R = COCO2Me  (10-bromohomofascaplysin B)
1516  R = COCO2Et  (3-bromohomofascaplysin B-1)
1517  R = CHO  (3-bromohomofascaplysin C)

1520  R = Me  (3-bromosecofascaplysin A)
1521  R = H  (3-bromosecofascaplysin B)

1511 R1 = H, R2 = CO2Me  (14-bromoreticulatine) 
1512 R1 =  H, R2 = CO2 (14-bromoreticulatate)
1518 R1 = Br, R2 = CO2Me  (7,14-dibromoreticulatine)
1519 R1 = H, R2 = OH  (14-bromoreticulatol)

1522  (nostocarboline)
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contains caulibugulones B (1531) and C (1532), along with four nonhalogenated

analogs (1456). These structures were confirmed by chemical interconversion

(1456) and total synthesis (1457), and the compounds display cytotoxicity (1456)

Fig. 3.20 Didemnum sp., a tunicate that contains the fascaplysin alkaloids 1510–1521 (Photo: F. J.
Schmitz)
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and potent phosphatase inhibitory activity (1457). The amide of the previously

known virantmycin (1), benzastatin C (1533), is produced by Streptomyces
nitrosporeus (1458, 1459). This compound is a potent free radical scavenger.

The relative and absolute stereochemistry of (–)-virantmycin have been estab-

lished by synthesis (1460, 1461). The New Zealand bryozoan Euthyroides epis-
copalis contains the novel quinone methides, euthyroideones A–C (1534–1536)
(1462). Chlorodesnkolbisine (1537) was characterized from the African tradi-

tional medicine plant Teclea nobilis (1463). This chlorohydrin is detected in

crude hexane extracts of the plant and is excluded as an artifact. Likewise, the

new acridone alkaloid A6 (1538), which is found in several Ruta plants (Ruta
bracteosa, Ruta macrophylla, Ruta chalepensis), is not formed when the

corresponding allylic alcohol (gravacridonol) is heated with HCl, and, therefore,

1538 is judged not to be artifactual (1464).
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O O

N
H

O O

OH

Cl

1527

NH

R1

O

R2

O

OR3

1528 R1 = Br, R2 = OH, R3 = H
1529 R1 = Br, R2 = OH, R3 = Me
1530 R1 = OH, R2 = Br, R3 = Me
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1535 (euthyroideone B)1534 (euthyroideone A) 1536 (euthyroideone C)
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1537  (chlorodesnkolbisine)
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Cl1538  (A6)

The simple auxin inhibitor, 4-chloro-6,7-dimethoxy-2-benzoxazolinone

(1539), was isolated from maize (Zea mays) (1465), as was the related 5-chloro-

6-methoxy-2-benzoxazolinone (1540), which causes growth inhibition of crab-

grass, ryegrass, lettuce, and oats (1466). The egg masses of three muricid

molluscs (Trunculariopsis trunculus, Ceratostoma erinaceum, Trophon geversia-
nus) contain 2,4,5-tribromo-1H-imidazole (1541) (1467), and the Indian medici-

nal plant Jatropha curcas has afforded chlorinated imidazole 1542 (1468). The
structure of the Streptomyces griseoluteus metabolite 593A is incorrectly shown

in the first survey ((1), compound “1553”) and should be revised as shown ZZ
(1469). The extraordinary cyclic N-bromoimide 1543 is claimed to be produced

by the sponge Rhaphisia pallida (1470). The novel antifungal antibiotics atpenins
A4 (1544) and A5 (1545) are produced by a Penicillium sp. and possess unique

chloroalkane side chains (1471). X-ray crystallography supports the 2-hydroxy-

pyridine tautomer.
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As reported in the first survey, several halogenated nucleic acid bases and

nucleosides have been isolated from natural sources. These compounds are

generally thought to arise from the action of myeloperoxidase on halide in the

presence of DNA (1). New examples of halogenated nucleic acid bases and

nucleosides include 5-chlorocytosine (1546) and 5-chlorodeoxycytidine (1547)
from salmon sperm (1472). Kumusine (1548) was isolated from the Indonesian

sponge Theonella sp. (1473), and as “trachycladine A” from the Western Austra-

lian sponge Trachycladus laevispirulifer (1474), and later from the sponge Theo-
nella cupola (1475). The ascidian Didemnum voeltzkowi contains 50-deoxy-3-
bromotubercidin (1549) along with the previously known iodo analog (1476). The
sponge Phakellia fusca has yielded five 5-fluorouracil derivatives 1550–1554
(1477). The action of myeloperoxidase on human inflammatory tissue produces

5-chlorouracil (1555) (1478, 1479), 5-bromouracil (1556) (1478, 1480), and 8-

chloroadenine (1557) (1481), each of which is considered as being natural. It has

been suggested that these halogenated nucleic acid bases, which are products of

inflammation, may exert cytotoxic and mutagenic effects (1478–1480, 1482,
1483). Thus, the incorporation of 5-bromouracil into DNA results in mutagenesis

(1482).

N
H

N

N
H

Br
O O

Me

O

15431542

N

N
H

ClOHC

HN

NH

O

O

HN

NH

Cl

Cl

ZZ  (593A)

N

O

O

OH

OH

O Cl

N

O

O

OH

OH

O Cl

1544  (atpenin A4)

Cl

1545  (atpenin A5)

224 3 Occurrence



1555

N

N
H

Cl

NH2

O

1546

N

N

Cl

NH2

O

1547

O

OH

HO
N

N

N

N

Cl

NH2

1548 (kumusine)

O

OH OH

N N

N

NH2Br

1549

O

OH OH

HN

N

F

O

O

1550

CO2Me

HN

N

F

O

O

1551

OH

O

HN

N
H

F

O

O

1552

HN

N

F

O

O

1553

OH

HN

N

F

O

O

1554

NHNH2

O

HN

N
H

Cl

O

O

1556

HN

N
H

Br

O

O N
H

N

N

N

NH2

Cl

1557

While there are no newly reported naturally occurring benzodiazepines since the

first survey (1), the interest in this area remains high. The current status of research

and clinical implications has been reviewed (1484). It is noted that natural benzo-

diazepines, including seven known halogenated examples (1), are found in soil,

plants, animal and human tissues, and are chemically identical to their pharmaceu-

tical counterparts. The endogenous formation of benzodiazepines by plant cells

(Artemisia dracunculus and Solanum tuberosum) has been demonstrated for delor-

azepam, temazepam, and diazepam (1485).
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3.14.7 Benzofurans and Related Compounds

The novel heterocycles pterulinic acids (1558 and 1559) and pterulone (1560) were
isolated from a Pterula sp. fungus (1486, 1487). These compounds are inhibitors of

NADH:ubiquinone oxidoreductase (complex I). Pterulone B (1561) was character-
ized from cultures of Pterula sp. 82168 living on wood (1488). The wood-rotting

fungus Mycena galopus has yielded the chlorinated 2,3-dihydro-1-benzoxepins

1562–1564 (1489). The two aldehydes 1565 and 1566 appear to be minor compo-

nents inMycena galopus, and several of these metabolites (1559, 1563–1566) have
been synthesized (1490). The novel dimeric polybrominated benzofurans, ianthe-

rans A (1567) and B (1568) are produced by the Australian sponge Ianthella sp.,

and display Na,K-ATPase inhibitory activity (1491, 1492). The aurones 1569 and

1570were isolated from the brown alga Spatoglossum variabile, collected along the
coast of Pakistan (1493). These metabolites are rare examples of the halogen atom

residing on an unactivated benzene ring.
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3.14.8 Pyrones and Chromones

The medicinal plant Goniothalamus amuyon from Taiwan contains the pyrone 8-

chlorogoniodiol (1571) with the absolute configuration shown (1494). A Taiwanese

collection of withered wood of Aguilaria sinensis (“Agarwood”), which is used as

incense and for medicinal purposes, has yielded the novel chromone 1572 (1495).
Cultures of Aspergillus candidus F1484 produce the antifungal compound F1484

(1573) (1496).

O

OH

Cl

H

O

1571 (8-chlorogoniodiol)

O

O OH

OH

OH

Cl

1572

O

OH

O

O

O

Cl

O

1573 (F1484)

HO

3.14.9 Coumarins and Isocoumarins

Cylindrocarpon olidum, a fungus isolated from the root knot nematodeMeloidogyne
incognita, contains the antifungal 8-chlorocannabiorcichromenic acid (1574) (1497).

O

HO

Br

Br

OR

NaSO3O

O

OH

Br

Br

1568 R = SO3Na  (iantheran B)
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Bark from the Indonesian medicinal plant Aegle marmelos has provided chloromar-

min (1575), having the absolute configuration shown (1498). The novel aminocou-

marin simocyclinone D8 (1576) was isolated from cultures of Streptomyces
antibioticus Tii 6040 and displays antibiotic activity on Gram-positive bacteria and

cytotoxicity against various tumor cell lines (1499, 1500). A biosynthetic study of

1576 in an oxygen-18 rich atmosphere reveals the incorporation of four oxygen atoms

(1501). The well-studied clorobiocin (chlorobiocin, RP 18,631) is one of many

aminocoumarins from Streptomyces strains (1502), and a biosynthesis has been

proposed (1503). The Western United States plant Harbouria trachypleura (“whisk-
broom parsley”) has yielded (�)-trachypleuranin B (1577), confirmed by total

synthesis (1504). The rare folk medicinal Colombian herb Niphogeton ternata con-

tains the new psoralen 1578 (8-methoxysaxalin) (1505), and the Tanzanian medicinal

plantMondia whitei (“Mbombongazi”) has afforded 5-chloropropacin (1579), which
is the first chlorinated example of the coumarinolignan family (1506).
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Several new chlorinated isocoumarins have been isolated since the first review

(1), and an early review of naturally occurring isocoumarins is available (1507).
The methyl ester (1580) of the notorious ochratoxin A was isolated from Aspergil-
lus ochraceus, and is not considered being an artifact (1508). The wood-rotting

fungus Heterobasidion annosum (= Fomes annosus) yielded isocoumarin 1581
(1509), and 1582–1584 were characterized from the ascomycete Lachnum papyra-
ceum (1510). The fungus Plectophomella sp. has yielded the two mellein deriva-

tives, 5-chloro-6-hydroxymellein (1585) and 5-chloro-4,6-dihydroxymellein

(1586) (1511). The fungus Periconia macrospinosa is the source of several meta-

bolites, which are of biosynthetic interest (415, 416), and this organism also

produces the new 1587 (416). The absolute configuration of the previously

known bromine-containing isocoumarin, hiburipyranone, has been established as

(R) by total synthesis (1512). The cheese-associated fungus Penicillium nalgio-
vense produces dichlorodiaportin (1588) (1513), while the related methylated

diaportins 1589 and 1590 are found in the cultured lichen mycobiont of Graphis
sp. from a Philippines tree (1514). Avicennin A (1591) is a novel isocoumarin

isolated from a mangrove entophytic fungus in the South China Sea (1515).
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The novel chaetochiversins A (1592) and B (1593) were identified in the fungus

Chaetomium chiversii living in association with the Sonoran desert plant Ephedra
fasciculata (1516). The absolute configuration of 1592 was established by synthesis
from the known radicicol. Tricyclic TMC-264 (1594) was isolated from the fungus

Phoma sp. TC 1674 (1517, 1518), and graphislactone G (1595) was identified in the
endophytic fungus Cephalosporium acremonium IFB-E007 residing in the roots of

Trachelospermum jasminoides (1519).
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The mycotoxin ochratoxin A (AAA) (1), which is a possible human carcinogen,

continues to receive extensive attention due to its presence in a myriad of foods and

beverages (1520, 1521) and its well-established toxicity (teratogenicity, mutage-

nicity, immunotoxicity, genotoxicity, and carcinogenicity) (1522–1524). Major

sources of ochratoxin A are grapes, must, and wine (1525–1533), cereals (1534),
beer (1535, 1536), dried fruit (1537), roasted coffee (1538), and cocoa products and
chocolate (1539).
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3.14.10 Flavones and Isoflavones

The bromine analog of chlorflavonin, CJ-19,784 (1596), is produced by the fungus

Acanthostigmella sp. in the absence of added bromide ion in the culture medium

(1540). This metabolite inhibits the growth of the pathogenic fungi Candida
albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The roots of the

Turkish traditional plant Rumex patientia contain 6-chlorocatechin (1597), which is
the first reported natural halogenated flavan-3-ol (1541).
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3.14.11 Carbohydrates

Despite the wide spread use of the artificial sweetener, “Splenda”, which is a

synthetic chlorinated carbohydrate, Nature has provided very few halogenated

carbohydrates. The antitumor metabolite FR 901463 (1598) was isolated from a

Pseudomonas sp. along with two nonchlorinated epoxides. FR 901463 is not an

isolation artifact, being present in the culture medium prior to extraction and

isolation (1542–1544).

3.15 Polyacetylenes

3.15.1 Terrestrial Polyacetylenes and Derived Thiophenes

The Colombian medicinal plant Niphogeton ternata contains the new polyacetylene

1599 (1505).
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OH OH
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Cl

1599

3.15.2 Marine Polyacetylenes

The reader is referred to the section on fatty acids (3.8), which includes brominated

fatty acids containing multiple acetylene groups.

3.16 Enediynes

Although only a few new members of the extraordinary enediyne class of natural

products have been discovered since the first survey (1), the powerful biological

activity of these natural products, several of which contain halogen, has spurred

intensive investigation of their biological activity (1545–1548). For example, the

calicheamicin family of enediyne antitumor antibiotics continues to be a highlight

in this area of natural products (1549, 1550). Similarly, the previously known C-

1027 is of great interest (1551) with regard to its biosynthesis (1552), synthesis
(1553), analog preparation (1554), mechanism of action (1555), and biological

activity (1556). The absolute configuration of the C-1027 chromophore (BBB) has
been established as shown (1557), and the new neoC-1027 chromophore (1600)
was characterized from Streptomyces globisporus (1558).
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The previously known kedarcidin chromophore (1) is revised to CCC (1559),
and the mechanism of action of this enediyne has been studied (1560). The new

maduropeptin chromophore 1601 was isolated from Actinomadura madurae, which
is associated with a protein of 14 amino acids (1561–1563). The non-protein

associated enediyne N1999A2 (1602) was characterized from Streptomyces sp.

AJ 9493 (1564), and confirmed by synthesis (1565, 1566).
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3.17 Macrolides and Polyethers

The large and diverse group of naturally occurring biologically active macrolides

includes a number of halogenated examples (1). The chlorine-containing maytansi-

noids, which were once promising anticancer agents, nevertheless continue to

receive attention (1567), and semisynthetic maytansines show promise as new

anticancer agents (1568). The two new maytansinoids 20-N-demethylmaytanbutine

(1603) and maytanbicyclinol (1604) were isolated from the Kenyan plant Maytenus
buchananii (1569), and the new ansamitocin ansamitocinoside P-2 (1605) is pro-

duced by Actinosynnema pretiosum ssp. auranticum (1570).
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The previously known macrolide radicicol (= monorden A) (1) continues to be of
interest for its multiplicity of biological activities, such as suppression of oncogene

transformation (1571, 1572) and inhibition of the human malaria parasite Plasmodi-
um falciparum (1573). The former activity has been of particular scrutiny, and several

novel HSP90 synthetic radicicol analogs are promising anticancer agents (1574–
1576). The new radicicol 1606 was isolated from the mycoparasite Humicola fusco-
atra from Aspergillus flavus (1577). Two groups independently isolated a series of

the new pochonins (1578) and monordens (1579, 1580), which are identical in some

cases. Thus, whereas the fungus Pochonia chlamydosporia var. catenulata produces
pochonins A (1607), B (1608), C (1609), D (1610), E (1611), and tetrahydromonor-

den (= tetrahydroradicicol) (1612) (1578), the fungus Humicola sp. FO-2942 yields

monorden C (= pochonin A, 1607), monorden D (= pochonin D, 1610), and monor-

den E (1613) (1579, 1580). Diversity-oriented synthesis of the pochonins in a search
for ATPase and kinase inhibitors has been reported (1581).

The previously known and notorious aplysiatoxin (a cause of “swimmer’s itch”)

(1) is a protein kinase C inhibitor and has been the object of a structure–activity study

(1582). The causative agents of a red alga Gracilaria coronopifolia poisoning
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episode in Hawaii are reported to be manauealides A (1614) and B (1615), com-

pounds that may be associated with a cyanobacterium (1583). Manauealide B is an

isomer of aplysiatoxin. The novel metacyclophane floresolide C (1616) is found in

the Indonesian ascidian Aplidium sp. (Fig. 3.21) (1584). The two macrolides, spor-

olides A (1617) and B (1618), were characterized from the marine actinomycete

Salinispora tropica and have the absolute stereochemistry shown (1585).

The extraordinarily complex and biologically important altohyrtins and spon-

gistatins (1) have been the object of intense synthetic efforts that have clarified

previous stereochemical ambiguities (1586–1588). The strain of Actinoplanes
deccanensis produces lipiarmycins A3 (1619), A4 (1620) (1589), B3 (1621), and
B4 (1622 (1590). A group of very similar (or identical) metabolites to the lipiar-

mycins was isolated from both Micromonospora echinospora subsp. armeniaca
called clostomicins A, B1 (= lipiarmycin A3, 1619), B2 (= lipiarmycin B3, 1621), C,
and D (structures undetermined but each has two chlorines) (1591, 1592) and

from Dactylosporangium aurantiacum subsp. hamdenensis named tiacumicins B

(= lipiarmycin A3, 1619), C (= lipiarmycin B3, 1621), D (1623), E (1624), and F

(1625, = clostomicin A) (1593, 1594).
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The highly complex chlorinated pyrrole-containing macrolide colubricidin

A (1626) is produced in cultures of an unidentified Streptomyces species (1595).
This metabolite displays excellent activity against Gram-positive bacteria. The Do-

minican sponge Spirastrella coccinea produces spirastrellolide A (1627), which is a

potent and selective inhibitor of protein phosphatase 2A (1596) (revised later (1597)).
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1627 (spirastrellolide A)
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The Japanese sea hare Dolabella auricularia contains the cytotoxic aurisides A

(1628) and B (1629) (1598), which have the absolute stereostructures shown as

confirmed by total synthesis (1599). Both compounds display excellent cytotoxicity

against HeLa S3 cells (0.17–1.2 mg mL�1). Structurally similar to the aurisides are

callipeltosides A (1630), B (1631), and C (1632), which were isolated from the

sponge Callipelta sp. collected in New Caledonia (1600, 1601) and are the targets

of several total syntheses (1586, 2652). Closely related to the callipeltosides are

phorbasides A (1633) and B (1634) from a Western Australian Phorbas sp. sponge
(1602). The first example of a cyanobacterium glycoside macrolide to be isolated is

lyngbyaloside (1635) from a Papua New Guinea Lyngbya bouillonii (1603).

Fig. 3.21 This Indonesian ascidian Aplidium sp. produces the novel metacyclophane floresolide C

(1616) (Photo: J. Tanaka)
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Another Palauan sample of this blue-green alga identified the related bromine-

containing lyngbyaloside B (1636) (1604).
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The IndianOcean spongePhorbas sp. has furnished phorboxazolesA (1637) and B
(1638), which display extraordinary cytostatic activity against human cancer cell

lines, comparable to spongistatin 1, and, therefore, are among the most potent

cytostatic compounds known (1605). Extensive spectral work on model compounds

has established the absolute configuration of the phorboxazoles (1606–1608), which
was confirmed by several elegant total syntheses (1609–1612). The sea hare Dola-
bella auricularia from the Gulf of California has afforded dolastatin 19 (1639), which
is structurally related to the aurisides (1613). Total synthesis corrected the stereo-

chemistry and established the absolute configuration of dolastatin 19 (1614, 2651). A
deep-water (740 feet) Palauan sponge, Leiodermatium sp., has yielded leiodelide B

(1640), along with a non-brominated analog (1615). This is the first report of

secondary metabolites from the rare genus Leiodermatium.
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A novel ansamycin, naphthomycin K (1641), was isolated from a Streptomyces
strain of the medicinal plant Maytenus hookeri (1616). This compound was cyto-

toxic (P388 and A-549 cell lines) but inactive against Staphylococcus aureus and
Mycobacterium tuberculosis. An Amycolatopsis sp. has furnished the ansacarbami-

tocins A–F, A1, B1 (1642–1649), which are similar to the ansamitocins (1617).

1639 (dolastatin 19)
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An Indonesian marine cyanobacterium, Phormidium sp., has provided the toxic

phormidolide (1650) (1618), which is structurally similar to the previously known

cyanobacterium metabolite oscillariolide (1). Three chlorine-containing macrolides,

lytophilippines A–C (1651–1653), were isolated from the Red Sea hydroid Lytocar-
pus philippinus (“fireweed”) (1619), and the Red Sea sponge Leucetta chagosensis
(Fig. 3.22) contains chagosensine (1654) (1620). Several novel chlorinated macro-

lides have been found in both the Okinawan ascidian Lissoclinum sp. and the

Okinawan sponge Ircinia sp. These metabolites are haterumalide B (1655) (1621)
and haterumalides NA-NE (1656–1660) (1622). Two total syntheses of 15-epi-
haterumalide NA methyl ester result in a revision of the absolute stereochemistry

of haterumalide NA (1656) (1623, 1624), which was also isolated independently as

“oocydin A” from a strain of Serratia marcescens growing on the aquatic plant

Rhyncholacis pedicillata in Venezuela (1625) and from the soil bacterium Serratia
plymuthica in Sweden (1626). This revision is depicted for all haterumalides for
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1642 R1 = Ac, R2 = CONH2, R3 = Me  (ansacarbamitocin A)
1643 R1 = Ac, R2 = CONH2, R3 = H  (ansacarbamitocin B)
1644 R1 = H, R2 = CONH2, R3 = Me  (ansacarbamitocin C)
1645 R1 = H, R2 = CONH2, R3 = H  (ansacarbamitocin D)
1646 R1 = R2 = H, R3 = Me  (ansacarbamitocin E)
1647 R1 = R2 = R3 = H  (ansacarbamitocin F)

O

H
N

N

O
H
N O

O
OAc

OR

OH
O

HO OCONH2

OH
Cl

O

O
1648 R = Me  (ansacarbamitocin A1)
1649 R = H  (ansacarbamitocin B1)
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convenience. Closely related to the haterumalides are biselides A–E (1661–1665),
which were characterized from the Okinawan ascidian of the family Didemnidae

(1627, 1628). A compound FR177391 (1666) is produced by Serratia liquefaciens
and reported to be the enantiomer of haterumalide NA (1629).

Fig. 3.22 Leucetta chagosensis, a Red Sea sponge that contains the novel macrolide chagosensine

(1654) (Photo: T. Rezanka)
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1651 R = H  (lytophilippine A)
1652 R = CO(CH2)14CH3  (lytophilippine B)
1653 R = (Z )-CO(CH2)7CH=CH(CH2)7CH3 (lytophilippine A)
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1656 R1 = Ac, R2 = R3 = R4 = H  (haterumalide NA) 
1657 R1 = Ac, R2 = R3 = H, R4 = n-Bu  (haterumalide NB) 
1658 R1 = Ac, R2 = OH,  R3 = H, R4 = n-Bu  (haterumalide NC) 
1659 R1 = Ac, R2 = OH,  R3 = R4 = H  (haterumalide ND) 
1660 R1 = R2 = R3 = R4 = H  (haterumalide NE) 
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The Red Sea sponge Latrunculia corticata (Fig. 3.23) has afforded latrunculino-
sides A (1667) and B (1668), which contain the unusual saccharides b-D-olivose,
b-L-digitoxose, a-L-amicetose, and b-D-oliose (1630).

1661 R1 = OAc; R2 = OH  (biselide A) 
1662 R1 = OAc; R2 = OCH2C(=CH2)COCH3 (biselide B) 
1663 R1 = R2 = OH  (biselide C) 
1664 R1 = H; R2 = NHCH2CH2SO3H  (biselide D) 
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1667  R = b-L-Dig–b-D-Olv–a-L-Ami (latrunculinoside A)
1668  R = b-D-Oli–b-D-Oli (latrunculinoside B)
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The Japanese sponge Discodermia calyx has yielded the new calyculin,

calyculin J (1669) (1631). The highly toxic (ichthyotoxicity, hemolytic acti-

vity) prymnesin-1 (1670) and -2 (1671), possessing unprecedented structural

complexity, were characterized from the red tide alga Prymnesium parvum
(1632–1634).

Fig. 3.23 Latrunculia corticata, a Red Sea sponge that contains the latrunculinosides A and B

(1667 and 1668) (Photo: T. Rezanka)
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3.18 Naphthoquinones, Higher Quinones, and Related
Compounds

The relatively large group of previously known napyradiomycins and related

bacterial metabolites has been augmented by the discovery of A80915-A (1672),
-B (1673), -C (1674), and -D (1675) from cultures of Streptomyces aculeolatus
from a Palauan soil sample (1635). A deep-sea marine actinomycete has afforded

the related 1676–1678, which exhibit significant antibacterial activity towards

drug-resistant Staphylococcus aureus and Enterococcus faecium, and cytotoxicity

toward HCT-116 human colon carcinoma (1636). An X-ray structure establishes

the absolute configuration of A80915C (1674) (1637).
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1672 R1 = OH, R2 = H  (A80915-A)

1673 R1 = O  , R2 = N2   (A80915-B)

1674 R1 = OH, R2 = H  (A80915-C)

1675 R1 = O , R2 = N2   (A80915-D)
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Isomarinone (1679), an isomer of the previously known marinone (1), was
isolated from the same tropical sediment bacterium (1638). Another marine-derived

bacterium related to the genus Streptomyces has yielded the novel azamerone

(1680) (1639). The British Columbian medicinal plant Moneses uniflora contains

the antibiotic 8-chlorochimaphilin (1681), which is more active than chimaphilin

(1640). Sesame roots (Sesamum indicum) have yielded the red chlorinated naphtho-
quinone chlorosesamone (1682) (1641). Cultures of Streptomyces strain LL-A9227
produce chloroquinocin (1683), which has some antibacterial activity against

Gram-positive bacteria (1642). The two xestoquinones 1684 and 1685 were char-

acterized from the Philippino sponge Xestospongia sp., and display topoisomerase

II activity (1643).

A synthesis of the chlorinated angucycline antibiotic BE-23254 (1686), which
was isolated from Streptomyces sp. A 23254, has confirmed the structure of this

benz[a]anthraquinone derivative (1644, 1939, 1940). Two detailed examinations of

the rare Australian soil actinomycete Kibdelosporangium sp. uncovered a series of
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kibdelones (1645) and isokibdelones (1646) with novel structures. The former

study includes kibdelone A (1687), kibdelone A rhamnoside (1688), kibdelone B

(1689), kibdelone B rhamnoside (1690), kibdelone C (1691), kibdelone C rhamno-

side (1692) and 13-oxokibdelone A (1693) (1645), while the latter study includes

isokibdelone A (1694), isokibdelone A rhamnoside (1695), isokibdelone B (1696),
and isokibdelone C (1697) (1646).
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Four novel antibacterial, antifungal, and herbicidal palmarumycins have been

isolated from the West Borneo forest soil microbe Coniothyrium sp. (1647). These
are palmarumycins C1 (1698), C4 (1699), C7 (1700), and C8 (1701), along with

several nonchlorinated analogs. The palmarumycins have attracted the interest of

synthetic chemists (434), as have related naphthalenoid natural products (2669). The
DNA-cleaving antitumor antibiotics spiroxins A (1702), B (1703), and E (1704) are
found in a Vancouver Island soft coral containing an associated fungus LL-37H248

(1648, 1649). The absolute configuration of 1702 was determined (1649), and a

synthesis of the nonchlorinated spiroxin C has been described (1650).
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3.19 Tetracyclines

Although no new halogen-containing tetracyclines have been reported since the

first survey (1), the gene responsible for the chlorination of tetracycline in

Streptomyces aureofaciens (Fig. 3.24) has been cloned and the sequence of

nucleotides determined (1651). The gene product is a 452 amino acid chlorination

enzyme.

OHO
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1701  (palmarumycin C8)
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R
R1 R2
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1702 R = H, R1,R2 = O  (spiroxin A)
1703 R = Cl, R1,R2 = O  (spiroxin B)
1704 R = Cl, R1 = OH, R2 = H  (spiroxin E)

Fig. 3.24 Streptomyces aureofaciens, the microorganism that produces the tetracyclines (Photo:

T. Rezanka)
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3.20 Aromatics

Compared to their more reactive phenol counterparts in electrophilic halogena-

tion, simple unactivated halogenated aromatic rings occur rarely in Nature (1).
However, several notable examples exist. The high temperatures present in

volcanoes and during the formation of meteorites leads to the production of the

previously known chlorobenzene and a dichlorobenzene (1705) in Orgueil and

Cold Bokkeveld meteorites, respectively (388), and 1-chloronaphthalene (1707)
and bromomesitylene (1708) in carbonaceous black shales (330). Studies of

emissions from Vulcano, Mt. Etna, Kuju, and Satsuma Iwojima reveal the pres-

ence of chlorobenzene, two dichlorobenzenes (1705, 1706), 1,4-dichlorobenzene,
fluorobenzene (1709), tetrafluorobenzene (1710), fluorochlorobenzene (1711),
chlorostyrenes (1712–1714), trichlorobenzenes (1715, 1716), chlorotoluenes

(1717–1719), the previously known bromobenzene, and chloroethylbenzene

(1720) (216, 217). It should be noted that heating (400–950�C) a mixture of

methane, hydrogen chloride, and oxygen results in the formation of a plethora

of chlorinated aromatics (benzenes, toluenes, xylenes, styrenes, naphthalenes,

biphenyls, anisoles, acenaphthylenes, phenanthrenes, fluoranthenes) (232). Sev-
eral chlorinated benzoic acids have natural origins. The meteorites Murray,

Murchison, Cold Bokkeveld, and Orgueil contain 4-chlorobenzoic acid (1721),
2,4-dichlorobenzoic acid (1722), and 2,6-dichlorobenzoic acid (1723) to varying

degrees (1652). These chlorobenzoic acids are also found in remote bogs

and sediments, particularly 2,4-dichlorobenzoic acid (1722) (1653). In all sam-

ples, trichloroacetic acid was also detected. Laboratory experiments involving

benzoic acid and chloroperoxidase give rise to chlorobenzoic acids, in agreement

with their natural production (1653). Another biogenic source of 2,4-dichloro-

benzoic acid (1722) is the terrestrial cyanobacterium Fischerella ambigua, which
is the first report of this compound from a living organism (1654). Along with

1722, three different tetrachlorobiphenyl carboxylic acids (1724–1726) are pres-
ent in dissolved seawater, and, based on their isomer distribution and global

inventory, these compounds are suggested to have a natural source (1655). The
de novo formation of 3,4-dichlorophenylacetic acid (1727), 3,4-dichlorobenzoic
acid (1728), and 3,4,5-trichlorobenzoic acid (1729) in a sewage treatment plant

were reported, along with several other known chlorinated benzoic acids and

phenols (1656). Garden compost also produces 1727–1729 and 3,4,5-trichloro-

phenylacetic acid (1730) (1657). Acid 1727 has also been identified in fungi

(1656).

Cl

Cl

1705, 1706

Cl Br F

1707 1708 1709

F

1710

F3

254 3 Occurrence



The Palauan deep-water (500 m) marine actinomycete Salinispora pacifica
has yielded cyanosporasides A (1731) and B (1732), which feature a chlorine

on an unactivated benzene ring (1658). The authors suggest a novel biosyn-

thesis from an enediyne precursor. Related to the previously known nosto-

cyclophanes (1) are the new carbamidocyclophanes A–E, of which A (1733),
B (1734), C (1735), and D (1736) are chlorinated, being isolated from the

Vietnamese cyanobacterium Nostoc sp. (1659). These compounds exhibit

cytotoxicity against MCF-7 (breast) and F1 (amniotic epithelial) human cancer

cells.
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1731  R1 = Cl, R2 = H  (cyanosporaside A)
1732  R1 = H, R2 = Cl  (cyanosporaside B)
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Polycyclic aromatic hydrocarbons (PAH), which are ubiquitous in the environ-

ment, including surface waters, undergo facile chlorination by hypochlorite when

dissolved in humus-poor water to give a suite of chlorinated PAH (1660). It is
therefore conceivable that this chlorination can occur under natural conditions, but

this is yet to be determined. Another new possible source of natural chlorinated PAH

is the reported in vitro reaction of benzo[a]pyrene diol epoxide, the ultimate carcino-

gen of benzo[a]pyrene with chloride ion to give chlorohydrin DDD, which has been

isolated and identified as an intermediate en route to a benzo[a]pyrene-DNA adduct

(1661). However, DDD is not considered to be a natural compound at this time.

3.21 Simple Phenols

The enormous reactivity of the phenolic ring towards electrophilic halogena-

tion has led to a multitude of natural halogenated phenols, both terrestrial and

marine (1).

3.21.1 Terrestrial

The previously reported 2,6-dichlorophenol, which is a sex pheromone of several

species of tick (1), is also produced by the African tick Amblyomma hebraeum
(1662, 1663). This pheromone has been used to control the African bont tick on
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1733  R1 = R2 = R3 = Cl  (carbamidocyclophane A)
1734  R1 = R2 = Cl, R3 = H  (carbamidocyclophane B)
1735  R1 = Cl, R2 = R3 = H  (carbamidocyclophane C)
1736  R1 = R2 = R3 = H  (carbamidocyclophane D)
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cattle in Zimbabwe (1664) and the American dog tick (Dermacentor variabilis)
(1665). Neurons in the legs of male ticks (Amblyomma americanum) are sensitive to
2,6-dichlorophenol (1666). In addition to this well-known chlorophenol, a number of

new chlorinated phenols were reported since the first survey, including some that

were overlooked by the author (1). Oakmoss (Evernia prunastri), which contributed

bromobenzene to the first survey (1), also contains chlororesorcinol 1737 (1667). The
fungus Hericium erinaceus has furnished 4-chloro-3,5-dimethoxybenzoic acid

(1738) and related esters 1739 and 1740 (1668). Another study of this fungus

revealed the presence of the related orcinols 1741–1743 (1669). Cultures of the

basidiomycete Stropharia sp. have yielded 3,5-dichloro-4-methoxybenzyl alcohol

(1744), and 3,5-dichloro-4-methoxybenzaldehyde (1745) occurs in Hypholoma sub-
viride (1670). Hypholoma elongatum has provided the new 2,4,6-trichloro-3-meth-

oxyphenol (1746), 3,5,6-trichloro-2,4-dimethoxyphenol (1747), and 3,4,6-trichloro-

2,5-dimethoxyphenol (1748) (1671). The Japanese mushroom Russula subnigricans
contains 2,6-dichloro-4-methoxyphenol (1749) (1672). The basidiomycete strain

Kuehneromyces mutabilis produces methyl 3,6-dichloro-2-methylbenzoate (1750)
(1673). Chlorinated lactone 1751 was characterized from Leucoagaricus carneifolia
(1674). Metabolites 1744 and 1745 were also isolated from the fungus Pholiota
destruens (1675) and from the American matsutake mushroom Tricholoma magni-
velare (1676).
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The wood-rotting fungi of genus Bjerkandera produce a number of chlorinated

phenols and derivatives (398, 1677).
Thus, Bjerkandera sp. BOS55 has yielded 3-chloro-4-hydroxybenzoic acid

(1752), 3,5-dichloro-4-hydroxybenzoic acid (1753), methyl 3,5-dichloro-4-hydro-

xybenzoate (1754), methyl 3,5-dichloro-4-methoxybenzoate (1755), 3-chloro-4-
methoxybenzoic acid (1756), and 3,5-dichloro-4-methoxybenzoic acid (1757)
(1678). The latter two metabolites and several other new halogenated phenols

were discovered in soil around the fungus Lepista nuda (wood blewitt): 5-chloro-

3,4-dimethoxybenzaldehyde (1758), 3-bromo-5-chloro-4-methoxybenzaldehyde

(or isomer) (1759), 5-bromo-3,4-dimethoxybenzaldehyde (1760), 3-bromo-4-meth-

oxybenzaldehyde (1761), 4-chloroanisole (1762), 2,6-dichloroanisole (1763), 2-
chloro-1,4-dimethoxybenzene (1764), 2,6-dichloro-1,4-dimethoxybenzene (1765),
a dichlorodimethoxybenzaldehyde isomer (1766), and a few other known com-

pounds (1679). The simple phenols tetrachlorocatechol (1767) and monomethyl

ether (1768) were isolated from a Mycena fungal species (1680). Mycena alcalina
has furnished alcalinaphenols A–C (1769–1771) (1681). Veratryl chloride (1772)
(3,4-dimethoxybenzyl chloride) has been reported in Bjerkandera sp. BOS55

(1682). In view of the enormous reactivity to be expected for this compound (facile

SN1 and SN2 reactions), this report is surprising. This same fungus and Bjerkandera
fumosa contain 1773 and 1774 (1683). The related trametol (1775) was isolated

from the fungus Trametes sp. (1684). The microfungus Xylaria sp. contains 3-

chloro-4-hydroxyphenylacetamide (1776) (1685). The chlorinated anisyl metabo-

lites are produced by a wide range of basidiomycete genera including Mycena,
Peniophora, Phellinus, Phylloporia, Bjerandera, Hypholoma, and Pholiota (1686).
An excellent summary of chlorometabolite production by Bjerkandera adusta has

been published (1687).
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A collection of the carrot truffle, Stephanospora caroticolor (Fig. 3.25), from
Germany has led to 2-chloro-4-nitrophenol (1777), 4-amino-2-chlorophenol

(1778), and stephanosporin (1779) (1688). Phenol 1777 is also present in the

fruit bodies of Lindtneria trachyspora (1688). The New Zealand liverwort Riccar-
dia marginata has afforded the novel chlorinated bibenzyls 1780–1782 (1689).
These metabolites have antimicrobial and antifungal activity against Bacillus sub-
tilis, Trichophyton mentagrophytes, Candida albicans, and Cladosporium resinae.
In response to attack by the pathogenic fungus Fusarium oxysporum f. sp. lilii, the
edible Japanese lily Lilium maximowiczii (Fig. 3.26) produces seven chlorinated

orcinols 1783–1789 as natural fungicides (1690). The Pakistani medicinal lichen

(Usnea longissima, “Old Man’s Beard”), which has been used for pain relief and

fever control, contains longissiminone B (1790) along with the nonchlorinated

analog, which has potent antiinflammatory activity (1691). The Canary Islands

lichen Lethariella canariensis features the new chloroatranol (1791), chlorohema-

tommic acid (1792), methyl chlorohematommate (1793), and ethyl chlorohema-

tommate (1794) (1692).

O

1764  R = H
1765  R = Cl

Cl

O

CHO

(OMe)2

Cl2

1766

R

OH

Cl

Cl

ORCl

Cl

1767  R = H
1768  R = Me

Me

OH

OH

RCl

O

1769  R = H  (alcalinaphenol A)
1770  R = OMe  (alcalinaphenol B)

CH2OH

O

O

OHCl

O

1771  (alcalinaphenol C)

CH2Cl

O

O

1772

Cl

Cl

O

OH

OH

Cl

O

O

OH

17741773  R = Cl
1775  R = H  (trametol)

Cl

NH2

HO
O

1776

3.21 Simple Phenols 259



R3

R1

OH

R2

H
N

CO2H

N
H

O Cl

OH

NO2NO2

OH

Cl

NH2

OH

Cl

1779  (stephanosporin)1777 1778
Ph

1780  R1 = R2 = R3 = Cl
1781  R1 = R2 = Cl, R3 = H
1782  R1 = Cl, R2 = R3 = H

Cl

Cl

HO

Cl Cl

O

Cl OH

Cl

OO

Cl OH

Cl

OHO

Cl

OH

Cl

OHO

Cl

OHHO

1783 1784 1785

Cl

OHHO

1786

1787 1788 1789

CHO

OH

ClO

HO

1790  (longissiminone B)

R

CHO

OHHO

Cl

1791  R = H  (chloroatranol)
1792  R = CO2H  (chlorohematommic acidl)
1793  R = CO2Me  (methyl chlorohematommate)
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O

Cultures of Lentinellus cochleatus yield chlorostyrene 1795 (1693), and the

related compound 1796 occurs in Arnica sachalinensis (1694). The sulfur-oxidiz-
ing bacterium Thialkalivibrio versutus contains the membrane-bound chlorona-

tronochrome (1797) (1695). The terrestrial plant Rumex patientia from Turkey,

which is used in traditional medicine, has yielded the naphthalene glycosides

patientosides A (1798) and B (1799) (1696). The Turkish folk medicine plant

Geranium pratense subsp. finitimum contains 6-chloroepicatechin (1800) (1697).
The Indian tree Gmelina arborea, which is of commercial importance, has

afforded the first bromine-containing lignan 1801 (1698).
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Fig. 3.25 Stephanospora caroticolor, the carrot truffle that contains novel chlorophenols 1777 and
1778, and stephanosporin (1779) (Photo: W. Steglich)

3.21 Simple Phenols 261



The liverwort genera consisting of 400–500 species have been the source of

a large number of chlorinated ‘bis-bibenzyls’ and related polyphenols (1699).
The first example appears to be 12-chloroisoplagiochin D (1802) found in

the Costa Rican liverwort Plagiochila sp. (1700). In an isolation and identifi-

cation tour de force, a research group has characterized ten chlorinated bridged

biphenyls, bazzanins A-J (1803–1812), and the novel phenanthrene bazzanin K

(1813) from the liverwort Bazzania trilobata (1701). The Japanese liverwort

Herbertus sakuraii has afforded 2,12-dichloroisoplagiochin D (1814), 12,70-
dichloroisoplagiochin D (1815), and 12,100-dichloroisoplagiochin C (1816)
(1702, 1703). The liverwort Mastigophola diclados also contains 1802 and

1814 (1703). The Taiwanese liverwort Plagiochila peculiaris contains bazzanin
J and 12-chloroisoplagiochin D (1704). Bazzanins L-R (1817–1823) and S

(1824) have been characterized from the liverworts Lepidozia incurvata
(1705) and Bazzania trilobata (1706), respectively. Several of these bazzanins

are optically active, but are not enantiomerically pure in the liverworts (1706).
The liverwort Jamesoniella colorata has furnished the “ring-opened” bis-bibenzyl

6,60,10,100,12,120-hexachloroisoperrottetin (1825) (1707). That these chlorinated

phenols are not isolation artifacts is supported by their presence in the crude

liverwort extracts as detected by mass spectrometry (MALD1-TOF and LDI-

TOF) (1708, 1709). Moreover, a chloroperoxidase enzyme (which will be dis-

cussed in detail in Sect. 4.2 (Chloroperoxidase)) has been detected in Bazzania
trilobata further supporting the natural occurrence of these unusual chlorinated

phenols (1710).

Fig. 3.26 Lilium maximowiczii, the edible Japanese lily that produces the seven chlorinated

fungicides 1783–1789; the brown portion indicates disease by a Fusarium fungus (Photo:

K. Monde)
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1802  R = H  (12-chloroisoplagiochin D)
1812  R = Cl  (bazzanin J)

OH RHO
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Cl

HO

Cl

HOHO

O

Cl
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1813  (bazzanin K)

OH
R1

ClHO

R4

R5

OH

R6

R3

HO

R2

1803  R1 = H, R2 = H, R3 = H, R4 = H, R5 = H, R6 = H  (bazzanin A)
1804  R1 = H, R2 = H, R3 = H, R4 = Cl, R5 = H, R6 = H  (bazzanin B)
1805  R1 = H, R2 = H, R3 = Cl, R4 = Cl, R5 = H, R6 = H  (bazzanin C)
1806  R1 = H, R2 = H, R3 = H, R4 = Cl, R5 = Cl, R6 = H  (bazzanin D)
1807  R1 = H, R2 = H, R3 = Cl, R4 = Cl, R5 = Cl, R6 = H  (bazzanin E)
1808  R1 = H, R2 = Cl, R3 = H, R4 = Cl, R5 = H, R6 = Cl  (bazzanin F)
1809  R1 = Cl, R2 = Cl, R3 = H, R4 = Cl, R5 = Cl, R6 = H  (bazzanin G)
1810  R1 = H, R2 = Cl, R3 = H, R4 = Cl, R5 = Cl, R6 = Cl  (bazzanin H)
1811  R1 = Cl, R2 = H, R3 = Cl, R4 = Cl, R5 = Cl, R6 = Cl  (bazzanin I)
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1817  R1 = H, R2 = H, R3 = H, R4 = H, R5 = H, R6 = Me  (bazzanin L)
1818  R1 = H, R2 = H, R3 = H, R4 = H, R5 = H, R6 = H  (bazzanin M)
1819  R1 = H, R2 = Cl, R3 = H, R4 = H, R5 = H, R6 = H  (bazzanin N)
1820  R1 = Cl, R2 = H, R3 = Cl, R4 = H, R5 = H, R6 = Me  (bazzanin O)
1821  R1 = Cl, R2 = Cl, R3 = H, R4 = H, R5 = H, R6 = H  (bazzanin P)
1822  R1 = Cl, R2 = Cl, R3 = Cl, R4 = H, R5 = H, R6 = H  (bazzanin Q)
1823  R1 = Cl, R2 = Cl, R3 = Cl, R4 = Cl, R5 = Cl, R6 = H  (bazzanin R)

OR6

R2

R1HO

R4

Cl

OH

R3

Cl

HO

Cl

R5

OH ClHO

OH
HO

1824  (bazzanin S)

OH

Cl

Cl

HO

Cl

OH

Cl

Cl

Cl

OH

1825

264 3 Occurrence



Other sources of chlorophenols are de novo formation in a sewage treatment plant

(1656), composting of organic household waste (1711), and production in remote

forest soil (1712) and by the litter-degrading fungus Lepista nuda (1713). All com-

posts studied produce a chloromethoxybenzaldehyde in amounts between 5.6 and

73.4 mg kg�1 dry matter (1711). The chlorophenols detected in rural Douglas fir forest
soil are the known 4-chlorophenol, 2,4-, 2,5-, and 2,6-dichlorophenol, and 2,4,5-

trichlorophenol, although anthropogenic contributions could not be eliminated (1712).

3.21.2 Marine

Most of the known marine-derived halogenated phenols are brominated, in accord

with the widespread presence of bromoperoxidase in marine organisms, and 45 sim-

ple bromophenols were tabulated in the first survey (1). Most of these metabolites

were found in red algae and, to a lesser extent, marine acorn worms. The red alga

Polysiphonia lanosa from Brittany, which is the source of several simple bromo-

phenols, also contains the new rhodomelol (1826) and methylrhodomelol (1827)
(1714). A collection of the Senegalese red alga Polysiphonia ferulacea has yielded

the optically active polysiphenol (1828), which is the first 9,10-dihydrophenan-

threne found in a marine organism (1715). This hindered biphenyl analog is

optically active and the absolute configuration was determined from its CD spec-

trum. Surprisingly, the simple 4-bromophenol (1829) was characterized for the first
time in the acorn worms Notomastus lobatus, Saccoglossus kowalevskii, and

Arenicola cristata, along with the previously known 2,6-dibromophenol and

2,4,6-tribromophenol (1716, 1717). The major organobromine metabolite in Noto-
mastus lobatus is 1829. Study of the Indo-Pacific Dysidea sp. sponge reveals the

presence of a mixture of the new metabolites 2,3-dibromo-5-hydroxyphenol (1830)
and 3,5-dibromo-2-hydroxyphenol (1831) (1718). A deep-water (113 m) Bahamian

sponge Aplysina fistularis fulva has afforded the novel disulfate aplysillin A (1832)
(1719). The sponge Didiscus sp. contains 3,5-dibromo-2-methoxybenzoic acid

(1833) (1720). The marine ascidian Aplidiopsis sp. from Western Australia has

yielded aplidiamine (1834), a unique zwitterionic adenine derivative (1721). The
structure of 1834 was confirmed by synthesis and the original tautomeric structure

was reassigned as shown (1722, 1723).
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The simple 3,5-dibromo-4-hydroxybenzoic acid (1835) and 3,5-dibromo-4-

methoxybenzoic acid (1836) occur in the green alga Ulva lactuca (1724) and the

Indian Ocean sponge Psammaplysilla purpurea (1725), respectively. The novel 6-
chloro-2,4-dibromophenol (1837) was characterized from cultures of the marine

bacterium Pseudoalteromonas luteoviolacea and displays antibacterial activity

against methicillin-resistant Staphylococcus aureus and the cystic fibrosis asso-

ciated pathogen Burkholderia cepacia (1726). The red alga Polysiphonia sphaero-
carpa has furnished several previously unreported simple bromophenols, including

2-bromophenol (1838), 2,4-dibromoanisole (1839), 2,4,6-tribromoanisole (1840),
and 2-bromo-4-methylphenol (1841) (1727). Bromoanisole 1840 is ubiquitous in

the marine environment (1728) and is a compound responsible for the musty aroma

of “corked” wine (1729). Brominated phenols and anisoles are also found in marine

mammals (e.g., Arctic hooded seal and Antarctic Weddell seal) and Antarctic

sponges (e.g., Phorbas glaberrima) (394), and in Norwegian predatory bird eggs

(479). These compounds are mainly 2,4,6-tribromophenol and 2,4,6-tribromoani-

sole (1840). The flavor and aroma properties of marine bromophenols have been

reviewed (1730). The Korean red alga Symphyocladia latiuscula has provided the

new symphyoketone (1842), which has radical-scavenging activity (1731). Para-
sitenone (1843) was characterized from the Korean marine-derived fungus Asper-
gillus parasiticus and also exhibits radical-scavenging activity (1732). A Chinese

specimen of the red alga Rhodomela confervoides has afforded the new 1844 and

1845 (1733, 1734). The isolated dimethyl acetal of 1844 may be an isolation

artifact. Further study of this seaweed has uncovered nine new bromophenols,

1846–1854 (1735).
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The brown alga Leathesia nana from the gulf of the Yellow Sea in China has

yielded the new bromophenols 1855 and 1856 (1736–1738), and the Chinese red

alga Rhodomela confervoides contains the five novel brominated catechols 1857–
1861, in addition to several brominated diphenylmethanes discussed in Sect. 3.22.1

(Diphenylmethanes and Related Compounds) (1739). The Brazilian red alga

Osmundaria obtusilobu has yielded the two novel sulfated oligobromophenols

1862 and 1863 (1740). The luminous acorn worm Ptychodera flava produces

2,3,5,6-tetrabromohydroquinone (1864), 2,3,5-tribromohydroquinone (1865), and
tetrabromo-1,4-benzoquinone (1866) (1741).
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The red alga Symphyocladia latiuscula has afforded the new tribromophe-

nols 1867 and 1868 (1742), and the red alga Polysiphonia urceolata contains

urceolatol (1869), a novel bromobenzaldehyde dimer having C2 symmetry

(1743). The red alga Rhodomela confervoides has yielded lanosol-purine me-

tabolite 1870 (1455) and lanosol-deoxyguanosine 1871, along with the new

simpler metabolites 1872 and 1873 (1744). Poipuol (1874) occurs in a Hawai-

ian Hyrtios sp. sponge (1745). It is interesting to note that poipuol is a rare

halogenated phenol having halogen (chlorine) meta to the ortho, para-directing
hydroxy groups.
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A study of the natural radiocarbon (14C) in the acorn worm Saccoglossus
bromophenolosus, which was collected off the Maine coast, revealed that the 2,4-

dibromophenol produced by these worms is of recent origin, in contrast to that from

petroleum-derived anthropogenic 2,4-dibromophenol (1746). Thus, this result com-

bined with the earlier study (1223) supports a natural source of 2,4-dibromophenol

in these animals. It should be noted that the more recent radiocarbon work utilizes

improved methodology (1746).
In closing this section, it should be mentioned that simple bromophenols (2-

bromophenol, 4-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, and 2,4,6-
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tribromophenol) are ubiquitous in the marine environment, particularly in fresh and

saltwater seafood (1747–1751). There is compelling evidence for a dietary origin of

these compounds, from both marine algae (1748, 1749, 1751–1753) and marine

polychaetes and bryozoans (1748–1750).

3.22 Complex Phenols

3.22.1 Diphenylmethanes and Related Compounds

The several known polybrominated diphenylmethanes (1) may arise via a pathway

analogous to the known dimerization of benzyl alcohols (1754). For example, the red

algal known metabolite 3,5-dibromo-4-hydroxybenzyl alcohol may condense to give

the known thelephenol (EEE) via (non-enzymatic) ipso electrophilic substitution

(Scheme 3.4). These condensations can occur under mild acidic conditions (1754).
Several new polybrominated diphenylmethanes have been discovered since the

first survey. The Japanese red alga Odonthalia corymbifera contains several

known bromophenols and the novel diphenylmethane 1875, which is a potent

feeding deterrent towards abalone (Haliotis discus hannai) and sea urchin (Stron-
gylocentrotus intermedius) (1755). Since methanol was used in the isolation

process, the actual metabolite may be the corresponding benzylic alcohol. The

red alga Rhodomela confervoides is a rich source of bromophenols including new

brominated diphenylmethanes, such as 1876 (1733), 1877 (1744), 1878–1880
(1739), and 1881 and 1882 (1455). The brown alga Leathesia nana has yielded

1883–1886 (1738), the latter two of which represent very interesting structures.
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The red alga Symphyocladia latiuscula has afforded the two heavily brominated

1887 and 1888 (1742).
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Although not diphenylmethanes, two unique brominated biphenyls were isolated

from a marine bacterium and marine mammals. Thus, Pseudoalteromonas pheno-
lica, a new marine bacterium, produces MC21-A (1889), which appears to be the

first naturally occurring polybrominated biphenyl (1756). This dimer of 2,4-dibro-

mophenol, 2,20-dihydroxy-3,30,5,50-tetrabromobiphenyl (2,20-diOH-BB80), has

comparable antibacterial activity to vancomycin against methicillin-resistant

Staphylococcus aureus, and has a higher killing rate than vancomycin. The

dimethoxylated version of MC21-A, 2,20-dimethoxy-3,30,5,50-tetrabromobiphenyl

(2,20-diMeO-BB80) (1890), is found in several marine mammals, Striped dolphin

(Stenella coeruleoalba), Bottlenose dolphin (Tursiops truncatus), Minke whale

(Balaenoptera acutorostrata), and Baird’s beaked whale (Berardius bairdii)
(1757, 1758). Both of these polybrominated biphenyls (PBBs) are considered to

be natural products, as no relevant PBB congener precursor is present in industrial

products, no other PBBs are present in the mammalian samples, and the high

concentration of 1890 (12–800 ng g�1 lipid) represents one of the most abundant

compounds analyzed in these samples, which included polybrominated diphenyl

ethers (PBDEs), hexabromocyclododecane (HBCDD), and methoxylated PBDEs

(1757, 1758).
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3.22.2 Diphenyl Ethers

Given the abundance of phenols in the oceans – halogenated or not – and the ease

with which they undergo oxidative dimerization (1759), it is hardly surprising that

halogenated diphenyl ethers are abundant in the marine environment (Fig. 3.27).

More than 30 such natural brominated diphenyl ethers were documented in the first

survey (1), and several new examples have been subsequently identified. It is worth

noting that all of the previously identified natural (sponge-derived) brominated

diphenyl ethers have at least one additional oxygen atom (hydroxy or methoxy),

whereas the industrial fire retardant polybrominated diphenyl ethers do not.

A study of South Pacific marine invertebrates has revealed the new 1891 in the
sponge Dysidea herbacea (1760). The new 1892 was isolated from Sagaminop-
teron bilealbum molluscs feeding on the sponge Dysidea herbacea from Guam

waters (1761). Four samples of Dysidea sponges from the Indo-Pacific yielded the

Fig. 3.27 Aplidium longithorax, a tunicate that produces polybrominated diphenyl ethers (Photo:

F. J. Schmitz)
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new polybrominated diphenyl ethers 1893–1896, in addition to several known

analogs (1718, 1762). These metabolites inhibit inosine monophosphate dehydro-

genase, guanosine monophosphate synthetase, and 15-lipoxygenase. An Indian

Ocean collection of Dysidea herbacea has afforded the new 1897 (1763), and this
sponge from West Sumatra, Indonesia, contains 1898–1901, which show activity

against Bacillus subtilis and the phytopathogenic fungus Cladosporium cucume-
rinum (1764). The novel lanosol-type dimers 1902 and 1903 were isolated along

with the known lanosol from the red alga Odonthalia corymbifera, and all three

bromophenols inactivate a-glucosidase (1765). Examination of Dysidea herbacea
from the Great Barrier Reef reveals the presence of the new polybrominated

diphenyl ether 1904 (1766). The Palauan sponge Phyllospongia dendyi has

yielded the new 1905–1907 and the known 1892 (1767). Another study of this

sponge has uncovered the new 1908 and 1909, in addition to nine previously

identified polybrominated diphenyl ethers (1768). The brown alga Leathesia nana
contains 1910, which was isolated as the bis-ethoxy ether since ethanol was used

in the isolation process (1738). The red alga Symphyocladia latiuscula contains

bis-benzyl ether 1911 (1742), and acorn worms of genus Thelepus produce the

novel bis-benzyl ether 1912 (1793). Okinawan crustose coralline red algae have

yielded corallinaether (1913), along with a novel brominated dibenzofuran de-

scribed later (1769). Further examination of a Great Barrier Reef Dysidea herba-
cea has uncovered the new 1914 (1770). The Indonesian sponge Lamellodysidea
herbacea (Fig. 3.28) has afforded the new 1915–1918 along with ten

Fig. 3.28 Lamellodysidea herbacea, a sponge from Sunda Strait, Indonesia, that contains the

new diphenyl ethers 1915–1918 and several previously known analogues (Photo: J. Tanaka)
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previously known analogs (1771). A Solomon Islands sponge Phyllospongia
sp. has yielded the tribrominated diphenyl ether 1919 (1772). This compound,

other brominated diphenyl ethers, and related brominated phenolics inhibit

various lipoxygenases (1772). The methoxylated 1920 occurs both in the red

alga Ceramium tenuicorne and blue mussels (Mytilus edulis) in the Baltic Sea

(1773). Several other previously known polyhalogenated diphenyl ethers were

found in these organisms.
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These and other polybrominated diphenyl ethers, along with other halogenated

compounds, whether natural marine metabolites or anthropogenic fire retardants

(1774–1776) have been identified in tunicates (1777), nudibranchs (996, 1778),
cyanobacteria (1003) (which may be the actual source of these polybrominated

diphenyl ethers), and other marine life such as salmon (1779, 1780), other fish
(1781–1783), several marine mammals (1215, 1784–1787), crocodile eggs (1786),
and human milk from women who consume whale blubber (1788). Evidence as to
the origin of these polybrominated diphenyl ethers is provided by the observation

that some nine halogenated compounds, including polybrominated diphenyl ethers,

were discovered in archived whale oil collected in 1921 from the final voyage of the

whaling ship Charles W. Morgan, obviously predating the large-scale industrial

synthesis of brominated fire retardants (1222). Noteworthy is that DDT, its meta-

bolites (e.g., DDE), and polychlorinated biphenyls (PCBs) were not detected in this

whale oil. Moreover, an analysis of the 14C content of 1897 and two previously

described polybrominated diphenyl ethers (1) isolated from marine mammals

confirms their natural origin (1223, 1789). The synthesis of polybrominated diphe-

nyl ethers has been of great interest in view of their biological activity and the need

for pure analytical standards (1790–1792).
Several other non-marine halogenated diphenyl ethers are newly described. For

example, the fungus Pestalotiopsis sp. has yielded RES-1214-2 (1921) (1794),
while a fungus of genus Xylaria also produces 1921 (“dihydromaldoxin”) along

with the new isodihydromaldoxin (1922) (1795). The new methyl dichloroasterrate

(1923) and methyl chloroasterrate (1924) were independently isolated from an

Aspergillus sp. culture broth (1796) and from an unidentified fungal strain B

90911 (1797). The corresponding acids 1925 and 1926 were earlier characterized

from Penicillium citrinum (1798). The Brazilian tree Byrsonima microphylla con-

tains the novel chlorinated diphenyl ether 1927, the presence of which in the

heartwood was confirmed by HPLC and TLC (1799).
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The toxic mushroom Russula subnigricans produces the novel polychlorinated

phenyl ethers, russuphelins A–F (1928–1933), some of which (B, C, D) exhibit

cytotoxicity against P388 leukemia cells (1672, 1800). Further study of this mush-

room uncovered the presence of the optically active russuphelol (1934) (1801). The
terrestrial cyanobacterium Fischerella ambigua has afforded ambigol C (1935)
(1654), which is an isomer of the previously described ambigols A and B (1).

O

CO2Me

Cl

CO2H

O OH

OH

1921  (RES-1214-2)

O

CO2Me

Cl

CO2H

HO

OH

1922  (isodihydromaldoxin)

1923  R1 = R2 = Cl  (methyl dichloroasterrate)
1924  R1 = Cl, R2 = H  (methyl chloroasterrate)

O

CO2Me CO2Me

R1 R2

HO

OH
O

O

CO2H CO2Me

Cl

HO

OH
O

1925

O

CO2H CO2Me
HO

OH

1926

Cl

O

CO2Me OH

Cl

HO

O

CO2Me

Cl

1927

O

O O

Cl

HO Cl

OR1

OR2

Cl OH

Cl

O

OR1

Cl

OR2

Cl

Cl OR3

1928  R1 = R2 = Me       (russuphelin A)
1929  R1 = Me, R2 = H  (russuphelin B)
1930  R1 = R2 = H         (russuphelin C)

1931  R1 = R2 = Me, R3 = H  (russuphelin D)
1932  R1 = R3 = Me, R2 = H  (russuphelin E)
1933  R1 = H, R2 = R3 = Me  (russuphelin F)
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The New Zealand brown algae Sargassum spinuligerum and Cystophora torulosa
produce several fucophlorethols including chlorobisfucopentaphlorethol-A (1936)
(isolated as the peracetate) (1802). The brown alga Carpophyllum angustifolium,
collected in New Zealand, has furnished 45 phloroglucinols including halogenated

2[D’]iododiphlorethol (1937), 3[A]chlorobifuhalol (1938), and 3[A4]chlorodifucol

(1939) (isolated as peracetates) (1818). An examination of the New Zealand brown

alga Cystophora retroflexa has identified 17 halogenated phlorethols and fucophlor-

ethols, including 12 new compounds, all isolated as peracetates: 2[B]-bromotriphlor-

ethol-A (1940), 2[D]-bromotriphlorethol-A (1941), 2[B],2[D]-dibromotriphlorethol-A

(1942), 2[D]-bromotetraphlorethol-C (1943), 3[A1],5[A1]-dichlorotriphlorethol-A

(1944), 3[A1],4[D]-dichlorotriphlorethol-A (1945), 3[A1]-chloro,4[D]-bromotriphlor-

ethol-A (1946), 2[B],4[D]-dichlorotriphlorethol-A (1947), 2[D],3[A1]-dibromotriphlor-

ethol-A (1948), 3[A1]-bromo,2[D]-chlorotriphlorethol-A (1949), 4[D]-

chlorofucotriphlorethol-B (1950), and 4[D]-chlorobisfucotetraphlorethol-A (1951)
(1803). These fascinating polyphenolic phloroglucinols have been reviewed

(1804).
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3.22.3 Tyrosines

Although relatively few simple halogenated tyrosines are found naturally, many

“transformed” tyrosines are produced by marine organisms and these are covered in

Sects. 3.22.3.2–3.22.3.4.

3.22.3.1 Simple Tyrosines, Thyroxine, and Related Compounds

3-Chlorotyrosine, which was previously found to occur in the cuticle of locusts (1),
is the product of the reaction of tyrosyl residues in albumin (1805) and in red blood
cells (1806) with the human neutrophil myeloperoxidase-hydrogen peroxide-chlo-

ride system. The latter study provides evidence that free chlorine gas is involved in

this chlorination reaction, rather than hypochlorous acid (1806). Furthermore, 3-

chlorotyrosine is found in human atherosclerotic tissues, with the highest concen-

trations present in patients with coronary heart disease, indicating that 3-chlorotyr-

osine is a specific marker for low-density lipoprotein (LDL) oxidation by

myeloperoxidase (MPO) (1807). This amino acid forms in dialysis patients as a

result of oxidative stress by activated neutrophils. Thus, hemodialysis increases

plasma MPO and hypochlorous acid leading to elevated levels of 3-chlorotyrosine

(1808). This amino acid is also present in high concentrations in cystic fibrosis

patients, who have high levels of MPO (1809). Consistent with these observations is
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that MPO-deficient mice fail to generate 3-chlorotyrosine and to kill the fungus

Candida albicans in vivo (1810). Infants who develop chronic lung disease contain
high levels of 3-chlorotyrosine, suggesting that MPO and neutrophil oxidants

contribute to the pathology of these diseases (1811). Likewise, both 3-bromoty-

rosine and 3,5-dibromotyrosine, which were previously isolated from marine

organisms and insects (1), appear to be major products of protein oxidation by

eosinophil peroxidase (EPO) (1812). This EPO-promoted bromination may con-

tribute to the tissue damage that accompanies asthma (1813). The red alga Rhodo-
mela confervoides has yielded the new bromotyrosine 1952 (1455).

HO

O

Br

CO2H

NH2

1952

3.22.3.2 Transformed Tyrosines, Tyramines, Phenethylamines
and Related Compounds

Tyrosine-derived metabolites in this section do not include spiro-cyclohexadienyl-

isoxazolines and related compounds (Sect. 3.22.3.3) or bastadins (Sect. 3.22.3.4),

but they do include tyrosine-derived alkaloids that were covered in the Alkaloids

section in the first survey (1). The prolific bryozoan Amathia convoluta, collected in
Tasmania, has yielded amathamide G (1953) (1814), the latest of several amath-

amide alkaloids from the genus Amathia (1). A Florida collection of this animal

furnished the new convolutamines A–E (1954–1958) (1815), F (1959), and G

(1960) (1425), and a Tasmanian sample of this bryozoan afforded convolutamine

H (1961) (1319). A study of Amathia convoluta from the North Carolina coast has

yielded volutamides A–E (1962–1966) (1816). Volutamides B and C reduce feed-

ing by the pinfish (Lagodon rhomboids) and the urchin (Arbacia punctulata),
respectively, and volutamides B and D are toxic toward larvae of the hydroid

Eudendrium carneum. The New Zealand Amathia wilsoni contains the six novel

amathaspiramides A–F (1967–1972) (1817).
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Marine tunicates are also a source of brominated tyrosine derivatives. The

colonial ascidian Aplidium sp., which was collected in Australia, yielded the

novel iodinated tyrosine alkaloids 1973–1975 (1819). Collections of Botryllus sp.
and Botryllus schlosseri from the Philippines and the Great Barrier Reef, respec-

tively, have afforded botryllamides A–D (1976–1979) (1820). A Palauan ascidian

Botrylloides tyreum produces several new botryllamides, including the brominated

botryllamide G (1980) (1821). The simple brominated tyramines 1981 and 1982
were isolated from the New Zealand ascidian Cnemidocarpa bicornuta (1822) and
an Indonesian Eudistoma sp. ascidian (1823).
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The toxic Japanese gastropod Turbo marmorata contains the two toxins,

turbotoxins A (1983) and B (1984), isolated as bis-trifluoroacetates (1824,
1825). The turbotoxins A and B show LD99 ¼ 1.0 and 4.0 mg kg�1 in mice. The

simple iodinated ammonium salt 1985 is also found in this animal (1826). The red
alga Halopytis incurvus contains the simple brominated phenols 1986 and 1987,
which were isolated as the methyl esters and methyl ethers (1827). These pre-

sumed degradation products of tyrosine are related to earlier reported brominated

metabolites (1).
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The largest number of brominated tyrosines is found in marine sponges, and

more than 100 were documented in the first survey (1). The organization in this

section is by sponge genus and species, rather than by type of metabolite. The

Caribbean sponge Pseudoceratina crassa has yielded the new brominated phenyl-

acetonitrile 1988 and imidazole 1989 (1828), both of which are close analogs of

previously described sponge metabolites, verongamine in the case of 1989 (1). In
addition to containing several known bromotyrosines, the New Caledonian Pseu-
doceratina verrucosa has afforded pseudoceratinine B (1990), in addition to two

spirocyclohexadiene isoxazoles reported in the following section (1829). A Carib-

bean Pseudoceratina sp. contains 5-bromoverongamine (1991), which inhibits the

settlement of barnacle larvae at 10 mg cm�3 (1830). Ceratinamine (1992), which
was isolated from the Japanese Pseudoceratina purpurea, is also an antifouling

compound against the barnacle Balanus amphitrite and contains the novel cyano-

formamide functionality (1831). The novel tokaradines A–C (1993–1995) are

found in the sponge Pseudoceratina purpurea (Fig. 3.29) collected in Southern

Japan waters (1832). These bromotyrosines are lethal to the crab Hemigrapsus
sanguineus at 20–50 mg g�1 (1993 and 1994). A Papua New Guinea collection of

this sponge yielded the six new psammaplins E-J (1996–2001) (1833). Psammaplin
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F (1997) is a potent histone deacetylase inhibitor, and psammaplin G (1998) is a
potent DNA methyltransferase inhibitor. A Southern Japanese version of Pseudo-
ceratina purpurea has yielded pseudoceratins A (2002) and B (2003) (1834).

Fig. 3.29 Pseudoceratina purpurea, a Papua New Guinea sponge that contains several psamma-

plins such as 1996–2001 (Photo: P. Crews)
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Sponges of the genus Psammaplysilla have been a rich source of bromotyrosine

metabolites (1), and that trend continues for the present survey. An examination of

the Okinawan Psammaplysilla purea has revealed the presence of purealidins M–O

(2004–2006) (1835), and purealidin H (2007) and lipopurealins D (2008) and E

(2009) (1836). Several collections of Psammaplysilla purpurea from India have

yielded new bromotyrosines and related compounds. These include the simple 2010
and 2011 (1837), 2012 (1838), 2013 and 2014 (1839), purpuramines K (2015) and L
(2016) (1840), 2017 (1841), and purpurealidins F (2018), G (2019), and H (2020)
(1842).
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An undescribed Verongid sponge from Molokai, Hawaii, has yielded N-methyl-

ceratinamine (2021) and the moloka’iamine derivatives, wai’anaeamines A (2022)
and B (2023) (1843). This sponge is most likely of the genus Psammaplysilla or

Pseudoceratina. Another collection of a Verongid sponge from Molokai has fur-

nished a series of mololipids, 2024–2036, which display anti-HIV activity. These

amides are derivatives of the previously known moloka’iamine, also present in this

sponge (1844). A collection of Psammaplysilla sp. from the Indian Ocean has

provided the new psammaplysenes A (2037) and B (2038), which are inhibitors

of the FOXO1a nuclear export (1845).
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Sponges of the genus Aplysina are abundant in the Caribbean and Mediterranean

Seas and have yielded a variety of bromotyrosine metabolites (1). The Caribbean

Aplysina insularis affords 2039 (1846), and an Indo-Pacific Aplysina sp. sponge has
yielded aplyzanzine A (2040) (1847). A study of the Brazilian sponges Aplysina
cauliformis and Pachychalina sp. has led to compounds 2041 and 2042, respective-
ly (1848). An Aplysinella sp. sponge from Micronesia contains 7-hydroxyceratin-

amine (2043) and dibromotyramine 2044 (1849). An Australian collection of

Aplysinella rhax has furnished psammaplin A 110-sulfate (2045) and bisaprasin

110-sulfate (2046) (1850). An independent study of this sponge, which was collect-

ed in Guam, Palau, and Pohnpei, identified 2045 (as the N,N-dimethylguanidium

salt) along with the new psammaplin A2 (2047), aplysinellins A (2048) and B

(2049) (1851). A Fijian version of Aplysinella rhax has yielded the new psamma-

plins K (2050) and L (2051) (1852).
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The novel iodinated tyrosine derivative dakaramine (2052) is present in the

Senegalese sponge Ptilocaulis spiculifer (1853). A Papua New Guinea sponge

Ianthella basta (Fig. 3.30) has furnished nine new bromotyrosine compounds,

hemibastadins 3 (2053), 2054–2056, and hemibastadinols 1 (2057), 2 (2058), and
3 (2059) (1854). The previously known hemibastadins 1 and 2 were also isolated.

A Guamanian collection of this sponge has afforded 1-O-sulfatohemibastadins-1

(2060) and -2 (2061) (1855). The Caribbean sponge Verongula gigantea (“Netted
Barrel Sponge”) contains the novel bromotyrosine metabolite 2062 (1856). An
unidentified Okinawan sponge of order Verongid has afforded nakirodin A (2063)
(1857).
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The novel pyrazinone bromotyrosines ma’edamines A (2064) and B (2065)
were characterized from an Okinawan sponge Suberea sp. (1858). It is proposed
that the pyrazinone ring may be derived from a dehydro form of the known

aplysamine-2 or purpuramine H, which are also present in this sponge. A

separate study of this sponge revealed the presence of the new suberedamines

A (2066) and B (2067) (1859). An Australian non-Verongid sponge, Oceanapia
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sp., has yielded 2068, which is the first example of an inhibitor of the mycobac-

terial enzyme mycothiol S-conjugate amidase, found in Mycobacterium sp.

(1860). The Fijian sponge Druinella sp. has afforded purpuramine J (2069), the
first bromotyrosine N-oxide alkaloid to be discovered (1861). This metabolite is

the N-oxide of aplysamine-2. The novel trisulfide 2070 and the two disulfides

(E, E)-bromopsammaplin A (2071) and bispsammaplin A (2072) were found in a

combined extract of the sponges Jaspis wondoensis and Poecillastra wondoensis
(1862).

Fig. 3.30 Ianthella basta, a sponge rich in the bastadins 2053–2061 (Photo: F. J. Schmitz)
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A southern Japan Hexadella sp. sponge has furnished the new moloka’iamines

2073 and 2074 and kuchinoenamine (2075), the latter having a unique tricyclo

[5.2.1.02.6]decane skeleton (1863). These metabolites display antibacterial activity

against the fish pathogenic bacterium Aeromonas hydrophila. A Madagascan

sponge Iotrochota purpurea contains itampolins A (2076) and B (2077), which
are comprised of three separate units including D-bromotyrosine (1864).
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While there exist too many syntheses of bromotyrosine alkaloids to delineate

here, two illustrative examples are those of moloka’iamine (1865) and the

mycothiol-S-conjugate amidase inhibitor 2068 (1866).

3.22.3.3 Transformed Multiple Tyrosines

As presented in the first survey (1), a large number of brominated tyrosines that

contain a spirocyclohexadienyl isoxazoline ring are known, and 34 examples were

described in the first survey (1). The first two such metabolites to be identified,

aerothionin and homoaerothionin (1), are localized in the spherulous cells of the

sponge Aplysina fistularis, which may suggest their release into the ectosome

matrix and surrounding seawater as antifouling agents (1867).
The Okinawan sponge Psammaplysilla purea that contains purealidins M–O

(2004–2006) also yields purealidins J (2078), K (2079), L (2080), P (2081), Q
(2082), and R (2083) (1835). Purealidin J (2078) is the antipode of pseudocer-

atinine A (2089). The Indian sponge Psammaplysilla purpurea, which is the

source of purpurealidins F–H (2018–2020) and other bromotyrosines (vide

supra), also contains purpurealidins A (2084), B (2085), C (2086), and D

(2087) (1842). A Caribbean Pseudoceratina sponge has afforded the simple

carboxylic acid 2088 (1868). The New Caledonian sponge Pseudoceratina ver-
rucosa, which is the source of pseudoceratinine B (1990), also contains pseudo-

ceratinines A (2089) and C (2090), the absolute configurations of which are

shown (1829).
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A Japanese collection of Pseudoceratina purpurea has uncovered the presence

of ceratinamides A (2091) and B (2092) in this sponge (1869). These new com-

pounds are acyl derivatives of psammaplysin A (1), which is also present in this

sponge. The closely related psammaplysin F (2093) was identified in an Aplysinella
sp. from Chuuk (1870). A Gulf of Thailand sponge, Pseudoceratina purpurea, has
yielded purpuroceratic acids A (2094) and B (2095) (1871). In contrast to the

aforementioned simple bromotyrosines, the complex zamamistatin (2096) was

isolated from an Okinawan collection of Pseudoceratina purpurea (1872) (revised
in 1873). This novel zamamistatin exhibits significant antibacterial activity against

the marine bacterium Rhodospirillum salexigens, which has adhering properties

(1872).
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The Caribbean sponge Aplysina insularis has furnished 2097 (1846), 11-

deoxyfistularin-3 (2098) (1874), and 14-oxoaerophobin-2 (2099) (1875), along
with numerous previously known compounds. Similarly, the Verongida sponge

Aplysina archeri (Fig. 3.31) contains a number of known bromotyrosine alkaloids

in addition to the novel 2100 (1876). This Caribbean sponge has also afforded

archerine (2101), a new metabolite that displays significant antihistamine activity

(1877). The Mediterranean sponge Aplysina cavernicola has provided the new

oxohomoaerothionin (2102) and 11-hydroxyfistularin-3 (2103) (1878). Aplysina
cauliformis, from the Caribbean, has yielded the isomeric carbamates 2104 and

2105, the latter of which inhibits mammalian protein synthesis and cell prolifera-

tion (1879).
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Fig. 3.31 Aplysina archeri, a Caribbean sponge containing several bromotyrosines, including

2100 and archerine (2101) (Photo: J. R. Pawlik)
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The Mexican sponge Aplysina gerardogreeni contains calafianin (2106) (1880)
(structure revised and confirmed by total synthesis, (1881–1883)), the known

aerothionin, and the new phenylacetic acid 2107 (1880). These studies confirm

that calafianin (2106) and aerothionin have the same absolute configuration (1883).
Whereas aerothionin displays antibacterial activity against Mycobacterium tuber-
culosis, calafianin does not (1884). The Brazilian sponge Aplysina caissara con-

tains the new caissarines A (2108) and B (2109) (1885).

A specimen of the Caribbean sponge Aiolochroia crassa has yielded the

new N-methylaerophobin-2 (2110) (1886). Another collection of this sponge

from Belize has afforded araplysillin III (2111) and hexadellin C (2112)
(1887). This study established their absolute configurations as shown. A new

stereoisomer, FFF, of fistularin-3 was reported from an Aegean Sea sample of

the sponge Verongia aerophoba (1888). However, a determination of the

absolute configuration of (+)-fistularin-3 and (+)-11-epi-fistularin-3 also reveals
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that FFF is, in fact, identical to the previously known 11-epi-fistularin-3
(1892). A Micronesian specimen of Aplysinella sp. has furnished (+)-aplysi-

nillin (2113), which showed growth inhibition against the MCF-7 breast cancer

cell line (2649).
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A Great Barrier Reef Ianthella sp. sponge has yielded ianthesines A–D

(2114–2117) (1889). Ianthesines B–D display Na,K-ATPase inhibitory activity

in the range 50–440 mM. The isolation of 2118 from an Australian Oceanapia
sp. sponge has been described, including determination of its absolute config-

uration (1860).
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A collection of the sponge Suberea aff. praetensa from the Gulf of Thailand

contains 11,17-dideoxyagelorins A (2119) and B (2120) (1890), and the Fijian

sponge Druinella sp. has afforded purealidin S (2121) (1861). The Malaysian

crinoid Himerometra magnipinna has furnished (+)-12-hydroxyhomoaerothionin

(2122) (1891).
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Several syntheses of the bromotyrosine spiroisoxazolines have been described

(1893–1895), but a full survey of these synthetic efforts cannot be covered here.

3.22.3.4 Bastadins

A study of the known bastadins-8, -10, and -12 from the Papua New Guinea

sponge Ianthella basta has established the absolute configuration of these meta-

bolites (1896). Bastadins-10 and -12 significantly inhibit the growth of several

human cancer cell lines, and all three of these bastadins inhibit growth of

Staphylococcus aureus and Enterococcus faecalis. Several new bastadins have

been described since the first survey (1). A Western Australian Ianthella basta
contains bastadin-20 (2123), 15,34-O-disulfatobastadin-7 (2124), and 10-O-sul-
fatobastadin-3 (2125) (1897). The Great Barrier Reef Ianthella quadrangulata
has afforded bastadin-21 (2126) (1898).
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A Guam specimen of Ianthella basta has afforded the novel 34-O-sulfatobasta-
din-9 (2127) (1855), and the sponge Dendrilla cactos from India has yielded

bastadins-22 (2128) and -23 (2129) (1899).
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These novel tetrameric bromotyrosine metabolites display a range of biological

activities, including effects on calcium channels (1900), lipoxygenase inhibition

(1772), tumor angiogenesis inhibition (1901), and endothelial cell anti-proliferation
(1902). Syntheses of several bastadins have been accomplished (1903, 1904).

3.22.4 Depsides

The polyketide-derived depsides are ubiquitous lichen metabolites and some 15

chlorinated examples were cited in the first survey (1). A collection of the lichen

Lecanora jamesii from England has yielded the new 2-O-methylsulphurellin (3,5-

dichloro-4-O-demethylplanaic acid) (2130) (1905, 1906), while Lecanora lividoci-
nerea from Spain has afforded 3,5-dichloro-20-O-methylnorstenosporic acid (2131),
5-chloro-20-O-methylanziaic acid (2132), and 3,5-dichloro-20-O-methylnorhyperla-

tolic acid (2133) (1906). This latter study also confirmed the structure of 2130 by total
synthesis. AMexican sample of the lichenDimelaena cf. radiata has yielded the new
5-chlorodivaricatic acid (2134) (1907). The wood-decaying fungus Hypholoma fas-
ciculare contains 2135 (1908), and a marine fungus, Emericella unguis, which was

collected from a Venezuelan mollusc (unidentified) and a medusa (Stomolopus
meliagris; “Cannonball Jelly”), has afforded guisinol (2136) (1909). Another marine

fungus, Pestalotia sp., found on the surface of the brown alga Rosenvingea sp. in the
Bahamas, produces the novel antibiotic pestalone (2137), which displays potent

antibacterial activity against both methicillin-resistant Staphylococcus aureus and

vancomycin-resistant Enterococcus faecium (1910).

H
N

HO

N
H

Br

O

N

O

N

O

OH

Br

Br

OH

HO

O

2128 R = Br (bastadin-22)
2129 R = H (bastadin-23)

Br

Br
R

314 3 Occurrence



3.22.5 Depsidones

Depsidones are cyclized depsides that also seem to be confined to the world of

lichens. Nearly 50 chlorinated depsidones were identified in the first survey (1). A
study of Lecanora chlarotera, a lichen collected in southeast Scotland, contains the
new norgangaleoidin (2138) (1911). Several collections of Fulgensia fulgida
(France, Spain, and Israel) yield fulgoicin (2139) (1912), the structure of which is

confirmed by total synthesis (1913). The related fulgidin was described earlier from
this lichen (1, 1912), although a subsequent investigation showed, by synthesis, that
fulgidin has the revised structure GGG (1914, 1915). Ironically, the incorrectly

proposed structure of fulgidin, now named “isofulgidin” (2140), is a depsidone

found in the lichens Rinodina dissa, Hafellia parastata, and Fulgensia canariensis
(1914).
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2130 R1 = CH3,R2 = Cl, R3 = n –C5H11,  R4 = n –C5H11

2131 R1 = H,    R2 = Cl, R3 = n –C3H7,   R4 = n –C5H11

2132 R1 = H,    R2 = H, R3  = n –C5H11,  R4 = n –C5H11

2133 R1 = H,    R2 = Cl, R3 = n –C5H11,  R4 = n–C7H15
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The new chlorolecideoidin (2141) is a minor depsidone from the lichens

Lecanora leprosa and Lecanora sulphurescens (1916), and the novel 4-dechloro-

gangaleoidin (2142) has been identified in Lecanora argentata and Lecanora
californica (1917). The Fijian lichen Catarraphia dictyoplaca has yielded cyclo-

graphin (2143) (1918). Cultures of the ascomycete Coniochaeta tetraspora have

furnished CT-1 (2144) (1919). An unidentified Xylaria fungus contains maldox-

one (2145) (1795), and the two brominated depsidones, acarogobiens A (2146)
and B (2147), were characterized from the Central Asian lichen Acarospora
gobiensis (Fig. 3.32) (1920). These compounds are the first brominated lichen

metabolites to be discovered.
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3.22.6 Xanthones

Like depsides and depsidones, most chlorinated xanthones are found in lichens, and

more than 50 such compounds were described in the first survey (1). The lichen

O

O

O
HO Cl

O

CO2Me

2145 (maldoxone)

O

O

O

O

OH

Br

2146 (acarogobien A)

O

O

O

Br

O
CHO

O

Br

2147 (acarogobien B)

Fig. 3.32 Acarospora gobiensis, a Central Asian lichen that contains the novel brominated

depsidones, acarogobiens A and B (2146 and 2147) (Photo: T. Rezanka)
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Lecanora broccha contains the new 5,7-dichloro-3-O-methylnorlichexanthone

(2148) (1921). The synthesis of 17 chlorinated xanthones, which were listed in

the first survey (1), has been reported (1922). Demethylchodatin (2149) occurs in
the lichen Lecanora pachysoma (1923), and Byssoloma subdiscordans has furn-

ished the new 5,7-dichloro-6-O-methylnorlichexanthone (2150) (1924). Sporopo-
dium citrinum contains 4-chlorolichexanthone (2151) and 4-chloro-3-O-
methylnorlichexanthone (2152) (1924). The previously known vinetorin (1) is the
first chloroxanthone to be isolated from a higher plant, Hypericum ascyron (1925).
The new xanthone 2153 has been characterized from the Italian plant Polygala
vulgaris (1926).

The structures of the previously isolated beticolins 2 and 4 (1) have now been

confirmed by X-ray crystallography (1927). A new isolate from the fungus Cerco-
spora beticola, which is a highly destructive disease of sugar beets, is beticolin

0 (2154) (1928). The polycyclic xanthone Sch 54445 (2155) is produced by an

Actinoplanes species, and is a very active antifungal agent (MIC, 0.00038 mg mL�1)

(1929). Xantholipin (2156) is a related substance from a Streptomyces sp. (1930),
and is structurally similar to the previously known lysolipins from Streptomyces
violaceoniger (1).
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3.22.7 Anthraquinones and Related Compounds

Most of the previously identified 25 chlorinated anthraquinones are found in

lichen and fungi (1). The newly discovered examples have a wider range of

sources. Studies of the lichen Nephroma laevigatum from the British Columbia

coast have identified the new anthraquinone, 7-chloro-1-O-methyl-o-hydroxy-
emodin (2157), and the two novel hypericins, 7,70-dichlorohypericin (2158) and
2,20,7,70-tetrachlorohypericin (2159) (1931), as well as 5-chloroemodin (2160), 5-
chloro-1-O-methyl-o-hydroxyemodin (2161), and 5-chloro-o-hydroxyemodin

(2162) (1932). In addition to containing several known chlorinated anthraqui-

nones, the Scandinavian fungus Dermocybe sanguinea has afforded the new 5,7-

dichloroendocrocin (2163) (1933). The novel tetracyclic anthraquinones
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topopyrones A (2164) and B (2165), and two non-chlorinated analogs, were

isolated from cultures of the fungi Phoma sp. and Penicillium sp. (1934, 1935).
These compounds are topoisomerase I inhibitors and topopyrone B has activity

comparable to that of camptothecin. Topopyrone B is also potent against herpes

virus VZV, and is 24 times more active than acyclovir. Syntheses of topopyrones

have been described (1936, 2650).
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OOH OH

2158 R = H (7,7'-dichlorohypericin)
2159 R = Cl (2,2',7,7'-tetrachlorohypericin)
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2165 (topopyrone B)

The Streptomyces strain that produces celastramycin A (1212) has also yielded

celastramycin B (2166) (1225). Another Streptomyces sp. has afforded bischloro-

anthrabenzoxocinone ((–)-BABX) (2167), which has antibacterial activity and

inhibits ligand-binding activity of liver X receptors (1937). An example of a rare

chlorinated anthraquinone is anthrasesamone C (2168), which was characterized in
the Japanese plant Sesamum indicum (1938). The angucycline-type marmycin B
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(2169) was isolated from cultures of a Streptomyces strain, along with the dechloro
marmycin A, which was more cytotoxic against several human cancer cell lines

than marmycin B (1941). A Gram-positive strain of a Bacillus bacterium from

Californian soil has yielded the novel fluorescent pyrene, chlorxanthomycin (2170),
which has selective antibiotic activity (1942). The antitumor antibiotic BE-19412A

(2171) is produced by a Streptomycete (1943).
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3.22.8 Griseofulvin and Related Compounds

One of the earliest recognized naturally occurring organohalogen compounds is

griseofulvin (1), and this fungal metabolite is still used clinically to treat tinea pedis

(athlete’s foot) and, more recently, may have anticancer activity (1944, 1945). The
new spirocyclohexadienone, maldoxin (2172), was isolated from a member of the

fungus genus Xylaria (1795). A fermentation broth of Aspergillus sp. has afforded
Sch 202596 (2173), which displays inhibitory activity in the galanin receptor

GALR1 assay (1946). This fungus was isolated from the tailing piles of an

abandoned uranium mine in California.
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2172 (maldoxin)
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2173 (Sch 202596)

3.22.9 Miscellaneous Fungal Metabolites and Other Complex
Phenols

A large number of natural organohalogen compounds, mainly found in fungi, do not

fit into the structural categories defined earlier and are presented here. Some new

analogs of the well-known prenyl-phenol antibiotic ascochlorin have been reported.

The literature on this class of fungal metabolites is confusing since several of the

same compounds have been named differently in separate investigations. Thus,

ascochlorin is also known as LL-Z1272g and ilicicolin D, and the known cylindro-

chlorin (= ilicicolin E) was isolated more than 20 years after its initial discovery and

named as 80,90-dehydroascochlorin from a Verticillium sp. (1949). Ilicicolin E is

also found in the canker disease phytopathogenic fungus Nectria galligena (1950).
Cylindrol A4 (2174) was isolated from Cylindrocarpon lucidum (1951) and is

related to the known corresponding acetate, chloronectrin (1). The insect pathogen-
ic fungus Verticillium hemipterigenum from Thailand has yielded vertihemipterin

A (2175), a glucoside of the previously known aglycone, along with 80-hydroxyas-
cochlorin (2176) (1952). Ascochlorin derivatives display significant biological

activity such as antidiabetes (1953, 1954). The first synthesis of (–)-ascochlorin

has been reported (1955).
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The previously described antifungal strobilurin B, which has been synthesized

(1956), is joined in kind by the discovery of oudemansin B (2177) from Xerula
longipes and Xerula melantricha (1957). This class of substances holds promise for

the development of new fungicides (1958). Like ascochlorin, the previously known
aspirochlorine (1) has been frequently isolated (= A30641 = oryzachlorine), and

displays potent antifungal activity (1959). The new analog tetrathioaspirochlorine

(2178) and possibly the trisulfide derivative (not counted here) are found in extracts
of Aspergillus flavus along with aspirochlorine (1960).
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As reported in the first survey, several fungi produce novel cyclobutane-contain-

ing metabolites, such as armillaridin, melleolides, and melledonals (1). Newly
isolated members of this class include arnamiol (2179) from Armillaria mellea
(1961), Armillaria ostoyae (1962), Armillaria tabescens, Armillaria monadelpha,
Armillaria gallica, and Armillaria cepestipes (1963), armellide B (2180), melleo-

lides I (2181) and J (2182) from Armillaria novae-zelandiae (1964), and melledonal

D (2183) from Clitocybe elegans (1965). Melleolide J (2182) may be identical to

armillarikin isolated from Armillaria mellea (1966). The pathogenic fungus Armil-
laria novae-zelandiae has also afforded 60-chloro-10a-hydroxymelleolide (2184)
(1967). Melleolides K (2185), L, and M (2186) were isolated from Armillariella
mellea (1968), but melleolide L appears to be the same as 2184.

2179 (arnamiol)

O

OH

Cl

O

OH

O

O

OH

Cl

O

HO

OH

O

OH

2183 (melledonal D)

O

OH

Cl

O
CH2OH

O

HO

OH
O

OH
H

O

OH

Cl

O

HO

OH
O

2181 (melleolide I)

OH

O

OH

Cl

O

HO

OH
O

2182 (melleolide J)

O

H

OH

HO

2180 (armellide B)

H

H

H

H

H

H

H H

324 3 Occurrence



OH

OH

O

Cl

O

HO

OH
O

H

2184 2185 R1 = CHO, R2 = H  (melleolide K)
2186 R1 = CH2OH, R2 = OH  (melleolide M)
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The fungus Emericella falconensis is the source of several azaphilones, the

falconensins (1), and the new falconensin E (2187) has been identified in a

Venezuelan soil sample containing this fungus (1969). The absolute configuration
of the falconensins was established in this study. This fungus and Emericella
fruticulosa have furnished the new falconensins K (2188), L (2190), M (2189),
and N (2191) (1970). The culture broth of an Amycolatopsis strain produces the

chlorine-containing epoxyquinomicins A and D (2192, 2193) (1971–1975). The
non-chlorinated epoxyquinomicins B and C are more active than A and D in

inhibiting rat embryo histidine decarboxylase (1975). An unidentified Coniothyri-
um fungus has furnished coniothyriomycin (2194), which shows fungicidal and

herbicidal activity (1976, 1977). This metabolite is related to 1776 from a Xylaria
fungus. Cultures of Actinoplanes sp. yield BE-40665D (2195), a novel brominated

antibacterial antibiotic (1978).
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The tropical fungus Scleroderma sinnamariense has afforded methyl 20,50-
dichloro-4,40-di-O-methylatromentate (2196) (1979), and the related pulvinic acid

derivative methyl 30,50-dichloro-4,40-di-O-methylatromentate (2197) was isolated

from the fruiting body of a Scleroderma sp. (“poison puff ball”) (1980). A New

Zealand Chamonixia pachydermis has yielded pachydermin (2198) (1981).
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The fungus Chloridium sp. produces CJ-21,164 (2199), a novel D-glucose-6-

phosphate phosphohydrolase inhibitor (1982). The edible mushroom Agaricus
macrosporus has yielded agaricoglycerides A (2200), B (2201), C (2202), D (2203),
agaricic ester (2204), and monoacetylagaricoglycerides A (2205, 2206) (1983).
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3.23 Glycopeptides

Probably no class of natural products with therapeutic potential has received

more attention than the vancomycin glycopeptide antibiotics. In clinical use

for more than 40 years, vancomycin – the antibiotic of “last resort” – has been

extensively investigated regarding its mechanism of action (1991–1997), ana-
log development to combat resistant bacteria (1993, 1994, 1996–2001), bio-
synthesis (2002), and total synthesis (1993, 1997, 2003). The enormity of the

vancomycin and related glycopeptide literature renders full coverage not fea-

sible here, but excellent general reviews are available (1993, 1996, 1997,
1998, 2004, 2005). A crystal structure of vancomycin was only relatively

recently obtained (2006). Some 75 naturally occurring chlorinated glycopep-

tides were documented in the previous review (1), and several new examples

have been described subsequently. The new A-40926-PA (2207) and A-40926-

PB (2208), acetates of two previously known glycopeptides A-40926-A and -B

(1), are produced by an Actinomadura strain (2007). All four of these meta-

bolites are active against Neisseria gonorrhoeae and may offer a treatment for

gonorrhea.
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2207 R = n -C10H21 (A-40926-PA)
2208 R = (CH2)8CH(CH3)2 (A-40926-PB)
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Cultures of Amycolatopsis sp. have yielded six new 4-oxovancosamine-contain-

ing glycopeptides, ureido-balhimycin (2209), rhamnosyl-balhimycin (2210),
methylbalhimycin (2211), demethylbalhimycin (2212), balhimycin V (2213),
devancosamine-vancomycin (2214), M43C (2215), and degluco-balhimycin

(2216), along with the known balhimycin (2008). A crystal structure of ureido-

balhimycin has been reported (2009).
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2209 R1 = glc, R2 = urvcn, R3 = H, R4 = Me  (ureido-balhimycin)
2210 R1 = rha-glc, R2 = urvcn, R3 = H, R4 = Me  (rhamnosyl-balhimycin)
2211 R1 = glc, R2 = ovcn, R3 = R4 = Me  (methylbalhimycin)
2212 R1 = glc, R2 = ovcn, R3 = R4 = H  (demethylbalhimycin)
2213 R1 = ovcn-glc, R2 = ovcn, R3 = H, R4 = Me  (balhimycin V)
2214 R1 = glc, R2 = H, R3 = H, R4 = Me  (devancosamine-vancomycin)
2215 R1 = R2 = H, R3 = R4 = Me  (M43C)
2216 R1 = R3 = H, R2 = ovcn, R4 = Me  (degluco-balhimycin)

glc = glucosyl-1

rha-glc = rhamnosyl-(1-2)-glucosyl

urvcn = ureido-4-oxovancosaminyl-1

ovcn = 4-oxovancosaminyl-1

ovcn-glc = 4-oxovancosaminyl-(1-2)-glucosyl O
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The previously known chloropeptin 1 and complestatin (= chloropeptin II)

have been the object of synthetic and stereochemical studies and structural

revisions (2010–2012, 2653). The new complestatins A (2217) and B (2218)
were characterized from a Streptomyces sp. MA7-234 (2013), and these two

compounds would appear to be the same as neuroprotectins A and B isolated

from Streptomyces sp. Q27107 (2014, 2015). Another Streptomyces sp. has
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furnished SCH 212394 (2219), which incorporates a 6-chloroindole unit (2016),
and SCH 204698 (2220), which is a formal acetone addition product of chloro-

peptin I (2017).
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2217 R = H    (complestatin A = neuroprotectin A)
2218 R = OH (complestatin B = neuroprotectin B)
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Two biosynthetic intermediates of the vancomycin glycopeptides, SP-969

(2221) and SP-1134 (2222), are found in cultures of Amycolatopsis mediterranei
(2018). This is the first reported isolation of linear biosynthetic intermediates of the

vancomycin family. Monodechlorovancomycin 2223 is found for the first time in

fermentation broths of Amycolatopsis orientalis (2019). The other monodechloro-

vancomycin was synthesized for comparison with 2223.
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3.24 Orthosomycins

The small number of novel chlorophenol-oligosaccharide antibiotics (orthosomy-

cins) presented in the earlier survey (1) has been expanded to include a few new

examples. However, the highlight in this area is the total synthesis of everninomicin

13,384-1 (ziracin; Sch 27899) (2224) (2020–2022), which is found in cultures of

Micromonospora carbonacea var. africana (2023–2025). This organism has also

furnished the related everninomicins 2225, 2226, 13,384-5 (Sch 27900) (2227), Sch
49088 (2228) (2023–2026), and Sch 58761 (2229) (2027).
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2229 R1 = NO2, R2 = Cl  (Sch 58761)
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Additional studies of Micromonospora carbonacea have revealed the presence

of everninomicin-6 (2230) (2028), and Sch 58769 (2231), Sch 58771 (2232), Sch
58773 (2233), and Sch 58775 (2234) (2029).
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3.25 Dioxins and Dibenzofurans

For more than 30 years, the class of halogenated dibenzo-p-dioxins – “dioxin” – and
the related dibenzofurans have probably received more attention by the lay press,

the public, politicians, policy regulators, and environmental scientists than all other

halogenated chemicals combined. The anthropogenic origins and biological effects

of dioxins are summarized in the earlier survey (1). The intervening years since

1996 have clearly identified several new natural sources of both halogenated

dioxins and dibenzofurans, both biogenic and abiotic, and confirmed previously

discovered sources.

Given the huge number of polybrominated diphenyl ethers in marine sponges

(vide supra, Sect. 3.22.2 (Diphenyl Ethers)) and the ubiquity of bromoperoxidase in

these animals, it is not surprising that several polybrominated dibenzo-p-dioxins are
found in sponges. Two examples were cited earlier (1). The Australian sponge

Dysidea dendyi (Fig. 3.33) has yielded the new brominated dioxins spongiadioxin

A (2235), the previously reported (1) spongiadioxin B (2235a) (2030),
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spongiadioxin C (2236), and methyl ethers 2237–2239 (2031). These five bromi-

nated dioxins inhibit the cell division of fertilized sea urchin eggs. Methyl ethers

2237–2239 are less active (IC50 166, 141, and 94 mM, respectively) than the

hydroxy-containing spongiadioxins A, B (2235), and C (2236) (IC50 5.7, 4.8, and

1.1 mM, respectively). The highest activity of spongiadioxin B is consistent with the

lateral arrangement of halogens on the dioxin framework, which is known to impart

high biological activity (toxicity) to dioxins (2032). A study of three Dysidea
sponge collections from Indonesia has also uncovered the presence of spongiadiox-

ins A (2235) and C (2236) (2033). The first examples of non-hydroxylated dioxins,

1,3,7- (2240) and 1,3,8-tribromodibenzo-p-dioxin (2241) were characterized from

blue mussels (Mytilus edulis) from the Baltic Sea (2034). A natural source is

assumed for these two dioxins and five other brominated dioxins and one bromi-

nated dibenzofuran that are only tentatively identified. All of these polybrominated

compounds are present in high levels in blue mussels and fish and are widely

distributed in the Baltic environment (2034, 2035). A biosynthesis of these poly-

brominated dioxins from bromophenols has been advanced (2035). The Yellow Sea

brown alga Leathesia nana contains the novel 2242 (1738). Interestingly, several
novel phlorotannins, e.g., eckol (HHH), 2-phloroeckol (III), and dieckol, which are
nonhalogenated dioxins, are found in the brown alga Ecklonia kurome Okamura

(2036). This again illustrates that biohalogenation of electron-rich aromatic rings in

the marine environment is not fait accompli.

Fig. 3.33 Dysidea dendyi, an Australian sponge that contains the brominated dioxins, spongia-

dioxins A–C and related methyl ethers (2235–2239) (Photo: N. Utkina)
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Whereas the earlier survey mentioned that polyhalogenated dibenzo-p-dioxins
have myriad industrial and combustion sources (1), more recent studies have

confirmed and extended the fact that natural sources of dioxins and the related

polychlorinated dibenzofurans do exist. Thus, Canadian peat bogs are shown to

produce several dioxins and dibenzofurans, including 1,3,6,8-tetrachlorodibenzo-p-
dioxin (2243), 1,3,7,9-tetrachlorodibenzo-p-dioxin (2244), and 2,4,6,8-tetrachloro-

dibenzofuran (2245), along with several minor analogues (Fig. 3.34) (2037).
Labeling studies with 36Cl–-chloride demonstrated incorporation into the dioxins

and dibenzofurans via 2,4-dichlorophenol, which was also identified in the peat,

along with chloroform, a chlorocresol, chloromethoxybenzoic acids, and chloro-

cinnamic acids. Other dioxins and furans that are minor components in the peat

samples are mono- through octachlorinated dioxins and furans. In one sample of

the Richibucto, New Brunswick, bog there were identified four monochlorinated

furans, nine dichlorinated furans, and six trichlorinated furans. These dioxin and

furan isomer patterns are unique to these peat systems and differ from the patterns
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observed from atmospheric deposition associated with anthropogenic sources of

dioxins and furans. The same peat dioxin and furan pattern is duplicated when

2,4-dichlorophenol is allowed to react with the fungal enzyme chloroperoxidase

(2037).
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OCl
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Cl O
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Cl

Cl
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Cl

Cl
Cl

O

Cl
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A study of the soil of a Douglas fir forest in The Netherlands spiked with 37Cl–-

chloride demonstrated that chlorinated phenols, dibenzo-p-dioxins, and dibenzo-

furans are produced naturally in the humic soil layer probably via chloroperoxidase

chemistry (Scheme 3.5) (1712). Twenty polychlorinated dioxins and furans

were found to be produced naturally in this study, including the highly toxic

2,3,7,8-tetra- (2246), 1,2,3,7,8-penta- (2247), and 1,2,3,7,8,9-hexachlorodibenzo-

p-dioxin (2248). The major congeners found are 4-chloro- (2249), 1,7-dichloro-

Fig. 3.34 New Brunswick peat that produces the dioxins 2243–2245 and several chlorophenols,

chloroform, and other organochlorines (Photo: P. Silk)
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(2250), 1,2,3,4,6,8,9-heptachlorodibenzofuran (2251), and 1-chloro- (2252),
1,2,3,4,6-pentachloro- (2253), and 1,2,4,7-/1,2,4,8-/1,3,6,9-tetrachlorodibenzo-p-
dioxin (2254) (isomers not distinguished) (1712).
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The cellular slime mold Dictyostelium purpureum K1001 contains

AB0022A (2255), a novel antibacterial dibenzofuran, the structure of which

was confirmed by total synthesis (2038). The lichen Lecanora cinereocarnea
has yielded several new dibenzofurans, including three chlorinated analogues

(2256–2258) (2039), and Lecanora iseana contains 2259 and 2260 (2040). The
first naturally occurring polybrominated dibenzofuran, corallinafuran (2261), is
present in a crustose coralline red alga that also contains corallinaether (1913)
cited earlier (1769).
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As discussed in the earlier survey (1), a biogenic source of polychlorinated

dibenzo-p-dioxins and dibenzofurans is peroxidase-catalyzed transformation of

chlorophenols as first reported by Öberg and Rappe (2041–2044). More recent

studies confirm these observations (2045–2048). In addition to lactoperoxidase and
horseradish peroxidase, human leukocyte myeloperoxidase catalyzes in vitro for-

mation of dioxins and dibenzofurans from chlorophenols (2046, 2047). Formation

rates are in the mmol/mol range (Scheme 3.6) demonstrating that a human biosyn-

thesis of dioxins and furans is not only possible but also likely. These observations

are reinforced by the reported in vivo (rats) conversion of the pre-dioxin nona-

chloro-2-phenoxyphenol to octachlorodibenzo-p-dioxin (OCDD) (2049), and the

production of hepta- and octachlorodibenzo-p-dioxin in the feces of cows fed

pentachlorophenol-treated wood (Scheme 3.7) (2050, 2051).
Similarly, polychlorinated dioxins and furans form in both compost and sewage

sludge (1), but the major congeners in both systems are heptachloro- and octa-

chlorodibenzo-p-dioxins and their origin is not understood (2052–2056). Several
studies have attempted to elucidate the importance of natural combustion events as

a source of polychlorinated dioxins and furans (1), but recent reports indicate that
forest fires may not be a significant source of these compounds (227, 2057) despite
earlier suggestions to the contrary (1, 2058, 2059). Nevertheless, numerous studies

(wood stoves, control burns, etc.) clearly demonstrate that the combustion of wood
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does lead to PCDDs and PCDFs (1, 2060–2062). Other reports reveal that the

combustion of domesite lignite (2063), household waste (2064), and chemical

waste (2065) produces PCDDs and PCDFs, and emissions from landfill fires

(2066), bonfires and fireworks (2067), and crematories (2068) are sources of

these chlorinated compounds. Quite astonishing is the observation that heating a

mixture of methane, hydrogen chloride, and oxygen produces PCDDs and PCDFs

containing up to three chlorine atoms (232).
Subsequent studies to those reported earlier (1) of preserved and ancient soil and

sediment samples consistently reveal the presence of presumed naturally occurring

PCDDs and (sometimes) PCDFs, but not PCBs. Thus, examination of ancient

sediments (estimated at 1–10 million years old) from the Yellow Sea, the East

China Sea, and the Pacific Ocean uncovered PCDDs but not PCDFs, the major

compound being OCDD (2069). A study of Baltic Sea sediments detected both

PCDDs and PCDFs “in small but significant levels during the period 1882–1962”,

including sediments from 1882, 1906, 1922, 1938, 1954, and 1962. Increased levels

of these compounds were found in sediments from the period 1970–1985 as

expected from anthropogenic contributions (2070). A natural origin is indicated

for PCDDs and PCDFs found in sediments and clays in the southern United States,

compounds that were also detected in catfish and chicken feed adulterated with

these clays (2071–2083). Carbon and chlorine isotope studies suggest that these

PCDDs form abiotically in situ in the sediments and clays (2082, 2083). The highest
concentration of any congener in most samples is OCDD, and PCDFs are found in

much lower amounts, if at all. Examination of ancient clays and sediments in

Germany (2084), Queensland, Australia (2085–2088), and in ceramics and pottery

produced from ball clay mined in the United States (2089) all reveal the presence of
PCDDs, mainly OCDD with lesser amounts of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) (2246), 2247, 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (2262), 1,2,3,6,7,8-
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hexachlorodibenzo-p-dioxin (2263), 2248, 1,2,3,4,6,7,8-heptachlorodibenzo-p-di-
oxin (2264), and several other PCDDs (2089).
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Likewise, 8,000-year old sediments from a Finland lake show a similar PCDD

profile to the clay samples (2090), as do sediments from Hong Kong (2091), and
archived soil samples from the UK from the late 1800s and early 1900s (2092–
2094). No PCBs were found in these latter preserved soil samples. A possible pre-

industrial origin of these UK PCDDs is the burning of coastal peat, which is rich in

chloride, over the millennia (2095). A sealed 1933 sample of municipal sewage

sludge exhibits a suite of PCDDs, proposed to arise by in situ formation and

condensation of chlorophenols (2096). Whether or not these myriad sources of

PCDDs and PCDFs are formed biogenically or abiotically, the inescapable conclu-

sion is that they have a natural origin. An excellent review of the occurrence of

PCDDs and PCDFs in the environment is available (22).

3.26 Humic Acids

Numerous studies support the notion that organohalogen compounds originate on a

massive scale via the natural in situ chlorination of humic and fulvic acids and their

subsequent breakdown to chlorophenols, chloroacetic acids, chloroform, and other

chlorinated and halogenated compounds (1). More recent investigations substanti-

ate this ubiquitous route to natural organohalogens (Scheme 3.8) (172, 2097–2109).
The electron-rich phenolic rings in humic acids (2666) are extremely susceptible to

both biogenic and abiotic halogenation chemistry, and it is estimated that up to 10%

of the aromatic rings in humic acids can be halogenated (2097). Evidence shows

that the chlorination of humic and fulvic acids facilitates their further decomposi-

tion to nonaromatic compounds (2107, 2109), and that chloride (i.e., 36Cl) is

incorporated into humic acids (2108). Furthermore, presumed natural halogenation

of humic material also occurs in Baltic Sea marine sediments leading to brominated

and iodinated phenolic units in high molecular weight matter (2110). Several
laboratory studies point to a chloro- or haloperoxidase-promoted halogenation of

terrestrial humic and fulvic acids, e.g., (Scheme 3.9) (315, 412, 2111, 2112).
Moreover, compelling evidence exists for the subsequent formation of chloroacetic

acids and chloroform from chlorinated phenolic humic material (278, 317, 324,
407, 410, 412, 2113, 2654), including a novel abiotic pathway (Scheme 3.10) (412).
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More than 100 organochlorines have been identified and structurally characterized

in the laboratory chlorination of terrestrial humic acid, although the major products

are chloroform and trichloroacetic acid, followed by dichloroacetic acid and

chlorinated C-4 dicarboxylic acids (324). In addition, other products that form in

the chlorination of both humic acid and the model compound 3,4-dihydroxybenzoic

acid are shown in Scheme 3.11. A more recently discovered source of natural

organically bound chlorine is peat, reaching to 0.2% of the dry weight, and

estimated to have accumulated globally to the extent of 280–1,000 million

tons (169).
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4 Biohalogenation

4.1 Introduction

While the question of how nature produces organohalogens lagged far behind their

discovery, this situation has dramatically changed since the first review (1). Nu-
merous excellent reviews of biohalogenation are available (17, 59, 2114–2122,
2323), and, as will be seen, several new halogen peroxidases, halogenases, and

other enzymes capable of introducing halogen into organic compounds are known,

including fluorine.

Specialized reviews on biohalogenation involving vanadium haloperoxidases

(2123–2126), biochlorination (2127), biohalogenation by Basidiomycetes fungi

(2128), haloperoxidases in organic synthesis (2129–2131, 2327), biohalogenation
enzymatic mechanisms (2132), and halomethane biosynthesis (2133) are available.
The role of hydrogen peroxide in defining the function of haloperoxidases and other

plant enzymes has also been investigated (2134–2137).

4.2 Chloroperoxidase

The ubiquitous hemoprotein chloroperoxidase (CPO) (1) continues to be of great

mechanistic and practical interest following its isolation more than 40 years ago

from Caldariomyces fumago (2138). The CPO gene from this filamentous fungus

has been isolated and sequenced (2139), an active recombinant CPO has been

produced (2140), and the crystal structure of this CPO has been determined

(2141, 2142). The fungus Curvularia inaequalis contains a vanadium CPO, which

has been characterized (primary and X-ray structure) (Fig. 4.1) (2143–2147), as has

the vanadium haloperoxidase from Corallina officinalis (2324). This enzyme has

also been studied by density functional theory lending support to the proposed

mechanism of action (Scheme 4.1) (2325). A related vanadium CPO, which shares

68% primary structural identity with the Curvularia inaequalis CPO, is produced

G.W. Gribble, Naturally Occurring Organohalogen Compounds – A Comprehensive
Update, Progress in the Chemistry of Organic Natural Products, Vol. 91,

DOI 10.1007/978-3-211-99323-1_4, # Springer-Verlag/Wien 2010

349



by the fungus Embellisia didymospora (2148). Some 10 Caldariomyces cultures

produce CPOs with variable carbohydrate content but identical enzymatic activity

(2149). CPO enzymes are found in bryophytes (liverworts) (1710), the marine worm

Notomastus lobatus (2150–2152), and the bacteria Streptomyces lividans (2153) and
Serratia marcescens (2154). The latter two CPOs do not contain a metal ion and the

Notomastus lobatus CPO is the smallest hemoprotein known. Immobilized silica-

supported heme-CPO fromCaldariomyces fumago retains biological activity (2155,
2156), and CPO from this fungus also serves as a dehaloperoxidase in the dehalo-

genation of halophenols (2157, 2158).
The mechanism of CPO-induced halogenation has been of interest since the

discovery of this extraordinary set of heme proteins, which exhibit catalase, peroxi-

dase, and cytochrome P450 activities in addition to biohalogenation (2159–2171).
A general consensus mechanism has been proposed that does not involve free

Fig. 4.1 A ribbon diagram of vanadium chloroperoxidase from the fungus Curvularia inaequalis
(Photo: T. van Herk)
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chlorine or hypochlorite but rather an Fe(III)–OCl species that transfers chlorine to

the organic substrate (Scheme 4.1).

Vanadium CPO from Curvularia inaequalis has also been the object of both

experimental (2146, 2172–2175, 2329) (for an X-ray structure see Fig. 4.1) and

theoretical studies (2176) to understand the biohalogenation operation of this

enzyme. A reasonable mechanism has emerged from these data (Scheme 4.2)

(active site amino acids and H-bonds are deleted for clarity). The nature of the

halide-vanadium intermediate is unknown.

The CPO from Caldariomyces fumago has seen extensive use as a synthetic

reagent par excellence (1, 2129–2131, 2177, 2178) and new applications are known.

For example, the enantioselective CPO oxidation of sulfides to (R)-sulfoxides has
been intensely pursued (2179–2193) in some cases displaying 100% enantiomeric

excess and quantitative yields (Scheme 4.3). Another important and versatile reac-

tion with CPO involving oxygen transfer is epoxidation (2194–2207) and some

examples are shown in Scheme 4.3. The mechanism of these CPO-catalyzed oxygen

insertion reactions has been examined (2208). Oxidation reactions that are catalyzed
by heme CPO are benzylic hydroxylation (2209), propargylic oxidation (2210,
2211), benzylic alcohol oxidation (2212), cyclopropylmethanol oxidation (2213),
5-hydroxymethylfurfural oxidation (2214), the enantioselective oxidation of

 Abbreviated proposed mechanism of heme-chloroperoxidase-
catalyzed chlorination (2163, 2165, 2168, 2202, 2303 ).
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epoxyalcohols (2215), and phenol oxidation (2216). Indoles are oxidized to ox-

indoles in excellent yield (2184, 2189, 2217–2219), and both benzofurans and

benzothiophenes are oxidized to various products (2219). CPO converts oximes to

halonitro compounds (2220) and phosphorothioate pesticides to phosphates (2221),
chlorinates aromatic hydrocarbons (2222, 2223), and effects polymerization of

polychlorinated phenols (2224). A selection of these reactions is presented

(Scheme 4.3).

Although less studied as a synthesis reagent, vanadium-CPO effects similar

oxidation reactions to those of heme-CPO (2225, 2226, 2326). The CPO from

Streptomyces aureofaciens can brominate pyrroles in the presence of bromide

(2227). The synthesis performance of CPO has been improved by controlling the

hydrogen peroxide delivery rate (2228), engineering CPO mutants resistant to

deactivation (2229–2231), designing active site analogues (2232), and optimizing

the role of organic solvents in these reactions (2233).
Despite the enormous versatility and efficiency of CPO in organic synthesis, the

natural functions of this enzyme are no less important. In addition to its role in the

biosynthesis of caldariomycin and other metabolites (1), CPO is involved in the

degradative recycling of humic and fulvic acids (315, 412, 2100, 2108, 2111–2113,
2234, 2235). Both Caldariomyces fumago and Curvularia inaequalis CPO, which

 Abbreviated proposed mechanism of vanadium chloroperoxidase-
catalyzed halogenation (2123, 2124, 2146, 2172, 2173, 2175 ).
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Oxidations with chloroperoxidase.
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occur in soils, chlorinate and cleave lignin structures (2234, 2235), results aug-

mented by the specific incorporation of 36Cl� into humic acid (2108). A fern

(Athyrium filix-femina) and a moss (Polytrichum commune) take in 36Cl� that is

released as radiolabelled CHCl3, CCl4, and CH3CCl3, suggesting CPO activity in

these forest plants (2236). Earlier studies also support the CPO production of

CHCl3 and trichloroacetic acid in soil and fungi (317, 326, 410), and chlorophenols
and dioxins in peat (2037). It is estimated that global peatlands contain 280–1,000

million tons of peat-bound organochlorines, perhaps formed via humification by

CPO (169). Likewise, CPO could play a role in the production of organochlorines in

Fig. 4.2 A ribbon diagram of tryptophan 7-halogenase, an enzyme important in the biosynthesis of

pyrrolnitrin and rebeccamycin. (Photo: K.-H. van Pée and J. H. Naismith)
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weathering plant material (172, 173), and CPO-induced chlorination of surface water
in a Swedish peat bog (Fig. 4.2) affords organochlorines such as 2,4,6-trichlorophenol

(2237). CPO activity in Laminaria digitata seems to account for the formation

of CHCl3 in this macroalga (306), for the biosynthesis of chlorinated orcinols

(1783–1789) in the Japanese lily Lilium maximowiczii (1690), and for chlorinated

anthraquinones in the lichen Nephroma laevigatum (1932, 2238). The flavanones

naringenin and hesperetin are chlorinated (and brominated) by CPO, although the

resulting products are unnatural (2239).

4.3 Bromoperoxidase

As noted previously, bromoperoxidase (BPO) is a ubiquitous enzyme that bromi-

nates a wide variety of organic substrates (1). Both heme and vanadium BPOs are

known and these enzymes are probably the main actor in the biosynthesis of the

myriad marine organobromine metabolites (2240–2242, 2329).
In addition to the organisms cited earlier that contain BPO (1), new discoveries

of BPO or BPO activity include the green algae Ulva lactuca (2243) and Ulvella
lens (366), the red algae Kappaphycus alvarezii and Eucheuma serra (2244) and
Ochtodes secundiramea (2245), and the Arctic brown algae Laminaria saccharina
(2246, 2247) and Laminaria digitata (2247, 2248). A BPO has been isolated from

the marine snail Murex trunculus (2249), and the nonheme BPO found in the

bacterium Pseudomonas putida has been purified and characterized (2250). BPO
genes have been cloned and expressed from Streptomyces aureofaciens (2251–
2253), Streptomyces venezuelae (2254), Corallina pilulifera (2255, 2256), and
Corallina officinalis (2257). X-ray crystal structure determinations have been

reported for BPOs from Streptomyces aureofaciens (2258), Corallina officinalis
(2259, 2260), and Ascophyllum nodosum (2261–2263). Based on these crystal

structures and extensive model studies (2124, 2264–2269), a plausible mechanism

for the Ascophyllum nodosum vanadium BPO bromination chemistry can be for-

mulated (Scheme 4.4) (active site amino acids and H-bonds are deleted for clarity)

(2124, 2261, 2263, 2264, 2269).
The synthetic utility of BPO is immature relative to that of CPO, but is showing

promise as both a bromination reagent and a source of oxygen (2131, 2326). A
vanadium-containing BPO from Corallina officinalis oxidizes sulfides to sulfoxides
with the S-configuration, opposite to that observed with CPO (2270–2273), and
forms bromohydrins from alkenes (2194). The indole ergot alkaloid agroclavine is

oxidized to the corresponding oxindole and other products with BPO (2274, 2275).
Several biomimetic studies with BPO have demonstrated the conversion of laure-

diols and related precursors to marine natural products (2276–2278), the cyclization
of terpenes to brominated marine metabolites (2279, 2280), and the bromination of

bromophenols (1724, 2281), examples of which are shown in Scheme 4.5. Interest-

ingly, BPO from Ascophyllum nodosum contains brominated tyrosines at the

surface of this enzyme (2328).
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In marine organisms, notably algae, the normal function of BPO is the produc-

tion of brominated alkanes, such as CHBr3, CH2Br2, CHClBr2, and other bromoal-

kanes as has been established in studies of marine phytoplankton (Nitzschia arctica,
Porosira glacialis, Navicula sp.) (339), Corallina pilulifera (354, 2282), and the

red alga Asparagopsis sp. (370).

4.4 Halogenases, Other Haloperoxidases and Peroxidases

Several new enzymes capable of biohalogenation have been identified since the first

review (1). Thus, given the significant number of naturally occurring organoiodine

compounds, it is not surprising that iodoperoxidases (IPO) are known. For example,

one species of Navicula marine phytoplankton produces CH2I2 and ClCH2I via an

iodoperoxidase, an enzyme capable of oxidizing iodide but not bromide or chloride

(339). A vanadium-dependent IPO has been purified and characterized from the

brown alga Saccorhiza polyschides (2283), and also isolated from the brown alga

Phyllariopsis brevipes (2284), and Laminaria saccharina, Laminaria hyperborea,
A. n. lusitanica, Pelvetia canaliculata, and Laminaria ochroleuca (2285, 2286,

  Abbreviated proposed mechanism of vanadium bromoperoxidase-
catalyzed bromination (2123, 2124, 2175, 2261, 2263, 2269, 2280, 2328 ).
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2302). Other studies of Laminaria digitata and Laminaria saccharina indicate the

presence of IPO (2246, 2247, 2287), as do studies of the marine microalga Por-
phyridium purpureum (2288) and the alga Ascophyllum nodosum (2289). The
Arctic green algae Acrosiphonia sonderi and Enteromorpha compressa have high

IPO activity (2247). Two peroxidase enzymes (2290) that catalyze the iodination of
tyrosine are horseradish peroxidase (HRP) and lactoperoxidase (LPO) (2291). The
latter enzyme is dominant for the iodination of tyrosine in mammals. The heme-

containing HRP, which has been studied for more than one hundred years (2292),
can also effect the oxidation of pentachlorophenol (2293). Similarly, a lignin

peroxidase (LP) from Phanerochaete chrysosporium that is capable of oxidatively

degrading lignin (2294, 2295) exhibits haloperoxidase activity (2296). This is the
first report of biohalogenation in a white rot fungus, and this fungal LP and a related

manganese peroxidase (MP) oxidize both bromide and iodide, thus functioning as a

Oxidations with bromoperoxidase.
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BPO and IPO (2296, 2297). The basidiomycetous fungus Agrocybe aegerita also

contains a haloperoxidase (2298), and a model oxomanganese (V) porphyrin is a

haloperoxidase mimic (2299). The fresh water alga Cladophora glomerata contains
a heme-haloperoxidase that oxidizes iodide to iodine and iodinates tyrosine and

other phenols (2300). The actinomycete Rhodococcus erythropolis NI 86/21 pro-

duces a nonheme haloperoxidase that degrades thiocarbamate herbicides, and is the

first such enzyme to be identified in a nocardioform actinomycete (2301). The
importance of the occurrence and properties of heme peroxidases and their potential

as biocatalysts with both biological and environmental applications has been

succinctly summarized (2303).
A recent development is that of flavin-dependent halogenases discovered

during studies of pyrrolnitrin biosynthesis from tryptophan (i.e., tryptophan 7-

halogenase) (Fig. 4.2) (1189–1191, 2122, 2304–2308, 2320), which is discussed

in Sect. 4.8 (Biosynthesis). Tryptophan 7-halogenase requires FADH2 for halo-

genation and is the first member of this new type of halogenating enzyme.

A similarly regioselective tryptophan 5-halogenase is present in Streptomyces
rugosporus that produces pyrroindomycin B (1468) (2309), and a tryptophan

6-halogenase was found in the thienodolin (2265) producer Streptomyces albo-
griseolus (2310, 2330, 2331). A theoretical evaluation of flavin-dependent halo-

genase biohalogenation with oxidants such as O2 or N2O show that this reaction is

thermodynamically feasible even without NADH (2311). Another halogenase has
been isolated from the actinomycete Actinoplanes sp. ATCC 33002, a producer of

pentachloropseudilin (1155) (2312), and the role of tryptophan 7-halogenase in the

biosynthesis of rebeccamycin has been demonstrated (1440). The production of

syringomycin E by Pseudomonas syringae pv. syringae B302D involves chlorination

of a threonine (unactivated) methyl group by a novel halogenase, SyrB2, that is a

nonheme Fe(II) protein utilizing a-ketoglutarate, O2, and Cl� to effect chlorination

(1145, 1146, 2313, 2323) (Scheme 4.6). A similar enzyme chlorinates an unacti-

vated methyl group of a L-allo-isoleucine residue en route to the biosynthesis of

coronatine (2314, 2315, 2323).
Other enzymes capable of halogenation processes include a bacterial esterase

from Pseudomonas fluorescens (2316), acid phosphatases from the bacteria Shigella
flexneri and Salmonella enterica ser. typhimurium (2317), a lactonohydrolase from
Acinetobacter calcoaceticus F46 (2318), and hydroperoxide halolyse from the

marine diatom Stephanopyxis turris (2319). The biosynthesis of the ubiquitous

methyl halides seems to involve methyl transferase enzymes, which have been

isolated and purified in the plant Brassica oleracea (S-adenosyl-L-methionine:

2265 (thienodolin)
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halide/bisulfide methyltransferase) (2321, 2322), and in the halophytic plant Batis
maritima, a robust generator of CH3Cl (291, 292).

4.5 Myeloperoxidase

The biohalogenating mammalian enzyme myeloperoxidase was extensively

reviewed in Chap. 3 (1). Subsequent studies confirm and extend the importance

of this white blood cell (neutrophil) enzyme and the related eosinophil peroxidase

in the infection fighting process via, respectively, the generation of hypochlorous

(HOCl) and hypobromous (HOBr) acid. Excellent reviews are available (763,
764, 2332–2336). The antimicrobial activity of HOCl is revealed by the fact that

it is at least 103 times more effective than H2O2 and hydroxyl radical in killing

Escherichia coli (764). The heme-containing myeloperoxidase, which is the most

abundant protein in neutrophils amounting up to 5% of the dry weight (2337), has
been characterized by X-ray crystallography (2338). This protein is the only human

enzyme known to produce HOCl at physiological chloride concentrations (100mM in

plasma) (2339). Further reaction with cellular amino constituents such as taurine leads

to taurine chloramine and other N-chloramines that are longer lived and less reactive

(and potentially less destructive) chlorinating agents than HOCl (2340–2343). This
early-demonstrated property of myeloperoxidase has been supported and amplified

by many recent studies (2344–2352). Free chlorine gas is also implicated in some

biochlorination reactions involving myeloperoxidase (768, 1806, 2353).
The active chlorinating species produced by the MPO–Cl�–H2O2 system react

with a myriad of biological targets including cholesterol (766–769), plasmalogens

(2354), phospholipids (2355, 2356), amino acids (2357–2362), nucleosides (2363),
and DNA (1479, 2364), accompanied by an array of chlorinated and oxidized by

products (3-chlorotyrosine, 5-chlorouracil (1555), and others). Of great interest has
been the role of MPO in the oxidation of both low- and high-density lipoprotein and

implications in atherogenesis (1807, 1810, 2365–2372), although the function of

MPO in atherosclerosis remains controversial (2373). Interestingly, vitamin C is

reported to protect and reverse the HOCl- and chloramine-induced oxidation of

low-density lipoprotein that may be involved in atherosclerosis (2374). In any

event, it is clear that a deficiency of MPO can lead to severe fungal infection

such as that from Candida albicans (2375).
In contrast to MPO, eosinophil peroxidase (EPO) prefers to oxidize plasma level

bromide (20–100 mM) to hypobromous acid (HOBr) and several biological targets

are implicated, including nucleic acids and nucleosides (1480, 1482, 2376), pro-
teins (1812, 1813, 2377, 2378), unsaturated fatty acids (2379), and low-density

lipoprotein (2380, 2381). This EPO-dependent bromination is suggested to be

involved in the pathogenesis of asthma (2382). Accordingly, both 3-bromotyrosine

and 3,5-dibromotyrosine (1812, 1813) are produced by EPO-induced bromination

of tyrosine residues in lung tissue (1813, 2382).
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The question posed by Winterton in 1997, “Are Organochlorine Compounds

Created in the Human Body?” (2383), can now be answered with an authoritative

“Yes”.

4.6 Abiotic Processes

A major development since the previous review is the discovery that some orga-

nohalogen compounds can form in soils by a purely abiotic mechanism involving

a Fenton oxidation pathway and the concomitant reduction of Fe(III) to Fe(II)

(2384–2386). The formation of alkyl halides by this mechanism is shown in

Scheme 4.6 (2387). The rates of production from soils decreased in this order:

CH3X > CH3CH2X > CH3CH2CH2X � CH3CH2CH2CH2X, where X = Cl, Br, I.

Subsequent studies show that iodoalkanes of 1–4 carbons (2388) and chloroacetic

acids form abiotically in soil (413), in addition to their well-known biogenic enzy-

matic formation. An abiotic source of CH3Br is suggested for the emission of this gas

from ash (Fraxinus excelsior) and saltwort (Batis maritima), plants having known

bromine content (2389). The emissions are a function of both temperature increase

and bromine concentration. The natural formation of chloroethyne (58) in soil is also
proposed to involve a Fenton reaction (382), as is the production of dichloroacetic

and trichloroacetic acids from phenols and soil humic acid (413).

4.7 Biofluorination

Although few in number, fluoroacetic acid and the other naturally occurring

o-fluoro fatty acids (34, 66, 2390, 2391) are unsurpassed for their biogenetic

intricacy, which has inspired enormous scientific interest, most notably from

O’Hagan and his colleagues (898–909, 911–913, 916, 2392–2394). As noted earlier

Proposed abiotic formation of alkyl halides (2386, 2388 ).
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(Sect. 3.1.13 (Simple Organofluorines)), several reviews are available (895, 914,
915, 2390, 2391, 2395). Based on the available evidence, a proposed biosynthetic

pathway for the formation of fluoroacetic acid and 4-fluorothreonine is shown in

Scheme 4.7. Fluorinase has also served as a catalyst for the incorporation of [18F]-

fluoride into nucleosides (2396, 2397).

4.8 Biosynthesis

The biosynthesis of organohalogens has seen enormous interest since the first

survey, and several examples are mentioned earlier in the present review. Space

does not allow for full coverage of this topic, but some additional examples are

presented here. The reader is also directed to general reviews on the biosynthesis

of marine natural products, many of which contain halogen (2398–2401), terres-
trial fungal (basidiomycetes) metabolites (2402), and halogenated alkaloids

(2403).

Proposed biosynthesis of pyrrolnitrin (1189, 2310 ).
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The biosynthesis of halogenated pyrroles has been of particular interest (1189,
2404). Extensive labeling experiments (13C and 15N) support acetate, propionate,

proline, glucose, and methionine as the precursors of pyralomicin 1a (1158)
(2405, 2406). A proline and polyketide origin is also established for the biosyn-

thesis of streptopyrrole (1165) (2407). In both cases the timing of the chlorina-

tion step is unknown. Carbon-13 labelling studies show that the benzene ring in

pentabromopseudilin evolves via 4-hydroxybenzoic acid and the shikimate path-

way (2408), while the pyrrole ring is derived from proline (2409). Histidine,
ornithine, and proline are incorporated into the brominated oroidin sponge alkaloid

stevensine (2410). The biogenesis of the numerous pyrrole-imidazole alkaloids has

received special attention (2411, 2412). Dioxapyrrolomycin also features a proline-

polyketide pathway (2413), and other studies have explored the formation of the

pyrrole ring in related metabolites (2414, 2415).
The biosynthesis of pyrrolnitrin and related phenylpyrroles has been extensively

studied by van Pée (1189, 2304, 2306, 2307, 2310), and a proposed biosynthesis

from tryptophan is illustrated in Scheme 4.8 (1189, 2310).
The anticancer indolocarbazole alkaloid rebeccamycin has been the subject of

several biosynthetic studies (1439–1441, 2416), which is also proposed to involve

the chlorination of tryptophan (Scheme 4.9).

Proposed biosynthesis of rebeccamycin (1439, 1440, 2416 ).
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The biogenesis of vancomycin, the vanguard antibiotic of more than 200 natu-

rally occurring glycopeptides, has been exhaustively studied (2002, 2417), as have
been the venerable antitumor antibiotic maytansinoids (e.g., 1603–1605), such
as ansamitocin (2418–2422). In addition to a polyketide sequence, 3-amino-

5-hydroxylbenzoic acid is the precursor to the chlorine-containing benzene ring

of ansamitocin (2421). Similarly, the chlorine-containing benzene ring in the

enediyne antitumor antibiotic C-1027 arises from (S)-3-chloro-4,5-dihydroxy-
b-phenylalanine (1552, 2423). The biosynthesis of the mixed polypeptide-polyke-

tide barbamide (917) was mentioned in Sect. 3.12 (Amino Acids and Peptides). The

trichloromethyl group originates by chlorination of the pro-R methyl group of

L-leucine, and subsequent conversion to trichloroisovaleric acid (2424). Biochlor-
ination of a tyrosine derivative leads to the chlorine-containing coumarin ring

of chlorobiocin (1503), and tyrosine is the precursor to several brominated tyrosines

(2425). Likewise, tyrosine and several subsequent intermediates have been identi-

fied in the biosynthesis of thyroxine (2426, 2427). A polyketide pathway is

implicated in the formation of numerous lichen chlorinated anthraquinones

(e.g., 2157–2165) and this lichen (Nephroma laevigatum) is able to chlorinate

preexisting anthraquinones (1932). The origin of the chlorinated cyclopentene ring

Proposed abbreviated biosynthesis of cryptosporiopsin
(B) (415, 416 ).
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of the Periconia macrospinosa metabolites seems to involve an isocoumarin

(Scheme 4.10).

The biosynthesis of the white rot fungus Bjerkandera adusta chlorinated aryl

metabolites has been extensively studied by Silk and others (1687, 2428–2431), an
abbreviated version of which is shown in Scheme 4.11 for 3-chloro- and 3,5-

dichloro-4-methoxybenzaldehyde.

Proposed biosynthesis of 3-chloro- and 3,5-dichloro-
4-methoxybenzaldehyde (2430, 2431).
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5 Biodegradation

An essential component of the biogenic halogen cycle is the degradation of

organohalogens into their constitutive elements when an organism dies. Following

the style of the earlier review (1), coverage here will be brief since biodegradation
of organohalogens, both natural and anthropogenic, is an enormous topic and

excellent reviews are available (2119, 2432–2442).
Several organisms are capable of degrading methyl halides, including Methylo-

bacterium chloromethanicum (2443, 2444), Hyphomicrobium chloromethanicum
(2444), Aminobacter spp. (2444), and others (2445), including marine bacteria

(2446, 2447). The biodegradation of 1,2-dichloroethane has received particular

interest, and the haloalkane dehalogenase from Xanthobacter autotrophicus has

been extensively investigated (2448–2452). The key step in this degradation is an

SN2 displacement of chloride that is supported by chlorine isotope effect studies

(2453). Other bacterial enzymes also biodegrade 1,2-dichloroethane and related

haloalkanes and haloacetic acids (278, 2454–2458). The dry cleaning agents,

trichloroethylene (TCE) and perchloroethylene (PERC), which also have a natural

source, are degraded by bacterial enzymes (2459–2462), as are dichloroethylenes

(2462, 2464) and vinyl chloride (2464). The white-rot fungus Trametes versicolor
also mineralizes TCE (2465). Transgenic plants degrade TCE, 1,2-dibromoethane,

and other organohalogens (2466).
Another large group of naturally occurring organohalogen compounds are the

halogenated phenols. Both terrestrial and marine versions are readily degraded

enzymatically. Marine worms (Amphitrite ornata and Notomastus lobatus) employ

a haloperoxidase to degrade halophenols including fluorophenols (2151, 2152,
2467–2469). The enzyme from Amphitrite ornata has been purified and crystallized
for an X-ray determination (2469). Bacteria associated with the marine sponge

Aplysina aerophoba (2470), and the venerable Caldariomyces fumago fungal

enzyme chloroperoxidase effect dehalogenation of halophenols (2157, 2158), as
does a marine anaerobic Desulfovibrio bacterium strain (2471). The ubiquitous

chlorophenols are degraded by a wide range of microorganisms, including fungi

(Paxillus involutus, Suillus variegatus) (2472), (Pycnoporus cinnabarinus) (2473),
anaerobic bacteria (Desulfitobacterium sp.) (2474–2477), horseradish peroxidase
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(2293, 2478), and the marine microalga Tetraselmis marina (2479). The latter

organism converts 2,4-dichlorophenol to 2,4-dichlorophenyl-b-D-glucopyranoside
for detoxification. Polychlorinated dibenzo-p-dioxins and dibenzofurans are biode-
graded by an array of organisms, and this important area has been summarized

(2480, 2481). Both aerobic bacteria (Sphingomonas, Pseudomonas, Burkholderia)
and anaerobic sediments are capable of these biotransformations.

The microbial oxidation of halobenzenes to the corresponding cis-1,2-dihydro-
catechols (Scheme 5.1) has proven to be a treasure trove for organic synthesis

(2482–2485), most notably utilized by Hudlicky (2483). Thus, a myriad of natural

products and analogs have been synthesized starting from the biooxidation of

halobenzenes: vitamin C (2486, 2487), (þ)-pericosine B (2488), N-acetylneurami-

nic acid (2489), combretastatins (2490), pancratistatin (2491), (–)-patchoulenone
(2492), (–)-hirsutene (2492), (–)-cladospolide B (2493), (–)-cladospolide C (2494),
shikimic acid analogs (2495), (–)-conduritol E (2496), (–)-conduramine C-4 (2497),
phenylthioconduritol F (2498), (þ)-codeine (2499), (þ)-nangustine (2500), the
anti-influenza agents Tamiflu and Tamiphosphor (2501), inositols (2502, 2503),
and several other oxygenated benzene compounds (2504–2513). The power and

versatility of the Pseudomonas putida oxidation of halobenzenes is beyond dispute.

Microbial oxidation of halobenzenes (2482-2485 ).

X X

OH

OH

Pseudomonas putida

Scheme 5.1
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6 Natural Function

The question that can be asked about all natural products, including naturally

occurring halogenated compounds, is “Why do organisms produce organohalo-

gens?” The first review provided evidence that seems to answer this question for

several halogenated metabolites (1). For example, in the case of sessile marine

organisms, a chemical defense function for these compounds seems paramount, and

excellent reviews on this topic are available (39, 2514–2520). Nevertheless, a clear
function for most of the identified biogenic organohalogens is presently unknown.

While natural chloromethane may have several functions (42), in Basidiomy-

cetes wood-rot fungi (Phellinus, Inonotus, Fomitosporia,Hymenochaete, Phaeolus,
and Fomitopsis) (59) chloromethane is a methyl donor in the biosynthesis of

veratryl alcohol, the first step of which is methylation of 4-hydroxybenzoic acid.

A second methylation of isovanillic acid affords ultimately veratryl alcohol, the

function of which in these fungi is to stabilize lignin peroxidase thus promoting

lignin degradation (2521).
A spectacular example of host defense involves the Japanese lily Lilium maxi-

mowiczii (Fig. 3.26) that produces seven chlorinated fungicides (1783–1789) in
response to attack by the pathogenic fungus Fusarium oxysporum (1690).

It seems without argument that sponges, tunicates, algae, and other sessile

marine organisms produce metabolites, halogenated and not, to prevent bacterial

and barnacle overgrowth – “biofouling” – lest these animals be fatally smothered

(2522), a plague of the shipping industry (2523). This antifouling activity is clearly
expressed in sponges, such as Acanthella cavernosa (and/or their associated bacte-

ria (2524)), against larvae of the barnacle Balanus amphitrite, most especially due

to the action of chlorinated isocyanoterpenoids (600, 2525). This bacterial “clean-
sing” is reported for other organohalogens from many sponges (2526), such as the

bromine-containing ianthellin (2527). The associated marine bacteria genus Pseu-
doalteromonas produces antifouling compounds (2528), and the sponge Geodia
barretti displays antifouling properties from the secretion of barettin (1362),
8,9-dihydrobarettin (1363), and the new cyclopeptide 2266, which inhibit larvae

of the barnacle Balanus improvisus (2529, 2530). Coatings of these compounds on

artificial surfaces inhibit fouling by this barnacle and by the blue mussel Mytilus
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edulis. Zebra mussel antifouling is also inhibited by moloka’iamine and other

dibromotyramines on sponges of the order Verongida (2531).

Sponges and their associated bacteria possess other chemical defense mecha-

nisms that have evolved over 600 million years involving antibacterial, antiviral,

and cytostatic compounds, many of which contain halogen (118). When Aplysina
(Fig. 6.1) sponges are wounded or otherwise mechanically damaged, brominated

isoxazoline alkaloids within the sponge are transformed to a potent fish-deterrent

dienone compound (Scheme 6.1) (2532–2535). It is suggested that this biotransfor-
mation protects the damaged sponge from invasion by foreign bacteria, although

contrary results have been claimed (2536).
Purealin, another brominated tyrosine metabolite of the sponge Psammaplysilla

purea, blocks the sliding movement of sea urchin Anthocidaris crassispina
spermflagella (2537). Numerous spongemetabolites are feeding deterrents to predatory
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Fig. 6.1 Aplysina fistularis, a sponge rich in bromophenols and bromotyrosines (Photo: F. J.

Schmitz)
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reef fishes, including the brominated pyrrole stevensine from Axinella corrugata
(Fig. 6.2) (2538), and several other brominated pyrrole alkaloids (i.e., dispacamide

(1239), keramadine, oroidin, midpacamide, 4,5-dibromopyrrole-2-carboxylic acid,

4,5-dibromopyrrole-2-carboxamide) present in Agelas spp. along with some

Proposed bioconversion in the sponge
Aplysina aerophoba (2535 ). 
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synthetic analogs (2539, 2540). A pyrrole ring is required for activity and

bromine increases it further. In contrast to other Agelas spp., Caribbean Agelas
conifera contains a mixture of antifeedant dimeric bromopyrrole alkaloids,

sceptrin, dibromosceptrin, bromoageliferin, dibromoageliferin, ageliferin, bro-

mosceptrin (1296), but dominated by sceptrin (2540). In addition to providing

a purely defensive role for the sponge, brominated metabolites from Aplysina
fistularis (Fig. 6.1) such as aerothionin and homoaerothionin may act to clump

bacteria together for retention as a food source (2541).
Bromophenols represent an enormous class of marine natural products, particu-

larly from acorn worms of families Polychaete and Hemichordata. These sediment

dwelling animals can live anywhere from the intertidal zone to a depth of 1,400 m

(2542, 2543). Thus, one function of 2,4,6-tribromophenol produced by the deep-sea

Fig. 6.2 Axinella corrugata, a sponge containing the previously known antifeedant bromopyrrole

alkaloid stevensine (Photo: J. R. Pawlik)

372 6 Natural Function



acorn worm Stereobalanus canadensis living in the Norwegian Sea is to prevent

encroachment by other organisms and to inhibit bacterial growth in the worm’s

burrow wall (2543). Bromophenols from worms of the genus the Thelepus may

protect the mucous cocoon formed by the tentacles during reproduction and be an

antiseptic in wound healing in those protruding and exposed body parts (1793). The
worm Notomastus lobatus lives head down in marine sediments and has the highest

concentration of bromophenols in the tail, the animal part first encountered by

potential predators (2150). Interestingly, 4-bromophenol is also present in this

worm, but is not antibacterial against marine sediment bacteria (2544, 2545).
The worm Saccoglossus kowalevskii produces 2,3,4-tribromopyrrole (0.2% of

worm dry weight), and this worm is highly unpalatable to predatory fishes (2546).
Similarly, the burrow tubes of Sabella pavonia and Spirographis spallanzanii are
thought to be strengthened by a halogenation tanning process involving iodination

of tyrosine. Iodine can comprise 0.8% of the dry weight of these tubes (2547).
The gastropterids Sagaminopteron nigropunctatum and S. psychedelicum, which

contain the diphenyl ether 3,5-dibromo-3-(20,40-dibromophenoxy)phenol, acquired

through feeding on the sponge Dysidea granulosa, deters feeding by the sharpnose

pufferfish (Canthigaster solandri). This metabolite is transferred to the egg masses

of S. nigropunctatum where it may offer protection from bacteria (2548). The
highly toxic cone snail toxin s-conotoxin GVIIIA, a 41-amino acid peptide, is a

highly selective inhibitor of the 5-HT3 serotonin receptor. It is suggested that a

6-bromotryptophan residue is an important determinant of the pharmacological

specificity of this peptide since the endogenous ligand for the 5-HT3 receptor is

5-hydroxytryptamine, and the 6-bromotryptophan is perhaps situated within a

constrained loop of the peptide and assumes a conformation favoring interaction

with the 5-HT3 binding site leading to inactivation of this receptor (2549).
A field study of the marine algae organohalogen terpenoids elatol, isolaurinterol,

and cymopol, when coated on the palatable seagrass Thalassia testudinium, showed
significant antifeeding activity towards the herbivorous sea urchin Diadema antil-
larum and reef fishes (2550). The brominated furanones present in the red alga

Delisea pulchra, and acquired by the sea hare Aplysia parvula through feeding, not
only seem to function as predator deterrents but also may serve as chemical

camouflage, since the color of this sea hare closely mimics that of the alga

(2551). This unique defensive strategy may be more common than commonly

thought (2552). These furanones are strong inhibitors of both the acyl homoserine

lactone and the AI-2 bacterial quorum sensing systems, thus preventing bacterial

fouling on Delisea pulchra (2553–2557, 2660). The sea hare Aplysia parvula feeds

on this red alga so as to acquire these furanones for apparent chemical defense

(2558). The deactivation of these bacterial quorum sensing systems by natural

haloperoxidases and oxidized halogen species has been reported (2559).
The red alga Plocamium hamatum produces a metabolite, chloromertensene,

that exhibits allelopathy towards the octocoral Sinularia cruciata, causing tissue

necrosis upon direct contact and dissuading overgrowth by local soft corals (2560).
Other marine plants seem to generate chemical defenses in response to challenge by

aggressors (2561), and this induced chemical defense is seen in other macroalgae
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(2562). Whereas biofouling in the cultivation of Gracilaria spp. is a major, global

problem (2563), the production of bromoform and dibromoacetaldehyde by the red

algae Corallina pilulifera (2282) and Kappaphycus alvarezii (2244), respectively,
seem to play an important role in preventing overgrowth by microalgae, at least

with Corallina pilulifera. Antifeeding organohalogens have been identified in Lau-
rencia saitoi (against young abalone and young sea urchin) (2564), and in Laurencia
obtusa (against crab and sea urchin) (2565). Several halogenated monoterpenes,

including furoplocamioid C (229), are efficient aphid repellents (2566), and four

hapalindoles, two of which are chlorinated (hapalindole L and 12-epi-hapalindole
E isonitrile), from the freshwater cyanobacterium Fischerella ATCC 43239 are

potent insecticides against a dipteran (2567).
A role of natural haloalkanes is to cycle halogen/halide between the ocean,

atmosphere, and land. This massive global halogen cycle is well established, and

excellent reviews are available covering chlorine (37, 85, 298, 299, 2568), bromine

(96, 99), and iodine (104). Chloromethane has a major impact on atmospheric

ozone (2569, 2576) and recent studies suggest that abiotic (and biogenic) methyla-

tion of chloride in plants and soil produces the majority of atmospheric chloro-

methane (2236, 2569–2571). Thus, laboratory studies of ferns, a moss, and

halophilous plants emit significant amounts of chloromethane (2236, 2571), and
exhibit uptake of 36Cl-chloride and release of 36Cl-chloromethane (2236). It has
been suggested that the biosynthesis of halomethanes is the result of “accidents of

metabolism” and that the main function of haloperoxidases is to remove hydrogen

peroxide (2133). Sea salt spray is known to be a source of atmospheric chlorine

(Sect. 2.1 (Marine Environment)). A new mechanism for the oxidation of sea salt

chloride to chlorine involves reaction with dinitrogen pentoxide (N2O5) to nitryl

chloride (NO2Cl) and then to chlorine (2572). A newly proposed role of sea spray is

as a “cleansing agent” for air pollution over the ocean (2573). The relatively new

role of natural bromine and iodine, particularly bromine oxide and iodine oxide, in

atmospheric processes was mentioned in Sect. 2.1 (Marine Environment) (90, 97,
98, 100, 103, 2574, 2575). The highest concentration of iodine oxide (20 ppt) was

recorded off the Antarctic coast, and is likely a photolysis-oxidation product of the

marine algae metabolites CH2I2 and CH2IBr (2575).
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7 Significance

Combined with those presented in the first review (1), the number of naturally

occurring organohalogens – biogenic and abiotic – is more than 4,700. Despite this

staggering figure, the quantities of individual organohalogens present in the environ-

ment at any given time are largely unknown. A few examples were cited earlier (1).
Like other natural products, naturally occurring organohalogens can display a

plethora of biological activities (12, 2577). In particular, marine natural products –

15–20% of which contain halogen – are of great interest and show enormous

potential for the treatment of human disease (2578–2587, 2667), against cancer
(2588), inflammation (2589), malaria (2590), tuberculosis (2591), and others (1187,
2586, 2587, 2592, 2604). Marine algae are a treasure trove of biologically active

natural products (2593–2595), as are symbiotic bacteria in sponges (121, 2596).
Marine organisms have also furnished numerous insecticidal agents, several exam-

ples of which are shown earlier (682, 685, 1466) (2597, 2598). Terpene isonitriles
from sponges exhibit antimalarial activity (2599), and sponge-derived terpenoids

are potent and selective lipoxygenase inhibitors, such as chloropuupehenone

(2600). The organohalogen-rich sponges Aplysina aerophoba and Aplysina caver-
nicola possess antimicrobial activity (2601), and Verongia aerophoba displays both
antibiotic and cytotoxic activity from aeroplysinin-1 and the dienone metabolite

(Scheme 6.1) (2602). Hymenialdisine, a bromopyrrole from several sponges, is a

novel cyclin-dependent kinase inhibitor (GSK-3b and CK1) (2603). The bryozoan
Flustra foliacea metabolite deformylflustrabromine (1346) potentiates the human

a4b2 neuronal nicotinic receptor (2605). Certain natural organohalogens are cal-

modulin inhibitors, including eudistomidines A and B, malbrancheamide, konba-

mide, and several KS-504 compounds (2606). Maytansinoids have been conjugated

with various agents for specific cell targeting and improved antitumor activity

(2607, 2608). Several marine sponge metabolites, including the organohalogens

bromotopsentin, bastadins 4, 8, and 9, and hymenialdisine display anti-inflamma-

tory activity (2589). The chlorine-containing radiciol is a promising lead compound

for new anticancer agents (2609), and dichloroacetate is in clinical use for the

treatment of lactic acidosis (2610). Bromophenols from the red alga Odonthalia
corymbifera are highly fungicidal against the rice pathogen Magnaporthe grisea
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(2611). New vancomycin-type glycopeptide antibiotics are in clinical trials to

combat methicillin-resistant bacteria (2612, 2613) such as the deadly Staphylococ-
cus aureus (2614). For the first time, extracts of marine algae indigenous to Japan

have shown activity against methicillin-resistant Staphylococcus aureus bacteria

(2615, 2661). The therapeutic use of iodine has been rejuvenated (2616). For
example, in the treatment of cyclic mastalgia (2617).

Cyanobacteria – the Jekyll and Hyde of marine organisms – are a novel source of

potential new pharmaceutical compounds (2618–2620, 2662). On the other hand,

toxic cyanobacterial blooms in lakes, rivers, and water storage reservoirs have

occurred worldwide (2621, 2663, 2664). For example, 60 patients in a Brazil

hemodialysis unit died after drinking water from a lake contaminated with cyano-

bacterial microcystins (2622), not unlike the toxicity of “red tides” (2623). Cyano-
bacteria also produce the highly toxic neurotoxin, b-N-methylamino-L-alanine,

which may be produced by all cyanobacteria (2624, 2665).
There are many examples of the positive, beneficial effects of halogen substitu-

tion on organic compounds (1), and excellent reviews on this topic are available

(19, 2625). A chlorinated imidazobenzodiazepinone is 20 times more active than

the nonchlorinated analog and three times more active than AZT towards HIV-I

(2626). Likewise, halogenated (chlorine-, bromide-, and iodine-substituted) gomi-

sin J derivatives are more effective than the natural product itself as HIV-1 reverse

transcriptase inhibitors (2627). Halogen substitution on aromatic rings greatly

stabilizes cross-strand aromatic rings in model b-hairpin peptides (2628), which
is similar to the iodine-aromatic ring interaction between the thyroid hormone

triiodothyroxine, T3, and the thyroid hormone receptor.

376 7 Significance



8 Outlook

The dozen years since the publication of the first survey of naturally occurring

organohalogens (1) has seen an approximate doubling of these new natural com-

pounds, from 2,448 to 4,715, with no sign of abatement. This increase parallels the

revitalization of natural products research in general, and is a consequence of

improved collection, isolation, and identification techniques. An awareness of

ethnobotany and folk medicine leads natural products scientists to potentially bio-

logically active organisms. Multidimensional nuclear magnetic resonance spectro-

scopy, and improved X-ray crystallography and high-resolution mass spectrometry

methods allow for the characterization of minute quantities of compounds. Culti-

vation techniques like marine bioprocessing (116, 117, 2629) permit the harvesting

of target marine organisms without plundering the ocean. Remote submersibles can

access otherwise inaccessible ocean depths for new marine organisms, such as a

new Woods Hole Oceanographic Institution vessel capable of diving to 6,500 m

(2630). This will allow for the sampling of marine bacteria and other organisms on

the ocean floor; for example, the iron-oxidizing bacteria living around deep-sea

thermal vents (2631) and other deep-sea organisms (2632, 2633). Moreover, marine

bacteria, in general, are a new field of natural products exploration with enormous

possibilities for the discovery of new natural halogenated compounds (e.g., sali-

nosporamide A (1124)) (2634–2636), especially considering that seawater contains
as many as 106 bacteria cm�3 (2634). Marine and terrestrial fungi are also a

relatively untapped source of natural products. Indeed, of the 1.5 million estimated

terrestrial fungal species on Earth, only 70,000 have been described, let alone

examined for their chemical content (181, 186). Similarly, marine fungi and

terrestrial mosses (bryophytes) are virtually unexplored for their metabolites

(188). New species of sponges continue to be discovered (115, 2637), and it has

been suggested that in the oceans sponges can undergo comparatively rapid evolution

leading to new species with novel metabolites (2638). Furthermore, with bacterial

densities as high as 1010 bacteria g�1 of sponge wet weight, sponges are “microbial

fermenters” (2639), and only a fraction of the 12,000 extant sponges have been studied
for their chemical composition (112). The ocean crust is also an abundant reposi-

tory of microbes (2640) and has been for 3.5 billion years (2641).
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Abiotic sources of organohalogens will continue to be a major contributor to the

environment. Global warming may be leading to more wildfires, adding 3.5�1015g

of carbon to the atmospheric carbon budget annually (40% of fossil fuel carbon

emissions) (225). The world’s volcanoes continue to be active, producing massive

quantities of HCl and HF as they have done for eons (2642). Likewise, the

interaction of lava with seawater produces significant quantities of HCl (221).
Ancient sediments continue to reveal the presence of organohalogens presumably

of natural origin (e.g., 157, 2069–2091), and the abiotic formation of simple

organohalogens in soil is a rapidly developing area of research (175, 177). Of
academic interest are the observations of HCl and HF on Venus (2643) and chloride
salts on Mars (2644). A potentially highly significant newly discovered source of

organohalogens is the abiotic (or biogenic) decomposition of leaf litter leading to as

yet unidentified organohalogen compounds (172–174). Human breath contains a

number of aliphatic and aromatic chlorine compounds that are suggested to be

exogenous in origin (2645).
A major technical advance in the study of organohalogen compounds is the use

of 14C radiocarbon analysis to distinguish natural (high 14C content) from anthro-

pogenic (low or no 14C content) organohalogens (1223, 1746, 1789, 2646, 2647).
Given sufficient material for analysis, this technique would unequivocally identify

the origin of chloroform, chlorophenols, bromophenols, dioxins, brominated diphe-

nyl ethers, and several other compounds that have both natural and anthropogenic

sources.
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Unusual Chlorinated Pregnanes from the Eastern Pacific Octocoral Carijoa multiflora.
Tetrahedron Lett 45: 915

763. Kettle AJ, Winterbourn CC (1997) Myeloperoxidase: a Key Regulator of Neutrophil

Oxidant Production. Redox Rep 3: 3
764. Hurst JK, Lymar SV (1999) Cellularly Generated Inorganic Oxidants as Natural Microbi-

cidal Agents. Acc Chem Res 32: 520
765. van den Berg JJM, Winterbourn CC, Kuypers FA (1993) Hypochlorous Acid-Mediated

Oxidation of Cholesterol and Phospholipid: Analysis of Reaction Products by Gas

Chromatography-Mass Spectrometry. J Lipid Res 34: 2005
766. Heinecke JW, Li W, Mueller DM, Bohrer A, Turk J (1994) Cholesterol Chlorohydrin

Synthesis by the Myeloperoxidase-Hydrogen Peroxide-Chloride System: Potential Markers

for Lipoproteins Oxidatively Damaged by Phagocytes. Biochemistry 33: 10127
767. Carr AC, van den Berg JJM, Winterbourn CC (1996) Chlorination of Cholesterol in Cell

Membranes by Hypochlorous Acid. Arch Biochem Biophys 332: 63
768. Hazen SL, Hsu FF, Duffin K, Heinecke JW (1996) Molecular Chlorine Generated by the

Myeloperoxidase-Hydrogen Peroxide-Chloride System of Phagocytes Converts Low Den-

sity Lipoprotein Cholesterol into a Family of Chlorinated Steroids. J Biol Chem 271: 23080
769. Carr AC, Winterbourn CC, Blunt JW, Phillips AJ, Abell AD (1997) Nuclear Magnetic

Resonance Characterization of 6a-Chloro-5b-cholestane-3b,5-diol Formed from the Reac-

tion of Hypochlorous Acid with Cholesterol. Lipids 32: 363
770. Nakamura H, Kuruto-Niwa R, Uchida M, Terao Y (2007) Formation of Chlorinated

Estrones via Hypochlorous Disinfection of Wastewater Effluent Containing Estrone.

Chemosphere 66: 1441
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First Total Synthesis of Astin G. Tetrahedron Lett 40: 455
1031. Cai P, Smith D, Katz B, Pearce C, Venables D, Houck D (1998) Destruxin-A4 Chlorohy-

drin, a Novel Destruxin from the Fungus OS-F68576: Isolation, Structure Determination,

and Biological Activity as an Inducer of Erythropoietin. J Nat Prod 61: 290
1032. Lira SP, Vita-Marques A, SeleghimMHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado

SRP, Ireland CM, Berlinck RGS (2006) New Destruxins from the Marine-Derived Fungus

Beauveria felina. J Antibiot 59: 553
1033. Murakami M, Ishida K, Okino T, Okita Y, Matsuda H, Yamaguchi K (1995) Aeruginosins

98-A and B, Trypsin Inhibitors from the Blue-Green Alga Microcystis aeruginosa (NIES-

98). Tetrahedron Lett 36: 2785
1034. Shin HJ, Matsuda H, Murakami M, Yamaguchi K (1997) Aeruginosins 205A and -B, Serine

Protease Inhibitory Glycopeptides from the Cyanobacterium Oscillatoria agardhii (NIES-
205). J Org Chem 62: 1810

1035. Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Microginins 299-A and -B,

Leucine Aminopeptidase Inhibitors from the Cyanobacterium Microcystis aeruginosa
(NIES-299). Tetrahedron 53: 10281

1036. Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Micropeptins 478-A and -B,

Plasmin Inhibitors from the Cyanobacterium Microcystis aeruginosa. J Nat Prod 60: 184
1037. Ishida K, Matsuda H, Murakami M (1998) Four NewMicroginins, Linear Peptides from the

Cyanobacterium Microcystis aeruginosa. Tetrahedron 54: 13475
1038. Ishida K, Okita Y, Matsuda H, Okino T, Murakami M (1999) Aeruginosins, Protease

Inhibitors from the Cyanobacterium Microcystis aeruginosa. Tetrahedron 55: 10971
1039. Ishida K, Kato T, Murakami M, Watanabe M, Watanabe MF (2000) Microginins, Zinc

Metalloproteases Inhibitors from the CyanobacteriumMicrocystis aeruginosa. Tetrahedron
56: 8643
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1272. Grube A, Köck M (2006) Oxocyclostylidol, an Intramolecular Cyclized Oroidin Derivative

from the Marine Sponge Stylissa caribica. J Nat Prod 69: 1212
1273. Supriyono A, Schwarz B, Wray V, Witte L, Müller WEG, van Soest R, Sumaryono W,

Proksch P (1995) Bioactive Alkaloids from the Tropical Marine Sponge Axinella carteri. Z
Naturforsch 50c: 669

1274. Williams DH, Faulkner DJ (1996) Isomers and Tautomers of Hymenialdisine and Debro-

mohymenialdisine. Nat Prod Lett 9: 57
1275. Patil AD, Freyer AJ, Killmer L, Hofmann G, Johnson RK (1997) Z-Axinohydantoin and

Debromo-Z-axinohydantoin from the Sponge Stylotella aurantium: Inhibitors of Protein

Kinase C. Nat Prod Lett 9: 201
1276. Inaba K, Sato H, Tsuda M, Kobayashi J (1998) Spongiacidins A-D, New Bromopyrrole

Alkaloids from Hymeniacidon Sponge. J Nat Prod 61: 693
1277. Eder C, Proksch P, Wray V, Steube K, Bringmann G, van Soest RWM, Sudarsono,

Ferdinandus E, Pattisina LA, Wiryowidagdo S, Moka W (1999) New Alkaloids from the

Indopacific Sponge Stylissa carteri. J Nat Prod 62: 184
1278. Sosa ACB, Yakushijin K, Horne DA (2002) Synthesis of Axinohydantoins. J Org Chem 67:

4498

1279. Papeo G, Posteri H, Borghi D, Varasi M (2005) A New Glycociamidine Ring Precursor:

Syntheses of (Z)-Hymenialdisine, (Z)-2-Debromohymenialdisine, and (±)-endo-2-Debro-
mohymenialdisine. Org Lett 7: 5641

1280. Linington RG, Williams DE, Tahir A, van Soest R, Andersen RJ (2003) Latonduines A and

B, New Alkaloids Isolated from the Marine Sponge Stylissa carteri: Structure Elucidation,
Synthesis, and Biogenetic Implications. Org Lett 5: 2735

1281. Pettit GR, McNulty J, Herald DL, Doubek DL, Chapuis J-C, Schmidt JM, Tackett LP,

Boyd MR (1997) Antineoplastic Agents. 362. Isolation and X-ray Crystal Structure of

Dibromophakellstatin from the Indian Ocean Sponge Phakellia mauritiana. J Nat Prod
60: 180

438 References



1282. Assmann M, van Soest RWM, Köck M (2001) New Antifeedant Bromopyrrole Alkaloid

from the Caribbean Sponge Stylissa caribica. J Nat Prod 64: 1345
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What is the Source of Ochratoxin A in Wine? Int J Food Microbiol 79: 213
1528. Sage L, Krivobok S, Delbos E, Seigle-Murandi F, Creppy EE (2002) Fungal Flora and

Ochratoxin A Production in Grapes and Musts from France. J Agric Food Chem 50: 1306
1529. Shephard GS, Fabiani A, Stockenström S, Mshicileli N, Sewram V (2003) Quantitation of

Ochratoxin A in South African Wines. J Agric Food Chem 51: 1102
1530. Marı́n S, Bellı́ N, Lasram S, Chebil S, Ramos AJ, Ghorbel A, Sanchis V (2006) Kinetics of

Ochratoxin A Production and Accumulation by Aspergillus carbonarius on Synthetic

Grape Medium at Different Temperature Levels. J Food Sci 71: M196

1531. Khoury AEl, Rizk T, Lteif R, Azouri H, Delia M-L, Lebrihi A (2006) Occurrence of

Ochratoxin A- and Aflatoxin B1-Producing Fungi in Lebanese Grapes and Ochratoxin

A Content in Musts and Finished Wines during 2004. J Agric Food Chem 54: 8977
1532. Fernandes A, Ratola N, Cerdeira A, Alves A, Venãncio A (2007) Changes in Ochratoxin
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Prangé T (1996) Cercospora beticola Toxins. Part XI: Isolation and Structure of Beticolin

0. Tetrahedron Lett 37: 3121
1929. Chu M, Truumees I, Mierzwa R, Terracciano J, Patel M, Loebenberg D, Kaminski JJ, Das

P, Puar MS (1997) Sch 54445: A New Polycyclic Xanthone with Highly Potent Antifungal

Activity Produced by Actinoplanes sp. J Nat Prod 60: 525
1930. Terui Y, Yiwen C, Jun-ying L, Ando T, Yamamoto H, Kawamura Y, Tomishima Y, Uchida

S, Okazaki T, Munetomo E, Seki T, Yamamoto K, Murakami S, Kawashima A (2003)

Xantholipin, a Novel Inhibitor of HSP47 Gene Expression Produced by Streptomyces sp.
Tetrahedron Lett 44: 5427

1931. Cohen PA, Towers GHN (1995) Anthraquinones and Phenanthroperylenequinones from

Nephroma laevigatum. J Nat Prod 58: 520
1932. Cohen PA, Towers GHN (1996) Biosynthetic Studies on Chlorinated Anthraquinones in the

Lichen Nephroma laevigtum. Phytochemistry 42: 1325
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2046. Wittsiepe J, Kullmann Y, Schrey P, Selenka F, Wilhelm M (1999) Peroxidase-Catalyzed in

Vitro Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from Chloro-

phenols. Toxicol Lett 106: 191
2047. Wittsiepe J, Kullmann Y, Schrey P, Selenka F, Wilhelm M (2000) Myeloperoxidase-

Catalyzed Formation of PCDD/F from Chlorophenols. Chemosphere 40: 963
2048. Morimoto K, Kenji T (1995) Effect of Humic Substances on the Enzymatic Formation of

OCDD from PCP. Organohalogen Compds 23: 387
2049. Huwe JK, Feil VJ, Zaylskie RG, Tiernan TO (2000) An Investigation of the in Vivo

Formation of Octachlorodibenzo-p-dioxin. Chemosphere 40: 957
2050. Fries GF, Dawson TE, Paustenbach DJ, Mathur DB, Luksemburg WJ (1997) Biosynthesis

of Hepta- and Octa-chlorodioxins in Cattle and Evidence for Lack of Involvement by

Rumen Microorganisms. Organohalogen Compds 33: 296
2051. Fries G, Paustenbach D, Luksemburg W, Lorber M, Ferrario J (2000) The Formation of

Hepta- and Octa-dioxins in Feces of Cows Fed Pentachlorophenol Treated Wood. Organo-

halogen Compds 46: 1
2052. Malloy TA, Goldfarb TD, Surico MTJ (1993) PCDDs, PCDFs, PCBs, Chlorophenols (CPs)

and Chlorobenzenes (CBzs) in Samples from Various Types of Composting Facilities in the

United States. Chemosphere 27: 325
2053. Krauß Th, Krauß P, Hagenmaier H (1994) Formation of PCDD/PCDF During Composting?

Chemosphere 28: 155
2054. Grossi G, Lichtig J, Krauß P (1998) PCDD/F, PCB and PAH Content of Brazilian Compost.

Chemosphere 37: 2153
2055. Klimm C, Schramm K-W, Henkelmann B, Martens D, Kettrup A (1998) Formation of

Octa- and Heptachlorodibenzo-p-dioxins During Semi Anaerobic Digestion of Sewage

Sludge. Chemosphere 37: 2003
2056. Stevens J, Green NJL, Jones KC (2001) Survey of PCDD/Fs and Non-ortho PCBs in UK

Sewage Sludges. Chemosphere 44: 1455
2057. Martı́nez M, Dı́az-Ferrero J, Martı́ R, Broto-Puig F, Comellas L, Rodrı́guez-Larena MC

(2000) Analysis of Dioxin-like Compounds in Vegetation and Soil Samples Burned in

Catalan Forest Fires. Comparison with the Corresponding Unburned Material. Chemo-

sphere 41: 1927
2058. Tashiro C, Clement RE, Stocks BJ, Radke L, Cofer WR, Ward P (1990) Preliminary

Report: Dioxins and Furans in Prescribed Burns. Chemosphere 20: 1533
2059. Bumb RR, Crummett WB, Cutie SS, Gledhill JR, Hummel RH, Kagel RO, Lamparski LL,

Luoma EV, Miller DL, Nestrick TJ, Shadoff LA, Stehl RH, Woods JS (1980) Trace

Chemistries of Fire: A Source of Chlorinated Dioxins. Science 210: 385
2060. Schatowitz B, Brandt G, Gafner F, Schlumpf E, Bühler R, Hasler P, Nussbaumer T (1994)

Dioxin Emissions from Wood Combustion. Chemosphere 29: 2005
2061. Vikelsøe J, Madsen H, Hansen K (1994) Emission of Dioxins from Danish Wood-Stoves.

Chemosphere 29: 2019

476 References
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brevipes – A Brown Alga with Vanadium Dependent Iodoperoxidase. In: Obringer C,

Burner U, Ebermann R, Penel C, Greppin H (eds) Plant Peroxidases – Biochemistry and

Physiology. University of Geneva, Geneva, p 146

2285. Almeida M, Almeida MG, Humanes M, Melo R, Silva JA, Fraústo da Silva JJR (1997)
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Vögtle M (2003) Chemoenzymatic Methods for the Enantioselective Preparation of

Sesquiterpenoid Natural Products from Aromatic Precursors. Pure Appl Chem 75: 223
2493. Austin KAB, Banwell MG, Loong DTJ, Rae AD, Willis AC (2005) A Chemoenzymatic

Total Synthesis of the Undecenolide (–)-Cladospolide B via a Mid-Stage Ring-Closing

Metathesis and a Late-Stage Photo-Rearrangement of the E-Isomer. Org Biomol Chem 3:
1081

2494. Banwell MG, Loong DTJ, Willis AC (2005) A Chemoenzymatic Total Synthesis of the

Undecenolide (–)-Cladospolide C. Aust J Chem 58: 511
2495. Humphreys JL, Lowes DJ, Wesson KA, Whitehead RC (2006) Arene cis-Dihydrodiols –

Useful Precursors for the Preparation of Antimetabolites of the Shikimic Acid Pathway:

Application to the Synthesis of 6,6-Difluoroshikimic Acid and (6S)-6-Fluoroshikimic Acid.

Tetrahedron 62: 5099
2496. Finn KJ, Collins J, Hudlicky T (2006) Toluene Dioxygenase-Mediated Oxidation of

Dibromobenzenes. Absolute Stereochemistry of New Metabolites and Synthesis of (–)-

Conduritol E. Tetrahedron 62: 7471
2497. Bellomo A, Giacomini C, Brena B, Seoane G, Gonzalez D (2007) Chemoenzymatic

Synthesis and Biological Evaluation of (–)-Conduramine C-4. Synth Commun 37: 3509
2498. Bellomo A, Gonzalez D (2006) Catalytic Thiolysis of Chemoenzymatically Derived

Vinylepoxides. Efficient Synthesis of Homochiral Phenylthioconduritol F. Tetrahedron:

Asym 17: 474
2499. Omori AT, Finn KJ, Leisch H, Carroll RJ, Hudlicky T (2007) Chemoenzymatic Total

Synthesis of (+)-Codeine by Sequential Intramolecular Heck Cyclizations via C-B-D Ring

Construction. Synlett 2859

References 497



2500. Kokas OJ, Banwell MG, Willis AC (2008) Chemoenzymatic Approaches to the Montanine

Alkaloids: A Total Synthesis of (+)-Nangustine. Tetrahedron 64: 6444
2501. Shie J-J, Fang J-M, Wong C-H (2008) A Concise and Flexible Synthesis of the Potent Anti-

Influenza Agents Tamiflu and Tamiphosphor. Angew Chem Int Ed 47: 5788
2502. Oppong KA, Hudlicky T, Yan F, York C, Nguyen BV (1999) Chemoenzymatic Enantio-

divergent Synthesis of 1,2-Dideoxy-2-amino-1-fluoro-allo-inositol. Tetrahedron 55: 2875
2503. Paul BJ, Willis J, Martinot TA, Ghiviriga I, Abboud KA, Hudlicky T (2002) Synthesis,

Structure, and Biological Evaluation of Novel N- and O-Linked Diinositols. J Am Chem

Soc 124: 10416
2504. Boyd DR, Sharma ND, O’Dowd CR, Hempenstall F (2000) Enantiopure Arene Dioxides:

Chemoenzymatic Synthesis and Application in the Production of trans-3,4-Dihydrodiols.
Chem Commun 2151

2505. Schapiro V, Cavalli G, Seoane GA, Faccio R, Mombrú AW (2002) Chemoenzymatic
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Brümmer, F., 383, 506

Bruno, I., 427, 442

Bruno, M., 406

Brunskill, GJ., 478

Brust, A., 403
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Döring, D., 397

Dorrestein, PC., 452, 493

Dorta, E., 399, 401, 403, 406, 413, 421

Dorta, J., 412

Dorward, M., 434, 492

Doty, SL., 495, 496

Doubek, DL., 438, 455, 468

Dowd, PF., 453

Downey, A., 390

Doyle, LA., 430

Doyle, TW., 446, 452

Draeger, S., 402, 450, 456, 472

Drangmeister, J., 496

Drennan, CL., 432

Drenzek, NJ., 481

Drew, M., 461

Dreyer, M., 459, 471

Dring, MJ., 394, 395

Du, SJ., 457

Duan, H., 450

Duan, HQ., 422

Dubois, JP., 506

Duce, RA., 382

Duchene, J-C., 463

Duckworth, AR., 383

Ducrocq, V., 390

Ducrot, P-H., 415, 470

Duebelbeis, DO., 455

Duesterberg, CK., 492

Duffe, J., 435

Duffin, K., 413

Dugrillon, A., 419

Duh, C-Y., 409, 440

Duhamel, M., 496

Duignan, PJ., 435

Duke, SO., 499

Dumay, V., 489

Dumdei, EJ., 424

Dumont, JE., 419

Dumrongchai, N., 424

Dunbar, DC., 502

Duncan, KLK., 427

Duncan, MW., 422, 490, 500

Duncan, SJ., 398, 399

Dunford, HB., 479, 481, 487, 490

Duniway, JM., 393

Dunkle, LD., 427

Dunn, JL., 491

Duque, C., 450

Duyzer, JH., 392

Dweik, RA., 464

Dworjanyn, SA., 500

Dyer, RB., 481

Dyke, P., 477

Dykert, J., 428

E
Ean, U-J., 459

Earle, ED., 426

Eaton, G., 467, 468

Ebel, R., 499
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González-Coloma, A., 400, 501

Gooday, GW., 466

Goodfellow, M., 385, 399

Goodwin, KD., 394, 495

Göransson, U., 441, 499

Gordon, DP., 503

Gordon, H., 497

Gordon, MP., 495, 496

Gore, R., 443
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Hyytiäinen, H., 431

Author Index 531



I
Ianaro, A., 413, 416, 418

Iavarone, C., 416

Ichiba, T., 410, 416, 418, 448

Ichihara, Y., 445, 446

Ichikawa, H., 397

Ichikawa, Y., 482

Ichino, T., 396

Ichiyama, S., 495

Ide, T., 415

Igarashi, M., 425

Igarashi, T., 456

Igarashi, Y., 446

Iguchi, K., 410, 413, 420, 421

Iida, K., 452

Iinuma, H., 436, 472

Iitaka, Y., 426

Iizuka, T., 429

Ikeda, D., 412, 436

Ikeda, H., 398

Ikeda, M., 390

Ikeda, T., 425

Ikeda, Y., 428

Ikonomou, MG., 388

Ikura, T., 397

Ilan, M., 466

Iliopoulou, D., 405, 407, 414

Ilyin, SG., 404, 444, 460

Im, KS., 442, 467

Imajo, S., 452

Imamura, N., 431, 448, 454

Imanishi, T., 397, 456

Imperial, J., 500

Imre, S., 403, 404, 414, 468

Inaba, K., 437, 438

Inagaki, M., 469

Inanaga, S., 433

Ingram, B., 386

Inman, WD., 427

Innocenti, G., 470

Inokoshi, J., 398

Inoue, H., 485

Inoue, K., 398

Inoue, M., 452

Inukai, M., 396

Inukai, Y., 429

Inuzuka, Y., 389

Inuzuka, Y., 390

Ireland, CM., 386, 418, 421, 422, 426, 440,

443–445, 448, 456, 465

Irita, H., 459

Iritani, M., 397

Irschik, H., 417

Irvine, R., 478

Irvine, RL., 477

Irving, E., 439

Irwin, A., 491

Isaka, M., 386, 471

Isenbeck-Schröter, M., 386
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Kankaanpää, HT., 385

Kannan, K., 478

Kanoh, N., 487

Kao, J., 491

Kaouadji, M., 422

Kaptein, B., 446

Karagouni, AD., 399

Karaguni, I-M., 430

Karchesy, J., 402

Kardos, NL., 386

Karlaganis, G., 477
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Bromoverongamine, 286, 287

Bromovulones, 128

Bromoxone, 28

(+)-(10S)-10-Bromo-b-chamigrene, 51

10-Bromo-b-chamigren-4-one, 51, 52

Bruguiera gymnorrhiza, ent-kaurane, 61
Bryozoans, 198

Bugula dentata, bipyrroles
tambjamines, 179

Burkholderia cepacia, growth
inhibition, 266

Bursatella leachii,
deacetylhectochlorin, 141

– malyngamides, 112

Byrsonima microphylla, chlorinated
diphenyl ether, 277

Byssoloma subdiscordans, dichloro-
O-methylnorlichexanthone, 318

C
C-1027 chromophore, 232

C15 acetogenins, 96

Cacospongia, brominated cacoxanthenes, 58

Cacoxanthenes, brominated, 58
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Cadinane, 46

Cadiolides, 131, 132

Caespitenone, 55, 57

Caissarines, 307

Calafianin, 307

Calalpae fructus, 4-hydroxybenzoyl
esters, 104

Caldariomyces fumago, CCl3, 14
Calenzanane, 54

Calenzanol, 54, 55

Calicheamicin, 232

Callicladol, 86, 87

Callinectes similis (blue crab), 81
Calliostoma canaticulatum, 6-bromo-2-

mercaptotryptamine, 199

Callipelta sp., callipeltosides, 239

Callipeltosides, 239, 240

Callophycus serratus, bromophycolides, 67

Callyspongia bilamellata, phoriospongins,
167

Calmodulin inhibitors, eudistomidines, 375

Calyculin J, 247

Camouflage, chemical, 373

Camptothecin vs. topopyrone B, 320

Canadian peat bogs, dioxins/dibenzofurans,

339

Cancer, 375

– halomon, 32

Candida albicans, growth inhibition, 231,

252, 282

– hectochlorin, 141

– massadines, 193

Canthigaster solandri, 373
Carbamates, 304

Carbamidocyclophanes, 255, 256

Carbazoles, halogenated, 197, 217

Carbohydrates, halogenated, 231

Carbolines, halogenated, 197, 218–220

Carbonaceous black shales (Central Asia),

CCl4, 15

Carbonimidic dichlorides, 55

Carboxylic acids, fluorine-containing, 124

– halogenated, 25

Carcinogens, ptaquiloside, 44

Carijenone, 128, 130

Carijoa multiflora, carijenone, 128
– chlorinated pregnanes, 94

Carpopeltis crispata, ochtodenes, 35

Carpophyllum angustifolium,
phloroglucinols, 279

Carteramine A, 195, 196

Cartilagineol (allo-isoobtusol) 51, 52

Catarraphia dictyoplaca, cyclographin, 316
Catechols, abiotic formation of

organochlorines, 22

– brominated, 268

Cathelicidins, HFIAP-1/2/3, 156

Caulibugula intermis, caulibugulones, 220
Caulibugulones, 221

Celastramycins, 182, 320, 321

Celenamides, 150

Centaurea acaulis, 14-chloro-10b-hydroxy-
10(14)-dihydrozaluzanin, 42

Centaurea conifera, chlorohyssopifolin A

(centaurepensin), 40

Centaurea glatifolia, epicebellin J, 40

Centaurea scoparia, 40
Cephalosporium acremonium strain

IFB-E007, graphislactone G, 230

Ceramium tenuicorne, brominated

diphenyl ether, 275

Ceratamines, 175, 176

Ceratinamine, 286, 288

– N-methyl- 292

Ceratostoma erinaceum, brominated

imidazole, 223

Cercospora beticola, beticolin, 318
CF3CF3CF2H, 23

Chaetoceros calcitrans, chloromethane, 9

Chaetochiversins, 230

Chaetomium chiversii, chaetochiversins
230

Chaetomorpha basiretorsa, halogenated
biindole, 209

Chagosensine, 243, 244

Chamigrenes, halogenated, 46, 51, 63

Chamonixia pachydermis, pachydermin,

182, 326

Charles W. Morgan, 180

Chartelline C, 212

Chelonin B, 201

Chemical camouflage, 373

Chemical waste, PCDDs/PCDFs, 344

Cherry, chloromethane, 11

Chimaphilin, 8-chlorochimaphilin, 250

Chinikomycins, 122

584 Subject Index



Chinzallene, 96, 97

Chloptosin, 154, 155

Chloramphenicol, 134

Chlorflavonin, bromine analog, 231

Chloride, methylation, 11, 374

Chloridium sp., CJ-21,164, 326

Chlorinase, 125

Chlorinated aromatics, 7

Chlorinated benzoic acids, 254

Chlorinated bridged biphenyls, 262

Chlorinated depsides, 314–315

Chlorinated lactone, 257

Chlorinated orcinols, 259

Chlorinated polycyclic aromatic

hydrocarbons (PAHs), 256

Chlorinated xanthones, 317–319

Chlorination of aromatics, 254

Chlorine oxide, 3

a-Chloro divinyl ethers, 114

(2R)-12-Chloro-2,3-dihydroillicinone E, 44

13-Chloro-3-O-b-D-
glucopyranosylsolstitialin, 41

1-Chloro-5-heptadecyne, 26

12-Chloro-11-hydroxydibromoisophakellin,

189

14-Chloro-10b-hydroxy-10(14)-
dihydrozaluzanin, 42

6-Chloro-5-hydroxy-N-methyltryptophan,

153

1-Chloro-3-methyl-2-butene, 21

5-Chloro-1-O-methyl-o-hydroxyemodin,

319

7-Chloro-1-O-methyl-o-hydroxyemodin,

319

Chloroacetic acids (MCA) 26, 345, 347

– abiotic formation, 347

Chloroacetylphosphonic acid, 26

8-Chloroadenine, 224

Chloroalkanes, long-chain, 24

Chloroanisoles, 258

Chloroasterrate, methyl, 277, 278

Chloroatranol, 259, 260

Chlorobenzenes, 254

Chlorobenzoic acids, 254

Chlorobifuhalol, 279

Chlorobiocin (clorobiocin, RP, 18,631), 228

Chlorobisfucopentaphlorethol-A, 279

5-Chlorobohemamine C, 175, 176 5-

Chlorobromomethane (CH2BrCl), 18

8-Chlorocannabiorcichromenic acid, 227

Chlorocarolides, 132

6-Chlorocatechin, 231

8-Chlorochimaphilin, 250

Chlorochrymorin, 38, 39

Chlorocinnamic acids, 339

Chlorocresol, 339

5-Chlorocytosine, 224

5-Chlorodeoxycytidine, 224

(E)-Chlorodeoxyspongiaquinol, 55
(E)-Chlorodeoxyspongiaquinone, 55
Chlorodesnkolbisine, 223, 224

7-Chlorodeutziol, 104

Chlorodibromomethane (CHBr2Cl), 18

Chlorodibromophenol, 266

Chlorodifucol, 279

Chlorodimethoxybenzoic acid, 258

Chlorodivaricatic acid, 314, 315

Chlorodysinosin A, 147

5-Chloroemodin, 319

Chloroenone quassinoid eurycolactone B, 61

Chloroepicatechin, 260, 261

Chloroethyne (chloroacetylene), 22

Chlorofluorocarbons (CFCs), 23

Chloroform, 339, 340, 345, 347, 378

Chlorofusin, 31, 32, 100

Chlorogentisylquinone, 28

Chlorohematommic acids, 259, 260

Chlorohydrin sesquiterpenes, 38, 39

Chlorohydrins, 44, 60, 94, 104, 143, 256

Chlorohydroxybenzoic acid, 258

Chlorohydroxyphenylacetamide, 258

2-Chlorohyperzine E, 175, 176

Chlorohyssopifolin A (centaurepensin), 40

Chlorohyssopifolins, 38

12-Chloroillicinone, 44

12-Chloroillifunone, 44, 61

3-Chloroindole, 197

Chloroiodomethane, 20

Chloroisoplagiochin D, 262, 263

5-Chloroisorotiorin, 29, 30

Chlorojanerin, 40

Chlorolecideoidin, 316

Chlorolichexanthone, 318

Chlorolissoclimides, 84, 85

Chloromarmin, 228

Chloromethane 9, 374
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– methyl donor, 369

– sources, 10

Chloromethoxybenzaldehyde, 265

Chloromethoxybenzoic acids, 258, 339

Chloromethoxyphenols

16-Chloromilolide B, 73, 74

Chloromycorrhizin A, 28

Chloronaphthalene, 254

Chloronatronochrome, 260, 261

Chloronectrin, 322

Chloronectrin, cylindrol A4, 322

Chloronitrophenol, 259

5-Chloro-o-hydroxyemodin, 319

Chloro-O-methylnorlichexanthone, 318

3-Chloro-N-methyltyrosine, 169

3-Chloro-O-methyltyrosine, 159

Chloropeptin 1, 330

Chloroperoxidase 6, 26, 254, 262, 340

Chloroperoxidase-promoted halogenation,

345

Chlorophenol-oligosaccharide antibiotics

(orthosomycins), 333

Chlorophenols, 257–265, 340, 378

– peroxidase-catalyzed transformation, 343,

346

Chlorophenylacetic acid, 254

Chlorophenylcarboxylic acids, 254

21-Chloropuupehenol, 60

Chloropuupehenone, 375

Chloroquinocin, 250

Chlororesorcinol, 257

2-Chlorosamaderine A, 27

Chlorosesamone, 250

Chlorostyrenes, 254, 260

Chlorosulfolipids, 105

4-Chlorothreonine, 171

Chlorotoluenes, 254

Chlorotriol, 50

6-Chlorotryptophans, 152

3-Chlorotyrosine, 281

5-Chlorouracil, 224, 225

Chlorovulone II, 127

Chloroxanthone, 317–319

Chlorxanthomycin, 321

Chlovalicin, 28

Cholesterol, 94

Cholesteryl ester transfer protein (CETP),

isochromophilones, 29

Choline acetyltransferase, 44

Chondramides, 150, 151

Chondria armata, armatols, 89

Chondrochlorens, 122, 123

Chondromyces crocatus, 150
– chondrochlorens, 122

Chromeno[2,3-b]pyrrole ring, 178
Chromodoris hamiltoni, hamiltonins, 69

Chromones, halogenated, 226

Chromophores, 231–233

– C-1027, 231

– kedarcidin, 232

– maduropeptin, 232, 233

– N1999A2 , 233, 234

Chroococcus turgidus, 5
Chrysanthemum morfolium,
chlorochrymorin, 38

Chymotrypsin, 156

Chymotrypsin inhibitors, 147

Cigarette smoke, 8

Cistanche tubulosa, kankanoside C, 104
CJ-19,784 (bromine analog of

chlorflavonin), 230

CJ-21,164 326, 327

Cladonia furcata, brominated fatty acids,

109

Cladophora albida, trichloromethane, 13

Cladosporium, growth inhibition, 259, 274

Clathramides, 185

Clathrynamides, 121, 122

Clavidol, 86, 89

Clavinflol B, cytotoxicity, 83, 84

Claviol, 51, 52

Clavularia inflata, clavinflol B, 83
Clavularia viridis, chlorovulone II
127– yonarasterols, 93

Cleansing agent, air pollution, 374

neo-Clerodane ajugarin-I, 60
Cliona chilensis, celenamides, 150

Cliona nigricans, clionastatins, 94, 95
Clionastatins, 94, 95

Clitocybe elegans, melledonal D, 324

Clitocybe flaccida, clitolactone, 132, 133
Clitolactone, 132–134

Clolimalongine, 174

Clorobiocin (chlorobiocin, RP, 18,631),

227

Clostomicins, 236
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Cnemidocarpa bicornuta, brominated

tyramines, 284

Coastal wetlands, atmospheric CH3Cl, 10

Cochliobolus victoriae (Helminthosporium
victoriae), victorins, 148

Colubricidin A, 238

Complestatins (chloropeptin II) 330, 331

Compost, chloromethoxybenzaldehyde, 265

– polychlorinated dioxins, 343

Condylactis gigantea, 6-bromo-(5E,9Z)-

eicosadienoic acid, 106

Cone snails, toxin, 155, 373

Coniine, 26

Coniochaeta tetraspora, compound CT-1,

316

Coniothyriomycin, 325, 326

Coniothyrium sp., coniothyriomycin, 325

– cryptosporiopsinol, 27

– palmarumycins, 252

o-Conopeptide MVIIA, 155

Conotoxins, 156

– GVIIIA, 373

Conus delessertii, conotoxins, 156
Conus imperialis, heptapeptide, 156
Conus monile, conotoxins, 156
Conus peptides, 155
Conus radiatus, 6-bromotryptophan, 156

Conus textile, conotoxins, 156
Convolutamines, 282, 283

Convolutamydines, 216, 217

Convolutindole A, 198, 199

Coptotermes lacteus, CCl3, 14
Corallina officinalis, chloromethane, 9

– trichloromethane, 13

Corallina pilulifera, 374
Corallinaether, 274

– polybrominated dibenzofuran, 341

Corallinafuran, polybrominated

dibenzofuran, 341, 342

Coscinamides, 208, 209

Coscinoderma sp., coscinamides, 207

Coumarins, halogenated, 226–229

Crassostrea virginica, dibromoindoles/

tribromoindole, 197

Cremanthodium discoideum, 44
Crematories, PCDDs/PCDFs, 344

Crustose coralline red alga, corallinafuran/

corallinaether, 341

Cryptococcus neoformans, growth
inhibition, 230

Cryptophycins, 159–163

Cryptosporiopsin, 27

Cryptosporiopsinol, 27

CT-1, 316

Cuparanes, 46

– halogenated, 57

Cyanobacteria, 135, 376

– halogenated fatty acids, 111

– symbiosis, 4

Cyanobacterial blooms, 376

Cyanobacterial microcystins, 376

Cyanopeptolin, 954, 147

Cyanosporasides, 255

Cyclin-dependent kinase, 194

Cyclitols, 28

Cyclobutane-containing metabolites, 324

Cyclochlorotine, 143

Cyclocinamide A, 151, 152

Cyclodepsipeptides, antibiotic, 149

6,8-Cycloeudesmanes, 54

Cyclographin, 316

Cyclohexadienones, 36

Cyclohexapeptide, chlorinated, 154

Cyclohexene, 28

Cyclolaurane, 57

Cyclolithistide A, 167

Cyclooroidins, 187, 188

Cyclopentanes, 27

Cyclopentapeptides, proline-containing,

143

Cyclopentenones, 27

Cyclopeptide, 369

Cyclopropane-cyclopentane ring, 49

Cyclopropane fatty acid, 111

Cylindricines, 176

Cylindrocarpon lucidum, cylindrol A4, 322
Cylindrocarpon olidum, 8-
chlorocannabiorcichromenic acid, 226

Cylindrochlorin (ilicicolin E/80,
90-dehydroascochlorin), 322

Cylindrol A4 322, 323

Cymbastela sp., agelastatins, 191

– geodiamolides, 157

Cymopol, 373

Cymopolia barbata, 30-methoxy-

7-hydroxycymopol, 58
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Cynara scolymus, cynarinin B, 42

Cynarinin B, 42, 43

Cynthia savignyi, cynthichlorine, 216
Cynthichlorine, 216, 217

Cystic fibrosis, 3-chlorotyrosine, 281

– control of, 266

Cystophora retroflexa, halogenated
phlorethols and fucophlorethols,

peracetates, 279

Cystophora torulosa, fucophlorethols, 279
Cytospora sp., cytosporin B, 28

Cytosporin B, 28

Cytostatic compounds

Cytotoxic activity, 112

Cytotoxicity, lyngbyabellins, 141, 142

D
(Z)-Dactomelyne, 96

Dactylallene, 100

Dactylopyranoid, 62, 63

Dactylosporangium aurantiacum ssp.

hamdenensis, tiacumicins, clostomicin

A, 236

Dakaramine, 295, 296

Dasyphila plumariodes, isolaurefucin
methyl ether, 99

Dasyscyphus sp. A47-98, VM, 4798-1a/1b,

27

Dauricumidine, 174

Dauricumine, 174

DDT/DDE, 180, 277

1-Deacetoxyalgoane, 50

1-Deacetoxy-8-deoxyalgoane, 50

Deacetoxystylocheilamide, 112, 113

Deacetylhectochlorin, 141

Deacetyljunceellin, 78

Deacetylparguerol, 62, 63

Dead Sea, 3

2-Debromohymenin, 188, 189

Debromolongamide, 184

2-Debromotaurodispacamide A, 186

Decatromicins, 183

Dechlorobarbamide, 135

Dechlorogangaleoidin, 316

Defense function, 369

Deformylflustrabromine, 198, 199

Degluco-balhimycin, 329, 330

1,2-Dehydro-3,4-epoxypalisadin B, 50

80,90-Dehydroascochlorin, 322
Dehydromicrosclerodermins, 152

10-epi-15,16-Dehydrothyrsiferol, 86, 87

3-epi-Dehydrothyrsiferol, 86, 89

Dehydrovenustatriol, 86, 87

Dehydroxylinarioside, 104

Delisea fimbriata, 1,1,2-tribromooct-1-en-

3-one, 25

Delisea pulchra, brominated furanones, 373

– furanone, 130

– pulchralides, 130

Delorazepam, 224

Demethylbalhimycin, 329, 330

Demethylchodatin, 318

Dendridine A, 209, 210

Dendrilla cactos, bastadins-22/-23, 313
Dendronephthya sp., brominated oxylipins,

128

Dendrophyllia sp., brominated oxylipins,

128

9-Deoxyelatol, 52

Deoxyfistularin, 304

Deoxyisoreticulidine B, 57

Deoxyprepacifenol, 47

Depsides, chlorinated, 314, 315

Depsidones, halogenated, 315–317

Dermacentor variabilis, tick control , 257

Dermatitis (“swimmer’s itch”), 111

Dermatophytosis, pyrrolnitrin, 177

Dermocybe sanguinea, 5,
7-dichloroendocrocin, 319

Deschlorobromocaespitol, 55, 57

Deschloroelatol, 53

Desmarestia antarctica, CH2Cl2, 12–13

Destruxin-A4 chlorohydrin, 143, 144

Deterrents, 179

– Fundulus heteroclitus (mummichog fish),

81

Devancosamine-vancomycin, 329, 330

Diadema antillarum, 373
Diazepam, 224

Diazona chinensis/Diazona angulata,
diazonamides, 156, 157

Diazonamides, 156, 157

Dibenzofurans, 337

Dibenzo-p-dioxins, 337
– polybrominated, 337
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5,6-Dibromoabrine, 198, 199

Dibromoacetaldehyde, 374

Dibromoageliferin, 372

2,10-Dibromo-3-chloro-7-chamigrene, 53

5,6-Dibromo-20-demethylaplysinopsin, 201

Dibromodeoxytopsentin, 204, 206

1,2-Dibromoethane, 18

Dibromoethylene, 20

Dibromohydroxyphenols, 265

Dibromoindoles, 197

Dibromoiodomethane (CHBr2I), 20

Dibromoisophakellin, 189

3,4-Dibromomaleimide, 189

Dibromomethane (CH2Br2), 17

Dibromomethoxybenzoic acid, 266, 267

4,5-Dibromopalau’amine, 194

Dibromophakellstatin, antineoplastic, 189,

190

2,6-Dibromophenol, 265

3,5-Dibromo-3-(20,40-dibromophenoxy)

phenol, 373

4,5-Dibromopyrrole-2-carboxamide, 371

4,5-Dibromopyrrole-2-carboxylic acid, 373

Dibromosceptrin, 372

2,3-Dibromostyloguanidine, 194

Dibromotyramines, 370

Dichapetalum toxicarium,
16-fluoropalmitoleic acid, 124

Dichloroacetate, lactic acidosis, 375

Dichloroacetic acid (DCA), 26

Dichloroasterrate, methyl, 277, 278

Dichlorodiaportin, 229

5,7-Dichloroendocrocin, 319, 320

6,7-Dichlorohexahydropyrrolo[2,3-b]
indole, 154

7,70-Dichlorohypericin, 319, 320
Dichloroimine sesquiterpenes, 47

Dichloroiodomethane, 20

Dichloroisoplagiochins, 262, 264

Dichlorolissoclimide, 84

Dichloromethane, 12

Dichloromethoxybenzaldehyde, 257

Dichloromethoxybenzyl alcohol, 257

Dichloromethylbenzoate, 257

Dichloro-O-methylnorlichexanthone, 318

2,4-Dichlorophenol, 339, 340

2,6-Dichlorophenol (tick sex pheromone),

256

3,4-Dichlorophenylacetic acid, 256

Dichloroproline, 143

Dichloropyruvate, 135

Dictyodendrilla sp., dendridine A, 209

Dictyostelium purpureum K1001,

AB0022A, 341

Didemnidae (ascidian family), biselides, 244

Didemnimides, 203, 203

Didemnolines, 218

Didemnum conchyliatum, didemnimide

B and D, 203, 203

Didemnum sp., didemnolines, 218

Didemnum sp., fascaplysin, reticulatine, 219

Didemnum voeltzkowi, 50-deoxy-
3-bromotubercidin, 224

Dideoxyagelorins, 310, 311

Didiscus oxeata, mukanadin D, 185

Didiscus sp., dibromomethoxybenzoic acid,

265

Dieckol, nonhalogenated dioxin, 338

8,9-Dihydrobarettin, 369

3,4-Dihydro-11-hydroxybrianthein, 71

9,10-Dihydrokeramadine, 191, 192

Dihydromaldoxin, 277

Dihydrophenanthrene, 265

(E)-Dihydrorhodophytin, 97, 98

3,4-Dihydroxybenzoic acid, 347, 348

3,7-Dihydroxycymopolone, 58

Diiodomethane, 19

Diketopiperazines, polychlorinated, 136

Dimelaena cf. radiata, chlorodivaricatic
acid, 314

Dimethoxytetrabromobiphenyl, 272

N,N-Dimethylguanidium, 293

Dimethylketals, 93

Dimethyloctadiene, halogenated, 33

Dinitrogen pentoxide (N2O5), 374

Dioxapyrrolomycin, 177

Dioxepandehydrothyrsiferol, 86, 89

Dioxins, 337

Diphenyl ethers, halogenated, 273–281

– polybrominated, 337, 338

Diphenylmethanes, polybrominated

270–273

Discodermia calyx, calyculin J, 247

Discodermia polydiscus,
6-hydroxydiscodermindole, 203

Discorhabdins, 214, 215
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Dispacamide, 371

Distaplia regina, 3,6-dibromoindole, 197

Disulfatobastadin, 312

Diterpenes, 60

– gorgonian, 70

– iodinated, 67

– marine, 62

– neo-clerodane, 60

– neo-irieane, 65

– sponges, 68

Diterpenoids, dolabellanes, 83

DNA polymerases, inhibition, 183

Dogs, 2-iodohexadecanal, 123

Dolabella auricularia, aurilol, 89
– aurisides, 239

– dolabellin, 140

– dolastatin, 19, 241

Dolabellanes, 83

Dolabellin, 140, 141

Dolastatin, 19, 241

Dolphins, Q1, 180

Domesite lignite, PCDDs/PCDFs, 344

Doris verrucosa, diterpene isocopalane
verrucosins, 69

Douglas fir forest, chlorinated phenols,

dibenzo-p-dioxins, dibenzofurans, 340,
342

Doxorubicin, 83

Dragmacidins, 206

Dragmacidon sp., nortopsentin D, 206

Drimane-phenolic, 60

Druinella sp., purealidin S, 310

– purpuramine J, 297

Drupella fragum, brominated

hydroxyindoles, 197

Dual-specificity phosphatase VHR, 121

Dysamides, 136, 137

Dysidamides, 140

Dysidea sp., chlorodysinosin A, 147

– dibromohydroxyphenols, 265

– dysithiazolamide, 139

– (–)-(S)-4,4,4-trichloro-3-methylbutanoic

acid, 137

Dysidea chlorea, dysamides, 136

Dysidea dendyi, spongiadioxins, 337
Dysidea fragilis, (4E)-(S)-antazirine/(4Z)-
antazirine, 110

– dysamide D

Dysidea granulosa 4, 5, 373

Dysidea herbacea, 4
– (–)-neodysidenin, 137

– herbacic acid, 137

– herbamide A, 135

– polybrominated diphenyl ethers, 273, 274

Dysideaprolines, 139

Dysidenamide, 138

Dysidenin, 137

– iodide transport inhibitor, dog thyroid,

140

Dysithiazolamide, 139

E
Echinodictyum sp., echinosulfonic acids,

208

Echinosulfonic acids, 207–209

Ecklonia kurome, nonhalogenated dioxins,

338

Eckol, 338, 339

Ectyplasia perox, 27
Eisenia bicyclis, eiseniachlorides, 128
Eiseniaiodides, 128–130

Elatenyne, 96, 102, 104

Elatol, 373

Eleutherobia sp., briareins, 82

Ellisella sp., briaranes, 80, 81

Emericella falconensis, falconensins, 325
Emericella fruticulosa, falconensins, 325
Emericella unguis, guisinol, 314
Emiliana huxleyi, chloromethane, 9

Enacyloxin, 123, 124

Endocladia muricata, chloromethane, 12

Enduracididine, 201

Enediynes, halogenated, 232–234, 255

– N1999A2, 233

Enhydra fluctuans,chlorinated
melampolides, 40

Enshuol, 86, 87

Enterobacter agglomerans, pyrrolnitrin,
177

Enterococcus, vancomycin-resistant,

growth inhibition, 213, 249, 312, 314

Enteromorpha sp., trichloromethane, 13

Enteromorpha compressa, chloromethane, 9

Eosinophil peroxidase (EPO), 282

Epibatidine, frogs, 174
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Epicebellin J, 39, 40

Epicentaurepensin, 39, 40

2-Epi-chloroklotzchin, 40, 41

10-Epidehydrothyrsiferol, 86, 87

12-Epi-hapalindole G, 213

10-Epikalihinol I, 68, 69

Epilaurallene, 96

13-Epilaurencienyne, 97, 98

Epinardins, 216

(3E)-13-Epipinnatifidenyne, 97, 98

EPO (eosinophil peroxidase), 282

promoted bromination, 282

Epoxymonoterpene, alicyclic

polyhalogenated, 35

3,4-Epoxypalisadin B, 50

Epoxyquinomicins, 325, 326

Erythrolides, 79, 80

Erythropodium caribaeorum, chlorinated
diterpenes, 78

Erythropoietin gene expression, destruxin

chlorohydrin, 143

Esophageal cancer cells, plocoralides, 34

Estrones, chlorinated, 94

Eucalyptus leaves, CCl3, 14

Eucalyptus sp., chloromethane, 11

Eucheuma denticulatum,
tetrachloromethane, 15

– trichloromethane, 13

Eudesmanes, 46

– halogenated sesquiterpenes, 54

Eudistoma sp., brominated tyramines, 284

– halogenated carbolines, eudistomins, 218

– pibocins, 213

Eudistomins, 218

Eunicea sp. cembrane, 83

Eupachifolin D, 38, 39

Eupachinilides, 41

Eupaglehnins, 40, 41

Eupalinilides, 41, 42

Eupatorium chinense, sesquiterpenoids, 41
– var. simplicifolium, eupachifolin D, 38

Eupatorium glehni, 41
Eupatorium lindleyanum, chlorinated
guaianes eupalinilides, 41

Eupenicillium shearii, kaitocephalin, 143
Eurycolactone B, 61, 62

Eurycoma longifolia, halogenated
quassinoid, 61

Eurypon laughlini, laughine
Euryspongia sp., sesquiterpene quinone (E)-
chlorodeoxyspongiaquinone, 55

Euthyroideones, 222, 223

Euthyroides episcopalis, euthyroideones,
222

Evernia prunastri, bromobenzene,

chlororesorcinol, 257

Everninomicins, 333–336

– 13,382-1 (ziracin; SCH, 27899), 333

Excavatolide A, 73

Excoecaria agallocha, labdane-type
diterpenes, 61

Excoercarin F, 61

F
F1484, antifungal compound, 227

Falconensins, 325

Falkenbergia hillebrandii,
trichloromethane, 13

Farnesyl isocyanide, 55

Fascaplysin, 219, 220

Fascaplysinopsis reticulata, fascaplysin,
reticulatine, 219

Fatty acids, brominated, 108

– chlorinated, 105

– cyclopropane, 111

Fe(III) oxidation, 6

– natural organic phenols, bromination, 17

Feeding deterrence, furanones, 130

Feeding deterrents, 204, 214, 270

– brominated sesquiterpenes, 54

– Callinectes similis (blue crab), 81
– golden fish (Carassius auratus), 100
– gorgonian diterpenes, reef fishes, 70

– herbivorous reef fish, 35

– sventrin, Thalassoma bifasciatum, 186
– Thalassoma bifasciatum 186, 189

Fires 7, 10

– chloromethane, 11

Fireworks, PCDDs/PCDFs, 344

Fischerella ambigua, ambigol C, 278

– 2,4-dichloro-benzoic acid, 254

Fischerella ATCC, 43239, 374

Fischerella muscicola, welwitindolinone,
213

Fischerindoles, 213
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Fish toxicity, aplyparvunin, 96

Fistularines, 307–309

Flabellazoles, 195

Flavan-3-ol, halogenated, 230

Flavones, halogenated, 230

Floresolide C, 236

Fluorescent pyrene, chlorxanthomycin, 321

Fluorinase, 125, 126

o-Fluorinated fatty acids, 124

Fluorites, 23

50-Fluoro-50-deoxyadenosine, 125
50-Fluoro-50-deoxy-D-ribose-1-phosphate,
125

18-Fluoro-9,10-epoxystearic acid, 124, 125

Fluoroacetaldehyde, 125

Fluoroacetaldehyde dehydrogenase, 125,

126

Fluoroacetate, 125, 126

– poisoning, 126

Fluoroacetate dehalogenase, 126

Fluoroacetic acid, 124–126

20-Fluoroarachidic acid, 124, 125

Fluorobenzene, 254

Fluorochlorobenzene, 254

Fluorocitrate, 126

20-Fluoroeicosenoic acid, 124, 125

(Z)-16-Fluorohexadec-7-enoic acid, 124,

125

(Z)-20-Fluoroicos-9-enoic acid, 124, 125

18-Fluorolinoleic acid, 124, 125

(Z)-18-Fluorooctadec-9-enoic acid, 124,

125

16-Fluoropalmitoleic acid, 124

Fluororibulose-1-phosphate, 125

18-Fluorostearic acid, 124, 125

4-Fluorothreonine, 124–126

Fluostatins, 31, 32

Flustra foliacea, bromotryptamines, 200

– deformylflustrabromines, 198, 200, 375

– hexahydropyrrolo[2,3-b]indole, 212

Flustramides, 212

Flustramines, 212

Flying fox (Pteropus giganteus), 1-chloro-
3-methyl-2-butene, 21

FOM-8108, chlorogentisylquinone, 28

Fomes annosus (Heterobasidion annosum),
isocoumarins, 229

Forest fires, 7

Forest leaf litter, atmospheric CH3Cl, 10

Forest soil, CCl4, 15

10b-Formamido-5-isocyanatokalihinol-A,

68

10b-Formamido-5b-
isothiocyanatokalihinol-A, 68

10b-Formamidokalihinol-A, 68

10b-Formamidokalihinol-E, 68

Fosfonochlorin (chloroacetylphosphonic

acid), 26

Fouling, 373

FR177391, 244, 246

FR225659/FR225656, gluconeogenesis

inhibitors, 173

FR901463, 230

Frankenia grandifolia, chloromethane, 10

Frateuria sp. W-315, enacyloxin, 123

Frog alkaloid, 174

Fucophlorethols, 279

Fucus serratus, trichloromethane, 13

Fucus vesticulosus, chloromethane, 9

Fulgensia canariensis, isofulgidin, 316
Fulgensia fulgida, fulgoicin, fulgidin, 316
Fulgidin, 315, 316

Fulgoicin, 315, 316

Fulvic acids, 345

– chloroperoxidase-induced chlorination,

346

Fungal strain B, 90911, methyl(di)

chloroasterrates, 277

Fungi, organohalogen compounds, 322

Furanoheliangolides, 40

Furanones, brominated, 130, 373

Furo[3,2-b]pyranyl framework, 96

Furocaespitanelactol, 55, 57

Furoplocamioid C, 374

Furoplocamioids, 37

Fusarium sp., chlorofusin, 31

– neomangicols, 90

Fusarium avenaceum, fosfonochlorin, 26
Fusarium heterosporum, 90
Fusarium oxysporum, 369
– fosfonochlorin, 26

Fusarium oxysporum f. sp. lilii, plant
defense, 259, 262

Fusarium tricinctum, fosfonochlorin, 26
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G
Galanin receptor GALR1, inhibition, 322

Galanthamine, 219

Gambusia affinis, dactylallene toxicity, 100
Gastropterids, 373

Gelliusines, 207, 208

Gemmacolides A/B, 76

Geodia sp., geodiamolides, 157

Geodia barretti, 369
– barettin, 201

Geodiamolides, sponge cyclic peptides

157, 158

Geranium pratense subsp. finitimum,
chloroepicatechin, 260

Geranylgeranyltransferase type I,

massadines, 193

Germacrane, 46

Germacranolides, 40

Gigartina skottsbergii, chloromethane, 9

Gigartina stellata, trichloromethane, 13

Globularia alypum, globularioside, 104
Globularioside, 104, 105

Gluconeogenesis inhibitors, FR225659/

FR225656, 173

D-Glucose-6-phosphate phosphohydrolase

inhibitor, 326

Glucosylmentzefoliol, 104

Glutamate receptor antagonist, 143

Glycopeptide antibiotics, 328

Glycopeptides, chlorinated, 328

Gmelina arborea, bromine-containing

lignan, 260

Gomisin J, HIV-1 reverse transcriptase

inhibitors, 376

Goniothalamus amuyon, pyrone
8-chlorogoniodiol, 227

Gonorrhea, 328

Gorgonella umbraculum, diterpenes, 70
– umbraculolides, 80

Gorgonian corals, 70

Gorgonian diterpenes, 70

Gracilaria spp. 374

Gracilara cornea, trichloromethane, 13

Gracilaria coronopifolia, aplysiatoxin,
malyngamides, 112

– manauealides, 236

Gracilaria verrucosa, chlorohydrins, 114
Graminichlorin, 38, 39

Graphis sp., methylated diaportins, 229

Graphislactone G, 230

Grb2-SH2 domain, antagonist, 31

Great Salt Lake, 3

Grenadadiene, 111, 112

Griseofulvin, 322

Guaiane, 46

Guaianolide andalucin, 38

Guaianolides, 40, 41, 43

Guimarane, 46

Guisinol, 314, 315

Gymnasella dankaliensis, 116
Gymnastatins, 116, 117

Gymnoascus reessii, (12E)-isorumbrin

182

Gymnogongrus antarcticus,
chloromethane, 9

H
Hafellia parastata, isofulgidin, 315
Halichlorine, 176

Halichondria sp., 1,1,2-tribromooct-

1-en-3-one, 25

Halichondria cylindrata, halicylindramides,

163

Halichondria japonica, gymnastatins, 116

Halichondria okadai, halichlorine, 176
– trichodenones B/C, 27

Halicortex sp., dragmacidin F, 206

Halicylindramides, 163–165

Halides, 3

– distribution 4, 16

Halimione portulacoides, long-chain
chloroalkanes, 24

Haloalkanes, 9

Halogenase (non-haem) SyrB2, 171

Halogenated aromatics, 254–256

Halogenated benzene, 254–255

Halogenated benzofurans, 226–227

Halogenated carbohydrates, 231

Halogenated carbolines, 218–220

Halogenated chromones, 227

Halogenated complex phenols, 270–328

Halogenated coumarins, 227–230

Halogenated depsidones, 315–317

Halogenated diphenyl ethers, 273–281

Halogenated enediynes, 232–234, 255
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Halogenated flavan-3-ol, 231

Halogenated flavones, 231

Halogenated isocoumarins, 227–230

Halogenated isoflavones, 231

Halogenated macrolides, 234–249

Halogenated naphthoquinones, 249–253

Halogenated nucleic acid bases, 224

Halogenated polyacetylenes, 231

Halogenated polyethers, 234–249

Halogenated pyrones, 227

Halogenated quinolines, 220–225

Halogenated quinones, 249–253

Halogenated simple phenols, 256–270

Halogenated tetracyclines, 253

Halogenated tyrosines, 281–314

Halogens, reactive, formation, 3

Halomon, 32, 33

Haloperoxidase-promoted halogenation, 345

Haloperoxidases, 373, 374

Halopytis incurvus, brominated phenols, 286

Hamacanthins, 204–206

Hamigera tarangaensis, hamigerans, 58

Hamigerans, 58, 59

Hamiltonins, 69, 70

Hanishin, 184

Hapalindoles, 213, 374

Hapalosiphon delicatulus, ambiguine G

nitrile, 213

Hapalosiphon laingii, 12-epi-hapalindole G,
213

Harbouria trachypleura, trachypleuranin B,

22

Hasubanan type alkaloid, 174

Haterumaimides, 84, 85

Haterumalides, 243, 244

HCl, gaseous, 6

Hectochlorin, 141

Helicobacter pylori inhibition,
axinellamines, 193

Helicomyces sp., FR225659/FR225656, 173
Helicusins, 28

Hemiasterella minor, geodiamolides, 157

Hemibastadinols, 295, 296

Hemibastadins, 295, 296

Hemichordata, 372

Heptachlorodibenzo-p-dioxin, 345
Heptachloro-p-dioxins, 343
Heptachloro-10-methyl-1,20-bipyrrole (Q1),
180

Heptatoxins, 135

Herbacic acid, 137

Herbamide A, 135, 136

Herbertus sakuraii, dichloroisoplagiochins,
262

Hericium erinaceus,
chlorodimethoxybenzoic acid, orcinols,

257

Herpes virus VZV, topopyrone B, 320

Heterobasidion annosum (Fomes annosus),
isocoumarins, 227

Hexachlorodibenzo-p-dioxin, 344, 345
Hexachloroisoperrottetin, 262

Hexadella sp., moloka’iamines,

kuchinoenamine, 299

Hexadellin C, 307, 308

Hexadepsipeptides, polychlorinated cyclic,

154

Hexahydropyrrolo[2,3-b]indole
cyclohexapeptide, chlorinated, 154

HF, gaseous, 6

Hiburipyranone, 229

Himerometra magnipinna,
hydroxyhomoaerothionin, 310

Histidine decarboxylase, inhibition, 325

HIV-I, gomisin J, 376

– imidazobenzodiazepinone, 376

HIV-inhibitory activity, 376

– ancorinolates, 197

– cyclic depsipeptide, 167, 168

Homaxinella sp., longamides, 184

Homoaerothionin, 300, 372

Homoarginine, 186

Homophymia conferta, aurantosides, 118
Homosesquiterpenic fatty acids, 110

Hormaomycin, 171

Horse, 2-iodohexadecanal, 123

Horse chestnut, chloromethane, 11

Horseradish peroxidase, dioxins/

dibenzofurans, 343

Host defense, 369

Household waste, PCDDs/PCDFs, 344

5-HT3 serotonin receptor, inhiobition, 373

Human leukocyte myeloperoxidase,

dioxins/dibenzofurans, 343

Humic acids, 345

– chlorination, 348

Humic soil layer, chloroperoxidase, dioxins,

340
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Humicola sp. FO-2942, monorden,

pochonins, 235

Humicola fuscoatra, radicicol, 235
Humulane, 46

Huperzia serrata, 2-chlorohyperzine E, 175
Hydrogen peroxide, 374

Hydrothermal vents, Kamchatka, CCl4, 15

4-Hydroxy(E)-aconitate, 126

11b -Hydroxy-13-chloro-11,13-

dihydrohymenin, 40

10-Hydroxyaplysin, 57, 58

10-Hydroxyaplysin, 58

3b-Hydroxyaplysin, 58
80-Hydroxyascochlorin, 322, 323
4-Hydroxybenzoic acid, 369

Hydroxyceratinamine, 293, 294

3b-Hydroxychlorolissoclimide, 84

7-Hydroxycymopochromanone, 58

Hydroxycymopochromenols, 58

7-Hydroxycymopol, 58

3-Hydroxycymopolone, 58

16-Hydroxydehydrothyrsiferol, 86, 87, 89

6-Hydroxydiscodermindole, 203

10-Hydroxyepiaplysin, 57, 58

Hydroxyfistularin, 305

Hydroxyhomoaerothionin, 310, 311

Hydroxyindoles, 197

4-Hydroxymilolide C, 73, 74

9-Hydroxymukanadin B, 186

15-Hydroxypalisadin A, 50, 51

11-Hydroxyptilosarcenone, 82

5-Hydroxytryptamine, 373

Hygrophorus paupertinus, 3-chloroindole,
197

Hymeniacidon sp., konbu’acidins, 194

– spongiacidins, 188

– tauroacidins, 185, 186

Hymenialdisine-axinohydantoin

bromopyrrole, 188

Hymenialdisines, 188, 189

– antiinflammatory activity, 375

– cyclin-dependent kinase inhibitor (GSK-

3b-/CK1), 375
Hymenidin, 186

Hypericins, 319

Hypericum ascyron, vinetorin, 318
Hypholoma spp., chlorinated anisyl

metabolites, 258

Hypholoma elongatum, trichloro(di)
methoxyphenols, 257

Hypholoma fasciculare, chlorinated
depside, 314

Hypholoma subviride,
dichloromethoxybenzaldehyde, 257

Hypnea spinella, trichloromethane, 13

Hyrtios sp., 21-chloropuupehenol, 60
– poipuol, 269

Hyrtios erecta, 5,6-dibromo-20-
demethylaplysinopsin, 201

– quinolones, 220

I
Ianthella sp., iantherans, 226, 309

Ianthella basta, bastadins,
disulfatobastadin, sulfatobastadin, 312,

313

– hemibastadins, hemibastadinols, 295, 296

Ianthella quadrangulata, bastadin-21, 312
Ianthellin, bromine-containing, 369

Iantherans, 226, 227

Ianthesines, 309, 310

Ibhayinol, 50

Ice plant (Mesembryanthemum crystallium),
chloromethane, 12

ICM0301C/ICM0301D, 90, 91

Ilicicolins, 322

Illicium tashiroi, 12-chloroillifunone, 44
Imidazobenzodiazepinone, chlorinated,

HIV-1, 376

Imidazoles, 286

– brominated and chlorinated, 223

Indanone sesquiterpenes, 44

Indisocin, 216, 217

Indoles, brominated, 198, 200

– halogenated, 197

– iodine-containing, 199

– sulfate-sulfamate, 197

Indolocarbazoles, 217

Inflammation, 375

Insect repellents, 35

Insecticidal activity, 97

– agelastatins, 191

Insecticides, 374, 375

Interleukin 6, 28

Io, chlorine, 8
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Iodine 6, 373

– cyclic mastalgia, 376

Iodine-containing indoles, 199

Iodine oxide, 374

1-Iodobutane (CH3(CH2)3I), 20

2-Iodobutane (CH3CH2CH(CH3)I), 20

Iododiphlorethol, halogenated, 279

Iodoethane (CH3CH2I), 19

Iodolactones, 123

Iodomethane (CH3I, methyl iodide), 19

– sources, 19

1-Iodo-2-methylpropane, 20

1-Iodopropane (CH3CH2CH2I), 19

2-Iodopropane ((CH3)2CHI), 19

Iodovulones, 127

Iotrochota purpurea, itampolins, 299

– matemone, 217

Ircinia sp., furanoses-terterpenes, 90

– haterumalide B, 243

Iridoids, chlorinated, 104

Iron-oxidizing bacteria, thermal vents, 377

Islanditoxin, 143

Isobromodeoxytopsentin, 204

Isobromotopsentin, 203, 204

Isochromophilones, 29, 30

Isochrysis sp., chloromethane, 9

Isoconcinndiol, 63

Isocopalane verrucosins, 69

Isocoumarins, halogenated, 227–230

Isocyanide diterpenes, 69

Isocyanokalihinanes, 68

Isocyanoterpenoids, chlorinated, 369

Isodehydrothrysiferol, 86, 87

Isodihydromaldoxin, 277, 278

Isofistularin, 371

Isoflavones, halogenated, 231

Isofulgidin, 315, 316

Isohalomon, 32, 33

Isokibdelones, 251

Isolaurallene, 102, 103

Isolaurefucin methyl ether, 99

Isolaurepinnacin, 102

Isolaurinterol, 58, 373

Isomalyngamide A, 114

Isomaneonene A, 100

Isomarinone, 250

Isonitriles, 374

Isoobtusol, 51, 52

Isopalisol, 49

Isoparguerol, 62

Isopinnatol B, 63

(3Z)-Isoprelaurefucin, 100

Isorigidol, 52, 53

Isorogiolal, 65, 66

(12E)-Isorumbrin, 182

Isothiocyanate, 55

Isovanillic acid, 369

Isoxazoline alkaloids, brominated, 370

Itampolins, 299, 300

Itomanallenes, 96, 97

Itomanol, 54

J
Jaborosa bergii, chlorohydrins, 92
Jaborosa odonelliana, jaborosalactone
92

Jaborosa runcinata, jaborosalactones, 92
Jaborosa sativa, 92
Jaborosalactol, 93

Jaborosalactones, 92

Jamaicamides, 114, 115

Jamesoniella colorata,
hexachloroisoperrottetin, 262

Japonenynes, 96

Jaspis cf. coriacea, chlorocarolides
132

Jaspis splendans, jasplakinolides, 150
Jaspis wondoensis, bromopsammaplin A,

bispsammaplin A, 297

Jasplakinolides (jaspamides) 150, 151

Jatropha curcas, chlorinated imidazole

223

Johnstonol, 51

Junceella fragilis, diterpenes, 70
– (+)-junceelloide A, 77

– junceellonoids, 77

Junceella juncea, chlorinated briarane

diterpenoids, 75

– diterpenes, 70

– juncenolides, 76

– juncins, 76

Junceellin, 70, 71

Junceelloide A, 77

Juncenolides, 76, 77

Juncins, 74–76
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K
Kaitocephalin, 143

Kalihinenes, 68, 69

Kalihinols, 68, 69

Kalihipyran B, 68

Kankanol, 104, 105

Kankanoside C, 104, 105

Kappaphycus alvarezii, 374
KB cells, 93

Kedarcidin chromophore, 233

Keramadine, 371

Keramamides, 153, 154

Keto esters, brominated, 25

Kibdelones, 251

Kibdelosporangium sp., kibdelones,

isokibdelones, 250

Kilauea, acidic plumes (“acid rain”), 7

Kirkpatrickia variolosa, 1,1,2-tribromooct-

1-en-3-one, 25

Konbamide, 153, 375

Konbu’acidins, 194–196

Korormicin, 121

Kottamides, 201, 202

KS-504 compounds, 375

Kuchinoenamine, 299

Kuehneromyces mutabilis, methyl

dichloromethylbenzoate, 257

Kumausallene, 102

Kumausyne, 102

Kumusine , 224, 225

Kutzneria sp. 744, 154

Kutznerides, 154, 155

L
Labdane bromoditerpenoids, 63

Labdanes, 61

– ent-labdanes

Lachnum papyraceum, chloromycorrhizin

A, 28

– isocoumarins, 227–230

Lachnumons, 28

Lactarius spp., 1-chloro-5-heptadecyne, 26
Lactone, chlorinated, 257

Lactoperoxidase, dioxins/dibenzofurans, 343

Lambia antarctica, CH2Cl2, 13

Lamellodysidea herbacea, diphenyl ethers,
274

– dysidamides, 140

Laminaria digitata, trichloromethane, 13

Laminaria saccharina, CH2Cl2, 13

– trichloromethane, 13

Landfill fires, PCDDs/PCDFs, 344

Lankalapuol A, 54

Lanosol, 274

Latonduines, 189, 190

Latrunculia sp., discorhabdin W, 215

Latrunculia apicalis, discorhabdin G, 214

Latrunculia bellae, discorhabdins, 214
Latrunculia corticata, latrunculinosides,
247

Latrunculia purpurea, discorhabdin Q,

214

Latrunculinosides, 247

Laughine, 186

Laurallene, 96

Laureatin, 102, 103

Laurefucin type halogenated bicyclic

acetogenins, 99

Laurencia spp. (Rhodomelaceae,

Ceramiales), 46

– bisezakynes, 99

– brominated diterpenes, 62

– chamigrenes, 51

– diterpenes, 63

– labdane bromoditerpenoids, 63

– paniculatol, 63

– polyether terpenoids, 90

– tribrominated ma’iliohydrin, 52

Laurencia aldingensis, aldingenins, 50
Laurencia brongniartii, polybromoindoles,

197, 209

Laurencia calliclada, callicladol, 86
Laurencia caraibica, 47
Laurencia cartilaginea, 52
– ma’ilione, 51

Laurencia claviformis, claviol, 51
– (3Z)-13-epipinnatifidenyne, 97

Laurencia concreta, 52
Laurencia elata, elatenyne, 96
Laurencia filiformis, 5-acetoxy-2,10-
dibromo-3-chloro-7,8-epoxy-a-
chamigrene, 53

– parguerenes, 63

Laurencia glandulifera, laurencin, 96
Laurencia intricata, itomanallenes, 96

– itomanol, 54
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Laurencia japonensis, anhydroaplysiadiol,
63

– japonenynes, 96

Laurencia luzonensis, 50
– 3-bromobarekoxide, 64

– isopalisol, 49

– luzodiol, 65

Laurencia majuscula, halogenated
sesquiterpenes, 47

– 8-bromo-chamigren-1-en, 53

– (6R,9R,10S)-10-bromo-9-

hydroxychamigra-2,7(14)-diene, 52

– cedrene-type sesquiterpene majusin, 47

Laurencia mariannensis, 9-deoxyelatol, 52
– (12E)-lembyne A, 100

– pacifenol/deoxyprepacifenol, 47

Laurencia microcladia, 6,8-
cycloeudesmanes calenzanol/

calenzanane, 54

– lung cancer toxicity, 57

– rogioldiols, 65

Laurencia nidifica, halogenated
chamigranes, 51

Laurencia nipponica, neoisoprelaurefucin,
99

– nipponallene, 96

– pargueranes, 63

Laurencia obtusa 97, 100, 374

– brasilanes, 55

– bromocyclococanol, 49

– chlorotriol, 50

– (3Z)-13-epilaurencienyne, 97

– labdanes, 64

– neoisoprelaurefucin, 100

– oxachamigrene, 53

– perforatone analogs, 54

– prevezols, 64

– scanlonenyne, 99

– b-snyderol, 49
Laurencia okamurai, laureperoxide, 57
Laurencia omaezakiana, enshuol, 86
Laurencia paniculata, ent-labdane
paniculatol, 63

Laurencia pannosa, (3Z)-chlorofucin, 100
– pannosallene, 96

– pannosanol/pannosane, 53

Laurencia pinnatifida, 97
– dehydrothyrsiferol, 86

Laurencia rigida, (–)-10a-bromo-9b-
hydroxy-a-chamigrene, 51

Laurencia saitoi, 374
Laurencia scoparia, b-bisabolenes, 49
– isorigidol, 53

– mailione/isorigidol, 52

Laurencia similis, bromoindoles, 197

Laurencia subopposita, 45
Laurencia tristicha, hydroxylated aplysins,

10-hydroxyepiaplysin/10-

hydroxyaplysin, 57

Laurencia viridis, 86
– brominated polyether squalene-derived

metabolites, 86

Laurencia yonaguniensis, neoirietetraol, 65
Laurencienynes, 97, 98

Laurencin, 96, 102, 103

Laurenes, halogenated, 57

Laurenyne, 102, 103

Laureperoxide, 57, 58

Laurinterol, 58

– acetate, 58

Laurokamurene A, 58

Lazy slugs, 69

LDL (low-density lipoprotein), 281

Leaf litter, 378

Leathesia nana, bromophenols, 268, 270

– phlorotannins, 338

– polybrominated diphenyl ethers, 274

Lecanora argentata, dechlorogangaleoidin,
316

Lecanora broccha, dichloro-O-
methylnorlichexanthone, 318

Lecanora californica,
dechlorogangaleoidin, 316

Lecanora chlarotera, norgangaleoidin, 315
Lecanora cinereocarnea, dibenzofurans,
341

Lecanora fructulosa, brominated fatty

acids, 109

Lecanora iseana, dibenzofurans, 341
Lecanora jamesii, O-methylsulphurellin,

314

Lecanora leprosa, chlorolecideoidin, 316
Lecanora lividocinerea, O-methylanziaic

acid, 314

– O-methylnorhyperlatolic acid, 314

– O-methylnorstenosporic acid, 314
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Lecanora pachysoma, demethylchodatin,

318

Lecanora sulphurescens, chlorolecideoidin,
316

Leiodelide B, 241

Leiodermatium sp., leiodelide B, 241

Leishmanicidal activity, 92

Lembynes, 100

Lentinellus cochleatus, chlorostyrene, 260
Leontodon palisae, 13-chloro-3-O-b-D-
glucopyranosylsolstitialin, 41

Lepidozia incurvata, bazzanins
L-R/S, 262

Lepiota sp., lepiochlorin, 132

Lepista nuda, chlorophenols, 258, 265
Leptoclinides debius, amino acid

derivatives, 201

Leptogium saturninum, brominated fatty

acids, 109

Lethariella canariensis, chloroatranol,
chlorohematommic acids, 259

Leucetta antarctica, 1,1,2-tribromooct-

1-en-3-one, 25

Leucetta chagosensis, chagosensine, 243
Leucine aminopeptidase inhibitors, 144

Leucoagaricus carneifolia, chlorinated
lactone, 257

Leukemia P388, 27

Liatris graminifolia, graminichlorin, 38

Lichens, 109, 341

– anthraquinones, 319

– chlorinated phenolics, 6

Lignan, bromine-containing, 260

Lignin degradation, 369

Lignin peroxidase, 369

Ligularia cymbulifera, bisabolanes, 44
Lilium maximowiczii, chlorinated
fungicides, 369

– chlorinated orcinols, 259, 262

Limacia oblonga, acutumine, 174

Lindtneria trachyspora, chloronitrophenol,
259

Lipiarmycins, 236, 237

Lipids, halogenated, 105

Lipopurealins, 289, 290

Lipoxygenase inhibitors, sponge-derived

terpenoids, 375

Lissoclimides, food poisoning, oysters, 84

Lissoclinum sp., chlorinated lissoclimide-

type diterpenoids, 84

– haterumalide B, 84, 243

Lissoclinum voeltzkowi, labdane diterpenes,
84

LL-37H248 (fungus), spiroxins, 252

Loligo pealei, Q1, 180
Longamide B methyl ester, 184

Longamides, 184

Longissiminone B, 259, 260

Low-density lipoprotein (LDL), 281

Luteusins, 28, 30

Luzodiol, 65

Luzofuran, 50

Luzonenone, 50

Luzonensin, 49

Luzonensol, 50

– acetate, 49

Lyngbya bouillonii, lyngbyaloside, 239
Lyngbya majuscula 36, 111, 112

– barbamide, 135

– dysidenamide, 138

– hectochlorin, 141

– isomalyngamides, 112

– jamaicamides, 114

– lyngbyabellins, 141

– nordysidenin, 138

– pitiamide A, 113, 114

– pseudodysidenin, 138

– tetrahydroquinolines, 220

Lyngbyabellins, 141, 142

Lyngbyalosides, 239, 240

Lysolipins, 318

Lytocarpus philippinus, lytophilippines
243

Lytophilippines, 243, 245

M
M43C, 329, 330

Ma’edamines, 296, 298

Ma’iliohydrin, tribrominated, 52

Ma’ilione, 51, 52

Maaliane, 46

Macrolides, halogenated, 234–348

Maduropeptin chromophore, 233

Magnaporthe grisea, bromophenols, 375

Mailione, 52
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Majapolenes A, 47, 48

Majapols, 48

Majusculoic acid, 111

Majusin, 47, 48

Makalika ester, 114, 115

Makalikone ester, 114, 115

Makaluvamines, 214, 216

Malaria, 375

– inhibition of malaria parasite, 235

Malbranchea aurantiaca,
malbrancheamide, 213

Malbrancheamide, 213, 375

Maldoxin, 322

Maldoxone, 316, 317

Malyngamides, 112, 113

Manauealides, 236

cis-Maneonene C, 100

Maracens, antimycobacterial, 114–116

Marenzellaria viridis, alkyl/alkenyl
halides, 24

Marine polybrominated diphenyl ethers,

273–277

Marinone, 250

Marmycin B, angucycline-type, 320

Mars, chloride salts, 378

Massadines, 191, 193, 194

Mastigophola diclados, (di)
chloroisoplagiochins, 262

Matemone, 217

Maui acorn worm (Ptychodera sp.), (+)-

bromoxone, 28

Mauritiamine, 187, 188

Maytanbicyclinol, 234

Maytanbutine, 234

Maytansinoids, 234

– antitumor activity, 375

Maytenus aquifolia, celastramycin A, 182

Maytenus buchananii, 20-N-demethyl-

maytanbutine, maytanbicyclinol, 234

Maytenus hookeri, host plant, 242
MC21-A, 272

Melampolides, chlorinated, 40

Melanin synthesis inhibitor, 27

Melledonals, 324

Mellein, 229

Melleolides, 324, 325

– melleolide J/armillarikin, 324

Meloidogyne incognita (nematode host), 227

Menispermum dauricum, dauricumine, 174

Mentha longifolia, chlorinated menthone

longifone, 37

Mentha villosa, oleanane, 91
Mentzelia cordifolia, mentzefoliol, 104

Meridianins, 209

Mertensene, 35

Mesembryanthemum crystallium,
chloromethane, 12

Metalloproteinases, inhibition, 187

Meteorites, 254

Meteorites, organochlorines, 8

9-Methoxydispacamide B, 186

8-Methoxysaxalin, 228

Methyl 30,50-dichloro-4,40-di-O-
methylatromentate, 326

Methyl 6-bromoindole-3-carboxylate, 198

Methyl bromide see Bromomethane

Methyl chloride transferase, 12

1-Methyl-2,3,5-tribromoindole, 197

N(10)-Methyl-2-bromoageliferin, 190

1-Methyl-3,5,6-tribromoindole, 197

N-Methylaerophobin-2 307, 308

O-Methylanziaic acid, 314

Methylbalhimycin, 329, 330

N-Methyl-ceratinamine, 292

N-Methyldibromoisophakellin, 189, 190

Methyldibromophakellin, 189

N-Methylmanzacidin C, 189, 190

N-Methylmonobromophakellin, 189

O-Methylnorhyperlatolic acid, 314

O-Methylnorstenosporic acid, 314

8-O-Methylsclerotiorinamine, 31, 32

O-Methylsulphurellin, 314

Microcoleus sp., pitiamide A, 113, 114

Microcoleus lyngbyaceus, polychlorinated
acetamides, 26

Microcystins, 135, 376

Microcystis aeruginosa, plasmin inhibitors

micropeptins, 476-A/478-B, 169

– (NIES-98), aeruginosin, 98-A, 144

– (NIES-299), microginins, 299-A/299-B,

144

– (NIES-478), micropeptins, 476-A/478-B,

144

– NIVA Cya, 43, cyanopeptolin, 954, 147

Microginins, 144–147

Micromonospora sp., pyrrolosporin A, 183
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Micromonospora carbonacea,
everninomicin-6, 335

– var. africana, everninomicin, 13,382-1

(ziracin; SCH, 27899), 333

Micromonospora echinospora subsp.

armeniaca, clostomicins, 236

Micropeptins, 144, 145

– 476-A/478-B, 169, 170

Microsclerodermins, 152

Microspinosamide, HIV-inhibitory, 167, 168

Microtetraspora (Actinomadura) spiralis,
pyralomicins, 178

Midpacamide, 371

Milolides, 73

Minabein-4, 82

Minabien-6 (11-hydroxyptilosarcenone), 82

Miuraenamides, 158, 159

Mollisia melaleuca, 27
Moloka’iamines, 292, 299, 300, 370

Molokinenone, 60

Mololipids, 292

Monamycins, 149

Mondia whitei, 5-chloropropacin, 228
Moneses uniflora, 8-chlorochimaphilin, 250

Monk seal blubber, brominated

cacoxanthenes, 58

Monoacetylagaricoglycerides, 326, 328

Monoamine oxidase inhibition, 28

Monobromoisophakellin, 189, 190

Monodechlorovancomycin, 332, 333

Monomethyl ether, 258

Monordens, 235

Monoterpene ethers, 36

Monoterpenes, 32

– acyclic, 32

– alicyclic, 35

Morulin Pm, 156

Mosquito fish (Gambusia affinis), 100
MPO (myeloperoxidase) 94, 224, 281

MR566A, 27

Mukanadin C/debromolongamide, 184

Mukanadin D, 185

Mussels, 105

Mycena spp., chlorinated anisyl metabolites,

258

– tetrachlorocatechol, monomethyl ether,

258

Mycena alcalina, alcalinaphenols, 258

Mycena galopus, chlorinated benzoxepins,

226

Mycena metata, CCl3, 14
Mycobacteria, 114

Mycobacterium tuberculosis, growth
inhibition, 307

– pyrrolnitrin, 177

Mycorrhizin A, 28

Mycothiol-S-conjugate amidase, inhibition,

297, 300

Myeloperoxidase (MPO) 94, 224, 281, 282

– dioxins/dibenzofurans, 343

Myeloperoxidase–H2O2– chloride, 94

Myrcene, 32

Myriastra clavosa, myriastramide B, 169

Myriastramide B, 169, 170

Mytilus edulis, 369
– brominated diphenyl ether, 277

– 1,3,8-tribromodibenzo-p-dioxin, 338
Mytilus galloprovincialis, chlorosulfolipids,
105

Myxine glutinosa (Atlantic hagfish),

cathelicidins, 156

Myxobacteria, SMH-27-4, 158

N
N1999A2 (enediyne), 233

Nagelamides, 191, 192, 195, 196

Nakamuric acid, 190, 191

Nakirodin A, 295, 296

Nakiterpiosin, 93, 94

Nakiterpiosinone, 93, 94

Naphthalene glycosides, 260

Naphthols, halogenated, 181

Naphthomycin K, 242

Naphthoquinones, halogenated, 249–253

Napyradiomycins, 249

Nectria galligena, ilicicolins, 322
Neisseria gonorrhoeae, gonorrhea, 328
NeoC-1027 chromophore, 232, 233

Neodysidenin, 137

Neoirietetraol, 65

Neoisoprelaurefucin, 99, 100

Neolaurallene, 96

Neomangicols, 91

Neomeris annulata, brominated

sesquiterpenes, 54

Subject Index 601



Neonipponallene, 96, 97

Neopargueroldione, 63

Neopicrorhiza scrophulariiflora, piscroside
A, 104

Neorogioldiol, 64–66

Neosiphonia superstes, neosiphoniamolide

A, 157

Neosiphoniamolide A, iodinated, 157

Nephroma laevigatum, 7-chloro-1-O-
methyl-o-hydroxyemodin, 319

Netted barrel sponge (Verongula gigantea),
295

Neuroglossum ligulatum, CH2Cl2, 13

Neuronal nicotinic receptor, 375

Neuropathic pain, o-conopeptide MVIIA,

155

Neuroprotectins, 330

Neurotoxin, b-N-methylamino-L-alanine,

376

Niphogeton ternata, polyacetylene, 231
– psoralen (8-methoxysaxalin), 228

Nipponallene, 96, 97

Nitophyllum marginata, 1-methyl-2,3,

5-tribromoindole, 197

Nitryl chloride (NO2Cl), 374

Nocardia blackwellii, indisocin, 216
Nocardia transvalensis, transvalencin A, 143
Nonachloro-2-phenoxyphenol, 343

Norcembrane sinularectin, 83

Norditerpene dilactones, halogenated, 61

Nordysidenin, 138

Norgangaleoidin, 315, 316

Norsphaerol, 67

Norte’s obtusenynes, 102

Nortopsentin D, 206

Norway maple, chloromethane, 11

Norway maple, chloromethane, 11

Nosporamide A, 377

Nostoc sp. 111
– carbamidocyclophanes, 255

– cryptophycins, 159–163

– nostocarboline, 219

Nostocarboline, 219, 220

Nostocyclophanes, 255

Notomastus lobatus, bromophenols, 265, 373

NPI-0052, 172

Nucleic acid bases, halogenated, 224

Nui-inoalides, 74, 75, 82

O
Oak, chloromethane, 11

Obtusadiol, 64

Obtusallenes, 100

Obtusenynes, 97, 99, 102

OCDD, 343, 344

Ocean, salinity, 3

Oceanapia sp. 309

– bromo acids, 106

– bromotyrosine derivate, 297

– petrosamines B, 175

Ochratoxin A, 229, 230

Octachlorodibenzo-p-dioxins (OCDD)
343, 344

Odonthalia corymbifera, bromophenols,

375

– diphenylmethane, 270

– lanosol, 274

Old man’s beard (Usnea longissima), 259
Oleanane, 91

Oocydin A (haterumalid NA), 243

Oppositane, 46

Orcinols, 257

Organobromines, 18

Organochlorines, meteorites, 8

– peatlands, 6

Organofluorines, 23

Organohalogens, terrestrial environments, 5

Organoiodines, humification in peatlands, 6

– marine biogenic, 3

Orina sp., gelliusines, 207

Oroidin, 185, 371

– derivatives, 186

– dimer, 187

Orthosomycins, 333

Oscillaginin A, 135

Oscillariolide, 243

Oscillatoria agardhii, aeruginosins, 205A/
205B, 144

– oscillaginin A, 135

Oscillatoria spongeliae, 4
– polychlorinated amino acid metabolites,

135

– polychlorinated metabolites/

polybrominated diphenyl ethers, 140

Osedax spp. 4
Osmundaria obtusilobu, sulfated
oligobromophenols, 268
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Oudemansin B, 323

Oxachamigrene, 53

Oxoaerophobin, 304

Oxocyclostylidol, 188

Oxohomoaerothionin, 304, 305

4-Oxovancosamine, 329

Oxylipins, brominated, 128

Ozone 3, 374

P
P2X7 antagonists, 195

p53-MDM2 antagonist, 31

Pachychalina sp., bromotyrosines, 293

Pachyclavularia violacea, pachyclavulide
D, 81

Pachyclavulide D, 81, 83

Pachydermin, 182, 326

Pacifenediol, 51

Pacifenol, 47, 51

Pacifidiene, 51

PAHs (polycyclic aromatic hydrocarbons),

256

Palau’amine, 194, 195

Palisadin B, 50, 51

Palmarumycins, 252

Palythoa caribaeorum, 6-bromo-(5E,9Z)-

eicosadienoic acid, 106

Panacene, 102, 103

Pancreatic elastase, 169

Paniculatol, 64

Pannosallene, 96, 97

Pannosanol/pannosane, 53

Pantherinine, 175

Pantofuranoids, 36, 37

Pantoisofuranoids, 36, 37

Pantoneura plocamioides, 36
– pantoneurotriols, 33

– pantopyranoids, 37

Pantoneurines A, 37, 38

Pantoneurotriols, 33

Pantopyranoids, 37, 38

Paralemnalia thyrsoides, chlorinated
norsesquiterpenoid paralemnolin

A, 55

Paralemnolin A, 56

Parasitenone, 266, 267

Parguerenes, 63

Parmelia comtseliadalis, brominated fatty

acids, 109

Parmelia linctina, brominated fatty acids,

109

Patientosides, 260, 261

PBBs (polybrominated biphenyls), 272

PCBs (polychlorinated biphenyls), 180,

277, 344

PCDDs, 344, 345

PCDFs, 344, 345

PDGF, RP-1551s, 30

Peatbogs/peatlands, atmospheric CH3Cl, 10

– dioxins/dibenzofurans, 339, 340

– organohalogens, 11

– organochlorines, 6

Peltigera canina, brominated fatty

acids, 109

Pelvetia canalicuta, trichloromethane, 13

Penicillium sp., atpenins A4 and A5, 223

– SPC-21609, RP-1551s, 30

– topopyrones, 320

Penicillium citrinum, methyl (di)

chloroasterric acids, 277

Penicillium crustosum, thomitrem A, 213

Penicillium multicolor, 31
– isochromophilones, 29

Penicillium nalgiovense, dichlorodiaportin,
229

Penicillium sclerotiorum,
5-chloroisorotiorin, 29

Peniophora spp., chlorinated anisyl

metabolites, 258

Peniophora pseudopini, CCl3, 14
Pentabromopseudilin, 177

Pentachlorophenol-treated wood, 343

Pentachloropseudilin, 177

Pentalenolactone, 38

Pepticinnamin E, farnesyl-protein

transferase inhibition, 158

Peptide metabolites, polychlorinated,

cysteine-derived, 140

Peptides, halogenated, 134

– tryptophan-derived, 150

Peracetates, 279

Perforane, 46

Perforatol, 54, 55

Perforatone analogs, 54, 55

Perforenol B, 54, 55
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Periconia byssoides, (+)-pericosine A, 28
Periconia circinata, peritoxins, 148
Periconia macrospinosa, isocoumarins, 229

Pericosine A, 28

Peritoxins, 148, 149

Perknaster fuscus (feeding deterrent), 214

Perophora namei, perophoramidine, 209

Perophoramidine, 209, 210

Perthamide B, cyclic octapeptide, 163

Pestalone, 314, 315

Pestalotia sp., pestalone, 314

Pestalotiopsis sp., compound RES-1214-2,

277

Pesticides, bromomethane, 15

Petrosamines B, 175

Pezicula carpinea, mycorrhizin A, 28

Pezicula livida, (+)-cryptosporiopsin, 27
– mycorrhizin A

Phaeocystis sp., chloromethane, 9

Phaeodactylum tricornutum,
chloromethane, 9

Phakellia fusca, 5-fluorouracil derivatives,
224

Phakellia mauritiana,
dibromophakellstatin, 189

Phakellia pulcherrima, kalihinols, 68, 69
Phakellin alkaloids, 189

Phakellin-type bromopyrroles, latonduines,

189

Phallusia mammillata, morulin Pm, 156

Phellinus spp., chlorinated anisyl

metabolites, 258

Phellinus pini, CCl3, 14
Phellinus pomaceus, chloromethane, 12

Phenethylamines, brominated, 282–300

Phenols, chlorinated, 257–265

– complex, halogenated, 270–328

– simple, brominated, 265–270

– halogenated, 256–270

Phenylacetic acid, 307

Phenylacetonitrile, 286

Phlomis younghusbandii, phloyoside II, 104
Phlorethols, halogenated, 279

2-Phloroeckol, 338, 339

Phloroglucinols, 279

Phloyoside II, 104

Pholiota spp., chlorinated anisyl

metabolites, 258

Pholiota destruens,
dichloromethoxybenzaldehyde, 257

– dichloromethoxybenzyl alcohol, 257

Phoma sp., topopyrones, 320

– TC, 1674, TMC-264, 230

Phomopsis sp., sesquiterpene acid, 44
Phorbas sp., phorbasides, 239
– phorboxazoles, 241

Phorbas glaberrima, bromophenols, 266

– 1,1,2-tribromooct-1-en-3-one, 25

Phorbasides, 239, 240

Phorboxazoles, 241Phoriospongia sp.,

phoriospongins, 167

Phoriospongins, 167, 169

Phormidium sp., phormidolide, 243

Phormidolide, 243, 244

Phospholipids, 106

Phyllidiella pustulosa, kalihinols, 69
Phylloporia spp., chlorinated anisyl

metabolites, 258

Phyllospongia sp., tribrominated diphenyl

ether, 275

Phyllospongia dendyi, polybrominated

diphenyl ethers, 274

Physalin H, 92

Physalis angulata, physalin H, 92

Physostegia virginiana ssp. virginiana,
stegioside I, 104

Phytophthora sp. 158

Pibocins, 213

Picea abies, 6,7-dichlorohexahydropyrrolo
[2,3-b]indole, 154

Pinicoloform, 26

Pinna muricata, pinnaic acid, 176
Pinnaic acid, 176

Pinnatifidenyne, 102

Piscroside A, 104, 105

Pitiamide A/B, 113, 114

Plagiochila sp., chloroisoplagiochin D, 262

Plagiochila peculiaris, bazzanin J,

chloroisoplagiochin D, 263

Plakohypaphorines, 199, 200

Plakoris simplex, plakortether C, 121
Plakortamines, 218, 219

Plakortether C, 121, 122

Plakortis nigra, plakortamines, 218

Plakortis simplex, plakohypaphorines, 199
Plasmin inhibitors, 144
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Plasmodium falciparum, inhibition of, 235

Plectophomella sp., mellein derivatives,

229

Pleurobranchus albiguttatus,
3b-hydroxychlorolissoclimide, 84

Pleurobranchus forskalii,
3b-hydroxychlorolissoclimide, 84

Plexaureides praelonga, praelolide, 70
Plocamenols, 34

Plocamenone, 32, 33

Plocamiopyranoids, 37, 38

Plocamium cartilagineum 32, 33

– anverene, 34

– epoxides, 35

– furoplocamioids, 36

– halogenated homosesquiterpenic fatty

acids, 110

– insecticides, 35

– plocamiopyranoid, 37

– prefuroplocamioid, 34

Plocamium corallorhiza, plocoralides
Plocamium costatum, halogenated
monoterpenes, 33

Plocamium hamatum, 33
– chloromertensene, 373

Plocoralides, 34

Pluchea arguta, 3,4-di-epi-30-chloro-20-
hydroxyarguticinin, 44

Pluchea carolonesis, eudesmane, 44

Plutonites, 23

Pochonia chlamydosporia var. catenulata,
pochonins, 235

– tetrahydromonorden, 235

Pochonins, 235

Podocarpus macrophyllus,
rakanmakilactones, 61

Poecillastra wondoensis,
bromopsammaplin A, bispsammaplin A,

297

Poipuol, 269

Poitane, 46

Polyacetylenes, halogenated, 231, 232

Polybrominated biphenyls (PBBs), 272

Polybrominated dibenzo-p-dioxins, 337
Polybrominated diphenyl ethers, 337

Polybromoindoles, 197

Polychaeta, 372

Polychlorinated biphenyls (PCBs), 277

Polycitones, retroviral reverse

transcriptases, inhibition, 183

Polycitor africanus, polycitone B, 183
Polycitrin B, 183

Polycyclic aromatic hydrocarbons (PAH),

256

Polydora socialis, alkyl/alkenyl halides, 24
Polyether triterpenes, marine, 86

Polyethers, halogenated, 234–248

Polygala vulgaris, chloroxanthone, 318
Polyketides, 121

Polysiphenol, 265

Polysiphonia ferulacea, polysiphenol, 265
Polysiphonia lanosa, rhodomelol, 265

– trichloromethane, 13

Polysiphonia sphaerocarpa, simple

bromophenols, 266

Polysiphonia urceolata, urceolatol, 269
Porphyridium sp., chloromethane, 9

Porpoise, 179

Portieria hornemannii 32–34
– halomon, 32, 35

Potato (Solanum tuberosum), atmospheric

CH3Cl, 11

Praelolide, 70, 71

Predator deterrents, 373

Pre-dioxin nonachloro-2-phenoxyphenol,

343

Prefuroplocamioid, 34

Pregnanes, 94

Premia subscandens, asystasioside E, 104
Prepacifenol epoxide, 51

Prevezols, 64, 65

Prialt, 155

Prinsepia utilis, lactones, 132
Prorocentrum sp., chloromethane, 9

Prostaglandins, halogenated, 127

Prostanoids, 127

Protein phosphatase 2A, nagelamides, 191

Protoberberine alkaloids, 175

Prunolides, 131, 132

Prymnesins, 247–248

Prymnesium parvum, prymnesins, 247

Psammaplins, 286–289, 293–295

Psammaplysenes, 292, 293

Psammaplysilla sp., N-methyl-

ceratinamine, 292

– wai’anaeamines, 292
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– psammaplysenes, 292

Psammaplysilla purea, purealin, 370
– lipopurealins, 289

– purealidins, 300

Psammaplysilla purpurea, 370
– bis(deacetyl)solenolide D, 81

– dibromomethoxybenzoic acid, 266

– purpuramines, purpurealidins, 289

– purpurealidins, 300

Psammaplysin A, acyl derivatives of, 303

Psammaplysins, 303

Psammocinia aff. bulbosa, cyclocinamide

A, 151, 152

Psammoclemma sp., (6E)-clathrynamide A

– echinosulfonic acids, 207–208

Psammopemma sp., psammopemmins, 203

Psammopemmins, 203

Pseudoalteromonas spp. 369
– F-418, korormicin, 121

Pseudoalteromonas luteoviolacea,
chlorodibromophenol, 266

Pseudoalteromonas phenolica, compound

MC21-A, 272

Pseudoarachniotus roseus, aranochlors, 116
Pseudoceratidine, 185, 186

Pseudoceratina sp., bromoverongamine, 286

– ceratamines, 175

– N-methyl-ceratinamine, wai’anaeamines,

292

– simple carboxylic acid, 300

Pseudoceratina crassa, brominated

phenylacetonitrile, imidazole, 286

Pseudoceratina purpurea, ceratinamides,

303

– ceratinamine, 286, 287

– psammaplins, 286, 287

– psammaplysin A, 303

– pseudoceratins, 286, 287

– purpuroceratic acids, 303

– tokaradines, 286, 287

– zamamistatin, 303

Pseudoceratina purpurea,
pseudoceratidine, 185

Pseudoceratina verrucosa, bromotyrosines,

286, 300

Pseudoceratinines, 286, 287, 300, 302

Pseudoceratins, 287, 289

Pseudodistoma aureum, eudistomin V, 218

Pseudodysidenin, 138

Pseudomonas spp., FR, 901463,
nonchlorinated epoxides, 231

– pyrrolnitrin, 177

Psoralen, 228

Ptaquiloside, carcinogen, 44

Pteridium aquilinum, ptaquiloside, 44
Pteroeides sp. 80
– diterpenes, 82

Pteropus giganteus, 1-chloro-3-methyl-2-

butene, 21

Pterula sp. pterulinic acids, pterulone, 226

Pterulinic acids, 226

Pterulone, 226

Ptilocaulis spiculifer, dakaramine, 295

Ptilonia magellanica,

pyranosylmagellanicus, 99

Ptychodera flava, bromohydroquinones,

bromobenzoquinone, 268

Ptychodera sp., (+)-bromoxone, 28

Puertitol-B acetate, 50

Pufferfish (Canthigaster solandri), 373
Pulchralides, 130

Punaglandin 8, 127

Punctatol, 55, 57

Purealidins, 289, 290, 300, 301, 302, 310,

311

Purealin, 370

Purpuramines, 289, 296, 297–298

Purpurealidins, 289, 291, 300, 302

Putterlickia retrospinosa, celastramycin A,

182

Putterlickia verrucosa, celastramycin A, 182

Puupehenone, 60

Pycnoclavella kottae, kottamides, 201

Pycnopodia helianthoides, repellants, 199
Pyoluteorin, 177

Pyralomicins, 178

Pyrano[3,2-b]pyrans, 102
Pyrano[3,2-b]pyranyl vinyl acetylene, 96
Pyranosylmagellanicus, 99

Pyrazinone bromotyrosines, 296

Pyrone 8-chlorogoniodiol, 227

Pyrroindomycin B, 213, 214

Pyrrole alkaloids, brominated, 183, 371

Pyrroles, halogenated, 177

Pyrrolidone, 139

Pyrrolizidine alkaloids, Senecio selloi, 174
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Pyrrolizidines, 5-chlorobohemamine C, 175

Pyrrolnitrin, 177

Pyrrolomycins, 177

Pyrrolosporin, 183

Q
Q1 180, 181

– human milk, 180

– polyhalogenated, 180

Quassinoids, 61

Quinolines, halogenated, 220–225

Quinone reductase, 92

Quinones, halogenated, 249–253

R
Radicicol, 235

Radiciol, anticancer agents, 375

Rakanmakilactones, 61, 62

Rat thyroid, 2-iodohexadecanal, 123

Rebeccamycin, 217, 218

Red tides, 376

Renilla reniformis, 81
Renillins, 80, 83

RES-1214-2 (dihydromaldoxin), 277, 278

Resinicium pinicola, pinicoloform, 26

Resormycin, 143

Reticulatine, 219, 220

Reticulidia fungia, reticulidins, 55
Reticulidins, 55, 56, 57

Rhamnosyl-balhimycin, 329, 330

Rhaphisia lacazei, topsentin and

hamacanthin, 204

Rhaphisia pallida, cyclic N-bromoimide,

223

Rhizoplaca peltata, 109
Rhodomela confervoides, brominated

catechols, 268

– brominated diphenylmethanes, 270

– bromophenols, 266

– bromotyrosine, 282

– lanosol-purine metabolites, 269

– tetrahydroquinolines, 220

Rhodomelol, 265

Rhodospirillum salexigens, 25
Rhopaladins, 204, 205

Rhopalaea sp., rhopaladins, 204

Rhopaloeides odorabile, 4

Rhyncholacis pedicillata, host plant, 243
Riccardia marginata, chlorinated bibenzyls,
259

Rice paddies, atmospheric CH3Cl, 10

Richibucto (New Brunswick), dioxins/

chlorinated furans, 339

Rigidol, 51, 52

Rinodina dissa, isofulgidin, 315
Ritterella, halogenated carbolines, 218

Rogiolal, 65, 66

Rogioldiols, 64–66

Rogioloxepane A, 102, 103

Rollinia mucosa, romucosine B, 175

Romucosines, 175

Root fungi, atmospheric CH3Cl, 10

RP, 18,631 (clorobiocin/chlorobiocin), 228

RP-1551s, 30, 31

Rubrolides, halogenated, 131

Rubrosides, 118, 120

Rumbrin, 182

Rumex patientia, 6-chlorocatechin, 231
– patientosides, 260

Russula roscea, 133
Russula subnigricans,
dichloromethoxyphenol, 257

Russuphelins, 278

Russuphelol, 278, 279

Ruta spp., acridone alkaloid A6, 222

S
Sabella pavonia, 373
Saccoglossus bromophenolosus,
dibromophenol, 269

Saccoglossus kowalevskii, bromophenols,

265

– 2,3,4-tribromopyrrole, 179, 373

Sagaminopteron bilealbum, brominated

diphenyl ether, 273

Sagaminopteron nigropunctatum, 373
Sagaminopteron psychedelicum, 373
Salicornia sp., chloromethane, 10

Salinispora pacifica, cyanosporasides, 255
Salinispora tropica, salinosporamides, 172

– sporolides, 235

Salinity, early ocean, 3

Salinosporamides, 172, 173

Salt lakes, halobacteria, trichloromethane, 14
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Salt marshes, bromomethane, 16, 17

Saltwort (Batis maritima), atmospheric

CH3Cl, 11

Samadera madagascariensis, quassinoid
2-chlorosamaderine A, 27

Sarcocornia fruticosa, long-chain
chloroalkanes, 24

Sargassum spinuligerum, fucophlorethols,
279

Scanlonenyne, 99

Sceptrin, 372

Sceptrins, 190, 191

Sch, 27899, 333

Sch, 27900, 333, 334

Sch, 49088, 333, 335

Sch, 54445 (polycyclic xanthone) 318, 319

Sch, 58761, 333, 334

Sch, 58769, 335, 336

Sch, 58771, 335, 336

Sch, 58773, 335, 336

Sch, 58775, 335, 337

Sch, 202596, 322

Sch, 204698 331Sch, 212394, 331

Scleroderma sp. (poison puff ball), methyl

30,50-dichloro-4,40-di-O-
methylatromentate, 326

Scleroderma sinnamariense, methyl 20,50-
dichloro-4,40-di-O-methylatromentate,

326

Sclerotiorin, 28

Scolelepsis squamata, alkyl/alkenyl halides,
24

Scyptolins, 169, 170

Scytonema hofmanni PCC, 7110, scyptolins,
169

Sea pens, 82

Sea-salt spray/aerosols, chlorine/bromine 3,

374

Sea urchins, 374

Seabird eggs, 179

Secobatzelline A, 216

Securamines, 212

Securiflustra securifrons, securamines, 212

Sediments/clays, PCDDs/PCDFs, 344

Senecio selloi, 18-hydroxyjaconine, 174
Seragamides, 158, 159

Serratia spp., oocydin A (haterumalid NA),

243

Serratia liquefaciens, FR177391, 244
Sesamum indicum, anthrasesamone C, 320

– chlorosesamone, 250

Sesquiterpene chlorohydrins, 55

Sesquiterpene dichloroimines, 55

Sesquiterpene lactone glucoside,

chlorinated, 41

Sesquiterpene lactones, chlorinated, 38

Sesquiterpenes, halogenated, 38

– marine, 46

Sesterterpenes, 90

Sewage sludge, polychlorinated dioxins

343

Sex pheromones, control of ticks, 256

Shrublands, atmospheric CH3Cl, 10

Sidonops microspinosa, microspinosamide,

167

Siliquariaspongia japonica, aurantosides,
118

– rubrosides, 118

Simocyclinone D8, 228

Sinularectin, 83, 84

Sinularia cruciata, 373
Sinularia erecta, norcembrane sinularectin,

83

Slagenins, L1210 murine leukemia, 187

Smenospongia sp., 5-bromotryptophan, 198

– methyl 6-bromoindole-3-carboxylate, 198

Smenospongia aurea, makaluvamine O, 216

Soil pesticide, bromomethane, 16

Solanum tuberosum, atmospheric CH3Cl, 11

– benzodiazepines, 225

Solenolides, 70, 71, 74

Solfataras, CCl4, 15

Sorangium cellulosum, maracens, 114

SP-969, 332

SP-1134, 332

Spatoglossum variabile, aurones, 226
Spermidine derivative, antifouling, 185

Sphaerococcus coronopifolius, bromine-

containing diterpenes, 67

Sphaerolabdadiene-3,14-diol, 67

Spiophanes bombyx, alkyl/alkenyl halides,
24

Spirastrella coccinea, spirastrellolide A, 238
Spirastrella hartmani, halogenated
heliananes, 58

Spirastrellolide A, 238, 239
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Spiro-chamigrene, halogenated, 51

Spirocyclohexadienone, maldoxin, 322

Spirocyclohexadienyl isoxazolines, 282,

300

Spirographis spallanzanii, iodination of

tyrosine, 373

Spiroisoxazolines bromotyrosine, 300–312

Spiroxins, 252

Sponge diterpenes, 68

Sponge-bacteria symbiosis, 4

Spongiacidins, 188, 189

Spongiadioxins, 337–339

Spongistatins, 241Spongosorites sp.,
dragmacidin E, 206

– hamacanthins, deoxytopsentin,

spongotine, 204

– isobromotopsentin, 203

Spongosorites genitrix,
bromodeoxytopsentin, 204

– isobromodeoxytopsentin, 204

Spongotines, 204, 206

Sporolides, 235

Sporopodium citrinum,
chlorolichexanthone, 318

– chloro-O-methylnorlichexanthone, 318

Sporothrix sp. 28

Staphylococcus aureus, methicillin-

resistant, 154, 183, 376

– growth inhibition, 204, 213, 249, 266, 272,

312, 314

Stegioside I, 104

Stenella coeruleoalba,
dimethoxytetrabromobiphenyl, 272

Stephanospora caroticolor,
aminochlorophenol, 259, 261

– chloronitrophenol, 259, 261

– stephanosporin, 259, 261

Stephanosporin, 259, 260

Stereobalanus canadensis, bromophenols,

373

Steroids, 92

– halogenated marine, 93

Stevensine, 371, 372

Stevia sanguinea, 40
Stoichactis helianthus, 6-bromo-(5E,9Z)-

heneicosadienoic acid, 106

Streblospio benedicti, alkyl/alkenyl
halides, 24

Streptomyces sp., azamerone, 250

– akashins, 211

– bischloroanthrabenzoxocinone, 320

– celastramycins, 182, 320

– chloptosin, 154

– clorobiocin, 228

– colubricidin A, 238

– dechloromarmycin, 321

– hormaomycin, 171

– MA7-234, complestatins, 330

– manumycin antibiotics chinikomycins,

122

– naphthomycin K, 242

– pentalenolactone, 38

– pepticinnamin E, 158

– pyrrolizidine 5-chlorobohemamine C

175

– Q27107, neuroprotectins, 330

– SCH, 212394, 331

– TAN-876 A/TAN-876 B, 178

– xantholipin, 318

Streptomyces aculeolatus, compounds

A80915-A–D, 249

Streptomyces antibioticus Tii, 6040,
simocyclinone D8, 228

Streptomyces armeniacus, streptopyrrole,
178

Streptomyces armentosus var. armentosus,
armentomycin (2-amino-4,

4-dichlorobutyric acid), 135

Streptomyces aureofaciens, gene for
chlorination of tetracycline, 253

Streptomyces cattleya, 4-fluorothreonine,
124

– organofluorines, 125

Streptomyces fradiae, actinomycins Z3/Z5,

171

Streptomyces fumanus, pyrrolomycins, 177

Streptomyces globisporus, neoC-1027
chromophore, 232

Streptomyces griseoflavus, hormaomycin,

171

– 593A, 223

Streptomyces iakyrus, actinomycin G2, 171

Streptomyces jamaicensis, monamycins,

149

Streptomyces nitrosoreus, benzastatin C,

222
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Streptomyces platensis, resormycin, 143

Streptomyces rimosus, streptopyrroles, 178
Streptomyces rugosporus,
pyrroindomycin B, 213

Streptomyces strain A, 23254 (angucycline

antibiotic), 250

Streptomyces strain AJ, 9493, enediyne

N1999A2, 233

Streptomyces strain BE-23254 (angucycline

antibiotic), 250

Streptomyces strain LL-A9227,

chloroquinocin, 250

Streptomyces venezuelae, 30-O-
acetylchloramphenicol, 134

Streptomyces violaceoniger, lysolipins, 318
Streptopyrroles, 178

Strobilurin B, 323

Strongylodesma algoensis, discorhabdins,
214

Stropharia sp., dichloromethoxybenzyl

alcohol, 257

Styela clava, styelin D, 156

Stylissa aff. massa, massadines, 193

Stylissa caribica, homoarginine, 186

– N-methyldibromoisophakellin, 189

– oxocyclostylidol, 188

– stylissadines, 191

– tetrabromostyloguanidine, 195

Stylissa carteri, carteramine A, 195

– 2-debromostevensine, 188

– latonduines, 189

Stylissa flabellata, stylissadines A, 195
Stylissadines, 191, 193, 195

Stylocheilamide, 112

Stylocheilus longicauda, makalika ester,

114

– malyngamides, 112

Styloguanidine, 194, 195

Stylotella agminata (Stylotella aurantium),
palau’amine, 194

Stylotella aurantium, axinohydantoin, 188
– carbonimidic dichlorides, 55

– dichloroimine stylotellane A, 47

– hymenialdisine, (10E)-diastereomer, 188

– isopalau’amines, 194

– sesquiterpene chlorohydrins, 55

Stylotellanes, 47–49

Suaeda vera, long-chain chloroalkanes, 24

Suberea aff. praetensa, dideoxyagelorins,
310

Suberea sp., aplysamine-2, 296

– ma’edamines, 296

– purpuramine H, 296

Suberedamines, 296, 298

Suberites japonicus, seragamides, 158, 159

Sulfatobastadin, 312, 313

Sulfatohemibastadins, 295, 296

Sventrin (N-methyloroidin) 186, 187

Swimmer’s itch, 235

Symphyocladia latiuscula, bis-benzyl ether,
274

– polybrominated phenols, 272

– symphyoketone, 266

– tribromophenols, 269–270

Symphyoketone, 266, 267Symploca sp.,

tasihalides, 67

Synechococcus sp., chloromethane, 9

Synoicum blochmanni, rubrolides, 131
Synoicum prunum, prunolides, 131
Syringomycins, 171

Syringtoxins, 171

T
Tafricanin A, 60

Takaokamycin/hormaomycin, 171

Talaromyces flavus, fosfonochlorin, 26
Talaromyces helicus, helicusins, 28
Talaromyces luteus, luteusins, 28
Tambjamines, 179

TAN-876 A/B, 178

Tasihalides, 67

Tauroacidins, 185, 186

Taurodispacamide A, 186

Tauropinnaic acid, 176

TCDD, 344

Teclea nobilis, chlorodesnkolbisine, 222
Temazepam, 225

Termites, CCl3, 14

Terpene isonitriles, 375

Terpenes, higher, 86

Terpios hoshinota, nakiterpiosin, 93
Tetrabromoethane, 18

Tetrabromostyloguanidine, 195, 196

Tetrachlorocatechol, 258

1,3,7,9-Tetrachlorodibenzo-p-dioxin, 339
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2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD), 344

2,4,6,8-Tetrachlorodibenzofuran, 339

Tetrachloroethylene (PERC), 20

Tetrachlorohypericin, 319, 320

Tetrachloromethane (carbon tetrachloride,

CCl4), 15

Tetracycline chlorination gene, 253

Tetracyclines, halogenated, 253

Tetrafluoroethylene, 23

Tetrafluoromethane, 23

Tetrahydromonorden (tetrahydroradicicol),

235

Tetraselmis sp., chloromethane 9

Tetrathioaspirochlorine, 323

Teucrium racemosum, 60
Teuracemin, 60

Thalassia testudinium, 373
Thalassiosira weissflogii, chloromethane 9

Thelephenol, 270

Thelepus sp., bis-benzyl ether, 274
– bromophenols, 373

Theonegramide, 166

Theonella sp., halogenated keramamides,

153

– kumusine, 224

– microsclerodermins, 152

– perthamide B, 163

– theonellamides, 166

Theonella cupola,
dehydromicrosclerodermins, 152

Theonella swinhoei, 4
– aurantosides G/H/I, 118

– bitungolides, 121

– chloroleucine-containing cyclolithistide

A, 167

– theopalauamide, 166

Theonellamides, 166

Theopalauamide, 166

Thermal springs (Ashkhabad, Turkmenia),

CCl4, 15

Thialkalivibrio versutus,
chloronatronochrome, 261

Thiazoles, 138

Thomitrem A, 214

Thorectandra sp., 5-bromo-N,
N-dimethyltryptophan, 198

Threonine, biological chlorination, 171

Threonine transaldolase-PLP, 125, 126

Thrombin inhibitors, 144

Thyroid hormone, 376

Thyroxine, 281, 282

Thyrsenols, 86, 87

Thyrsiferol, 90

Thyrsiferyl, 23-acetate, 90

Tiacumicins, 236, 237

Tinea pedis (athlete’s foot), 322

TMC-264, (compound), 230

TNF-a promoter activity/synthesis,

inhibition, 27

Tokaradines, 286, 288

Topoisomerase I inhibitors, 320

Topopyrones, 320

Topsentins, 203–207

– bromodeoxytopsentin, 204, 206

– dibromodeoxytopsentin, 204, 206

– isobromodeoxytopsentin, 204

– isobromotopsentin, 203, 204

– nortopsentin D, 206, 207

Trachelospermum jasminoides (plant host),
230

Trachycladine A, 224

Trachycladus laevispirulifer, kumusine

(trachycladine A), 224

Trachypleuranin B, 228

Trametes sp., trametol, 258, 259

Transvalencin A, zinc-containing antibiotic,

143

Tribrominated ma’iliohydrin, 52

Tribromoacetamide, 25

1,3,8-Tribromodibenzo-p-dioxin , 338

Tribromoethylene, 20

Tribromoindoles, 197

Tribromomethane (bromoform, CHBr3), 17

1,1,2-Tribromooct-1-en-3-one, 25

2,4,6-Tribromophenol , 266, 372

2,3,4-Tribromopyrrole, 179

(–)-(S)-4,4,4-Trichloro-3-methylbutanoic

acid, 137

Trichloroacetic acid (TCA), 26

1,1,1-Trichloroethane (methyl chloroform,

CH3CCl3), 24

Trichloroethylene (TCE), 20

Trichloroleucine amino acid, non-N-
methylated, 138

Trichloromethane (chloroform), 13
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– biomass combustion, 11, 15

– volcanic emissions, 15

Trichloromethyl metabolites, 137

Trichodenones B/C, 27

Trichoderma harzianum, MR566A, 27

Trichoderma virens, trichodermamide B,

173

Trichodermamides, 173

Tricholoma magnivelare,
dichloromethoxybenzaldehyde, 257

– dichloromethoxybenzyl alcohol, 257

Trichophyton mentagrophytes, growth
inhibition, 259

Triene bromohydrin, 49

Trifluoroacetic acid, 127

– salts, 193

Triiodothyroxine, 376

Triterpenes, heterocyclic, 86

– pentacyclic, squalene-derived, 86

Trophon geversianus, brominated

imidazole, 223

Tropical islands, chloromethane, 10

Tropical plants, atmospheric CH3Cl, 10

Trunculariopsis trunculus, brominated

imidazole, 223

Trypsin inhibitors, 144

Tryptamines brominated, 198, 200

Tryptophan amino acids, 153

Tryptophan 7-halogenase, 177

Tryptophans, brominated, 198

Tsitsikamma spp., discorhabdins, 214

Tskhaltubo (Georgia), CCl4, 15

Tubastraea sp., tubastrindole A, 206

Tubastrindole A, 206, 207

Tuberculosis, 375

Tubipora musica, brominated oxylipins, 128

Turbo marmorata, turbotoxins, 286
Turbotoxins, 286

Turraea pubescens, turrapubesin, 90
Turrapubesin, 90, 91

Tursiops truncatus,
dimethoxytetrabromobiphenyl, 271

Tyramines, brominated, 282–300

Tyrian purple, 203, 210

Tyrosine kinase inhibition, 185

Tyrosines, brominated, 282–300

– halogenated, 281–314

– multiple, halogenated, 300

U
Ubiquitin isopeptidase activity, 128

Ugibohlin, 187, 188

Ulosa spongia, carbonimide dichlorides, 47

Ulosins, 47–49

Ulva lactuca, chloromethane, 9

– dibromomethoxybenzoic acid, 266

– trichloromethane, 13

Umbraculolides, 80, 82

Urceolatol, 269

Ureido-balhimycin, 329, 330

Urphoside B, 104, 105

Usnea longissima, longissiminone B, 259

V
Vancomycin, 328

Vancomycin-type glycopeptide antibiotics,

methicillin-resistant bacteria, 378

Vascular cell adhesion molecule-1,

inhibition, 176

Vellozia bicolor, isopimarane diterpene,

12-chloroillifunone, 60

Venus, HCl/HF, 380

Veratryl alcohol, 371

Veratryl chloride (dimethoxybenzyl

chloride), 258

Vernchinilides, cytotoxic activity, 43

Vernolide C, 43

Vernonia chinensis, chlorinated
sesquiterpene lactones vernchinilides, 43

Vernonia cinera, 43
Verongamine, 286

Verongia aerophoba, antibiotic/cytotoxic
activity, 377

– fistularin-3, 309

Verongid sponge, mololipids,

moloka’iamines, 292

– nakirodin A, 296

Verongida, 372

Verongula gigantea, bromotyrosine, 295

Veronica pectinata var. glandulosa,
urphoside B, 104

Verrucosins, chlorinated, 69

Verticillium sp., 80,90-dehydroascochlorin,
322

Verticillium hemipterigenum,
vertihemipterin, 322

Vertihemipterin, 322, 323
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Victoricine, 148

Victorins, 148

Vinetorin, 318

Vinyl chloride, 21

Violacene, 35

Virantmycin, 222

VM, 4798-1a/b, 27

Volcanic emissions, bromomethane, 18

– CCl4, 15

– ethyl iodide, 20

– halogenated alkynes, 23

– vinyl chloride, 21

Volcanoes, 6

– chloromethane, 12

Volutamides, 282–284

W
Wai’anaeamines, 292

Welwitindolinones, 213

Wetlands, atmospheric CH3Cl, 10

– bromomethane, 16Whale blubber, 179

White rot fungi (Phellinus pomaceus),
chloromethane, 12

Wı́thanolides, 92

Woodrot fungi, atmospheric CH3Cl, 10

Wrangelia sp., 25

X
Xantholipin, 318, 319

Xanthones, chlorinated, 317–319

Xanthoparmelia camtschadalis, 109
Xanthoparmelia tinctina, 109

Xanthoria sp., brominated fatty acids, 109

Xanthoria elegans, 109
Xerula longipes, oudemansin B, 323

Xerula melantricha, oudemansin B, 323

Xestoquinones, 250

Xestospongia sp., aragusteroketal C, 93

– brominated fatty acids, 108

– xestoquinones, 250

Xestospongia muta, 4
Xestospongia testudinaria 4, 108

Xestosterol, 108

– esters, 108

Xylaria sp. 325

– chlorohydroxyphenylacetamide, 258

– dihydromaldoxin, isodihydromaldoxin,
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– maldoxin, 322

– maldoxone, 317

Xylariamide A, 163

Y
Yonarasterols, 93, 94

Z
Zamamistatin, 303

Zea mays, benzoxazolinones, 223
Zebra mussel antifouling, 372

Ziconotide (o-conopeptide MVIIA), 155

Ziracin (SCH, 27899)333Zyzzya spp.,

discorhabdin Q, 214

Zyzzya fuliginosa, makaluvamines,

batzellines, 216
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