
Soil organic matter (SOM) plays an important role 
in biological, chemical, and physical soil improve-
ment and productivity (Strosser 2010). The living 
biomass including microorganisms breaks down the 
plant residues or detritus and animal waste into hu-
mus or organic matter by using carbon as an energy 
source and nitrogen as a source of protein production 
(Allison et al. 2007). The decomposition of plant 
residues releases the organic chemical compounds 
and helps to cling together with the mineral soil 
particles that improve the chemical soil properties 
by soil sorption complex creating and physical soil 
properties by establishing of soil structure (Davidson 
and Ackerman 1993).

However, SOM in the ecosystem has been stored 
in different layers with different concentrations as 

a result of different stages of decomposition (Ribeiro 
et al. 2001). The quantity and the quality of SOM 
depend on several factors such as duration of decom-
position, residues, roots, amount of fine materials, 
type of decomposers (microorganisms), chemical 
composition, and temperature (Lal 2018). On the 
other hand, the fluctuation of the organic matter 
concentration in the soil is related intensively to 
slopes, elevation, topography, soil types, and land 
uses and management (Slepetiene and Slepetys 2005, 
Jakšík 2015). The humic substances such as humic 
acids (HAs) and fulvic acids (FAs) are also the com-
ponent used to identify the quality of SOM. They 
play an important role in the terrestrial ecosystem 
(Trevisan et al. 2010), and they are known as a mix-
ture of substances in the form of supramolecular 
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structures (Piccolo 2001). Humic substances make 
up about 20% of the total of SOM and result from 
the decomposition and humification process of the 
SOM (Pavlů and Mühlhanselová 2017). They are often 
understood as relatively stable components of SOM, 
which are involved in the fixation and sequestration 
of carbon in the soil (Lal 2005). The low molecular 
mass organic acid (LMMOA), which makes up about 
10% of dissolved organic carbon (DOC), also char-
acterises the compositions of soil organic matter. 
They are carboxylic acids of low molecular weight 
(Ash et al. 2016) and could be aromatic or aliphatic 
(Hubová et al. 2017). LMMOA are understood as 
relatively variable and unstable components of SOM 
(Strobel 2001).

Diffuse reflectance infrared fourier transform spec-
troscopy (DRIFT), as one of the types of infrared 
spectroscopy conventionally used for solid powder 
samples, is commonly used to analyse peat soil, 
composts, and the transformation of organic matter 
during composting within various stages (Haberhauer 
and Gerzabek 1999, Zaccheo et al. 2002, Pavlů and 
Mühlhanselová 2017). The DRIFT spectra have been 
recognised as one of the spectroscopic techniques 
used to distinguish the fluctuation in the abundance 
of organic functional groups during decomposition 
and to identify the changes of SOM in the soil profile 
under different vegetation covers (Veum et al. 2014).

The study hypothesised that different land uses are 
connected with different incoming fresh organic ma-
terials and these differences can be seen throughout 
the whole soil in the composition of organic matter. 
Therefore, the study aimed to describe and compare 
the SOM compositions and their transformation 
under different depths and vegetation covers. The 
comparison of the separated organic compounds 
such as humic and fulvic acid and low molecular 
mass organic acid was observed by the combination 
of the advanced analytical methods.

MATERIAL AND METHODS

Site selection and soil sampling. The research 
was conducted on the outskirts of Prague, Suchdol 
(Czech Republic). The area is situated in altitude range 
250–300 m a.s.l. and has a mean annual precipitation 
of about 470 mm and a mean average temperature 
of 11 °C. The mixture of loess and sandy river sedi-
ments of the Quaternary age creates the bedrock of 
the research area. Haplic Luvisols are the prevail-
ing soil type in all land uses. Cropland site (with 

a dominantly grown wheat (Triticum aestivum L.) 
crop interspersed with rape (Brassica napus L.) and 
maize (Zea mays L.)) marginally include the areas 
of greyic Phaeozems and carbonates were detected 
in several soil samples mainly in deeper layers. Soil 
texture belongs to clay loam category. Same soil de-
scription applies to grassland site (poorly maintained 
grassland with Dactylis polygama Horv., Poa annua L., 
Calamagrostis epigejos Roth). Broadleaf forest site 
with the dominant abundance of oak (Quercus petraea 
(Matt.) Liebl.) followed with beech (Fagus sylvatica L.) 
and hornbeam (Carpinus betulus L.) marginally 
include the areas of Regosols and Cambisols. The 
presence of carbonate was not detected in all soil 
samples from the forest. Soil texture belongs to sandy 
clay loam category.

Ninety soil samples were collected from each land 
uses and categorised for the three different depths 
(0–10 cm (with exclusion of litter layer in forest), 
10–20 cm and 20–30 cm). In all cases, the samples 
from the first two layers captured humic (A) horizon. 
Samples from the deepest layer captured either still 
horizon A (in the case of Phaeozems or its gradual 
transformation to eluvial horizon in case of Luvisols, 
to cambic horizon in Cambisols or to mineral sub-
strate in Regosols.

The taken samples were air-dried and sieved with 
a 2 mm sieve. Furthermore, 2-mm-sieved soil sam-
ples were milled (Fritsch Analysette 3 Spartan 
Pulvensette miller, Idar-Oberstein, Germany) into 
very fine particles to use for infrared spectros-
copy. Fulvic and humic acid were extracted from 
selected 18 soil samples. The fresh topsoil (15 soil 
samples) was taken separately and frozen for analys-
ing the DOC and LMMOA.

Soil analysis. The exchangeable (pHKCl) was de-
termined potentiometrically by the pH-electrode 
SenTix 21 (Inolab pH level 21, WTW, Prague, Czech 
Republic). Soil organic carbon (SOC) was measured by 
using rapid dichromate oxidation techniques (Sparks 
1996). The quality of humus was determined by the 
absorbance ratio of sodium pyrophosphate (Na4P2O7) 
soil extract at 400 nm and 600 nm (E4/E6, respec-
tively) (Sparks 1996). The content of LMMOA was 
measured using ion chromatography (IC) with sup-
pressed conductivity (Hubová et al. 2017). Dissolved 
organic carbon content was measured by the wet 
dichromate oxidation method according to Tejnecký 
et al. (2014).

The extraction of humic substances was carried out 
by the international humic substance society (IHSS) 
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fraction method, which is modified by Piccolo et al. 
(2000). A mixture of NaOH and Na4P2O7 was used to 
extract the humic substances. The extract was acidi-
fied to pH 1.0 using HCl for precipitation of humic 
acids and their separation from fulvic acids. The HAs 
fractions were purified by redissolution with NaOH 
and reprecipitation with HCl. The purification from 
co-extracted clay was completed with the solution 
of HCl and of HF. The suspension was neutralised, 
centrifuged, and dialysed to release chlorine and 
then the HAs were freeze-dried. The FAs solutions 
were purified using the hydrophobic resin in the 
column. The FAs were released from the sorption 
of resin using NaOH solution. Finally, the FAs were 
neutralised, dialysed, and freeze-dried.

DRIFT spectra of pure freeze-dried humic acids, 
fulvic acid, and dried fine soil samples were recorded 
by the infrared spectrometer (Nicolet iS10, Waltham, 
USA). The spectra with a range of 2.5 to 25 µm (4 000 to 
400/cm) were used. The gold mirror was used as 

a background reference. The 64 scans with resolu-
tion 4/cm and Kubelka-Munk units were applied. 
OMNIC 9.2.41 software (Thermo Fisher Scientific 
Inc., Waltham, USA) was applied for spectra analysis.

Data analysis method. The software IBM SPSS 
(version 26, New York, USA) was used for data ana-
lysing and One-way ANOVA was applied for deter-
mining the statistical differences among quantitative 
soil characteristics with different land uses, and 
depths at significance level description P < 0.05. 
Tukey test and letters a, b, c were used to describe 
the significant differences, where a is the highest 
value, followed by b and c.

RESULT AND DISCUSSION

Basic soil characteristics. The analysed data 
(Tables 1 and 2) indicated that there are no sig-
nificant differences for the pHKCl among all three 
depths in all land uses. However, the soil in crop-

Table 1. Describing the soil characteristic among the different depths (0–10, 10–20 and 20–30 cm)

Depth (cm) pHKCl Humus quality index Soil organic carbon (%)

Cropland
0–10 6.79 ± 0.37 3.27 ± 0.37 1.37 ± 0.17a

10–20 6.76 ± 0.33 3.25 ± 0.34 1.41 ± 0.20a

20–30 6.85 ± 0.43 3.24 ± 0.43 1.11 ± 0.13b

P-value 0.852 0.977 0.001

Grassland
0–10 5.93 ± 0.19 3.50 ± 0.36 2.11 ± 0.31a

10–20 5.73 ± 0.79 3.30 ± 0.17 1.58 ± 0.25b

20–30 5.91 ± 0.70 3.28 ± 0.20 1.51 ± 0.38b

P-value 0.788 0.149 0.000

Forest
0–10 3.59 ± 0.21 4.41 ± 0.43 5.64 ± 2.54a

10–20 3.52 ± 0.13 4.56 ± 0.42 1.78 ± 0.49b

20–30 3.65 ± 0.10 5.02 ± 1.17 1.06 ± 0.34b

P-value 0.206 0.195 0.000

Data (means ± standard deviation; n = 10)

Table 2. The differences description of basic soil characteristics among the three land uses (cropland, grassland, 
and forest)

pHKCl E4/E6 Soil organic carbon

0–10 10–20 20–30 0–10 10–20 20–30 0–10 10–20 20–30
(cm)

Cropland a a a b b b b ns b
Grassland b b b b b b b ns b
Forest c c c a a a a ns a
P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.067 0.000

Letters indicate significant difference; ns – none significance; E4/E6 – the humus quality index
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land is neutral, in grassland is moderately acidic 
while in forest is strongly acid. Similarly, the method 
used for the indicative evaluation of SOM quality 
(E4/E6) in different depths in all the land uses had no 
significant differences. The cropland and grassland 
have very good humus quality while the forest does 
not. The higher E4/E6 ratio in forest could indicate 
lower degree of humification processes (Kunlanit et 
al. 2019). Soil organic carbon content is significantly 
different among the three depths of all land uses. 
Table 2 shows in the depth 0–10 cm, the SOC has 
the highest content in the forest, followed by the 
grassland and cropland. For the 20–30 cm depth, 
the grassland has the highest SOC comparing to 
SOC in the cropland and forest. Various studies 
found the same result, that grassland had higher 
SOC than cropland and forest in deeper soil layers 
(Muktar et al. 2018).

DRIFT spectra

Spectra of soils. Position and identification of soil 
spectra bands are presented in Table 3. The spectra 
of the cropland soil are very similar in all sampled 
depths (Figure 1). This corresponds well to tillage 
and soil stirring. In the soil spectra of the different 
depths under the grassland, there are also no differ-
ences in bands position, intensities, or shapes. The 
forest soil spectra of 0–10 cm layer differ from the 

two deeper layers. The higher content of aliphatic 
components is evident from band absorbance in the 
range between 3 000–2 800/cm.

The most obvious differences among land uses 
are visible in soil spectra of the surface layer. The 
spectrum of forest soil differs from others. The bands 
of aliphatic groups are well identifiable between 
3 000 and 2 800/cm. The extension of the band with 
a maximum from around 1 660/cm to the region 
of the carboxyl group (1 720/cm) is apparent and 
the band shape differs between 1 500 and 1 200/cm 
(polyphenolic substances and functional groups 
with nitrogen and phosphorus). The band around 
920/cm documents a lower content of secondary 
alumosilicates (apparent in the whole profile), which 
corresponds to more sandy soil texture in forest. 
Hence, a large proportion of aliphatic, carboxylic, 
aromatic, and CH groups under forest correspond 
with higher organic carbon content in this soil 
(Gerzabek et al. 2006).

In the deeper layers of forest soil, the shoulder of 
carboxyl groups in the band with a maximum around 
1 640/cm is still visible. The dominant peak of the 
forest soil spectrum is the band around 1 300/cm. 
In the depth 20–30 cm, the band at 1 040–945/cm 
(indicating C-O stretching, Si-OH of alumino-silicate 
lattice, and carbohydrate region of polysaccharides) 
is lower under forest than grassland and cropland. 
The polysaccharides content decrease through the 

Table 3. The assignment of the major bands in infrared spectra of the soil (Tinti et al. 2015, Matamala et al. 2017)

Wavenumber (1/cm) Assignment of sorption bands
3 600–3 700 Si-O-H vibration of clays
3 440–3 320 O-H and N-H stretching, H-bonded OH
3 010–2 800 aliphatic CH stretching
2 000–1 790 Si-O vibration of quartz mineral
1 775–1 711 C=O stretching in carboxylic group

1 691–1 642 C=O stretching of amides (amide I), H-bonded conjugated ketones, carboxyls and quinones, 
lignin, C=N stretching

1 642–1 569 amide II of primary amides, aromatic C=C, C=O (quinones), carboxylates
1 544–1 488 aromatic C=C stretching, aromatic skeletal vibration, aromatic (lignin), amide II
1 479–1 444 CH and NH of amide II, aliphatic CH deformation, carbonates
1 444–1 408 C-H deformation and C-O stretching of phenolic groups
1 403–1 354 C-O of phenolic OH, COO– and O-H, CH3 bending,
1 342–1 307 C-N (aromatic amines)
1 293–1 256 C-O of aryl ethers, C-O of phenols, C-O-C ether bond, bentonite
1 256–1 198 C-O stretching and OH deformation of COOH, C-O of aryl ethers and phenols, silicate
1 185–1 070 C-OH of aliphatic alcohols, O-Si-O stretching of quartz, sulfates
1 056–945 C-O stretching, polysaccharides, Si-OH of alumino-silicate lattice (kaolinite, illite)
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Figure 1. The difference of average soil spectra under different depths (0–10, 10–20 and 20–30 cm) and land 
uses (cropland, grassland, and forest)

Figure 2. The difference of average humic acids spectra under different depths (0–10, 10–20 and 20–30 cm) and 
land covers (cropland, grassland, and forest). HA – humic acid
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depth of the forest soils was documented by Sugiura 
et al. (2017) and probable a higher appearance of 
inorganic materials (Haberhauer et al. 1998).

Spectra of humic acids. The main bands of HAs 
and FAs spectra are described in Table 4. The domi-
nant peak of these spectra is a peak around 1 740/cm, 
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which represents the carboxylic groups on aromatic 
rings (Figure 2). The vibration band of the carboxy- 
lic group is typically placed near 1 720/cm in the 
case of substitution on aliphatic chains. In case of 
substitution on aromatic rings is placed just near 
1 740/cm (Reddy et al. 2018).

The surface layer of the cropland soil differs from 
deeper layers, more pronounced peak can be seen 
around 3 000–2 800/cm and 1 000/cm, which repre-
sents higher contents of aliphatic components and 
polysaccharides chains of HAs. It could point to their 
lower maturity and stability (Pavlů and Mühlhanselová 
2017). The intensity of the C=O group of ketones 
and amide group (shoulder in range 1 690–1 630/cm) 
decreases with soil depth.

The spectrum of the surface layer of the grassland 
varies by the spectra from other depths and also from 
other land use. The band around 1 660/cm is dominant, 
while the carboxyl band is hidden in the spectrum, and 
the band around 1 280/cm is relatively less pronounced 
in comparison to other spectra. The aliphatic-bending 
at 1 460/cm is shifted to 1 425/cm in grassland HAs 
spectra of the surface soil layer, while in forest and crop-
land HAs spectra are clearly visible at both positions. It 
might be the formation of H-bonds between hydroxyl 
and carboxyl H atoms of HA (Senesi et al. 2001).

HAs spectra of deeper layers of forest soil, differ 
from others in pronounced aliphatic bands (3 000– 
2 800/cm). In addition, it could be connected with 
more sandy substrate in forest as described by Di 
et al. (2016). The forest HAs spectra have relatively 
(compared with neighboring band around 1 720/cm) 

Table 4. The major bands of humic substances (humic 
and fulvic acids) in infrared spectra (Stevenson 1995, 
Tatzber et al. 2007, Pavlů and Mühlhanselová 2017)

Wavenumber 
(1/cm) Assignment of sorption bands

3 400–3 300 O-H stretching, N-H stretching
2 950–2 800 aliphatic C-H stretching

1 725–1 710 C=O stretching of COOH 
and ketones

1 660–1 630 C=O stretching of amide I, quinone, 
H-bonded conjugated ketones

1 620–1 600 aromatic C=C stretching

1 590–1 517 N-H bending and C=N stretching 
(amide II)

1 470–1 380 aliphatic C-H bending
1 400–1 390 OH deformation of CH2 and CH3

1 280–1 200 C-O stretching and OH deformation 
of COOH, C-O stretching of aryl esters

1 170–950 C-O stretching of polysaccharides

Figure 3. The difference of average fulvic acids spectra under different depths (0–10, 10–20 and 20–30 cm) and 
land uses (cropland, grassland, and forest). FA – fulvic acid
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the highest peak around 1 660/cm in comparison 
with other land use and soil depth below 10 cm. 
The band of aliphatic C-H (1 470–1 460/cm) is also 
higher under forest than the grassland and cropland.

Spectra of fulvic acids. Generally, the spectra of 
FAs have a lower amount of peaks in the fingerprint 
area (Figure 3). More details are visible in the spec-
tra of lower parts of the soil profile, where bands of 
polysaccharide chains and deformation vibrations 
of OH groups in carboxyl appear.

The FAs spectra from different soil depths under 
cropland are quite different. The band at 1 670– 
1 600/cm, which mainly characterises carboxyl, ke-
tones, and aromatics, is clearly visible in all three 
depths. However, the shoulder at 1 570–1 560/cm 
(COO- symmetric stretching, N-H deformation, 

and amides group II) is more pronounced in the 
deeper layers. The band at 1 420–1 400/cm (phenols 
and alcohols) is sharp in the uppermost layer. The 
spectra of FAs from surface layer of grassland have 
a bigger amount of peaks in the fingerprint area. The 
relative intensity of the band 1 680–1 630/cm and 
1 100–1 200/cm increase with depth. The grassland 
FAs spectrum differs most from the other land uses 
in the depth of 0–10 cm. It has significantly lower 
peaks around 1 660–1 600/cm and 1 200/cm than 
cropland and forest. The band at 1 560–1 510/cm 
is more intense under grassland than cropland and 
forest. Gerzabek et al. (2006) found that aromatic and 
NH groups were greater in grassland than arable land. 
The FAs spectra of the surface forest soil layer have 
only three wide peaks in the fingerprint area. In the 

Figure 4. The mean concentrations of dissolved organic carbon (DOC) (error bars show standard deviations) 
and low molecular mass organic acid (LMMOA) under different land uses (n = 5)

Table 5. The description of low molecular mass organic acid (LMMOA) and dissolved organic carbon (DOC) 
concentration under different land uses in the upper layer (0–10 cm); means ± standard deviation; n = 5

Cropland Grassland Forest

LMMOA 
(mg/kg)

quinate bdl bdl 7.81 ± 8.13
lactate 7.40 ± 6.26 4.52 ± 1.35 6.85 ± 1.57
acetate 3.84 ± 2.34 3.51 ± 3.57 8.04 ± 11.89

propionate 0.09 ± 0.05 0.08 ± 0.08 2.11 ± 1.67
formate 2.99 ± 2.65 3.71 ± 3.89 1.44 ± 0.88
pyruvate bdl bdl 3.31 ± 2.95
malate bdl bdl 6.50 ± 5.77
oxalate 0.83 ± 0.52 1.41 ± 0.69 7.89 ± 6.63
citrate bdl bdl 18.8 ± 25.08

DOC (mg/kg) 66 ± 27.36 144 ± 38.55 649 ± 247.92

bdl – below determination limit
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FAs spectra of a deeper layer are visible their splitting 
on several peaks. The forest FAs spectrum under the 
depth 10–20 cm has the opposite intensities ratio 
of bands (1 660 ≥ 1 200) to the other two land uses 
(1 660 ≤ 1 200). It means that the forest has a higher 
presence of quinone, ketones, and aromatic C=O 
than C-O and OH deformation of COOH. It is in 
accordance with the work of Leinweber et al. (2001).

Dissolved organic carbon and low molecular mass 
of organic acids. On the base of previous results, 
the most differences among land use are focused 
on top parts of the soil profile where LMMOA was 
mostly found (Hubová et al. 2017). The description 
of this part of the profile is therefore extended to 
DOC and LMMOA evaluation (Figure 4, Table 5).

The concentration of DOC is relatively high under 
forest, followed by grassland and cropland. Lower 
DOC in cropland may result from ploughing, drain-
age, intensive surface runoff, which cause DOC losses 
(Manninen et al. 2018). Forest was found to have 
the highest concentration of LMMOA (citrate, ac-
etate, quinate, oxalate, malate, pyruvate, propio-
nate, formate) followed by grassland and cropland. 
Citrate concentration is higher under forest while 
lactate concentration is higher under grassland and 
cropland. Hubová et al. (2017) showed that more 
acidic soil contains a higher concentration of citrate. 
The big value of standard deviation in LMMOA 
is natural for this slightly stable and highly vari-
able component of soil organic matter. On the other 
hand, it has a correlation between the amount of 
LMMOA and DOC with P-value 0.01 (r = 0.755**) 
under all land uses. The high concentration and 
amount of LMMOA are based on plant root exuda-
tion, residues, and litters decomposition reviewed 
by (Adeleke et al. 2017, Hubova et al. 2017), and 
the highest content in forest is as a result of litter 
decomposition (Berg and McClaugherty 2020) and 
lower pH in forest area (Rukshana et al. 2014).

It can be summarised that land uses influence the 
amount and qualitative parameters of soil organic 
matter. Infrared spectroscopy is a useful tool for 
composition of the SOM evaluation. The most obvi-
ous differences in SOM composition according to 
land use are evident in surface layer of soil. Forest 
soil spectra had more intense aliphatic bands (3 010– 
2 800/cm) than the grassland and cropland in the up-
per layer. Similarly, the HAs spectra of forest soil have 
more intense aliphatic bands than the grassland and 
cropland HAs. More acid characters of organic mat-
ter in forest soil are also documented by soil spectra 

in the intensity of carboxylic bands. The grassland 
FAs spectrum differs most from the other land uses 
in the depth of 0–10 cm. It has significantly lower 
peaks around 1 660–1 600/cm and 1 200/cm than 
cropland and forest. In the cropland soils, aromatic-
ity of HAs increase with depth. The concentration 
of LMMOA was higher under the forest, followed 
by grassland and cropland. The most abundant acid 
in LMMOA mixture was citrate in the forest while 
lactate was in the grassland and cropland.
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