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I Introduction 

I.1 Taxol – history, clinical impact and production 
 

During the 1950s, a joint scientific undertaking between the National Cancer Institute (NCI) 

and the United States Department of Agriculture (USDA) was initiated to screen natural 

products for the identification of novel anticancer drugs. This program led to the identification 

of Taxol and camptothecin, which became two of the world’s most widely used anticancer 

drugs (SUFFNESS and WALL 1995). Taxol (generic name paclitaxel) (Figure I-1) is 

probably the better known of the two metabolites and its biosynthesis is the focus of this PhD 

thesis. The compound was first isolated from the bark of the pacific yew tree Taxus brevifolia. 

Its complex, highly oxygenated diterpenoid structure was elucidated in 1971 (WANI et al. 

1971). Taxol has become one of the most successful treatments for a variety of cancers 

(including ovary, breast, lung, head and neck carcinomas and the AIDS-related Karposi’s 

carcinoma) despite difficulties in generating a reliable supply (CRAGG et al. 1993; 

GOLDSPIEL 1997). Members of the genus Taxus are distributed throughout Asia, North and 

Central America and Europe, with all species and subspecies producing Taxol-like 

compounds, also referred to as taxoids (KINGSTON et al. 2002). Today, more than 350 

structurally distinct taxoid compounds have been isolated (BALOGLU and KINGSTON 

1999; ITOKAWA 2003). 

Soon after its isolation, Taxol was shown to have a unique mode of action based on shifting 

microtubule equilibrium towards assembly, resulting in abnormally stable microtubules that 

block the cell cycle in G2/M phase (SCHIFF et al. 1979). Even today, 40 years later, only a 

few compounds with the same mode of action are known, e.g. epothilones (GOODIN 2008). 

Taxol underwent clinical trials in the 1980s and was approved by the FDA for treatment of 

refractory ovarian cancer in 1992 (SUFFNESS and WALL 1995). This was followed by 

approval for treatment of several additional cancers (OBERLIES and KROLL 2004).  

Today, Taxol and its chemical derivative Taxotere (Figure I-1), modified at the C13 side 

chain, are among the most widely used anticancer drugs. Furthermore they are also used for 

other applications, including coronary heart disease, where the drug reduces the formation of 

scar tissue following balloon angioplasty (RAJA 2006; TANIMOTO et al. 2007). Taxol-
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eluting stents (TAXUS® Express2®, Boston Scientific, Natick, MA, USA), which received 

FDA approval in 2003/2004, have shown to significantly decrease the risk of in-stent 

restenosis due to neointimal hyperplasia compared to bare-metal intracoronary stents. Due to 

the slow release of a cytostatic dose of Taxol over an extended period, the drug reduces the 

neointimal growth after stent deployment. Assuming that a growing number of coronary heart 

diseases will be treated with cardiovascular stents, the demand of Taxol will further increase 

(HTAY and LIU 2005; LASALA et al. 2006). 
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Figure I-1: Chemical structures of Taxol (with atom numbers), Taxotere and the late Taxol-precursors 
Baccatin III and 10-Deacetylbaccatin III (HEINIG and JENNEWEIN 2009)  

 

Supply has been a major challenge throughout the clinical development of Taxol. Taxol 

makes up only a minor proportion of the total taxoid content of Taxus trees. As mentioned 

above the compound was first isolated from yew bark, hence isolation from this natural source 

leads to the destruction of the tree. Taking into account that Taxus is a very slow growing 
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plant and the amount of Taxol is comparatively low in relation to other Taxoids, natural 

sources do not represent reliable production systems for Taxol. The commercial isolation of 

1 kg of Taxol from T. brevifolia requires the bark of 2000-3000 very slow-growing trees 

(HARTZELL 1991; CROOM 1995; SUFFNESS and WALL 1995). Furthermore the yield of 

Taxol is highly dependent on the Taxus species. Some species such as Taxus baccata (the 

European yew tree) produce hardly any Taxol at all (NADEEM et al. 2002). Alternatively 

taxoids can also be isolated from the needles of Taxus. Although the content of Taxol is even 

lower than in the bark, high concentrations of late precursors can be isolated.  

Therefore the major current source of Taxol and Taxotere is semisynthesis (HOLTON et al. 

1995). The late precursors Baccatin III and 10-deacetylbaccatin III (Figure I-1) can be 

isolated from yew needles without killing the trees and can be modified with synthesized side 

chain molecules to obtain the desired products. This production system still relies on yew 

trees for precursor molecules and therefore depends on epigenetic and environmental factors. 

An alternative production strategy is the use of Taxus cell suspension cultures, obtained from 

the species T. brevifolia (GIBSON et al. 1993), T. baccata (SRINIVASAN et al. 1995) and 

T. canadensis (KETCHUM et al. 1999). These cell cultures produce biomass faster than 

Taxus trees and can be grown under reproducible conditions. Under optimized culture 

conditions and induction of production with methyl jasmonate, up to 23 mg/L/d of taxanes 

can be generated with a Taxol content of 13-20% (KETCHUM et al. 1999). These yields 

demonstrate the impressive biosynthetic capacity of Taxus cell cultures. However, sustaining 

such high rates of secondary metabolite production in plant cell culture is very difficult 

(DEUS-NEUMANN and ZENK 1984; HALL and YEOMAN 1987; MORRIS et al. 1989; 

PARR et al. 1990; SCHRIPSEMA and VERPOORTE 1992). Since 2002, Bristol-Meyers-

Squibb Inc. has switched its sourcing to plant cell culture-derived Taxol (RITTER 2004). 

Additionally several total synthesis routes have been developed too, however at best 

providing a maximum yield of 2% of Taxol, hence not representing a useful alternative 

production platform (HOLTON et al. 1994a; HOLTON et al. 1994b; NICOLAOU et al. 

1994; DANISHEFSKY et al. 1996; XIAO et al. 2003).  

All together the production methods used today, although improved a lot over the times still 

are very difficult and costly regarding production itself but also with concern of purification 

of either Taxol or late precursors as Baccatin III from complex taxane mixtures. This 

discrepancy between demand and supply is the biggest challenge in clinical application of 
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Taxol. It has driven research into new production strategies, such as metabolic engineering of 

the yeast Saccharomyces cerevisiae (JENNEWEIN et al. 2005; DEJONG et al. 2006; 

ENGELS et al. 2008), E. coli (HUANG et al. 1998; AJIKUMAR et al. 2010) and different 

plant systems like Arabidopsis thaliana (BESUMBES et al. 2004) and the moss 

Physcomitrella patens (ANTEROLA et al. 2009) However, metabolic engineering of yeast 

for the total biosynthesis of Taxol or other advanced taxoids is extremely complex and still in 

its infancy. Today, the total fermentation of taxadiene has been achieved in significant 

amounts in Saccharomyces cerevisiae (ENGELS et al. 2008) and E. coli (AJIKUMAR et al. 

2010). Hence, the establishment  of recombinant microorganisms, like yeast or bacteria, offers 

great perspectives not only for the production of Taxol but also for other complex natural 

products and derivatives thereof (CHANG and KEASLING 2006).  

Due to the problems related to supply an extensive search for alternative sources for Taxol 

and related Taxanes was initiated. This search led to the isolation of endophytic fungi, 

surprisingly having been shown to contain the identical natural products, in this case Taxol 

and Baccatin III after cultivation independently from their plant host (STIERLE et al. 1993). 

In general endophytes are bacteria and fungi that live within plants. They are defined as 

“microbes that colonize living, internal tissues of plants without causing any immediate, overt 

negative effects” (BACON et al. 2000). These species are considered to be a wellspring of 

novel secondary metabolites with significant potentials for medical use. The number of 

endophytic species is unknown, but may exceed one million, providing an extremely large 

pool of biological and hence biochemical diversity (DREYFUSS and CHAPELA 1994). 

Endophytic fungi have been shown to produce compounds with a range of properties, 

including antibiotics, antivirals, antioxidants, antidiabetic agents, immunosuppressive 

compounds, insecticidal products and anticancer agents (STROBEL and DAISY 2003; 

STROBEL et al. 2004; ALY et al. 2011). Besides natural products produced by the fungi 

exclusively, especially interesting are metabolites originally known from plants that are also 

observed in endophytes. Up to now there are only few examples for the occurrence of 

identical secondary metabolites in plants as well as in their associated endophytes. Examples 

are the natural topoisomerase I inhibitor camptothecin originally isolated from 

Camptotheca acuminata which also was found in endophytic fungi as Nothapodytes foetida 

and more recently in cultures of Fusarium solani (PURI et al. 2005; KUSARI et al. 2009a; 
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KUSARI et al. 2009b) or loline alkaloids from grasses (BLANKENSHIP et al. 2001). But the 

most prominent compound in this context is definitely Taxol. 

Strobel and coworkers isolated an endophytic fungus from T. brevifolia, named 

Taxomyces andreanae in which organic extract after cultivation independently from its host 

Taxol as well as Baccatin III could be detected. After confirmation of the compound’s identity 

as Taxol by the use of immunological assays with a polyclonal anti-taxane antibody, by thin 

layer chromatography and by HPLC-mass spectrometry the authors concluded from their 

data, that the fungus was able to produce the compound (STIERLE et al. 1993). Further 

investigation involving feeding studies with 14C-labeled precursors supported the initial 

results (STIERLE et al. 1993; STROBEL et al. 1996). Starting with Taxomyces andreanae 

the collection of endophytic fungi from different yew species all over the world resulted in the 

isolation and identification of numerous “Taxol-synthesizing” fungi. 

Several  endophytic fungi have been isolated from Taxus species in Asia, including Fusarium 

solani from T. celebica, (CHAKRAVARTHI et al. 2008) the so-called fungus BT2, an 

endophyte of the genus Cliocladium from Indian yew tree (SREEKANTH et al. 2009) and 

three other unnamed fungi from T. mairei (GUO et al. 2006; ZHOU et al. 2007). In China, 

Sporormia minima and a fungus from the genus Trichothecium have been isolated from 

T. wallichiana (WANG et al. 2000; SHRESTHA et al. 2001) as well as another four 

endophytes obtained from T. x media and T. yunnanensis (ZHANG et al. 2008; ZHANG et al. 

2009b). From the European yew tree T. baccata collected in northern Italy Caruso and co-

workers detected taxanes in extracts of 15 endophytic fungi and 10 endophytic actinomycetes 

(CARUSO et al. 2000b). From other geographic locations for example 16 endophytic 

ascomycetes were isolated from Taxus globosa in Mexico (SOCA-CHAFRE et al. 2011) in 

which extracts taxanes were observed and four fungal isolates were described from T. hicksii 

collected in Canada (DAHIYA 1996). 

These observations led to many questions regarding not only the function of taxanes for the 

fungi but especially about the purpose of this predicted biosynthetic ability for the organisms. 

Whereas other compounds having a known function, for example alkaloids in defending the 

plant host from parasites or there is a reasonable theory for the production of identical 

compounds in both distantly related species, for example for gibberellins in plants as natural 

growth hormones and in associated fungi as compounds that might be involved in parasitic 

infection inducing length growth there seems to be no obvious reason why endophytic fungi 
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should produce taxanes (BÖMKE and TUDZYNSKI 2009; ALY et al. 2011). Regarding the 

yields observed from Taxomyces andreanae and other endophytes from yew trees in 

comparison to production of Taxus itself the amounts of fungal taxanes are negligibly small. 

Hence, there is no obvious reason why the organisms should “waste” resources for the 

production of an extremely complex metabolite that is anyway present in much higher 

concentrations in their natural environment. Furthermore the ability of Taxol production is no 

feature of all isolated Taxus endophytes eliminating the general need of taxane production for 

an unknown reason to survive in the microhabitat inside the Taxus tree.  

Even more surprising than isolation of “taxane producers” from Taxus spp. from various 

geographic locations was the discovery of taxanes in extracts of fungal endophytes isolated 

from other plants. Pestalotiopsis spp. supposed to synthesize the compounds, such as 

Pestalotiopsis microspora found on T. wallichiana, were found not only on yews but also on 

cypress trees, which do not produce taxoids (STROBEL et al. 1996; STROBEL 2002). This 

unexpected discovery led to an enlargement of the search for potentially “Taxol-producing” 

microbes beyond Taxus species. Pestalotiopsis guepini found on Wollemia nobilis and 

Seimatoantlerium tepuiense isolated from Maguireothamnus speciosus are examples of 

“Taxol-producing” endophytes from sources outside of the Taxus genus (STROBEL et al. 

1997; STROBEL et al. 1999). Other examples in this context were the finding of two “Taxol 

producing” fungi on Terminalia arjuna (GANGADEVI and MUTHUMARY 2009b; a) and 

the isolation of various Phyllosticta species from different plant hosts, as for example 

Melochia corchorifolia, Citrus medica, Cupessus species and Hibiscus rosa-sinensis 

(KUMARAN et al. 2008b; a; c; KUMARAN et al. 2009a). A summary of ”taxane producing” 

endophytic fungi, including all literature in peer reviewed journals and patents in English 

language, is given in Table I-1. This limited summary (all publications in Chinese are 

excluded) thereby contains >120 different endophytic microorganisms, mainly fungi, from 

various Taxus species and >70 endophytes in which organic extracts taxanes were detected 

from other plant hosts. Besides the strongly varying origin and multiple fungal genera 

comparison of the data further reveals that the yields of taxanes detected are very 

heterogeneous. Although the experimental setup including media composition, cultivation 

conditions and extraction procedures only differs slightly the amounts of taxanes observed 

vary from 14 ng/L to nearly 900 µg/L culture medium.  
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Table I-1: Summary of endophytic fungi in which organic extracts Taxol, Baccatin III or 10-Deacetylbaccatin III or in case of CIEIA taxanes were detected; 
Table thereby contains only research papers in English journals or patents; first table part shows fungi originated from Taxus spp. whereas in the second part all listed 
endophytes were isolated from different plant species; methods printed bolt were used for Taxane quantification; abbreviations: CIEIA: competitive inhibition 
enzyme immunoassay; TLC: thin layer chromatography; HPLC: high performance liquid chromatography;  MS: mass spectrometry; UV: detection via absorption in 
the ultraviolet λ-range; IR: infrared spectroscopy; NMR: nuclear magnetic resonance spectroscopy; MIC: minimal inhibitory concentration assay; MTT: cytotoxicity 
calorimetric assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); * µg/g dry mycelium. 
Organism Origin Yield Detection methods Reference 
  [µg/L]   
     

Taxomyces andreanae T. brevifolia 0.024-0.05 CIEIA, TLC, HPLC-UV, MS (STIERLE et al. 1993; STROBEL et al. 1994) 
10 endophytic fungi T. brevifolia 0.095-2.43 CIEIA, TLC, MS (STIERLE et al. 1995) 
Pestalotiopsis microspora T. wallichiana - TLC, MS, NMR (STROBEL et al. 1996) 
Alternaria alternata T. hicksii 332-512 HPLC-UV (DAHIYA 1996) 
12 endophytic fungi T. cuspidata - CIEIA (KIM et al. 1999) 
Kitasatospora sp. T. baccata 1.3 CIEIA, LC/MS (CARUSO et al. 2000a) 
10 actinomycetes/15 fungi T. baccata/brevifolia 0.05-0.15 CIEIA (CARUSO et al. 2000b) 
Pestalothiopsis microspora T. wallichiana 2.9 CIEIA (METZ et al. 2000) 
Tubercularia sp. strain TF5 T. mairei - TLC, HPLC, UV, MS (WANG et al. 2000) 
Penicillium spp. Taxus species - - (EL and DIALLO 2000) 
3 endophytic fungi T. wallichiana 0.015-0.16 CIEIA, HPLC-MS, TLC (SHRESTHA et al. 2001) 
21 endophytic fungi T. mairei - MTT assay (HUANG et al. 2001) 
Multiple endophytes Various plant species 0.01-165 CIEIA, TLC, MS (STROBEL et al. 2001) 
Endophytic fungus BT2 T. chinensis 4-18 HPLC-UV, HPLC-MS (GUO et al. 2006) 
3 endophytic fungi T. chinensis var. mairei - HPLC-MS (ZHOU et al. 2007) 
Nodulisporium sylviforme T. cuspidata 450 HPLC-UV (CHI et al. 2008) 
Fusarium sp. T. wallichiana - MIC (GOGOI et al. 2008) 
3 endophytic fungi T. media/yunnanensis 112-140 * TLC, UV, HPLC-MS (ZHANG et al. 2008) 
C. cladosporioides T. media 800 TLC, UV, HPLC-MS (ZHANG et al. 2009a) 
Aspergillus candidus T. media 112 * TLC, UV, HPLC-MS, NMR (ZHANG et al. 2009b) 
Phomopsis sp. T. cuspidata 418 HPLC-UV, MS, NMR, TLC (KUMARAN and HUR 2009) 
Fusarium solani T. chinensis 164 HPLC-UV (DENG et al. 2009) 
4 endophytic fungi T. chinensis 30 CIEIA (MIAO et al. 2009a) 
Mucor rouxianus sp. T. chinensis 30 CIEIA, HPLC-UV, MS (MIAO et al. 2009a) 
Aspergillus niger T. cuspidata 273 HPLC-UV, MS (ZHAO et al. 2009) 
Gliocladium sp. T. baccata 10 CIEIA, HPLC-UV, TLC, MS, 

NMR 
(SREEKANTH et al. 2009) 
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Table I-1 continued     
     

13 endophytic fungi T. chinensis 871 HPLC-UV, MS (LIU et al. 2009) 
2 Phomopsis sp. T. cuspidata 478 HPLC-UV, MS, NMR, TLC (KUMARAN et al. 2010a) 
endophytic fungi M57 T. media 50 HPLC-UV (LI et al. 2011) 
16 endophytic fungi T. globosa 0.065-0.25 CIEIA (SOCA-CHAFRE et al. 2011) 
Didymostilbe sp. T. chinensis 8-15 CIEIA, HPLC-UV, MS (WANG and TANG 2011) 
     

     
9 Pestalotiopsis microspora Taxodium distichum 0.014-1.5 CIEIA, HPLC-UV, MS (LI et al. 1996) 
Pestalotiopsis guepinii Wollemia nobilis - CIEIA, HPLC-UV, MS, 

NMR 
(STROBEL et al. 1997) 

Periconia sp. Torreya grandifolia 0.3-0.4 CIEIA, TLC, MS, NMR (LI et al. 1998) 
hazelnut, Corylus avellana hazelnut, Corylus avellana - HPLC-MS (HOFFMAN et al. 1998) 
4 endophytes hazelnut, Corylus avellana - HPLC-MS (HOFFMAN et al. 1998) 
18 endophytic fungi Ginko biloba 0.26 CIEIA (KIM et al. 1999) 
Seimatoantlerium tepuiense M. speciosus 0.25-0.35 CIEIA, TLC, UV, MS (STROBEL et al. 1999) 
 One endophytic fungus Cephalataxus fortunei - MTT assay (HUANG et al. 2001) 
3 endophytic fungi Torreya grandis - MTT assay (HUANG et al. 2001) 
10 endophytic fungi hazelnut, Corylus avellana 0.02-16 HPLC-UV (HOFFMAN 2003) 
Fusarium solani T. celebica 1.6 TLC, HPLC-UV, MS (CHAKRAVARTHI et al. 2008a) 
Pestalotiopsis pauciseta C. helicacabum 113 HPLC-UV (GANGADEVI et al. 2008) 
13 fungal species - - HP-TLC (GANGADEVI and MUTHUMARY 2008a) 
Bartalinia robillardoides Aegle marmelos 188 HPLC-UV (GANGADEVI and MUTHUMARY 2008b) 
Phyllosticta melochiae Melochia corchorifolia 478 HPLC-UV, MS, NMR (KUMARAN et al. 2008a) 
Phyllosticta spinarum Cupressus sp. 235 HPLC-UV, MS, NMR, IR, 

TLC 
(KUMARAN et al. 2008b) 

Phyllosticta citricarpa Citrus medica 265 HPLC-UV, MS, NMR, TLC (KUMARAN et al. 2008c) 
Chaetomella raphigera Terminalia arjuna 79 HPLC-UV, IR, MS, NMR (GANGADEVI and MUTHUMARY 2009a) 
Pestalotiopsis terminaliae Terminalia arjuna 211 HPLC-UV (GANGADEVI and MUTHUMARY 2009b) 
Phyllosticta dioscorea Hibiscus rosa-sinensis 298 HPLC-UV, MS, NMR, TLC (KUMARAN et al. 2009a) 
Phyllosticta tabernaemontanae Wrightia tinctoria 461 HPLC-UV, MS, NMR, IR, 

TLC 
(KUMARAN et al. 2009b) 

Phomopsis sp., C. langeronii Wollemia nobilis - CIEIA (STANIEK et al. 2010) 
Lasiodiplodia theobromae Morinda citrifolia 245 HPLC-UV, MS, NMR, (PANDI et al. 2011) 
   IR, TLC, HP-TLC  
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With regard to the analytical methods used for quantification in case of usage of the anti-

taxane immunoassay the yields were lower compared to calculation according to peak areas 

detected by HPLC-UV, what might indicate the higher specificity of the immunological 

system. 

The yields by UV detection might have been overestimated due to matrix effects meaning 

other compounds present in the complex raw extracts that also absorb at the used wavelength. 

Unfortunately no report either compares two methods for quantification or quantifies the 

compounds via a structure dependent selective analysis technique. Mass spectrometry (MS) 

and nuclear magnetic resonance spectroscopy (NMR) were only used for verification of the 

compounds identity. Although some analytical features might have an impact on the results, 

especially the yields it is also possible that the differences are due to the different fungal 

species which behave differently under the same screening conditions. 

Comparison of all these data so far does not lead to a convincing model regarding the origin 

of Taxol biosynthetic pathway and reasons for the wide spread of the detection of identical 

highly complex taxanes through various endophyte genera and in Taxus.  

As mentioned above the observed production of taxanes by microbes cannot be explained by 

a defence mechanism, due to the much higher taxane levels produced by Taxus spp. This 

could only be the case for endophytes from not taxane producing plants, where Taxol for 

example could inhibit the growth of pathogenic fungi, such as Pythium spp. and 

Phytophthora spp., which benefits the host (YOUNG et al. 1992). Furthermore taxane 

production in plants is limited to the small genus Taxus. If also the plant hosts from which 

other taxane producing fungi were isolated from could suddenly produce the compound a 

mechanism of wide spread of the pathway through fungal infection followed by lateral gene 

transfer would be possible as it was suggested for camptothecin biosynthesis due to the 

finding of the compound in different plant families (WINK 2008). For gibberellins 

biosynthesis, the only example up to now where there is phytochemical evidence for the 

compounds and information about the biosynthetic pathways in both plants and fungi the 

biosyntheses evolved independently, although in the beginning a connection of evolution was 

suggested (BÖMKE and TUDZYNSKI 2009). Although possible in theory an independent 

evolution of a highly complex biosynthesis as towards Taxol, in only distantly related species 

from different kingdoms seems not probable or at least there is no obvious explanation for 

such a scenario, whereas in case of gibberellins, having different functions in the different 

organisms leading to benefits for the respective organisms there is an evolutionary driving 
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force. Regarding the hypothesis of a connection of evolution of Taxol biosynthesis in plant 

and endophytic fungi the major questions arising are about the origin of the pathway, the 

direction of a necessary gene transfer and furthermore the degree of conservation of the genes 

and enzymes catalysing the multiple reactions towards the end products, found to be identical 

in plants and fungi. For endophytic fungi nearly nothing is known so far about the pathway. In 

contrast there is a lot of information on genes and enzymes of the Taxol biosynthetic pathway 

in Taxus species. The information known about the pathway in Taxus will be presented in the 

next chapter prior to further considerations on the possible evolution of the biosynthesis on 

molecular biological and genetic level.        

 

I.2 The taxane biosynthetic pathway in Taxus spp. 
 

All taxanes possess the common taxoid skeleton taxa-4(5),11(12)-diene (HEZARI et al. 1995; 

KOEPP et al. 1995). The pathway committing step is the cyclization of the universal 

diterpene precursor geranylgeranyl diphosphate (GGPP) to this core structure. The tricyclic 

taxadiene skeleton is then modified by several cytochrome P450-dependent monooxygenases 

and acyltransferases to yield either Taxol or other taxoid compounds.  

As far as only a few of the >350 known taxoid structures have known pharmacological 

properties (BALOGLU and KINGSTON 1999; ITOKAWA 2003), it is essential to 

understand the regulation of this biosynthetic pathway to increase flux towards the desired 

compounds (KETCHUM et al. 2003). After initial cyclization of GGPP, there are many 

branch points that result in the great diversity of taxoid structures, e.g., 14β-hydroxy taxoids 

and 13-acetyl derivatives. These compounds may play a role in plant defence (DANIEWSKI 

et al. 1998) as antibiotics (YOUNG et al. 1992; ELMER et al. 1994) or toxins to discourage 

mammal herbivory (OGDEN 1988). 

The biosynthesis of Taxol from geranylgeranyl diphosphate involves at least 19 enzymatic 

steps and can be divided into several distinct enzymatic reactions (JENNEWEIN et al. 

2004b). The formation of the taxa-4(5),11(12)-diene backbone is followed by a sequence of 

eight hydroxylation reactions that require atmospheric oxygen (EISENREICH et al. 1998). 

This indicates that the reactions are catalyzed by cytochrome P450-dependent 

monooxygenases, which is also typical for many monooxygenation reactions in secondary 

metabolic pathways (SCHULER 1996). Floss and Mocek (FLOSS and MOCEK 1995) 
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proposed the order to be C5 and C10, followed by C2 and C9, then C13 and C7 and finally 

C1 late in the pathway, based on the hydroxylation pattern of known isolated taxoids. Three 

of these hydroxyl groups are further acylated, including two acetylations and one 

benzoylation, although the timing of these reactions is not clear (WALKER et al. 2002a). 

Advanced taxoids, such as Baccatin III, require further oxidation of the hydroxyl group at C9 

and formation of the oxetane ring at C4,5. The last steps involve attachment of a β-

phenylalanoyl side chain at C13 followed by 2’-hydroxylation and N-benzoylation. Related 

reactions lead to the N-tigloyl and N-hexanoyl derivates Cephalomannine and Taxol C 

(BALOGLU and KINGSTON 1999). These are the major steps of the pathway. 

The taxane core is derived via the plastidial 2-C-methyl-D-erythritol phosphate (MEP) 

pathway (EISENREICH et al. 1996), in which isopentenyl diphosphate (IPP) and 

dimethylallyl diphosphate (DMAPP), the universal precursors of all terpenes, are built from 

pyruvate and glyceraldehyde-3-phosphate through the intermediate 1-deoxy-D-xylulose-5-

phosphate (DXP) (ROHMER 1999; EISENREICH et al. 2001; KUZUYAMA and SETO 

2003).  

Like all diterpenoids, taxanes are based on geranylgeranyl diphosphate, which is derived from 

one molecule of DMAPP and three molecules of IPP via head to tail condensation. Taxus 

geranylgeranyl diphosphate synthase (GGPPS) was first isolated by the Croteau group from 

T. canadensis cells and later by the Verpoorte group from T. baccata cells (HEFNER et al. 

1998; LASKARIS et al. 2000). The protein was characterized as a typical prenyltransferase. 

In a T. cuspidata cDNA library (SCHOENDORF et al. 2001), ESTs representing GGPPS 

were quite abundant, representing 1.7 ‰ of the clones (JENNEWEIN et al. 2004b).  

 
Figure I-2: Genomic structure and schematic enzyme structure of taxadiene synthase A: genomic structure 
of taxadiene synthase from Taxus baccata consisting of 13 exons (boxes) and 12 introns (lines); numbers 
represent the length of the fragments in bp B: schematic enzyme structure including plastidial leader and main 
characteristic terpene synthase motifs, numbered exons (boxes) and introns (vertical lines). 
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The committing step in taxoid synthesis is the cyclization of geranylgeranyl diphosphate to 

taxadiene, catalyzed by taxadiene synthase (TDS) (HEZARI et al. 1995).  

Attempts to isolate TDS from Taxus trees yielded in an enzyme with a molecular mass of ~79 

kDa (HEZARI et al. 1995). Its properties were similar to other plant terpene synthases, such 

as a relatively low Km and Mg2+ as the cofactor, but unusually the optimum pH was 8.5. The 

main product of the enzyme was confirmed as taxa-4(5),11(12)-diene (KOEPP et al. 1995), 

even though chemical analysis predicted preferential formation of the 4(20)-11(12)-isomer 

(GUERITTE-VOEGELEIN et al. 1987).  

A 2586-bp cDNA clone encoding a 98-kDa pre-protein was isolated by a homology-based 

PCR cloning strategy (WILDUNG and CROTEAU 1996). The corresponding enzyme 

contained an N-terminal plastidial targeting sequence, which was cleaved after import into the 

plastid, although the exact length of this sequence remains unclear. Heterologous expression 

of pseudomature, N-terminally truncated TDS variants in E. coli have indicated a sequence 

length of up to 79 amino acid residues for the plastidial target sequence (Williams et al., 

2000b). Further analysis revealed features typical of plant terpene synthases, such as a 

DDXXD-motif responsible for cofactor binding, a conifer diterpene internal sequence domain 

and a glycosyl hydrolase-like domain (Figure I-2B) (TRAPP and CROTEAU 2001). 

 

Taxa-4(5)11(12)-diene Taxa-4(20)11(12)-diene Taxa-3(4)11(12)-diene
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Figure I-3: Reaction mechanism of taxadiene synthase starting from GGPP over the cyclization intermediates 
to taxenyl cation, which undergoes H+-elimination, three possibilities lead to three regioisomers with major 
product taxadiene-4(5),11(12)-diene. 
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Recently a heterolougously expressed taxadiene synthase truncation variant (-107 amino 

acids) was purified and crystal structure was elucidated, via co-crystallization with Mg2+ and 

either with 13-aza-13,14-dihydrocopalyl diphosphate or 2-fluorogeranylgeranyl diphosphate 

(KOKSAL et al. 2011). Although this variant was not active anymore, this further truncated 

protein was the only protein capable of forming crystals. 

In feeding experiments with the natural substrate GGPP, the enzyme produced 94% taxa-

4(5),11(12)-diene, 5% taxa-4(20),11(12)-diene, 1% verticillene and trace amounts of the 

tentatively identified 3(4),11(12) isomer (Figure I-3) (WILLIAMS et al. 2000b). 

The mechanism of the enzyme was discovered during several investigations. A scheme 

including the proposed cyclization intermediates is shown in Figure I-3 (LIN et al. 1996; 

WILLIAMS et al. 2000a; COATES et al. 2005; JIN et al. 2005). 

For the cloning of potential cytochrome P450 genes involved in the Taxol biosynthesis, three 

complementary cloning approaches were applied. The first approach was differential display 

for specific cloning of cytochrome P450 genes (SCHOPFER and EBEL 1998) using the 

methyl jasmonate inducibility of Taxol biosynthesis in plant cell cultures (YUKIMUNE et al. 

1996). Secondly several candidates could be isolated using PCR with degenerate primers 

designed on highly conserved P450 motives (PERF motif and the heme-binding motif) 

(HOLTON and LESTER 1996; JENNEWEIN et al. 2004a). In addition to this specific 

cloning approach of Taxus cytochrome P450 genes, random sequencing of a cDNA library 

from methyl jasmonate-induced T. cuspidata cell culture identified additional cytochrome 

P450 clones (JENNEWEIN et al. 2004b). 

Using these three approaches, nearly 30 very similar (homology >70% on aa level) candidates 

for cytochrome P450 genes with potential relevance to taxoid biosynthesis were obtained with 

most of the cloned genes being identified by all three approaches. The biosynthesis of Taxol 

involves approximately nine oxygenation reactions, thus implying significant redundancy in 

hydroxylase functions. Heterologous expression of cloned cytochrome P450 gene candidates 

in Spodoptera frugiperda baculovirus insect cell expression system (JENNEWEIN et al. 

2001) as well as Saccharomyces cerevisiae (backer’s yeast) (SCHOENDORF et al. 2001; 

JENNEWEIN et al. 2003) and functional testing of the expressed enzymes resulted in the 

identification of taxoid 2α-, 5α-, 7β-, 10β-, 13α- and 14β-hydroxylases (Figure I-4). All of 

the isolated sequences were very similar to each other, but more distantly related to other 

cytochrome P450 genes.   
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Regarding the order of reactions in the biosynthetic pathway hydroxylation steps of Taxol 

biosynthesis can be divided into early, intermediate and late reactions. In microsomal 

fractions of T. cuspidata, six hydroxylations to taxadiene-hexaol occur under standard assay 

conditions (WHEELER et al. 2001). The next modifications are probably C13 and C10 

hydroxylations. The enzymes were shown to use both 5α-hydroxy-taxadiene and 5α-acetoxy-

taxadiene but with opposite substrate selectivities. Although 5α-hydroxy-taxadiene and 5α-

acetoxy-taxadiene are substrates for both enzymes, the former is favored for 13-hydroxylation 

whereas the later is more likely to be modified at C10 (JENNEWEIN et al. 2001; 

SCHOENDORF et al. 2001). Results from cell feeding study experiments in Taxus cell 

cultures using the relevant intermediates (KETCHUM and CROTEAU 2006; KETCHUM et 

al. 2007) indicate a bifurcation occuring early in the Taxol biosynthesis pathway, one branch 

leading to Taxol and the other one to alternative taxoids (or perhaps to Taxol via a different 

route).  

Isolation of a clone encoding taxoid 14β-hydroxylase (JENNEWEIN et al. 2003) supports the 

hypothesis of diversification at this early stage. 

C9-hydroxylation is also thought to be an early reaction in the pathway. In vivo studies in 

which yeast were fed 5α-hydroxy-taxadiene showed that one cDNA encoding a P450 

candidate might represent a taxoid 9α-hydroxylase, but the product has yet to be confirmed 

by NMR (CROTEAU et al. 2006). 

For the analysis of intermediate/late oxygenation steps taxusin (5α,9α,10β,13α-tetraacetoxy-

taxa-4(20),11(12)-diene), a compound isolated from yew heartwood that is thought to be a 

dead-end metabolite rather than an intermediate in Taxol synthesis (KOEPP et al. 1995), was 

used as the test substrate. Thereby, it was possible to identify the taxoid 2α- and 7β-

monooxygenases (CHAU and CROTEAU 2004; CHAU et al. 2004a). 

It was shown that both enzymes can operate sequentially, with 7β-hydroxylation probably 

followed by 2α-hydroxylation. By incubating microsomes with taxusin, the common hexaol 

(2α,7β-dihydroxy taxusin) is formed (CHAU et al. 2004a). 

The other steps leading to hydroxylation at C1 oxygenation at C9 and the oxetane ring 

formation at C4 and 5 are still unknown. As far as several P450 candidates isolated initially 

are still without a defined function it is most likely that the reactions are catalyzed by some of 

these enzymes that are probably P450 mediated. Lack of substrates for testing of the reactions 

with at least two monooxygenases still unknown and many Taxus cytochrome P450 genes 
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undefined, the order of reactions in Taxol biosynthesis and any corresponding phylogenetic 

analysis can only be regarded as approximate. 
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Figure I-4: P450 monooxygenase-mediated hydroxylations of the taxa-4(5),11(12)-diene backbone lead to 
Taxol. This process includes the early modifications at C5, C10 and C13, the C14 hydroxylation to major side 
products and the two modifications at C7 and C2, which are thought to be important in the main Taxol 
biosynthetic pathway (HEINIG and JENNEWEIN 2009). 
 

It is reasonable to assume that the family of taxoid cytochrome P450-dependent 

monooxygenases evolved through gene duplication and divergence from a common ancestor 

(PICHERSKY and GANG 2000), as suggested by the >70% similarity among the taxoid 

hydroxylases and much lower similarity to other plant-derived P450 monooxygenases 

(JENNEWEIN et al. 2004b). This homology-functionality relationship is also observed in 

steroid biosynthesis, where hydroxylases with the same catalytic capability show up to 68% 
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similarity, whereas those with different functions also have more diverse sequences 

(FELDMANN et al. 2002; KIM and TSUKAYA 2002). Phylogenetic comparison 

demonstrates the tight coherence of taxoid cytochrome P450 enzymes and the very distant 

relationship to other plant cytochrome P450s (<35%). Only catalytically similar enzymes, 

such as abietadienol/abietadienal oxidase from loblolly pine (RO et al. 2005), are grouped 

together with taxoid P450s (KASPERA and CROTEAU 2006).  

For clear evidence on the order of taxoid hydroxylation steps, it will be necessary to identify 

and characterize the missing monooxygenases. Therefore, it is necessary to get access to more 

highly functionalized (intermediate) taxoids. Due to the complexity of total chemical 

synthesis of taxoids and the inaccessibility from natural sources, the current unavailability 

represents a major obstacle in the functional assignment in the intermediate and late 

hydroxylation reactions.  

Finally a lot of efforts were made to explore the additional modifications of the hydroxylated 

taxadiene backbone including acetylations, benzoylation and the assembly of the side chain. 

Taxol contains four ester functional groups at C2 (benzonate), C4 (acetate), C10 (acetate) and 

C13 (N-benzoyl-3-phenylisoserinoyl) on the taxane core. Among the enzymes responsible for 

these reactions, the first to be investigated was the 5-O-acetyltransferase. Acetylation in this 

position is considered to be the progenitor of the rearrangement reaction leading to the 

oxetane ring of taxoids (Walker et al., 1999). After demonstrating activity in T. canadensis 

soluble protein extracts, the enzyme was partially purified and shown to be a 50-kDa acetyl-

CoA-dependent transferase with a pH optimum of ~9.0, a low µM Km value and selectivity 

for less functionalized taxanols (CROTEAU et al. 1999). With the objective to isolate more 

acetyltransferases of the Taxol biosynthesis, degenerate primers were designed according to a 

consensus protein sequence, obtained from an alignment of transacylase sequences of plant 

origin, and used to generate PCR probes with which then a T. cuspidata cDNA library was 

screened. This yielded eight full-length cDNAs and seven ESTs, leading to the identification 

of 15 acyltransferase-type genes (WALKER et al. 2000; JENNEWEIN et al. 2004b). 

Functional analysis in Escherichia coli soluble protein extracts resulted in the identification of 

the taxadien-5α-ol-O-acetyltransferase, the taxoid-2α-O-benzoyl transferase, the 10β-O-

acetyltransferase and two cDNA clones encoding enzymes involved in transferase reactions at 

the C13 side chain (WALKER and CROTEAU 2000b; a). Furthermore another transferase 

was found that also led to 5α-hydroxylated taxadiene which as the other transferases was also 
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able to functionalize higher hydroxylated taxanes but surprisingly with different 

regioselectivity of already present hydroxygroups (CHAU et al. 2004b).  

These results indicated that the acyltransferases are not substrate-specific and only moderately 

regiospecific. The acylation position appears to depend very much on the substitution pattern 

of the metabolized precursor (CHAU et al. 2004b). Although the precise timing of C5 

acetylation is not completely clear, it is still probable that the step occurs early in the pathway 

and is somehow influenced by division into C13 and C14 taxoid syntheses (KETCHUM et al. 

2007). Regarding homology of the enzymes, like cytochrome P450-dependent 

monooxygenases, taxoid acyltransferases are very similar to each other (>65%) and probably 

have also evolved from a common ancestor by gene duplication and divergence. 

Assembly of the side chain at C13 is probably the last modification of the taxane core. The β-

phenylalanoyl-type side chains were shown to be formed from α-phenylalanine through the 

activity of an aminomutase (LEETE and BODEM 1966; PLATT et al. 1984). Feeding studies 

with Taxus cells demonstrated that the N-benzoyl-3’-phenylisoserinoyl side chain of Taxol 

also originates from α-phenylalanine metabolism (FLEMING et al. 1994). The mutase 

activity responsible for this committed step in side-chain biosynthesis was first observed in 

Taxus stem extracts by Walker and Floss (WALKER and FLOSS 1998). Further feeding 

studies with Baccatin III, the supposed substrate, were performed with either β-phenylalanine 

or phenylisoserine, showing that both molecules were incorporated, although the 

unbenzylated amino acid was three-times more efficient as a substrate. However, N-benzoyl 

phenylisoserine was not a suitable substrate, indicating the formation of β-phenylalanoyl- or 

phenylisoserine-baccatin III prior to N-benzoylation. These results do not answer the question 

about the timing of 2’-hydroxylation. The acceptance of phenylisoserine indicates that the 

reaction occurs before the attachment of the chain, although no amino acid hydroxylase 

activity has been detected thus far (SILVERMAN 2000). On the other hand, Taxus 

microsomes can catalyze the conversion of β-phenylalanoyl-baccatin III to phenylisoserine-

baccatin III (LONG and CROTEAU 2005), indicating the possibility of hydroxylation 

comparable to oxygenation of the taxane core structure. The undefined cytochrome P450 

cDNAs from the Taxus library therefore remain possible candidates for a taxoid                    

2’-hydroxylase.  

A taxoid aminomutase cDNA was isolated from the T. cuspidata library and expressed 

functionally in E. coli (WALKER et al. 2004). Side chain assembly is catalyzed by                 
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C13-propanoyl-CoA transferase (WALKER et al. 2002b) and transfer of the benzoyl moiety a 

N-benzoyl transferase (WALKER et al. 2002a).  

In order to determine whether N-debenzoyl-2’-deoxytaxol or N-debenzoyltaxol was the 

natural substrate for taxoid N-benzoyl transferase, N-debenzoyltaxol was synthesized and the 

enzyme kinetics for both compounds were determined (LONG et al. 2008). The efficiency of 

benzoyl-CoA transfer to the 2’-hydroxylated substrate was shown to be double that of 

unsubstituted substrate, indicating that N-debenzoyltaxol is the preferred precursor for taxoid 

N-benzoyl transferase. In this context, selectivity for the CoA co-substrate was also tested. 

Only taxoids varying with respect to 3’-N-substitution are observed in Taxus cell cultures, 

e.g., Taxol (N-benzoyl-3’-phenylisoserinoyl), cephalomannine (tigloyl) and Taxol C 

(hexanoyl) (BALOGLU and KINGSTON 1999). The taxoid N-benzoyl transferase was found 

to be highly selective for benzoyl-CoA and did not convert any other substrate (LONG et al. 

2008). This indicates that some of the still uncharacterized acyltransferase candidates might 

correspond to enzymes that facilitate the diversification of taxoid composition at this last step 

of the biosynthetic pathway. 

In contrast to all this data about Taxol biosynthesis from Taxus there is nearly no information 

on the pathway responsible for the compound formation in endophytic fungi. Only very few 

reports show the amplification of short gene fragments of taxadiene synthase, 10-

deacetylbaccatin III-10-O-acetyl transferase (DBAT) and C-13 phenylpropanoid side chain-

CoA acyltransferase (BAPT) from endophytic fungi’s genomic DNA (MIAO et al. 2009b; 

STANIEK et al. 2009; KUMARAN et al. 2010b). However, these results are not very 

conclusive as far as despite all reports state 98 % identity of plant and fungal gene fragments 

but the size of the amplification products vary from a size corresponding to the cDNA clone 

to a size indicating that all introns are present as in Taxus.  

These data do therefore not provide evidence for the Taxol biosynthesis in fungi. It is also not 

possible to answer the question about evolution of the pathway, without identification of the 

genes from fungi and final comparison to the detailed data of the Taxol biosynthesis of Taxus. 

 

I.3 Evolution and gene transfer 
 

The extremely complex biosynthetic pathway towards Taxol, known from Taxus and the 

predicted occurrence of its biosynthesis in distantly related organisms, plants and fungi, raises 
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the question if the genes/enzymes in these two species are similar to each other, indicating a 

connection in evolution or if there is no homology and the biosynthetic pathways evolved 

completely independent from each other. 

As mentioned above the occurrence of “taxane producing microbes” was found not to be 

limited to one Taxus species or to the Taxus family and also not to a certain category of plants 

(i.e. conifers). As for the host plant species no significant pattern is obvious either regarding 

fungal species in which extracts identical compounds as in plants were detected or a possible 

geographic occurrence of the phenomenon. Taxol “production” by microbes seems to be 

rather ubiquitous, although this seems very unlikely for a complex niche natural product 

synthesized over approximately 19 enzymatic steps, like Taxol.  

What kind of evolutionary scenario seems to be reasonable for biosyntheses of complex 

natural products found in organisms from different kingdoms? Important in this context are 

considerations about horizontal gene transfer processes, especially between different 

kingdoms, the genomic organization of secondary metabolite pathways either scattered over 

the genomes or organized in gene clusters dependent on the kingdom and possible 

evolutionary driving forces resulting in different evolutionary scenarios. 

In general evolution of a biosynthetic pathways observed in different organisms can occur 

either convergently or divergently. In the context of secondary metabolite pathways 

convergent evolution means that the benefit of a compound or compound class itself is the 

driving force for development of a biosynthesis. If the product is essential or beneficial, or 

identical compounds provide different important benefits to the different organisms a 

synthesis can develop independently in a variety of species also from different kingdoms. 

Mechanistically this will most likely happen through gene duplication and diversification of 

already present genes from primary metabolism of the respective organisms. Of course 

dependent on the origin these pathways might be fundamentally heterogeneous in gene and 

protein sequences. Nevertheless catalyzing reactions belonging to pathways leading to 

formation of the identical products or molecules of a product class, at least the enzymes have 

to share some conserved characteristics important for the catalytic activity towards the 

defined structures of intermediates and end products.  

In contrast divergent evolution of secondary metabolite pathways is based on a connection of 

evolution of biosyntheses occurring in different organisms. The biosynthesis, hence the ability 

to produce a certain compound is transferred from the ancestor organism either vertically by 

reproduction within the same genus or by horizontal gene transfer to other species living in 
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the same habitat. Through diversification of either the original genus over time or the 

biosynthesis genes themselves the biosynthetic pathways diverge during evolution. For 

example genes of a biosynthesis can duplicate again, followed by mutation of the duplicate 

that might lead to an enzyme with differing activity. Phenomenons like this are supposed to 

be a reason for extensive branching of secondary metabolite pathways leading to a certain 

screening for new biological active compounds (JONES and FIRN 1991; FIRN and JONES 

2003). Thus out of an ancestral single pathway in one organism that turned out to produce 

beneficial compounds and was therefore retained in the genome of the ancestor organism, 

further wide spread even over the borders of the initial genus or kingdom, many similar 

biosyntheses evolved. Nevertheless all these syntheses go back to the original ancestral 

pathway and share certain sequence homology to each other. 

Besides these two extreme scenarios also various combinations are possible. For example 

transfer of a single gene as common ancestor in combination with convergent evolution of 

further pathway genes/enzymes might lead to identical natural products if the evolutionary 

force to produce a special bioactive compound is high enough in a certain environment.  

In case of Taxol biosynthesis in plants and its associated endophytic fungi many scenarios 

seem possible. The data presented in I.1 and I.2 through its heterogeneity provides pro and 

contras for each model.  

Assuming a convergent evolution of Taxol biosynthesis all fungi predicted to have the 

biosynthesis would need an environmental driving force triggering the development of their 

own Taxol biosynthetic pathway. Of course bioactive taxanes might play a role for the 

organisms for defence against other microbes in their habitat. But this is only reasonable for 

predicted producers isolated from plant hosts not able to produce the identical compounds 

themselves. In case of potential Taxol production by endophytes from Taxus spp. this benefit 

is not present due to the much higher production level of the plant. Hence, even if fungal 

producers that had been living in another environment before, in which they needed the ability 

of Taxol biosynthesis, colonize Taxus they would most likely stop the production of the 

anyway very low amounts of the taxoid compounds within yew tree. This is obviously not the 

case as far as still most isolates in which extracts taxanes were detected originate from Taxus 

(Table I-1). 

The other possibility, a divergent evolutionary theory for Taxol biosynthesis that includes a 

horizontal gene transfer from one species to another does not require necessarily a pressure 

for the organism to produce the compounds. The association of the majority of predicted 
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“taxane producing” fungi to the yew tree thereby can be taken as an indication for such a 

scenario. Nevertheless the low yields of taxanes found in those fungi and the detection of 

taxanes in extracts of fungi not associated with yew trees contradict this evolutionary 

assumption.  

However with regard to complexity of Taxol biosynthesis a complete convergent scenario 

seems improbable. Mixed evolutionary theories as for example one trans-kingdom transfer of 

one or few ancestor genes followed by duplication and divergence in the different species 

may also be possible. A transfer of fewer genes than the supposed 19 involved in Taxol 

biosynthesis in yew might be more probable. 

Despite all theoretical considerations the existing non consistent data on “Taxol producing” 

fungi leave the question about the evolutionary development of the biosynthesis completely 

open. 

In general before favouring a theory with or without a horizontal gene transfer and hence 

divergent or convergent evolution, factors facilitating and restraining transfer processes of 

DNA from organisms of one kingdom to another have to be taken into account. These 

considerations include thereby mechanisms for such transfers as well as organisms dependent 

differences.  

Since most evidence for horizontal gene transfer is derived from large scale genome analysis 

and comparison, mechanisms for eukaryote-eukaryote gene transfer are not completely 

understood so far (KEELING and PALMER 2008; RICHARDS et al. 2009; FITZPATRICK 

2011; GOODWIN et al. 2011). In case of fungi mechanisms like somatic fusion or 

interspecies hyphal anastamosis were suggested as possible facilitating processes for genetic 

exchange (FITZPATRICK 2011). 

As major barriers different genetic codes of origin and destination organism have to be 

mentioned as well as different intron/exon structures what can lead to incorrect splicing 

(KEELING and PALMER 2008; FITZPATRICK 2011). Furthermore gene promoters can be 

incompatible or for example in fungi gene silencing mechanisms exist that tend to 

pseudogenize foreign genes (SHIU et al. 2001). 

Despite the still undiscovered mechanisms responsible for eukaryote-eukaryote gene transfer 

and the general barriers lowering the chance of a transfer of a functionally active entire 

secondary metabolic biosynthesis from one kingdom to another there are also several 

examples for the contribution of horizontal gene transfer events in natural product pathway 

evolution.  



I Introduction 

 

22 

 

 
 

Although the occurrence of identical natural products from distantly related organisms, like in 

case of Taxol, is a very rare phenomenon, molecules of the same natural product class have 

been isolated from organisms of different kingdoms. Pathways studied in most detail in this 

regard are polyketide biosyntheses. This class of compounds is well known from plants, fungi 

and bacteria. Polyketides are secondary metabolites that are synthesized via modular multi 

domain enzyme complexes similar to fatty acids with polyketide synthases catalyzing 

acyltransfer, reduction, cyclization and different post-cyclization modifications (STAUNTON 

and WEISSMAN 2001). Due to the similar mechanism of these biosynthetic pathways (PKS 

types I-III) regardless of species or kingdom they are derived from, a connected evolution 

seems to be possible. On the other hand a scenario involving gene duplication and 

diversification in each kingdom is feasible, too, since formation of polyketides is strongly 

related to fatty acid synthesis, which is present in all organisms. Investigations on that topic 

during the last years delivered more evidence for a convergent evolution in each kingdom, 

probably starting from fatty acid biosynthesis genes. Due to the large amount and structural 

variance of compounds that mainly are antibiotics and therefore provide an obvious advantage 

for each producer this was not very surprising. Nevertheless there are some examples of 

lateral gene transfer processes involved as well, although all these horizontal transfers are 

reported only between different fungi or between actinobacteria and ascomycete fungi 

(KROKEN et al. 2003; KHALDI et al. 2008; LAWRENCE et al. 2011).  

With regard to the topic of this thesis trans-kingdom gene transfers between fungi and plants 

are of particular interest. As mentioned above there is only very limited evidence for such 

events regarding secondary metabolite pathways. So far only one report presents a large scale 

phylogenetic analysis exploring possible gene transfers between plant and fungi. By 

comparison of six plant and 159 microbial genomes Richards and co-workers were able to 

identify nine candidate genes that might have been transferred horizontally from one kingdom 

to another. Although none of these genes encoded a protein from secondary metabolism it has 

thereby been shown that lateral transfers in both directions occurred during evolution between 

these two kingdoms. Nevertheless these events are supposed to be ancient and rare 

(RICHARDS et al. 2009). 

Despite the observed low probability of a plant-fungus or fungus-plant transfer a specific 

characteristic of genomic organization, the clustering of whole secondary metabolite 

pathways in bacteria but also in fungi may facilitate the possibility of a transfer of an entire 

multi gene secondary metabolite pathway.  
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Moreover operons are a common feature in bacteria. Occurrence of such genomic units was 

thought to be rare in eukaryotes. Similar genes next to each other in genomes are often 

products of gene duplication, followed by divergence (OSBOURN and FIELD 2009).  

Through intensive research in the field of natural product pathways it became clear that 

especially in filamentous fungi most of the secondary metabolite biosyntheses genes are not 

scattered throughout the genome but are rather organized in gene clusters (KELLER et al. 

2005). The first clusters identified were bacterial ones, like that for actinorhodin biosynthesis 

in Streptomyces (MALPARTIDA and HOPWOOD 1986). From this starting point many 

more clusters for polyketide antibiotic biosynthesis were isolated from different 

Streptomyces spp. and other actinobacteria. Also in filamentous fungi more and more 

secondary metabolites pathway gene clusters could be identified (KELLER et al. 2005). 

Thereby the concept of gene clustering in fungi was found to be not only common for 

polyketide pathways like aflatoxins from Aspergillus spp. (KELLER and HOHN 1997), but 

also for other natural product classes including peptide antibiotics as penicillin (SMITH et al. 

1990) and terpenes as gibberellins (TUDZYNSKI and HÖLTER 1998) and trichothecenes 

(HOHN et al. 1993). In contrast to bacteria and fungi the genes are mainly not linked in 

plants. Nevertheless there are six examples of secondary metabolite gene clusters in plants, 

too. The first one for the production of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin was 

discovered in 1997 by Frey and co-workers in maize and further characterized during the 

following years (FREY et al. 1997; FREY et al. 2003). With more than 500 kb it is extremely 

large compared to the gene clusters from microbes described before and furthermore the 

genes are not continuous. Some genes for the biosynthesis are located more than 15 Mb apart 

from each other. The other five clusters identified in plants all represent terpene biosynthetic 

pathways, two clusters for diterpene biosynthesis the momilactone and the phytocassane gene 

clusters from rice (SHIMURA et al. 2007; WU et al. 2011) and three clusters for triterpene 

formation: the avenacin gene cluster from oat (QI et al. 2004) and the thalianol and maternal 

gene clusters from Arabidopsis thaliana (FIELD and OSBOURN 2008; FIELD et al. 2011). 

The last two have a size comparable to known fungal clusters (CHU et al. 2011). 

From fungi four examples are known concerning clustered diterpene biosynthetic pathways. 

Gibberellin synthesis in Gibberella fujikuroi involves a copalyl synthase/kaurene synthase 

gene, which is clustered with genes encoding a geranylgeranyl diphosphate synthase and three 

P450 monooxygenases (TUDZYNSKI and HÖLTER 1998). Since then gibberellin 

biosynthetic gene clusters were isolated from multiple Fusarium species as well as from some 
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other fungi as Shaceloma manihoticola, Phaeosheria sp. L487 or Magnaporthe grisea 

(BÖMKE et al. 2008). Aphidicholin synthesis in Phoma betae involves a gene cluster 

encoding a terpene cyclase, a geranylgeranyl diphosphate synthase and several cytochrome 

P450 monooxygenases, as well as a transcription factor and a transport factor (TOYOMASU 

et al. 2004). Aflatrem biosynthesis in Aspergillus flavus also involves a cluster of genes 

encoding a terpene cyclase, a geranylgeranyl diphosphate synthase, several cytochrome P450 

monooxygenases and transcription and transport factors (ZHANG et al. 2004). Finally, two 

gene clusters for the biosynthesis of diterpenes were isolated from Phomopsis amygdali, 

including geranylgeranyl diphosphate synthases, terpene cyclases and several candidates for 

P450 monooxygenases (TOYOMASU et al. 2008).  

These data, giving evidence for diterpene gene clusters in fungi as well as in plants suggest 

that Taxol biosynthesis genes also could be clustered in fungi and/or in Taxus. Thus a 

horizontal transfer of the entire pathway instead of several coordinated gene transfers from 

one to the other species might be one possible scenario. Of course the low probability 

(RICHARDS et al. 2009) and the general barriers for a successful transfer leading to a 

functional biosynthetic pathway in an only distantly related species from a different kingdom 

(FITZPATRICK 2011) still have to be considered. 

However, mechanisms and reasons for clustering of natural product biosynthetic pathways in 

eukaryotes are still poorly understood as well as the role of lateral gene transfer especially 

between different kingdoms.  

The strongest evidence for the existence of that kind of transfer from bacteria to fungi was 

found for penicillin and cephalosporin biosynthesis which are present in fungi and are found 

in bacteria, too (WEIGEL et al. 1988). Nevertheless, there are other biosynthetic pathways 

that definitely evolved without a horizontal gene transfer but show a highly conserved pattern 

of the same natural products as well like the gibberellins (BÖMKE and TUDZYNSKI 2009).  

Other theories focus on the location of secondary metabolite gene cluster within the genome 

in order to explain the predicted role in evolution. In actinomycetes and in fungi they are 

found mainly in the telomere regions which are highly dynamic (HOFFMEISTER and 

KELLER 2007). This would allow relocation and formation of clusters, but could also result 

in instability of metabolites production. One theory arising from these location considerations 

is the so-called selfish-cluster hypothesis, which proposes a selective advantage created by 

clustering itself (WALTON 2000). Genomic flexibility and the known mechanisms of 

deletion or translocation of genes increase the risk of a loss of a functional pathway. Also 
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vertical transfer of a complex pathway with its genes scattered over the genome would be 

more risky than a possible horizontal transfer of all genes in one step as a cluster (WALTON 

2000). Therefore it is possible that secondary metabolite gene clusters represent mobile 

genetic elements that lead to more stability of a specific “none-essential” natural product 

biosynthesis.  

This kind of organization is thought to provide a possibility for either generating more 

chemical diversity by for example horizontal transfer followed by duplication and 

diversification or for transfer of entire pathways to other not related species in the same 

environment giving them an selective advantage through the newly produced compounds. 

This theory is supported by several reports showing clear evidence for the spread of 

secondary metabolite gene clusters by horizontal transfer between different fungal species of 

the same genus but also towards less closely related fungi (KHALDI et al. 2008; MEHRABI 

et al. 2011; SLOT and ROKAS 2011).   

Altogether it is not possible to construct an evolutionary model explaining all phenomenons 

observed in secondary metabolic pathways up to now. Most likely many different 

evolutionary processes are involved and it furthermore seems as if these mechanisms are 

dependent on the species as well as the respective biosynthesis itself. Nevertheless the 

organization in gene clusters and horizontal gene transfer both were shown to play a role in 

secondary metabolite biosynthesis evolution, although only limited information is available 

on the mechanisms for eukaryote-eukaryote DNA transfer (KEELING and PALMER 2008; 

FITZPATRICK 2011). 

In the field of diterpene biosynthesis only the gibberellin pathway was studied in detail in 

plants and their endophytic fungi up to now (TUDZYNSKI and HÖLTER 1998; 

FISCHBACH and CLARDY 2007; BÖMKE and TUDZYNSKI 2009). So far it represents 

the only example of an endophyte/plant system that shows the same natural products in 

phytochemical analysis and for which the pathways are known on mechanistic as well as on 

genetic level. Thus, with regard to the present project this biosynthesis is the only source of 

data to make assumptions for the possible Taxol biosynthetic pathway evolution in Taxus 

species and its endophytic fungi by comparison to another plant/endophyte relationship. 

Gibberellins are found in plants and fungi, but the enzymes catalyzing the initial synthesis 

step, the formation of ent-kaurene, are different.  

In plants, the reaction is catalyzed by two enzymes with copalyl diphosphate as an 

intermediate (OLSZEWSKI et al. 2002), whereas in fungi, such as Gibberella fujikuroi, there 
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is a single enzyme that catalyses the reaction directly from geranylgeranyl diphosphate to ent-

kaurene (TUDZYNSKI and HÖLTER 1998). Furthermore it was found, that not only the 

initial cyclization but also the following series of hydroxylations towards gibberellic acid 

GA3, which is a product in plants as well as in fungi, are different (FISCHBACH and 

CLARDY 2007; BÖMKE and TUDZYNSKI 2009). 

Together with the fact, that all the P450 genes/enzymes in Gibberella fujikuroi are much more 

similar to other P450 genes/enzymes from fungi than to the corresponding genes/enzymes 

from plants, in this case a convergent evolution of the pathway in both species is probable 

(TUDZYNSKI and HÖLTER 1998). This is furthermore supported by the genomic 

organisation, scattered over the genome in plants, for example located on all five 

chromosomes in Arabidopsis thaliana, but clustered in all known fungal producers 

(TUDZYNSKI and HÖLTER 1998; BÖMKE and TUDZYNSKI 2009). 

 

 
Figure I-5: Gibberellins biosynthesis; A: Comparison of enzymatic reactions towards ent-kaurene; two terpene 
synthases involved in plants with ent-copalyl diphosphate as real intermediate; direct conversion of 
geranylgeranyl diphosphate to ent-kaurene in fungi; B: three examples of bioactive gibberellic acids GA3, GA1 
and GA4 produced by plants and fungi; GA: gibberellic acid, CPS: ent-copalyl diphosphate synthase, KS: ent-
kaurene synthase, CPS/KS: bifunctional enzymes from fungi.  
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The explanation for this evolution here most likely was due to the biological activity and its 

role for the respective organisms. 

For both fungi and plants the compounds have a defined function, regulating length growth or 

are important for infection. For the pathogenic fungus it is feasible to mimic compounds of 

the plant to influence plant processes, but avoiding possible inhibition of its own production 

by developing a different biosynthetic pathway.   

The physiological functions of taxoids in plants and endophytes are not known. There is no 

indication that endophytic fungi derived taxanes influence the host or that the fungi are 

somehow affected by plant derived taxoids.  

All evolutionary mechanisms discussed, like clustering of pathways, horizontal gene transfer 

of single genes or entire gene clusters between different organisms as well as evidence for the 

opposite scenario, a convergent evolution of two biosyntheses with similar product 

distribution as described last for gibberellins lead to even more open questions regarding the 

origin of Taxol biosynthesis in plants and fungi. 

No evolutionary scenario can be excluded or favoured. Only by clarification of the predicted 

fungal pathway and comparison to plant Taxol biosynthesis it might be possible to conciliate 

the very heterogeneous data on the in many respects interesting and so far mysterious 

phenomenon. 

 

I.4 Objective of the project 
 

The aim of this PhD project was the clarification of the Taxol biosynthetic pathway in Taxus 

associated endophytic fungi. As described in detail in the introduction chapters, up to the start 

of my work in 2007 there was no information on genes/enzymes that are involved in fungal 

Taxol biosynthesis. All reports concerning the Taxol biosynthetic pathway were obtained 

through examination of Taxus species. Thus, the choice of the approach for the project was 

done according to the existing phytochemical data of endophytic fungi on the one hand and 

because of theoretical considerations about possible scenarios of evolution of such a complex 

secondary metabolite pathway in two distantly related species. 

Complex biosynthetic pathways leading to identical natural products seem to be unlikely to 

develop by convergent evolution, although the only present example the gibberellin 

biosynthesis evolved in accordance to this theory. In nature not only the occurrence of this 
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phenomenon of identical natural product production by not related organisms but also 

evidence for processes including trans-kingdom gene transfers are extremely rare.  

However, the existence of such pathways for structurally extremely elaborate natural 

products, like Taxol, in distantly related organisms is rather surprising, even more though 

when obvious beneficial factors for the organisms are lacking. The occurrence of the Taxol 

biosynthesis in the evolutionary ancient species Taxus and in with Taxus associated 

endophytic fungi is rather extraordinary. Lateral gene transfer seemed to be one plausible 

explanation. However, the Taxol biosynthesis in Taxus tree is most likely not clustered and 

the acquisition of the Taxol biosynthesis by the tree in form of a complete biosynthetic cluster 

from the fungus seems also obscure as far as at this time there was no example of an event 

like this for any biosynthetic gene or gene cluster.  

Through the identification of several of the Taxol biosynthetic genes it now became possible 

to study this assumed lateral gene transfer of a highly complex biosynthetic pathway between 

two only very distantly related species. Through to the availability of genetic data on the 

Taxol biosynthetic pathway in yew the Taxus/Taxus Endophyte system offers an excellent 

and unique model to study this lateral gene transfer and the evolution of a biosynthetic 

pathway for a structurally complex natural product.    

All reports on Taxol producing endophytes up to that time focused on the detection of natural 

products via different analytical techniques, like immunological assays (CARUSO et al. 

2000b), thin layer chromatography and mass spectrometry (STIERLE et al. 1993; HEINIG 

and JENNEWEIN 2009; ZHOU et al. 2010) (Table I-1), only. Also preliminary studies 

examining the biosynthesis during my own diploma thesis, for the first time on molecular 

biological level did not led to more information about the evolutionary origin of Taxol 

biosynthesis (HEINIG 2006). As discussed already the yields of taxanes in endophytes (ng-

µg/L range) in comparison to Taxus (µg-mg/L range) are very low. Because of this reason, an 

approach trying to isolate the genes responsible for production by fungi from expression 

libraries, as done in case of Taxus genes seemed not promising, due to the assumption that the 

pathway is not well expressed.     

Therefore the hypothesis made that the two pathways evolved not independently but gene 

transfer processes must have been involved together with the molecular biological 

assumptions led to the plan of experimental work. 

The experimental work was structured as follows. The analytical part involved first the 

examination of the analysis of fungi already described to produce Taxol or taxanes from 



I Introduction 

 

29 

 

 
 

different origin, meaning including an endophyte not originated from Taxus and including 

especially Taxomyces andreanae, the first fungus in which organic extracts taxanes were 

detected (STIERLE et al. 1993; HOFFMAN 2003). Nevertheless, to exclude the not proven 

but possible scenario of a loss of capability for the synthesis of the secondary metabolite due 

to loss of one or all genes responsible for the production through cultivation under laboratory 

environments also new Taxus endophytes were isolated from their natural environment.  

The molecular biological part of the project involved the homology based hybridization 

screening of taxane producing endophyte’s genomes in order to isolate and characterize the 

genes involved in the fungal pathway towards Taxol. This was done via Southern Blotting, 

through genomic lambda phage library screening and sequencing of isolated clones’ inserts.  

By these approaches the aim was not only to find evidence for the Taxol biosynthesis in fungi 

on genetic level, but also to discover the evolutionary origin of this secondary metabolite 

pathway, which, as one of very few examples, occurs in very distantly related species, plants 

and its endophytic fungi. 
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II Material and methods 

II.1 Material 

II.1.1 Chemicals and consumables 

All chemicals used had at least pro analysis quality. Solvents for extraction were for synthesis 

grade, whereas solvents for chromatography were gradient grade or LC/MS grade. 

Chemicals, enzymes and consumables were purchased from the following companies. 

Agilent Technologies (Waldbronn), Applied biosystems (Darmstadt), BioRad (München), 

BioTrend (Köln), Hartmann Analytik (Braunschweig), Eppendorf (Hamburg), GE Healthcare 

(Freiburg), GeneScript, Greiner (Solingen), Invitrogen (Leek, Netherlands), Kodak 

(Stuttgart), Millipore (Eschborn), New England Biolabs (Frankfurt am Main), Qiagen 

(Hilden), Roth (Karlsruhe), Sarstedt (Nümbrecht), Sigma (Deisenhofen), Stratagene 

(Amsterdam), VWR (Darmstadt), Whatman (Bender & Hobein, Bruchsal). 

 

II.1.2 Kit systems 

 

Macherey und Nagel, Düren  Nucleo Spin® Plasmid Kit 

  Nucleo Spin® Extract II Kit 

  NucleoFast 96 PCR plates 

 

Qiagen, Hilden  QIAquick® Oligo Nucleotide Removal Kit 

  QIAquick® Gel Extraction Kit 

  Qiagen Lambda Midi/Maxi Kit 

  Qiagen Oligitex mRNA Mini Kit 

 

Inivitrogen, Leek, Netherlands Zero Blunt® TOPO® PCR Cloning Kit  

 pTrcHis2-TOPO® TA Expression Kit 

  

Stratagene, Amsterdam  Lambda Dash II / Gigapack III XL Genomic 

  Library Kit 

  Lambda ZAP II/ Gigapack III Gold Kit 
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Thermo Scientific Pierce® ECL Western Blotting Substrate 

 

Roche, Grenzach-Wyhlen Expand High Fidelity PCR System 

 

Cardax Pharmaceuticals; Hawaii Anti-Taxan Immunoassay 

 

Fermentas, St. Leon-Rot HexaLabelTM DNA Labeling Kit 

 

Clonetech, Mountain View; USA Marathon cDNA Amplification Kit 

  

II.1.3 Enzymes and vectors 

For DNA restriction the following enzymes were used: EcoRI, BamHI, TSP509I, KpnI, SacI, 

EcoRV, HindIII, NotI, DpnI. All enzymatic restrictions were performed according to manual 

provided by New England Biolabs (NEB).  

Table II-1 shows the vectors used for cloning, expression and phage library construction. 
 

Table II-1: Vectors used in this thesis 
Vector Genotype Reference 

      

   pBlueskript SK- f1(-), pUC, lacZ', lac, T3, T7, ampR Stratagene 

   
pTrcHis2-TOPO pBR322, trc, ampR, HIS-6-tag Invitrogen 

   
pCR Blunt pUC, lac, T7, lacZα-ccdB, kanR, zeoR Invitrogen 

   
Lambda Dash II red, gam, T3, T7 Stratagene 

   
Lambda Zap II 

 
Stratagene 

      

 



II Material and Methods 

 

32 

 

 
 

II.2 Microorganisms 

II.2.1 Escherichia coli 

For amplification of plasmid DNA or for expression of proteins Escherichia coli (E. coli) 

strains E. coli DH5α™ (chemical competent) und TOP10 (electro competent) were used 

(Invitrogen; Leek, Netherlands).  

 

Genotype DH5α™: 

F- 80lacZ∆M15∆(lacZYA-argF), U169, recA1, endA1, hsdR17 (rk-, mk+), phoA, supE44λ-

thi-1, gyrA96, relA1 

 

Genotype One Shot® TOP10: 

F- mcrA ∆(mrr-hsdRMS-mcrBC) 80lacZ∆M15∆lacX74 recA1 araD139 ∆(ara-leu)7697 

galU galK rpsL endA1 nupG λ- 

 

For phage infection with either WT lambda DNA or recombinant lambda DNA and in vivo 

excision the following E. coli strain were used (Stratagene, Amsterdam) 

 

Genotype XL1-Blue MRA (control strain for WT λ DNA) 

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 gyrA96 relA1 lac 

 

Genotype XL1-Blue MRA (P2)  

XL1-Blue MRA (P2 lysogen) 

 

Genotype SOLR  

e14–(McrA–) Δ(mcrCB-hsdSMR-mrr)171 sbcC recB recJ uvrC umuC::Tn5 (Kanr) lac gyrA96 

relA1 thi-1 endA1 λR [F´ proAB lacIqZΔM15] Su– (nonsuppressing) 

 

Genotype XL1-Blue MRF´  

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F´ 

proAB lacIqZΔM15 Tn10 (Tetr)] 
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II.2.2 Endophytic fungi from culture collection 

Beside newly isolated and characterized endophytic fungi from Taxus three species described 

in literature as taxane producers were purchased from culture collections and examined 

phytochemically. 

 

Taxomyces andreanae  CBS 279.92 described by (STROBEL et al. 1994) 

 

H10BA2  NRRL 21209 described by (STIERLE et al. 2000) 

 

UPH-12  NRRL 30405 described by (HOFFMAN 2003) 

 

II.3 Media and antibiotics 

All media listed were prepared with double distilled water and sterilized for 20 min at 121 °C 

prior to usage. For production of solid media 1.5-2 % agar were added before sterilization. 

Dependent on the experiment antibiotics (Table II-2) were added after sterilization and 

cooling to <60 °C or room temperature.  

 

 S7 medium   

 1 g/L  glucose 
 3 g/L  fructose 
 6 g/L  saccharose 
 1 g/L  sodium acetate 
 1 g/L  soytone 
 1 mg/L  thiamine 
 1 mg/L  biotin 
 1 mg/L  pyridoxale 
 1 mg/L  calcium pantothenate 
 3.6 mg/L  magnesium sulfate 
 6.5 mg/L  calcium nitrate 
 1 mg/L  potassium nitrate 
 2.5 mg/L  ZnSO4 
 5 mg/L  MnCl 
 2 mg/L  FeCl3 

 5 mg/L  phenylalanine 
                       100  mg/L  sodium benzoate 
 1 mL  potassium dihydrogensulfate (1M,pH 6.8) 
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 Potato dextrose medium 

   4 g/L potato infus 
                  20 g/L glucose 
  pH 5.6 
 

 YM – 6.3 medium 

    4 g/L glucose  
    4 g/L  yeast extract 
   20 g/L  glucose 
   pH 6.3 
  

 M1D medium 

 20 g/L  sucrose 
 360 mg/L  magnesium sulfate [7 H2O] 
 200 mg/L  calcium nitrate [4 H2O] 
 80 mg/L  potassium nitrate  
 200 mg/L  sodium sulfate 
 0.1 mg/L  thiamine 
 0.1 mg/L  pyridoxale 
 65 mg/L  potassium chloride 
 16.5 mg/L  sodium dihydrogenphosphate [H2O] 
 4.5 mg/L  manganese sulfate [4 H2O] 
 1.5 mg/L  zinc sulfate [7 H2O] 
 1.5 mg/L  boric acid 
 2 mg/L  ferric citrate 

 0.75 mg/L  potassium iodide 
 0.5 mg/L  2,4-Dichlorophenoxyacetic acid 
 0.5 mg/L  nicotinic acid 
 

 Luria-Bertani (LB) medium 

  10 g/L NaCl 
  10 g/L tryptone 
    5 g/L yeast extract 
  pH 7.0 
 

 2 YT medium 

  16 g/L tryptone 
  10 g/L yeast extract 
    5 g/L NaCl 
  pH 7.0 
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 SOC medium 
  20 g/L tryptone 
    5 g/L yeast extract 
    0.5 g/L NaCl 
    2.5 mL KCl (1 M solution) 
  20 mL glucose (1 M solution) after sterilization 
    5 mL MgCl2 (2 M solution) after sterilization 

  pH 7.0 

  

 NZY medium 

    5 g/L NaCl 
    2 g/L MgSO4 * 7H2O 
    5 g/L  yeast extract 
  10 g/L NZ – amine 
  pH 7.5 
  

 NZY-Top medium 

      5 g/L NaCl 
    2 g/L MgSO4 * 7H2O 
    5 g/L  yeast extract 
  10 g/L NZ-amine 
  pH 7.5 

0.7 %(w/v) agarose 
 

 

In Table II-2 the antibiotics are listed with concentrations of stock solutions as well as final 

working concentrations.  

 
Table II-2: Antibiotics used, concentrations of stock solutions and final concentration in the media 

Antibiotic c (stock solution) Working concentration 

      

   ampicillin 100 mg/mL 100 µg/mL 

   kanamycin 50 mg/mL 50 µg/mL 

   streptomycin 100 mg/mL 25 µg/mL 
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II.4 Isolation and cultivation of microorganisms 

II.4.1 Isolation of endophytic fungi from Taxus bark 

To isolate endophytic fungi from Taxus bark 0.5x0.5 cm pieces of the bark were cut out with 

a sterile scalpel and were surface sterilized for 5 min in 70 % ethanol. Then the inner bark was 

separated from the outer one and put on PDA agar supplemented with 25 mg/L streptomycin. 

The plates were incubated at room temperature until fungal growth was visible. The 

mycelium was then transferred to fresh plates by hyphal tip method (GUO et al. 2006). 

II.4.2 Cultivation of endophytic fungi 

The isolated endophytic fungi were cultivated on solid media, either on PDA+streptomycin or 

on YM-6.3 agar. Every week the fungi were transferred to fresh plates, by cutting out a piece 

of overgrown agar from an old one. 

In liquid culture the fungi were grown in YM-6.3 medium until no more glucose is detectable. 

Furthermore the fungi were cultivated in S7 and M1D medium already described for taxane 

producing endophytes for 3 weeks (STIERLE et al. 1993). After cultivation the mycelium 

was harvested via filtration through two layers of miracloth and stored at -80 °C. Medium was 

extracted for taxane analytics. 

II.4.3 Cultivation of E. coli 

Cultivation of E. coli was done in either test tubes (3 mL medium) or in Erlenmeyer flasks (up 

to 500 mL medium). The small cultures were inoculated with a single colony from agar plate. 

For flask cultures 0.5-2 mL of an overnight culture pre-culture were inoculated. 

II.4.3.1 Cultivation of E. coli for plasmid isolation 

E. coli were cultivated overnight at 37 °C in 2YT medium supplemented with the appropriate 

antibiotic on a rotary shaker with 160 rpm. The cells (cultures up to 2 mL) were harvested by 

centrifugation for 1 min in a table centrifuge (5415D, Eppendorf). The obtained biomass was 

than either stored at -20 °C or used for plasmid isolation. 

II.4.3.2 Cultivation of E. coli for protein expression 

To express recombinant proteins in E. coli cultures (2YT, antibiotic) were inoculated with a 

defined volume of an over-night pre-culture (OD600nm=0.05-0.1). These cells were grown at 

37 °C, 160 rpm until optical density of 0.5. At this point expression was induced by addition 
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of 1 mM IPTG. Induced cultures were than incubated over night at 17-28 °C. Biomass was 

harvested by centrifugation at 4500 rpm, 4 °C (3S-R multifuge, Heraeus) and either stored at -

20 °C or directly used for protein extraction. Protein expression in deep well plates was done 

using 24-square-well plates (Greiner). Cultures with a total volume of 2.5 mL (2YT, 

antibiotic, 1 mM IPTG) were incubated at 28 °C, 750 rpm using microtron shaker (Infors 

HT). 

II.4.3.3 Preparation of E. coli for infection with λ-phages & in vivo excision 

Prior to infection with λ-phage E. coli XL1Blue MRA (P2) or for control of packaging 

efficiency E. coli XL1Blue MRA were cultivated up to an OD600nm of 0.5 to 1 in LB medium 

supplemented with 0.2 %(w/v) maltose and 10 mM MgSO4. For phage liquid cultures E. coli 

XL1Blue (P2) was cultivated to saturation over night. All cultivations were done at 37 °C 

with 160 rpm. 

For infection with Lambda Zap II containing phages E. coli MRF’ strain was cultivated to an 

OD600nm of 0.5-1 (LB supplemented with 0.2 %(w/v) maltose and 10 mM MgSO4) at 37 °C 

with 160 rpm. E. coli MRF’ and SOLR strains for in vivo excision protocol were grown over 

night in LB with supplements at 30 °C and 160 rpm. 

II.4.4 Cultivation of λ-phage 

For preparation of λ-phage liquid cultures 100 µL of a saturated E. coli XL1Blue MRA (P2)-

culture, 100 µL of 10 mM MgCl2/CaCl2-solution and 100 µL of phage suspension were 

incubated at 37 °C for 15 min. The infected bacteria were transferred into 50 mL NZY 

medium and cultivated at 37 °C until the solutions were clear, meaning all bacteria were lysed 

by the phages (8-10 h). After incubation for another 15 min with 1 mL of CHCl3 

water/medium phase was removed and cell debris were separated from phage suspension via 

centrifugation. The lysate was used directly for isolation of λ-phage DNA. 

II.4.5 Determination of cell density  

The cell density of bacterial and yeast cultures was determined by measuring the optical 

density at 600 nm with Biophotometer (Eppendorf). 0.5-1 mL fermentation broths were 

analyzed in a plastic cuvette. As standard for calibration of the instrument the pure medium of 

the cultures was used. 
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II.5 Molecular biological methods 

II.5.1 Isolation and purification of nucleic acids  

II.5.1.1 Isolation of genomic DNA from plants and fungi 

One gram of the biomaterial (mycelium of endophytic fungi or Taxus needles) was 

homogenized using liquid nitrogen, mortar and pistil.  After addition of 10 volumes of CTAB-

buffer (100 mM Tris, pH8, 20 mM EDTA, 1.4 M NaCl, 2 % (v/v) β-mercaptoethanol, 2 % 

(w/v) CTAB) and incubation for 1 h at 65 °C, cell debris was removed by centrifugation 

(15 min, 2000xg). The supernatant was extracted twice with equal volume of CHCl3 / 

Isoamylalcohol 24:1. DNA was precipitated from the resulting solution by addition of 0.66 

volumes cold isopropanol and pelleted by centrifugation (15 min, 4000xg) or in case of Taxus 

by spooling on a Pasteur pipette. After washing with 76 % EtOH, 10 mM NaOAc DNA was 

dissolved in 10mM Tris pH8.5, 100 ng/mL RNAseA at 4 °C over night. Concentration was 

determined by Nanodrop ND-1000. Purity was checked via agarose gel electrophoresis. All 

samples were stored at 4 °C. 

II.5.1.2 Isolation of plasmid DNA and λ-phage DNA 

Isolation of plasmid DNA from E. coli was done with the Macherey & Nagel Nucleospin 

plasmid kit according to the manufacturer’s guidelines.  

Phage DNA was isolated from lysates with Qiagen Lambda Midi/Maxi kits. This was also 

done according to the protocol provided by the manufacturer. 

II.5.1.3 Precipitation of DNA 

For increasing DNA concentration and removal of short DNA fragments and salts, 

respectively DNA solutions were precipitated by addition of ethanol (99.8 %) to a final 

concentration of 70 % (v/v). DNA was pelleted by centrifugation, washed with 70 % ethanol, 

air dried and solved in water. 

II.5.1.4 Agarose gel electrophoresis 

For analysis, separation or purification DNA fragments were supplemented with 1/5 of DNA 

loading buffer (0.1 % (w/v) bromophenol blue, 0.1 % (w/v) xylencyanol, 50 % (v/v) glycerol, 

to 50 mL with 1 x TBE buffer pH 8.3). After loading to agarose gel pockets (gels 0.7 % - 

1.2 % (w/v) in TBE buffer) electrophoreses was carried out at 40 – 120 V for 30 min to 4 h. 
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For visualization either ethidium bromide was added to the gel (25 µg/L). In case of Southern 

Blotting 1/10 volume of SBGR solution was added to the samples. DNA signals were 

visualized using gel imager at a wavelength of 302 nm. The size of DNA fragments could be 

determined by comparison with DNA markers (1 kb, NEB, 100 bp, NEB, DNA Size Standard 

λ DNA Hind III + ΦX174 DNA Hae III digests, Finnzymes). 

II.5.1.5 Purification of DNA fragments from agarose gels 

DNA fragments produced by PCR or via restriction digest were purified over agarose gel 

electrophoresis. The desired fragment out of the mixture was cut out with a scalpel. The DNA 

from the gel slice was purified with NucleoSpin Extract II Kit from Macherey & Nagel 

according to manufacturer’s protocol. 

II.5.1.6 Determination of DNA concentration 

DNA concentration was determined by measurement of absorption at 260 nm, using 

Nanodrop ND-1000. Therefore the instrument is calibrated with the buffer/water in which 

nucleotide sample is solved, followed by recording the absorption spectrum of 1 µL of the 

sample. Concentration was directly calculated by the software in ng/µL. 

II.5.1.7 Isolation of total RNA & construction of cDNA library 

Total RNA from endophytes was isolated by the so called Borax-method. All solutions and 

buffers were prepared with diethylpyrocarbonate (DEPC) treated water. Four grams of the 

biomaterial (mycelium of endophytic fungi) was homogenized using liquid nitrogen, mortar 

and pistil. After transfer to a SS-34 centrifugation tube (Beckmann-Coulter) and addition of 

15 mL borax buffer (0.2 M sodium tetraborate, 30 mM EGTA, 1 %(w/v) SDS, 1 %(w/v) 

deoxycholate, 1 %(v/v) Nonidet NP-40, 2 %(w/v) polyvinylpyrolidone, 10 mM DDT, pH9.0) 

the biomass was further disrupted by treatment with ultraturrax (15.000 rpm) for 5 min. The 

resulting suspension was incubated for 1 h at 42 °C, followed by adding 1.2 mL of 2 M KCl 

solution and incubation for 1 h on ice, leading to precipitation of SDS. After clearing of the 

solution by centrifugation (12.000xg, 20 min, 4 °C) and filtration through sterile Miracloth 

5 mL of a 8 M LiCl solution were added for selective precipitation of RNA over night at         

-20 °C. RNA precipitate was obtained by centrifugation (12.000xg, 30 min, 4°C) and washed 

three times with cold 2 M LiCl solution prior to re-suspension in 2.8 mL TES buffer (50 mM 

Tri/HCl pH 5.7, 5 mM EDTA, 50 mM NaCl) supplemented with 1 M CsCl. This suspension 

was used to overlay 1.2 mL of TES buffer supplemented with 5.7 M CsCl in an ultra 
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centrifuge tube. Density gradient centrifugation was carried out at room temperature with 

100.000xg for 16 h. Pure RNA occurs as a pellet, whereas other components, for example 

DNA, are in the supernatant according to their lower density. RNA was dissolved in 500 µL 

TE buffer (10 mM Tris/HCl pH8.0, 1 mM EDTA) and used for isolation of messenger RNA 

via the batch protocol of Qiagen Oligotex mRNA Mini Kit. With the mRNA a cDNA-RACE 

library was constructed using Marathon cDNA Amplification Kit (Clonetech) according to the 

manufacturer’s instructions.   

II.5.2 In vitro amplification of DNA by polymerase chain reaction 

Polymerase chain reaction (PCR) is a method for selective amplification of DNA fragments 

from plasmid or genomic DNA (templates). Two oligo nucleotides complementary to the 5’-

prime-end and inverse complementary to 3’-prime-end of the desired DNA fragments are 

used as primers (see tables in the following chapters). After annealing of the primers at their 

respective binding temperature to the template they are elongated by the added thermostable 

polymerases. All primers used in this thesis were ordered from Invitrogen or MWG Biolabs. 

As polymerases Herculase II (Stratagene) or Expand high fidelity system (Roche) were used. 

PCR reactions were pipetted according to manufacturer’s protocols. PCR was performed with 

GeneAmp PCR System (Applied Biosystems). 
 

Table II-3: General setup of PCR programs; Tm is the melting temperature of the primers, it is calculated 
with the formula: Tm=(A+T)*2+(G+C)*4-6. 
Cycle No. Reaction step Time Temperature 

    
    
1 denaturation of template DNA 3-5 min 95 °C 

    
    
 

denaturation 30 sec 95 

    
25-35 annealing of primers 30 sec Tm 

    

 
elongation 30 sec-1 min /kb 68 °C or 72 °C 

    
    
1 final elongation 7 min 68 °C or 72 °C 
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II.5.2.1 Primers for amplification of terpene synthase 0021_TS_1762 

For amplification of terpene synthase 0021_TS_1762 from EF0021 the primers listed in Table 

II-4 were used. 0021_TS_1762_cosyn synthesized by the company GeneScript was amplified 

out of pUC57 construct delivered. All other PCRs were made with pTrcHis2-

0021_TS_1762_cosyn construct as a template, amplifying the whole vector (plasmid 

backbone and gene) leading to variance according to primer sequences. For rapid 

amplification of cDNA ends (RACE) from EF0021 cDNA-library, primers were used in PCR 

according to protocol of Marathon cDNA amplification kit (Clonetech) against adapter 

primer1 (AP1: 5’–CCATCCTAATACGACTCACTATAGGGC–3’) delivered by the 

manufacturer. 

 
Table II-4: Primer used for amplification of 0021_TS_1762_cosyn, 0021_TS_1762_del, intron1 variants of 
0021_TS_1762_cosyn and amplification of 0021_TS_1762 cDNA and the two housekeeping genes citrate 
synthase (Cit-primer) and pyruvate kinase (PKi-primer) via RACE-PCR. 

Primer name Primer sequence 

  

  

1762_i1_forw_1 5‘GCACGTCTGACCTTCCCGCAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3‘ 

1762_i1_forw_2 5‘-CGTCTGACCTTCCCGCAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3‘ 

1762_i1_forw_3 5‘-CTGACCTTCCCGCAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3‘ 

1762_i1_forw_4 5‘-ACCTTCCCGCAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3‘ 

1762_i1_forw_5 5‘-TTCCCGCAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3‘ 

1762_i1_forw_6 5‘-CCGCAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3‘ 

1762_i1_forw_7 5’-CAGGAATCTGCTGTTGGTCAGTTCTCTTGG-3’ 

1762_i1_forw_8 5’-GAATCTGCTGTTGGTCAGTTCTCTTGG-3’ 

1762_i1_rev_1_P 5’-phosphate-GTACAGACGTTCGATAACGTCGGTGTAAGACTGAGACGG-3’ 

1762_i1_rev_2_P 5’-phosphate-CAGACGTTCGATAACGTCGGTGTAAGACTGAGACGG-3’ 

1762_i1_rev_3_P 5’-phosphate-ACGTTCGATAACGTCGGTGTAAGACTGAGACGG-3’ 

1762_i1_rev_4_P 5’-phosphate-TTCGATAACGTCGGTGTAAGACTGAGACGG-3’ 

1762_i1_rev_5_P 5’-phosphate-GATAACGTCGGTGTAAGACTGAGACGG-3’ 

1762_i1_rev_6_P 5’-phosphate-AACGTCGGTGTAAGACTGAGACGG-3’ 

1762_i1_rev_7_P 5’-phosphate-GTCGGTGTAAGACTGAGACGG-3’ 

1762_del_forw_P 5‘-phosphate-GACATGAAAGAGGACTCTCTG-3‘ 

1762_del_rev 5’-GTCCTGGATGAAGATGAATTCG-3’ 

1762_cosyn_forw 5‘-ATGCCGCCAGCAGGTATCAGCTTCCG-3‘ 

1762_cosyn_rev 5’-TTATACACGCAGTTTACCCAGG-3’ 

CycC1762 Race for1 5’-GATGCCTCCCGCTGGGATCTCCTTTCGATCTC-3’ 
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Table II-4 continued 
CycC1762 Race rev1 5’-GATATCACCAATATCACCAAGCTTCTTCTCAG-3’ 

CycC1762 Race for2 5’-CGAACCGCGTCAGGCCTGCCGAACACTTGC-3’ 

CycC1762 Race rev2 5’-GTACGTACTGCTTCATAGCGTATGTCATCAC-3’ 

Cit_forw 5’-GCTCCTCACCGGGCAAGTTCCATCCACAAGC-3’ 

Cit_rev 5’-CGATGATGCATAGTCCATCAAAGCCTCAAATCG-3’ 

PKi_forw 5’-CCAAGGTCATCCAACCAGGACGCATCATCTACG-3’ 

PKi_rev 5’-CATGACACAATCGGCTCCATCCGTAACAGCG-3’ 

  
 

 

II.5.2.2 Amplification of Internal Transcribed Spacer (ITS) regions 

ITS regions of isolated Taxus endophytes were amplified via PCR using the universal primers 

ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-

3’) (SIM et al. 2010). For amplification the 2x PCR-Master mix Solution (i-Max II, INtRON 

Biotechnology), 1 µL of each Primer (50 µM) and 20 ng genomic DNA (water to 25 µL) were 

used. PCR products were purified with NucleoFast 96 PCR plates (Machery-Nagel) according 

to manufacturer’s protocol and sequenced directly using ITS1 and ITS4 as sequencing 

primers. 

II.5.3 Enzymatic modifications of DNA and transfer to E. coli 

II.5.3.1 Restriction with endonucleases 

Enzymatic hydrolysis with endonucleases was used for control of ligations, modification of 

DNA ends for further ligation reactions, linearization of plasmids, partial digest of genomic 

DNA for phage library construction, insert size determination of phage vector inserts and 

complete restriction for Southern Blotting analysis. In case of plasmid controls and insert size 

determination 300 ng-1 µg DNA were used and reactions performed for 3 h. For partial 

restriction for library construction 3-5 µg of DNA and 1.25 U of restriction enzyme were used 

in reaction. Restriction was stopped after 30 min by cooling on ice and immediate 

precipitation.  

For Southern Blotting analysis 110 µg DNA were cut by 100 U of restriction enzyme over 

night.  
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II.5.3.2 Ligation 

Linking DNA fragments was performed with T4 DNA ligase (NEB). Reaction was done 

using a molar ratio vector:insert of 1:3 or 1:5 together with buffer, ligase and water (total 

volume 5-10 µL) by incubation for 3-24 h at 16 °C or 4 °C. In case of 1762 intron1 variants 

the linear PCR products were re-circulated.  

II.5.3.3 Transformation of DNA into competent E. coli 

All transformations were performed with commercially available competent cells (II.2.1). For 

electro-transformation cell aliquots were thawed on ice while DNA (3-5 µL of ligation 

reaction or 50-200 ng of plasmid) was placed in a pre-cooled sterile electro cuvette. After 

adding cells for electroporation with 2.5 kV for 5 msec 500-750 µL SOC medium were 

added. The suspension was incubated at 37 °C for up to 1 h for regeneration of the cells prior 

to plating on selective agar plates. 

Transformation into chemical competent E. coli was done according to manufacturer’s 

protocol. 

II.5.4 Construction of genomic λ-phage libraries 

II.5.4.1 Ligation into Lambda Dash II 

The DNA fragments obtained by non complete restriction digest were cloned into phage 

vector Lambda Dash II (predigested with BamHI). Therefore 1 µL vector (1 µg), 0.5 µL 10x 

T4 Ligase buffer, 0.5 µL T4-DNA Ligase and 0.4 µg (1-3 µL) of insert DNA were combined 

in a plastic vial. After filling reaction to a total volume of 5 µL, ligation was incubated over 

night at 4 °C.  

II.5.4.2 Packaging reaction 

The packaging reaction represents the critical step of library construction since it affects the 

number of phage clones obtained in the end. 2-3 µL of each ligation reaction were transferred 

to a vial of Gigapack III XL Packaging extract. The suspension was mixed by stirring with a 

pipette tip and incubated for 1 hour and 45 min at 22 °C. Due to their high temperature 

sensitivity the packaging extracts have to be thawed quickly. DNA has to be added to the 

extract when it just began to thaw. Furthermore packaging time should not be enlarged 

because of decreasing packaging efficiency in case of longer incubation. The reaction was 

stopped by addition of 500 µL of SM buffer (50 mM Tris/HCl pH7.5, 100 mM NaCl, 8 mM 
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MgSO4*7 H2O, 0.01 % gelatin). After extraction with 20 µL of CHCl3 for protein removal the 

final library (water phase) was transferred to a fresh 1.5 mL vial and stored at 4 °C. 

II.5.4.3 Determination of library titer 

To determine the number of phage clones in the library E. coli XL1Blue(P2) cells were 

incubated to an optical density (OD600nm) between 0.5 and 1. After harvesting the cells they 

were resuspended in 10 mM MgSO4 and diluted to an OD600nm of 0.5. One µL of the library 

was added to 200 µL cell suspension and the resulting mixture was incubated for infection for 

15 min at 37 °C. Afterwards cells were pipetted into 3 mL of pre-warmed (50 °C) NZY-Top 

agar, mixed and spilled onto pre-warmed NZY agar plates. The liquid agar was dispensed 

over the plate by gently shaking. Plates were stored at room temperature until the Top-agar 

was solid. Plaque development was carried out by incubation at 37 °C over night. The size of 

the library could be determined by multiplication of plaque number with the total library 

volume. In general all titers were specified in “plaque forming unit per milliliter” (pfu/mL). 

II.5.4.4 Determination of packaging efficiency 

The packaging efficiency of Gigapack III XL extracts could be determined with WT-λ-DNS 

(λcI857 Sam7), delivered with the construction kit from Stratagene. Therefore 0.2 µg were 

packed into phages as described above. The reaction was stopped by adding 1 mL SM buffer 

(50 mM Tris/HCl, pH7.5, 100 mM NaCl, 8 mM MgSO4*7 H2O, 0.01 % gelatin) and diluted 

1:10000. 200 µL E. coli XL1Blue MRA cell suspension in 10 mM MgSO4 with an 

OD600nm=0.5 were infected with 10 µL of the phage dilution and plated as described before. 

For a good efficiency around 400 plaques should grow under these conditions. 

II.5.4.5 Plating of the library 

Volume of phage suspension used for infection was chosen according to the titer of the 

library. Aim was to get as many clearly separated plaques per plate as possible. Analog to the 

titer determination procedure libraries were plated on NZY agar plates. 

II.5.4.6 Plaque lifts 

To screen library plates via hybridization it was necessary to transfer the plaques or at least 

part of the phages from each plaque onto positively charged Nylon membranes (Hybond N+, 

diameter 82 mm or 136 mm, GE Healthcare). These membranes were put onto the plates for 

5 min, avoiding bubbles between membrane and agar. During this period the signs made on 
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the membranes before were copied on the plates to allow later identification of plaques 

responsible for radioactive signals. After removal from the plates membranes were incubated 

2 min in denaturation buffer (1.5 M NaCl, 0.5 M NaOH) followed by neutralization for 5 min 

(1.5 M NaCl, 0.5 M Tris/HCl, pH 7.5), short washing in 0.2 M Tris pH 7.5 and 2xSSC (0.3 M 

NaCl, 34 mM sodium citrate, pH 7.0) and 30 min of air drying on a piece of whatman-paper. 

The dry filters were heated to 120 °C for 30 min in order to irreversibly fix the DNA on the 

membranes. 

II.5.5 Construction of Lambda Zap II libraries from Lambda Dash II clones 

II.5.5.1 Ligating the inserts 

The DNA fragments of λ-Dash II positive clones obtained by restriction digest with TSP509I 

(NEB) were cloned into phage vector Lambda Zap II (predigested with EcoRI). Therefore 

1 µL of vector (1 µg), 0.5 µL of 10x T4 Ligase buffer, 0.5 µL of T4-DNA Ligase and 0.4 µg 

of insert DNA were combined in a plastic vial. After filling up the reaction to a total volume 

of 5 µL, ligation was incubated over night at 4 °C. 

II.5.5.2 Packaging and plating of Lambda Zap II libraries 

Packaging and plating of libraries was done as described for λ-Dash II libraries. In contrast to 

the size selective packaging extracts Gigapack III XL here non size selective packaging 

extracts Gigapack III Gold were used (insert size 0-10 kb). For infection bacterial strain 

E. coli MRF’ was used. Positive clones were cored from the agar plate and inserts were 

prepared for sequencing by in vivo excision into pBlueskript SK-, instead of isolation of 

Lambda phage DNA from liquid phage cultures. 

II.5.5.3 In vivo excision of Lambda Zap II inserts 

Excision was done according to the manufacturer’s protocol (instruction manual, Lambda Zap 

II Predigested EcoRI/CIAP-Treated Vector Kit, Stratagene). E. coli clones were transferred to 

liquid culture for plasmid isolation. 

II.5.6 Southern Blotting 

Southern blotting experiments were performed according to a protocol for neutral transfer 

(SAMBROOK and RUSSELL 2001). Complete digest of up to 110 µg genomic DNA was 

separated on an 0.7 %(w/v) agarose gel for 4-5 h at 40 V. Preparation of the gel for blotting 
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involved one 30 min denaturing step in denaturation buffer (1.5 M NaCl, 0.5 M NaOH) and 

two neutralization steps of 30 min and 15 min, respectively in neutralization buffer (1.5 M 

NaCl, 0.5 M Tris/HCl pH7.5). Afterwards the blot was built as shown in Figure II-1. 

Capillary transfer of the DNA (transfer buffer 10x SSC, 1.5 M NaCl, 170 mM sodium citrate) 

from gel onto positively charged Nylon membranes (Hybond N+, size of the respective gel, 

GE Healthcare) took 12-24 h. After heat fixation (120 °C, 30 min) hybridization was 

performed as described below (II.5.8). 

 

 
Figure II-1: Schematic construction of a capillary driven Southern blot: 1 weight, 2 pack of paper towels 
(5-10 cm) for creation of capillary force, 3 layers of whatman paper, 4 positively charged nylon membrane, 
5 agarose gel, 6 inverted gel tray as support, 7 glass basin filled with transfer buffer. 
 

II.5.7 Construction of probes for hybridization screening 

II.5.7.1 Construction of probe templates 

For hybridization templates for labeling have to be constructed first. This can either be done 

by PCR followed by labeling of the resulting fragments with Klenow-polymerase or by 

synthesis of oligo-nucleotides labeled afterwards with polynucleotide-kinase. Oligo-

nucletides are listed in Table II-5. PCR was performed as described before with primers listed 

in Table II-6. 
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Table II-5: Oligo-nucleotides used as templates for labeling for taxadiene-5α-hydroxylase (T5H). 

Oligo name Oligo sequence 

    

  T5H-1 5’-GGCATCCCACAGTAGTACTCTGCGGCCCTGCGGGAAACCGGCTT  

 

ATTCTGTCCAACGAGGAGAAGCTGGTGCAGATGTCG-3’ 

  T5H-2 5’-CCACCACTTCGCCAATGGCTTTGATTTTCAAGCTCTTGTCTTCCAA 

 

TCCAGAATGCTATCAAAAAGTAGTTCAAGAGC-3‘ 

  
 

 
Table II-6: Primers for amplification of Taxol biosynthesis gene fragments for construction of hybridization 
probes; TDS: taxadiene synthase; T13H: taxane-13α-hydroxylase, T5H: taxadiene-5α-hydroxylase. 
Primer name Primer sequence 

    

  TDS1-forw 5’-GCAGCGCTGAAGATGAATGC-3’ 

TDS1-rev 5’-CGATTCGATACCCCACGATCC-3’ 

TDS2-forw 5’-GCCCTCGGCCTCCGAACCC-3’ 

TDS2-rev 5’-GCCATGCCGGATTCTTTCCACC-3’ 

TDS3-forw 5’-GGTGGAAGGAATCCGGCATGGCAG-3’ 

TDS3-rev 5’-GTCGCCAGCTCAAGGATACAAGCTC-3’ 

T13H-forw 5’-ATGGATGCCCTTAAGCAATTGGAAGTTTCCCC-3’ 

T13H-rev 5’-GCTCCTGCAGGTGCTCC-3’ 

T5H-forw 5’-CCAACGAGGAGAAGCTGGTGC-3’ 

T5H-rev 5’-GGTGGTGTCATAGGAGGCATGGAGC-3’ 

  
 

 

II.5.7.2 Labeling of double-stranded DNA with [α-32P]dATP 

Labeling with radioactive nucleotides was done with HexaLabelTM DNA labeling kit 

(Fermentas) according to manufacturer’s protocol. All reactions were done using 100 ng of 

template DNA and 1.85 MBq [α-32P]dATP (Hartmann Analytic). In case of TDS 33 ng of 

each fragment were used. Purification of the probes (removal of not incorporated nucleotides) 

was done using Sephadex G-25 gelfiltration columns (GE Healthcare) according to 

manufacturer’s protocol. Before adding the probes to hybridization reaction they had to be 

denatured at 99 °C for 10 min. 
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II.5.7.3 Labeling of oligo-nucleotides with [γ-32P]dATP 

Labeling of oligo-nucleotides was done via transfer of one radioactive phosphate to each oligo 

using polynucleotide-kinase (PNK). Therefore 20 pmol of each oligo (Table II-5), 5 µL 10x 

PNK buffer (NEB), 1.85 MBq [γ-32P]dATP (Hartmann Analytic), 20 U polynucleotide-kinase 

(NEB, 10 U/µL) and water to 50 µL were put together , mixed and incubated at 37 °C for 

30 min. After incubation the reaction mixture was purified with QIAquick Nucleotide 

Removal Kit (Qiagen) according manufacturer’s protocol for cleanup of radioactive samples. 

The eluted probe was directly used for hybridization. 

II.5.8 Lambda phage library hybridization screening 

II.5.8.1 Hybridization with long probes (II.5.7.2) 

Heat fixed membranes (Nylon N+, GE Healthcare) were transferred in hybridization rolls 

(GFL) and supplemented with 20 mL Roti-Hybri-Quick (Ready to use hybridization buffer, 

Carl Roth GmbH) + 100 µg/mL of salmon sperm DNA (Sigma) in. Prehybridization was 

carried out at 55 °C for 3h. Probes were added and hybridization was performed over night at 

55 °C. Washing steps were processed according to the manufacturer’s protocol (Roti Hybri 

Quick Manual, Carl Roth GmbH, Karlsruhe) for 30 min 1:2 dilution of the buffer, for 30 min 

1:5 dilution of the buffer and 15 min 1:10 dilution of the buffer at 55°C (IPS around 20-100 

for phage membranes). Southern blots were washed till the detectable radioactivity was 

reduced to max. 100 IPS. In case of re-used probes either the complete hybridization solution 

was transferred directly to a new hybridization roll or the stored solution (-20 °C) was thawed, 

denatured for 10 min at 99 °C and then added to the new roll. 

Visualization of signals occured by autoradiography on preflashed (Preflash unit, GE 

Healthcare) X-Ray films (Hyperfilm MP, GE Healthcare) after 4d incubation at -80°C in case 

of library screening experiments. Southern Blots were incubated up to 21 days, depending on 

stringency of the washing steps. For development, developing and fixing solutions from 

Sigma-Aldrich were used. 

II.5.8.2 Hybridization with oligo-nucleotides (II.5.7.3) 

Hybridization with oligo-nucleotides was carried out at 42 °C instead of 55 °C because of the 

reduced length of the probes. Re-usage of probes did not require denaturation, since single 

stranded probes were used. 
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II.5.8.3 Identification and isolation of plaques 

Identification of potential candidate plaques detected by signals obtained from hybridization 

experiments was done by comparing marks on the membranes/films to the films to those on 

the plates. Due to the unique possible orientation plaques fitting to signals could be clearly 

identified. 

The “positive” plaques were cut out including the agar under and around it with the bigger 

end of a Pasteur pipette. The phages were eluted from these agar/plaque pieces by incubation 

in 300 µL of SM buffer for two hours at 4 °C. Phage solutions could be stored at 4 °C for 

months. 

II.5.8.4 Re-screening of plaques isolated in first screening round 

Due to the high plaque density on the initial library plates all isolated phages were re-

screened. Therefore the complete procedure including plating, plaque lifting, hybridization 

and detection was repeated with phage solutions obtained according to II.5.8.3. In order to be 

sure to be able to identify and isolate single plaques phages were plated less dense. Clones 

from plates, where a strong enrichment of positive signals could be detected, were regarded as 

positive. Plaques were isolated and eluted in 200-300 µL of SM buffer. These suspensions 

were used for infection of liquid phage cultures. 

II.5.9 Sequencing 

II.5.9.1 Sanger sequencing 

Sequencing of plasmids and PCR products was performed in house of the IME by Raphael 

Soeur using 3730 DNA analyzer (Applied Biosystems) by Raphael Soeur at Fraunhofer IME. 

For this purpose 50 ng-1 µg of DNA were supplemented with 100 pmol of sequencing primer 

in a total volume of 30 µL.  

II.5.9.2 Next generation sequencing 

Phage DNA of PC4 and PC9 was shotgun sequenced by MWG Biotech GmbH. Fungal 

genomes were sequenced by Seq-It GmbH with 454 technology (EF0021) and by Source 

BioScience imaGenes GmbH by paired end sequencing (HiSEQ, Taxomyces andreanae). The 

assembled sequence data was delivered by the companies in fasta format. 
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II.5.9.3 Programs for sequence analysis 

Analysis of sequencing results was done using CLC workbench 6.3 for local blast x analysis 

of fungal genomes and phage clone DNA, DNASTAR Lasergene package for assembly and 

alignment and construction of phylogenetic trees, “FGENESH“-software 

(http://linux1.softberry.com/) for intron/exon prediction and Clone Manager Suite 8 for 

restriction analysis. Annotation of genes/enzymes was done using NCBI blast x/n/p search. 

II.5.9.4 Proteins used for local blast analysis 

Following tables list the protein sequences used for local blastx analysis with CLC workbench 

in order to identify terpene synthases and P450 oxygenases that might be involved in 

secondary metabolism of the fungal species and are possible candidates for enzymes involved 

in fungal Taxol biosynthetic pathway (Table II-9, Table II-8). Furthermore the sequence list 

of already known proteins of Taxol biosynthesis from Taxus also used for blast x analysis is 

shown in Table II-7.  
 

Table II-7: Taxol biosynthesis protein sequences from Genebank used for local blastx analysis.  
Accession No.  Description 

Q41594 taxa-4(5),11(12)-diene synthase [Taxus brevifolia]  

AAS89065 taxoid 2-α-hydroxylase [Taxus canadensis] 

AAU93341 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis] 

Q8W4T9 taxoid 13-α hydroxylase [Taxus cuspidata] 

Q9AXM6 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata] 

AAX59902 cytochrome P450 reductase [Taxus wallichiana var. chinensis] 

AAO66199 taxane 14β-hydroxylase [Taxus cuspidata] 

Q8LL69 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase [Taxus canadensis] 

AAL92459 phenylpropanoyltransferase [Taxus cuspidata] 

AAY16196 10-deacetyl baccatin III acetyltransferase [Taxus wallichiana var. mairei] 

Q9M6F0 taxadien-5-α-ol O-acetyltransferase [Taxus cuspidata] 

AAT79354 taxane 2-α-O-benzoyltransferase [Taxus x media] 

AAQ75553 taxoid 7-β-hydroxylase [Taxus cuspidata] 
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Table II-8: P450 oxygenase protein sequences from Genebank used for local blastx analysis.  
Accession No.   Description 

AAS89065 taxoid 2-α-hydroxylase [Taxus canadensis] 

NP_180997 CYP710A1; C-22 sterol desaturase/ oxygen binding [Arabidopsis thaliana]  

NP_196416 flavonoid 3'-monooxygenase/ oxygen binding [Arabidopsis thaliana] 

O13317 isotrichodermin C-15 hydroxylase [Fusarium sporotrichioides] 

CAA75566 cytochrome P450 monooxygenase [Gibberella fujikuroi]  

AAX59902 cytochrome P450 reductase [Taxus wallichiana var. chinensis] 

XP_001881086 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82] 

AAU93341 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis] 

CAE09055 cytochrome P450 oxidoreductase [Gibberella fujikuroi] 

Q8W4T9 taxoid 13-α hydroxylase [Taxus cuspidata] 

CAA75567 cytochrome P450 monooxygenase [Gibberella fujikuroi]  

CAA75565 cytochrome P450 monooxygenase [Gibberella fujikuroi] 

BAA33717 cytochrome P450 [Coprinopsis cinerea] 

XP_001835122 cytochrome P450 [Coprinopsis cinerea okayama7#130]  

NP_197962 GA3; ent-kaurene oxidase/ oxygen binding [Arabidopsis thaliana]  

AAK11564 ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] 

NP_850337 CYP98A3; p-coumarate 3-hydroxylase [Arabidopsis thaliana]  

ABQ22962 cytochrome P450 [Bacillus subtilis subsp. subtilis str. 168] 

CAH64679 cytochrome P450 monoxygenase [Botryotinia fuckeliana] 

AAO64248 trichothecene C-8 hydroxylase [Fusarium sporotrichioides] 

XP_001886909 cytochrome P450 monooxygenase CYP63 [Laccaria bicolor S238N-H82]  

BAI52803 fusicoccadiene 8-ol C-15 hydroxylase [Alternaria brassicicola] 

CAE76652 cytochrome P450 monooxygenase [Botryotinia fuckeliana] 

BAI52800 fusicoccadiene C-8 hydroxylase [Alternaria brassicicola] 

BAI52801 cytochrome P450 [Alternaria brassicicola] 

XP_001830548 cytochrome-450 hydroxylase [Coprinopsis cinerea okayama7#130]  

Q9AXM6 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata] 

CAP58781 cytochrome P450 monooxygenase [Botryotinia fuckeliana] 

XP_747185 cytochrome P450 [Aspergillus fumigatus Af23]  

EDP47672 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163] 

EDP55514 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163] 

XP_002910681 cytochrome P450 oxidoreductase [Coprinopsis cinerea okayama7#130]  

NP_851105 BR6OX1 brassinosteroid-6-oxidase [Arabidopsis thaliana] 

NP_566462 CYP90D1; oxidoreductase, putative cytochrome P450 [Arabidopsis thaliana] 
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Table II-9: Terpene synthase protein sequences from Genebank used for local blastx analysis. 
Accession No. Description 

BAD29971 aphidicolan-16β-ol synthase [Phoma betae] 

Q6WP50 Presilphiperfolan-8-β-ol synthase [Botryotinia fuckeliana] 

ABC4641 ent-kaurene synthase [Gibberella intermedia] 

XP_001832573 CND15p [Coprinopsis cinerea okayama7#130], Cop1 

XP_001836556 terpene synthase [Coprinopsis cinerea okayama7#130], Cop2 

ABC4641 ent-kaurene synthase [Gibberella intermedia] 

XP_001832925 hypothetical protein CC1G_12294 [Coprinopsis cinerea okayama7#130], Cop3 

XP_001836356 hypothetical protein CC1G_06441 [Coprinopsis cinerea okayama7#130], Cop4 

XP_001834007 hypothetical protein CC1G_09421 [Coprinopsis cinerea okayama7#130], Cop5 

XP_001832549 hypothetical protein CC1G_03563 [Coprinopsis cinerea okayama7#130], Cop6 

Q38710 (-)-abieta-7(8),13(14)-diene synthase [Abies grandis] 

BAB39207 diterpene cyclase-2 [Kitasatospora griseola] 

BAG16278 diterpene cyclase [Nocardia brasiliensis] 

BAG30962 copalyl diphosphate synthase [Phomopsis amygdali] 

NP_001053841 ent-kaur-16-ene synthase [Oryza sativa Japonica Group] 

BAB62102 aphidicolan-16β-ol synthase [Phoma betae] 

O04408 ent-copalyl diphosphate synthase [Pisum sativum] 

Q947C4 levopimaradiene synthase [Ginkgo biloba] 

Q675L5 isopimaradiene synthase [Picea abies] 

AAT65717 geranylgeranyl diphosphate synthase [Aspergillus flavus] 

Q8NJA1 trichodiene synthase [Fusarium mesoamericanum] 

BAB39206 diterpene cyclase-1 [Kitasatospora griseola] 

XP_002396668 hypothetical protein MPER_03050 [Moniliophthora perniciosa FA553] 

O13284 ent-kaur-16-ene synthase [Phaeosphaeria sp. L487] 

Q03471 aristolochene synthase [Penicillium roqueforti] 

P13513 trichodiene synthase [Fusarium sporotrichioides] 

Q675L4 levopimaradiene [Picea abies] 

BAF45924 fusicoccadiene synthase [Phomopsis amygdali] 

Q50EK2 levopimaradiene synthase [Pinus taeda] 

XP_001265719 terpene synthase metal binding domain protein [Neosartorya fischeri NRRL 181] 

BAG30961 phyllocladan-16α-ol synthase [Phomopsis amygdali] 

Q41594 taxa-4(5),11(12)-diene synthase [Taxus brevifolia] 

XP_003013365 terpene synthase family protein [Arthroderma benhamiae CBS 112371] 

Q00G37 ent-cassa-12,15-diene synthase [Oryza sativa Japonica Group] 

XP_001887869 mycorrhiza-upregulated terpene synthase mbd protein [Laccaria bicolor S238N-H82] 

Q9UVY5 ent-kaur-16-ene synthase [Gibberella fujikuroi] 

XP_002384087 lanosterol synthase, putative [Aspergillus flavus NRRL3357] 
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II.6 Biochemical Methods 

II.6.1 Protein extraction 

For protein extraction harvested biomass was re-suspended in 3 mL/g cells of buffer T 

(100 mM Tris/HCl pH7.4, 10 mM MgCl2, 5 mM β-mercaptoethanol). Cells were disrupted 

mechanically with glass beads (0.2–0.5 mm, Roth) and raw extract obtained by centrifugation 

(4500 rpm, Heraeus 3S-R, or in case of multi – well plates 3280xg Eppendorf, 5810R). All 

centrifugation steps were performed at 4 °C and samples were always stored on ice. Raw 

extracts were either used directly for analysis and test reactions or stored on ice for a 

maximum of one week. Protein concentration was determined in triplicates via Bradford assay 

(Roth, 1:5 dilution). 

II.6.2 Terpene synthase activity assay 

For in vitro testing crude extract was used (1 volume protein extract; 3 volumes 100 mM 

Tris/HCl pH7.4, 10 mM MgCl2, 5 mM β-mercaptoethanol; 50 µM substrate 3H-GGPP or 14C-

IPP, Biotrend/DMAPP, Sigma, total volume 500 µL). Reactions were incubated at 30 °C over 

night. After addition of 500 µL of brine reactions were extracted twice with the same volume 

of ethyl acetate. Extracts were concentrated in air-stream and analyzed via radio-TLC (silica 

plates, Merck, cyclohexane/ethyl acetate 9:1). Detection was done with Radio-TLC Scanner 

RITA Star (Raytest, Straubenhardt, Germany). Test reactions for 1762 intron1 variants were 

performed in carbon coated 96 well plates in order to adsorb the none polar products 

generated during reaction over night at 30 °C (HEINIG et al. 2010). Wells were emptied, 

dried and extracted with 500 µL of cyclohexane each for analysis. Extracts were concentrated 

in air-stream and analyzed via radio-TLC (silica plates, Merck, cyclohexane/ethyl acetate 

9:1). Detection was done with Radio-TLC Scanner RITA Star (Raytest, Straubenhardt, 

Germany). 
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II.6.3 SDS polyacrylamid gel electrophoresis 

Besides functional testing of proteins raw extracts were analyzed via sodium dodecyl sulfate 

polyacrylamid gel electrophoresis (SDS-PAGE). Therefore samples (12.5 µL) were first 

supplemented with 2.5 µL loading buffer (10x: 62.5 mM Tris/HCl pH 6.8, 30 % (v/v) 

glycerol, 10 % (v/v) β-mercaptoethanol, 4 % (w/v) SDS, 0.05 % (w/v) bromophenol blue) and 

denatured at 99 °C for 10 min. Separation was done using a discontinuous PAA gel consisting 

of a 4 % collection gel (625 µL of 1 M Tris/HCl pH6.8, 830 µL of 30 % (v/v) 

polyacrylamide, 50 µL of 10 % (w/v) SDS, 15 µL of 20 % (w/v) APS, 5 µL TEMED, 

3625 µL ddH2O) and a 10 % separation gel (3750 µL of 1 M Tris/HCl pH8.8, 3300 µL of 

30 % (v/v) polyacrylamide, 100 µL of 10 % (w/v) SDS, 30 µL of 20 % (w/v) APS, 10 µL 

TEMED, 2785 µL ddH2O). Electrophoresis was performed in a Mini-protean chamber 

(Biorad) for 45 min at 180 V in SDS – running buffer (125 mM Tris/HCl pH8.3, 960 mM 

glycerol, 0.5 % (w/v) SDS). As size standard 5 µL of a protein ladder (Fermentas) were used.  

After separation of protein extracts the collection gel was cut off and the separation gel was 

either stained with Coomassie according to (WONG et al. 2000) or used for Western Blot 

analysis. 

II.6.4 Western Blot analysis 

Transfer of proteins to nitrocellulose membranes (0.45 µm, Millipore) was carried out in a 

Biorad “Tank Blot” apparatus (transfer buffer: 1.44 % (w/v) glycine, 0.3 % (w/v) Tris, 

20 % (v/v) methanol) by applying an electric field vertical to the gel (120 V, 90 min).  

The immunological detection procedure is summarized in the following table. It is based on 

the binding of an anti – HIS antibody to the proteins on the membrane that carry an artificial 

HIS-6 tag. A secondary antibody, which is labeled with alkaline phosphatase binds to the first 

antibody. By final incubation with alkaline phosphatase substrate NBT/BCIP (nitro-blue 

tetrazolium chloride/5-bromo-4-chloro-3'-indolyphosphate; Roth, 2:1 mixture with 20 % (v/v) 

formamide) proteins carrying HIS-tag appear as violet bands. 

Buffers used were 10x PBS (1.37 M NaCl, 27 mM KCl, 81 mM Na2HPO4, 15 mM KH2PO4), 

PBS-T (1x PBS, 0.05 % (v/v) Tween20) and alkaline phosphatase buffer (AP: 100 mM Tris-

HCl pH9.6, 100 mM NaCl, 100 mM MgCl2) 
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Table II-10: Western blotting procedure, including all working steps, reagents and incubation times. 
Step Reagent Time 

   blocking of membrane 5 % (w/v) milk powder in PBS-T 90 min 

   
binding of first antibody rabbit anti HIS antibody 60 min 

   
washing  PBS-T 3x 15 min 

   
binding of secondary antibody goat anti-rabbit, AP labeled 60 min 

   
washing  PBS-T 3x 15 min 

   
equilibration in AP buffer AP buffer 20 min 

   
detection reaction NBT/BCIP 1:100 in AP buffer until signal 

  
development 

   
stopping reaction water 5 min 

      
 

II.7 Phytochemical methods 

II.7.1 Organic solvent extraction of taxanes 

The media of endophytic fungi’s cultures were extracted twice with equal volume of 

chloroform. The resulting organic solution was dried over magnesium sulfate and evaporated 

to dryness. The raw product was resolved in methanol. 

Plant material, Taxus needles and Tobacco leafs, was lyophilized and afterwards extracted 

with dichloromethane/methanol 1:1 by soxhlet extraction. The resulting organic solution was 

evaporated to dryness, and resolved in dichloromethane. After two times extraction with 

water the organic layer was dried over magnesium sulfate, the solvent evaporated and the raw 

product dissolved in methanol. 

II.7.2 Anti-Taxane Competitive Inhibition Enzyme Immuno Assay (CIEIA) 

The immunoassay was carried out according to the protocol of manufacturer (Immunoassay 

for the quantitative detection of taxanes in biological matrices, Cardax Pharmaceuticals, 

Hawaii). The test represents a solid phase competitive immunoassay. Taxane concentration is 

measured by the amount of inhibition of the reaction of anti-taxane-antibody with the 



II Material and Methods 

 

56 

 

 
 

immobilized Taxol protein conjugate (antigen). First 100 µL of a 1:100 dilution of taxol-

protein coating antigen in PBS-buffer (50 mM Na3PO4, 0.15 M NaCl, pH 7.0) in the required 

number of wells of an 96 well microtiter plate. The covered plate was incubated at room 

temperature for one hour. After washing six times with TBS-T buffer (50 mM Tris, 0.15 M 

NaCl, 0.05 %(v/v) Tween-20, pH 7.0) wells were blocked by incubation for 1 hour at room 

temperature with 200 µL of 1 % BSA in PBS, followed by another 4 washing steps with   

TBS-T. Next the extracts or taxol standard solutions were applied in a total volume of 50 µL 

in BPT-M buffer (0.25 %(w/v) BSA, 0.05 %(v/v) Tween-20, 20 %(v/v) methanol in PBS). As 

background control at least 5 wells were incubated with BPT-M buffer. Detection was 

performed by first addition and 1 hour incubation of 1:100 dilution of anti-taxane antibody in 

BPT buffer (0.25 %(w/v) BSA, 0.05 %(v/v) Tween-20 in PBS), four times washing with 

TBS-T and secondly 1 hour incubation with alkaline-phosphatase labelled goat anti-rabbit 

IgG conjugate diluted in BPT. For colour development alkaline phosphatase substrate 

(1 mg/mL in alkaline phosphatase buffer, pH 9.5) was added. The covered plates were 

incubated for another hour and afterwards analysed with a dual wavelength ELISA reader 

(reference wavelength = 650 nm, sample wavelength = 405 nm). 

For determination of standard curve taxol in concentrations of 111, 37, 12.33, 4.11, 1.37, 

0.46, 1.15 ng/mL was used (Table II-11, Figure II-2). The samples were tested in different 

dilutions. Values lying in linear range of the standard curve were used for calculation of the 

concentration. 

 
Table II-11: standard curve for anti-taxane immunoassay, background absorption was 0.109, B0 is the 
absorbance without inhibition. 

Sample Absorbance [405 nm] B/B0 Corrected absorbance [405 nm] Concentration [ng/mL] 

     
     

Taxol 1 0.139 0.05 0.03 111 

Taxol 2 0.136 0.04 0.028 37 

Taxol 3 0.143 0.05 0.034 12.33 

Taxol 4 0.158 0.08 0.049 4.11 

Taxol 5 0.2 0.14 0.092 1.37 

Taxol 6 0.276 0.26 0.167 0.46 

Taxol 7 0.401 0.46 0.293 0.15 

B0 0.639 0.83 0.53 0 
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Figure II-2: Standard curve for determination of amount of taxane production via CIEIA 
 

II.7.3 LC/MS/MS analysis of fungal and plant taxoid extracts 

LC/MS/MS was performed using “multiple reaction monitoring” scan mode with the 

QTrap3200 system from Applied Biosystems. The three most intensive mass transitions for 

three standard substances Taxol, Baccatin III and 10-Deacetyl-Baccatin III (Sigma-Aldrich) 

were used for detection (Table II-12) in ESI negative ionisation mode (conditions: curtain gas 

25 psi, CAD gas medium, ionspray voltage -4500 V, temperature 450°C, gas1 50 psi, gas2 

65 psi). The MS method was combined with separation of the substances via HPLC (column: 

Curosil PFP 150x3 mm, 3 µm, Phenomenex, oven: 25 °C, flow rate: 300 µL/min, solvent A: 

98 % water 2 % ACN + 10 mM NH4OAc, solvent B: 2 % water 98 % ACN + 10 mM 

NH4OAc, gradient: 0 min 70 % A, 0.5 min 70 % A, 15 min 0 % A, 20 min 0 % A, 21 min 

70 % A, 23 min 70 % A).  
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Table II-12: MS parameters of MRM method for detection of Taxol, 10-Deacetyl baccatin III and 
Baccatin III; DP: declustering potential, EP: entrance potential, CE: collision energy, CXP: collision cell exit 
potential. 
Compound Mother ion [m/z] Fragments [m/z] DP [V] EP [V] CE [V] CXP [V] 

              

       10-Deacetyl baccatin III 543.2 120.9 -55 -10 -30 -2 

  
391.2 -55 -10 -20 -4 

  
76.8 -55 -10 -76 0 

Baccatin III 645.2 120.8 -35 -6.5 -28 0 

  
543.2 -35 -6.5 -24 -6 

  
76.9 -35 -6.5 -88 0 

Taxol 852.3 525.2 -35 -9 -22 -6 

  
120.9 -35 -9 -44 -2 

  
319.2 -35 -9 -46 -4 

              
 

 

II.7.4 Semi-preparative HPLC  

Semi preparative HPLC was used for control of authenticity of detected 10-Deacetyl-baccatin 

III from EF0021 organic extract. Chromatography was performed with Shimadzu LC-20AD 

system using column Gemini C18 (250x10 mm, 5 µm, Phenomenex) and Diode array detector 

(254 nm) for detection and fraction collection (oven: 25 °C, flow rate: 4 mL/min, solvent      

A: 98 % water 2 % ACN + 10 mM formic acid, solvent B: 2 % water 98 % ACN + 10 mM 

formic acid, gradient: 0 min 90 % A, 3 min 70 % A, 50 min 50 % A, 55 min 0 % A, 60 min 

0 % A, 63 min 90 % A, 65 min, fractions collected: 2.3 mL). 

Retention time for 10-DAB was determined to 31.7 min (fractions 51, 52) analyzing pure 

substance (Sigma-Aldrich). In the analysis of EF0021 extract (injection volume: 100 µL) 

these fractions were collected. Volume was reduced to ~200 µL and samples were analyzed 

via LC/MS/MS (II.7.3).    
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III Results 

III.1 Analytical methods for the detection of taxanes 

As described in detail in the introduction the detection of taxanes from endophytes’ organic 

extracts was done with several different methods up to now, including immunological 

detection, thin layer chromatography (TLC), liquid chromatography with different detection 

methods as UV or mass spectrometry, infrared or nuclear magnetic resonance spectroscopy 

(NMR) (ZHOU et al. 2010). 

Of course all these methods have advantages as well as disadvantages and the choice of the 

detection system has to be well considered. The major challenge in the present case was the 

analysis of crude organic extracts consisting of a complex mixture of different organic 

molecules and besides the searched taxanes. Furthermore according to literature the molecules 

of interest were supposed to be present only in very low concentrations. Thus the detection 

method had to be highly sensitive and additionally also selective for taxanes to avoid 

elaborate purification steps. Several of the methods mentioned do not fulfill all of these 

requirements. Some of the methods seem to be not sensitive enough and require pure 

substances as for example NMR spectroscopy although by using it the most detailed 

information about the analyzed molecule could be obtained. Others, like TLC or simple UV 

detection lack the desired selectivity; the doubtless identification of certain compounds from 

crude extracts is difficult if not impossible at all.  

On this background two fundamentally different methods were used in this study, one 

immunological assay that probably represents the most sensitive detection method and triple 

quadrupol LC/MS/MS for identification of taxanes from complex crude extracts according to 

structural features meaning in characteristic molecule fragmentation.  

Pre-screening was done using the commercially available immunological system, based on 

competitive inhibition (CIEIA). An anti-taxane antibody is used, which is able to capture 

Taxol and taxoid compounds from the organic extract as well as to bind to taxanes coated on 

an immobilized antigen meaning there is a competition between these two possible binding 

partners. 

For detection a secondary antibody labelled with alkaline phosphatase is used. Hence, if 

taxanes are present in the sample less antibody binds to the taxane coated antigen and the 

colour development catalyzed by alkaline phosphatase is decreased in comparison to samples 
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not containing taxanes. Concentration of taxoids is proportional to this reaction’s inhibition 

(Cardax Pharmaceuticals, Hawaii). This method was for example already used for screening 

of taxane producing endophytes from Taxus baccata (CARUSO et al. 2000b). This 

competitive immuno assay is extraordinary sensitive, but does not deliver proof for taxoid 

structures. Due to this lack of structure related information cross reactivities to other 

compounds present in complex organic raw extracts are possible.  

Therefore as a second detection method LC/MS/MS in “multiple reaction monitoring” scan 

mode (MRM) was used. By using MRM it is possible to select for a specific ion in 

Quadrupole 1 (Q1), for example the molecular ion of a compound. Quadrupole 2 (Q2) is used 

as collision cell. The ions isolated in Q1 are fragmented into molecule specific ions, prior to 

selection of these fragments in Quadrupole 3 (Q3) and detection (Figure III-1).   

The major advantage of this analysis method is the high selectivity for the respective 

compound by detection of characteristic fragments obtained after selection for the molecule 

ion. Although the total sensitivity might be lower in comparison to scanning for the mother 

ion, due to loss of all ions additionally obtained through fragmentation, the signal to noise 

ratio increases because of the strict selection. Hence, this method is highly specific on 

structural features of the analyte molecules. In combination with the characteristic retention 

times on HPLC for the compounds this approach allows the doubtless detection and 

identification of the desired molecules from complex natural product extracts obtained from 

plants and fungi and is therefore the best available detection method for the present analytical 

problem. 

 

Q1 Q3Q2

Selection for 
molecule ion

Fragmentation Selection for
specific fragment  

Figure III-1: Scheme of “multiple reaction monitoring” (MRM) triple quadrupol mass spectrometry scan 
mode. Q1, Q2, Q3: quadrupol 1, 2, 3. 
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For the analysis of endophytic fungi’s organic extracts a method for LC/MS/MS analysis was 

created, using three commercially available reference substances, 10-Deacetylbaccatin III, 

Baccatin III and Taxol. For each compound the optimal mass spectrometry parameters were 

determined, including declustering potential, entrance potential, collision cell entrance and 

exit potential. Furthermore a collision energy ramp was used to find the three most intense 

mass transitions with corresponding collision energies for the molecules.  

These resulting individual MRM methods were merged and a mixture of all three standards 

was injected multiple times for optimization of electron spray ionization (ESI) conditions, 

including voltage, temperature and gas parameters (II.7.3). For all three compounds the 

negative ionization mode was found to be favorable (ESI-).  

For separation of the compounds via HPLC prior to mass detection a column specially 

developed for taxane analysis was used (II.7.3). The transitions and retention times of this 

method, used for all later analyses are summarized in Table III-1. 

 

Table III-1: MRMs and retention times characteristic for Baccatin III, 10-Deacetyl-baccatin III and Taxol. 
Compound Mother ion [m/z] Frag. 1 

[m/z] 

Frag. 2 

[m/z] 

Frag 3 

[m/z] 

Retention time [min] 

      
Baccatin III 645.2 (BacIII+acetate) 543.2 120.8 76.9 7.02 

      10-Deacetylbaccatin III 543.2 (10-DAB-H) 391.2 120.8 76.8 4.72 

      Taxol 852.3 (Taxol-H) 525.2 319.2 120.9 9.90 

            

 

A chromatogram of the reference compound mixture (1 µg/mL, injection volume 10 µL) is 

shown in Figure III-2. Furthermore the mass transitions of each compound are shown. By use 

of this method the detection limits were determined for Taxol, Baccatin III and                     

10-Deacetyl baccatin III to 35 fmol, 23 fmol and 28 fmol, respectively.  
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Figure III-2: LC/MS/MS analysis of taxane references; A: Chromatogram of LC/MS/MS analysis of a 
mixture of 10-Deacetylbaccatin III, Baccatin III and Taxol (1 µg/mL each, 10 µL injected); B: characteristic 
mass transitions of 10-Deacetylbaccatin III; C: characteristic mass transitions of Baccatin III; D: characteristic 
mass transitions of Taxol. 
 

III.2 Analysis of endophytes described as taxane producers 

The project was started with the phytochemical examination of three fungal species that were 

described as taxane producers in literature. These three strains obtained from culture 

collection were Taxomyces andreanae (CBS 279.92) (STROBEL et al. 1994), UPH-12 

(NRRL 30405) (HOFFMAN 2003) and H10BA2 (NRRL 21209) (STIERLE et al. 2000). 

Thereby Taxomyces andreanae was the first fungus described to produce Taxol, as mentioned 

already. H10BA2 is another endophyte from Taxus also described by the group of Gary 

Strobel. UPH-12 was selected to include also a fungus that was not found on Taxus spp. It 

was isolated from hazelnut, an angiosperm plant not able to produce taxanes itself. The 
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organisms were transferred to agar plates first followed by cultivation in suspension cultures 

and organic solvent extraction as described in chapters II.4.2 and II.7.1 

Neither by immunoassay nor by LC/MS/MS analysis of culture extracts any taxane could be 

detected (chapters II.7.2, II.7.3). These fungal species were described before as taxane 

producers, for example Taxomyces andreanae produced Taxol and Baccatin III (STIERLE et 

al. 1993). Cultivation and extraction conditions were chosen according to the analyses of 

these species. Hence it should have been possible to detect taxanes in these extracts. 

Although the molecular biological working plan is independent from transcription of the 

genes and thus independent from taxanes production, detection of the products is an essential 

hint that the predicted pathway might be present. Since no other information is available this 

phytochemical examinations are the only possibility to at least assume a biosynthesis in fungi. 

The reasons for these unexpected results are not absolutely clear. Two different scenarios 

might be feasible. The fungi analyzed were deposited to culture collections years ago. For 

strain conservation they of course were not cultivated in the complex screening media 

mimicking the environment within their natural habitat. These different conditions might have 

led to a silencing of the synthesis. So far there are not many reports about loss of the ability of 

secondary metabolite production because of handling under laboratory conditions. For some 

secondary metabolite pathways it was shown that some species of a genus have the 

biosynthesis whereas some other species lost genes or parts of a cluster and are not able to 

produce the compounds any more (BÖMKE et al. 2008; PROCTOR et al. 2009). But these 

are of course natural evolutionary processes. The frequency of occurrence of such 

mechanisms is not known. Furthermore it was shown, at least for the model organism 

Aspergillus that transposable elements play a role in secondary metabolism gene cluster 

regulation (SHAABAN et al. 2010). In another study serial transfers were used in order to 

create nonaflatoxinogenic A. flavus strains from previously aflatoxinogenic ones, in that case 

to study expression profile differences of genes involved in the aflatoxin biosynthesis 

(CHANG et al. 2007). The silencing of the aflatoxin production was aimed in this study. A 

possible Taxol biosynthesis in endophytic fungi might have been silenced accidently through 

serial transfer over years in combination with adaption of the fungal species to standard 

cultivation media which differ from their natural environment and is supposed to be a major 

factor influencing secondary metabolite production. 

Nevertheless all these explanations are highly speculative. Because of this uncertainness of 

the proposed reasons for no detection of taxanes from the three culture collection strains an 
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alternative additional strategy had to be created. When looking into literature it seems quite 

easy to isolate endophytic fungi from plant tissue, in this case Taxus species. As mentioned, 

detection of the natural product is proposed to be limited to rather fresh cultures, due to 

silencing through serial transfers or through adaption to the laboratory environment. Thus 

isolation of new endophytes from Taxus might lead to the detection of taxanes which is 

thought to be at least an indication for the presence of a fungal Taxol biosynthetic pathway. 

 

III.3 Identification of taxane producing endophytic fungi 

III.3.1 Isolation & characterization of endophytic fungi from Taxus spp. 

The possible reasons for a loss of the ability to produce certain secondary metabolites under 

laboratory conditions led to the approach to isolate new endophytic fungi from various Taxus 

species.    

Several studies demonstrated already the isolation of endophytic fungi from Taxus spp. in 

general and furthermore of Taxol or Taxoid producing ones from different locations all over 

the world. 

Therefore Taxus woody material was collected in different locations mainly in Germany but 

also around the world (Table III-2). 

For the isolation of Taxol or Taxoid producing fungi we used the previously described 

method by Guo et al. (GUO et al. 2006). Similarly we transferred surface sterilized inner bark 

of yew trees onto PDA agar plates supplemented with streptomycin to avoid bacterial 

contamination and incubated the plates for up to four weeks, until fungal growth occurred 

(Figure III-3 A). 

In order to finally obtain pure cultures hyphal tips were transferred to new plates. Cultures 

that obviously still contained more than one fungus were separated again on fresh plates 

resulting for example in EF0001 and EF0001B (Table III-2). The isolates showed very 

heterogenous morphological characteristics and growth behavior on plates (examples Figure 

III-3 B-D) as well as in liquid cultures. Growth over a complete plate took between 5 days to 

4 weeks. In liquid culture the fungi grew either as suspensions or formed aggregates. Coloring 

of medium or mycelia as well as viscosity of the cultures, probably due to formation of 

polysaccharides could be shown to be species dependent.  
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Figure III-3: Isolation of endophytic fungi from Taxus bark; A) appearance of fungal growth from inner 
bark of yew tree; B)-D) examples for different phenotype of endophyte isolates; B) EF0024; C) EF0021; D) 
EF0001. 
 

Furthermore the phenotype was influenced by the medium composition (Figure III-4). This 

was reported before and was expected as far as it is known, that fungal natural product 

synthesis, e.g. phenolic compounds responsible for culture colour, is very much dependent on 

the culture conditions, e.g. carbon source, trace elements. 

 

 
Figure III-4: Influence of culture medium on phenotype of newly isolated endophytic fungus EF0018 (left: 
M1D agar; right: PDA agar) 
 

C) D) 

A) B) 
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Using this procedure 34 different new endophytic fungi from Taxus species were isolated. For 

the identification of taxane producing endophytes we used the two different, complementary 

methods as described for the analysis of the fungi obtained from culture collections (III.1). 

Prior to inoculation of liquid cultures for phytochemical analysis fungal strains were 

transferred onto plates with respective screening medium (M1D, S7, YM). Table III-2 

summarizes the isolated endophytic fungi determined via the conserved internal transcribed 

spacer (ITS) regions by BLAST search as well as the Taxus host species.  

 
Table III-2: Endophytic fungi isolated from Taxus species; including isolate name, original host species and 
proposed fungal species according to ITS BLAST search with coverage/identity and accession number of best 
ITS BLAST result. 

Isolate Taxus species Best BLAST result, species (from ITS BLAST) coverage, identity Acc. No. 
          

     

EF0001 Taxus baccata Phomopsis sp. NY7255c 100%, 99% HM999947.1 

     

EF0001B Taxus baccata Diaporthe perniciosa strain ATCC 38578 100%, 100% HQ908492.1 

     

EF0002 Taxus baccata Phomopsis sp. I414b 100%, 100% GU584957.1 

     

EF0002A Taxus baccata Phomopsis sp. I414b 100%, 100% GU584957.1 

 
 

    

EF0003 Taxus media Fungal endophyte sp. ECD-2008 isolate 70 100%, 100% EU686007.1 

  Xylaria sp. MT0810 99%, 99% HQ414612.1 

     

EF0004 Taxus baccata Fungal endophyte sp. ECD-2008 isolate 178 100%, 100% EU686082.1 

  Hypoxylon serpens 100%, 99% HM036598.1 

     

EF0005 Taxus baccata Diaporthe perniciosa strain ATCC 38578 100%, 100% HQ908492.1 

     

EF0006 Taxus media Hypoxylon cohaerens var.microsporum 100%, 99% AJ390399.1 

     

EF0007 Taxus baccata Coniothyrium fuckelii 100%, 100% FR667993.1 

     

EF0008 Taxus baccata Microsphaeropsis olivacea strain CBS 442.83 100%, 99% GU237865.1 

     

EF0009 Taxus baccata Discostroma fuscellum 100%, 100% GU244511.1 

     

EF0011 Taxus baccata Beauveria bassiana isolate s044 100%, 100% HQ649861.1 

     

EF0012 Taxus sp. nd nd nd 
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Table III-2 continued 
     

EF0013 Taxus baccata Ascomycota sp. PIMO_429 100%, 99% JF705947.1 

  Fungal endophyte sp. AP458 100%, 99% FM200718.1 

  Pleosporales sp. agrAR078 100%, 99% FN435680.1 

     

EF0014 Taxus baccata Fusarium tricinctum culture-collection WAC:12337 100%, 100% JF776665.1 

     

EF0014A Taxus baccata Fungal endophyte sp. ECD-2008 isolate 185 99%, 100% EU686089.1 

  Biscogniauxia nummularia isolate BI21 99%, 99% EF155488.1 

     

EF0015 Taxus baccata Coniothyrium fuckelii 100%, 100% FR667993.1 

     

EF0016 Taxus sp. Leotiomycetes sp. 4922 100%, 100% FR668003.1 

     

EF0017 Taxus baccata Paraconiothyrium  sporulosum strain M43 100%, 100% JF340257.1 

     

EF0018 Taxus baccata Phomopsis sp. I414b 100%, 100% GU584957.1 

     

EF0019 Taxus baccata Phomopsis sp. I414b 100%, 100% GU584957.1 

     

EF0020 Taxus baccata Phomopsis sp. I414b 100%, 100% GU584957.1 

     

EF0021 Taxus baccata Phialocephala fortinii strain 92-109 95%, 93% AY078135.1 

     

EF0022 Taxus baccata Fusarium lateritium 100%, 100% AJ269850.1 

     

EF0023 Taxus baccata Fusarium lateritium  100%, 100% AJ269850.1 

     

EF0024 Taxus baccata Fusarium tricinctum strain gf10 100%, 100% HQ262502.1 

     

EF0025 Taxus baccata nd nd nd 

     

EF0026 Taxus baccata Phomopsis sp. I414b 100%, 100% GU584957.1 

     

EF0027 Taxus baccata nd nd nd 

     

EF0028 Taxus baccata nd nd nd 
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Table III-2 continued 
     

EF0029 Taxus cephallus  nd nd nd 

     

     

EF0030 Taxus cephallus nd nd nd 

     

EF0031 Taxus sp. nd nd nd 

     

EF0032 Taxus sp. nd nd nd 

 nd: not determined         

     
 

 

The internal transcribed spacer (ITS) region is a non functional RNA sequence located in the 

structural ribosomal RNA. Sequence analysis and comparison of this genetic element is 

widely used in taxonomy and molecular phylogeny (GARDES and BRUNS 1993; GANLEY 

et al. 2004; SMITH et al. 2007). Figure III-5 shows the ITS amplification products used for 

taxonomic determination of the newly isolated endophytic fungi. 

 

 
Figure III-5: Electrophoretic separation of PCR products of fungal ITS regions; Lane 1: 100 bp marker 
(NEB), Lane 2-24: amplification products. 
 

 

The DNA samples were purified and sequenced using PCR amplification primers ITS1 and 

ITS4. The resulting sequences were assembled and subjected to BLAST search 

(Supplementary information, CD). This analysis yielded in high homology matches (Table 

III-2) and respective species in the GenBank database of NCBI. The major species observed 

belonged to the genera Phomopsis, Fusarium and Diaporthe already described as endophytes 

on Taxus and other plants. 
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According to the aim of the project being the identification of Taxol producers and fungal 

Taxol biosynthetic pathway, further characterization on morphological level was not 

performed.    

III.3.2 Immunological assay for taxane detection from fungal extracts 

Immunoassay was used as first screening method for the identification of Taxol/Taxane 

containing endophytes. For determining the concentration of total taxanes in the medium-

extracts a standard curve was set up (II.7.2). As a positive control an organic extract of Taxus 

needles was used.  

The antibody assay yielded in two organic extracts of endophytic fungi EF0001 and EF0016 

in which taxanes could be detected. The concentrations were calculated to 7.8 ng/L and 

2.5 ng/L culture medium taxoids, respectively. These amounts of taxoid compounds, 

determined from the Taxol standard curve (II.7.2) in comparison to the values obtained for the 

positive control Taxus were thereby 50,000 fold lower (Table III-3). This was not surprising 

in the first place, taking into account that secondary metabolite production is very much 

dependent on the culture medium, culture conditions and the time of cultivation. Furthermore 

taxanes from Taxus are higher in concentration due to drying of the needles prior to 

extraction. The values are given in ng/g dry weight. 

In case of the screening performed in this study, all fungi were cultivated in the same 

screening media which were previously described in the literature for Taxol endophyte 

cultivation for 2 weeks followed by harvesting the mycelia for molecular biological work and 

extraction of the medium with chloroform. YM-6.3 was not used for cultivation of taxane 

producing endophytes so far but is a standard full medium for the cultivation of fungi. It was 

for example used for fermentation of basidiomycetes for the production of anti bacterial 

sesquiterpenoid natural products, the melleolides (ENGELS et al. 2011). Nevertheless these 

low values together with the observation, that no extract of the three fungi from culture 

collection previously analyzed showed taxane production left doubts about the reliability of 

this data and hence the specifity of the assay. 

 

 

 

 

 



III Results 

 

70 

 

 
 

Table III-3: Results of immunoassay using polyclonal anti-taxane-antibody kit (Cardax Pharmaceuticals). 

Organism c [ng/mL], according c [ng/L], per liter c [ng/g], per gram 

 to standard curve culture medium biomaterial 

Taxus baccata 10401.7 / 173.3*103 

    EF0001 3.1 7.8 / 

    EF0016 1.5 2.5 / 

    N. tabacum 52.8 / 17.6 

        
 

 

The Caradax kit used for the detection of Taxol/Taxanes a polyclonal antibody, therefore it 

was necessary to include a negative control for examining the specificity of the assay. 

Therefore an organic extract from Nicotiana tabacum cv. Petit Havana SR1 (green house, 

IME) was used as a negative control. Surprisingly this extract also gave a response in the 

assay, which was with 17.6 ng/g dried leaf material up to 7 times higher than the signals from 

the endophytes’ extracts. This led to the conclusion that this method was not reliable for 

determination of taxane production in very low concentration ranges, as observed for the 

endophytes, whereas the assay works specifically for yew tree, due to the over 10,000 fold 

higher signal observed here.  

As a consequence of the unreliable results, the immunological assay was not used further, 

because the results are not reliable. This observation was thereby the first time that a 

background activity was described for the assay; however previous studies did not include 

neg. controls. The only described negative control was a pure medium control, where of 

course no natural products are present that might lead to false signals. Analysis of the 

remaining fungi EF0020-EF0032 was therefore performed via LC/MS/MS.  

 

III.3.3 LC/MS/MS analysis of fungal extracts 

All fungal extracts were subjected to LC/MS/MS analysis. Thereby in two fungal extracts out 

of the total 34 endophytes’ samples taxanes were found. In extract of EF0001 Baccatin III 

was detectable as shown in Figure III-6. The clear identification of the compound was 

possible due to the definite mass transitions compared to the pure substance at the respective 

retention time (Figure III-6). 
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The second fungal sample in which a taxoid compound could be detected was the extract of 

the fungus named EF0021. In this extract 10-Deacetylbaccatin III was detected (Figure III-7). 

Again the mass transitions and the retention time were identical to the standard. 

In contrast to immunological assay in EF0016 extract previously showed a response 

indicating the presence of taxoids no taxanes were detected in LC/MS/MS analysis. Thus the 

signal obtained before was either due to unspecific binding of additional compounds from the 

extract or by other taxanes that are not detected by the highly selective MRM method, which 

is as described in detail before limited to three taxoid natural products. This result again 

showed the probable unreliability of the immunological assay alone. It is absolutely necessary 

to control the results via an assay based on molecule structure and physical properties like 

LC/MS/MS.  

In all other fungal extracts none of the three reference substances could be detected. To 

examine the stability of taxane production in the newly isolated endophytes the whole 

procedure, cultivation, extraction and analysis was repeated for EF0021. Thereby it could be 

shown that the signal intensity decreased strongly. 10-Deacetybaccatin III was detected but 

only in trace amounts. This indicates an influence of the treatment of the fungi under 

laboratory conditions in contrast to the natural environment in relation with the plant host for 

the natural product formation. This result further supports the hypothesis of a silencing of 

secondary metabolite production by multiple transfers under laboratory conditions.  

According the aim and strategy of the project this phenomenon does not influence the further 

molecular biological experiments. The screening for the Taxol biosynthetic pathway on 

genetic level is not dependent on the existence of transcript or proteins of the biosynthesis and 

hence also not dependent on the natural product titer. 



III Results 

 

72 

 

 
 

 
Figure III-6: LC/MS/MS analysis of EF0001 organic extract; A: chromatogram of Baccatin III pure 
substance and mass transition spectrum; B: chromatogram of EF0001 analysis and mass transition spectrum for 
signal at retention time 7.02 min. 
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Figure III-7: LC/MS/MS analysis of EF0021 organic extract; A: chromatogram of 10-Deacetylbaccatin III 
pure substance and mass transition spectrum; B: chromatogram of EF0021 analysis and mass transition 
spectrum for signal at retention time 4.72 min. 
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A further control experiment was performed with EF0021 extract. The aim was to ensure the 

identity of the compound 10-Deacetybaccatin III detected from raw extract. Therefore first 

an endophytic extract containing no taxanes was spiked with pure 10-Deacetylbaccatin III. 

This sample was subjected to preparative HPLC using a semi-preparative C18 column with 

fraction collection (see chapter II.7.4). The fractions obtained were analyzed afterwards with 

the taxane LC/MS/MS method and the compound was recovered in fractions 51 and 52. If 

the original signal in EF0021 organic extract was not 10-Deacetylbaccatin III, but coming 

from another substances giving the correct mass transitions and retention time accidently the 

usage of this different chromatographic conditions would lead to a loss of the signal in 

theory. 

EF0021 extract was treated as described and fractions 51 and 52 were tested. In the samples 

10-Deacetylbaccatin III was detected. Hence, the signal detected from EF0021 raw extract 

was 10-Deacetybaccatin III without any doubts.  

EF0001 and EF0021 were used for the further molecular biological examination, including 

Southern Blot analysis and genomic library screening.  

 

III.4 Molecular biological examination of endophytic fungi 

III.4.1 Southern Blotting as molecular biological “screening method” 

Besides the phytochemical analysis of organic fungal extracts genomic DNA of all the 

species was extracted in order to perform Southern blotting analysis. According to the 

hypothesis that the genes of both plant and fungal Taxol biosynthesis are similar, 

hybridization with probes designed on the sequences of plant genes should lead to signals 

from Taxus DNA as well as from endophytic fungi’s DNA.  

Initial experiments were performed with Taxus DNA to optimize the blotting and 

hybridization conditions. Therefore Taxus DNA was digested with two different restriction 

endonucleases, EcoRV and Hind III. After separation via agarose gel (Figure III-8A) DNA 

was blotted onto nylon membrane according to protocol for neutral transfer described by 

Sambrook and Russel (SAMBROOK and RUSSELL 2001). For taxadiene synthase probe 

preparation the gene (tds) from Taxus chinensis was amplified from pGem-T easy-tds 

plasmid (Figure III-8B, Stefan Jennewein). The purified DNA fragment was used as template 

for amplification of three 500 bp fragments that were labeled with 32P and used for 
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hybridization experiments. The resulting X-ray film is shown in Figure III-8A. In both lanes 

3 clear signals were detected at different sizes. Hence, blotting and hybridization conditions 

were regarded as useful for Southern blotting analysis of endophytic fungi to detect similar 

genes in fungi’s genomes on the one hand and getting indication on the degree of homology 

by comparison of signal intensity on the other hand. 

 
Figure III-8: Southern Blotting analysis of Taxus baccata genomic DNA; A) agarose gel separation of 
complete digest lane 1 EcoRV, lane 2 Hind III of Taxus bacatta genomic DNA; X-Ray film of Southern 
blotting membrane, after hybridization with 32P-radiolabeled taxadiene synthase probe (55°C, 16h) and 
exposure time of 21d at -80°C with intensifier screen; B) agarose gel analysis of amplification of  taxadiene 
synthase (cDNA) from pGem-T easy-tds plasmid used as a probe template for labelling. 
 

For “screening” of endophytes, genomic DNA samples were digested with Hind III and 

hybridization was performed with probes for taxadiene synthase (TDS) and taxane-13α-

hydroxylase (T13H) or taxane-5α-hydroxylase (T5H) under the conditions determined 

previously for Taxus gDNA hybridization. As negative control genomic DNA of 

Nicotiana tabacum cv. Petit Havana SR1 (green house, IME) was used.  

In addition to the newly isolated fungi the three endophytes received from culture collections 

were also analyzed.  

In theory only one or two signals should be visible in case of taxadiene synthase, assuming 

that the genomes did not contain multiple copies. In case of experiments using hydroxylase 

probes multiple signals were probable, due to the similarity of P450 hydroxylases known 

from Taxus in combination with the medium stringency of the hybridization conditions. 

The results for EF0001 and EF0021 are shown in Figure III-9, where also the results for 

Taxus and the negative control are presented. 

A B
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For both fungal DNA samples EF0001 and EF0021 one weak but nevertheless clear band was 

visible for hybridization with taxadiene synthase probe. In comparison to the positive control 

the signals had a very low intensity indicating only low sequence homology between plant 

and fungal terpene synthase. In the negative control no specific signal was observed. 

  
Figure III-9: Southern blotting experiments with EF0001, EF0021, Taxus baccata and N. tabacum as a 
negative control with different probes; DNA samples digested with Hind III; A) X-Ray films of Southern 
blotting membranes, after hybridization with 32P-radiolabeled taxadiene synthase probe (55°C, 16h) and 
exposure time of 4d at -80°C with intensifier screen; lane 1: EF0021 DNA, lane 2: EF0001 DNA, lane 3: 
T. baccata DNA, lane 4: N. tabacum DNA, arrows mark signals of fungal taxadiene synthase. B) X-Ray films 
of Southern blotting membranes, after hybridization with 32P-radiolabeled taxane P450 hydroxylase gene probes 
(55°C, 16h) and exposure time of 4d at -80°C with intensifier screen; lane 1: EF0021 DNA, hybridization with 
T5H, lane 2: EF0001 DNA, lane 3: T. baccata DNA, lane 4: N. tabacum DNA, lane 2-4 hybridization with 
T13H.  
 

The hybridization experiments with P450 hydroxylase probes the results were according to 

the initial expectations. As in the positive control Taxus baccata the probes bound multiple 

times in both fungal genomes. This observation gave additional hint for Taxol biosynthetic 

pathway in endophytic fungi. But the more reliable indication was the result for taxadiene 

synthase gene since P450 genes genes are more similar than terpene synthase genes in 

general.  
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All other fungal species, newly isolated and obtained from culture collection, were analyzed 

the same way. For none of these fungi a signal was observed in Southern blot with taxadiene 

synthase or P450 hydroxylase probes.  

In summary for two newly isolated endophytic fungi there are indications for a possible 

fungal Taxol biosynthetic pathway. Taxanes could be detected in fungis organic extracts and 

furthermore Southern Blotting results gave hints for genes at least somehow similar to genes 

of Taxol biosynthesis from Taxus species. 

Hence, these two endophytes were chosen for genomic phage library hybridization screening. 

 

III.4.2 Genomic phage library construction and screening 

As initially discussed the yields of taxanes that were detected up to now were found to be in 

ng or µg amount. Hence it can be assumed that a possible biosynthetic pathway is only poorly 

expressed. Since there is also no method available to induce transcription/production a similar 

approach to the isolation of Taxus Taxol biosynthesis using an EST library constructed from a 

with methyljasmonate induced Taxus cell culture seemed to be not promising 

For this reason the search for Taxol biosynthesis in fungi has to be done on genomic level. 

Since no definite gene sequences are known so called “Genome Walking” based on 

amplification using primers of known or conserved gene parts is not possible. The method of 

choice was genomic phage library construction and screening.  

Thereby the whole genome is cut into pieces and the resulting DNA fragments are transferred 

into λ-phage. By plating the phages followed by immobilization of their DNA on membranes 

the library can be screened via hybridization with radiolabelled probes. 

The success of the approach is dependent on two major factors, the genome size and the 

amount of genetic information in every phage. These variables determine the size of a 

representative library as well as the probability of finding a single copy gene. 

The genome sizes of the endophytes are unknown. Taking already sequenced fungi as a basis, 

genome sizes are probably between 20 and 70 Mb. 

In this thesis lambda replacement vector λ Dash II (Stratagene) was used. This type of vectors 

is created by deleting the part for the lytic cycle from the phage WT genome via restriction. 

This so called “stuffer fragment” can be replaced by the desired DNA fragments. Due to the 

small size of the vectors without the “stuffer fragment” it is impossible to pack this DNA into 

phage. Only with DNA inserts lager than 15 kb inserts packaging becomes possible again. 
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Hence, these types of phage systems are selective for large genomic DNA inserts. With the 

Stratagene system used here a 20 kb insert containing vector is 95 % more effectively 

implemented than a vector carrying a 14 kb DNA fragment. Furthermore λ Dash II takes 

advantage spi (“sensitive to P2 interference”) selection. Lambda phages containing red and 

gam genes are unable to grow on E. coli strain having a P2 phage lysogen. By replacement of 

the “stuffer fragment” by the inserts phages become gam- and are in contrast to WT lambda 

phage able to form plaques on a P2 containing E. coli host strain.  

Besides these selection mechanisms avoiding WT vectors to be packed as well as all vectors 

containing only small inserts, the number of recombinant clones is determining the quality of 

a constructed library. A library is representative when it is assured that it contains all genetic 

information of the organism to be analyzed. The number of clones that have to be screened for 

have a high probability to find a single clone in a library can be calculated by the following 

formulas.  

 

P = 1 – (1 – F/G)
N
; N = ln (1 – P) / ln (1 – F/G) 

 

P: probability for the presence of a gene in a genomic library with N clones 

F: average size of cloned DNA inserts [kb] 

G: genome size of the organism [kb] 

N: number of independent clones in the genomic library 

 

For example the genomes of Saccharomyces cerevisiae and Arabidopsis thaliana have a size 

of 12.8 Mb (NC 001133-48) and around 100 Mb (NC 003070, NC 003071, NC 3074-76), 

respectively. Assuming an average insert size of 20 kb/clone (F) it would be necessary to 

screen at least 2950 clones for Saccharomyces cerevisiae and over 23000 clones for 

Arabidopsis thaliana to find a single clone with 99 % probability (P). Thus, to find a gene in a 

genome with more than 99 % probability, it is necessary to screen a number of clones 

representing around five genome equivalents. Hence, for an estimated average genome size of 

50 Mb for fungi a useful library has to contain at least 11500 individual clones.  
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III.4.2.1 Construction and screening of EF0001 & EF0021 genomic libraries 

Three genomic phage libraries from EF0001 DNA were constructed for homology based 

hybridization screening (Lib0001-080108, Lib0001-150108 and Lib0001-030708). Mycelium 

for genomic DNA isolation was obtained from initial endophyte’s liquid cultures, where 

medium was extracted for immunoassay and LC/MS/MS analysis. After optimization of 

incomplete digest with BamHI and precipitation of the resulting DNA fragments, EF0001 

DNA was ligated into λ Dash II phage replacement vector and packed into Gigapack XL III 

phage packaging extracts. The titers of the resulting libraries were 2.5*105, 2.2*105 and 

1.8*105 pfu/mL, respectively. Although fungal genome size can be estimated to around 50 Mb 

the real size of EF0001 genome was unknown. To be sure that the number of clones screened 

was sufficient both libraries were plated completely. An example plate obtained after plaque 

formation is shown in Figure III-10A. 

The plaques of 20 (Lib0001-080108), 19 (Lib0001-150108) and 20 (Lib0001-030708) plates, 

respectively were lifted onto membranes, to screen the libraries with on the one hand taxane-

13α-hydroxylase (T13H) probe and taxadiene synthase (TDS) probe and on the other hand 

with taxadiene-5α-hydroxylase (T5H) probe. 

 

  
Figure III-10: Plate and X-ray film of membrane of first screening round; A: Example for a 145 mm agar 
plate of first screening round, plaques appear as clear spots in bacterial surface; B: X-ray film of membrane, 
hybridization with 32P-radiolabeled taxadiene-5α-hydroxylase (55°C, 16h) and exposure time of 4d at -80°C on 
preflashed film with intensifier screen, marked dot is signal from positive clone (in this case PC28). 
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In case of EF0021 one library with a titer of 5*105 pfu/mL was used. Construction was done 

as described for EF0001. For screening with taxadiene synthase (TDS) probe and oligo 

nucleotide probes homologous to taxadiene-5α-hydroxylase 80,000 plaques (20 plates) were 

lifted onto membranes (40,000 clones per probe). 

According to hybridization procedure developed and validated via Southern Blotting all 

membranes were screened. For EF0001 two different probes TDS and T13H were used as a 

mixture for initial screening. T5H and in case of EF0021 screening TDS and T5H – oligo 

nucleotides were used as pure probes. For verification of results and isolation of pure 

individual plaques all identified candidates from this “first screening round” (example see 

Figure III-10B) were eluted and plated again less dense than in the first step. An enrichment 

of signals through repetition of hybridization (“second screening round”) was the criteria for 

positive clones (Figure III-11). Table III-4 summarizes the obtained results. Screening of 

genomic phage libraries of EF0001 with radio labeled probes homologue to genes of Taxol 

biosynthesis from yew tree resulted in three positive clones named PC1, PC2 and PC4 for 

taxane-13α-hydroxylase, two positive clones PC9 and PC10 for taxadiene synthase and five 

clones PC23, PC24, PC25, PC26 and PC28 for taxadiene-5α-hydroxylase by screening 

around 300.000 genomic phage clones.  

With a minimum average insert size of 20,000 kb this resulted in screening of at least 

6,000 Mb what corresponds to a 120 fold genome coverage assuming an average genome size 

of 50 Mb for fungal genomes.  

 

 
Figure III-11: X-ray films of colony blot membranes of second screening round; hybridization with 32P-
radiolabeled probes (55°C, 16h) and exposure time of 4d at -80°C on preflashed film with intensifier screen; 
Plaque solutions for infection from clones positive in first screening round with a mixture of taxoid-13α-
hydroxylase and taxadiene synthase probe of Lib0001-150108 (A, B) and taxadiene-5α-hydroxylase probe from 
Lib0001-030708 (C); A: PC4, positive for taxoid-13α-hydroxylase probe; B: PC9, positive for taxadiene 
synthase probe; C: PC28, positive for taxadiene-5α-hydroxylase probe.   
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In case of EF0021 phage library screening of 40.000 clones (920 Mb; 18 fold coverage) 

resulted in 5 potential positive phage clones for taxadiene-5α-hydroxylase (oligo nucleotide) 

probe, whereas no clone for taxadiene synthase probe could be identified from hybridization 

screening.  

From all described phage clones liquid lysates were prepared for isolation of DNA. The insert 

sizes could be determined by restriction digest using BamHI, which cuts out the insert that 

initially was ligated into the unique BamHI site. Because of the big inserts (in theorie >20 kb) 

created by none complete digest prior to library construction all DNA fragment sizes, except 

the vector band in summary could be used for estimation of the insert size of the clones. It 

was approximately between 16 kb and >35 kb.  

The DNA was used as sequencing template either by Primer walking starting with the T3 and 

T7 promoter sequences flanking the inserts or in case of PC4 and PC9 was send for complete 

shotgun sequencing (MWG Biotech GmbH). 

Some of the clone’s DNA was furthermore used for the construction of small insert Lambda 

Zap II (insert size 0-10 kb) libraries in order to create more starting points for primer walking 

and also to identify the definite sequence regions that bound to the probes. 

  
Table III-4: Summary of genomic phage library screening; columns show library name, number of screened 
plaques, probe and positive clone in the primary and secondary hybridization round. (*T13H and TDS used as a 
mixture in primary hybridization), T5Hol: oligo nucleotide probe. 

Library No. of plaques Probe Positive clones 1st Screening Positive clones 2nd screening 

     

     Lib0001-080108 125,000 T13H* 3 2 

     
  

TDS* 3 / 

     Lib0001-150108 110,000 T13H* 3 1 

     
  

TDS* 3 2 

     Lib0001-030708 94,000 T5H 7 5 

     Lib0021 40,000 T5Hol 6 5 
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III.4.2.2 Screening of λ Zap II sub-libraries from EF0001 & EF0021 phage clones 

The isolated phage clones from genomic library screening using Lambda Dash II replacement 

vector had the major advantage of large inserts, due to the size selective packaging. Thereby it 

is possible to screen a large amount of genetic information with a limited number of phage 

clones. The inserts obtained in the previous screening had sizes between 16 to 35 kb. Hence, 

sequencing of the recombinant DNA by primer walking is slow and time consuming.  

To overcome this problem the isolated phage DNA was used for construction of sub-libraries 

based on the Lambda Zap II system (Stratagene).  

In contrast to Lambda Dash II the Lambda Zap II insertion vector has a size of 41 kb and was 

created by deletion of none essential genes and insertion of a multiple cloning site. It has 6 

unique restriction sites and DNA fragments between 0 and 10 kb can be inserted. Since there 

is no selection through vector size, also empty, re-ligated vectors can be present in the library. 

Therefore the multiple cloning site contains lacZ’ gene encoding for the α-fragment of          

β-galactosidase. If a DNA fragment is inserted into the MCS LAcZ the protein can’t be 

expressed. There through the library quality can be controlled via blue-white screening. The 

second part of the β-galactosidase (∆M15 lacZ domain) is expressed by the F’ episome of the 

host strain. Plaques containing an insert appear white whereas all empty vector carrying 

plaques are blue. 

The other special feature of Lambda Zap II is the possibility to recover the recombinant DNA 

via in vivo excision. The vector contains the complete pBlueskript vector sequence around the 

MCS. By co-infection of host strain XL1-Blue MRF’ with Lambda phages and ExAssist 

helper phage proteins of f1 phage recognize the f1 origin of replication present in pBlueskript 

and creates ssDNA from the double stranded lambda DNA. The resulting supernatant contains 

this pBluescript phagemid besides the lambda phages and the helper phage. SOLR strain (Su-) 

cannot be infected with lambda phages and ExAssist helper phage. Only the newly created 

phagemid is inserted and the pBluescript ssDNA is converted to double stranded plasmid 

DNA containing the recombinant insert. E. coli clones can be selected on ampicillin plates. 

To create suitable insert fragments for Lambda Zap II libraries the Lambda Dash II phage 

clone DNA was digested with TSP509I, resulting in compatible ends for ligation into EcoRI 

pretreated vector. The phage clone DNA was first partially digested to determine conditions 

leading to fragments of around 4,000 bp or smaller, that can be sequenced later directly from 

pBluescript (Figure III-12). Hybridization screening was done as described for Lambda Dash 
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II libraries. Due to the limited genetic information used as template for library construction 

only 3,000 – 4,000 individual clones were screened.  

 
Figure III-12: Lambda Zap II library construction; A: time dependent restriction digest of PC28 phage DNA 
with TSP509I, 80 min sample was chosen for library construction; B: restriction digest with KpnI and SacI of 
three pBluescript clones after in vivo excision of positive clones from hybridization screening, band at 3 kb 
represents the vector backbone, other bands are derived from recombinant inserts, insert size Zap9-3: ~1200 bp, 
Zap9-4: ~1900 bp, Zap28-3: ~8000 bp. 
 

Plaques found to give a positive hybridization result were eluted and the resulting phage 

suspension was used for in vivo excision. Vector constructs were isolated afterwards by 

standard plasmid isolation and tested for inserts by restriction with KpnI and SacI sites 

flanking the MCS of pBluescript (λ-Zap II). 

Through this procedure, three pBluescript constructs from PC9 (Zap9-2, Zap9-3, Zap9-4) and 

three constructs from PC28 (Zap28-1, Zap28-2, Zap28-3) from EF0001 could be isolated. For 

PC4 and the clones from EF0021, PCT5H3a and PCT5H4a screening did not lead to isolation 

of λ−Zap II clones. The number of plaques examined might have been to low in these cases 

because the quality of the libraries was not sufficient, means to many empty vectors. 

Nevertheless the screening was not continued because PC4 was sequenced completely and 

EF0021 was chosen for whole genome sequencing.  

 

III.4.2.3 Sequencing of clones identified via hybridization screening 

Phage clones PC1, PC4 and PC9 isolated from Lambda Dash II library screening were 

sequenced first by primer walking starting from the T3 and T7 promoter sequences on the 

vector backbone. This effort resulted in two consensus sequences, one for each direction, for 

the three clones. PC28 positive in hybridization with T5H probe was directly used for 

construction of Lambda Zap II library. Clones Zap28-1-3 were sequenced using pBlueskript 
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plasmid preparations from in vivo excision. In case of PC9 also three Lambda Zap II clones 

were sequenced. Two EF0021 phage clones were selected for sequencing.  

The results are summarized in Table III-5. Furthermore the best BLAST result is shown and 

the maximum homologous sequence length to the probe used for hybridization. 

 
Table III-5: Summary of sequencing and analysis of “positive” phage clones by primer walking using T3 
and T7 promoter primers on λ Dash II and pBluescript. 

Clone Length [bp] Max. homology NCBI blastx result 

  to probe [bp]  

    PC4-T3 2071 / hypothetical protein SNOG_00438 [Phaeosphaeria nodorumSN15]; 

   
XP_00171125 

PC4-T7 2597 / hypothetical protein VDAG_05916 [Verticillium dahliae VdLs.17];  

   
EGY14752 

PC9-T3 799 11 Polygalacturonase inhibitor protein [Medicago truncatula]; AES78029 

    PC9-T7 725 12 no significant blast match 

    PC1-T3 2334 11 hypothetical protein LEMA_P003780.1 [Leptosphaeria maculans JN3];  

   
CBY01591 

PC1-T7 1531 / gamma-glutamyltranspeptidase periplasmic precursor  

   
[Metarhizium anisopliae ARSEF 23]; EFY94054 

Zap9-2 1926 (T3), 1847 (T7) 11 capsid component [Enterobacteria phage lambda]; NP_040583 

    Zap9-3 1214 17 ferrienterobactin receptor domain protein [Escherichia coli]; EGW96796 

    Zap9-4 3220 (T3), 1832 (T7) 17 hypothetical protein MYCTH_2315847 [Myceliophthora thermophila  

   
ATCC 42464]; AEO59743 

Zap28-1 2780 12 hypothetical protein, partial [Podospora anserina S mat+]; XP_001908716 

    Zap28-2 2550 (T3), 2435 (T7) 11 hypothetical protein SMAC_00380 [Sordaria macrospora k-hell];  

   
XP_003351833 

Zap28-3 1969 (T3), 2248 (T7) 13 phosphopyruvate hydratase [Glomerella graminicola M1.001]; EFQ29251 

    0021-T5H3a-T3 2043 12 predicted protein [Ajellomyces capsulatus NAm1]; XP_001537182 

    0021-T5H3a-T7 4433 11 hypothetical protein SS1G_13060 [Sclerotinia sclerotiorum 1980 UF-70];  

   
XP_001585968 

0021-T5H4a-T3 3722 11 hypothetical protein [Botryotinia fuckeliana]; CCD44329  

    0021-T5H4a-T7 4074 20 hypothetical protein SS1G_01906 [Sclerotinia sclerotiorum 1980 UF-70];  

   
XP_001597710 

        
 

 

None of the sequences contained a gene of Taxol biosynthetic pathway or showed significant 

homology to probe templates. The maximum sequence length homologous to a probe 

template was 20 bp for 0021-T5H4a-T7. For some sequences there was even no homology at 
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all. NCBI blastx analysis did not lead to the identification of possible Taxol biosynthetic 

pathway sequences or possible candidates for secondary metabolism enzymes either. 

Regarding Zap clones Zap9-2 and Zap9-3 the inserts were most closely related to λ-phage or 

E. coli sequences. That result was unexpected taking into account, that if the hybridization 

probes bind unspecific to the vector backbone all screened phage clones should have been 

positive. 

Since the primer walking approach was very time consuming and the inserts of the phage 

vector were supposed to be very large, PC4 and PC9 DNA additionally was send to MWG 

Biotech GmbH for complete shotgun sequencing. Comparison of the borders of the inserts of 

PC4 and PC9 obtained by primer walking (Table III-5) the complete inserts could be 

identified. They had a size of 19,995 bp and 18,800 bp, respectively. A summary of MWG 

sequencing results is shown in Table III-6. Inserts thereby were part of the large contigs for 

both clones, in case of PC4 on c3 1-11,050 bp and c2 1-7,999 bp and PC9 on c2 1-4,131, c1 

24,532-35,906 and c1 1-4,533 (supplementary information, CD).  

 
Table III-6: Summary of MWG Biotech GmbH shotgun sequencing of λ-phage clones PC4 and PC9; 
including number of total reads, total bases and contigs divided into large contigs and all contigs (large contigs: 
> 500 bp).  

phage clone large run results   sum of large contigs   sum of all contigs   
              

       
PC9 Total Reads 5,038 Total Reads 4,809 Total Reads 4,930 

       
 Total Bases  1,112,115 Large Contigs 3 All Contigs 37 

       
   Total Bases 48,335 Total Bases 52,507 

       
       
PC4 Total Reads 7,781 Total Reads 7,454 Total Reads 7,711 

       
 Total Bases  1,764,493 Large Contigs 17 All Contigs 105 

       
   Total Bases 61,925 Total Bases 84,324 
              

 

 

Analysis of the sequences did not lead to the identification of any gene or sequence 

homologue to genes of Taxol biosynthetic pathway again. Even more surprising was the fact 

that there were no homologies to the probes used for hybridization either, although 
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hybridization results were highly reproducible. Alignment of probe sequences to the inserts 

delivered a maximum homologous part of 17 nucleotides for T13H and PC4 and 16 

nucleotides for TDS and PC9. The only explanation for the positive signals in hybridization 

was the binding to these short sequences. Further analysis via NCBI BLAST confirmed these 

results. There was no indication for any gene of interest or genes encoding for enzymes 

probably involved in fungal Taxol biosynthesis. 

The only explanation for this observation was that all clones isolated were false positives and 

hybridization results occurred through binding of probes to very short homologous parts of 

the recombinant phages under the conditions chosen according to initial Southern Blotting 

hybridization results. 

In summary homology based screening revealed that fungal and plant pathways did not 

evolve by gene transfer from one species to the other because no homologous gene sequence 

could be isolated. 

 

III.4.3 Whole genome sequencing of EF0021 & Taxomyces andreanae  

Due to the unexpected results of genomic library screening approach not finding any gene 

homologous to genes from Taxol biosynthesis from Taxus species the possibility of two 

unrelated biosyntheses towards Taxol in plants and fungi had to be examined. Even if the 

genes are not similar it can be assumed that at least the proteins involved in the natural 

product formation might share some characteristics. As described in the introduction several 

enzymes of Taxol biosynthesis from yew tree are highly substrate and product specific, 

especially the key enzyme taxadiene synthase and the cytochrome P450 dependent 

monooxygenases catalyzing early hydroxylation reactions in the pathway, for example the 

taxadiene-5α-hydroxylase. The detection of identical taxoid products in fungal extracts as 

produced by Taxus and the enzyme characteristics make it seem very improbable that there 

are really no similarities also on protein level. By sequencing of the complete genomes of 

endophytic fungi it should be possible to identify any candidate gene/enzyme that might to be 

involved in terpene pathways. By prediction of the proteins on the one hand or direct 

comparison of the genome data to protein data base on the other hand similarities on enzyme 

level, assumed to be due to mechanistic features of the enzymes catalyzing complex reactions 

using structural elaborate substrates should become obvious.  
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To find evidence for a unrelated fungal Taxol biosynthetic pathway it is necessary to 

sequence at least two endophytes genomes. By comparison of both sequence data sets it 

should be possible to proof or rule out the hypothesis of an independent evolution of Taxol 

biosynthesis in plant and fungi by identification of terpene pathway genes/enzymes similar in 

both fungal species. This of course implies that there are similarities of the biosynthetic 

pathways in the different endophytic fungi.  

Genomic DNA of EF0021 was therefore sent to the company Seq-It GmbH in Kaiserslautern 

for 454 sequencing. Furthermore Taxomyces andreanae genome was sequenced (Source 

BioScience imaGenes GmbH, Berlin, paired end sequencing). Assembly of the raw sequence 

data was done by the respective companies.   

Sequencing of EF0021 resulted in 2,234,101 total sequence reads with a total number of bases 

of 871,644,690. This gives an average read length of 390 bases per read.  

Alignment of the raw data led to 98.55 % aligned reads and 99.02 % aligned bases, 

respectively, resulting in 2,623 contigs. Of these total contigs 1,205 large contigs were 

identified. They have an average contig size of 36,591 bases, with the largest contig of 

1,138,940 bases. Hence, the large contigs represent 99.85 % of the complete sequence 

information. All contigs together cover 44.45 Mbases and the estimated genome size was 

calculated to 45.9 Mb. 

Genome project of Taxomyces andreanae delivered 235,442,880 reads of around 100 bp out 

of a 500 bp paired end library. Assembly led to 16,279 contigs with 2,274 large contigs 

(greater than 1000 bp) with an average contig size of 18,083 bp, covering 93.5 % of the 

assembled sequence information. All 16,279 contigs (minimum contig size 140 bp) cover a 

cumulative sequence length of 45.08 Mbases. The average coverage (reads/contigs) is 555.55. 

Out of this data genome size of Taxomyces andreanae can be approximated to around 45 Mb.  

The complete contigs were submitted to NCBI gene bank. Furthermore the multi fasta data of 

both genomes is added as supplementary information (CD).  

 

III.4.4 Sequence analysis strategy 

For analysis of the two genomes with regard to the identification of Taxol biosynthetic 

pathway key enzymes/genes, total sequences were analyzed by local blastx with CLC 

workbench. For targeted comparison three different data sets were created.  
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The first set contained 38 terpene synthase protein sequences from GeneBank (II.5.9.4), 

including plant and fungal proteins for sesqui- and diterpene synthesis as well as sequences 

from sterol biosynthesis and geranylgeranyl diphosphate synthases.  

The second comparison was performed using 34 Cytochrome P450 oxygenase protein 

sequences of proteins proven or at least supposed to be involved in secondary metabolite 

pathways from plants and fungi (II.5.9.4). In contrast to terpene synthases which are nearly all 

functionally characterized hydroxylases are mainly annotated over homology or in case of 

fungal enzymes found in gene clusters with for example a terpene synthase what is a strong 

indication for their role in the respective pathway. 

The third data set consisted of all known proteins known to be involved in Taxol biosynthetic 

pathway in Taxus species (14 sequences, II.5.9.4). As a threshold for significance an E-value 

of E-5 was used. 

 

Comparison with 38 

terpene synthases

from plants and fungi

Comparison with 34 

P450 oxygenases

from plants and fungi
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Taxol biosynthesis
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Figure III-13: Schematic overview of “targeted genome analysis approach” for identification of possible 
fungal Taxol biosynthesis gene/enzyme candidates. 
 

After this first “filter” step the major focus lied on analysis of the terpene synthases, since 

they are the key enzymes of these biosynthetic pathways. Furthermore this enzyme class 

shows features characteristic not only for the mechanism catalyzed but also for the organism 

derived from. For example intron/exon structure, size of proteins and certain motives and the 
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position of these motives differ significantly in plant enzymes compared to fungal terpene 

synthases. 

The sizes of the open reading frames and translated proteins were obtained by calculation 

with the “FGENESH“-software (http://linux1.softberry.com/) for prediction of the intron/exon 

structure. This structure can be rather different in respect to the organism. Therfore the 

calculation was performed with control genes first. The best algorithm was then used for the 

prediction of the cDNA of the identified terpene synthase genes. These predicted proteins 

were than analyzed again via blastp search for final annotation and identification of the 

closest ortholog.  

In case of P450 oxygenases many more search matches were expected, due to motives shared 

not only by oxygenases involved in secondary metabolism. Therefore the results observed in 

this analysis were compared with all hits that were significant to Taxol biosynthetic enzymes. 

In theory by this comparison it should be obvious if the identified P450 candidates are more 

closely related to fungal or plant (Taxus) enzymes. 

Additional to this two part targeted analysis approach whole genomes of EF0021 and 

Taxomyces andreanae were aligned with the sequences of an EST library of an induced Taxus 

cell culture, in order to identify genes in the genomes that show homology to Taxus genes 

transcribed in general. Besides the identification of fungal Taxol biosynthesis genes the aim 

of this search was to figure out if there are any genes homologous between the plant and its 

endophytes supporting the hypothesis of a gene transfer. 

 

III.4.5 Terpene synthases from EF0021 & Taxomyces andreanae 

Local blastx analysis with terpene synthase data set (II.5.9.4) and the two fungal genomes led 

to the identification of 6 genes/proteins in EF0021 genome and 20 genes/proteins from 

Taxomyces andreanae, respectively.  

Regarding EF0021 terpene synthases the candidates can be divided into two proteins highly 

homologous to lanosterol synthase from Aspergillus nidulans, one protein similar to geranyl 

geranyl diphosphate synthase, three sesquiterpene synthases and one diterpene synthase. Due 

to their very high similarity to lanosterol synthase and the high conservation of steroid 

biosynthesis in general the first two proteins are most likely to be involved in sterol 

biosynthesis. More interesting according to the aim of identification of a possible taxadiene 

synthase from endophytes are the 4 proteins 0021_TS_1580, 0021_TS_1762, 0021_TS_320 
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and 0021_TS_2010, that are probably involved in natural product synthesis of EF0021 (Table 

III-7). The genes and calculated proteins show the highest homology to different fungal 

terpene synthases, but in accordance to the genomic library screening results not with genes of 

plant origin in particular with the taxadiene synthase gene from Taxus species. 

The most interesting gene/enzyme is the only diterpene synthase found. It is an unusual 

chimeric diterpene synthase so far only isolated by Toyomasu and coworkers (TOYOMASU 

et al. 2007) from the plant-pathogenic fungus Phomopsis amygdali. This enzyme was shown 

to have two domains one for the cyclization of geranylgeranyldiphosphate (GGPP) to 

fusicoccadiene and one prenyltransferase domain for the synthesis of GGPP from the 

universal terpene precursors isopentenyldiphosphate and dimethylallyldiphosphate. Such 

multifunctional enzymes are not known from plants where the synthesis of GGPP and the 

terpene backbone is catalyzed always by two enzymes. 

Analysis of Taxomyces andreanae genome led to the identification of 20 terpene synthase 

candidates (19 terpene synthases, one prenyltransferase, Table III-8). Surprisingly all 

candidates are most probably sesquiterpene synthases, regarding homology in local blastx 

analysis as well as after calculation of predicted protein sequences.  

There was no indication for an enzyme or gene for diterpene synthesis. All identified open 

reading frames had a size of around 1000 bp resulting in proteins of 305 to 378 amino acids. 

The only exception is terpene synthase c7630_ts_8 having a cDNA size of 2172 bp resulting 

in a 713 aa protein. A closer view on the sequence revealed that the predicted protein consists 

of two parts, both homologue to sesquiterpene synthase Cop6 (XP_001832549). Therefore it 

is most likely that the prediction was wrong and it is actually two sesquiterpene synthases, 

although there are predicted proteins in Genebank having the same characteristics.    
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Table III-7: Predicted terpene synthases and prenyltransferases identified in EF0021 genome 
Contig Name Contig size [bp] Best match (local blastx) E-value orf size [bp] Protein size [aa] Best NCBI blastp (function), organism; accession No. E-value 

         

         
1580 0021_TS_1580 412494 Protoilludene synthase; 1*E-70 1023 341 Hypothetical protein CHGG_03509 (Isoprenoid_Biosyn_C1) 1*E-97 

   Armillaria gallica    Chaetomium globosum CBS 148.51; XP_001230025.1  

         
1762 0021_TS_1762 167955 Fusicoccadiene synthase; 2*E-45 2169 723 Polyprenyl synthetase  (Isoprenoid_Biosyn_C1) 5*E-83 

   Phomopsis amygdali    Glomerella graminicola M1.001; EFQ35158.1  

         
320 0021_TS_320 14785 Cop6; Coprinopsis cinereus 9*E-19 1608 536 Hypothetical protein SNOG_03562 (Isoprenoid_Biosyn_C1) 0 

       Phaeosphaeria nodorum SN15; XP_001794120.1  

         
2010 0021_TS_2010 281509 Cop6; Coprinopsis cinereus 2*E-11 1257 419 Hypothetical protein ANI_1_396154 (Isoprenoid_Biosyn_C1) 3*E-35 

       Aspergillus niger CBS 513.88; XP_001398274.1  

         

         
1411  717764 Lanosterol synthase; 0 2505 835 Lanosterol synthase Neurospora crassa OR74A; XP_961026.1 0 

   Aspergillus nidulans      

         
1058  100152 Lanosterol synthase; 6*E-147 2304 768 Squalene-hopene-cyclase Aspergillus fumigatus Af293; XP_751356.1 0 

   Aspergillus nidulans      

         

         
1708  1031903 GGPPS; 1*E-92 1047 349 Trans_Isoprenyl Diphosphate Synthases 3*E-158 

   Aspergillus nidulans    Sclerotinia sclerotiorum 1980 UF-70; XP_001588566.1  
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Table III-8: Predicted terpene synthases and prenyltransferases identified in Taxomyces andreanae genome 
Contig Name Contig size [bp] Best match (local blastx) E-value orf size [bp] Protein size[aa] Best NCBI blastp (function), organism; accession No. E-value 

         

         
7448 c7448_ts 39656 Cop1; Coprinopsis cinereus 4.8*E-124 1107 368 Isoprenoid_Biosyn_Enz_C1, Laccaria bicolor S238N-H82; XP001881043.1 9*E-134 

         
7630 c7630_ts_1 118498 Cop4; Coprinopsis cinereus 3.6*E-105 1050 349 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002473599.1 1*E-144 

         

 c7630_ts_2  Cop4; Coprinopsis cinereus 5*E-64 1038 345 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002473599.1 4*E-78 

         

 c7630_ts_3  Cop4; Coprinopsis cinereus 1*E-60 1029 342 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002473599.1 5*E-89 

         

 c7630_ts_4  Cop4; Coprinopsis cinereus 5*E-54 1002 333 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002473599.1 1*E-97 

         

 c7630_ts_5  Cop4; Coprinopsis cinereus 4*E-50 1014 337 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002473599.1 9*E-100 

         

 c7630_ts_6  Cop4; Coprinopsis cinereus 2*E-44 1026 341 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002473599.1 3*E-95 

         

 c7630_ts_7  Cop6; Coprinopsis cinereus 2*E-12 978 325 predicted protein, Postia placenta Mad-698-R; XP002472767.1 8*E-41 

         

 c7630_ts_8  Cop6; Coprinopsis cinereus 9*E-9 2142 713 predicted protein, Postia placenta Mad-698-R; XP002473977.1 4*E-69 

         

 c7630_ts_9  Cop6; Coprinopsis cinereus 1*E-6 948 315 predicted protein, Postia placenta Mad-698-R;  XP002472767.1 2*E-46 

         
7735 c7735_ts_1 15912 Pro1; Armillaria gallica 2*E-49 585 194 (partial) Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002472842.1 5*E-38 

         

 c7735_ts_2  Pro1; Armillaria gallica 3*E-25 594 198 (partial) Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002475233.1 3*E-21 

         
7797 c7797_ptr 75014 GGPPS; Aspergillus nidulans 3.7*E-33 918 305 Trans_Isoprenyl Diphosphate Synthase; Postia placenta Mad-698-R; XP002472170.1 4*E-113 

         

 c7797_ts  Cop6; Coprinopsis cinereus 1*E-15 954 317 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002475902.1 4*E-43 
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Table III-8 continued 

         
7466 c7466_ts 76539 Cop6; Coprinopsis cinereus 2*E-24 1137 378 Isoprenoid_Biosyn_Enz_C1, Laccaria bicolor S238N-H82; XP001885710.1 8*E-22 

         
8026 c8026_ts 11399 Cop6; Coprinopsis cinereus 4*E-16 855 284 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002475902.1 9*E-23 

         
7741 c7741_ts 93200 Cop6; Coprinopsis cinereus 5*E-14 954 317 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002475902.1 6*E-37 

         
8371 c8371_ts 13851 Cop4; Coprinopsis cinereus 5*E-9 1029 342 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002475451.1 7*E-27 

         
5849 c5849_ts 13348 Cop6; Coprinopsis cinereus 8*E-9 966 321 Isoprenoid_Biosyn_Enz_C1, Postia placenta Mad-698-R; XP002475902.1 7*E-42 

         
7493 c7493_ts 142612 Cop1; Coprinopsis cinereus 9*E-7 987 328 Isoprenoid_Biosyn_Enz_C1, Schizophyllum comune H4-8; XP003033206.1 2*E-23 
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Comparison of terpene synthases from EF0021 with enzymes predicted from 

Taxomyces andreanae was done via phylogenetic analysis (Figure III-14). 

 
Figure III-14: Phylogenetic tree constructed with UPGMA (unweighted pair group method with 
arithmetic means) from all predicted terpene synthase protein sequences (Table III-7, Table III-8) and the 
reference proteins used for local blastx analysis of the two fungal genomes (II.5.9.4); separation into three 
major clades (A-C); A: terpene synthases of Cop6 (XP_001832549) and trichodiene synthase type (P13513);    
B: terpene synthases of plant origin (B.I), involved in fungal gibberellin synthesis (B.II); fungal 
prenyltransferases and fusicoccadiene synthase (BAF45924), including the only diterpene synthase from both 
fungal species 0021_TS_c1762, annotated as fusicoccadiene synthase (B.III); C: terpene synthases of Cop1-5 
type; in red: functionally characterized enzymes.  
TDS: taxadiene synthase, KS: ent-kauren synthase, GGPPS: geranyl geranyl diphosphate synthase, FCDS: 
fusicoccadine synthase, Cop1-Cop6: sesquiterpene synthases from Coprinopsis cinereus (AGGER et al. 2009). 
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All protein sequences predicted from the two genomes were aligned with the protein 

sequences initially used for targeted search of terpene synthases (II.5.9.4). The aligned data 

set was used to construct a phylogenetic tree using UPGMA (unweighted pair group method 

with arithmetic means) with bootstrapping (100 replicates, bootstrap values shown at the 

nodes, Figure III-14).  

The analyzed protein sequences clustered into three major clades (Figure III-14, A-C). Clade 

B could be divided into three sub-clades, regarding plant or fungal protein origin and 

proposed or known protein function, for example their role in gibberellin biosynthesis. The 

abbreviations in red are marking functionally characterized enzymes.   

Clade A consisted of proteins annotated as sesquiterpene synthases most similar to Cop6 from 

Coprinopsis cinereus, including 0021_TS_2010 and 0021_TS_320 from EF0021 and 8 

proteins from Taxomyces andreanae. Furthermore Cop6 (XP_001832549) itself and the two 

trichodiene synthases from the terpene synthase reference data set belonged to this clade, 

although the last mentioned sequences were clearly separated from the predicted proteins and 

Cop6. 

All other predicted sesquiterpene synthases clustered together with Cop1-Cop5 in clade C. 

Within this clade the sequences could be divided into homologues to Cop4, homologues to 

Cop1-3 and proteins similar to these types of synthases. Six proteins from 

Taxomyces andreanae formed a group with Cop4 (upper part of C, Figure III-14). Of these 

c7630_ts_1 was most similar to Cop4, whereas the other five sequences were more closely 

related to each other than to the reference sequence. Looking back to the genome, all the 

genes encoding for the predicted proteins c7630_ts_1-6 were found not only on the same 

contig but within a 25 kb DNA fragment. It seems most likely that the genes evolved through 

duplication events, what explains the high similarity of the predicted amino acid sequences. 

c7448_ts seemed to be most similar to Cop1-Cop3 in accordance to blastx analysis (Table 

III-8), whereas c7493_ts initially also most similar to Cop1 now clustered with BAB39207 

(predicted di-terpene synthase, Kitasatospora griseola). The three additional proteins from 

Taxomyces andreanae (c7735_ts_1, 2 and c8371_ts) in C represented probably new 

sesquiterpene synthases sharing some features with Cop1-5 type enzymes (grouped in C) but 

were not as highly related to the reference sequences as the other proteins in the clade. The 

only enzyme from EF0021 in C is most closely related to protoilludene synthase from 

Armillaria gallica. In contrast to the sequences clustering with sesquiterpene synthase 
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reference sequences in clades A and C, only two predicted proteins from EF0021 and 

Taxomyces andreanae genomes were part of clade B. Furthermore B contained all reference 

proteins from plants, including taxadiene synthase, all enzymes involved in gibberellins 

biosynthesis from plants as well as from fungi and the few known di-terpene synthases known 

from fungi aphidicolan-16β-ol synthases from Phoma betae (BAD29971, BAB62102) and the 

fusicoccadiene synthase from Phomopsis amygdali (BAF45924).  

Both predicted endophytic enzymes belonged to sub-clade B.III. They clustered with 

prenyltransferases from fungi like the GGPPS from Aspergillus nidulans and 

Phomopsis amygdali (AAT65717, BAG30959) on the one hand and with fusicoccadiene 

synthase from Phomopsis amygdali (BAF45924) on the other hand. Fusicoccadiene synthase 

and 0021_TS_1762 are enzymes containing both a prenyltransferase part and a terpene 

synthase part. Nevertheless, the higher conservation of prenyltransferases in comparison to 

terpene cyclases made the position of the enzymes in a sub-group together with 

prenyltransferases look reasonable.   

Clade B.III was clearly separated from the other ones (B.I, B.II). Sub-clade B.I contained all 

sequences derived from plants, including taxadiene synthase and the enzymes involved in 

plant gibberellins biosynthesis, like ent-kauren synthase from rice (NP_001053841), but no 

sequence derived from fungi. Fungal diterpene synthases as aphidicolan-16β-ol synthase from 

Phoma betae (BAD_29971) and other predicted terpene synthases like diterpene cyclase 1 

from Klitasatospora griseola (BAB39206) were found in sub-clade II. Furthermore the 

sequences of fungal copalyl diphosphate synthases and kauren synthases (BAG30962, 

ABC46413, Q9UVY5) were included here, clearly showing the difference of enzymes 

catalyzing reactions towards gibberellins between plants and fungi.  

In summary, only two enzymes identified in the endophytic genomes were placed in the same 

major clade as known plant terpene synthases by phylogenetic analysis. Nevertheless, both 

proteins were more closely related to fungal enzymes, especially to prenyltransferases. By 

including enzymes from gibberellins pathway it became clear, that the origin of the proteins 

played the major role for sub-grouping in clade B. Although involved in biosyntheses leading 

to the same natural end products single enzymes are significantly different and their 

phylogenetic placement is dominated by the origin. There was further no indication for a 

terpene synthase that shared features with plant derived cyclases that would support the 

hypothesis of a gene transfer of Taxol biosynthesis from plant to fungus. 
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Analysis of clades A and C supports the role of the predicted cyclases from the endophytes 

grouped here in sesquiterpene biosynthetic pathways in accordance to the initial annotation. 

The division in A, B and C seemed to be due to mechanistic features resulting in characteristic 

differences of protein sequences of sesquiterpene and diterpene forming enzymes in fungi. 

Likewise plant sesquiterpene synthases were clustered dependent on origin derived features, 

leading to their position in B.I together with the other plant sequences rather than to 

sesquiterpene biosyntheses enzymes. 

Taking mechanistic considerations into account and the general difference of plant and fungal 

synthases, clades A and C only contained sesquiterpene synthases from fungi, while all 

predicted and functionally characterized diterpene synthases, all enzymes involved in the 

synthesis of the diterpenoid gibberellins and all plant derived enzymes regardless of their 

function belonged to clade B. The only reasonable candidate for a fungal taxadiene synthase 

evolved independently from plant pathway would be 0021_TS_1762, although no homologue 

for an enzyme like this was found in Taxomyces andreanae.  

 

III.4.6 Cytochrome P450 oxygenases from EF0021 & Taxomyces andreanae    

As initially discussed in the introduction, P450 oxygenases as well as acyltransferases play 

major roles in Taxol biosynthesis besides the key enzyme taxadiene synthase. In contrast to 

terpene synthases many P450 enzymes are not functionally characterized but only annotated 

by homology in genome projects or are supposed to be involved in biosynthetic pathways due 

to their occurrence in gene clusters physically linked to for example terpene synthase genes. 

Cytochrome P450 enzymes are involved in a multitude of biosyntheses and are specific for a 

respective biosynthetic pathway, for example in the formation of steroids. Due to these 

considerations the analysis for identification of P450 genes/enzymes from the genomes was 

performed differently than for terpene synthases. The two genomes were subjected for blastx 

analysis using the known and characterized protein sequences of Taxol biosynthesis in Taxus 

on the one hand (II.5.9.4) and a data set of 34 protein sequences annotated as P450 

oxygenases that might be involved in secondary metabolite pathways on the other hand 

(II.5.9.4). The two obtained data sets were than sorted by E-value with a threshold of E-5 and 

compared to each other. Results are listed in Table III-9 and Table III-10. 
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Table III-9:  Local blastx analysis of EF0021 genome against Taxol biosynthesis protein data set in comparison to results from local blastx analysis of the 
genome against P450 oxygenase reference data set. 

Query local blastx, Taxol biosynthesis proteins   E-value local blastx, P450 reference proteins   E-value 

          

     
contig03148 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 3.57*E-90 cytochrome P450 oxidoreductase [Gibberella fujikuroi], CAE09055 0 

     
contig02727 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 1.47*E-54 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 5.75*E-54 

     
contig00613 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 5.86*E-43 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 2.23*E-42 

     
contig01448 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 1.81*E-29 fusicoccadiene C-8 hydroxylase [Alternaria brassicicola], BAI52800 3.70*E-41 

     
contig02012 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 6.87*E-24 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 2.62*E-23 

     
contig00496 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T 1.89*E-19 ent-kaurenoic acid hydroxylase [Arabidopsis thaliana], AAK11564 7.71*E-21 

     
contig00421 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 6.56*E-19 cytochrome-P450 hydroxylase [Coprinopsis cinerea okayama7#130], XP_001830548  1.72*E-43 

     
contig00194 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 3.94*E-18 cytochrome P450 monoxygenase [Botryotinia fuckeliana], CAH64679 5.74*E-47 

     
contig02051 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 2.71*E-16 cytochrome P450 monooxygenase [Botryotinia fuckeliana], CAE76652 7.06*E-65 

     
contig00377 taxoid 14-β-hydroxylase [Taxus cuspidata], AAO66199 3.33*E-16 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 7.98*E-119 

     
contig00459 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 2.56*E-15 fusicoccadiene 8-ol C-15 hydroxylase [Alternaria brassicicola], BAI52803 1.65*E-54 

     
contig00064 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 9.26*E-15 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 5.08*E-21 

     
contig01709 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 1.06*E-14 fusicoccadiene 8-ol C-15 hydroxylase [Alternaria brassicicola], BAI52803 1.86*E-43 
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Table III-9 continued 

     
contig02000 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.17*E-13 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 7.95*E-79 

     
contig01580 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 2.32*E-13 fusicoccadiene 8-ol C-15 hydroxylase [Alternaria brassicicola], BAI52803 1.10*E-71 

     
contig00418 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 9.87*E-13 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 1.33*E-17 

     
contig00435 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.06*E-12 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 3.90*E-31 

     
contig01280 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 1.88*E-12 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 1.91*E-108 

     
contig00453 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 2.06*E-12 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 6.76*E-72 

     
contig02056 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 2.12*E-12 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 5.71*E-58 

     
contig00380 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 2.50*E-12 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 5.34*E-47 

     
contig01900 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 3.94*E-12 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 1.12*E-132 

     
contig02343 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 1.70*E-11 cytochrome P450 monooxygenase [Botryotinia fuckeliana], CAP58781 2.74*E-86 

     
contig00414 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.73*E-11 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163]EDP55514 6.28*E-67 

     
contig00510 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 2.10*E-11 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 1.44E-19 

     
contig02617 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 2.33*E-11 cytochrome P450 monooxygenase [Botryotinia fuckeliana], CAE76652 1.28*E-25 

     
contig00684 taxoid 7-β-hydroxylase [Taxus cuspidata], AAQ75553 3.76*E-11 fusicoccadiene C-8 hydroxylase [Alternaria brassicicola], BAI52800 2.79*E-67 

     
contig00394 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 7.54*E-11 cytochrome-P450 hydroxylase [Coprinopsis cinereaokayama7#130], XP_001830548  1.18*E-48 

     

     

     



 

 

 

III R
esults 

100 

Table III-9 continued 

     
contig00431 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 1.73*E-10 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 4.21*E-80 

     
contig01343 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 1.74*E-10 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 6.64*E-10 

     
contig01970 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 7.17*E-10 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 5.50*E-69 

     
contig00432 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 1.15*E-9 isotrichodermin C-15 hydroxylase [Fusarium sporotrichioides],O13317 1.64*E-70 

     
contig00539 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 2.05*E-9 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 5.31*E-82 

     
contig02421 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 2.45*E-9 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP47672 9.98*E-19 

     
contig00234 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 2.45*E-9 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 5.29*E-20 

     
contig01990 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 2.72*E-9 trichothecene C-8 hydroxylase [Fusarium sporotrichioides], AAO64248 7.22*E-29 

     
contig02038 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 3.42*E-9 cytochrome P450 monoxygenase [Botryotinia fuckeliana], CAH64679 1.32*E-37 

     
contig01951 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 3.49*E-9 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 2.23*E-64 

     
contig0101 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T 5.51*E-9 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 1.05*E-84 

     
contig00509 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.15*E-8 CYP710A1; C-22 sterol desaturase/ oxygen binding [Arabidopsis thaliana], NP_180997 3.67*E-39 

     
contig00493 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 3.94*E-8 isotrichodermin C-15 hydroxylase [Fusarium sporotrichioides], O13317 2.80*E-46 

     
contig00672 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 4.94*E-8 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 2.89*E-32 

     
contig01498 taxoid 7-β-hydroxylase [Taxus cuspidata], AAQ75553 4.99*E-8 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 1.53*E-57 
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Table III-9 continued 

     
contig00376 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 7.95*E-8 fusicoccadiene C-8 hydroxylase [Alternaria brassicicola], BAI52800 4.09*E-24 

     
contig00452 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.09*E-7 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 3.19*E-116 

     
contig02405 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 2.13*E-7 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 6.58*E-82 

     
contig00222 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 2.68*E-7 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 5.64*E-64 

     
contig00339 taxoid 14-β-hydroxylase [Taxus cuspidata], AAO66199 2.78*E-7 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 2.06*E-26 

     
contig00605 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 3.73*E-7 fusicoccadiene C-8 hydroxylase [Alternaria brassicicola], BAI52800 1.08*E-38 

     
contig01501 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 6.28*E-7 cytochrome P450 monooxygenase [Botryotinia fuckeliana], CAE76652 1.10*E-67 

     
contig01472 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 1.99*E-6 cytochrome P450 monooxygenase [Gibberella fujikuroi], CAA75566  8.52*E-36 

     
contig00320 taxoid 14-β-hydroxylase [Taxus cuspidata], AAO66199 5.63*E-6 cytochrome-P450 hydroxylase [Coprinopsis cinerea okayama7#130], XP_001830548  1.39*E-20 

     
contig01879 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 6.25*E-6 cytochrome P450 monooxygenase [Gibberella fujikuroi], CAA75565 5.46*E-82 

     
contig00473 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 8.03*E-6 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 1.03*E-46 

     
contig00402 taxoid 7-β-hydroxylase [Taxus cuspidata], AAQ75553 8.46*E-6 cytochrome P450 monoxygenase [Botryotinia fuckeliana], CAH64679 5.17*E-18 

     
contig00407 taxoid 7-β-hydroxylase [Taxus cuspidata], AAQ75553 9.84*E-6 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 6.57*E-26 

     
contig00396 taxoid 7-β-hydroxylase [Taxus cuspidata], AAQ75553 2.26*E-5 fusicoccadiene C-8 hydroxylase [Alternaria brassicicola], BAI52800 6.56*E-37 

     
contig01673 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 6.88*E-5 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 4.27*E-65 
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Table III-10: Local blastx analysis of Taxomyces andreanae genome against Taxol biosynthesis protein data set in comparison to results from local blastx 
analysis of the genome against P450 oxygenase reference data set. 
Query Local blastx, Taxol biosynthesis proteins   E-value Local blastx, P450 reference proteins   E-value 

          

     
contig_7943 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 3.09*E-79 cytochrome P450 oxidoreductase [Coprinopsis cinerea okayama7#130], XP_002910681 0 

     
contig_7798 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 8.6*E-34 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 3.28*E-33 

     
contig_8600 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 2.06*E-28 cytochrome P450 oxidoreductase [Gibberella fujikuroi], CAE09055 3.51*E-28 

     
contig_8399 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 3.97*E-26 cytochrome P450 oxidoreductase [Gibberella fujikuroi], CAE09055 8.90*E-26 

     
contig_7768 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 8.18*E-26 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 3.12*E-25 

     
contig_7609 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 2.17*E-25 cytochrome P450 oxidoreductase [Gibberella fujikuroi], CAE09055 1.16*E-26 

     
contig_7848 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 1.10*E-15 CYP710A1; C-22 sterol desaturase/ oxygen binding [Arabidopsis thaliana], NP_180997 5.76*E-42 

     
contig_7962 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 6.50*E-14 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 2.48*E-13 

     
contig_7383 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 2.96*E-12 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 1.04*E-32 

     
contig_7354 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 3.73*E-11 cytochrome P450-1 [Coprinopsis cinerea], BAA3371 3.92*E-85 

     
contig_8569 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 1.41*E-10 cytochrome P450-2 [Coprinopsis cinerea okayama7#130, XP_001835122 2.04*E-58 

     
contig_7647 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 2.21*E-10 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 3.60*E-178 

     
contig_7767 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 4.12*E-10 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 2.16*E-39 
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contig_7849 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 1.64*E-9 cytochrome P450 oxidoreductase [Coprinopsis cinerea okayama7#130], XP_002910681 2.15*E-9 

     
contig_7744 taxoid 14-β-hydroxylase [Taxus cuspidata], AAO66199 6.23*E-9 cytochrome P450 [Aspergillus fumigatus Af293], XP_747185 1.68*E-22 

     
contig_7668 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.15*E-8 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 3.39*E-116 

     
contig_7815 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 2.91*E-7 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 1.85*E-29 

     
contig_8308 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 3.46*E-7 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 1.31*E-33 

     
contig_7370 cytochrome P450 reductase [Taxus wallichiana var. chinensis], AAX59902 4.55*E-7 cytochrome P450 oxidoreductase [Gibberella fujikuroi], CAE09055 1.02*E-6 

     
contig_7542 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 4.89*E-7 cytochrome P450 monooxygenase CYP63 [Laccaria bicolor S238N-H82], XP_001886909 2.94*E-47 

     
contig_8062 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 5.05*E-7 ent-kaurenoic acid hydroxylase [Arabidopsis thaliana], AAK11564 2.25*E-9 

     
contig_7461 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 6.44*E-7 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 9.77*E-34 

     
contig_7479 taxoid 13-α hydroxylase [Taxus cuspidata], Q8W4T9 8.28*E-7 cytochrome-450 hydroxylase [Coprinopsis cinerea okayama7#130], XP_001830548 1.22*E-66 

     
contig_7394 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 9.20*E-7 cytochrome P450 [Aspergillus fumigatus A293], XP_747185 1.09*E-18 

     
contig_7636 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 1.78*E-6 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 4.07*E-35 

     
contig_7570 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 1.79*E-6 cytochrome P450 monooxygenase [Laccaria bicolor S238N-H82], XP_001881086 3.28*E-8 

     
contig_8187 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 1.92*E-6 cytochrome P450-2 [Coprinopsis cinerea okayama7#130], XP_001835122 6.17*E-48 

     
contig_780 taxoid 7-β-hydroxylase [Taxus cuspidata], AAQ75553 2.11*E-6 ent-kaurenoic acid hydroxylase [Arabidopsis thaliana], AAK11564 2.50*E-7 
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contig_8380 5-α-taxadienol-10-β-hydroxylase [Taxus cuspidata], Q9AXM6 2.75*E-6 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 1.61*E-22 

     
contig_7889 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 4.00*E-6 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 2.56*E-22 

     
contig_7777 taxadiene 5-α hydroxylase [Taxus wallichiana var. chinensis], AAU93341 4.61*E-6 cytochrome-450 hydroxylase [Coprinopsis cinerea okayama7#130], XP_001830548 2.14*E-27 

     
contig_7607 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 6.89*E-6 cytochrome P450 alkane hydroxylase [Aspergillus fumigatus A1163], EDP55514 8.97*E-11 

     
contig_8191 taxoid 2-α-hydroxylase [Taxus canadensis], AAS89065 7.87*E-6 cytochrome P450-1 [Coprinopsis cinerea], BAA33717 5.96*E-84 
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The analysis resulted in 58 contigs in case of EF0021 and 33 contigs for 

Taxomyces andreanae showing similarity to known Taxol biosynthesis proteins from yew 

tree. In case of cytochrome P450 dependent monooxygenase data set the total number of 

enzyme candidates of this enzyme class was determined to around 90 candidates for EF0021 

and more than 200 candidates for Taxomyces andreanae, respectively.   

The contigs showing similarity to Taxol biosynthesis enzymes were taken as a query for 

manual comparison with the best results obtained with P450 reference proteins. This was 

done in order to figure out if the matches for Taxol biosynthesis enzymes were the most 

significant ones or if the matches identified were more related to other, especially fungal 

enzymes. Regarding Taxol biosynthesis protein data set all known enzymes were taken into 

account, including cytochrome P450 dependent monooxygenases (P450ox), acyltransferases, 

enzymes involved in side chain assembly and a cytochrome P450 reductase required for 

reduction equivalent regeneration were used. For both fungi this reductase delivered the most 

significant matches. With E-values of 3.57*E-90 for EF0021’s contig03148 and 3.09*E-79 for 

Taxomyces andreanae’s contig_7943 the proteins identified were most likely oxido- 

reductases. This hypothesis was supported by the comparative analysis to the local blastx 

results of the other data set. Best matches for the mentioned contigs showed an E-value of 0 

for cytochrome P450 oxidoreductase from Gibberella fujikuroi (contig03148) and cytochrome 

P450 oxidoreductase from Coprinopsis cinerea (contig_7943), respectively. In both genomes 

multiple matches sharing these characteristics could be identified. However, the high 

conservation of oxidoreductases in general and requirement of reduction equivalents, hence, 

reductases, in many biological processes did not allowed to take this as a hint for fungal Taxol 

biosynthetic pathway. Regarding matches to other sequences of plant Taxol biosynthesis best 

hits were found for taxane-13α-hydroxylase on contig00496 in EF0021 and on contig_7848 

in Taxomyces genomes. With E-values of ~E-19 and ~E-15 the similarity was significant.  

These best P450ox matches were most similar to plant derived sequences from the 

cytochrome P450ox data set, to ent-kaurenoic acid hydroxylase and C-22 sterol desaturase 

from Arabidopsis thaliana. However, significance for these reference proteins was better than 

for Taxol biosynthesis and it seems quite probable that the two fungi might be capable of 

sterol or gibberellins biosynthesis. Besides these two hits, one in each genome, all other 

sequences initially identified by comparison to Taxol biosynthetic enzymes showed much 

lower E-values, meaning similarity to cytochrome P450 dependent hydroxylases from fungi, 
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like Coprinopsis cinereus for example contigs_7383, 7354 and 8569 from Taxomyces, or 

Botryotinia fuckeliana and Aspergillus for example contigs_00194, 0251 and 00377 from 

EF0021. These findings led to the conclusion that there was no clear indication for P450ox 

from Taxol biosynthetic pathways in the genomes. Nearly all proteins predicted were more 

closely related to fungal sequences in accordance to terpene synthase results. The only 

interesting contigs were the described ones showing similarity to plant derived proteins. 

Nevertheless, for both fungi only one hydroxylase was found not clearly predicted as fungal 

P450ox. Taxol biosynthetic pathway involves several hydroxylation steps and the respective 

enzymes were found to be very similar to each other (JENNEWEIN and CROTEAU 2001) 

more than to hydroxylases from other pathways. Although for example the best six hits for 

taxane-hydroxylases in EF0021 genome shown in Table III-9 had similar E-values (E-19-E-15) 

and their best matches for different cytochrome P450 enzymes from Taxol biosynthesis, 

comparative analysis clearly showed not only a higher similarity to fungal kingdom, but also 

that these best matches were derived from different species. If for example all the sequences 

would have been most closely related to one fungal sequence or at least to different sequences 

from the same host, this might have been a hint for membership of the predicted enzymes of 

the same pathway. 

Furthermore there was no protein predicted showing significant similarity to any of the other 

enzymes from Taxol biosynthesis in yew. 

Taking all this together the data suggested the absence of Taxol biosynthesis in the 

endophytes. Again the results were in accordance to negative hybridization screening 

observations. Thus, the possibility of a gene transfer of Taxol biosynthetic pathway can be 

ruled out. Nevertheless, this analysis did not completely proof that none of the here predicted 

cytochrome P450 proteins have the capability to hydroxylate Taxoids.   

 

III.4.7 Additional analyses 

Additionally to targeted analysis performed in order to identify Taxol biosynthetic pathway 

genes or candidates for a not homologous biosynthesis in fungi, both genomes were compared 

to each other and to >3500 sequences from an induced EST library of Taxus cuspidata. 

Neither by direct comparison nor by using BLAST analysis against Taxus ESTs a significant 

homology was found for genes that might be involved in secondary metabolism. Only highly 
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conserved genes from primary metabolism were identified having similarity in EF0021, 

Taxomyces andreanae and Taxus for example genes encoding for proteins of ubiquitin 

biosynthesis.   

 

III.4.8 Examination of diterpene synthase 0021_TS_1762 

Summarizing all the results from genome analysis together the only probable candidate for an 

enzyme involved in an independently evolved fungal Taxol biosynthesis is 0021_TS_1762. It 

is the only annotated diterpene synthase and phylogenically seen at least more similar to 

fungal diterpene synthases and terpene synthases from plants than all the other predicted 

proteins. To further characterize the enzyme first a cDNA-RACE library was constructed 

from RNA from EF0021 mycelia. Using gene specific primers according to the isolated 

genomic clone and the library as template it proved impossible to isolate cDNAs of the gene, 

indicating that the gene might not have been expressed at the time point of harvesting of the 

mycelia under the applied cultivation conditions. As far as the conditions were chosen for 

screening for taxane production and not for optimal expression of certain genes this was not 

unexpected.  

Therefore a synthetic open reading frame for the putative diterpene synthase was designed 

(Table III-7) and codon-optimized for expression in E. coli.  

This synthetic gene was cloned into pTrcHis2 vector and expressed in E. coli. Functional 

testing for terpene synthase activity in vitro using crude E. coli protein extract and 3H labeled 

geranylgeranyl diphosphate as a substrate under terpene synthase assay conditions varying the 

pH from 7.2 to 8.0. Unfortunately this did not lead to a conversion of the diterpene precursor 

GGPP to a cyclic diterpene.  

The terpene synthase activity assay was controlled using protoilludene synthase and could be 

excluded as a probable reason for the obtained negative results (ENGELS et al. 2011). The 

probable explanation for the failure had to be searched in the predicted enzyme sequence. For 

calculation of the open reading frame from the genome sequence FGENESH software was 

used. The determining factor for the quality of a prediction like this is the correct choice of 

organism used for distinguishing introns from exons.  

In case of 0021_TS_1762 the best fitting organism available was Aspergillus nidulans. As far 

as no cDNA for 0021_TS_1762 could be amplified via RACE-PCR two genes from primary 
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metabolism were used to control the correct intron/exon structure. The pyruvate kinase and 

the citrate synthase were therefore predicted in the same manner, cloned from the EF0021 

RACE-library and sequenced. Analysis showed that for these genes the prediction was 100 % 

right. Hence, the prediction using Aspergillus nidulans as basis in general was useful for 

EF0021 genes.  

Taking a closer look at the specific putative sequence of 0021_TS_1762 using blastp analysis 

showed that the possible problem leading to a non functional protein was most likely located 

in the beginning of the sequence. Comparison with fusicoccadiene synthase from 

Phomopsis amygdali revealed that in 0021_TS_1762 the terpene synthase domain is lacking 

one of two motifs relevant for catalytic activity. The probable position of the motif thereby 

lied in the region of intron1 predicted initially. BLAST search of the sequence fragment 

around intron1 of predicted 0021_TS_1762 led to the identification of a 165 bp fragment 

including the 93 bp original intron1 that had no homology to fusicoccadiene synthase. 

Deleting this sequence from the open-reading frame as a modified intron1 leaded to a new 

putative terpene synthase 0021_TS_1762_del now having a DDXXE motif (Figure III-15).  

 

 
Figure III-15: cDNA and protein sequence of predicted 0021_TS_1762 and the deletion variant, in which 
intron1 was enhanced from 93 bp to 165 bp due to a gap in sequence homology to fusicoccadiene synthase from 
Phomopsis amygdali. The region corresponding to gene sequence around intron1 is lacking a terpene synthase 
motif. By deletion of the manually determined intron1 in the resulting protein a DDxxE motif occurs. 
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An expression clone was created by whole plasmid PCR using pTrcHIS2-0021_TS_1762 

construct and relegation of the PCR product forming pTrcHIS2-0021_TS_1762_del. The new 

protein was expressed and tested as described before.  

Although the protein was expressed as shown in Figure III-16, the new enzyme was not 

functional either. Both recombinant enzymes were furthermore tested using 14C labeled 

isopentenyl diphosphate and dimethylallyl diphosphate as substrates instead of 3H-GGPP, 

suggesting a role of prenyltransferase domain for reaction towards terpenoid backbone 

through a mechanism of metabolic channeling. But also by these experiments it was not 

possible to show terpene synthase activity.  

 
Figure III-16: SDS PAGE stained with Coumassie and western blot analysis of expression of 
0021_TS_1762_del in E. coli; Neg: protein sample of E. coli not containing expression vector; RT: protein 
sample of E. coli expression culture of 0021_TS_1762_del performed at room temperature over night, induction 
at OD600nm=0.5with 1 mM IPTG; 28 °C: protein sample of E. coli expression culture of 0021_TS_1762_del 
performed at 28 °C over night, induction at OD600nm=0.5with 1 mM IPTG. 
 

Another feature of intron1 was its divisibility by three, indicating the possibility of more 

theoretical variants containing additional amino acids compared to 0021_TS_1762. Analysis 

of 0021_TS_1762 sequence showed a maximum of 56 variants (13 aa). Although all these 

enzymes are theoretical possible without destroying the open-reading frame none of them 

contained a DDXXE or DDXXD motif as already observed for original 0021_TS_1762. 
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It was possible to clone 35 of these variants. Protein expression was done here in 24 well 

plates. Test reactions as well as extractions were performed in plasma carbon coated 96 well 

plates (HEINIG et al. 2010). In accordance to the results before none of the recombinant 

proteins showed a terpene synthase activity neither with 3H-GGPP nor with 14C-IPP and 

DMAPP as substrates. 

In conclusion, all results indicate that diterpene synthase 0021_TS_1762 represents a non 

functional enzyme, although it cannot completely ruled out that one of the variants not cloned 

is the active one or that incorrect folding due to expression in E. coli takes place.  

Nevertheless, although it was not possible to show activity towards taxadiene or another 

terpenoid backbone for whatever reason taking all the results together and furthermore 

comparing 0021_TS_1762_del with taxadiene synthase from yew tree regarding general 

features the enzyme is probably not a fungal taxadiene synthase. 

 

 
Figure III-17: Schematic protein structures of taxadiene synthase and 0021_TS_1762_del, including 
domains and position of catalytic DDXXD/E motif, exons as boxes, introns as vertical lines, length in amino 
acids.  
 

All features of 0021_TS_1762 are typical for a fungal terpene synthase, including intron/exon 

structure, number of introns, size of the protein and most important the position of DDXXD/E 

motif within the protein. These characteristics are fundamentally different to the structure of 

terpene synthases from plants and in particular to taxadiene synthase from Taxus. Figure 
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III-17 shows a comparison between taxadiene synthase from Taxus baccata and 

0021_TS_1762_del, with respect to protein architecture, pointing out the major differences 

between the two enzymes. Whereas the plant derived taxadiene synthase has characteristic 

domains known from all plant terpene synthases like targeting sequence for plastids or 

glycosyl-hydrolase like domain and specific sequences for its origin in this case conifers 

diterpene synthase 0021_TS_1762_del is lacking all these typical parts and consists only of 

around 300 aa containing the features relevant for synthase activity.  

Furthermore there is no example for plant terpene synthases having both a terpene synthase 

domain and a prenyltransferase domain as 0021_TS_1762 has. These multifunctional 

enzymes seem to occur exclusively in fungal terpenoid biosyntheses and even here they are 

unusual.  

Another strong indication that the protein is not a taxadiene synthase was its absence in 

Taxomyces andreanae. Even if the theory of an independent evolution of the pathway in the 

species is right, at least similarity between the fungal enzymes catalyzing the highly complex 

reaction towards taxadiene should be there.  
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IV Discussion 

 

The objective of the project was the elucidation of the evolutionary origin of complex 

secondary metabolisms pathways. Up to today very little knowledge exists on the 

evolutionary origin of natural products (secondary metabolites). The diterpenoid natural 

product Taxol, paclitaxel, offers a particular interesting case. Taxol and related taxanes occur 

in plants only in the small genus Taxus, however are also reported to be synthesized by certain 

endophytic fungi, often associated with Taxol or taxoid (several closely to Taxol related 

natural products) producing Taxus species. Several genes of Taxol biosynthesis in Taxus 

plants have been already cloned and functionally identified (HEINIG and JENNEWEIN 

2009), however much less information is available from the Taxol biosynthesis of endophytic 

fungi. Thus, the examination of the in evolutionary regard very interesting observation of the 

production of identical but extremely complex natural products by very distantly related 

organisms, in this case the yew tree Taxus, and its endophytic fungi may lead to fundamental 

new knowledge about the evolution of secondary metabolite pathways. 

As mentioned above at the beginning of the project there was very little knowledge on the 

biosynthesis of Taxol or any other related taxanes in endophytic fungi, besides the radio-

active precursor feeding experiments indicating independent biosynthesis of Taxol in the 

endophytic fungus Taxomyces andreanae (STIERLE et al. 1993). Fortunately, several 

biosynthetic steps of the Taxol biosynthesis in planta were already characterized and the 

underlying genes isolated. Initially the comparison for examination of the origin of the 

synthesis was not possible due to the in contrast to Taxus unknown biosynthesis in 

endophytes. Thus first the genes and enzymes of the pathway in endophytes had to be isolated 

and characterized.  

 

IV.1 Analysis of “taxane producing” endophytic fungi 

 

To confirm the results with respect to taxanes detection from endophytic fungi published 

earlier three endophytic fungi obtained from culture collection were analyzed 

phytochemically. This analysis of the published and patented strains did not led to the 
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detection of taxanes in the organic extracts in contrast to  previous results (STROBEL et al. 

1994; STROBEL et al. 2001; HOFFMAN 2003). Since no data on the proposed biosynthetic 

pathway in fungi was available the detection of taxanes from the organic fungal extracts was 

the only possible way to obtain an indication for to at least get a hint for a functional and 

hence complete pathway. For this reason the detection of one or more taxoids was regarded as 

an essential need before starting any molecular biological examination.  

As already discussed in chapter III.2 one plausible explanation for the unexpected results was 

the scenario that the fungal species stopped synthesizing the natural products because of the 

cultivation under laboratory conditions which are fundamentally different to their natural 

environments. Loss of the ability of production in general could occur either due to silencing 

of the pathway or part of it, or however less probable because of loss of biosynthesis genes. 

As mentioned in the introduction for fungi it is known that secondary metabolites biosynthetic 

pathways are located mainly in the telomere regions of the genomes (WALTON 2000). 

Genetic instability in these regions can cause the loss of pathway genes or in case of a gene 

cluster the whole pathway. In general loss of pathways as a reason for loss of the ability for 

synthesis is described as a evolutionary scenario by analysis of genomes of organisms, 

normally from the same genus either shown to produce certain compounds or not able to 

synthesize the molecules. For different Fusarium species, gibberellin producers and species 

not synthesizing the compounds, it was shown that some parts of the biosynthesis gene cluster 

or the entire gene cluster was deleted (BÖMKE et al. 2008; PROCTOR et al. 2009). This kind 

of divergence during evolution might be due to changing requirements of the species during 

time, for example because of changing environmental conditions. In case of gibberellins this 

for example means that if a fungus does not act as a plant pathogen anymore there is no need 

for gibberellins biosynthesis. Hence there is no pressure for the organism to retain the ability 

for production and to possess the gene cluster. These considerations of course represent 

general evolutionary processes that can be assumed to happen over a long time period in 

parallel to divergence within the genus itself.  

Such a phenomenon was never described in literature so far as a cause of cultivation in 

laboratory and it cannot be examined in the present case due to lack of information on the 

predicted fungal Taxol biosynthetic pathway.  

Regarding the fungal species examined here classical evolutionary theories cannot be applied. 

Strains were cultivated under laboratory conditions which fundamentally differ from their 
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natural environment.  At the time point of isolation all pressure for natural product synthesis 

for example for defense is removed as far as there is no interaction anymore with the multiple 

other inhabitants, meaning no stimulation neither negative or positive. The organisms might 

adapt to these new conditions quickly and stop all not needed biosynthetic efforts for example 

production of natural products, although this might not be the case for all secondary 

metabolite pathways. 

Thus regarding the short time periods in which obviously taxanes cannot be detected anymore 

from the endophytes extracts it seems more likely that the biosynthetic pathway is silenced 

rather that the genes are completely deleted from the genome.  

The example given in chapter III.2 that by using serial transfers nonaflatoxinogenic A. flavus 

strains can be created from previously aflatoxinogenic ones (CHANG et al. 2007) supports 

this theory. By only 20 serial transfers the fungi completely stop the synthesis of the 

compounds. The fungi obtained from culture collections analyzed in the present study were 

transferred more often over the years and most probably adapted completely to the standard 

laboratory cultivation media. Thereby it seems reasonable that natural product biosynthetic 

pathways still active directly after isolation are silent now.  

By using of screening media also used in the past for cultivation for identification of taxanes 

from fungal extracts, mimicking the natural habitat in theory it should have been possible to 

re-induce production. But taking into account, that regulation of the predicted pathway and 

hence the entirety of factors needed for restoration of the assumed production was not known 

we could not be sure that this was possible at all. Furthermore by removing the evolutionary 

pressure for the predicted production also the need to retain the genes was lost. With regard to 

the known characteristics of Taxol biosynthetic pathway from yew, especially the specificity 

of the enzymes for complex substrates as well as products, it seems feasible that even minor 

changes of a single gene, for example through one mutation might lead to an inactive enzyme. 

This would most probable lead to a collapse of the entire pathway towards taxoid end-

products, like Taxol or Baccatin III, without any possibility to restore the ability of 

production.  

All these factors, known or being assumed to influence the proposed taxane production by the 

endophytes led to the conclusion that the influence of growth under laboratory conditions had 

to be minimized. This could only be achieved by isolation of new endophytes from their 

natural environment. These fungal species would be still adapted to the conditions there and 
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furthermore if taxanes would be detectable from their organic culture extracts it is possible to 

take this observation as a hint for an active, complete and not degenerated fungal Taxol 

biosynthetic pathway. 

 

IV.2 Isolation of endophytic fungi from Taxus species 

 

The isolation and characterization with regard to natural product synthesis of endophytic 

fungi from different plant species not only from Taxus species is well described in the 

literature (ZHOU et al. 2010; ALY et al. 2011). Although as already mentioned Taxane 

producing endophytes have been isolated from different plants such as hazelnut or Cupressus 

species (HOFFMAN 2003; KUMARAN et al. 2008b; ZHOU et al. 2010) (Table S1) besides 

the genus Taxus, in the work presented special attention was paid towards fungi isolated from 

Taxus in accordance to the hypothesis of a connected evolution of the biosynthetic pathways. 

The 26 of 34 new isolates characterized by BLAST of the 5.8 ITS rDNA sequences thereby 

were all ascomycetes belonging to the orders Hypocreales, Pleosporales, Diaporthales or 

Xylariales. The most abundant genus was Phomopsis of the order Diaporthales followed by 

different Fusarium strains. All of the orders and most of the species were already described as 

endophytes and in particular as Taxus endophytic fungi (SOCA-CHAFRE et al. 2011). Four 

of the isolates were most closely related to other fungal endophytes which were not annotated 

on taxonomic level in detail.  

This diversity of fungi was rather low compared to other studies on endophytic fungi from 

plants and from Taxus (GANLEY et al. 2004; SOCA-CHAFRE et al. 2011). Nevertheless 

especially the most abundant species were not only described as endophytes but also as taxane 

producers before (CHAKRAVARTHI et al. 2008; KUMARAN and HUR 2009; KUMARAN 

et al. 2010b) (Table I-1). Since there are still many questions on the occurrence and function 

for example symbiosis of endophytes there are different explanations for the results. Puzzling 

in this context is the host specificity of the fungi for the host plant. Whereas some individual 

species seem to be highly specific for a host there are multiple genera that were isolated from 

a wide range of different and unrelated plant species. For example Taxomyces andreanae, the 

first predicted taxane producer ever was only found on a yew tree in Montana and not on any 

other yew species from other locations what might indicate a co-evolution of this endophyte 
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and yew in this special habitat. For most of the endophytes the case is less obvious. There are 

only tendencies of certain genera that are more common than others, for example the 

occurrence of Pestalotiopsis spp. on yew trees from subtropical locations (STROBEL et al. 

1996; ALY et al. 2011), whereas endophytic Penicillium spp. seem to be rare in yew, 

although they occur in high frequencies on other plant species. Nevertheless there is a certain 

host specificity regarding plant families e.g. in conifers. The occurrence of dominating fungal 

communities in plants is correlated to the taxonomic relatedness of the hosts (SIEBER 2007) 

but also seems to be influenced by the geographic location and hence the environmental 

conditions of the plant/endophyte system. In case of the isolated fungi the predominant host 

species was Taxus baccata collected from different locations in Europe, growing under 

comparable climatic conditions. Other species like Taxus media were also collected in 

Europe, for example in botanical gardens. This might explain the occurrence of similar 

endophytic fungi isolated from these species because of either host-specificity or a preference 

due to the environment. The diversity of endophytes was furthermore shown to be dependent 

on the tissue of plant species indicating an influence of the micro-environment on the 

occurrence of fungal species (ALY et al. 2011). Comparison of endophytes from 

Cupressus arizonica leaves and woody material showed that most of endophytic species were 

found only in one of the plant parts and that the overlap of species was rather low (ARNOLD 

2007). Furthermore the different tissues contain by it selves different numbers of endophytes 

(GANLEY and NEWCOMBE 2006). In the present study all endophytic fungi were isolated 

from surface sterilized inner-bark material by cultivation on solid agar followed by separation. 

This might have also led to a selection for faster growing fungi and to the loss of either over 

grown species or species that might not be cultivatable under the laboratory conditions 

applied (ARNOLD 2007). Hence, only the dominant Taxus baccata endophytes from one 

tissue of the plant, inner-bark, could be expected from the isolation procedure performed in 

this study. Because of these reasons the number and diversity of endophytic fungi had to be 

lower than shown in other studies. 

However the aim of the project was the isolation of taxane producing endophytes and not the 

examination of the total number or whole diversity of fungal species within the collected plant 

material as for example shown by Soca-Chafr and co-workers (SOCA-CHAFRE et al. 2011). 

The diversity obtained was estimated as high enough, due to the occurrence of several fungal 

species in which organic extracts already taxanes were detected (Table III-2, Table I-1) and 
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because of the number of different isolates obtained. In other studies performed for isolation 

of potential taxane producing endophytes in around 10 % of the fungal extracts taxanes were 

detected, for example 15 of 150 by Caruso and co-workers or 16 of 105 by the group of Soca-

Chafre (CARUSO et al. 2000b; SOCA-CHAFRE et al. 2011). Hence, in around three extracts 

of the isolates taxanes should be detectable. These estimated number of potential taxane 

producers could be used for molecular biological examination of the proposed pathway.   

 

IV.3 Phytochemical examination of newly isolated endophytic fungi 

 

To identify endophytes able to produce Taxol or related taxanes, such as Baccatin III or        

10-Deacetylbaccatin III the 34 fungal isolates were cultivated in liquid culture using either 

M1D, S7 or YM-6.3 medium. For detection of taxanes we used an immunological assay and 

LC/MS/MS. Two endophytes were identified as potential taxane producing fungi, EF0001 

and EF0021.  

For evaluation of the results the chosen setup for screening, including cultivation and 

analytics has to be critically discussed. Furthermore assuming that the detected taxanes were 

produced by the endophytes possible regulation mechanisms for secondary metabolite 

production have to be considered. 

The immunoassay purchased by Cardax Pharmaceuticals (Hawaii) was aimed to be a fast and 

very sensitive method for detection of all taxanes in parallel from raw organic extracts. The 

amounts of taxanes in the two fungal giving a signal in this assay, EF0001 and EF0016, were 

calculated to 7.8 ng/L and 2.5 ng/L, respectively. In comparison to Taxus baccata extract used 

as a positive control these values were >10,000 fold lower but lied in the range of observed 

taxane concentrations shown in literature when using this assay for quantification (Table I-1). 

Although many already as potential taxane producers described endophytes yield also only 

amounts of ng/L these values had to be validated by using an extract of a tissue definitely 

taxane free as negative control. The results of the analysis of tobacco leaf organic extracts 

clearly showed a cross reactivity probably due to other natural products, most like phenolic 

compounds leading to a “taxane” concentration comparable to the values determined in the 

fungal samples. This background activity was not described in literature up to now. As 

negative controls only pure medium was used (SOCA-CHAFRE et al. 2011) or no negative 
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control at all was mentioned (literature Table I-1). It is not known which part of the molecule 

is bound specifically to the used polyclonal antibody. For Taxus extract which showed a 

10,000 fold higher response, due to the much higher production level this background is 

negligible. Nevertheless these results raise questions about the reliability of the data presented 

in reports using only the immunological detection method for Taxol or taxane analysis from 

endophytic fungi’s extracts (KIM et al. 1999; CARUSO et al. 2000b; METZ et al. 2000; 

MIAO et al. 2009a; STANIEK et al. 2010; SOCA-CHAFRE et al. 2011).  

However these observations do not clearly ruled out the taxane production of the fungi found 

positive in the assay since the composition of the complex organic raw extracts obtained from 

newly isolated fungal species was not known. Thus it was necessary to control the results via 

a structure dependent analysis method as done in this thesis with LC/MS/MS.  

As described in chapters III.1 and III.3.3 this analysis was performed using “multiple reaction 

monitoring” scan mode as a detection method in combination with HPLC separation.  

This targeted approach of course has advantages as well as disadvantages. Whereas the 

immunological assay could be used for the detection of total taxanes the method developed 

here was selective to three defined compounds Taxol, Baccatin III and 10-Deacetyl-baccatin 

III. Regarding the existence of more than 350 known Taxoids (BALOGLU and KINGSTON 

1999) this selection seems rather limited. But all publications up to date describing taxane 

detection in fungal extracts report the only Taxol and Baccatin III or 10-Deacetyl-baccatin III 

(Table I-1), although this of course does not mean that no other taxoid compounds are present. 

Furthermore the aim of the study was to clarify Taxol biosynthetic pathway in the first 

instance and not the discovery of biosynthetic routes towards other compounds like          

C14-hydroxy-taxoids. Thus it was reasonable to focus on Taxol itself and the two other late 

precursors of Taxol in the analysis using the highly selective triple quadrupol scan mode. The 

detection limits determined under optimal conditions for the pure substances were in fmol 

range what is corresponding to pico gram amounts of the compounds. Assuming at least ng/L 

culture medium yields of taxanes, as described as minimal yields in literature (Table I-1) the 

sensitivity was more than sufficient. For example EF0001 extract had a volume of 3 mL 

obtained by extraction of 10 L culture broth. According to immunological quantification, 

assuming that the signal was due to taxanes and not to cross reactivity would contain around 

26 ng/mL taxanes. Hence, 10 µL of this extract, as injected in our experiments, would contain 

260 pg taxanes. This value is still around 10 fold over the detection limits. Of course there 
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was still the possibility that other taxanes besides the three compounds were present in the 

extracts instead. These compounds were not detected by this LC/MS/MS analysis. A scan of 

total ions would have been necessary to achieve this. An approach like this would have been 

less sensitive and not selective at all. In contrast to selection of defined molecular ions in Q1 

the whole spectrum of ionization products would pass this first “mass-filter”. The amount of 

“desired ions” in this mixture would be lower compared to selection for definite ions in the 

same scan time. Furthermore the identification of unknown compounds out of crude extracts 

with a mass spectrometer like a QTrap3200 used here is very difficult due to the resolution of 

the machine. In contrast to “time of flight” mass spectrometers the mass/charge is determined 

only to the second position after the decimal point. This unit resolution does not allow the 

determination of compounds by calculation of molecular formula from the accurate mass. 

Another point to consider is the unknown ionization of these unknown taxoid compounds. 

Probable adducts are not known as well as the optimal ionization mode. Hence, an approach 

like this would more likely not lead to doubtless identification of taxoids, which are supposed 

to be minor secondary metabolites in the fungal extracts. The targeted analysis as performed 

here was very sensitive and highly selective, also by usage of three transitions instead of only 

one for confirmation of the compounds identity. Its advantages strongly outweighed the 

possible loss of other synthesized substances that might additionally have been present.  

As shown in chapter III.3.3 in endophyte EF0001 extract Baccatin III was detected and in 

EF0021 extract a clear signal for 10-Deacetylbaccatin III occurred. In case of EF0001 these 

results corresponded to the initial taxane detection via immunoassay. At least part of the 

initially observed response observed was due to Baccatin III in the extract.  

Regardless all analytical considerations compared to literature the amounts of the identified 

Taxoids were in the in the range of the lowest detected amounts described so far (Table I-1), 

although as initially discussed all values reported, obtained by HPLC-UV, are most likely 

over estimated due to background absorption from raw organic extracts.  The reason for the 

taxane yields in ng/L range observed are probably the cultivation conditions which have the 

strongest impact on natural product formation.  

Taking into account that the production levels in all so far isolated endophytic fungi are much 

lower than described for any Taxus species, there is no obvious pressure for the endophyte to 

produce the compound in its natural environment and even less reason to do so under 

laboratory conditions. As already discussed for the general occurrence of endophytes (I.3, 
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IV.2) the micro conditions, in this case inside the yew tree might play a major role for 

surviving, life cycle and the secondary metabolism of the microbes (ALY et al. 2011).  

Hence, media composition, cultivation time and temperature play major roles for secondary 

metabolite yields. The media used in this study were taken either from literature as S7 and 

M1D (literature Table I-1), or represented a standard full medium for natural product 

screening of fungi. YM-6.3 was for example used for production and analysis of melleolides 

from different Armillaria spp. (ENGELS et al. 2011).  

The two media S7 and M1D were used besides PDA liquid medium in all present studies for 

the cultivation of endophytes for taxane production (Table I-1). Thereby S7 was designed in 

order to mimic the natural conditions within the inner bark of the plant host Taxus (STIERLE 

et al. 1993). Cultivation times for the different described species varied from one to three 

weeks or were carried out in a two step procedure (SREEKANTH et al. 2009) at 20 to 25 °C 

with or without shaking. Besides these cultivation characteristics fungi were furthermore 

grown either in the dark completely or with defined changes between dark and light cycles 

(STIERLE et al. 1993; KUMARAN and HUR 2009). By comparing all these different 

methods described before, in this study the cultivation conditions were set to three weeks in 

the dark with constant agitation (160 rpm) at room temperature (22 °C). Regarding the 

diversity of endophytes isolated these conditions were probably not optimal for all the fungi. 

This was obviously one explanation for the detected amounts of taxanes. 

Another important point in this context is the not completely known regulation of the pathway 

in Taxus as well as in the associated endophytes. For Taxus cell cultures Taxol biosynthesis 

can be influenced by addition of different plant growth regulators like indole-3-acedic acid 

(IAA) or 6-benzyladenine (BA) and choice of carbohydrate (KETCHUM and GIBSON 

1996). Nevertheless this influence was found to be strongly dependent on the individual cell 

line. The best production levels were obtained by induction of Taxus canadensis cell cultures 

with jasmonate known to be involved in plant defense mechanisms regulation (MCCONN et 

al. 1997) by Ketchum and co-workers (KETCHUM et al. 1999). They were able to determine 

the kinetics of Taxol accumulation as well as the highest titers, showing the influence of age 

of induced culture, time of induction and time point of highest yields. Thereby it was at least 

possible to find a correlation between maximum yields and taxadiene synthase activity 

(HEZARI et al. 1997; KETCHUM et al. 1999) as far as the accumulation of Taxol was 
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highest inducing 7 day old cultures, where taxadiene synthase activity was found to be at its 

maximum.  

For endophytic fungi so far no studies focused on determination of optimal growth conditions 

in correlation with proposed Taxol production, besides the work of Li and Tao co-fermenting 

Taxus cells with fungal endophytes in a membrane reactor proposing an influence on Taxus 

cell growth and Taxol production by endophytic fungi’s metabolites like gibberellic acid (LI 

and TAO 2009; LI et al. 2009).  

The great differences in detected taxane yields from ng/L to µg/L range under similar 

cultivation conditions, if not due to the analytical methods, might therefore be an effect of the 

endophytic fungal species itself, of course assuming that the compounds were really 

synthesized by the fungi. Through different adaption to the micro-environments isolated from 

and different regulatory mechanisms every fungal species might have its own preferences for 

growth, development and secondary metabolites production. For model systems the strong 

impact of environmental factors, as carbon or nitrogen source, temperature, light or pH was 

examined. These effects were shown to be typically transmitted through zinc-finger proteins 

(SHWAB and KELLER 2008) leading to positive or negative effects on natural product 

profile. Through standardization of cultivation procedure for taxane screening of course these 

differences were not examined in detail for every species. Secondary metabolite production is 

furthermore known to be dependent on developmental stage (CALVO et al. 2002) or global 

transcription factors like LaeA from Aspergillus spp., shown to be regulating entire gene 

clusters (BOK and KELLER 2004). Over-expression or deletion of the protein allowed the 

silencing and also the activation of formerly not expressed biosynthetic pathways leading to 

characterization of for example terrechinone gene cluster from Aspergillus nidulans (BOK et 

al. 2006). 

Hence, many factors influencing natural product outcome in the natural environment and 

especially under laboratory conditions. Factors like expression of the proteins, global 

transcriptional regulation or possible stimulation of production by the host or by other 

endophytes as in the microhabitat the endophytes were isolated from could not be controlled 

and might have had a negative impact on natural product yields.  

Independently from these considerations, all assuming that the endophytes are responsible for 

the detected taxanes the benefit of Taxane production itself for the endophytes is not obvious, 

even in their natural environment. The yew tree produces much higher amounts of the 
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compounds. For this reason fungal taxanes more likely play a role in the complex 

microhabitat e.g. for communication than in defending the potential microbial producers. 

Under laboratory conditions, cultivating a single fungus without its natural microbial partners 

and the host plant, there seems to be even less reason for production of trace amounts of 

highly complex natural products, like taxanes.  

All these considerations deliver possible explanations for the experimental results observed. 

By changing the cultivation conditions, examining regulatory mechanisms, etc. it might have 

been possible to enhance the taxane yields in case of the present study. Nevertheless the low 

level but doubtless detection of taxanes via identification with LC/MS/MS, together with not 

detecting the compounds in other endophytes extracts isolated or purchased from culture 

collection and in the negative control could be regarded as sufficient indication that the fungi 

EF0001 and EF0021 were the best candidates for molecular biological examination. 

Since the aim of isolation of genes from the proposed fungal Taxol biosynthesis was carried 

out on genomic level, production and hence transcription of genes or expression of proteins 

did not influenced the further molecular biological workflow. 

 

IV.4 Southern Blotting and phage library hybridization 

 

As a third screening method Southern Blot hybridization was chosen. Based on the proposed 

connection of evolution a certain homology of the biosynthetic genes was assumed that 

should lead to hybridization of probes designed from the sequences of known biosynthetic 

pathway genes from Taxus with fungal DNA. Due to the unknown degree of homology and 

furthermore the unknown genome sizes of the endophytic fungi, the method was first tested 

with genomic DNA from Taxus baccata. The hybridization conditions were optimized as well 

as the washing steps and exposure time. Examination of the newly isolated and the three 

organisms from culture collection led to the identification of signals for taxadiene synthase 

probe as well as for hydroxylase probes for EF0001 and EF0021. For none of the other fungi 

any signal was detected under these conditions. These results were in accordance to the 

phytochemical observations made by immunological and LC/MS/MS analysis of organic 

extracts in order to identify taxanes as described before. Nevertheless the intensity of the 

bands was rather low compared to the Taxus positive control leading to the conclusion that 
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there is only low homology between plant and fungal genes. With regard to the few existing 

reports, published during the time of the thesis on Taxol biosynthesis pathway genes from 

endophytes this result was rather surprising. In these works identification of genes of the 

predicted biosynthesis was done by amplification parts of genes of Taxol biosynthesis (from 

Taxus) from endophytes genomes. For three genes encoding for taxadiene synthase (TDS), 

10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) and C-13 phenylpropanoid side 

chain-CoA acyltransferase (BAPT) primers were designed on predicted conserved regions of 

the genes and used for PCR with genomic fungal DNA as a template (ZHANG et al. 2008; 

KUMARAN and HUR 2009; MIAO et al. 2009b). These approaches led to PCR products of 

200 bp (DBAT), 530 bp (BAPT) and 632 bp (TDS), respectively what corresponded to the 

size of fragments homologous to Taxus cDNA. Sequence alignment of the TDS fragment 

amplified from Mucor rouxianus isolated from Taxus chinensis with TDS cDNA clone from 

Taxus media (U48796) showed 98 % identity of the sequences. Furthermore surprising was 

the observation of Staniek and co-workers who used the same primer set to amplify TDS and 

DBAT gene fragments from Taxomyces andreanae (STANIEK et al. 2009). The sizes of the 

PCR products here correspond to the sizes of the genomic clones of the Taxus genes, meaning 

that in contrast to the earlier published data the genes contain all introns present in plant 

genes. Besides these none consistent findings regarding gene structure with or without plant 

intron sequences a homology of 98 % should have led to signals of similar intensity in Taxus 

and endophytes Southern Blot analysis what was not the case. Furthermore in a previous 

study Taxomyces andreanae was subjected to genomic library screening.   

Examination of 160,000 phage clones via hybridization with probes homologous to taxadiene 

synthase (TDS) from Taxus no positive clone, meaning a fungal TDS could be identified 

(HEINIG 2006). If the gene really was nearly identical in plant and fungus the approach 

should have led to positive results.  

Despite these inconsistent findings leading to open questions the bands detected were defined 

and no signals were observed in the negative control (tobacco DNA). Additionally in both 

fungal extracts taxanes could be detected. 

The construction of λ-phage libraries from EF0001 and EF0021 was done according to the 

Stratagene guidelines. Titers reached thereby were lower than expected, but nevertheless 

contained enough individual phage clones to be sure that the entire genome was packed. The 

most reasonable explanation for the observed library qualities were the incomplete digest in 
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combination with size selective packaging. Most probably in the DNA preparations the 

amount of smaller fragments was too high. Since smaller fragments can be ligated better than 

large ones. In contrast the phage packaging extracts are selective for large inserts. Hence all 

vectors containing small DNA fragments will not be packed effectively and do not occur in 

the final libraries. Regarding insert sizes of around 20 kb for EF0001 for example and 

screening of all clones of the libraries, over 300,000 for EF0001 with three different probes 

and 40,000 for T5H-oligonucleotide probes in case of EF0021 the probability to find a gene 

calculated as described in chapter III.4.2 was more than 99 % for all screening efforts.  

Hybridization screening resulted in several positive clones for every probe used including 

TDS, T13H and T5H. Since all these clones were tested in a second screening round showing 

a clear enrichment of signals unspecific binding to the vector backbone could be excluded. All 

clones were analyzed by primer walking first, but the extensive sequencing efforts did not 

lead to the identification of a gene identical or similar to the hybridization probes. Whereas 

the sequencing from the vector backbone into the recombinant DNA inserts did not cover the 

entire fragments and hence there was still the possibility that the gene responsible for the 

hybridization signals lied in the non-sequenced region also sequencing of the complete phage 

vectors from two individual phage clones isolated from EF0001 genomic library, PC4 positive 

for T13H and PC9 positive for TDS did not led to the isolation of a gene of interest. Since 

hybridization results were highly reproducible these observations were unexpected and it is 

not easy to find an explanation for this phenomenon. Of course the hybridization and washing 

conditions were not carried out at maximum stringency, but as described before the method 

was verified by Southern Blot hybridization also with Taxus DNA and there was a clear 

difference between the samples in which bands were detected and the negative control. 

Furthermore the clones isolated represent only a very small percentage of the total number of 

examined clones. If there was a general problem with hybridization setup much more false 

positive signal would be expected, for example through binding to the phage DNA. The only 

explanation for the results is the binding of the probes to the very small parts in the inserts 

that showed homology (III.4.2.3), e.g. 16 bp in PC9 insert. 

In summary these results did not confirm the hypothesis that genes of both Taxol biosynthetic 

pathways are identical as described by other groups (MIAO et al. 2009b; STANIEK et al. 

2009) or are at least somehow homologous, due to a connected evolution and a possible gene 

transfer from one to the other species.  
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Thus the proposed evolutionary scenario of a connected evolution seemed to be incorrect. 

Although initially thought to be very improbable Taxol biosynthesis in fungi and Taxus spp. 

might have evolved convergently, as known for gibberellins pathway which is fundamental 

different in species from different kingdoms.  

For P450 enzymes that scenario seems not too improbable since this enzyme class is not 

limited to secondary metabolism and hence these enzymes might have evolved through gene 

duplication and diversification from primary metabolism genes/enzymes separately in both 

species.  

Especially in case of the key enzyme of Taxol biosynthesis the taxadiene synthase a scenario 

for convergent evolution cannot be built that easy. Although as mentioned in the introduction 

for gibberellins biosynthesis the enzymes responsible for ent-kaurene formation are not only 

dissimilar in sequence but also the reaction mechanism, catalyzed by two terpene synthases in 

plants whereas by one enzyme bifunctional enzyme in fungi is fundamental different 

(TUDZYNSKI and HÖLTER 1998; HEDDEN et al. 2002).  

The results showing clearly that there is no homology between the genes of the two pathways, 

although throughout Taxus spp. for example taxadiene synthase gene is highly conserved 

(HEINIG 2006). Despite not being homologous on genetic level in case of taxadiene synthase 

the proteins have to share some characteristics. The enzyme from Taxus catalyzes the very 

complex reaction from geranylgeranyl diphosphate to taxadiene as described in detail in the 

introduction. Thereby the enzyme is highly specific for the substrate. Only the all-trans 

configuration is accepted. Furthermore only three isomers of taxadiene are formed differing in 

the position of the double bond at the C-ring of the compound (LIN et al. 1996; WILLIAMS 

et al. 2000a), due to elimination of a proton as final reaction step. These characteristics have 

to be conserved in a fungal taxadiene synthase, too.  

The detection of Taxol and its two late precursors Baccatin III and 10-Deacetyl-baccatin III 

require the formation of the correct isomer of taxadiene to obtain the right stereochemistry in 

the end-products, assuming of course that as in Taxus the following hydroxylation steps are 

also highly substrate specific. This assumption is feasible because the specificity of the 

enzymes especially the first P450 hydroxylases represents a major difference to gibberellins 

biosyntheses where multiple hydroxylation reactions are catalyzed by the same enzyme, 

leading to the great variety of compounds through very early branching of the pathways, what 

is not the case in Taxus Taxol biosynthesis (FISCHBACH and CLARDY 2007; BÖMKE and 
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TUDZYNSKI 2009). One multifunctional cytochrome P450 dependent oxygenase for 

example catalyzes several steps in fungal gibberellins biosynthesis (TUDZYNSKI et al. 

2002). 

These known enzyme characteristics for the terpene synthase as well as for the hydroxylases 

involved in Taxol biosynthesis in Taxus led to the conclusion that despite being not 

homologous on genetic level, on protein level certain motives relevant for the reaction 

mechanism have to be conserved or in case of convergent evolution should have developed 

similarly. Therefore sequencing of the whole fungal genomes followed by analysis via 

comparison with protein sequences from Taxol biosynthesis was thought to be an alternative 

possibility to identify the fungal Taxol biosynthesis, even if the genes are not homologous as 

the results show.   

 

IV.5 Analysis of EF0021 and Taxomyces andreanae genomes 

 

In order to explore the possibility of an independent evolution of Taxol biosynthetic pathway 

in plants and fungi two endophytic fungi from Taxus spp. were selected for whole genome 

sequencing, isolate EF0021 and Taxomyces andreanae.  

First EF0021 was sequenced and analyzed for identification of potential genes/enzymes that 

might be involved in Taxoid biosynthesis. Since none of the genes and predicted proteins 

identified could be clearly identified to be involved in the predicted fungal Taxol biosynthetic 

pathway, besides efforts for functional characterization of the only diterpene synthase 

0021_TS_1762, Taxomyces andreanae genome was sequenced, too. Even if there is no 

homology between plant and fungal genes at least homology between genes of different fungi 

should be observable. Hence comparison of the results obtained from analysis of the genomes 

might provide the missing evidence. 

It was thought to be very unlikely that not only the pathways towards the same compound in 

different kingdoms evolved convergently but that further also the genes of endophytes are 

fundamentally different.  

With calculated sizes of 45.9 Mb and approximately 45 Mb for EF0021 and 

Taxomyces andreanae endophytes genomes lied in the expected range. Due to the high 

coverage it is very improbable that the information was not representing the complete genome 
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sequences what might call the results into question. If parts were missing it might be possible 

that these contained the genes of the proposed fungal Taxol biosynthesis.  

Similarly to the choice of the organisms for sequencing also the strategy for sequencing 

analysis was highly selective and designed according to the aim of the project. The main 

focus thereby lied on the identification of a probable fungal taxadiene synthase which of 

course is essential as the key enzyme for a fungal Taxol biosynthesis. The results of genomic 

library screening indicated that the genes show no homology, but according to the unique 

features of taxadiene synthase from Taxus species (LIN et al. 1996; WILLIAMS et al. 2000a) 

especially with regard to substrate and product specificity, certain characteristics were 

assumed to be similar between plant and fungal enzyme.  

With respect to identification of terpene synthase candidates, especially diterpene synthases 

from the genomes a data set for comparison was created. The choice thereby was done 

according to enzyme function on the one hand and the origin of the enzymes on the other 

hand. The set therefore contained a variety of diterpene synthases from plants, as (-)-abieta-

7(8),13(14)-diene synthase from Abies grandis (Q38710) catalyzing reactions towards three 

ring terpenoid structures similarly to taxadiene synthase. Enzymes like for example casbene 

synthase forming fundamentally different products were not used. From plants furthermore 

copalyl diphosphate synthases and ent-kaurene synthases were included in order to have a 

direct comparison between enzymes involved in the formation of identical natural products 

known from plants as well as from fungi (Table II.9). 

From the fungal kingdom, besides the enzymes involved in gibberellins biosynthesis all 

known diterpene synthases, as aphidicolan-16β-ol synthase from Phoma betae or 

fusicoccadiene synthase from Phomopsis amygdali were used. Furthermore the set contained 

a variety of sesquiterpene synthases from different fungi. At last also two fungal 

geranylgeranyl diphosphate synthases and a lanosterol synthase were included (Table II-9). 

Thus in summary the data set used represented a repertory of enzyme sequences with which 

different information could be obtained in a single analysis. Of course all these enzymes 

contain the characteristic catalytic motives, like DDXXD or DDXXE leading to identification 

of all genes/enzymes in the genomes sharing these features. These enzymes were regarded as 

the total of possible terpene synthases in the respective organism. Furthermore by using 

enzymes derived from plants as well as from fungi the kingdom related differences between 

the enzymes were taken into account. Regarding the plant enzymes used these characteristics 
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are for example the position of the catalytical motives, plastidial leader sequences or family 

specific sequence domains (TRAPP and CROTEAU 2001). These characteristics do not occur 

or are different in fungal terpene synthases (TOYOMASU et al. 2007). Thus phylogenetic 

grouping of a predicted enzyme of the analyzed endophytes with the plant derived comparison 

sequences would give a hint for a possible trans-kingdom gene transfer. By using diterpene 

synthases as well as sesquiterpene synthases it was furthermore possible to sub-group the 

predicted terpene synthases according to a probable function either the formation of C15 or 

C20 terpenoids. The prenyltransferases and the lanosterol synthase were aimed to refine the 

analysis with regard to candidates that might not be secondary metabolite terpene synthases 

but involved in either prenylation or in primary metabolism meaning in sterol biosynthesis. 

The geranylgeranyl diphosphate synthases furthermore were described as “marker” 

genes/enzymes for gene clusters in gibberellins biosynthesis (BÖMKE and TUDZYNSKI 

2009) and might therefore be useful also with respect to terpenoid gene cluster identification.  

With regard to the rational selection due to the information available for terpene synthases the 

results obtained by this analysis surly represent the most substantive data.  

The predicted terpene synthases, six from EF0021 and 20 from Taxomyces andreanae (Table 

III-7, Table III-8) were all found to be most closely related to terpene synthases from fungal 

origin. Two enzymes of EF0021 could furthermore clearly be identified as proteins involved 

in steroid biosynthesis. Of the remaining 24 enzymes 23 sequences were annotated as 

sesquiterpene synthases and only one, 0021_TS_1762 as diterpene synthase. Besides this 

initial analysis these sequences together with the terpene synthase comparison protein data set 

were used for construction of a phylogenetic tree in order to figure out if there are indications 

for either an enzyme similar to plant enzymes or with regard to the hypothesis of a convergent 

evolution if there are enzymes similar to each other from the endophytes. Analysis resulted in 

three major clades A, B and C (Figure III-14). Thereby clade B could be divided in additional 

3 sub-clades.  

Although so far there is no report on comparison of terpene synthases from different 

kingdoms, the enzyme classes in each kingdom are well examined. Plant terpene synthases 

thereby can be divided into seven sub-families dependent on either function or their origin 

(CHEN et al. 2011). The plant derived enzymes used in this study only represented a small 

number of all known synthases used recently for construction of phylogenetic tree and 

division of the enzymes into these sub-families. Nevertheless, the reference sequences are 
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grouped as described in literature (BOHLMANN et al. 1998; CHEN et al. 2011). Whereas the 

diterpene synthases from conifers like Abies grandis or Taxus brevifolia group together as 

expected, because they belong all to gymnosperm specific sub-family TPS-d, the copalyl 

diphosphate synthase from Pisum sativum belonging to TPS-c and the ent-kaurene synthase 

from Oryza sativa belonging to TPS-e/f were clearly separated (Figure III-14, B.I) 

(BOHLMANN et al. 1998; CHEN et al. 2011). Most closely related to the plant enzymes 

were all diterpene synthases from fungi including the fungal gibberellins biosynthesis 

proteins. This relationship might be best explained by mechanistic considerations. Terpene 

synthases from plants can be divided into class I and class II enzymes according to the 

reaction mechanism and products formed. Class II synthases thereby catalyze a cyclization 

towards copalyl diphosphate (CDP synthases) or to terpenoid end products similar to copalyl 

diphosphate over a bifunctional mechanism, like for example (-)-abieta-7(8),13(14)-diene 

synthase from Abies grandis (PETERS et al. 2000). Besides taxadiene synthase, being a 

typical class I synthase directly converting geranylgeranyl diphosphate to taxadiene all other 

diterpene synthases in the analysis were known to form products similar to abietadiene and 

hence to copalyl diphosphate. This is also true for all enzymes grouped in clade B.II. Fungal 

copalyl diphosphate/ ent-kaurene synthases of course form the same product as their plant 

pendants, although catalyzing the reaction in a bifunctional manner as described for 

abietadiene synthase. According to the product structure the same mechanism can be assumed 

for aphidicolan-16β-ol synthase from Phoma betae (TOYOMASU et al. 2004). All these 

enzymes belong to the clade in contrast to the mechanistically differing sesquiterpene 

synthases which are all in clades A and C. The third sub-clade contained the only two 

predicted enzymes from the sequenced endophytes in B, one prenyltransferase from 

Taxomyces andreanae and the only predicted protein annotated as diterpene synthase, 

0021_TS_1762. Looking at the bootstrap support these proteins are phylogenetically less 

related to the other two sub-clades. Furthermore it is obvious that the reference proteins 

similar to the two predicted ones are prenyltransferases or fusicoccadiene synthases 

(TOYOMASU et al. 2007), representing bifunctional enzymes having a terpene synthase and 

a prenyltransferase domain. Hence the formation of B.III was most likely due to similarity of 

the prenyltransferase sequences rather than the terpene synthase part of fusicoccadiene 

synthase.  
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The remaining predicted proteins initially annotated as sesquiterpene synthases from fungi 

also in phylogenetic analysis were clearly separated from all diterpene synthases and enzymes 

with plant origin. Since for fungal terpene synthases a detailed analysis and allocation into 

terpene synthase sub-families, as described for plant terpene synthases was not done so far 

interpretation of the data was done mainly by comparison of it with the few functionally 

characterized reference proteins in the respective clades. From the known end products of 

these enzymes mechanistic features can be predicted. The differences of these mechanisms 

were used as an explanation for the observed grouping of the endphytes’ sesquiterpene 

synthases. 

Clade A consists of all proteins similar to Cop6 from Coprinopsis cinereus and furthermore 

contains the two trichodiene synthases included in the terpene synthase data set. Cop 6 is 

characterized as a α-cuprenene synthase and was also found in previous phylogenetic analysis 

to be most closely related to trichodiene synthases (HOHN and BEREMAND 1989; AGGER 

et al. 2009). Comparing the chemical structures of trichodiene and α-cuprenene it can be 

assumed that both molecules are synthesized by similar mechanisms, starting with an 

isomerization of the precursor molecule farnesyl diphosphate (FPP) from 2,3-trans to 2,3-cis 

configuration leading in the end to the observed terpenoids. According to these mechanistic 

considerations all predicted proteins in A are most likely terpene synthases sharing these 

mechanistic characteristics, especially the capability of FPP isomerization leading to 

similarities to the mentioned reference sequences.  

Similar considerations deliver an explanation for clade C. Besides the described sesquiterpene 

synthases forming trichodiene like compounds many others convert FPP in its all-trans 

configuration to terpenoid products like germacrene A, aristolochene and others as 

protoilludene or illudanes (PROCTOR and HOHN 1993; ABRAHAM 2001; AGGER et al. 

2009). Analysis of sesquiterpene synthases from Coprinopsis cinereus led to the identification 

of three putative germacrene A synthases (Cop1-3) and one δ cadinene synthase (Cop4) 

(AGGER et al. 2009). All predicted terpene synthases not member of A and B cluster with 

these enzyme sequences. Thereby six synthases predicted from genes located on one single 

contig in Taxomyces andreanae genome were found to be most closely related to Cop4 and 

one to Cop1. The physical linkage and the close sequence relationship show that these genes 

most probable represent duplication products. Although Cop4 is also supposed to catalyze a 

cyclization starting from cis-FPP the enzymes show more similarity to proteins of Cop1-3 
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type. Some sesquiterpene synthases do not show a definite similarity to any reference protein, 

what was not surprising as far as in the data set only a limited number of proteins was 

included. As already shown in the initial annotation using blastp the best protein matches 

were predicted proteins for example from Postia placenta and not functional characterized 

terpene synthases. A selection of the most important structures mentioned here is shown in 

Figure VI-1. 

In summary the results showed that the strategy itself was highly useful for the analysis of the 

newly predicted proteins. By comparison with the chosen reference data set clear differences 

according to origin of terpene synthases on the one hand and mechanistic features on the other 

hand were observed. The results thereby clearly show that there is no indication for a terpene 

synthase from the endophytic fungi showing plant protein or taxadiene synthase 

characteristics, giving hint for a connection of evolution of Taxol biosynthesis in plants and 

fungi on protein level. This was assumed according to the unique mechanistic features of 

plant enzyme. An enzyme having these mechanistically relevant features would have been 

expected to group at least in clade B.II with other fungal diterpene synthases that were found 

to be most closely related to plant enzymes. 

Of course fungal taxadiene synthase still could be totally different from any similarity 

expectations. If so at least comparison of the enzymes from the two endophytes should have 

led to an obvious similarity because it seems impossible that a biosynthetic pathway towards a 

compound like Taxol evolved independently not only in different kingdoms but also in every 

single endophyte. Such a similarity was not found. 

The other part of the targeted analysis approach was done using reference protein data sets for 

identification of potential enzymes modifying the terpenoid backbone after cyclization. This 

sets on the one hand contained 14 known and functionally characterized enzyme sequences 

from Taxus Taxol biosynthesis and 34 sequences of cytochrome P450 dependent oxygenases 

from plants and fungi on the other hand.  

Whereas the Taxol sequence set is self explaining, in case of cytochrome P450 dependent 

oxygenase enzymes a variety of proteins was selected from plants as well as from fungi that 

are most likely involved in secondary metabolism. Besides proteins having a known function, 

like ent-kaurenoic acid hydroxylase from Arabidopsis thaliana (AAK11564) (HELLIWELL 

et al. 2001) or trichothecene C-8 hydroxylase from Fusarium sporotrichioides (BROWN et 

al. 2003) others were only annotated as P450ox in genome projects and it is not known in 
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which biosynthetic pathway they are involved. For two P450ox from Coprinopsis cinereus a 

function was predicted according to the location of the genes next to terpene synthase Cop6, 

assuming clustering of the biosynthesis (AGGER et al. 2009). 

Thus by this analysis in contrast to terpene synthase search the results were not limited to 

terpene biosynthesis and contain probably also P450ox not involved in secondary metabolism 

at all. Therefore as described in chapter III.4.6 the results from analysis using Taxol 

biosynthesis data set and P450ox data set were directly compared in order to identify the 

P450ox that are most similar to taxoid hydroxylases and to examine if as observed for Taxus 

P450ox multiple enzymes, in case of Taxus known to belong to the synthesis are more similar 

to each other that to other P450ox (JENNEWEIN and CROTEAU 2001).  

This analysis led to the same conclusion as made for terpene synthases. There was only weak 

indication for a trans-kingdom gene transfer, for one predicted protein of each endophyte and 

no hint for a family of P450ox proteins either similar to each other in one endophyte or 

similar in both endophytic species, as assumed. For other fungal biosynthetic pathways it is 

known that P450ox having functions in the same biosynthesis are very heterogeneous. In 

example the five known P450ox involved in aflatoxin formation in Aspergillus all belong to 

different P450ox classes and catalyze different types of P450 mediated reactions like 

hydroxylation, desaturation or oxidation (PAYNE and BROWN 1998; CRESNAR and 

PETRIC 2011). 

For taxoid hydroxylases this was not expected since all characterized P450ox characterized so 

far were mono hydroxylases (HEINIG and JENNEWEIN 2009). For the steps like oxidation 

of hydroxyl-group at C9 or the oxetane ring formations the enzymes are still unknown (I.2). 

Of course the analysis only resulted in a very limited view of the whole P450ox diversity, 

according to the aim of the project. By further analysis using other reference proteins for 

example from fatty acid biosynthesis or triterpene biosynthesis or even enzymes catalyzing 

unusual reactions (MIZUTANI and SATO 2011) the endophytes P450ox could be analyzed in 

more detail. Nevertheless this could not be done in this study since the aim was the 

identification of a fungal Taxol biosynthetic pathway. 

Summarizing all these results of genomes analyses with regard to terpene synthases and 

additional search for potentially terpene backbone modifying enzymes like P450ox the 

approach clearly showed that there is obviously no Taxol biosynthesis in endophytic fungi’s 

genomes. Intensive analysis of terpene synthase candidates delivered only one diterpene 
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synthase from EF0021 genome, which was found to be clearly of fungal origin since chimeric 

enzymes like this are very unusual in general, were found only in fungi so far and the 

sequence was clearly separated from not only other plant terpene synthases but furthermore 

from other known fungal diterpene synthases, too. Although it cannot be ruled out completely 

that this enzyme is able to catalyze the reaction towards taxadiene without a functional proof 

the absence of an ortholog in Taxomyces andreanae is a strong indication for another 

function, for example the described one the formation of fusicoccadiene (TOYOMASU et al. 

2007). In accordance to genomic library screening results, finding no homology to Taxus 

biosynthesis genes also alignment with whole EST library sequences from induced Taxus cell 

culture did not led to homology between any gene might be involved in Taxol biosynthesis or 

in secondary metabolism in general. Altogether this eliminated the initially theory of a 

predicted trans-kingdom gene transfer in evolution of Taxol biosynthesis. Neither on genetic 

level nor on protein level was any conserved sequence, due to gene transfer or conservation of 

mechanistically relevant protein characteristics observed. By showing furthermore that there 

were no similarities between predicted proteins of the two individual fungal species the only 

possible conclusion was that the endophytic fungi do not have the ability of Taxol 

biosynthesis. Hence, detection of taxanes from endophytes organic extracts must be due to 

another phenomenon. 

 

IV.6 Analysis of diterpene synthase 0021_TS_1762 

 

The only remaining potential fungal taxadiene synthase after all analyses was 0021_TS_1762. 

Although no similar enzyme was found in Taxomyces andreanae what led to the conclusion 

that the gene most probably does not encode a fungal taxadiene synthase. Despite this fact the 

gene and enwas further analyzed on basis of curiosity yme were analyzed in more detail. 

Since amplification from a cDNA RACE library was not successful, a synthetic gene was 

designed according to the cDNA prediction made with FGENESH software. The absence of 

transcript of the gene was again a hint that the enzyme might not be the fungal taxadiene 

synthase, but also could be due to selected harvesting time point. The cultivation conditions 

were not chosen with regard to transcription of certain genes but for production and detection 

of taxoids according to previously reports (Table I-1). 
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The enzyme obtained by expression in E. coli after confirmation by Western Blot analysis 

was tested by in vitro activity assay but neither taxadiene nor other products were detected. 

The reasons for an inactive protein were thought to be most probably due to an incorrect 

initial prediction of the gene. The splicing mechanisms of the organism found to be most 

closely related to Phialocephala fortinii (Table III-2) were of course not known. Therefore it 

was not sure if the initial intron/exon prediction done with Aspergillus mode resulted in the 

correct gene. In case of the basidiomycete Armillaria it has been shown that the usage of 

different prediction modes in FGENESH developed according to known splicing mechanisms 

from different fungi resulted in fundamentally heterogeneous output (MISIEK and 

HOFFMEISTER 2008).  

Re-examination with regard to catalytic motives revealed that one essential motive for terpene 

synthase activity was missing, the DDXXD or DDXXE motive responsible for co-factor 

binding (WILLIAMS et al. 2000b; TRAPP and CROTEAU 2001; FELICETTI and CANE 

2004). Since the position where the whole BLAST protein domain prediction was interrupted 

was in the region of intron1 this part of the gene was manually re-analyzed.  

By enhancing the size of intron1 from initial 93 bp to 165 bp, due to lack of BLAST support 

of this fragment variant 0021_TS_1762 was constructed which now contained a DDXXE 

motive (Figure III-15). BLAST domain search now did not show interruption of the terpene 

synthase domain anymore. However, also this protein was inactive as well as the 35 further 

analyzed variants arose from the other specialty of intron1 which is divisible by three, 

resulting in 56 theoretical cDNA sequences that do not interrupt the reading frame.  

Thus although the terpene synthase could be expressed all examined enzymes were active and 

therefore it was not possible to determine the function and product.  

Reason for these results were most likely due to still incorrect prediction leading to lack or 

addition of amino acids somewhere in the sequence. Besides the considerations regarding the 

catalytic motive, which is only present in the variant 0021_TS_1762 and absent in all other 

predicted variants what obviously might lead to loss of activity, also other even minor 

changes in the sequence can lead to changes in tertiary structure of the protein. Geometry of 

the active site of terpene synthases is sensitive to even slight modifications that either lead to 

different product outcome or completely inactive enzymes (SEEMANN et al. 2002; 

FELICETTI and CANE 2004). To find the reason for this inactivation, which might be due to 

only one amino acid exchange, would have taken large additional experimental work. With 
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regard to the overall aim this was not subject to the current investigation although 

0021_TS_1762 as only diterpene synthase obtained from genome analysis still is the most 

promising candidate for a fungal taxadiene synthase. 

 

IV.7 Conclusions and suggestion of an alternative reason for taxane 

detection from fungi 

 

Since the data on Taxol or taxane detection in endophytic fungi prior to the start of the work 

was very heterogeneous with regard to plant host species, diversity of fungal species and 

natural product yields there was no feasible explanation for this phenomenon. Multiple reports 

described the phytochemical examination of endophytic fungi and taxanes were detected in 

organic extracts of these. From these observations it was concluded that the fungi themselves 

produce the compounds and hence have a Taxol biosynthetic pathway.  

In summary analysis and interpretation of all data of this study led to the conclusion that there 

is no indication for a Taxol biosynthetic pathway in endophytic fungi. Search for genes 

homologous to Taxol biosynthesis genes known from Taxus were unsuccessful. Hence, the 

possibility of a divergent evolution as discussed in the introduction could be excluded. Further 

the analysis of two individual endophytic fungal genomes with regard to potential 

genes/enzymes involved in terpene synthesis revealed that there were no candidate genes 

either supporting the theory of a trans-kingdom gene transfer s. Another strong indication for 

the now stated conclusion that fungi do not have the pathway was that there were also no 

similarities between the two fungal species enzymes besides generally highly conserved 

primary metabolism genes. Thus taking these data together there was also no evidence for a 

convergent evolutionary scenario as discussed initially as a second possible way of 

development of the pathway towards Taxol in the two different kingdoms and comparable to 

gibberellins biosynthesis (BÖMKE and TUDZYNSKI 2009).  

Finally the only result obtained within this thesis that supports taxane production by 

endophytic fungi was the detection of Baccatin III and 10-Deacetyl-baccatin III from extracts 

of fungal cultures in accordance to literature (Table I-1). 

By proofing the absence of the biosynthesis the only possible source of the compounds 

detected is Taxus and the phenomenon of identical natural products in extracts from only 
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distantly related species is most probably not due to an evolutionary event on molecular 

biological level and biosynthesis in both organisms. 

Hence, the taxoid molecules detected in previous studies (Table I-1) and in this study had to 

be transferred from plant to fungi. Furthermore all the analyses were performed after isolation 

of the fungi. Hence the microbes were not associated with the host anymore, when the 

compounds were detected. If, as proposed now as an alternative explanation for the 

phenomenon, taxanes are of plant origin a mechanism for uptake and short or mid time 

storage of lipophilic compounds in the fungal species is required. For existence of both 

processes evidence can be found in literature. Due to the impact of Taxol as anti-cancer drug 

(WANI et al. 1971; SUFFNESS and WALL 1995; GOLDSPIEL 1997) the interactions of the 

molecule with cells and in particular with membranes were studied intensively 

(BALASUBRAMANIAN and STRAUBINGER 1994; SHARMA and STRAUBINGER 

1994; BERNSDORFF et al. 1999; CROSASSO et al. 2000; ZHAO and FENG 2004). Of 

course in these cases the motivation for the research was to understand the behavior of Taxol 

when used in therapy. Nevertheless the data obtained by analysis of interaction with 

artificially created membranes can be well used to create a model for Taxol uptake and 

accumulation out of the natural environment, the inner bark of Taxus into the membranes or 

as discussed later into compartments of the endophytes, like vesicles. By this theory it is at 

least possible to create a model that explains Taxol detection in Taxus derived fungi. The 

scenario of uptake from the plant does not explain detection of taxanes from endophytes from 

the great variety of other plants that do not produce the compound (Table I-1). Examination of 

Taxol membrane interaction included several factors that might play a role in the proposed 

mechanism. Some of the analyses like the influence on membrane fluidity or the maximum 

amounts of Taxol possible to incorporate into lipid layers or liposomes are more related to the 

usage of Taxol as a drug. Other factors examined like stability of Taxol-membrane complexes 

and effects of the compound in very low concentration ranges might be indications that it is 

possible for fungi to uptake the compounds and also that they could accumulate the 

compounds up to a certain degree without a negative effect on the membrane 

(BALASUBRAMANIAN and STRAUBINGER 1994; SHARMA and STRAUBINGER 

1994; ZHAO and FENG 2004). The stability of lipid-Taxol constructs was found to be highly 

dependent on the composition of the membranes. Some constructs were not stable at whereas 

others could be stored up to several months (SHARMA and STRAUBINGER 1994; 
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CROSASSO et al. 2000). Furthermore in low concentration ranges (10-5 M) the physical 

effects on the membrane structure were also low (ZHAO and FENG 2004). With respect to 

the system Taxus/ Taxus endophyte these factors might explain on the one hand that by the 

low amount in ng/L range the fungi are not affected negatively and on the other hand why 

within the observed total diversity of endophytic fungi examined from one individual Taxus 

species in only around 10 % of the organisms extracts taxanes were detected. Due to the 

diversity it seems probable that also membrane composition of the species was heterogeneous. 

Hence not all fungi might be able form lipid-Taxane complexes and to store the compounds 

from the point of isolation, over time of cultivation until phytochemical analysis. Besides 

these experimental data for Taxol interaction with artificially constructed membranes there is 

also at least an example for the uptake and storage of highly lipophilic compounds by fungi. It 

was shown that Fusarium solani is able to accumulate polyaromatic molecules by a passive 

transport (VERDIN et al. 2005). In addition to the degradation ability for the compounds of 

some strains it was furthermore shown that all examined ones were able to accumulate the 

molecules in intracellular lipid vesicles. It could also been shown that the presence of the 

lipophilic compounds did not affect the growth (VERDIN et al. 2005). Together with the 

general features discussed regarding the interaction of Taxol with non polar lipids this 

supports the theory of an uptake and storage of taxanes from yew tree leading to the detection 

of the ng/L amounts of the compounds in fungal extracts.  

Altogether this theory explains some point of the phenomenon but also cannot be applied to 

whole heterogeneity of the problem. As mentioned above the scenario only fits to endophytic 

fungi from yew. For all others no taxanes can be provided by the plant host (Table I-1). 

In case of the heterogeneity of fungal species observed to contain the identical natural product 

the theory might be the most reasonable explanation as far as it is not dependent on a certain 

genus but only on composition of membranes or the existence of lipophilic compartments for 

storage of the molecules. Furthermore the low yields in comparison to Taxus which led to the 

question about the driving force for the initially predicted production, are logical with respect 

to the physical scenario. Taxanes as non polar molecules will tend to stick to any also 

lipophilic molecules in the whole environment, hence of course also and maybe preferentially 

to the plant cells. Therefore only minor amounts migrate to the endophytes membranes. Since 

the transfer is supposed to be passive, only by diffusion the probability that the compounds 

are accumulated in the plant producers’ membranes is higher (VERDIN et al. 2005). If taxane 
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detection is really due to this incorporation effect proposed as an alternative this might be also 

the reason that no taxanes were detected in extracts of the three organisms described as 

“taxane producers” earlier (III.2). During the time storage and cultivation in laboratory 

including multiple serial transfers the supposed Taxane-lipid complexes were not stable 

anymore and the anyway trace amounts of taxanes present after isolation were lost. 

The only experimental approach at least mimicking the natural Taxus/Taxus endophyte 

system to a certain degree is the co-cultivation approach of plant cells and endophytic fungi in 

a co-bioreactor (LI and TAO 2009; LI et al. 2009). The authors conclude from their data that 

the increase in Taxol concentration is a result of Taxol production of the endophyte in 

combination with positive effects of other compounds of endophyte origin enhancing the 

Taxol yield of the plant cells. However the production of taxanes by the plant cells lead to 

formation of a concentration gradient. According to the newly proposed reason for taxane 

detection in fungal extracts based on the results of this thesis the explanation for enhanced 

taxane yields in this case could also be transfer of the taxoid compounds by diffusion 

triggered by the concentration gradient to the other compartment of the reactor. Due to the 

limited solubility of the compounds in aqueous solutions like the medium they will 

accumulate than most likely in the endophytic fungus’ membranes or vesicles.   

A potential future perspective would therefore be the re-examination of the fungi with regard 

to this newly proposed scenario. This could be done using for example the strains described to 

accumulate polyaromatic compounds in vesicle as described before (VERDIN et al. 2005). 

By cultivation on Taxus biomaterial, recovery of the fungi and analysis it should be possible 

to find out if not only Polyaromatic compounds accumulate in the fungal vesicles, but also 

other lipophilic compounds, in this special case taxanes. Also the still unsolved question, 

observation of taxanes in extracts of endophytes isolated from other plants than Taxus might 

need some further investigations. Since for these fungi there is even less indication for a 

reason for production on the one hand and an acquirement of the biosynthesis from the plant 

producer of the natural products Taxus the only possibility would be the examination of a 

convergent evolution by whole genome sequencing as described for the Taxus endophytes 

within this study. 

In summary by the work presented here it was possible to eliminate several predictions for the 

observation of identical natural products the taxanes in yew and a great variety of endophytic 

fungi. All initially made assumptions and scenarios regarding evolution of a fungal Taxol 
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biosynthetic pathway either divergent by a trans-kingdom gene transfer or convergent in the 

different species were examined and could be excluded. The data shows that there most 

probably is no fungal Taxol biosynthesis and hence the conclusion made according to the 

detection of the natural product in organic extracts of the cultures that these microbes produce 

the detected compounds was not confirmed. With having no biosynthesis and hence cannot 

produce taxanes in the end the here proposed alternative scenario of an uptake and 

accumulation of the compounds by the endophytic fungi seems to be the only and most 

probable explanation.  

After 20 years of controversial discussion about the phenomenon and hundreds of 

publications about Taxol detection from endophytes, finally the answer might be a physical 

mechanism and not a complex evolutionary event. 

 

 



V Summary 

 

140 

 

 
 

V Summary 

Focus of the present PhD thesis was the examination of the interesting and only poorly 

understood phenomenon of detection of identical structurally elaborate natural products in 

only distantly related organisms with regard to secondary metabolite pathway evolution. 

Due to the impact of Taxol as one of the most important anti-cancer drugs today intensive 

research efforts were made with respect to development and improvement of production 

systems in order to overcome the supply problems. During the search for alternative 

production systems in the early 1990s for the first time trace amounts of Taxol were found in 

the endophytic fungus Taxomyces andreanae isolated from Taxus brevifolia. Besides the 

potential impact as an alternative microbial production system for Taxol this was especially 

interesting with respect to evolution of the thereby predicted biosynthesis towards identical 

natural products in organisms belonging different kingdoms in general.   

Since the isolation of Taxomyces andreanae many more endophytic species were isolated 

from Taxus spp. but also from other plants where taxanes were detected in their organic 

extracts. Thereby the plant species described as hosts of potential “taxane producing” fungi 

did not follow a certain pattern. Furthermore the variety of endophytic species isolated was 

found to be highly diverse. Though the Taxol biosynthetic pathway was well examined in 

yew, no information was available on genes or enzymes involved in the predicted fungal 

Taxol biosynthesis. 

In order to find answers to these questions arising through heterogeneity of the data available 

at the time of project start the work presented here was based on considerations about 

imaginable evolutionary scenarios of the pathway in the different species either divergent or 

convergent. Thereby a scenario of divergent evolution is based on the hypothesis that a 

complex biosynthetic pathway is assumed to consist of at least 19 enzymatic steps most likely 

did not evolve completely independently, supporting a convergent evolution in species from 

different kingdoms. Thus, assuming that a trans-kingdom horizontal gene transfer was 

involved, the genes and enzymes were predicted to be similar.  

In this thesis both predicted scenarios were examined. Since there was no information on the 

potential fungal Taxol biosynthesis three fungal species obtained from culture collection were 

analyzed as described in literature in order to detect taxoid molecules. Since surprisingly no 

taxanes were detected in these extracts further 34 new endophytes were isolated from 
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Taxus spp. and phytochemically examined. Thereby taxanes were detected in two fungal 

extracts. These fungi named EF0001 and EF0021 were chosen for molecular biological 

experiments. To investigate a divergent evolution first more than 300,000 clones of genomic 

λ−phage libraries were screened via hybridization using probes homologous to genes of Taxol 

biosynthetic pathway from yew. By this approach several potential positive clones were 

obtained. However none of the recombinant fungal DNA inserts showed any homology to 

genes of Taxol biosynthesis from yew. This led to the conclusion that the predicted fungal 

pathway, if present at all, evolved by convergent evolution. To figure out if this scenario was 

right two endophytic fungi’s genomes were sequenced, the genome of the newly isolated 

fungus EF0021 and that of Taxomyces andreanae, the first described fungus in which extracts 

taxanes were detected. Analysis of the sequences was done by a “targeted approach” for 

identification of all candidate genes and hence prediction of proteins that might be involved in 

the proposed taxoid synthesis. This led to the prediction of 24 fungal terpene synthases. Using 

phylogenetic analysis two main results were obtained. First a horizontal gene transfer of the 

pathway from yew to fungus or in the opposite direction could be excluded in accordance to 

hybridization results. Second phylogenetic analysis of terpene synthases, analysis of other 

possible enzyme candidates like cytochrome P450 oxygenases and the alignment of both 

genomes to each other did not reveal an indication for a fungal Taxol biosynthesis. Only one 

diterpene synthase was predicted from EF0021 genome, but had no ortholog in 

Taxomyces andreanae. Thus also a convergent scenario of pathway evolution independently 

in each kingdom could be eliminated. All results obtained in this thesis taken together led to 

the conclusion that there is no fungal Taxol biosynthesis. Data presented thereby represent the 

first detailed molecular biological investigation of this phenomenon.  

Due to these findings, contradicting the initial hypothesis which was based on the assumption 

of the existence of a Taxol biosynthesis in endophytic fungi as well as in Taxus, an alternative 

scenario was proposed based on a transfer of the natural product from yew tree, the producer, 

to the fungus. This scenario is supported by known mechanisms for Taxol membrane 

interaction as well as the ability of fungi to store lipophilic compounds. Many observations in 

context of taxane detection from fungi can be explained nicely by this theory and the 

molecular biological results of this thesis doubtlessly exclude any evolutionary reason for the 

phytochemical results in the past but also during this study. Therefore it is probable for this 

thesis to represent the final answer to a controversy hold up for the last 20 years.
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Zusammenfassung in deutscher Sprache 

Thema dieser Doktorarbeit waren Untersuchungen des interessanten und bisher nahezu nicht 

verstandenen Phänomens des Nachweises von identischen strukturell hochkomplexen 

Naturstoffen in Organismen die nur sehr weitläufig miteinander verwandt sind im Hinblick 

auf die Evolution von Sekundärstoffbiosynthesewegen. 

Taxol zählt heutzutage zu den bedeutendsten Krebsmedikamenten. Um den daraus 

resultierenden hohen Bedarf zu decken, wurden vor allem intensive Anstrengungen 

hinsichtlich der Entwicklung und Verbesserung von neuen und bereits bestehenden 

Produktionssystemen unternommen. Bei der Suche nach alternativen Produzenten in den 

frühen 90er Jahren wurde der endophytische Pilz Taxomyces andreanae aus der pazifischen 

Eibe Taxus brevifolia isoliert. Die phytochemische Analyse des Naturstoffextrakts dieses 

Pilzes führte zur ersten Detektion von Taxol in einem mikrobiellen Extrakt. Neben der 

Bedeutung dieser Entdeckung als mögliches alternatives mikrobielles Produktionssystem für 

Taxol, ergaben sich vor allem Fragen hinsichtlich des Vorkommens und des Ursprungs einer 

anhand der Analyseergebnisse vorhergesagten Biosynthese hin zu identischen Naturstoffen 

wie im bekannten Produzent der Eibe. Seit dieser ersten Entdeckung wurden bei zahlreichen 

weiteren endophytischen Pilzen Taxol nachgewiesen. Dabei beschränkte sich die Herkunft der 

Organismen nicht auf Taxus Spezies. Auch von verschiedenen anderen Pflanzen konnten 

derartige Pilze isoliert werden. Der Biosyntheseweg ist in Taxus gut untersucht, wohingegen 

nichts über Gene oder Enzyme bekannt war, die am vorhergesagten pilzlichen Weg beteiligt 

sind. In Anbetracht der sich stark unterscheidenden publizierten Daten zu Anfang des 

Projekts, wurde eine Strategie basierend auf evolutiven Überlegungen gewählt. Die Evolution 

des Biosynthesewegs kann entweder divergent oder konvergent abgelaufen sein. Legt man ein 

divergentes Szenario zugrunde, basierend auf der Überlegung dass sich ein Biosyntheseweg 

der ca. 19 enzymatische Schritte umfasst wahrscheinlich nicht konvergent entwickelt hat, 

muss ein horizontaler Gentransfer stattgefunden haben und demzufolge kann angenommen 

werden, dass eine gewisse Ähnlichkeit zwischen Genen und Enzymen in den verschiedenen 

Spezies besteht. Beide möglichen Evolutionsszenarien wurden im Rahmen dieser Arbeit 

untersucht. Aufgrund der nicht vorhandenen Informationen zur pilzlichen Biosynthese 

wurden zunächst drei in der Literatur als potentielle Taxol Produzenten beschriebene 

endophytische Pilze phytochemisch analysiert. In diesen Analysen konnten jedoch keine 

Taxane nachgewiesen werden, woraufhin weitere 34 neu aus Taxus Spezies isolierte Pilze 
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analog auf das Vorkommen von Taxanen hin untersucht wurden. Die führte zur Detektion der 

von taxoiden Verbindungen in zwei Pilzextrakten, von EF0021 und EF0001. Diese wurden 

für die molekularbiologischen Experimente ausgewählt. Dabei wurden zunächst, ausgehend 

von der Theorie eines möglichen Gentransfers >300.000 Klone aus genomischen λ−Phagen 

Bibliotheken mittels Hybridisierung mit Sonden homolog zu Taxol-Biosynthese Genen aus 

Taxus durchmustert. Da bei diesem Ansatz kein Gen oder eine Homologie zu den 

Pflanzensequenzen identifiziert werden konnte, lag die Vermutung nahe, dass möglicherweise 

obwohl zunächst anders angenommen eine konvergente Entwicklung stattgefunden hat. Um 

diese Hypothese zu überprüfen wurden zwei verschiedene Pilzgenome sequenziert, das von 

EF0021 und von Taxomyces andreanae. Die Analyse der Genome wurde zielgerichtet im 

Hinblick auf die Identifizierung von Genen und Enzymen die an Terpen Biosynthesen 

beteiligt sein könnten durchgeführt. Im Zuge dessen wurden 24 Terpen synthasen identifiziert, 

von denen allerdings nur ein Enzym vorhergesagt wurde das hohe Ähnlichkeit zu einer 

Diterpen Synthase aufwies. Durch phylogenetische Analyse dieser Proteine im Vergleich mit 

einer repräsentativen Auswahl von bekannten Terpen Synthasen aus Pflanzen und Pilzen 

konnte dabei gezeigt werden, dass zum einen keines der Enzyme Characteristika aufwies die 

auf eine Herkunft aus dem Pflanzenreich schließen ließ und zum anderen waren auch keine 

Gemeinsamkeiten zwischen den Enzymen der beiden Pilz Spezies ersichtlich. In Kombination 

mit vergleichbaren Resultaten weiterer Analysen, beispielsweise der Suche nach Cytochrom 

P450 Hydroxylasen wurde letztlich die Schlussfolgerung gezogen, dass kein Taxol 

Biosyntheseweg in endophytischen Pilzen vorliegt und die Organismen somit auch nicht in 

der Lage sind eigenständig die Verbindungen zu synthetisieren. Diesem Schluss folgend blieb 

als einzige Erklärung für die Herkunft der detektierten Verbindungen die Eibe. Da anhand der 

molekularbiologischen Daten in dieser Arbeit ein biologischer Zusammenhang also ein 

Biosyntheseweg in beiden nur weitläufig miteinander verwandten Organismen 

ausgeschlossen werden konnte, bleibt als Alternative nur eine Aufnahme und Akkumulation 

der taxoiden Verbindungen von den mit dem pflanzlichen Wirt assoziierten Pilzen. Da diese 

Theorie zum einen von Daten bezüglich Taxol Interaktion mit Membranen oder Einlagerung 

von lipophilen Molekülen in pilzlichen Vesikeln unterstützt wird und weiterhin zumindest ein 

plausibel das Vorkommen von Taxanen in Taxus Endophyten erklärt, liefert dieser 

physikalische Prozess möglicherweise die Antwort auf die Fragen dieses Phänomen 

betreffend das seit 20 Jahren überaus kontrovers diskutiert wird. 
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VI.1 Supplementary structures 

 

α−cuprenene trichodiene

germacrene A δ−cadinene

OPP

ent-copalyl diphosphate abietadiene

aristolochene

fusicoccadiene

3

2
OPP

3
2

OPP

2,3-trans-farnesyl diphosphate 2,3-cis-farnesyl diphosphate  
Figure VI-1: Chemical structures of molecules mentioned in chapter IV.5, including several products of 
sesquiterpene synthases as well as of diterpene synthases and the structures of trans- and cis- 
farnesyldiphosphate 
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VI.2 List of abbreviations 

 

 Abbreviation Description 

  [α-32P]dATP  Desoxy-adenosin triphosphate labeled with radioactive 

 phosphor isotope at alpha phosphate 

[γ-32P]dATP Desoxy-adenosin triphosphate labeled with radioactive  
 phosphor isotope at gamma phosphate 
∆  deletion 
µg micro gram 
µL micro liter 
10-DAB 10-deacetylbaccatin III 
2YT medium 2x yeast extract trypton medium 
A adenine 
α alpha 
A. flavus  Aspergillus flavus 
aa amino acid  
ACN acetonitrile  
AIDS acquired immunodeficiency syndrome 
AP alkaline phospatase buffer 
β beta 

B/B0 corrected absorption at 405 nm 

B0 measured absorption at 405 nm 
BA 6-benzyladenine  
bapt C-13 phenylpropanoid side chain-CoA acyltransferase 
BLAST Basic Local Alignment Search Tool 
bp base pair 
BSA bovine serum albumin 
C cyrosine 
C. helicacabum Cardiospermum halicacabum 
CAD collision-activated dissociation  
CD compact disk 
cDNA complementary DNA 
CE collision energy 
CIEIA competitive inhibition enzyme immuno assay  
cit-primer citrate synthase primer 
cm centimeter 
Cop sesquiterpene synthases from Coprinopsis cinereus  
cps counts per second 
CPS ent-copalyl diphosphate synthase  
CTAB cetyltrimethylammonium bromide 
CXP collision cell exit potential. 
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d day 
δ  delta 
dbat 10-deacetylbaccatin III-10-O-acetyl transferase  
dd double distillation 
DDT dichlorodiphenyltrichloroethane 
DEPC diethylpyrocarbonate  
DMAPP dimethylallyl diphosphat 
DNA  deoxyribonucleic acid 
DP declustering potential 
DXP 1-deoxy-D-xylulose-5-phosphate  
E. coli  Escherichia coli 
e.g. exempli gratia 
EDTA ethylenediaminetetraacetic acid 
EF endophyte fungus 
ELISA enzyme-linked immunosorbent assay 
EP entrance potential 
ESI  electrospray ionization 
EST  expressed sequence tag 
et.al. et alii 
E-Value   expected value 
FCDS fusicoccadine synthase 
FDA  Food and Drug Administration 
fmol  femtomol 
FPP farnesyl diphosphate  
g gram 
G guanine 
GA gibberellic acids  
GGPP geranylgeranyl diphosphate  
GGPPS geranylgeranyl diphosphate synthase 
GmbH  Gesellschaft mit beschränkter Haftung - company with limited liability 
h hour 
HIS-tag poly histidine-tag 
HPLC high performance liquid chromatography  
IAA indole-3-acedic acid  
IME Institute for Molecular Biology and Applied Ecology 
Inc. Incorporation 
IPP isopentenyl diphosphate 
IPS impulse per second 
IPTG isopropyl β-D-1-thiogalactopyranoside 
IR infrared spectroscopy 
IST internal transcribed spacer  
kb kilo base pair 

Km Michaelis constant 
KS ent-kauren synthase 
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kV kilo volt 
L liter 
λ lamda 
LB-medium Luria Bertani-Medium 
LC/MS/MS  liquid chromatography coupled with mass spectrometry 
Lib library 
M molar 
M. speciosus Maguireothamnus speciosus 
m/z mass-to-charge ratio  
MA Massachusetts 
Mb mega base pairs 
MCS multiple cloning site  
mg milligram 
MIC minimal inhibitory concentration assay 
min minute 
mL milliliter 
mM milli molar 
mm millimeter 
MRM multiple reaction monitoring 
MS mass spectrometry 
msec milliseconds 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
N. tabacum Nicotiana tabacum  
NBT/BCIP  nitro-blue tetrazolium chloride/5-bromo-4-chloro-3'-indolyphosphate 
NCBI National Center for Biotechnology Information 
NCI National Cancer Institute  
nd not determined 
Neg. negative 
ng nano gram 
nm nano meter 
NMR nuclear magnetic resonance spectroscopy  
No. number 
NZY NZ amine yeast extrct medium 
OD optical density 
orf open reading frame 
P450ox cytochrome P450 dependent monooxygenases  
PBS phosphate buffered saline 
PBS-T phosphate buffered saline with tween 
PC positive clone 
PCR polymerase chain reaction 
PDA potato dextrose agar 
pfu/ml plaque forming unit per milliliter 
pH negative decimal logarithm of the hydrogen ion activity in a solution 
PhD  philosophiae doctor 
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Pki-primer pyruvate kinase primer 
PKS  polyketide synthases  
PNK Buffer polynucleotide kinase reaction buffer 
psi pound per square inch 
QX quadrupole X 
RACE rapid amplification of cDNA-ends 
radio-TLC radioactive thin layer chromatography 
RNA ribonucleic acid 
rpm rounds per minute 
RT room temperatur 
S.cerevisiae  Saccharomyces cerevisiae  
SDS sodium dodecyl sulfate 
sec seconds 
SOC super optical broth with catabolic repressor 
sp. specie 
spp. species 
SSC saline-sodium citrate buffer 
ssDNA single strange DNA  
Su–  nonsuppressing 
T thymine 
T. baccata Taxus baccata  
T. celebica Taxus celebica 
T. chinensis Taxus chinensis 
T. globosa Taxus globosa 
T. wallichiana Taxus wallichiana 
T. baccata Taxus baccata 
T. brevifolia  Taxus brevifolia  
T. canadensis  Taxus canadensis  
T. canadensis  Taxus canadensis  
T. cuspidata Taxus cuspidata 
T. hicksii  Taxus hicksii  
T. mairei  Taxus mairei  
T. x media  Taxus x media  
T. yunnanensis  Taxus yunnanensis  
T13H taxane-13a-hydroxylase 
T5H taxane-5a-hydroxylase  
TBE buffer tris/borate/EDTA buffer 
TBS tris-buffered saline 
TDS taxadiene synthase 
TE buffer tris EDTA buffer 
TEMED Tetramethylethylenediamine 
TES tris EDTA sodium cloride 

Tetr tetracycline resistant 
Tm melting temperture 
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TPS terpene synthase 
Tris 2-amino-2-hydroxymethyl-propane-1,3-diol 
U units 
U  uracil 
UPGMA  unweighted pair group method with arithmetic means 
USA United States of America 
USDA United States Department of Agriculture  
UV ultraviolet 
V volt 
v/v volume per volume 
w/v weight per volume 
WT  wild typ 
xg gravitational acceleration 
YM yeast and malt 
 

VI.3 List of sequence data (CD) 

 

• Genome data of EF0021 (multi fasta file of all contigs) 

• Genome data of Taxomyces andreanae (multi fasta file of all contigs) 

• Predicted protein sequences of terpene synthases from EF0021 and T. andreanae (.pro 

files) 

• Insert sequences of PC4 and PC9 phage clones from EF0001  

• Consensus sequences of phage library clones summarized in Table III-5  
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