
    Modeling Quantum Computing -   Matrix Mechanics 

 Purpose:
This paper was done to familiarize myself with some of the basic concepts of Quantum
Computing. This work is based on models and examples from a number of books and articles
on Quantum Computing. A list of some the books and articles used in this analysis are given at
the end of this work.  This modeling work was done using the Math Program Mathcad to
Simulate various Quantum Mechanical and Quantum Computing Phenomena.
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 I. Introduction 
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 How does Qunatum Computing Work? An interview with Peter Shor, discoverer of the Shor Algorithm. 
Peter Shor: "The key to factoring is identifying prime numbers, which are whole numbers divisible only by one and
by themselves. (Five is prime. Six, which is divisible by two and by three, is not.) There are twenty-five prime
numbers between one and a hundred, but as you count higher they become increasingly rare." Shor, drawing a
series of compact formulas on the chalkboard, explained that certain sequences of numbers repeat periodically
along the number line. The distances between these repetitions grow exponentially, however, making them difficult
to calculate with a conventional computer.
 “O.K., here is the heart of my discovery,” he said. “Do you know what a diffraction grating is?” I confessed that I
did not, and Shor’s eyes grew wide with concern. He began drawing a simple sketch of a light beam hitting a filter
and then diffracting into the colors of the rainbow, which he illustrated with colored chalk. “Each color of light has
a wavelength,” Shor said. “We’re doing something similar. This thing is really a computational diffraction grating, so
we’re sorting out the different periods.” Each color on the chalkboard represented a different grouping of
numbers. A classical computer, looking at these groupings, would have to analyze them one at a time. A quantum
computer could process the whole rainbow at once.
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Era of Quantum Computers ---->   

With the development of science and technology, leading to the advancement of civilization, new ways were
discovered exploiting various physical resources such as materials, forces and energies. The history of computer
development represents the culmination of years of technological advancements beginning with the early ideas of
Charles Babbage and eventual creation of the first computer by German engineer Konard Zeise in 1941. 
   

The number of atoms needed to represent a bit of memory has been decreasing exponentially since 1950. An obser-
vation by Gordon Moore in 1965 laid the foundations for what came to be known as  “Moore’s Law” – that
computer processing power doubles every eighteen months. If Moore’s Law is extrapolated naively to the future, it
is learnt that sooner or later, each bit of information should be encoded by a physical system of subatomic size. The
plot below shows the number of electrons required to store a single bit of information. An extrapolation of the plot
suggests that we might be within the reach of atomic scale computations with in a decade or so at the atomic scale
however. This is the point at which Moore's Law and the exponential growth classical computers comes to an end.
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 What is a Quantum Computer (QC)?

 Quantum Computing: A type of computation whose operations can harness the phenomena of quantum mechanics,
such as superposition, interference, entanglement, and teleportation. Devices that perform quantum computations
are known as quantum computers.

 Qubit:  A qubit is a two-dimensional system that is in a state of 0 or 1 or both. Just as a classical bit has a state –
either 0 or 1,  a qubit also has a state. Two possible states for a qubit are the states |0> and |1> , which as you
might guess correspond to the states 0 and 1 for a classical bit. Notation like ‘ | > ’ is called the Dirac notation.

We can model it computationally:
 |φ> = α |0> + β |1>  where  |0> =          and  |1>  =             α2 + β2  = 1,  where α and β are complex numbers.
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If a qubit gets measured, it will return classical bit value of 0 with probability of α2 or a bit value of 1 with probability β2.
 

 Potential Applications: Cyber Security, Factorization, Breaking Codes (RSA), Simulate Quantum Phenomena. Rapid
Prototyping and Testing of Chemical Reactions, Electronic and Material Properties, Molecular Folding, Calculating
Fourier Transforms. 

 Key Concepts for QC: Quantum Behavior, Superposition, Entanglement, Interference, Teleportation, Computational
Complexity/Scaling, and of the Physics of states in a quantum system.

 Computational Complexity: Computational complexity studies the amount of time and space required to solve a
computational problem. Another important computational resource is energy. Energy consumption in computation turns
out to be deeply linked to the reversibility of the computation.

 Reversibility: Consider a gate like the NAND gate, which takes as input two bits, and produces a single bit as output.
This gate is intrinsically irreversible because, given the output of the gate, the input is not uniquely determined.  The gate
is an example of a reversible logic gate because, given the output of the gate, it is possible to infer what the input must
have been.   NAND Gate: A Boolean operator which gives the value zero if and only if all the operands have a value of
one, and otherwise has a value of one (equivalent to NOT AND).

 Erasure: Another way of understanding irreversibility is to think of it in terms of information erasure. If a logic gate is
irreversible, then some of the information input to the gate is lost irretrievably when the gate operates – that is, some of
the information has been erased by the gate. A computation is reversible if no information is erased during computation.
Landauer’s principle states that, in order to erase information, it is necessary to dissipate energy. A minimum of kBT ln 2.

 Types of QC Solution Models: Adiabatic, Topological, Quantum Annealing, 

 Entanglement is a different way of encoding information. If we have two particles that are entangled, the information about
them is not encoded locally in each particle, but rather in the correlation of the two. This is the Principle of Non Locality.

 Algorithms: Shor's (Factorization), Deutsch–Jozsa., Grover's (Search), Bernstein–Vazirani, Quantum phase estimation.
 
 Measurements: Every measurable physical quantity, o, is described by a corresponding Hermitian operator, O, acting on
the state ψ. Example: Hopψ = Eψ gives the Eigenvalue of Energy for state ψ. For every classically defined Function

F(x,p)  Fop = F(x, h/i  d/dx   The Poisson Bracket Formulation for the momentum operator:                            .  

 Obstacles: Decoherence, Error Correction, Scalability (need to scale to 1000 Bits for "practical" applications).
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 II. A Brief History of Quantum Computing

In 1981, Richard Feynman gave a lecture entitled “Simulating Physics with Computers” In this talk, he argued that
a classical system could not adequately represent a quantum mechanical system.

In 1985, David Deutsch, a physicist at Oxford, suggested a more comprehensive framework for quantum
computing in his 1985 paper. In this work, he describes in detail what a quantum algorithm would look like. 
He gave an algorithm that would run exponentially faster than any possible deterministic classical algorithm.

In 1993, Umesh Vazirani and his student Ethan Bernstein (BV) picked up where Deutsch and Jozsa left off.
described an algorithm that showed clear quantum-classical separation even when small errors are allowed. 

In 1994, Shor was a researcher in the mathematical division of Bell Labs in New Jersey. Shor studied the work of
Deutsch, BV and Simon and realized he could construct an algorithm for factoring large numbers into two prime
factors; factoring large numbers is believed to be intractable on a classical computer.

In 1999-2001, Yasunobu Nakamura built and demonstrated a functioning, controllable superconducting qubit.
Nakamura used Josephson junctions to create a two-level system.  

In 1995, Cirac and Zoller proposed an ion trap as the physical system to perform quantum computation.

1996  Shor and Robert Calderbank, and independently Andrew Steane, saw a way to finesse the seemingly
show-stopping problems of quantum mechanics to develop quantum error correction techniques. Today, quantum
error correction is arguably the most mature area of quantum information processing.

 The Experimental Basis of Quantum Computing
 Quantum Mechanics as a Model of Reality

Quantum mechanics or Matrix Mechanics is not quantum physics. Rather, it is the collection of mathematical tools
used to analyze physical systems which are, to the best of anyone’s ability to test, known to behave according to
the laws of quantum physics.

 III. A Few Key Concepts of Quantum Mechanics

A qubit is a quantum bit. We can represent a qubit as a two-dimensional complex Hilbert space, C2. The state of the
qubit at any given time can be represented by a vector in this complex Hilbert space. A qubit system of say 100 qubits

can handle 2100 states.  
Relative phases of waveforms (states) are of fundamental importance for quantum algorithms in that they allow for
constructive interference and destructive interference.
Qubits are abstract mathematical objects with certain specific properties. 
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Just as a classical bit has a state – either 0 or 1 – a qubit also has a state. Two possible states for a qubit are the
states |0> and |1> , which as you might guess correspond to the states 0 and 1 for a classical bit. Notation like
‘ | > ’ is called the Dirac notation. The difference between bits and qubits is that a qubit can be in a state other
than |0> or |1>  It is also possible to form linear combinations of states, often called superpositions:

|Ψ> = α |0> + β |0>

In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like | a > . We denote the
dual vector for a (defined later) with a ‘bra’, written as < a | . Then inner vector products will be written as
‘bra-kets’ (e.g. <a | b > ).  Wile bras and kets are both elements of vector spaces, they are elements of different
vector spaces. The ket corresponds to the normal vectors while the bra corresponds to a covector. Kets are part
of one vector space while bras are part of the corresponding dual vector space.  

The numbers a and ß are complex numbers, although for many purposes not much is lost by thinking of them as
real numbers. Put another way, the state of a qubit is a vector in a two-dimensional complex vector space. The
special states | 0 > and | 1 > are known as computational basis states, and form an orthonormal basis for this
vector space. We can examine a bit to determine whether it is in the state 0 or 1. Rather remarkably, we cannot
examine a qubit to determine its quantum state, that is, the values of a and ß. Instead, quantum mechanics tells
us that we can only acquire much more restricted information about the quantum state. When we measure a

qubit we get either the result 0, with probability |a|2, or the result1, with probability |ß|2. Naturally  |a|2 + |ß| 2 = 1,
since the probabilities must sum to one. Thus, in general a qubit’s state is a unit vector in a two-dimensional
complex vector space. This dichotomy between the unobservable state of a qubit and the observations we can
make lies at the heart of quantum computation and quantum information.  a qubit can exist in a continuum of states
between |0> and |1>  
   – until it is observed. Let us emphasize again that when a qubit is measured, it only ever gives ‘0’ or ‘1’ as the

measurement result – probabilistically.  Because  |a|2 + |ß| 2 = 1, we may write this as 

where θ, ϕ and γ are real numbers. We can ignore the factor of e iγ out the front, because it has no observable
effects. The numbers θ and ϕ define a point on the unit three-dimensional sphere, as shown on page . This
sphere is often called the Bloch sphere; it provides a useful means of visualizing the state of a single qubit.
How much information is represented by a qubit? Paradoxically, there are an infinite number of points on the
unit sphere. 

Suppose we have two qubits. A two qubit system has four computational basis states denoted | 00 > , | 01 > ,
| 10 > , | 11 > . A pair of qubits can also exist in superpositions of these four states, so the quantum state of
two qubits involves associating a complex coefficient – sometimes called an amplitude – with each
computational basis state, such that the state vector describing the two qubits is

An important 2 bit state is a Bell state: 

Characteristics of Quantum Computing
We denote the initial prepared state with a ket and label on the left of the wire |0>
We denote a single-qubit operator with a box containing the letter representing that operator straddling the line.
We denote a binary gate with an operator box spanning two quantum wires 
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 IV. Unary Operators

Let us now cover the set of one-qubit, or unary, quantum operators. The first three operators we will examine are the
Pauli matrices, X Y Z.  These three matrices along with the identity matrix and all of their 1 and  i multiples
constitute what is known as the Pauli group. A unary operator is a gate that takes single input bit, and a binary
operator is one that takes two input bits. It is a linear transformation of the Hamiltonian Operator, H,  that maps
normalized (unit) vectors to other normalized vectors. Since H is 2-dimensional, a unary quantum operator can be
represented by a 2 × 2 matrix.
 
 X Operator: which is the NOT operator.  It is denoted by the symbol  

 Y Operator, also denoted σy, which rotates the state vector about the y axis. 

 Z Operator, also denoted σz, which rotates the state vector about the z axis (also called the phase flip operator since it flips it

by π radians or 180 degrees) (also known as the bit flip operator and can be referred to as x)

 Rφ General phase shift operator. When we apply this operator we leave the state |0> as is and we take the state |1>
and rotate it by the angle (or phase) denoted by φ, as specified in the matrix

 S Operator, additional phase shift operators that are special cases of the Rφ matrix
 where φ = π/2. The S operator thus rotates the state about the z-axis by 90°.

 T Operator which rotates the state about the z-axis by 45°. If we give φ the value of π=4. Note: S = T2

 H, Hadamard Operator:  Note to TWK:  Below matrices X and Y are named Xdot and Ydot. Define X and Y later
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 Below is the Dirac Notation for Block Sphere Equatorial  +,   - ,  i+, and  i -    States  Shown on Following Page

VXPhysics 6



A Bloch sphere is a physical representation of all possible qubit states. 
Each qubit is in its essence a vector on Bloch's sphere. 

 The Three ZXY Axes:  State: |0>  Z (Up),     State: (|+>)  X Front (+),    State: (|i>) Y Side (i)

 0 State (Z Up)     1 State (Z Down)   +   State (X Front)    -   State (X Back)   i   State (Y Right)   -i   State (Y Left)
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 Create a Bloch Sphere (XYZ) With Angles: θ, ϕ to Represent Any Qubit State

n 50:= i 0 n..:= j 0 n..:= θi π
i

n
:= ϕj 2π

j

n
:=

X i j, sin θi( ) cos ϕj( ):= Y i j, sin θi( ) sin ϕj( ):= Z i j, cos θi( ):=

Next, the coordinates of a quantum qubit are calculated and
displayed on the Bloch sphere as a white dot. As the polar and
azmuthal angles are changed, you will need to rotate the figure to
see where the white dot is on the surface of the Bloch sphere.

ϕ1 0:=

Ψ θ1 ϕ1,( ) cos
θ1
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XX i j, sin θ1( ) cos ϕ1( ):= ZZ i j, cos θ1( ):=

 V. The Bloch Sphere

Z

X
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π
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Ψ θ1 ϕ1,( )
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YY i j, sin θ1( ) sin ϕ1( ):=
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 V. The Bloch Sphere - Continued

The Bloch sphere is a nice way to visualize quantum states and to identify orthogonal states. Furthermore,
because diametrically opposite states in the Bloch sphere are orthogonal it also gives insight in which particular
states are orthogonal. However, it is only possible to do this for single qubit states. When multiple qubit states
are considered, t is not possible to visualize states in such a way

 Dirac Notation for Block Sphere Equatorial  +,   - ,  i+, and  i -

 Note:  This View Flips the "0"  |0>  |1>  Orientation to "1" |1>  |0>  Orientation

The Clifford states in the Bloch sphere. Programming for the quantum computer,  Dickel, 2016
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 VI. Matrix Mechanics of Spin States
See: A Course in Quantum Computing, Michael Loceff

Spin is a property that every electron possesses. Some properties like charge and mass are the same for all
electrons, while others like position and momentum vary depending on the electron in question and the exact
moment at which we measure. The spin, or more accurate term spin state of an electron has aspects of both. There
is an overall magnitude associated with an electron’s spin state that does not change. It is represented by the
number 1/2, a value shared by all electrons at all times. But then each election can have its own unique vector
orientation that varies from electron-to-electron or moment-to-moment. 

Spin has a 3-D direction and a scalar magnitude and we can break it into the two aspects, its scalar magnitude,

S S= Sx
2

Sy
2+ Sz

2+=

and a unit vector that embodies only its orientation (direction)
S

S

0.577
3

2
 0.707=

Why the is electron’s projection onto the z-axis is not the entire length of the vector, that is, either straight up at
(+√3/2) ħ  or straight down at (−√3/2) ħ. The electron stubbornly wants to give us only a fraction of that amount,

≈ 57.7%. This corresponds to two groups. The “up group” which forms the angle θ ≈ 55◦.

This smaller value is due to the Heisenberg Uncertainty Principle. If the spin were to collapse to a state that was
any closer to the vertical ±z-axis, we would have too much simultaneous knowledge about its x- and y-
components (too close to (0) and its z-component (too close to ( ±√3/2) ħ. This would violate the Heisenberg
Uncertainty Principle, which requires the combined variation of these observables be larger than a fixed constant.
Therefore, S z must give up some of its claim on the full spin magnitude,

 |+i> and |-i> States. We give a name to the state of the electrons in the (+) group: we call it the |+⟩z  state       (or

simply the |+⟩ state, since we consider the z-axis to be the preferred axis in which to project the spin). 
We say that the (-) group is in the | - ⟩z (or just the | - ⟩ state. Verbally, these two states are pronounced “plus ket”

and “minus ket.

S, the spin magnitude, is the same for all electrons under all conditions. Its value is
where ħ is a tiny number known as Plank’s constant. 
But, actual measurements of spin along the z-axis  only give values of Sz = 

The situation is shown on the below drawing.
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 VI. Matrix Mechanics of Spin States - Continued

The basic principles of quantum theory can be demonstrated very simply by exploring the properties of electron
spin using Heisenberg's formulation of quantum mechanics which is usually referred to as matrix mechanics. The
matrix formulation provides clear illustrations of the following essential quantum mechanical concepts: eigenvector,
operator, eigenvalue, expectation value, the linear superposition, and the commutation relations.

Four quantum numbers are required to describe an electron in quantum mechanics. The last of these is the
spin quantum number, s. The electron has a spin component in the x-, y-, and z-directions and for each of these
directions the electron can have a value of spin-up or spin-down, or +1 and -1 in units of h/4p.  These six spin
states are represented by vectors as is shown below.  

 Transpose of Complex

  Conjugate (Shift")T
 X Y Z Axes Spin States (Up and Down)
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1
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( )T 0.707 0.707( )= Sxd

( )T 0.707 0.707-( )=
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i
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:= Syu
( )T 0.707 0.707i-( )= Syd

( )T 0.707 0.707i( )=

Szu
1

0








:= Szd
0

1








:= Szu
( )T 1 0( )= Szd

( )T 0 1( )=

Let's look at the the  y-direction spin states because they are complex, and therefore are slightly
moredifficult to deal with.  In Dirac notation these four bra and ket Y vectors are written as |Syu⟩, |Syd⟩
, <Syu|, and <Syd|. Note that the bra-vectors are the transpose of the complex conjugate of the

ket-vectors. It is also easy to show that these spin vectors in the x-, y-, and z-directions form orthonormal
basis sets.  That means they are normalized and orthogonal to each other.

Sxu
( )T Sxu 1= Sxd

( )T Sxd 1= Sxu
( )T Sxd 0=

Syu
( )T Syu 1= Syd

( )T Syd 1= Syu
( )T Syd 0=

Szu
( )T Szu 1= Szd

( )T Szd 1= Szu
( )T Szd 0=

In Dirac notation we would write the first row as:  <Sxu|Sxu>  =  <Sxd|Sxd> = 1,    <Sxu|Sxd> = 0. In other words

the projection of the spin states onto themselves is 1 (normalized) and the projection onto the other state is
zero (orthogonal). Momentum is only in one direction.  Spin can only be or .

The calculations above for the y-direction spin vectors are shown explicitly below. 

0.707 .707i-( )
.707

.707i









 1= 0.707 .707i( )
.707

.707i-









 1= 0.707 .707i-( )
.707

.707i-









 0=
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It is easy to show that  x- and z-spin states are not orthogonal to one another. Any two different spin

directions are not orthogonal. <Sxu|Szu> = 0.707, for example.  This is a 45o angle.

Sxu
( )T Szu 0.707= Sxu

( )T Szd 0.707= Sxd
( )T Szu 0.707= Sxd

( )T Szd 0.707-=

This of course means that, for example, |Sxu> and |Sxd> can be written as linear superpositions of

|Szu> and |Szd>, and |Szu> and |Szd> can be written as linear superpositions of |Sxu> and |Sxd>.
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2
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=

The concept of the linear superposition is central in quantum theory and has no classical analog.  For example,
if by measurement an electron is found to have spin-up in the z-direction, this means that the electron does not
have a definite spin in either the x- or the y-direction because |Szu> is a linear superposition of the x- and

y-direction spin states.

Szu
1
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2
Syd+

1

0








=

In spite of its appearance, a linear superposition is not a mixture. In other words  |Szu> is not 50%

|Sxu> and 50% |Sxd>, or 50% |Syu> and 50% |Syd>.

Another central dogma of quantum theory is that the wavefunction or state vector contains all the physical
information available for the system.  Quantum mechanics therefore consists, in large part, of extracting
physical information from the wavefunction or state vector.  Quantum mechanics consists of a small set of
rules for carrying this procedure out mathematically.

For every observable of the system there is an operator.  Since electrons can spin in the x-, y-, or z-directions,
there are spin operators in those directions, or for that matter in any other arbitrary direction you might think of. In
quantum mechanics states are vectors and operators are matrices. The spin operators in units of h/4p are
shown below. Note that squaring these operators gives the identity operator.
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For example, the square of the total spin operator in units of h/4p is

Sxyz Sx
2

Sy
2+ Sz

2+:= Sxyz
3

0

0

3









=
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A measurement operator extracts information about the system by operating on the wavefunction or
state vector.  One possible outcome is that the operation returns the state vector multiplied by a
numerical constant. For example, 
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In Dirac notation we would summarize these calculations as follows:  Sx|Sxu> = +1|Sxu>, 

Sx|Sxd> = -1|Sxd>, Sy|Syu> = +1|Syu>, Sy|Syd> = -1|Syd>, Sz|Szu> = +1|Szu>, 

Sz|Szd> = -1|Szd>. In each of these cases, the state vector is an eigenfunction of the measurement

operator with eigenvalue of either +1 or -1 (in units of h/4p). We say, for example, that |Sxu> is an

eigenfunction of Sx with eigenvalue +1. The electron has a well-defined value for spin in the

x-direction (spin-up) and subsequent measurements of the x-direction spin will yield the value of +1
as long as no intervening measurements in another spin direction are made.

The other possible outcome of the measurement operation is that it yields another state vector.
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In Dirac notation these operations appear as:  Sx|Syu> = i|Syd>,   Sx|Syd> = -i|Syu>, 

Sx|Szu> = |Szd>,   Sx|Szd> = |Szu>, etc. In each case the resulting vector is different than the vector

operated on. We say, for example, |Syu> is not an eigenfunction of Sx, and therefore an electron in

this state does not have a definite value for spin in the x-direction. X-direction spin measurements on
a system known to be in state |Syu> will yield completely random results.

To put it another way, quantum mechanical principles state that a system can be in a well-defined state,
|Syu>, and yet the outcome of all experiments are not uniquely determined. While a measurement of

spin in the y-direction will yield a predictable result, +1, measurement of spin in the x- or z-direction is
completely unpredictable and all we can calculate is the average value, or expectation value for a large
number of measurements. This is completely different than classical physics where if you know the state
of the system, you know the values of all physical observables.
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As another example, consider the ground state of the hydrogen atom for which the electron's wave

function is  Y = p-1/2 exp(-r).  When the electron is in this state it has a precise energy, but not a
well-defined position or momentum.  This, of course, makes the concept of an electron trajectory
impossible and it is, therefore, meaningless to think of the electron as moving in any traditional sense. 

The quantum mechanical algorithm for calculating the expectation value is to execute the following
matrix multiplication:  <State Vector|Operator|State Vector>. This formalism is quite general and can
be used whether the state vector is an eigenfunction of the operator or not. This is demonstrated
below for the spin states that we have been studying.

Sxu
( )T Sx Sxu 1= Sxd

( )T Sx Sxd 1-= Szu
( )T Sx Szu 0=

Szd
( )T Sx Szd 0= Syu

( )T Sx Syu 0= Syd
( )T Sx Syd 0=

Sxu
( )T Sy Sxu 0= Sxd

( )T Sy Sxd 0= Szu
( )T Sy Szu 0=

Szd
( )T Sy Szd 0= Syu

( )T Sy Syu 1= Syd
( )T Sy Syd 1-=

Sxu
( )T Sz Sxu 0= Sxd

( )T Sz Sxd 0= Szu
( )T Sz Szu 1=

Szd
( )T Sz Szd 1-= Syu

( )T Sz Syu 0= Syd
( )T Sz Syd 0=

Let's look at the first six enteries because they are representative of the remaining results. If the electron
is in the state |Sxu> measurement of Sx will always yield the value of +1 (in units of h/4p). If the electron

is in the state |Sxd> measurement of Sx will always yield the value of -1 (in units of h/4p). If instead Sy

or Sz are measured, the measurement results will be a statistically random collection of +1 and -1, and

the average value will, of course, be zero. Only when the system is in an eigenstate of the measurement
operator is the outcome of the experiment certain.

This brings us to the concept of probaility and how it is calculated in quantum mechanics.  The
projection of one state on to another, <Szu|Sxd> = .707, is a probability amplitude. Its absolute

square, <Sxd|Szu><Szu|Sxd> = |<Szu|Sxd>|2 = 0.5 (remember <Sxd|Szu> = <Szu|Sxd>*), is the

probability that an electron in state |Sxd> will be found by measurement in the state |Szu>.

Representative calculations are shown below.

Szu
( )T Sxu







2

0.5= Szd
( )T Sxu







2

0.5= Sxu
( )T Syu







2

0.5= Sxu
( )T Szd







2

0.5=
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Let's review these concepts by taking a specific example.  The electron is in the state |Sxu> and we wish to

measure Sz. According to quantum mechanical procedures the average value for a statistically meaningful number

of measurements is zero - <Sxu|Sz|Sxu> = 0. The eigenstates (eigenfunctions) for Sz are |Szu> and |Szd> with

eigenvalues +1 and -1, respectively. As the first two entries above show, the probability that an electron in state
|Sxu> will be found in |Szu> with eigenvalue +1 is 0.5, and the probaility that it will be found in state |Szd> with

eigenvalue -1 is 0.5. Thus, the average value is expected to be zero, and the two ways of determining the
average or expectation value of a measurement are consistent and equivalent. 

There is yet another way to look at this issue. In quantum mechanics for most pairs of observables the order
of measurement is important. Quantum mechanical operators don't generally commute. For example, as
shown below, SxSy|Szu> does not equal SySx|Szu>. This means that if the electron is in the state |Szu> the

combined operators SxSy and SySx yield different measurement results.        

Sx Sy Szu
i

0








= Sy Sx Szu
i-

0









= Sx Sy Sy Sx-( ) Szu
2i

0









=

Operators that do not commute have incompatible eigenstates. If a state vector is an eigenstate of
one of the operators, it is not an eigenstate of the other. The fact that Sx and Sy do not commute
means that an electron cannot simultaneously have well-defined values for Sx and Sy. It is not

surprising that there is a deep connection between these properties of operators and the Uncertainty
Principle. The commutators for the spin operators are shown below.

Sx Sy Sy Sx-
2i

0

0

2i-









= 2 i Sz
2i

0

0

2i-









= Sz Sx Sx Sz-
0

2-

2

0









=

Sy Sz Sz Sy-
0

2i

2i

0









= 2 i Sx
0

2i

2i

0









= 2 i Sy
0

2-

2

0









=

The Uncertainty Principle can also be illustrated by calculating DSx and DSy for an electron known to be in
the Szu state. Since we are working in units of h/4p, the uncertainty relation is: ΔSx ΔSy 1 .

Szu
T

Sx Sx Szu Szu
T

Sx Szu





2
- Szu

T
Sy Sy Szu Szu

T
Sy Szu





2
- 1=

We have been dealing with matrix operators and their associated eigenvectors and eigenvalues. The
eigenvectors and eigenvalues can be obtained from the matrix operators with Mathcad's eigenvecs
and eigenvals commands as is shown below.

eigenvals Sx( )
1

1-









= eigenvec Sx 1,( )
0.707

0.707









= eigenvec Sx 1-,( )
0.707-

0.707









=

eigenvals Sy( )
1

1-









= eigenvecs Sy( )
0.707i-

0.707

0.707

0.707i-









=

eigenvals Sz( )
1

1-









= eigenvecs Sz( )
1

0

0

1









=
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 Matrix Mechanics of Spin States:  Two-photon Interference

Reference: Frank Rioux
Reference: Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Physics Today, 1993, 44(8), 22.

In this experiment a down converter, DC, transforms an incident photon into two lower energy
photons. One photon takes the upper path and the other the lower path or vice versa. The results of
this experiment are that both photons are detected at either U or D.  One photon is never detected at U
while the other is detected at D. A quantum mechanical analysis of this phenomena is provided below.

               UP

          M  ------       M = mirror
               ̂
              / \
             /   \     U-detector
            /     \   /
           /       \ / 
Source -->DC    BS -x---  DC = down converter  BS = 50/50 beam splitter     
            \     /   \
             \   /     D-detector
              \ /
               v
           M ------        M = mirror
 
              DOWN

Orthonormal basis states:

Photon moving in up-direction: u
1

0








:= u( )
T

u 1=

Photon moving in down-direction: d
0

1








:= d( )
T

d 1= u( )
T

d 0=

Operators:

Operator for interaction with the mirror: M
0

1

1

0









:=

Operator for interaction with a 50/50 beam splitter: BS
1

2

1

i

i

1









:=

A 90o phase shift between transmission and reflection at the beam splitter is required to satisfy energy
conservation. By convention the phase shift is assigned to reflection.

The down-converter creates the following entangled state:

      |Yb> = [|u>1|d>2 + |d>1|u>2]/21/2 

This is a symmetric state because photons are bosons.
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After creation in the down-converter, both photons interact with a mirror and a beam splitter before reaching a
detector, either U or D. To be detected at the U-detector the photon must be moving in the up-direction (photon
state = |u>). To be detected at the D-detector the photon must be moving in the down-direction (photon state =
|d>). The probabilities for the four possible experimental outcomes are calculated below.

Both photons arrive at the U-detector: |
1
<u|

2
<u|BS M|Y

b
>|2

u( )
T

BS M u  u( )
T

BS M d  u( )
T

BS M d  u( )
T

BS M u +

2









2

0.5=

Both photons arrive at the D-detector:     |
1
<d|

2
<d|BS M|Y

b
>|2 

d( )
T

BS M u  d( )
T

BS M d  d( )
T

BS M d  d( )
T

BS M u +

2









2

0.5=

Photon 1 arrives at the U-detector and photon 2 arrives at the D-detector:   |
1
<u|

2
<d|BS M|Y

b
>|2 

u( )
T

BS M u  d( )
T

BS M d  u( )
T

BS M d  d( )
T

BS M u +

2









2

0=

Photon 1 arrives at the D-detector and photon 2 arrives at the U-detector:  |
1
<d|

2
<u|BS M|Y

b
>|2 

d( )
T

BS M u  u( )
T

BS M d  d( )
T

BS M d  u( )
T

BS M u +

2









2

0=

If the experiment could be performed with fermions, they would be created in the following anti-symmetric
entangled state:

      |Yf> = [|u>1|d>2 - |d>1|u>2]/21/2 

As the analysis below shows, the results for fermions would be exactly opposite to those for bosons. Two
fermions would never arrive at the same detector.
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Both fermions arrive at the U-detector: |
1
<u|

2
<u|BS M|Y

f
>|2

u( )
T

BS M u  u( )
T

BS M d  u( )
T

BS M d  u( )
T

BS M u -

2









2

0=

Both fermions arrive at the D-detector: |
1
<d|

2
<d|BS M|Y

f
>|2

d( )
T

BS M u  d( )
T

BS M d  d( )
T

BS M d  d( )
T

BS M u -

2









2

0=

Fermion 1 arrives at the U-detector and fermion 2 arrives at the D-detector:   |
1
<u|

2
<d|BS M|Y

f
>|2

u( )
T

BS M u  d( )
T

BS M d  u( )
T

BS M d  d( )
T

BS M u -

2









2

0.5=

Fermion 1 arrives at the D-detector and fermion 2 arrives at the U-detector:   |
1
<d|

2
<u|BS M|Y

f
>|2

d( )
T

BS M u  u( )
T

BS M d  d( )
T

BS M d  u( )
T

BS M u -

2









2

0.5=

The results of this tutorial enable us to formulate a sociology for bosons and fermions: bosons are gregarious
and enjoy companionship; fermions are anti-social and prefer solitude.  

But why do bosons always end up at the same detector and fermions (hypothetically) always end up at different
detectors? Why in both cases do half of the possible outcomes not occur? Are the bosons and fermions interfering
with each other directly? Is there a subtle attractive interaction between bosons and an equally subtle,
non-electrostatic, repulsive interaction between fermions?

Not according to Roy Glauber who said, "The things that interfere in quantum mechanics are not particles.
They are probability amplitudes for certain events. It is the fact that probability amplitudes add up like
complex numbers that accounts for all quantum mechanical interferences."
 [American Journal of Physics 63, 12 (1995)]

The analysis used in this tutorial clearly illustrates Glauber's assertion. 

Reference: Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Physics Today, 1993, 44(8), 22.
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 Tensor Products of Vector Spaces
QUANTUM COMPUTING Gentle Introduction, Eleanor Rieffel, Page 33
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 VII. A Proof of Bell's Theorem
This Analysis is Based Jim Baggott's analysis of Bell's theorem as presented in Chapter 4 of 

The Meaning of Quantum Theory and Frank Rioux's Methodology using matrix and tensor algebra.

A two-stage atomic cascade emits entangled photons (A and B) in opposite directions with the
same circular polarization according to observers in their path. 

The experiment involves the measurement of photon polarization states in the vertical/horizontal
measurement basis, and allows for the rotation of the right-hand detector through an angle of θ,
in order to explore the consequences of quantum mechanical entanglement. PA stands for
polarization analyzer and could simply be a calcite crystal.

In vector notation the left- and right-circular polarization states are expressed as follows:

Left circular polarization: L
1

2

1

i








:=
1

i








Right circular polarization: R
1

2

1

i-









:=
i

In tensor notation the initial state is the following entangled superposition is,

However, as mentioned above, the photon polarization measurements will actually be made in
the vertical/horizontal basis. These polarization measurement states for photons A and B in
vector representation are given below. Θ is the angle through which the PA2 has been rotated.

Vertical 
Polarization:

Horizontal 
Polarization:

VA
1

0








:= VB
cos θ( )

sin θ( )-









:= HA
0

1








:= HB
sin θ( )

cos θ( )









:=

It is easy to show that |Ψ> in the vertical/horizontal basis is,
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There are four possible measurement outcomes: both photons are vertically polarized, both are
horizontally polarized, one is vertical and the other horizontal, and vice versa. The vector
representations of the measurement states are obtained by tensor multiplication of the individual
photon states.

The initial state and the measurement eigenstates are written in Mathcad syntax.

VaHb θ( )

sin θ( )

cos θ( )

0

0















:=VaVb θ( )

cos θ( )

sin θ( )-

0

0















:=

Ψ
1

2

1

0

0

1-















:=

HaVb θ( )

0

0

cos θ( )

sin θ( )-















:= HaHb θ( )

0

0

sin θ( )

cos θ( )















:=

 The projections of the initial state onto the four measurement states are,

Note: θ.dot --> θ π:=

Probability
Amplitude: 

VaVb θ( )T Ψ

VaHb θ( )T Ψ

HaVb θ( )T Ψ

HaHb θ( )T Ψ





















2

2
-

0

0

2

2



















 Probability:

VaVb θ( )T Ψ





2

VaHb θ( )T Ψ





2

HaVb θ( )T Ψ





2

HaHb θ( )T Ψ





2























1

2

0

0

1

2
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Assigning an eigenvalue of +1 to a vertical polarization measurement and -1 to a horizontal
polarization measurement allows the calculation of the expectation value for the joint
polarization measurements, a function which quantifies the correlation between the joint
measurements. The eigenvalues for the four joint measurement outcomes are: VaVb = 1;
VaHb = -1; HaVb = -1; HaHb = 1. Weighting these by the probability of their occurence gives
the Expectation Value, E(θ) or Correlation Function. 

E θ( ) VaVb θ( )
T Ψ( )2

VaHb θ( )
T Ψ( )2

- HaVb θ( )
T Ψ( )2

- HaHb θ( )
T Ψ( )2

+ cos θ( )
2

sin θ( )
2-:=

As shown above the evaluation of E(θ) yields cos(2θ). For θ = 00 there is perfect correlation;

for θ = 900 perfect anti-correlation; for θ = 450  no correlation. 

E 0 deg( ) 1= E 90 deg( ) 1-= E 45 deg( ) 0=

Baggott presented a correlation function for this experiment based on a local hidden variable
model of reality (pp. 110-113, 127-131). It (linear blue line) and the quantum mechanical
correlation function, E(θ), are compared on the graph below. Quantum theory and local
realism disagree at all angles except 0, 45, and 90 degrees.

 Comparison Quantum Theory Expectation vs. Local Hidden Variable

0 10 20 30 40 50 60 70 80 90
1-

0.8-

0.6-

0.4-

0.2-

0

0.2

0.4

0.6

0.8

1
Bell's Theorem Correlation Function

E θ( )

1
θ

45deg
-

θ
deg
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 VIII.  "Qubit Quantum Mechanics with Correlated-Photon Experiments" 
Matrix Based Formalism to Model Some Classic QM Experiments, Paper by Galvez, AJP 78, 510-519 (2010)

This document uses the Mathcad programming environment to model and reproduce 
most of the results for the experiments presented in Professor Galvez's paper.

 Polarization Space and Direction of Propagation: State Vectors

x
1

0








:=Photon moving
horizontally:

Photon moving
vertically:

y
0

1








:= Null vector: n
0

0








:=

Horizontal 
polarization:

Vertical 
polarization:

Diagonal 
polarization:

h
1

0








:= v
0

1








:= d

1

2

1

2















:=

 Single mode operators:

Projection operators for motion in the x- and y-directions: X
1

0

0

0









:= Y
0

0

0

1









:=

Operator for polarizing
film oriented at angle of
q to the horizontal.

Θop θ( )
cos θ( )

sin θ( )









cos θ( ) sin θ( )( )
cos θ( )

2

cos θ( ) sin θ( )

cos θ( ) sin θ( )

sin θ( )
2









:=

Beam splitter: BS

1

2

i

2

i

2

1

2















:= Mirror: M
0

1

1

0









:= Phase shift: A δ( )
e

i δ

0

0

1









:=

Half and quarter wave plate: W2
1

0

0

1-









:= W4
1

0

0

i-









:= Identity: I
1

0

0

1









:=

Rotated half wave plate: W2 θ( )
cos 2 θ( )

sin 2 θ( )

sin 2 θ( )

cos 2 θ( )-









:= W θ( )

cos 2 θ( )

sin 2 θ( )

0

0

sin 2 θ( )

cos 2 θ( )-

0

0

0

0

1

0

0

0

0

1-















:=

Mach-Zehnder interferometer: MZ δ( ) BS A δ( ) M BS:=

 Two mode states and operators:

Single-photon direction of propagation and polarization states Eq 15:

xh

1

0

0

0















:= xv

0

1

0

0















:= yh

0

0

1

0















:= yv

0

0

0

1















:=

 Equation 17 
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Two-photon direction of propagation states. 

xx

1

0

0

0















:= xy

0

1

0

0















:= yx

0

0

1

0















:= yy

0

0

0

1















:=

Two-photon polarization states.

hh

1

0

0

0















:= hv

0

1

0

0















:= vh

0

0

1

0















:= vv

0

0

0

1















:=

 Polarizing Beam Splitter, PBS,  which transmits horizontally polarized photons 
and reflects vertically polarized photons.  Eq. 24

PBS xh xh
T

 yv xv
T

+ yh yh
T

+ xv yv
T

+:= PBS

1

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0















=

Polarization M-Z interferometer: MZP δ( ) PBS kronecker A δ( ) I,( ) kronecker M I,( ) PBS:=

Kronecker is Mathcad's command for tensor multiplication of square matrices.

 Mach-Zehnder interferometer for direction of propagation and polarization, 
which places a rotatable half-wave plate in the upper path.  Eq.  24

MZdp θ δ,( ) kronecker BS I,( ) kronecker A δ( ) I,( ) W θ( ) kronecker M I,( ) kronecker BS I,( ):=

Mach-Zehnder two-photon direction-of-propagation interferometer. AA δ( ) kronecker A δ( ) A δ( ),( ):=
BSBS kronecker BS BS,( ):= MM kronecker M M,( ):=

The results of single photons going through the
interferometer and being detected at the two
outputs of the interferometer are shown in Fig. 2.

MZdd δ( ) BSBS AA δ( ) MM BSBS:=

 Confirm the results in Figure 2 for the Mach-Zehnder interferometer: δ 0 .125 π, 6π..:=

0 1 2 3

x
T

MZ δ( ) x( )2

y
T

MZ δ( ) x( )2

δ
2 π

 Barium Borate Optics-Correlated Photon Pair

Fig. 1. Standard layout for doing experiments with correlated photons. Interfer-
ometer components are nonpolarizing beam splitters (BS) and metallic mirrors
(m). Band-pass filters (f) precede couplers to multimode fibers, which send light to
detectors A, B, and C. The beam dump (d) collects the pump beam for safety.
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 Half Wave Plate (HWP)
Demonstrate that a superposition is formed after first beam splitter

BS x
0.707

0.707i









=
1

2
x i y+( )

0.707

0.707i









=

δ 0 .1 π, 2 π..:=
Confirmation that  path information destroys interference.

 Barium Borate Optics-Correlated Photon Pair
Fig. 3. Schematic of the (a) apparatus and (b) data for the quantum eraser.
The data show cases when the light leaves the interferometer along the X
direction not carrying path information (triangles) and when the light leaves
along the Y direction carrying path information (circles) .

0 0.5 1 1.5 2

x-direction

kronecker X I,( ) MZdp 0 δ,( ) xv( )2

kronecker X I,( ) MZdp
π
4

δ,





 xv





2

δ
π

q = 0, no path information

q = p/4, path information

0 0.5 1 1.5 2

y-direction

kronecker Y I,( ) MZdp 0 δ,( ) xv( )2

kronecker Y I,( ) MZdp
π
4

δ,





 xv





2

δ
π

q = 0, no path information

q = p/4, path information

Erasure of path information restores interference. Erasers for the x- and y-directions place diagonal
polarizers in those directions after the interferometer.

Ex

1

2

1

2

0

0

1

2

1

2

0

0

0

0

1

0

0

0

0

1

















:= Ey

1

0

0

0

0

1

0

0

0

0

1

2

1

2

0

0

1

2

1

2

















:=
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 The x-direction has an eraser and the y-direction does not. δ 0 .1 π, 6π..:=

0 2 4 6

kronecker X I,( ) Ex MZdp
π
4

δ,





 xv





2

kronecker Y I,( ) MZdp
π
4

δ,





 xv





2

δ
π

x-direction:

y-direction:

 The y-direction has an eraser and the x-direction does not.

0 2 4 6

kronecker X I,( ) MZdp
π
4

δ,





 xv





2

kronecker Y I,( ) Ey MZdp
π
4

δ,





 xv





2

δ
π

x-direction:

y-direction:

For the MZ polarization interferometer diagonally polarized light enters in the x-direction, |xd >. 
Tensor vector multiplication is awkward in Mathcad as is shown below.

Ψin
1

2

1

1

0

0















:= submatrix kronecker augment x n,( ) augment d n,( ),( ) 1, 4, 1, 1,( ) =4

No light, however, exits in the x-direction. It exits in the y-direction showing no interference effects.

x-direction: y-direction:

kronecker Y I,( ) MZP δ( ) Ψin( )2

1

1

1

1

1

1





















=kronecker X I,( ) MZP δ( ) Ψin( )2

0

0

0

0

0

0





















=

δ 0 .2 π, π..:=
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Placement of a D polarizer in the y-direction output erases distinguishing
information and interference appears.

δ 0 .1 π, 6π..:=

0 2 4 6

kronecker X I,( ) MZdp
π
4

δ,





 xv





2

kronecker Y I,( ) Ey MZdp
π
4

δ,





 xv





2

δ
π

x-direction:

y-direction:

Calculation of exit probabilities for two photons in direction-of-propagation modes:

Pxx δ( ) xx
T

MZdd δ( ) xx





2
:= Pxy δ( )

1

2
xy yx+( )

T
 MZdd δ( ) xx








2

:=

Pyy δ( ) yy
T

MZdd δ( ) xx





2
:= Tot δ( ) Pxx δ( ) Pxy δ( )+ Pyy δ( )+:=

Reproduction of Figure 5b with the addition of Pyy. δ 0 .05 π, 6 π..:=

0 1 2 3

0.5

1

Pxx δ( )

Pxy δ( )

Pyy δ( )

Tot δ( )

δ
2 π

"The striking result is that the (Pxy) interference pattern has twice the frequency of the single-photon

interference pattern. Nonclassical interference shows new quantum aspects: two photons acting as a single
quantum object (a biphoton)." 
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Hong-Ou-Mandel interference 
(right column, page 516):

BSBS
1

2
 xy yx+( )

0.707i

0

0

0.707i















=
i

2
xx yy+( )

0.707i

0

0

0.707i















=

Section III.D deals with distinguishing between pure and mixed states experimentally. The pure state and it
density matrix are given below.

Ψpure
1

2
hh vv+( ):= Ψpure

0.707

0

0

0.707















= Ψpure Ψpure
T



0.5

0

0

0.5

0

0

0

0

0

0

0

0

0.5

0

0

0.5















=

The density matrix for the mixed state is calculated as follows.

1

2
hh hh

T


1

2
vv vv

T
+

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.5















=

The following calculations and their graphical representation are in complete agreement with section III.D

Pure α( ) tr
1

2

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

1
















1

2


cos α( )

cos α( )

sin α( )

sin α( )















cos α( )

cos α( )

sin α( )

sin α( )















T

































simplify
sin 2 α( )

4

1

4
+:=

Mixed α( ) tr
1

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
















1

2


cos α( )

cos α( )

sin α( )

sin α( )















cos α( )

cos α( )

sin α( )

sin α( )















T

































simplify
1

4
:=

Reproduce Figure 6 results. α 0 deg 5 deg, 180 deg..:=

0 50 100 150

Pure α( )

Mixed α( )

α
deg
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The following calculation are in agreement with the math in the final paragraph of section IV.D.

kronecker W2 0( ) I,( ) Ψpure

0.707

0

0

0.707-















=

0.707

0

0

0.707-















0.707

0

0

0.707-















T



0.5

0

0

0.5-

0

0

0

0

0

0

0

0

0.5-

0

0

0.5















=

kronecker W2 0( ) I,( ) Ψpure Ψpure
T

 kronecker W2 0( ) I,( )T

0.5

0

0

0.5-

0

0

0

0

0

0

0

0

0.5-

0

0

0.5















=

Pure α( ) tr
1

2

1

0

0

1-

0

0

0

0

0

0

0

0

1-

0

0

1
















1

2


cos α( )

cos α( )

sin α( )

sin α( )















cos α( )

cos α( )

sin α( )

sin α( )















T

































simplify
1

4

sin 2 α( )

4
-:=

The Galvez paper shows this as [1 - sin(a)]/4,  which is a typographical error. The correct answer is [1 - sin(2*α)]/4
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 IX. Simple Example of Parallel Quantum Computation

This tutorial deals with quantum function evaluation and parallel computation. The example is taken from
pages 94-95 of Exploring the Quantum by Haroche and Raimond. A certain function of x yields the following
table of results. 

 Computing a function f(x) with a quantum machine

First we establish that the circuit shown below yields the results given in the table, and then demonstrate
that it also carries out a parallel calculation in one step using both input values of x.

Exclusive OR =  

The top wire carries the value of x and the bottom wire is initially set to |0 >. After operation of the
controlled-NOT and NOT gates, x remains on the top wire while the bottom wire carries the value of the
function, f(x). In other words,

The quantum gates in matrix form are: I
1

0

0

1









:= NOT
0

1

1

0









:= CNOT

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0















:=

Uf (controlled-NOT, followed by a NOT operation on the lower wire) is a reversible operator. Doing it twice
in succession on the initial two-qubit state is equivalent to the identity operation.
Note that the identity operator is required when a wire is not involved in an operation. In what follows the 
quantum circuit is constructed, displayed and its reversibility demonstrated. In other words, repeating the circuit
is equivalent to the identity operation. Reversibility is a crucial property in quantum computer circuitry.

Kronecker is Mathcad's command for carrying out matrix tensor multiplication. 

QuantumCircuit kronecker I NOT,( ) CNOT:=

QuantumCircuit
2

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1















=QuantumCircuit

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1















=
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Given the simplicity of the matrix representing the circuit, the following calculations can easily be done by hand.

QuantumCircuit

1

0

0

0

















0

1

0

0















=

QuantumCircuit

0

0

1

0

















0

0

1

0















=

These calculations demonstrate that the quantum circuit is a valid algoritm for the calculation of f(x). We now
demonstrate parallel computation by putting |x> in a balanced superposition of |0> and |1>. As shown below, the
operation of the circuit yields a superposition of the previous results. The function has been evaluated for both
values of x in a single pass through the circuit.

QuantumCircuit
1

2


1

0

1

0

















0

0.707

0.707

0















=

Haroche and Raimond describe this process as follows: "By superposing the inputs of a computation, one operates
the machine 'in parallel', making it compute simultaneously all the values of a function and keeping its state, before
any final bit detection is performed, suspended in a coherent superposition of all the possible outcomes." In
summary, simple calculations have demonstrated how a quantum circuit can function as an algorithm for
theevaluation of a mathematical function, and how the same circuit is capable of parallel evaluations of that
function.
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However, as Haroche and Raimond note, on a practical level only one result can be realized for each
operation of the circuit because on measurement the superposition created by the circuit collapses to one
of the states forming the superposition. This is simulated with projection operators (|0><0| and |1><1|)
on both registers for the four possible measurement outcomes for each value of x. 

f 0( ) 0= kronecker
1

0








1

0








T


1

0








1

0








T

,








QuantumCircuit
1

2


1

0

1

0































2
0

0

0

0















=

f 0( ) 1= kronecker
1

0








1

0








T


0

1








0

1








T

,








QuantumCircuit
1

2


1

0

1

0































2
0

0.5

0

0















=

f 1( ) 0= kronecker
0

1








0

1








T


1

0








1

0








T

,








QuantumCircuit
1

2


1

0

1

0































2
0

0

0.5

0















=

f 1( ) 1= kronecker
0

1








0

1








T


0

1








0

1








T

,








QuantumCircuit
1

2


1

0

1

0































2
0

0

0

0















=

As Haroche and Raimond write, "It is, however, one thing to compute potentially at once all the values of
f(x) and quite another to be able to exploit this quantum parallelism and extract from it more information
than from a mundane classical computation. The final stage of information acquisition must always be a
measurement." Therefore, the exploitation of quantum parallelism for practical purposes such as searches
and factorization requires more elaborate quantum circuits than the one presented here.

 Truth tables for quantum circuit elements:
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 X. An Illustration of the Deutsch-Jozsa Algorithm
             

 Th D-J Algorithm demonstrates that there is a problem for which a QC runs faster than a Classic Computer. 
Specifically, given a boolean function whose input is 1 bit   f: : {0,1} --> {0,1}, is it constant?
The following circuit produces the table of results to its right. The top wires carry the value of x and the circuit places f(x)
on the bottom wire. As is shown in the previous Section (IX), this circuit can also operate in parallel accepting as input all
x-values and returning on the bottom wire a superposition of all values of f(x).

|0> = |0>|0>

|1> = |0>|1>
x

f x( )

0

1

1

0

2

0

3

1









where 
|2> = |1>|0>

|3> = |1>|1>

The function belongs to the balanced category because it produces 0 and 1 with equal frequency. A modification
of this circuit (Deutsch-Jozsa algoritm, p. 298 in The Quest for the Quantum Computer, by Julian Brown)
answers the question of whether the function is constant or balanced. Naturally we already know the answer, so
this is a simple demonstration that the circuit works. 

The input is |0>|0>|1> followed by a Hadamard gate on each wire, as shown in the circuit shown below. As
is well known the Hadamard operation creates the following superposition states.

H
1

0









1

2

1

1








= H
0

1









1

2

1

1-









=

Therefore the Hadamard operation transforms the input state to the following three-qubit state which is fed to the
quantum circuit.

1

2

1

1









1

2


1

1









1

2


1

1-










1

2 2

1

1-

1

1-

1

1-

1

1-



























=

The following matrices are required to execute the circuit. I
1

0

0

1









:= NOT
0

1

1

0









:= H
1

2

1

1

1

1-









:=
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CNOT

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0















:= CnNOT

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0



























:=

After the portion of the quantum circuit shown above, Hadamard gates are added to the top two wires, as shown
in the circuit on 2nd page down. The matrix representing the circuit is assembled using tensor matrix multiplication
and then allowed to operate on the wave function. The full circuit is shown below.

QCkt kronecker H kronecker H I,( ),( ) kronecker I kronecker I NOT,( ),( ) kronecker I CNOT,( ) CnNOT:=

QCkt
1

2

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1-

0

1

0

1-

0

0

1

0

1-

0

1

0

1-

1

0

1

0

1-

0

1-

0

0

1

0

1

0

1-

0

1-

0

1

0

1-

0

1-

0

1

1

0

1-

0

1-

0

1

0



























= QCkt
1

2 2

1

1-

1

1-

1

1-

1

1-





























0

0

0

0

0

0

0.707-

0.707



























=
0

1








0

1









1

2


1-

1











Next the qubits on the top two wires are measured. If both are |0> the function is constant, but if at least one is
|1> the function is balanced. The measurement on the top wires is implemented with projection operators

|0><0| and |1><1|, and confirms that the function is not constant but belongs to the
balanced category.

The first qubit is not |0>.
kronecker

1

0








1

0








T

 kronecker I I,( ),








QCkt
1

2 2


1

1-

1

1-

1

1-

1

1-





























0

0

0

0

0

0

0

0



























=
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The second qubit is not |0>. kronecker I kronecker
1

0








1

0








T

 I,








,








QCkt
1

2 2


1

1-

1

1-

1

1-

1

1-





























0

0

0

0

0

0

0

0



























=

The first qubit is |1>. kronecker
0

1








0

1








T

 kronecker I I,( ),








QCkt
1

2 2


1

1-

1

1-

1

1-

1

1-





























0

0

0

0

0

0

0.707-

0.707



























=

The second qubit is |1>. kronecker I kronecker
0

1








0

1








T

 I,








,








QCkt
1

2 2


1

1-

1

1-

1

1-

1

1-





























0

0

0

0

0

0

0.707-

0.707



























=

The following illustrates an algebraic analysis of the Deutsch-Jozsa algorithm.

Initial 1 5 Final

0 H H Measure, 0 or 1

0 H H Measure, 

2

0 or 1

|

3 4

|

|

|

N1 H OT 

    

  



   

   





   

1 1
H 0 0 1        H 1 0 1

2 2
  +    -    
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CnNO
T 

NOT CNO
T 0

1

'

'

1

0









Decimal

0

1

2

3

Binary

00

01

10

11

'

'

'

'

'

Binary

00

01

11

10

Decimal

0

1

3

2

















Decimal

0

1

2

3

4

5

6

7

Binary

000

001

010

011

100

101

110

111

'

'

'

'

'

'

'

'

'

Binary

000

001

010

011

101

100

111

110

Decimal

0

1

2

3

5

4

7

6





























001

1 1 1 1
0 1 0 1 0 1 000 001 010 011 100 101 110 111

2 2 2 2 2

1
000 001 010 011 101 100 11

H H H

CnNOT

I CNOT

I

1 110
2 2

1
000 001 011 010 101 100 110 111

2 2

1 1 1
0 1 0 1 1 0

2 2

I NOT

H H I
2

 +   +   -  =  - + - + - + -        

 - + - + - + -  

 - + - + - + -  

 -   -   -     

 



 



 

( )1 1
1

1 0
2

-

Since the top wires contain  |1 > ,  the function is balanced.  This algorithm illustrates the roles of superposition,
 entanglement and interference in quantum computation. Regarding the latter, it is destructive interference in the last
step that eliminates unwanted outcomes yielding the final result on the last line. 
One pass through the quantum circuit answers the question (is the function balanced or constrant) that would
take 4 calculations on a classical computer.  Thus given  this problem,  a QC is faster than a classical computer.

The interference that occurs in the last step is illustrated by letting |a> = |0> and |b> = |1> and carrying out
Hadamard transforms on the first two qubits.

1

4 2
a1 b1+( ) a2 b2+( ) b3 a1 b1+( ) a2 b2+( ) a3-

a1 b1+( ) a2 b2-( ) b3 a1 b1+( ) a2 b2-( ) a3-+

...

a1 b1-( ) a2 b2+( ) b3 a1 b1-( ) a2 b2+( ) a3-+

...

a1 b1-( ) a2 b2-( ) b3 a1 b1-( ) a2 b2-( ) a3-+

...













 simplify
2 a1 a2 a3 b3-( )

2
-
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 XI. Quantum Mechanical Calculations Illuminated with Dirac Notation
The following example is from "PHYSICAL CHEMISTRY for the Chemical Sciences", Raymond Chang"

 A Particle in a Box in a One Dimensional Box
 At the end of the nineteenth century, there were new experimental results that could not be explained by the
so-called classical theories of physics. In 1900, the German physicist Max Planck proposed the quantum theory
to explain one of these experiments. In this chapter, we take a historical approach and follow the early
development of quantum theory.  
Consider a particle of mass m confined to a one-dimensional box of length L. We again assume that the particle
has zero potential energy inside the box ̂  or on the line segment h ; that is,  V = 0. The particle has only kinetic
energy. At each end of the box is a wall of infinite potential energy, so there is no probability of finding the particle
at the walls or outside the box. For simplicity, we chose the line segment to start at the origin, so x is restricted by
0  x  L, See Figure below. The Schrödinger equation is similar to that for the free particle, with the difference
being that the value of x is constrained by the size of the box.

For the particle-in-a-box Schrödinger equation, let us try a trial wave function,

The particle-in-a-box (PIB) problem is exactly soluble and the solution is calculated below for the first 20 eigenstates.
All calculations will be carried out in atomic units (h = 2p) for a particle of unit mass in a 1 D box.

n 1 20..:= Ψ n x,( ) 2 sin n π x( ):= En
n

2 π2
2

:=

The first five energy eigenvalues are:

E1 4.935= E2 19.739= E3 44.413= E4 78.957= E5 123.37=

The first three eigenfunctions are displayed below.  x 0 .02, 1..:=

0 0.2 0.4 0.6 0.8
2-

1-

0

1

2

Ψ 1 x,( )

Ψ 2 x,( )

Ψ 3 x,( )

x
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The PIB eigenfunctions form a complete basis set, and therefore other functions can be written as linear combinations
in this basis set.  For example, , , and  are three trial functions that satisfy the boundary conditions for the particle
in a 1 bohr box. 

Φ x( ) 30 x x
2-( ):= χ x( ) 105 x

2
x

3-( ):= Γ x( ) 105 x 1 x-( )
2:=

In Dirac bracket notation we can express each of these functions as a linear combination in the basis set. For example,
for  we have,

1 1
*

0 0

( ) ( ) ( ) ( )n n n n n n n n
n n n n

x x x x x dx x x x dx x a = Y Y  = Y Y  = Y Y  = Y    

Here both the finite and continuous completeness relations have been used:

1    and     x 1n n
n

x dxY Y = = 

The various overlap integrals for the three trial function (an, bn, and cn) are evaluated below.

an
0

1

xΨ n x,( ) Φ x( )




d:= bn
0

1

xΨ n x,( ) χ x( )




d:= cn
0

1

xΨ n x,( ) Γ x( )




d:=

As shown above, these overlap integrals are set up as follows:

1 1
*

0 0

( ) ( )n n n na x x dx x x dx= Y  = Y  = Y  

The figures shown below demonstrate that only  is a reasonable representative for the ground state wavefunction. 

x 0 .01, 1..:=

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

Ψ 1 x,( )

Φ x( )

x

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

Ψ 1 x,( )

χ x( )

x
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0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

Ψ 1 x,( )

Γ x( )

x

However, if  is written as a linear combination of the first 5 PIB eigenfunctions, one gets two functions that are
essentially indistinquishable from one another.

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

Φ x( )

1

5

n

an Ψ n x,( )( )
=

x

The same, of course, is true for  and , as is demonstrated in the graphs shown below.

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

χ x( )

1

5

n

bn Ψ n x,( )( )
=

x

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

Γ x( )

1

5

n

cn Ψ n x,( )( )
=

x

Traditionally we use energy as a criterion for the quality of a trial wavefunction by evaluating the variational integral in
the following way. (x) is the best trial function because it gives the lowest energy.
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0

1

xΦ x( )
1

2
-

2
x

Φ x( )
d

d

2







d 5=

0

1

xχ x( )
1

2
-

2
x

χ x( )
d

d

2







d 7=

0

1

xΓ x( )
1

2
-

2
x

Γ x( )
d

d

2







d 7=

With Dirac notation we would write:

2ˆ ˆ
n n n n n n n

n n n

E H H E a E=   =  Y Y  =  Y Y  =  

Thus we easily show the same result.

n

an( )2
En  5=

n

bn( )2
En  6.999=

n

cn( )2
En  6.999=

We now show, belatedly, that the three trial functions are normalized by both methods.

0

1

xΦ x( )
2




d 1=
0

1

xχ x( )
2




d 1=
0

1

xΓ x( )
2




d 1=

2
n n n

n n

a  =  Y Y  = In Dirac bracket notation this is written as:

n

an( )2 1=

n

bn( )2 1=

n

cn( )2 1=

We now calculate some over-lap integrals:

0

1

xΦ x( ) χ x( )




d 0.935=
0

1

xΦ x( ) Γ x( )




d 0.935=
0

1

xχ x( ) Γ x( )




d 0.75=

n n n n
n n

a c  =  Y Y  = In Dirac notation this is formulated as:

n

an bn( ) 0.935=

n

an cn( ) 0.935=

n

bn cn( ) 0.75=

As a final exercise we calculate the expectation value for position using the three trial wave functions. In bracket
notation this calculation is set up most directly as follows.

1 1 1
*

0 0 0

ˆ ˆ ( ) ( )x x x x dx x x x dx x x x dx  =   =   =    

x̂ x x x=where we have employed the eigenvalue equation for the position operator:
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Evaluation of the integral on the right for each trial function is shown below. Naturally the results are consistent with the
shapes of the trial wave functions shown in the first figure.

0

1

xΦ x( ) x Φ x( )




d 0.5=
0

1

xχ x( ) x χ x( )




d 0.625=
0

1

xΓ x( ) x Γ x( )




d 0.375=

Although it is computationally less expedient, it is instructive to expand these calculations in terms of the PIB
eigenfunctions.

( ) ( )
1 1

*

0 0

ˆ 2 sin 2 sinm m n n m n
m n m n

x x x x dx a a m x x n x dxp p  =  Y Y Y Y  =  

Truncating the calculation after five PIB eigenfunctions yields the same results as obtained with the integrals above.

1

5

m 1

5

n

am an
0

1

x2 sin m π x( ) x 2 sin n π x( )




d







=


=

0.5=

1

5

m 1

5

n

bm bn
0

1

x2 sin m π x( ) x 2 sin n π x( )




d







=


=

0.625=

1

5

m 1

5

n

cm cn
0

1

x2 sin m π x( ) x 2 sin n π x( )




d







=


=

0.375=
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 XII. Quantum Restrictions on Cloning

               Reference:  Frank Rioux
Emeritus Professor of Chemistry
                  CSB|SJU

Suppose a quantum copier exists which is able to carry out the following cloning operation.

Clone

0

0 0 0 0

1 1 1 0

1

 
          =            
 
 

Next the cloning operation (using the same copier) is carried out on the general qubit shown below.

2

Clone

2

cos ( )

cos( ) cos( ) cos( ) cos( )sin( )

sin( ) sin( ) sin( ) sin( )cos( )

sin ( )

q
q q q q q
q q q q q

q

 
 

         =              
 

Quantum transformations are unitary, meaning probability is preserved. This requires that the scalar products
of the initial and final states must be the same.

( )
0

cos( ) sin( ) sin( )
1

q q q
 

= 
 

Initial state:

( )2 2 2

0

0
cos ( ) cos( )sin( ) sin( )cos( ) sin ( ) sin ( )

0

1

q q q q q q q

 
 
  =
 
 
 

Final state:

It is clear from this analysis that quantum theory puts a significant restriction on copying. Only states for which
sin(θ) = 0 or 1 (0 and 90 degrees) can be copied by the original cloner. 

In conclusion, two quotes from Wootters and Zurek, Physics Today, February 2009, page 76.

Perfect copying can be achieved only when the two states are orthogonal,
and even then one can copy those two states (...) only with a copier
specifically built for that set of states.

In sum, one cannot make a perfect copy of an unknown quantum state, since,
without prior knowledge, it is impossible to select the right copier for the job.
That formulation is one common way of stating the no-cloning theorem.
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An equivalent way to look at this (see arXiv:1701.00989v1) is to assume that a cloner exists for the V-H
polarization states.

ˆ ˆ         C V X V V C H X H H= =

A diagonally polarized photon is a superposition of the V-H polarization states.

( )1

2
D V H= +

However, due to the linearity of quantum mechanics the V-H cloner cannot clone a diagonally polarized photon.

( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ
2 2 2

C D X C V H X C V X C H X V V H H= + = + = +

( )1ˆ
2

C D X D D V V V H H V H H = + + +
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 XIII. Factoring Using Shor's Quantum Algorithm

Reference: Frank Rioux
  Emeritus Professor of Chemistry
                 CSB|SJU

This tutorial presents a toy calculation dealing with the quantum factorization of 15 using Shor's algorithm. The

first step is to find the period of ax modulo 15, where a is chosen randomly.

a 4:= N 15:= f x( ) mod a
x

N,( ):= Q 4:= x 0 Q 1-..:= x

0

1

2

3















= f x( )

1

4

1

4















=

We proceed by ignoring the fact that we can see by inspection that the period of f(x) is 2 and demonstrate how it
is determined using a quantum (discrete) Fourier transform. After the registers are loaded with x and f(x) using a
quantum computer, they exist in the following superposition.

1

0

0
1 1

( ) 1 41 2 31 4
2

Q

x

f x
Q

x
-

=

 = + + + +  

The next step is to find the period of f(x) by performing a quantum Fourier transform (QFT) on the input register |x>.

Q 4:= mm 0 Q 1-..:= n 0 Q 1-..:= QFTmm n,
1

Q
exp i

2 π mm n
Q







:=
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=

The operation of the QFT on the x-register is expressed algebraically in the middle term below. Quantum
interference in this term yields the result on the right which shows a period of 2 on the x-register.
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( ) ( )

1
0 2 1

4
1 1 1

( ) 1 4 1 4 0
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1
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4
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0 32 4
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3 ii

i
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QFT

 + + + 

    + + + = + + - - = + + -     

 + - + - 

 + - - + 

The next step is to use the Euclidian algorithm by calculating the greatest common divisor of two functions
involving the period and a, and the number to be factored, N. This yields the prime factors of 15.

period 2:= gcd a

period

2
1- N,







 3= gcd a

period

2
1+ N,







 5=

Figure 5 in "Quantum Computation," by David P. DiVincenzo, Science 270, 258 (1995) provides a succinct
graphical illustration of the steps of Shor's factorization algorithm. 

Load the x-register

Calculate f(x)

Find the period of f(x)
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 XIV. An Entanglement Swapping Protocol

Reference: Frank Rioux
Emeritus Professor of Chemistry
                 CSB|SJU

In the field of quantum information interference, superpositions and entangled states are essential resources.
Entanglement, a non-factorable superposition, is routinely achieved when two photons are emitted from the same
source, say a parametric down converter (PDC). Entanglement swapping involves the transfer of entanglement to
two photons that were produced independently and never previously interacted. The Bell states are the four
maximally entangled two-qubit entangled basis for a four-dimensional Hilbert space and play an essential role in
quantum information theory and technology, including teleportation and entanglement swapping. The Bell states are
shown below.
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A four-qubit state is prepared in which photons 1 and 2 are entangled in Bell state p, and photons 3 and 4 are

entangled in Bell state Ym. The state multiplication below is understood to be tensor vector multiplication.

Ψ Φp Ψm=
1

2

1

0

0
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0















= Ψ
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T
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:=

Four Bell state measurements are now made on photons 2 and 3 which entangles photons 1 and 4.

Projection of photons 2 and 3 onto p projects photons 1 and 4 onto Ym.

kronecker I kronecker Φp Φp
T

 I,



,



 Ψ





T
0 0.25 0 0 0 0 0 0.25 0.25- 0 0 0 0 0 0.25- 0( )=
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0 1 0 0 0 0 0 1 1- 0 0 0 0 0 1- 0( )=
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Projection of photons 2 and 3 onto m projects photons 1 and 4 onto Yp.
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Here's a quantum circuit that accomplishes this entanglement swap.

23 14 14
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|
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|
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Projection of photons 2 and 3 onto Yp projects photons 1 and 4 onto -m.
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Finally, projection of photons 2 and 3 onto Ym projects photons 1 and 4 onto p.
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 XV. QM Example: Simulating the Aharonov–Bohm Effect

The Aharonov–Bohm effect is a quantum-mechanical phenomenon in which an electrically charged particle is
influenced by the vector potential A in regions in which the magnetic field B is zero. A beam of monoenergetic
electrons passes through a double slit on opposite sides of a solenoid. In QM, the same particle can travel between
two paths. The expected interference pattern of the waves going through the two slits is shifted by an additional
phase difference ϕ when the solenoid encloses a magnetic field, despite the magnetic field being zero in the regions
through which the electrons pass. This can be observed experimentally by the horizontal displacement of the
interference fringes.

              Aharonov–Bohm Effect Apparatus

Illustration of how double-slit experiment in which Aharonov–Bohm effect can be observed: electrons pass through
two slits, interfering at an observation screen, with the interference pattern shifted when a magnetic field B is turned
on in the cylindrical solenoid.  The effect on the interference fringes is calculated and displayed below. 

 Slit Positions  Slit Width  AB Relative Phase Shift

xL 1:= xR 2:= δ 0.2:= Phase ϕ π:= for exp i ϕ( )
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-
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 XVI. Solution of  Schrödinger  Wave Equation for Propogation of Electron

Given an electron of mass, me, velocity, ve, kinetic energy of 1 eV 

By Quantum Mechanics, it has an associated de Broglie wavelength, λe, and wavenumber k0
Planck's Constant: h 6.626 10

34- J s:=

 Given: me 9.10938 10
31-

kg:=

Ψ x t,( )
Am

1
i hbar t

me a
2

+

exp

x
2

2 i a
2 ke x-

i hbar t

2.me
ke

2 a
2+









-

2 a
2 1

i hbar t

me a
2

+


























:=

T 1eV:= λe
h

2 me T
12.265 A=:=

Consider a monochromatic E Field plane wave associated with an electron which propagates in an
isotropic and homogeneous medium: E r t,( ) E0 e

i k r ω t-( )[ ]=

 Associated with this electron is a wavenumber, k e , amplitude, A

ke 8.637 10
6

1

m
:= A

1

a π
:= hbar

h

2 π
:= Am A m:=

eV 1.602 10
19-

J:=

The electron has Kinetic Energy: E
hbar

2
ke

2

2.me
:= E 4.554 10

25- J=  Electron Frequency: ω 2π f=

Equation of 
Traveling Wave:

To solve the one-dimensional Schrödinger equation for a free particle of mass m moving with velocity v,
 we can proceed a follows:

 Solve Schrödinger's Wave Equation for the Quantum Wavefunction, Ψ(x, t)

Evalute the Wavefunction over the Space and Time Region: a 1 μm:= tx 50ns:=

 Solution for Ψ(x,t):

v 1 10
3

m

s
:=
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 Plot Wavefunction Ψ(x,t) over Distance Range, x
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