

THE 6502 JOURNAL

AlM 65 File Operations

A Better Apple Search/Change

Mountain Computer makes more peripherals for the Apple Computer than Anybody.

 and . . . a place to put themIntelligent Home Controller for lights and appliances. Real-time schedules and energy conservation. Complete application software package Home security with random scheduler. Power usage accounting package

home energy cost control No wiring required

Mi 1*

Real-time and date information interrupt permit Foreground/Background operation two programs simultaneously. Battery back-u ROM for easy access from BASICs Onboard ROM for easy access from BASICS Support
PASCAL. Time from one millisecond to one vear

 Input/Output Speech Digitizer. Permits talking programs $1 / 0$ capability speech directed activities in business systems, announcements in a cont

Program your own EPROMs

 Programs 2K. 2716 SV EPROMS Disk software package provides easy EPROM programming. EPROMs are verified after BURN. RUN your p
: (0) $13^{\circ} 104$

More power for your system through firmware Six sockets

 accept 2716 EPROMs or ROM equivalents Six or any com bination can be used at once Scratch-pad RAM and two TTL connectors Special 2 K ROM available for powerful system
Whatcsyem

Sophistication previously available only on
experimental mini and mainframe computer synthesizers Digital instrumental music synthesizer system, 16 voices in sound of real instruments - and more. Fully programmable waveforms. Envelope Control. Composition system - sheet music input using standard music notation. Chords and multi-part scoring up to 16 vices. A true instrument that anyone with an Apple can play

8.QPINSION CITASSTS

By popular demand Eight more slots for your

 data entry from user-marked cards Implement BASIC programming, examination scoring. inventory maintenance and other applications requiring offline data preparation for batch entry later. Connects to any computer having RS-232 interface. Software and cards are available for jobs in business. science and education.
MOUNTAIN COMPUTER has the most compre
Anywere. From anybody We know the Apple inside and out and are committed to providing the most innovative and unique products to expand and enhance its capabilities and use After all, we were the first company to make Apple peripheral -except Apple Computer

Available at Apple Dealers worldwide

 1ominch com sun

300 Harvey West Blvd., Santa Cruz, CA 95060 (408) 429-8600

16 channels analog to digital input. 16 channels digital to analog output. Eight bit resolution. Super-fast 9μ sec conversion time. Monitor and output to the real world All on one

A JOURNAL FOR OSI USERS!!

ADVENTURES

The Aardvark Journal is a bimonthly tutorial for OSI users. It features programs customized for OSI and has run articles like these:

Adventures are interactive fan tasies where you give the computer plain English commands (i.e. take the sword,
look at the control panel.) as you explore alien cities, space ships, ancient pyramids and sunken subs. Average playing time is 30 to 40 hours in several sessions. There is literally nothing else like them - except

1) Using String Variables.
being there yourself. We have six adventures available.
ESCAPE FROM MARS - Explore an ancient
2) High Speed Basic On An OSI.
3) Hooking a Cheap Printer To An OSI.
4) An OSI Disk Primer.
5) A Word Processor For Disk Or Tape Machines.
6) Moving The Disk Directory Off Track 12.

Four back issues already available! $\$ 9.00$ per year (6 issues) Martian city while you prepare for your escape. NUCLEAR SUBMARINE - Fast moving excitement at the bottom of the sea. PYRAMID - Our most advanced and most challenging adventure. Takes place in our own special ancient pyramid. VAMPIRE CASTLE - A day in old Drac's
castle. But it's getting dark outside. DEATH SHIP - It's a cruise ship - but it ain't the Love Boat and survival is far from certain. TREK ADVENTURE - Takes place on a familiar starship. Almost as good as being there.

$\$ 14.95$ each

MEMORY BOARDSII - for the C1P. - and they contain parallel ports
Aardvarks new memory board supports 8K of 2114's and has provision for a PIA to give a parallel ports! It sells as a bare board for $\$ 29.95$. When assembled, the board plugs into the expansion connector on the 600 board. Available nowl

REAL SOUND FOR THE C:1P - and it's cheap! This bare board uses the TI sound chip to give real arcade type sound. The board goes together in a couple of hours with about $\$ 20.00$ in parts. Bare board, plans, and sample program - \$15.95

ARCADE AND VIDEO GAMES

ALIEN INVADERS with machine code moves for fast action. This is our best invaders yet. The disk version is so fast that we had to add selectable speeds to make it playable.
Tape - \$10.95 - Disk - $\$ 12.95$
TIME TREK (8K) - real time Startrek action. See your torpedoes move across the screen! Real graphics - no more scrolling displays. $\$ 9.95$

STARFIGHTER - a real time space war where you face cruisers, battleships and fighters using a variety of weapons. Your screen contains working instrumentation and a real time display of the alien ships. $\$ 6.95$ in black and white - $\$ 7.95$ in color and sound.

SEAWOLFE - this one looks like it just stepped out of the arcades. It features multiple torpedoes, several target ships, floating mines and real time time-to-go and score displays. - $\$ 6.95$ in black and white $\$ 7.95$ in color ancl sound.

SCREEN EDITORS

These programs all allow the editing of basic lines. All assume that you are using the standard OSI video display and polled key board.
C1P CURSOR CONTROL - A program that uses no RAM normally available to the system. (We hid it in unused space on page 2). It provides real backspace, insert, delete and replace functions and an optional instant screen clear.

$\$ 11.95$

C2/4 CURSOR. This one uses 366 BYTES of RAM to provide a full screen editor. Edit and change lines on any part of the screen. (Basic in ROM systems only.)
FOR DISK SYSTEMS - (65D, polled keyboard and standard video only.)
SUPERDISK. Contains a basic text editor with functions similar to the above programs and also contains a renumberer, variable table maker, search and new BEXEC" programs. The BEXEC" provides a directory, create, delete, and change utilities on one track and is worth having by itself. - \$24.95 on 5' disk - $\$ 26.95$ on $\mathbf{8 " \prime}^{\prime \prime}$.

DISK UTILITIES

SUPER COPY - Single Disk Copier
This copy program makes multiple copies, copies track zero, and copies all the tracks that your memory can hold at one time up to 12 tracks at a pass. It's almost as fast as dual disk copying. - $\$ 15.95$ DISK CATALOGER
This utility reads the directory of your disks and makes up an alphabetic list off all your programs and what disks they are on. \$14.95 MACHINE CODE RENUMBERER (C2/4-MF only)
Renumbers all or part of a program at machine code speeds. - $\$ 15.95$

OS65D LISTING
Commented with source code, 83 pages. $\$ 24.95$
THE (REAL) FIRST BOOK OF OSI
65 packed pages on how OSI basic works. Our best selling data sheet. $\$ 15.95$
OSI BASIC IN ROM
Ed Carlson's book of how to program in basic. Now available from Aardvark. $\$ 8.95$

This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards for OSI systems. Our $\$ 1.00$ catalog lists it all and contains free program listings and programming hints to boot.

Aardvark Technical Services • 1690 Bolton • Walled Lake, MI 48088 (313) 669-3110 or (313) 624-6316

The most advanced and easiest to use telecommunications program for use with the MICROMODEM II® or the Apple COMMUNICATIONS CARD ©
Q. Will DATA CAPTURE 4.0 work with my Communications Cardia and a modem?
A. It makes using the Comm. Card almost as easy as using the Micromodem II.
Q. Do I need an extra editor to prepare text for transmission to another computer?
A. No. DATA CAPTURE 4.0 gives you control of the text buffer. You can use DATA CAPTURE 4.0 to create text.
Q. Can I edit the text I have prepared?
A. Yes. You can insert lines or delete any lines from the text.
Q. How about text I have captured. Can I edit that?
A. As easily as the text you have prepared yourself. You can delete any lines you don't want to print or save to a disk file. You can also insert lines into the text.
Q. Just how much text can 1 capture with DATA CAPTURE 4.0?
A. If the system with which you are communicating accepts a stop character, most use a Control \mathbf{S}, you can capture an unlimited amount of text.
Q. How does that work? And do I have to keep an eye on how much I have already captured?
A. When the text buffer is full the stop character is output to the other system. Then DATA CAPTURE 4.0 writes what has been captured up to that point to a disk file. This is done automatically.
Q. Then what happens?
A. Control is returned to you and you can send the start character to the other system. This generally requires pressing any key, the RETURN key or a Control Q.
Q. Are upper and lower case supported if I have a Lower Case Adapter?
A. Yes. If you don't have the adapter an upper case only version is also provided on the diskette.
Q. Do I need to have my printer card or Micromodem INe or Communications Cardse in any special slot?
A. No. All this is taken care of when you first run a short program to configure DATA CAPTURE 4.0 to your system. Then you don't have to be concerned with it again. 1 y you move your cards around later you can reconligure DATA CAPTURE 4.0.
Q. Do I have to build a file on the other system to get it sent to my Apple?
A. No. If the other system can list it you can capture it.
Q. How easy is it to transmit text or data to enother system?
A. You can load the text or data into DATA CAPTURE 4.0 from the disk and transmit it. Or you can transmit what you have typed into DATA CAPTURE 4.0.
Q. How can I be sure the other system recolves what I send it?
A. If the other system works in Full Duplex, it 'echoes' what you send it, then DATA CAPTURE 4.0 adjusts its sending speed to the other system and won't send the next character until it is sure the present one has been received. We call that 'Dynamic Sending Speed Acfustment'.
a. What if the other aystem works only in Half Duplex.
A. A different sending routine is provided for use with Half Duplex systems.
Q. What If I want to transmit a program to the other system?
A. No probtem. You make the program into a text the with a program that is provided with DATA CAPTURE 4.0, load it into DATA CAPTURE 4.0 and transmit it.
Q. What type files can I read and save with DATA CAPTURE 4.0 ?
A. Any Apple DOS sequential text file. You can create and edit EXEC files, send or receive VISCIALC(C) data files. send or receive text files created with any editor that uses text files.
Q. Can I leave DATA CAPTURE 4.0 running on my Apple at home and use it from another system?
A. Yes. If you are using the Micromodem lou you call DATA CAPTURE 4.0 from another system. This is handy if you are at work and want to transmit something to your unattended Apple at home.
Q. Where can I buy DATA CAPTURE 4.0 ?
A. Your local Apple dealer. If he doesn't have it ask him to order it. Orit you can't wait order it directly from Southeastern Software. The price is $\$ 65.00$. To order the Dan Paymar Lower Case Adapter add $\$ 64.95$ and include the serial number of your Apple.
a. H1 order it directly how can I pay for It?
A. We accept Master Charge, Visa or your personal check. You will get your order shipped within 3 working days of when we receive it no matter how you pay for it. Send your order to us at the address shown or call either of the numbers in this advertisement. You can call anytime of day, evening or Saturdays.
Q. Ibought DATA CAPTURE 3.0 and DATA CAPTURE 4.0 sounds so good I want this version. What do I do to upgrade?
A. Send us your original DATA CAPTURE 3.0 diskette and documentation, the $\$ 35.00$ price difference and $\$ 2.50$ for postage and handling. We will send you DATA CAPTURE 4.0 within 3 working days of recelving your order.
a. What kind of support can l expect atter I buy it?
A. If you have bought from Southeastern Software in the past you know we are always ready to answer any questions about our products or how to use them.

Requires DISKIIe, Applesoft Ite and 48K of Memory

DATACAPTURE 4.0 ©

Copyright(C) 1980-Southeastern Software

- Applom, Apple II Puxb Diskuee and APPL ESOFT 14 ane fradernarks of Appto Computar Company
- Micromodem tre is a tradenark of D C. Heyes Asecciates. Inc.
- Visicatco-Copyright by Solfware Ats. the.

Southeastern Software
Dept. MK
6414 Derbyshire Drive - New Orieans, LA 70126
504/246-8438 504/246-7937

STAFF

Editor/Publisher ZOBERT M. TRIPP

Associate Publisher
ZICHARD RETTIG
Associate Editor UARY ANN CURTIS

Art Director
GARY W. FISH
Typesetting
EMMALYNH. BENTLEY
Director Marketing
.JAMES ANDERSON
Advertising Manager
l. CATHERINE BLAND

Circulation Manager
CAROL A. STAFK
IIICRO Specialists
APPLE: FORD CAVALLARI
PET: LOREN WRIGHT
OSI: PAUL GEFFEN
Comptroller
DONNA M. TRIPP
Bookkeeper
KAY COLLINS is published monthly by
MICRO INK, Inc., Chelmsford, MA 01824 econd Class postage paid at
Chemsford, MA 01824
Fublication Number: COTR 395770 ISSN: 0271-9002

Subscription rates: U.S. Foreign surface mail Central America air So. Amer/Europe air Cither air mail

For back issues, subscriptions, change of address or othe information, write to MIICRO
F.O. Box 6502

Chelmsford, MA 01824

CONTENTS

7 KEYBOARD ENCODING
How to connect a keyboard to your computer By George Young
17 A BETTER APPLE SEARCH/CHANGE
17 Remove the length restriction of the CHANGE function By J.D. Childress
21 VECTORS AND THE CHALLENGER 1P
21 Find out exactly what a vector is By Mike Bassrnan

PET SYMBOLIC DISASSEMBLER
23 Disassembled programs become more understandable By Werner Kolbe
AIM 65 FILE OPERATIONS
29 The third part of this series, using BASIC By Christopher J. Flynn

ATARI REAL TIME

35 Drawing with graphics and several colors
By Charley and Mary Kozarski By Charley and Mary Kozarski
37 FULL DISASSEMBLY LISTING ON SMALL SYSTEMS
37 Produce "camera-ready" listings without large memory By Ralph Tenny
41 SYM BRIDGE TRAINER
41 Simple program, easily adapted for any 6502 By Len Green
53 MAKE A CLEAR PLASTIC COVER FOR YOUR APPLE Protect your Apple, and watch while you compute By E.J. Neiburger, D.D.S.

SEARCHING STRING ARRAYS
57 Searching a large string array becomes easier By Gary B. Little

INTERFACING THE 6522 VERSATILE INTERFACE ADAPTER This chip will allow you to add more capabilities to your system By Marvin L. DeJong
FUN WITH OS
75 Checker game using the polled keyboard technique By Les Cain

DEPARTMENTS

5 Editorial - MICRO Goes to School - Robert M. Tripp
6 Letterbox
36 New Publications
51 PET Vet - Loren Wright
61 MICRO Club Circuit
79 Semi-Annual Index
87 The MICRO Software Catalog: XXVIII
906502 Bibliography: Part XXVIII - William R. Dial
95 Advertisers' Index

Apple PIE

Apple PIE (Programma International Editor) and FORMAT (text formatter) offer full strength solutions to today's word processing problems. These versatile, powerful programs provide document preparation and word processing capabilities previously found only on much larger computer systems.

PIE is a general purpose, full screen editor that uses control keys and function buttons to provide a full range of editing capabilities such as search and replace, delete, copy, insert, move. Changes may be made directly anywhere on the screen and are shown as they are performed.

FORMAT uses simple instructions embedded in the input text to describe the desired appearance of the final document. It handles centering, underlining, indenting, page numbering,

$+$
 Formatter

margins, headers, footers, even form letters, and includes a proofing capability.

These high-quality, cost-effective programs come with comprehensive documentation and run on a 32 K Apple II. They are available through your local computer store or direct from Programma International, Inc. at the introductory price of $\$ 79.95^{*}$.

VIDEX VERSION T.M.
DOUBLE VISION T.M.
SUPR TERM VERSION T.M.
STANDARD VERSION
*December 1, $\$ 129.95$.

PROGRAMMA

3400 Wilshire Boulevard Los Angeles, California 90010 (213) 384-0579

Simple enough for the beginner. Versatile enough for the professional.

IICRO Editorial

MICRO Goes To School

Almost every progressive school now uses computers to teach about computers, to teach other subjects, and for administrative and other non-teaching tasks. Since a school may already own a mini- or maxi-computer, or have access to one within the town or school district, the assumption is often made that it will be cheaper to buy additional devices to tie into an existing system than to purchase new systems. This assumption may be erroneous since many of the operations can be more effectively performed by a dedicated microcomputer than by a large timeshared central computer.

A local high school rents 10 teletype terminals at over $\$ 500$ each, per year, to access a medium-sized system at the regional vocational high school. One or two of the terminals are used for administrative tasks, which may require a large disk storage and/or voluminous print-outs that could be best handled by the central system. The remaining terminals are for students learning computer programming, especially programming in BASIC. Under this remote terminal approach, students can only use the teletype with its obvious limitations of speed and minimal characters, can only access the central computer at certain times, do not get the "hands-on" experience of actually operating a microcomputer, do not get the graphics
and instant video response of the micro, and probably do not have the range of programs available-games and others-that they would get on a micro. Meanwhile, the school system is paying as much to rent one terminal for two years as it would cost to buy a complete 6502 -based video system. This does not even include the hidden expenses of the telephone, support for the central system, special main-frame programming, and so forth.

This is absurd, but understandable. The large computer manufacturers have spent time, money and effort to convince the educational community of the value of a central time-sharing system. No microcomputer company has had the resources or time to tackle this monumental task alone. Advances to date have been mostly due to individual computer stores, "enlightend" teachers, and the occasional outside individual, getting the school systems to think along micro lines.

What better way to learn about a computer than to have the entire system at your disposal-no mysterious big black boxes in special air conditioned rooms located offlimits in another part of the building, or even across town. Probably more programs have been created for learning about computers using popular 6502 -based microcornputers than were ever devised for any mainframe.

Beyond the teaching aspect of the micro in the school, there are numerous possibilities in school administration. Students could even write some of the programs. (Note: teachers had better carefully check the programs for accuracy. Some of the computer students are pretty sharp and might just "adjust" their grades!|

MICRO would like to try, with the aid of its readers, to help expand microcomputer usage in schools. There are several simple steps which you can take to help. First, become aware of what your local school system is doing in the computer field. Is it keeping up with the microcomputer revolution? If so, please let us know-in detail-how your school system is doing it. Perhaps the people responsible for the computers would be willing to write up some of their experiences, decisions, and so forth, providing assistance to other schools which are out-of-date.

If your school system is not keeping up, then offer to help. Find out who in your school system has the responsibility for the computer field and invite him or her over to see your equipment in operation. Show off some of your system's features and emphasize its low cost, its capabilities in the teaching area, and the fact that there is a lot of support through books and magazines such as MICRO. Explain that there are lots of programs available, which are generally inexpensive, covering many areas (show them the MICRO Software Catalog). Offer to help the school system evaluate its needs and requirements. You would be surprised at how small a push it may take to get things going. If there is enough reader interest, we would like to actively pursue this topic. This could include columns on educational applications of the 6502-based systems, special software listings of educationally related programs, discussions of school system needs, and so forth.

Editor/Publisher

About the Cover

MICRO Goes To Town

Our cover photograph, by Loren Wright, is of Littleton, New Hampshire. As we look at towns like this, the question arises, "How can a town or city effectively utilize microcomputers?" While some data collection and processing requirements of a government probably require the use of medium to large computer systems, other functions could be more efficiently and economically handled by a dedicated microcomputer.

Our cover shows a micro being used as a processor for voter registration. This simple application could include printing labels for the mailing of voter information, updating lists as voters are added, dropped, or change
their addresses, recording changes in party affiliation, and so forth. Confidential material would not have to go outside the office; updating could be kept more current, and specialized lists easily prepared as required for a special election or other need; since this task would take only a small portion of the normal business week, the micro would be available to other departments and for other uses.

Other small data bases typically kept by local governments covering property assessments, zoning regulations, building permits, dog registrations, licenses, etc. could often be done on a microcomputer. Is your town or city keeping pace with the growing microcomputer capabilities?

Dear Editor:
Ohio Scientific ClP has a fine BASIC, but I envy the TRS-80 crowd and their PRINT USING. Since some programs must calculate and print dollar amounts, this simple routine puts the result of the calculation off to the right side of the screen, adds any required zeros and lines up the decimal points.

The only thing it does not do is round off amounts, and that would require only adding a line, $\mathrm{DO}=\mathrm{DO}+.005$ before transferring control to the subroutine.

Note that line 100 should be early in the program so the computer does not run across it each time the subroutine is called.

Zero amounts are printed correctly, but any dollar amount with more than six significant figures will cause the in-
terpreter to go to scientific notation, which may give gross errors. Since I never have to worry about large amounts of money, that problem does not bother me.

```
    100 Z$="00'
    200 REM FROGRAM
        CALCULATES DOLLAR
        VALUE:-DO
    210 REM SUBROUTINE
        PRINTS
        220 GOSUB10000
230 REM REST OF
        PROGRAM
10000 DO$ = STR$(DO):IFDO
        = NT(DO)THEN DO$
        = DO$ +"."
10010 FORP = ITOLEN(DO $):
        IFMID$(DO$,P,1)
        = ".''THEN10030
10020 NEXTP
10030 O $ = DO$ + Z$:O$
        =''$''+LEFT$(O$,
    P+2)
10040 PRINTTAB(20 - LEN
    (O$))O$;
10050 RETURN
```

Dear Editor:
The following program will disable the "LIST" command on Ohio Scientific ROM BASIC computers. Programs can be loaded and run, but not listed. Normally, I do not like non-listable programs and accept the challenge to try to list them. Thus, I offer your readers the challenge of listing this program after it has been run. If you need a hint, read MICRO 25:15.

```
```

 10 FORX=546TO586
    ```
```

 10 FORX=546TO586
 20 READQ:POKEX,Q
 20 READQ:POKEX,Q
 3 0 ~ N E X T X ~
 3 0 ~ N E X T X ~
 40 POKE11,62:POKE12,2
 40 POKE11,62:POKE12,2
 50 X=USR(1)
 50 X=USR(1)
 80 DATA230,195,208,2,230,
 80 DATA230,195,208,2,230,
 196,165,195,141
 196,165,195,141
 81 DATA51,2,165,196,141,52,
 81 DATA51,2,165,196,141,52,
 2,173,20,0,201
 2,173,20,0,201
 82 DATA153,208,2,169,128.
 82 DATA153,208,2,169,128.
 76,197,0,169,76
 76,197,0,169,76
 83 DATA133,188,169,34,133,
 83 DATA133,188,169,34,133,
 DATA133,188
 DATA133,188
 84 DATA190,96
 84 DATA190,96
 OK

```
```

OK

```
```

Tim Finkbeiner Earl Morris Midland, Michigan
(continued on page 76 ,

Robert V. Davis 1857 South Fourth Salina, Kansas 67401

DID YOU KNOW THAT PEELINGS II...

- is devoted exclusively to reviewing software for the APPLE II ?
- contains reviews of all types of software offerings?
- contains about 20 valuable reviews per issue?

A mere $\$ 15$ for six issues / year*
dealers inquiries invited

* Foreign orders add \$15 for Air Mail

PEELINGS II
$\begin{array}{lll} \\ \text { Las Cruces, } & \text { NM } & \text { Nrook Circle Dept.M } \\ 88001\end{array}$
Tel. 505/523-5088 - Evenings

Keyboard Encoding

It may occur sooner, or it may occur later, but you will want to connect a keyboard to your computer.

George Young
Sierra High School
Tollhouse, CA 93667

I will begin with a fairly simple encoder for 16 separate switches. Figure 1 gives the circuit. The 16 switches may be discrete switches or they may be 16 switches in a surplus or recycled calculator keypad.

The 16 switches are connected to the inputs of a 74150 1:16 multiplexer (MUX). Two 74161's or 74163's are used. One 74161 is used as a counter and the second is used as a register. A clock formed from $1 / 2$ of a 7404 hex
inverter is used to drive the 74161 clock inputs.

The outputs of the 74161 counter drive the MUX and the inputs to the 74161 register. The binary code presented to the MUX address inputs causes the MUX to scan each one of its inputs looking for a low. Closing one of the 16 switches connected to the input of the 74150 will cause this input to go low. The output of the 74150 will go high when a low is detected on one of its inputs. This high is time coincident, or time dependent, on the counter binary code at the instant of switch closure. This is the basic property of multiplexing.

The high out of the MUX is inverted with a 7404 hex inverter stage to produce a low on a key closure. This low is fed to the PE (preset enable) of the two 74161's. This low will cause the register 74161 to place the counter code that corresponds to the switch closed
on its four output lines. This code will remain unchanged at the register outputs until another key is depressed. Thus, the code, or data out of the encoder is latched by the 74161 register stage.

The output code of the encoder can be seen by connecting 4 LEDs to the 4 register output lines. Figure 2 shows one way to connect the LEDs for this purpose. A logic probe may also be used to probe each output line to verify the code generated by the encoder.

When keyboards are encoded, a strobe pulse is also usually needed for the computer. Keyswitches bounce when connected to TTL chips, so a key debounce circuit is also usually required. Figure 3 shows a NAND gate section gating the clock and driving a 74122 retriggerable one-shot. This combination will debounce the key contacts and generate an active high and an active low strobe pulse.

Figure 2. LED monitor for checking output of encoder.

To encode more than 16 keys, another 74150 would be needed with another 16 lines to the switch assembly. Additional 74161's used as counters and registers would be required to encode the added keyswitches. The major drawback to using this approach would be the size of the cable (minimum number of wires to the keyboard is 33 ; 32 for the keyswitches and one ground.) To circumvent this wire bundle, a different type of encoding is required.

Matrix Encoding

Only 8 wires need run from the switch assembly to the encoder circuitry to encode 16 switches, if the switches are arranged in a 4×4 matrix. The code is generated by a keyswitch matrix by using a $1: 4$ decoder to drive one set of 4 lines, which we will call the column lines, and feeding the other 4 lines to the inputs of a MUX. We will call these 4 lines the row lines.

The 74161 counter and register stages are again used in this circuit and they are again driven by the 7404 clock. Two of the counter outputs drive the two address lines of the decoder while the remaining two outputs drive the address inputs of the MUX. A 1:4 decoder (74.139) or a $1: 10$ decoder can be used, and if the unused address lines are grounded, the decoder will function as a 1:4 decoder. A 1:8 MUX is used, operating as a 1:4 MUX again by grounding the unused address lines.

The counter code driving the address lines causes the decoder to put out sequential and mutually exclusive lows on its output pins. These lows feed the column lines of the switch matrix. The row lines feed the input pins of the MUX, and the remaining two 74161 counter outputs drive the address inputs of the MUX. Again, the MUX will look at each of its inputs to see if one of them is low. Closing a switch in the matrix causes the active low output of the MUX to go low, and the active high output to go high. This active high or low out of the MUX is again time coincident with the binary code, operating both decoder and MUX so the 74161 register outputs will again latch this code and you can examine it with LEDs on the 74161 register output lines, or with a logic probe.

Debouncing of the keyswitches and generation of strobes is again done with a NAND gate section and a 74122 retriggerable one-shot. All of this circuitry is shown in figure 4.

Figure 3. Key contact debounce/strobe generator.

Figure 5. 32 key matrix encoder.

Figure 6. Encoding up to $\mathbf{6 4}$ keys on an $\mathbf{8} \times 8$ matrix.

Figure 7. 128 key matrix encoder.

Expansion

To encode 32 keys in a matrix requires only 4 additional lines from the keyswitches to the encoder circuitry. An additional 74161 counter stage, and an additional 74161 register stage must be added to the basic circuit of figure 4. I will first place the matrix in a 4×8 configuration. This circuit is shown in figure 5. The top keyswitch matrix will generate the hexadecimal code from 00 to $O F$. The lower keyswitch matrix will generate hex codes from 10 to 1 F . The keyswitches can also be arranged in an 8×4 matrix to encode the keyswitches. This circuit is shown in figure 6. Figure 6 also reveals that the encoding capability of the 4-74161's and $1: 8$ decoder and $1: 8$ MUX is only partially used. Sixty-four switches in an 8×8 matrix requiring 16 wires from switches to encoder circuitry can be encoded by the circuitry of figure 6.

The basic circuit is very flexible. Let us next encode a keyboard that has over 100 keys. We must change the decoder to a 74154 1:16 decoder, and place the keyswitches in a 16×8 matrix. In the configuration of figure 7 , 128 switches can be encoded with the basic circuitry used earlier. The ASCII character set has been placed in position in the matrix to illustrate how the circuitry can be used to encode an ASCII keyboard. The builder will find, however, that he must make special provisions for the ASCII keyboard Shift and Control keys.

The circuit of figure 7 will encode up to 128 keys placed in a $16 \times 4,5,6,7$ or 8 matrix and therefore can be used to encode almost any surplus keyboard. If the key in the matrix generates a different code than desired, it is a fairly simple matter to use the power of the computer itself to convert the code to ASCII, EBCDIC, Baudot (Murray), or whatever other code the builder may desire

Thirty-three lines were used earlier to encode 32 discrete keyswitches. If the decoder is a 75154 and the MUX is a 74150, the 32 lines from the keyswitch matrix to the encoder will encode 256 switches (if you can find that many to encode!). The matrix is a 16×16, and the encoder capability is twice as much as the full ASCII character set. Extra keypads, cursor. controls, computer controls, and so on, can be encoded and the hexadecimal codes generated run from 00 to FF . figure 8 shows this circuit.

Computer Encoding

Keyboards may be encoded with a computer as well as with a hardware encoder. In this case we usually find ourselves restricted to 64 keys of encoding. This is caused by the 8 -bit operation of our machines. We can use a PIA (Peripheral Interface Adapter) chip and tell 8 of the port lines they are outputs, and 8 more that they are inputs. With software, we then essentially duplicate the decoder function and drive each of the output lines low one-at-a-time. These correspond to the column lines of the hardware encoder. The keyswitches are placed in an 8×8 matrix so that the input lines frow lines! feed the input port. The keyswitch code generated in this fashion does not resemble hexadecimal in any sequence that you can dream up, but each key in the matrix will generate a discrete code. These discrete codes are then converted by software to the desired code. Figure 9 gives the basic circuit.

A full ASCII keyboard does not have 128 keys. The keys are made to do "double duty" with the Shift key. The Shift key on an 8×8 computer encoded matrix can be used to set one bit high and essentially double the number of codes generated. Special circuitry and software must be employed to handle the ASCII keyboard Control key. Thus, although the basic software encoder seems only capable of encoding either upper or lower case characters, it can, with some special circuitry encode almost all of the full 128 characters of the ASCII character set. We will have to give up a few of the ASCII codes, since two of the keys (Shift and Control) will need to perform special functions.

The basic problem of the computer encoded keyboard is that keyboards do not easily fit into a square matrix. Keyboards are rectangular and are usually 16 keys (or less) wide by 5 or 6 rows high. Consequently, if the foil traces must be cut to get the key-

Figure 9. Basic circuit for matrix encoding using PIA chip.
switches into a matrix, the hardware 16×5 or 6 encoder will usually prove simpler to rewire than figuring out how to square things up and get the keys into an 8×8 matrix.

The Input Port

Once the keyboard has been encoded in hardware the builder must find a way to get its codes into the machine. One very definite advantage of the software encoded keyboard using a PIA chip is that this detail need not concern the builder.

To get into the machine, additional hardware is required. If a serial port is desired, this is usually handled with a UART. A parallel port is very easy to construct, and usually much less expensive to get into operation than the UART. (Figure 10 gives the circuitry.) The port is placed wherever the builder desires, with a decoder. The circuit of figure 10 will place the port at 7FF7, or about half-way through the address range. The keyboard code, which must be latched, is transferred to the accumulator with a LDA, Absolute Mode at address 7FF7. If the software is interrupt-driven, the IRQ latch may also be reset with this commandi. If the software is NMI-driven, then resetting of the IRQ latch is unnecessary. A STA, page zero or STA, Absolute will then place the keyboard code in memory and a Return From Interrupt can follow. The code can then be processed with a subroutine to convert it to whatever code you desire.

A bonus of the circuit of figure 10 is that not only one port is provided for, but 8 active lows are available from 7FF0-7FF7. J.his means that you can have 8 input or output ports at these locations. Or the signals generated by either reading or writing these memory locations can be used for handshakes or software generated turn-on or turn-off signals to the outside world. By placing a $1: 16$ decoder (74154) here instead of a 1:8 or $1: 10$ decoder, 16 ports, handshakes, etc. can be obtained.

Summary

The one basic circuit is quite flexible. It can be used to hardware encode almost any keyboard. Placing the keyboard in a matrix reduces the number or interconnecting wires needed between keyswitches and encoder circuitry. Since only one fundamental circuit was given here, and there are many, many ways to do
the job, this article has, in reality, barely "scratched the surface" of encoding keyswitches.

George Young has been into computer electronics and programming for only three years. He has designed and built his own 6502 -based homebrew computer in nine Phases, and this HB includes everything but floppies. Articles for publication are prepared on the text editing portion of this 6502 homebrew, and printing is via an interfaced Selectric 1/O Writer.

The author's main interest is education He will teach anything to anybody who will take the time to listen to him or ask the questions and listen to the answers. He enjoys writing since it is an extension of his teaching (and enables him to have a larger number of students in his 'classroom'|.

Computer Camp

This summer, youngsters can again sign up for an overnight camp in Moodus, Connecticut, where the main activity will be COMPUTERS. This unique recreational and educational experience is directed by Dr. Michael Zabinski, Professor at Fairfield University. It is the original summer, overnight, computer camp currently offered in the USA.

The 1981 National Computer Camp will feature two action-packed one-week sessions: first session July 19-24; 2nd session July 26-31. The campers, ages 10-17, will enjoy small group instruction and mini and microcomputers for ample "hands-on" experience. Dr. Zabinski will be assisted by elementary and secondary school teachers.

The camp is for kids of all levels of experience, including no experience whatsoever. In addition to computers, the campers will enjoy the recreational facilities of the Grand View Lodge, which include swimming and volley ball.

For further information, contact Micahel Zabinski, Ph.D., at (203) 795-9069, or write to:

Computer Camp
Grand View Lodge, Box 22
Moodus, Connecticut 06469

Apple Disk Fixer

If you care enough to back up critical programs and files, Disk Fixer ${ }^{T M}$ will give additional peace of mind. This powerful utility for experienced Apple users is a tool kit for manipulating, repairing, and protecting all data on disk.
Use the high-speed full screen editor to examine and easily change any portion of a disk, correct space usage within tiles, and save money by locking out bad tracks on disks. Directories are alphabetized, il you choose.

The display and search capabilities show where specific HEX or ASCII data is located and you can modify any data including binary files.

DOS 3.2, DOS 3.3 \& LANGUAGE SYSTEM DISK Written by Jeffrey P. Garbers
1980 The Image Producers, inc., All Rights Resarved

Apple Monitor Extender

This utility program works in complete harmony with the Apple monitor to extend your computer's capability and help you use the full power of machine language programming.
Screen display shows memory in HEX, ASCII or BINARY. Move data anywhere in memory without regard to direction or overlapping and read or write any sector on disk. Insertions may be in HEX or ASCII so you can easily format high speed text displays without conversions.
Study, modily or disassemble any program, complete with labels. Several programs may be combined, and the entire disassembled text file stored on disk/tape for later assembly.

The slow listing feature steps through listings with ease. Copyright 1580 Glenn R. Sogge, All Rights Reserved.

MUSICAL COMPUTER I AND II

Learn How to Read Music!

Written by an M.A. educator with over 20 years of music experience. This two program cassette provides an alternative to music education.

```
- Treble \& Bass Note Reading Telling Time Notes and Rests Sharps and Flats Signs and Symbols Tempo Definitions
```


$\$ 34.95$ plus $\$ 1.00$ for postage and handling

 Check or Money Order Please (Mi. residents add 4% sales tax)Check: \square Apple II 32K
TRS-80 Level II 16 K
Name:
Address:

COMPUTER
APPLICATIONS
TOMORROW

A Better Apple Search/Change

This improved version of the SEARCH/CHANGE program removes the length restriction on the CHANGE function.

J.D. Childress

5108 Springlake Way
Baltimore, Maryland 21212

Lately I've made much use of the SEARCH/CHANGE program published last January in MICRO (20:55) and have become quite impatient with its shortcomings. I first made some minor modifications but then decided the real need was to remove the length restriction on the CHANGE function. The complete program, with this modification, is given in the program listing. The discussion following assumes familiarity with the earlier paper.

An urgent warning is issued here. This program is like the girl with the curl: When it's good, it^{\prime} s very, very good but when it's bad, it's horrid. If it misfires, your program likely will be lost. The wise will always keep a current backup copy.

Minor Modifications

For those not wanting to do much retyping or needing only the range control feature (references here are to the line numbers in the SEARCH/CHANGE listing of the January paper': delete lines 63100, 63280,63300 , and 63310 . These were written and kept in an abundance of caution. Change 63300 to 63320 after the GOSUB in line 63150. Add a line, say 63035, for input of BL, the beginning line for the change, and EL, the ending line; then insert $\mathrm{OR} \mathrm{LM}\langle\mathrm{BL}$ OR LM $>E L$ in line 63350. The foregoing produces a shortening of the program, along with a capability for changing only a specified part of the program.

Another warning is in order here. The feature of listing the found lines works with a search for the LIST in line 63270 backwards from the end of program memory. If anything with a LIST in it is placed in higher line numbers, this search will be fouled up. And again note: somehow leading zeros in line 63270 can get removed; I suggest that a few, say 5 , colons be inserted before INPUT.

Overview of Major Modification

Insertion of a CHANGE item longer or shorter than the SEARCH item requires that spaces either be added or deleted. This is accomplished by a shift of the program in memory and corresponding changes of all the nextaddress pointers. Needless to say, the part of memory space being used by SEARCH/CHANGE must not be jiggled, else its operation will be clobbered. So that the SEARCH/CHANGE program can remain fixed in memory and all the Applesoft operational pointers functional, spacers-colonsare added in line 62999.

Memory Move

The heart of this modification is the memory move call from Applesoft. |See lines 63360 and 63370 in the listing of this paper.) The memory move call given in CONTACT 5, 5 (June 79] works only for integer BASIC; a call to the Apple HOTLINE produced the information that the move call had to be routed through a short machine language routine. The routine supplied by Apple is the following: POKE 768,160: POKE 769,0: POKE 770,76: POKE 771,44: POKE 772,254. The corresponding call is then CALL 768. This location is $\$ 300-\$ 304$. It use that space for my SLOW LIST utility, so - changed to location $\$ 342-\$ 346$ with no ill effects. (See line 63010.)

One block of memory cannot be moved into a second block overlapped
by the first. This is because one byte would be moved into another before that byte's content had been read. Thus a two-step procedure is required. Line 63360 moves the memory block to the top of memory just below HIMEM and line 63370 moves it back to the desired end location.

Next-Address Pointers

Recall how Applesoft stores BASIC in memory. The end of each line is indicated by a zero byte. The next two bytes contains a pointer, low byte first, to the next line's first byte, the low byte of its next-address pointer. When a branch is executed, the program skips along these pointers from the first until the indicated address is found. If any next-address pointer points to a wrong address, all gang a-gley. So until all these pointers are put aright, the program being searched and changed is simply hidden from the operating program. Line 63160 POKEs the nextaddress pointer for line 63000 into the pointer location of line 1 ; after the dust settles, line 63230 restores the original pointer.

Other Matters

A search is made from the end of program memory to find two things: the location of the LIST in line 63310, and the location of the beginning of line 62999. This search is done by line 63020. Two numbers, 540 and 1730 , are set for SEARCH/CHANGE exactly as written (lines 63000 and following) in the listing. The first number causes a skip from the end of the program to the immediate neighborhood of LIST, the second, a skip from LIST to near the end of line 62999. One effect of this search is a delay after the return following RUN 63000 . A too-short delay should alert the user that line 62999 might not have enough colons for substantial changes. If the colons are depleted, line 63350 halts the change operation and prints a message to that effect.

```
62999 END ::::::::::::::::::::::
63000 DIM SK(100),NT(100),L(100)
    :START = 256 * PEEK (104) +
        PEEK (103):FINI = 256 * PEEK
        (106) + PEEK (105)
63010 HM = 256 * PEEK (116) + PEEK
    (115): POKE 834,160: POKE 83
    5,0: POKE 836,76: POKE 837,4
    4: POKE 838,254
63020 FOR WW = FINI - 540 TO STA
    RT STEP - 1: IF X = O AND PEEK
    (WW) = 188 THEN W = WW:X = 1
    :WW = WW - 1730
6 3 0 3 0 ~ I F ~ 2 5 6 ~ * ~ P E E K ~ ( W W ~ + ~ 1 ) ~ + ~
    PEEK (WW) < > 62999 THEN NEXT
63040 NL = 256 * PEEK (WW - 1) +
        PEEK (WW - 2):CO = NL - WW -
    10: HIMEM: HM - WW - 100
63050 IF 256 * PEEK (START + 3)
        + PEEK (START + 2) < > 1 THEN
        PRINT "YOU MUST ENTER YOUR
    SEARCH ITEM AS LINE": PRINT
    "I BEFORE YOU RUN 63000.": HIMEM:
    HM: END
63060 LIST 1,2: PRINT : PRINT "P
    LEASE VERIFY IF THE COMPUTER
        TAKES": PRINT "THIS AS YOU
    INTENDED. DO YOU WANT': INPUT
    "TO CONTINUE (YES OR NO)? ";
    Y$: PRINT : IF Y$ < > "YES"
        THEN HIMEM: HM: END
63070 PRINT "THE CHANGE ENTERED
    WILL BE MADE IN THE': PRINT
    "RANGE OF LINES CHOSEN. ENTE
    R": INPUT " THE BEGINNING
        LINE ";BL: INPUT " THE
        ENDING LINE ";EL: PRINT
63080 NF = 256 * PEEK (START + 1
    ) + PEEK (START)
63090 FOR I = O TO 255:SK(I) = PEEK
    (START + 4 + I): IF SK(I) <
        > O THEN NEXT
63100 N = I - 1
6 3 1 1 0 ~ I F ~ S K ( 0 ) = 3 4 ~ T H E N ~ F O R ~ I ~ = ~
    1 TO N:SK(I - 1) = SK(I): NEXT
    :N = N - I:SQ = 1
63120 M = START + N + 6 + SQ:INC =
    0:CH = 0: IF 256 * PEEK (M +
    3) + PEEK (M + 2) < > 2 THEN
    CH = 1: GOTO 63170
63130 FOR I = 0 TO 255:NT(I) = PEEK
    (M + 4 + I): IF NT(I) < > 0
        THEN NEXT
63140 NN = 1-1:ADD = NN - N:M =
    M + NN + 6:WW = WW - ADD(ADD
        (0) + 8
63150 IF NT(O) = 34 THEN FOR I =
    1 TO iNN:NT(I - 1) = NT(I): NEXT
    :NN = NN - 1:ADD = ADD - 1
```

```
63360 K = K + 1:L(K) = -M: |F CH<
        > O OR LM < BL OR LM > EL THEN
        RETURN
63370 ZS = I + N:X = INT (ZS / 2
    56):Y = ZS - 256 * X: POKE 6
    1,X: POKE 60,Y:X = INT (WW /
    256):Y = WW - 256 * X: POKE
    63,X: POKE 62,Y:ZH = HM - 10
    0-WW + ZS:X = INT (ZH/2
    56):Y = ZH - 256 * X: POKE 6
    7,X: POKE 66,Y: CALL 834
63380 POKE 61,X: POKE 60,Y:X = INT
    ((HM - 100) / 256):Y = HM .-
    100 - 256 * X: rOKE 63,X: POKE
    62,Y:ZS = I + NN:X = INT (Z
    S / 256):Y = ZS - 256 * X: POKE
    67,X: POKE 66,Y: CALL 834
63390WW = WW + ADD:INC = INC + A
    DD
63400 FOR J = O TO NN: POKE I +
    J,NT(J): NEXT :I = I + NN
63410 RETURN
```

The perceptive reader will note a number of small numbers in various lines. These are finagle factors adjusted (but probably not optimized) to make the program run. For example, the 10 in line 63040 prevents the appearance of multiple line 62999's for a change item shorter than the search item.

I have also changed the choices for search and the way they work. Experience has shown no need to search both inside and outside strings at the same time; it's an either/or situation. To eliminate a needless question/answer routine, the program now works as follows: the SEARCH/CHANGE is made outside strings only, unless the first character of line 1 is the quotation mark. In that case, the SEARCH/CHANGE is made inside strings only. For example,

```
1 TOTAL
```

would search for TOTAL outside strings but

```
1'TOTAL
```

would search for TOTAL inside strings.
A quotation mark can be used with line 2 in a similar way to sneak "forbidden' ' words past the interpreter. This should be used with care in changes outside strings; the interpreter has a way of exacting its revenge on sneaky things.

Operation

Except for the search mode selection change, operation of the better SEARCH/CHANGE is essentially the same as the original. Append SEARCH/CHANGE to the program to be searched. Enter the search item as line 1 and the replacement item as line 2. Note that anything that will list as line 1 (or line 2) can be entered. Execute with a RUN 63000.

As mentioned earlier, things can go wrong. If the worst happens, try entering a new line, or deleting a line, or both. That sometimes will save part, or almost all of the program. A sensible precaution is to check line 62999 often and keep it well-stocked with colons.

Another good idea is to use a SLOW LIST utility with SEARCH/CHANGE. (I recommend the one supplied with S-C ASSEMBLER II./ Then if a LIST command produces endless junk, the listing can be aborted without the additional hazard of a RESET.

Another idea is to know your HIMEM. If something goes wrong, it's possible for the HIMEM setting to be ratcheted down to a low value.

A problem I encountered on occasion and, I trust, eliminated, is the DOS 3.2 renumbering program (which I keep in memory while programming) or the DOS buffers being clobbered, probably by an occasional encroachment into the space above HIMEM.

* Now you can realize the full power and usefulness of those now empty sockets on your ROMPLUS board. If you have MH's 'Keyboard Filter' then you know how easy, quick, and
convenient it is to activate and run the 'Filter' program. Can you visualize having other programs visualize plugged into those empty sockets on your Romplus board and activating your Romplus board and activating
them with the same ease and them with the same ease and convenience? If you can visualize it then you can realize it!

APPLESOFT RENUMBER/

MERGE IN ROM

This invaluable program, made famous by Apple Computer, needs no explanation for the serious programmer. When activated, RENUMBER/MERGE IN ROM will not distrub any part of a program in memory. Now you can take advantage of this powerful utility without the inconvenience associated with getting it up and running prior to a programming session. Requires 48 K with or without Disk II $\$ 35.95$

DISK COPYIDISK SPACE

IN ROM

A resident disk copy program will make it easier, more convenient, and wilt encourage you to make back-ups on your valuable diskettes.

- Copies diskettes, from either SINGLE or DUAL drive, single or dual conor DUAL drive, single or dual con
troller, 13 or 16 sector and with troller, 13 or 16 se
or without VTOC
- or without VTOC.
- Options. Gross copy. Active Sectors only copy, more than one copy, DOS overwrite for faster copy time, auto matic boot of copy disk, free space on disk in sectors and kilobytes. - Init and volume number change are selectable
- All disk error reporting routines with option to abort.
Requires a minimum of $32 \mathrm{~K} \quad \$ 35.95$

BASICS IN ROM

Eliminates the added steps of locating, installing, running and rebooting with a BASICS diskette when the need arises to go from 16 to 13 sector disks. Just put a 13 sector disk in your disk drive and address the Basics ROM. The Basis ROM is addressable on coldstart (without AutoStart ROM) or warmstart at any time and will save wear and tear on your disk drives. Requires a minimum of 16K
'YOUR' PROGRAM LINE EDITOR (PLE) IN ROM
If you have this invaluable program in
software, send us a Diskette which has only your predefined PLE greeting program on it (Int or FP version) You will get back your diskette and a ROM wip that has 'YOUR' PLE burned into chip that has YOUR PLE burned into it. The ROM will also have a routine to erase 'YOUR' PLE. 'YOUR' PLE will install and initialize itself in memory and will not affect any Applesoft programs in memory. Please specify if your disk is 13 or 16 sector and be sure no program steps have been added to the original PLE. Allow 2.3 weeks delivery. Only one chip per disk please. Requires 32 K or $48 \mathrm{~K}, 3.2$ or $3.3 \quad \$ 45.95$

All Roms, after they have been activiated, will shut down your Romplus board and reconnect your Apple to the I/O hooks of DOS or Basio All ROM chips can be returned for updating to later versions for a nominal updating to later versions for a nominal
charge. All chips will be shipped UPS.
SOFT CTRL SyStems
BOX 599
WEST MILFORD, N.J. 07480

BASIC THAT SCREEMS

Is the sedate pace of your OSI BASIC taking the fun out of your programming?
Then turn your system on to FBASIC
Now you can compile your programs with FBASIC and take full advantage of your computers potential.

FBASIC is fast. Not just 5 or 10 times as fast as OSI BASIC. FBASIC is OVER ONE-HUNDRED TIMES FASTER! Allowing you to do unheard of things in BASIC. Things that used to require assembly-language. With no need to learn a new language.

The secret to this incredible speed is that FBASIC produces native 6502 machine code. With no run-time interpreter to get in the way of all-out machine performance.
FBASIC is good for any application from wordprocessors to video games. Whatever tickles your fancy. FBASIC accepts standard BASIC source files, and produces executable diskbased object files. It includes many of the features you have always wanted: hex constants, convenient machine language calls, optional user selection of array locations, and more.

As an example of its power and performance; FBASIC was first written in OSI BASIC, which took 6 hours to compile itself. With many features added since then, it now compiles itself in a little over 4 minutes
So let that pent-up performance out. Find out what your machine is really capable of. Feed it some FBASIC and stand back!
FBASIC runs under OS-65D and requires 48 K .
Available on $8^{\prime \prime}$ diskette for $\$ 150$
Please include $\$ 5$ for shipping \& handling.
PEGASUS SOFTWARE P.O. Box 10014, Dept. M-2, Honolulu, Hawaii 96816

OHIO SAIENTIFIE
THE ALL NEW SERIES 2 COMPUTERS ARE ON DISPLAY

WE STOCK THE COMPLETE LINE OF AARDVARK

FOR SAN FRANCISCO AREA READERS WE HAVE A USERS GROUP MEETING THE FIRST SUNDAY OF EVERY MONTH

SEND \$1.00 FOR CATALOGS
SUNSET ELECTRONICS
2254 TARAVAL ST.
SAN FRANCISCO, CA 94116
(415) 665-8330

OPEN 7 DAYS

American Data
 The world's largest distributor of Ohio Scientific Microcomputers

ANNOUNCES

The availability of the new Ohio C2-D and C3-D (10 MB 8" hard disk units) and the C1P Series 2 converted by American Data for European power.

American Data is the exclusive distributor of OSI microcomputers to Europe. Dealer inquiries invited: Contact David O'Brien (301) 840-9540. Telex: 64405 (USA).

Vectors and the Challenger 1P

Abstract

Vector is one more computer buzzword usually found in conjunction with confusion. This artlcle will try to clear up what vectors are and will show how to use them effectively.

Mike Bassman

39-65 52nd Street
Woodside, New York 11377

Computers have subroutines for every command and for every other necessary function. Computers also need places in memory to look up the address of a particular subroutine. A vector is a place in memory in which the computer finds the address of a subroutine. The vector will consist of two bytes containing any address from $\$ 0000$ to \$FFFF in low-byte, high-byte format.

I'll try to clear this up with an example. Let's say you type in a SAVE command. The C1P must know where to go to find the SAVE subroutine. The ClP looks at the SAVE vector, which is at $\$ 220$ and $\$ 221 \quad(544$ and 545 decimall, and in it finds $\$ 96$ and $\$ F F$, which is \$FF96, the address of the SAVE routine.

What good are vectors? They are used if you want to add to BASIC or change it or any of its commands. Vectors have been used to create shorthand (see MICRO $24: 25$), do a true backspace, and ensure program security. Let's take program security as an example. A good way to prevent copying of tapes is to disable the SAVE command. We want the SAVE command to coldstart BASIC if someone tries to save a program. The SAVE vector must be changed from pointing at the SAVE routine at $\$$ FF96 to the coldstart address at \$BD11. Therefore, the SAVE vector at 544 and 545 must point at
\$BD11. These two poke commands will take care of it:

POKE 544, 17

POKE 545,189
Now, if you type SAVE, the C1P will respond with "MEMORY SIZE?". Although the C1P has vectors for every command, a large portion of them are in ROM rather than in RAM. Since only RAM and not ROM can be changed, only those vectors residing in RAM can be used. Vectors in RAM, their addresses, and the address that they point at initially are listed below

| Vector | Address | Initial Value | |
| :--- | :---: | :---: | :---: |
| | Hex \quad Decimal | Hex | Decimal |
| SAVE | $220,221544,545$ | FF96 65430 | |
| LOAD | $21 E, 21 \mathrm{~F} 542,543$ | FF8B 65419 | |
| CTRLC | $21 \mathrm{C}, 21 \mathrm{D} 540,541$ | FF9B 65435 | |
| OUTPUT | $21 A, 21 \mathrm{5} 538,539$ | FF69 65385 | |
| INPUT | $218,219536,537$ | FFBA 65466 | |
| WARM | $001,002001,002$ | A274 41588 | |
| START | | | |

The first two vectors, the SAVE vector and the LOAD vector are used whenever the SAVE and LOAD commands are executed. The Control-C vector is somewhat more subtle. For
every line of BASIC executed, BASIC checks the keyboard for a Control-C. If one has been typed, program execution ends. This vector is the one that is used for every line executed. Therefore, we can use this vector, if our function is one that would be executed once for every line, just as we would use a program tracer. The output vector is used each time BASIC wants to type a character. The input vector is used each time BASIC wants to input a character.

Let's try a more involved example. This time, we'll change the cursor from the underline to, say, a tank character. The program will require use of the input vector, because we will have to change the cursor each time a character is inputted. The program will be in the free part of page 2, starting at $\$ 222$ (546 decimall. BASIC stores the cursor location at $\$ 200$ (513 decimal). This is used as an index from screen location \$D300 (54016 decimal). Since BASIC resets the input vector after carriage return is hit, we will set the input vector to $\$ 222$ after every character. The program follows.

Using these techniques, Ohio Scientific C1P users can customize BASIC to their convenience.

| | BASSMAN:VECTORS AND THE CHALLENGER $1 P$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0222 | ORG | \$0222 | | |
| 022248 | PHA | | SAVE ACCUMULATOR | |
| 0223 8A | TXA | | PUT X IN A | |
| 022448 | PHA | | AND SAVE | |
| 0225 AE 0002 | LDX | \$0200 | GET CURSOR LOCAT | IION |
| 0228 A9 FA | LDA | \#\$FA | GET TANK CHARACT | TER |
| 022A 9D 00 I3 | STA | \$D300, X | X STORE WITH INDEX | |
| 022D 68 | PLA | | GET X FROM STACK | |
| 022E AA | TAX | | AND PUT INTO X | |
| 022F A9 22 | IDA | \#\$22 | LOW BYTE--INPUT | VECTOR |
| 0231 8D 1802 | STA | \$0218 | AND SAVE | |
| 0234 A9 02 | LDA | \#\$02 | HIGH BYTE--INPUT | VECTOR |
| 0236 8D 1902 | STA | \$0219 | AND SAVE | |
| 023968 | PLA | | GET A | |
| 023A 4C BA FF | JMP | \$FFBA | AND RETURN | NCRO |

MIPLOT Intelligent Plotter
by Watanabe Instruments (Digiplot)

SPECIAL \$1095

- Incorporates all inteligent functions required for producing graphs and drawings including 8 vector and 4 character commands
- Distance accuracy within 1%, repetition accuracy within .01 inches, programmable step size .004 inches, internal interpolation in .002 steps.
- Solid and broken line types can be specified
- Character generator for letters, numerals and symbols. Characters can be enlarged and rotated in four orientations.
- Coordinate axes can be drawn by simply specifying the graduation interval and number of repetitions.
- Seff test mode automatically draws complete test pattern
- Printer mode outputs character data in 16 sizes with 4 orientations.
- Connection to any microcomputer using parallel 7-bit ASCII code.
- Can use simple cable to parallel port, or special inter face to IEEE or other.
- Modular control circuit and mechanical construction
- Uses any hard fiber-tip pen.
- Uses 11×17 paper
Includes power supply, I/O connector, 2 pens, 50 sheets of paper, and complete manual

| EPSON MX-80 Printer | \$545 |
| :---: | :---: |
| C. Itoh Daisy Whee Printer | \$1575 |
| Centronics 737 Proportional Spacing Printer | \$795 |
| NEC Spinwriter - parallel | \$2450 |
| XYMEC HI-Q 1000 Intelligent Daisy Wheel | \$1975 |
| Leedex Video 100 12" Monitor | \$129 |
| ZENITH DATA SYSTEMS | |
| Zenith Z19 Terminal (factory asm.) | \$735 |
| Zenith 289 with 48 K | \$2150 |
| SYM-1 | \$209 |
| SYM BAS-1 BASIC or RAE-1/2 Assembler | \$ 85 |
| KTM-2/80 Synertek Video Board | \$349 |
| KIM-1 (add \$34 for power Supply) | \$159 |
| Seawell Motherboard - 4K RAM | \$195 |
| Seawell 16 K Static RAM - KIM, SYM, AlM | \$320 |
| KL-4M Four Voice Music Board and Visible Music | |
| Monitor (4 Voice) for PET | \$59.90 |
| FLEXFILE Database-Report Writer by Michael Riley Flexible file handler for PET/CBM | |
| | |
| Machine language version-you can't win at Level 5. | |
| PAPER-MATE 60 Command PET Word Processor Full-featured version by Michael Riley | |

EBS Business System for PET/CBM $\$ 795$ Extremely comprehensive package for small business. Fully integrated inventory and accounts receivable system ncuding invoices, packing slips, mail labels, statements bank deposit slips, and 17 reports. Allows any of 10 standard letters to be merged with customer record info on either a selective or complete file basis. Demo disk and system description available for $\$ 3.00$
OZZ Data BasıS System for CBM 8032 $\$ 335$
Flexible file handling and report writing package for such apolications as: Inventory Control; Management Information, Mailing List; Scheduling: Medical Record Keeping; Accounting.

| 6502 | 7.45 | $10 / 6.95$ | $50 / 6.55$ | $100 / 6.15$ |
| :--- | ---: | ---: | ---: | ---: |
| 6502A | 8.40 | $10 / 7.95$ | $50 / 7.35$ | $100 / 6.90$ |
| 6520 PIA | 5.15 | $10 / 4.90$ | $50 / 4.45$ | $100 / 4.15$ |
| 6522 VIA | 6.45 | $10 / 6.10$ | $50 / 5.75$ | $100 / 5.45$ |
| 6532 | | 790 | $10 / 7.40$ | $50 / 7.00$ |

CASSETTES - AGFA PE-611 PREMIUM

High output, low noise, 5 screw housing, labels.
$\begin{array}{llll}\text { C-10 } & 10 / 5.65 & 50 / 25.00 & 100 / 48.00\end{array}$ $\begin{array}{lllll}\text { C-30 } & 10 / 730 & 50 / 34.00 & 100 / 66.00\end{array}$ All other lengths available. Write for price list.

ATARI 800 \$777

All Atari Modules 20\% OFF
SPECIAL-purchase ATARI 800, receive extra 8K mamory FREE
EDUCATIONAL PLAN - buy 2 ATARI
Computers receive 1 ATARI 400 FREE!

(write for quantity prices)

SCOTCH (3M) 8" SCOTCH (3M) 5 Maxell5" Double Dens Maxell $8^{\prime \prime}$ Double Dens. Verbatim 5" (add .75 for plastic storage box for Verbatim 5") Verbatim 8 " Dbl. Dens. $10 / 3.35$ 50/3.25 100/3.15 BASF 5" $\quad 10 / 2.60 \quad 20 / 2.50 \quad 100 / 2.40$ BASF $8^{\prime \prime}$
Diskette Storaye Pages
Disk Library Cases

10/2.40 50/2.35 100/2.30 10/2.40 20/2.35 100/2.30
10/3.10 50/2.85 100/2.75 10/2.95 50/2.80 100/2.70 10/4.25 50/4.10 100/3.95 10/4.65 50/4.50 100/4.35
$8^{\prime \prime}-2.85 \quad 5^{\prime \prime}-2.15$

KMMM Pascal for PET
Subset of standard Pascal with true machine language translator for faster execution. 16 K with tape or disk.

EARL for PET (disk file based)
Editor, Assembler Relocater, Linker to generate relocat able object code.
fullFORTH + for PET/CBM
$\$ 65$
A full-featured FORTH with extersions contorming to Forth Interest Group standards. Includes assembler, string processing capabilities, disk virtual memory multiple dimensioned arrays, floating point and integer processing.

merchandise with purchase of one of following CBM-PET items
8032 32K - 80 Column CRT $\$ 1795235$ 8016 16K - 80 Column CRT $\$ 1495205$ 8050 Dual Disk Drive-1,020,000 Bytes $\$ 1795235$ CBM Modem - IEEE Interface $\$ 395 \mathbf{5 0}$ CBM Voice Synthesizer $\quad \$ 395 \mathbf{5 0}$ 8N Full size graphics keyboard $\$ 795100$ 16K Full Size Graphics or
Business Keyboard
32K Full Size Graphics or
Business Keyboard
$\$ 995150$

But Disk Drive - 343,000 bytes 2022 Tractor Feed Printer $\$ 1295205$ $\$ 795100$ Sed PETS (8, 16 and 32K $\$ 95 \quad 12$

WRITE FOR SYSTEM PRICES

| **EDUCATIONAL OISCOUNTS**
 Buy 2 PET Computers, get 1 FREE | |
| :---: | :---: |
| CBM Full Size Graphics Keyboard | \$ 74 |
| WordPro III - 32K CBM, disk, printer | \$170 |
| WordPro IV - 8032, disk, printer | \$255 |
| VISICALC for PET, ATARI | \$170 |
| BPI General Ledger, A/P, A/R for PET | \$270 |
| Programmers Toolkit - PET ROM Utilities | \$34.90 |
| PET Spacemaker Switch | \$24.90 |
| Dust Cover for PET | \$6.90 |
| IEEE-Parallel Printer Interface for PET | \$65.00 |
| IEEE-RS232 Printer Interface for PET | \$149.00 |

$\begin{array}{lll}\text { A P Products } & 15 \% \text { OFF } \\ \text { A P Hobyb-Blox } & 15 \% ~ O F F\end{array}$

ALL BOOK and SOFTWARE PRICES DISCOUNTED

The 8086 Book (Osborne) $\$ 12.75$ z8000 Assembly Language Programming $\$ 10.60$ PET Personal Computer Guide (Osborne) $\$ 12.75$ PET and the IEEE-488 Bus (Ostorne) $\$ 12.75$ 6502 Assembly Language (Osborne) $\$ 9.90$ Programming the 6502 (Zaks) $\$ 10.45$
6502 Applications Book (Zaks) $\$ 10.45$
6502 Software Cookbook (Scelbi)$\$ 1185$
$\$ 11.85$

PET
 Symbolic
 Disassembler

Abstract

Most disassemblers output only absolute addresses. This symbolic disassembler generates labels and symbols for these addresses, making the disassembled program much more understandable.

Werner Kolbe
Hardstrasse 77
CH5432 Neuenhof
Switzerland

If you want to understand how programs written in machine code work, you need a clear and comprehensive listing. For this purpose I developed a disassembler (listing 1) which produces a listing nearly like one from an assembler-only the remarks are missing. Because I used the program mainly to get a complete listing of the PET ROM routines, the program also contains a short machine routine to overcome the PEEK limitation. The program automatically creates names for all memory locations used by the machine program. It also calculates the absolute addresses of all branches and assigns labels automatically. Listing 2 shows an example of a listing produced by the disassembler.

Using the Disassembler

Because the program is very simple to use, explanations are not included, in order to save space. The program first asks for the output device number, which should be 3 for the screen or 4 for
the printer. Then it asks for the start address [origin] of the program to be disassembled. The address has to be entered in hexadecimal without a leading \$ sign. Leading zeros are not necessary. Program operation can be stopped by pressing the SPACE key and continued by pressing the key a second time. By pressing the HOME key, the program jumps back to the start, asking again for the output device and the start address. However, it still holds all names created thus far. To get a complete listing it is necessary to go through the machine code a second time, because all labels created by backward jumps can only be resolved in a second pass. Tables of the labels and variable names are printed when, instead of a start address, the following keywords are entered:

> PM all labels are listed
> PL only the labels created by a branch (they start with L) are listed
> PJ only the labels created by a JMP or JSR are listed (they start with J)
> PZ a listing of all zero-page memory places used is given (their rames start with Z)
> PW a listing of all memory places above page zero used by the program is given (names starting with W).

By entering "ENT.RY" instead of a start address, you can name your own variables. This must be done before the program has created a name, because a variable cannot be defined twice. Provision for entering your own label names has not been made. You can leave the "ENTRY"-mode by entering END as a name. Addresses in "ENTRY'"-mode must be hexadecimal without a leading $\$$. The program itself occupies less than 4 K bytes, but to provide enough space for all addresses and names that have to be stored, you should have at least about 16 K bytes of memory available.

Program Description

Line No. Description

5
determines the dimension of arrays $\mathrm{L}, \mathrm{L} \$$, and $\mathrm{P}, \mathrm{P} \$$ which contain the labels (L) and the page $>0|\mathrm{P}\rangle$ names. If you have a new ROM and enough memory you could set DM and PM to higher values.
10... 15 loads a short machine routine which overcomes the PEEK limitation in the old ROMs.

20 dimensions the arrays. M\$ = mnemonic code, Z\% = zero-page addresses, $\mathrm{Z} \$=$ zero-page names, L, P (see above)
the addresses 0 are assigned to provide the headings for the listings.

35 reads mnemonic code, including addressing index.
assigns output device.
50... 72 FL is a " text^{\prime} "-flag. If $\mathrm{FL}=0$, then text mode is assumed until a zero is found. The 'address" in $\mathrm{E} \$$ is investigated in the following lines to detect the keywords.
75... 90 subroutine 280 changes $\mathrm{E} \$$ into a number in $\mathrm{E} . \mathrm{P}$ is a pointer to the current address. Subroutine 325 searches for a label under the address in $\mathrm{P} . \mathrm{S}=1$ tells the subroutine not to create a label if none is found. Subroutine 300 performs a decimal to hexadecimal conversion. Subroutine 295 performs an " $\mathrm{E}=\operatorname{PEEK}(\mathrm{P})$ " and the hexadecimal of E is returned in $\mathrm{E} \$$.

185 zero－page，Y addressing mode．
absolute addressing．
prints the mnemonic code at the correct place．As TAB does not work on my printer， a counter K and the SPC function is used．

135．．． 160 handles implied addressing and text．

165 immediate addressing mode．
170 zero－page addressing mode．
175 fetch operand；print it and mnemonic；look for entry in the address table and create name，if not found （subroutine 380）；print name plus addressing string．
separates mnemonic code and addressing index．
jumps to the subroutines according to the addressing index．
the start／stop feature using the SPACE key．
plus addresing string．
zero－page，X addressing mode．

195．．． 205 same task as 175 ，only for ab－ solute addressing．If no new names can be created because the arrays $\mathrm{F}, \mathrm{P} \$$ are full，the address is printed in hex－ adecimal．
absolute， X addressing．
absolute， Y addressing．
$220 . .230$ relative addressing．If the label was created anew and the branch is backward，the address is printed in hex－ adecimal．The same occurs if the arrays $\mathrm{L}, \mathrm{L} \$$ are full．
（indirect）， X addressing．
［indirect｜，Y addressing．
absolute indirect addressing； the operand is printed in hex－ adecimal．It seemed to be un－ necessary to create a table of two－byte pointer names only for this seldom－used address－ ing mode．
accumulator addressing．
265．．． 275 JMP and JSR absolute． Similar task as 220．．． 230 ．

280．．． 285 converts hexidecimal in $E \$$ to decimal in E ．

290．．． 320 increments code pointer P ， PEEKS the memory location P ，and returns the value in E and ES．

325．．． 375 looks for the address E in the array L ；if found，returns cor－ responding name in $\mathrm{L} \$$ ；if not，creates a new name and sorts the table．The new name starts with＂ L ＂or＂ J ＂ and continues with a current number which is the＂end of table L＂pointer LL．A binary search is executed to improve program speed．
$380 . .415$ same as above but for zero－ page addresses．

420．．． 465 same as above but for ad－ dresses above page zero．

470．．． 540 mnemonic code and assigned addressing index．
$545 \ldots 605$ prints address tables and enables entry of addresses and corresponding names．

Werner Kolbe is a German computer enthusiast who has been living in Switzerland since 1977，working as an electrical engineer in the field of power system protection．In 1978 he bought one of the first PETs available in Europe．With some programming experience in FORTRAN gained on a large IBM computer，using his PET is really enjoyable．

TISFSSEMELEF：

```
    5 DM=255: FM=50
    10 FORI=1011TO1017:REAIA:POKEI,A:NEXT
    15 DFTF17S,0,0,141,250,3,96
```



```
    25 IMM=LM-1:FM=FM-1:Z*(0)="ZERO":L*(0)="LAEEL":P車(0)="FAGE >0"
    30 FORI=0TO255:REFDME(I):NEXT
    45 CLOSE1:INPUT"OUTFUT DEV.#";D:FRINT:OPEN1,D,1
```



```
    55 IFE = ="FL"THENV$="L":GOT0545
    60 IFE巫=.J"THENW$="J":GOT0545
    G5 IFE="FZ"THEM5661
    TG IFE韦="FW"THENSTG
    72 IFE%="ENTF"T"THENG00
    75 G05UE2EG:FPE-1
    60 F=F+1:E=F:S=1:G0SUR325:IFLq@" "THENFL=1
    85 G0SUB309
    90 FRINT#1,SFC(5-LEN(E#))E*;:GOSUB295:FRINT#1," "E$;:K=5
```



```
    95 ONE*FL+1605UB135,165,170,180,185,190,210,215,220,235,240,250,260,265
    195 GETE#:IFE&)""THENW%=" ":GOSIE115
    110 GOT080
```



```
    120 IFE韦="要"THENFRINT#1:G0T045
    125 FETURH
```


140 FL＝0：IFMs＝＂BRK＂THENFL＝1：FRINT：RETURN
145 FRINT\＃1，SFC（15）＂：＂CHF：（34）：：IFESGOHHDEく12BTHENPRINT\＃1，CHR（E）
156 IFEくS6THENPRINT\＃1，CHR $\$(E+64)$
155 IFE）127THENFRIHT\＃1，CHK（E－128）
160 RETURN
16.5 GOSUR290：GOEUE1S0：FRINT\＃1，＂＝＂Es：RETURH

170 V $=$＝＂

189 慍＝＂，X＂：GOTO175
185 W末＝＂，ヶ＂：GOTG175
190 棟＝＂＂
195 GOEUB290：FRIHT\＃1，＂＂E

205 PRINT\＃1，E 子 4 ：RETURN

215 W末＝＂＇r＇＂：GOTO195

2こ5 壮＝＂L＂：S＝0：GOSUB325：IFBTHETFRINT\＃1，L末：FETURN
230 GOSUE30G：FRINT\＃1，Et：RETUFN

24日 棟＝＂），「＂

255 FRINT\＃1，＂（＂E朝事＂）＂：RETUFH
260 FFINT\＃1，SPC（8）L末SFC（7－LENUL 3$) M$＂\＃＂：RETURN

270 V\＄＝＂J＂：5＝0：GUSUES25：IFL象）＂＂THEHPRIHT\＃1，L车：RETURH
275 PRINT\＃1，E $⿻=2$ RETURN

285 E＝E＊16＋B：NEXT：FETIFN
$290 \mathrm{~F}=\mathrm{F}+1$

$300 \mathrm{~B}=\mathrm{E}: \mathrm{E} \$={ }^{4}{ }^{\prime \prime}$
305 $H=I N T(E ; 16): B=I N T(B-16 * H): B *=C H E(B+48): I F B)=T H E H B=C H F(55+B)$
$310 \mathrm{E}=\mathrm{F}=\mathrm{F}+\mathrm{E}=\mathrm{IFH})=1 \mathrm{THENE}=\mathrm{H}: \mathrm{GOTOSO5}$

326 RETURN
$325 \mathrm{~B}=-1: H=L L+1$
$330 I=I N T((H+B)(2): I F L(I)=E T H E N B=1: L ⿻=L(1): F E T U R H$
335 IFL（I））ETHENH＝I：GOTOS45
$34 \mathrm{~B}=\mathrm{I}$
345 IFABE（H－E）>1 THENE30
350 IFSOR（LLうDM）THENE＝0：L $=$＝＂＂RETURN
$355 L=L L+1: I F L(I)<E T H E N I=I+1$
360 FOFE $=L L T O I+15 T E F-1: L(B)=L(B-1): L \neq(B)=L \neq(B-1): N E \times T$

$376 \mathrm{E}=\mathrm{0}$ ： $\mathrm{L} \$=\mathrm{L} \$(\mathrm{I}): I F E$ PTHENB＝1
375 RETUFN
$360 \mathrm{~B}=-1: \mathrm{H}=22+1$

390 IF 2 （I）$)$ ETHEHH＝I：GOTO46E
$395 \mathrm{~B}=\mathrm{I}$
490 IFHES（H－E） 1 THEN 385
$46522=2 Z+1: I F Z \%(I)<E T H E N I=I+1$

412 IF $5=2$ THEN $2(5$（I）$=4$ ：RETURN

$425 \mathrm{E}=-1: \mathrm{H}=\mathrm{FF}+1$
$430 \mathrm{I}=\mathrm{INT}(\mathrm{CH}+\mathrm{B}), 2$ ）：IFF（I）＝ETHENFF＝F（I）：FETURN
435 IFF（I）$\rangle E T H E H H=I:$ GOTO445
$440 \mathrm{E}=\mathrm{I}$
（continued）


```
459 IFPFDF吽THENFF="":FETUFW
455 P'F=FF'+1:IFF(I)<ETHENI=I+1
460 FORE=FFTOI+1STEP-1:F(B)=F(B-1):Fま(B)=F{(B-1):ME<T:F(I)=E
462 IFS=2THENFF(I)=|; RETURN
465 F本(I)="W"+MID*(STR年(PF),2):F:=F索(I) RETUFN
```



```
480 DHTA?, BIT2,FHIN, FOL2,?,PLF, FHD1, FOL12,?, BIT5, FND5, FOL5,?,BMI8, RND10,?,%,?
485 IIATARNIS,FOLS,?,SEL, RNIT,?,?,?,FHIL, FOLE,?,RTI,EORG, ?,?,?,EOR2,LSR2
```



```
5S0 IHTAENES,CMF10,?,?,7,CMFS,DECS,7,LLI,CMF7,?,?,?,[MF6,DEC6,?,CFX1,SEC9
```



```
555 NENT:FRINT#1:GOTG45
560 FDRI=6TOL2:E=2%(I) :GOSUES06
```



```
570 FOFI=6TOFF:E=F'GI :GOSUBS60
```



```
605 [OTO45
```



```
FEFI'T.
```


32 K BYTE MEMORY

 RELIABLE AND COST EFFECTIVE RAM FOR 6502 \＆ 6800 BASED MICROCOMPUTERS AIM $65 . *$ KIM＊＊SM PET＊S44－BUS```
* PLUG COMPATIBLE WITH THE AIM-65/SYM EXPANSION CONNECTOA BY USING A RIGHT ANGLE CONNECTOA （SUPPLIED）MOUNTED ON THE BACK OF THE MEMORY ISUPPL
MEMOA
memory boaho edge connector plugs into the \(6800 \$ 44\) BUS．
－RENNECTS TO PET or kim using an adapior cabie RELIABLE－DYNAMIC RAM WITH ON BCARD INVISIBLE hefresh－looks like static memory but at LOWER cost and a faction of the power REQUIRED FOR STATIC BOARDS
＊USES＋5V ONLY SUPPLIED FROM HOST COMPUTER． ＊FULL DOCUMENTATION．ASSEMBLED AND TESTED BOARDS ARE GUARANTEED FOR ONE YEAR AND PURCHASE PRICE IS FULLY REFUNDABLE IF BOARD IS RETURNED UNDAMAGED WITHIN 14 DAYS．
```



``` SITH
WIGK RAM
WITHOUT RAM CHIPS HARD TO GET PARTS（NO RAM CHIPS） WITH BOARD AND MANUAL \(\mathbf{5 3 9 5 . 0 0}\)
\(\mathbf{~} \mathbf{5 3 3 9 . 0 0}\) bare board \＆manual

\section*{16K MEMORY EXPANSION KIT only \(\$ 58\)}

FOR APPLE，TRS－80 KEYBOARD， EXIDY，AND ALL OTHER 16K DYNAMIC SYSTEMS USING MK4116－3 OR EQUIVALENT DEVICES．
＊ 200 NSEC ACCESS， 375 NSEC CYCLE
＊BURNED－IN AND FULLY TESTED
＊ 1 YR．PARTS REPLACEMENT GUARANTEE
＊QTY．DISCOUNTS AVAILABLE

ALL ASSEMBLED BOARDS AND MEMORY CHIPS CARAY A FULL DNE YEAA REPLAGEMENT WARRANTY

1230 w．collins ave． ORANGE．CA 92668 （714） 633.7280
Caili resident please add 5 sales fay Mastercharae clear bank phone yders welcomi Shippring charges

The time has come for computers to talk and listen

\section*{Introducing COGNIVOX series VIO, the affordable voice I/O peripherals}

\section*{PET or AIM-65}

Speech Recognition and Voice Response need no longer mean esoteric concepts and expensive hardware. COGNIVOX series VIO is a family of voice input and output peripherals for personal computers that are easy to use and have excellent software support. COGNIVOX can be trained to recognize words or short phrases from a vocabulary of up to 32 words of your choice with an accuracy of up to \(98 \%\) and it will talk back with up to 32 different words. It can also play music and create sound effects. COGNIVOX requires at least 16 K of RAM in your computer. It your computer has less memory or it you are only interested in recognition, ask us about our SR-100 series of voice input peripherals. COGNIVOX series VIO comes complete with microphone, amplifier and speaker, cassette with software and extensive manual. It costs only \(\mathbf{\$ 1 4 9}\) (add \(\$ 5\) for shipp and handl. in US. \(10 \%\) of order overseas. CA res. add \(6 \%\) tax). Has immediate delivery and 120 day limited warranty. Write for more information giving us the make and model of your computer

\section*{VOICETEK}

Dept.M, P.O. Box 388 Goleta, CA 93116
= SPownezituil PET Products from OPTIMIZED DATA SVSTEMS!
```

-SOFTWARE FOR ALL PET/CBMs(Supplied on Cassette-Prices include Shipping)

- WORD PROCESSOR (PS-001). . . . . . . . . . . . . . . . . . . . . . . . . $\$ 16.95$
Makes documents a snap
- MAILING LIST (PS-002) . . . . .
Throw away your address book
GCE EATER (PS-D03) . . . . . . .
Gobbles (PS-004)
File stamp/coin/atc. collections
SATELLITE TRACKER (PS-005) . . . . . . . . . . . . . . . . . . . . . . $\$ 24.95$
Tracks OSCAR Ham Satellite in real time
MORSE CODE KEYER (PS-006). . .$\$ 14.95$
A. Sends code on the air or for practice
NI-COUNT ${ }^{\text {T.M. }}$ (PS-007) .$\$ 19.95$
Measures frequency to 17 KHz and intervals to 65 msec
-HARDWARE FOR "OLD" 8K PETS-

```
(Shipping Additional)
- 2114 RAM ADAPTER

Replaces up to 8 -6550; with low cost, reliable 2114s
PHB-001 (Bare PCB) . . . \(\$ 8.95\) PHK-001 (Kit-2 sockets) PH-001S (Assm-sockets PHK-001S (Kit-8 sockets) \(\$ 16.25\)
only).\$22.95
PH-001 (Assm-2 sockets + one 2114) . \(\$ 24.95\)
4K MEMORY EXPANSION (+ \(\$ 3\) per order) Instalis easily internally. Uses 2114 s . Write Protect.
PHB-002 (Bare PCB)\$16
PHK-002 (Kit-sockets only). .
. \(\$ 29\)
PH-002S (Assm-sockets
only). \(\$ 42\)
PH-002 (Full Assm).

ROMPT SHIPMENT!
Calif. Residents, add 6\% Tax
SATISFACTION GUARANTEED P.O. Box 595, Dept. M - Placentia, California 92670

MINI-COUNT Trademark af Optimized Data Systems PET/CBM Trademark of Commodore Business Machines

Skyles Electric Works
231 E South Whisman Road
Mountain View, CA 94041

\section*{PET and APPLE II Users}

\section*{PASCAL}

ABACUS Software makes available its version of TINY PASCAL for the users of two of the most popular personal computers.
TINY PASCAL is a subset of the standard PASCAL as defined by Jensen and With. It includes the structured programming features: IF-THEN-ELSE, REPEAT-UNTLL, FOR TO/DOWN TO-DO, WHILE-DO, CASE-OF-ELSE, FUNC and PROC. Now you can learn the language that is slated to become the successor to BASIC.
TINY PASCAL is a complete package that allows you to create, compile and execute progams written in the PASCAL language. You can save source and object code on diskette or cassette (PET version only). Comprehensive user's manual included. The manual can be examined for \(\$ 10\) (refundable with software order).
REQUIREMENTS
PET 16K/32K New ROMS cassette \(\$ 40\)
PET 16K/32K New ROMS diskette \$35
Apple II 32 K Applesoft ROM w/DOS \(\$ 35\)
Apple II 48 K Applesoft RAM w/DOS \(\$ 35\)
tiNY PASCAL User's Manual \(\$ 10\)
6502 Interpreter Listing
FREE postage in U.S. and CANADA
All orders prepaid or COD
 \(\$ 20\)

ABACUS SOFTWARE
P. O. Box 7211

Grand Rapids, Michigan 49510

\section*{Having Trouble Finding KIM \& AIM Software? LOOK NO MORE!}

MICRO sells software packages that may be just what you have been searching for!

All products come complete with full user/operator instructions, a cassette tape and, with the exception of MICROADE, a complete set of source listings.

CASSETTES
KIM
KIM Microchess HELP Mailing List MANUALS \(\$ 15.00\) 15.00

HELP Info Retrieval 15.00

MICROADE 25.00

AIM
Microchess
To place your order, write or call:

\section*{MICRO}
P.O. Box 6502

Chelmsford. MA 08124
(517) 256-5515

Dealer Inquiries Invited

\section*{Compare Our Prices With Any Others}
\begin{tabular}{lllrlr}
Rockwell's & AIM -65 & 1K System: & \$405. & 4K System & \(\mathbf{\$ 4 5 9 .}\) \\
Synertek's & SYM -1 & 1K System: & 235. & 4K System & 259. \\
Commodore's & KIM-1 & 1K System: & 175. & & \\
\hline
\end{tabular}

FOR YOUR SYSTEM'S EXPANSION

The Computerist, Inc's:
16K DRAM
32K DRAM
Video Plus II
Mother Plus II \& Card Cage
\(\$ 279\).
375.
279.
115.
\(\$ 42\).
55.
15.
39.

Power Supply and Enclosure for AIM-65 \$119.
Power Supply and Enclosure for KIM-1

All products are factory warrantied. Prices include full documentation.
Send Check or Money Order to:
Hepburn MCA*
12 Grosvenor Street
Lowell, MA 01851
Please add \(\$ 5.00\) shipping and handling. MA residents add \(5 \%\) sales tax.
*Mini Computers and Accessories

\title{
AIM 65 File Operations
}

\begin{abstract}
This, the third part of a serles, bullds upon previous articles to arrive at an AIM 65 text file processing system with BASIC.
\end{abstract}

\author{
Christopher J. Flynn \\ 2601 Claxton Drive \\ Herndon, Virginia 22070
}

In two previous articles \((26: 61)\) and (30:65), we described text file input and output subroutines. These subroutines, when used with BASIC, added significant file handling capabilities to the AIM 65. We will now take these capabilities a step further, showing how BASIC can make effective use of the AIM 65's built-in dual cassette interface. We will remove our earlier restriction on the concurrent use of input and output files. The result, then, will be a general-purpose file system for processing AIM 65 text files with BASIC.

\section*{AIM 65 Hardware}

The term "dual cassette interface" may be a little misleading to some. The AIM 65 has, in fact, one audio input channel, one audio output channel, and two motor control circuits.

Now, to use two tape recorders with the AIM 65, we dedicate one of them as a playback-only drive and the other as a record-only drive. In our system, we use drive 1 for playback and drive 2 for recording. The motor control circuits are connected to the appropriate tape recorder via the recorder's remote jack.

The record, playback, rewind, and fast-forward levers must still be depressed by hand, of course. Nevertheless, once the read and write operations are started, the AIM 65 will take full control over both recorders. The AIM 65 will start and stop each recorder at the proper time. (Incidentally, to see your AIM 65 BASIC program doing this will really impress you.)

\section*{AIM 65 Software}

As we mentioned in our first article, (26:61) AIM 65 tape I/O is buffered. That is, when a character is to be read from, or written to, a tape file, the character is actually read from, or written to, a dedicated area of RAM. This dedicated RAM is known as a buffer. Only when all the data has been read from a buffer, or when the buffer has been filled with data, does the AIM 65 start up a tape recorder to do the actual read or write.

There is a buffer pointer associated with a buffer. The buffer pointer is used by the AIM 65 to keep track of the data within the buffer. Normally, the AIM 65 uses a single buffer which is located in page 1 at \(\$ 0116\). This is the source of our restriction which stated that an input file and an output file could not be open at the same time.

Let's see what would happen if we violated this restriction. Suppose our program were doing a read, and then a write. The very first read would fill the tape buffer with data and set the buffer pointer. The write operation would then store data in the buffer. This would destroy some or all of the input data. That is not all. The write would also change the contents of the buffer pointer. So, when the program did the next read, there would be strange data in the buffer and a pointer pointing to who-knows-where. The result: chaos.

The designers of the AIM 65 anticipated these problems. They provided for a second tape buffer which is located in page 0 at \(\$ 00 \mathrm{AD}\). This second buffer is activated automatically if the AIM 65 detects that the active input device (INFLG) and the active output device (OUTFLG) are both tape recorders.

Unfortunately, this feature of the AIM 65 will not work for us with BASIC. First of all, the second tape buffer, being in page zero, will obliterate

BASIC's page zero variables. This would also cause chaos. Secondly, our text file input and output subroutines set INFLG and OUTFLG for tape operations only long enough to read or write a record. Thus, both INFLG and OUTFLG will probably not be set for tape at the same time. In the sections that follow, we will present one solution to the tape buffer problem. YYou may come up with other solutions.)

\section*{Synchronization Bytes}

Each AIM 65 tape data block is preceded by a series of synchronization bytes. The contents of a RAM variable called GAP determine the number of synchronization bytes written. GAP is initialized by the AIM 65 to a value of \(\$ 08\). The AIM 65 manuals recommend, however, that GAP be manually set to \(\$ 80\) when the tape recorder is going to be used in a start-stop mode such as when loading a BASIC program. Experiment with the setting for GAP. A smaller value will result in faster read and write times. Don't set GAP too small, however, or the tape will become unreadable. We have found that a value of \(\$ 20\) works perfectly for three different tape recorders.

If you are willing to do a little surgery on your tape recorder, you may be able to achieve even faster performance. We modified a Radio Shack CTR-40B so that its electronics would remain on, even when the motor was turned off. We now get good start-stop results with the default value of GAP-\$08. By the way, this modification changed the motor type from a type IV to a type III.

\section*{Using Dual Cassettes}

With the proper software, the AIM 65 is fully capable of dual cassette operations with BASIC. We will use our text file input and output subroutines, plus additional software which is described later.

Of course, the first step to take is to connect two tape recorders to your AIM 65. Dedicate one of them as an input drive and the other as an output drive. (It doesn't matter which is which, but we use drive 1 for input and drive 2 for output.) Test each recorder thoroughly. Make absolutely sure that the motor control circuits are working. Experiment a bit and find the best value of GAP for your system. You should now be assured of obtaining reliable tape operations.

\section*{Standard Motor Control}

When we designed the text file input and output subroutines, we made some decisions as to when to turn a given tape recorder on or off. In addition, the AIM 65 itself toggles the recorders at certain times. We have summarized the times when the tape recorders are turned on and off.

\section*{Read Operation}

Reading a block: only the input tape recorder is turned on
Between blocks: both tape recorders
End of file: only the input tape recorder is turned on

\section*{Write Operation}

Writing a block: only the output tape recorder is turned on
Between blocks: both tape recorders are turned off
End of file: both tape recorders are turned on
In most cases, this is a fairly convenient way to control the tape recorders. For example, reads and writes can easily be alternated.

For ease of operation, there are two guidelines to follow:
1. Position both the input and output tapes before you begin processing.
2. Do not close an output file until you have finished all input and output processing.

Let's examine these guidelines. Suppose we are going to read a tape and then write some of the data to an output tape. As soon as we read the very first block of data from the input tape recorder, the output tape recorder will be turned off. If we haven't already positioned the tape, we would have to remove the plug from the recorder's remote jack to do so.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Figure 1} \\
\hline 7041 & AD 3F & & & LDA & INBFPT & MOVE INPUT BUF PNTR \\
\hline 7044 & 8D 36 & A4 & & STA & TAPTR & TO AIM BUF PNTR \\
\hline 7 D 47 & A2 4F & & & LDX & \#\$4F & \\
\hline 7049 & BD 8D & 70 & LBLA & LDA & INBUFR, X & MOVE 80 BYTES \\
\hline 7 D 4 C & 9 D 16 & 01 & & STA & FORMA, X & TO AIM BUFFER \\
\hline 704F & CA & & & DEX & & \\
\hline 7050 & \(10 \mathrm{F7}\) & & & BPL & LBLA & \\
\hline 7 D 2 & 2000 & & & JSR & TEXTIN & CALL TEXT INPUT SUBR \\
\hline 7055 & AD 36 & A. 4 & & LDA & TAPTR & MOVE AIM BUF PNTR \\
\hline 7058 & 8D 3F & 715 & & STA & INBFPT & TO INPUT BUF PNTR \\
\hline 7D5B & A2 4F & & & LDX & \#\$4F & \\
\hline 7050 & BD 16 & 01 & LBLB & LDA & FORMA, X & MOVE 80 BYTE AIM BUF \\
\hline 7 D 60 & 9D 8D & 71) & & STA & INBUFR, X & TO INPUT BUF \\
\hline 7063 & CA & & & DEX & & \\
\hline 7064 & \(10 \mathrm{F7}\) & & & BPL & LBLB & \\
\hline 7066 & 60 & & & RTS & & \\
\hline 7067 & AD 40 & & & LDA & OUBFPT & OUTPUT BUFF. PTR. \\
\hline 7D6A & 8D 36 & A4 & & STA & TAPTR & TO AIM BUFF. PTR. \\
\hline 7D6D & A2 4F & & & LDX & \#\$4F & \\
\hline 7D6F & BD DD & 7) & LBLC & LDA & OUTBFR, X & 80 BYTE OUTP. BUFF. \\
\hline 7 7 72 & 9 CA 16 & 01 & & STA & FORMA, X & TO AIM BUFFER \\
\hline 7075 & CA & & & DEX & & \\
\hline 7 7 76 & 10 F 7 & & & BPL & LBLC & \\
\hline 7078 & 20 A4 & & & JSR & TXTOUT & CALL TEXT OUTP. SUBR. \\
\hline 707B & AD 36 & & & LDA & TAPTR & MOVE AIM BUFF. PTR. \\
\hline 7D7E & 8D 40 & 70 & & STA & OUBFPT & TO OUTP. BUFF. PTR. \\
\hline 7 D 81 & A2 4F & & & LDX & \#\$4F & \\
\hline 7083 & BD 16 & 01 & LBLD & LDA & FORMA, X & MOVE 80 BYTE AIM BUFF. \\
\hline 7086 & 9D DD & 7 & & STA & OUTBFR, X & TO OUTPUT BUFFER \\
\hline 7089 & CA & & & DEX & & \\
\hline 7D8A & 10 F 7 & & & BPL & LBLD & \\
\hline 708C & 60 & & & RTS & & \\
\hline
\end{tabular}

In the second case, suppose that we had wanted to read some more data from the input tape, even though we had finished writing the output tape. As soon as we close the output file, both tape recorders would be turned on (the monitor routine DU11 does this). By the time we get around to reading the next block, we would have found that the tape had already started. There is a good chance then of misreading one or more blocks.

\section*{Controlling the Motors with BASIC}

You can also control the tape recorders with BASIC. Bits 4 and 5 of AIM 65 port B (at \$A800 or 43008) are used to toggle the motor control circuits. Bit 4 controls drive 1, and bit 5 controls drive 2. A one in the proper bit will turn a motor on, while a zero will turn the motor off.

With the use of PEEK and POKE statements, BASIC can access port B and set the appropriate bits. The chart below shows the code to do this.

To turn a motor on: POKE 43008,(PEEK(43008) or K)
\begin{tabular}{ll}
Action & K \\
Turn drive 1 on & 16 \\
Turn drive 2 on & 32 \\
Turn both drives on & 48
\end{tabular}

To turn a motor off:
POKE 43008,(PEEK(43008) and K)
\begin{tabular}{lc}
Action & \(\mathbf{K}\) \\
Turn drive 1 off & 239 \\
Turn drive 2 off & 223 \\
Turn both drives off & 207
\end{tabular}

Naturally, you should be careful about controlling the motors this way. If a motor is turned on while you are in the middle of processing a file, you can imagine the kind of errors that could result. A good rule of thumb is to use the standard motor control options whenever possible. Resort to BASIC only when you need to-to turn both drives on after an I/O error for example.

\section*{Compatibility with Input and Output Subroutines}

Our AIM 65 text file input and output subroutines were designed to be incorporated into a dual cassette file

\section*{Figure 2}

10 REM RENUMBER PROGRAM
20 REM OPEN INPUT FILE
30 POKE 245,0: REM \(\$\) F5
40 REM OPEN OUTPUT FILE
50 POKE 247,0:REM \(\$\) F7
60 INPUT "STARTING LINE";SL
70 INPUT"INCREMENT"; INC
80 REM INITTALIZE LINE NUMBER
\(90 \mathrm{LN}=\mathrm{SL}\)
100 REM READ A LINE OF BASIC TEXT
110 AS=""
120 FOR I=1 TO 80
130 A\$=A\$+"\#"
140 NEXT I
150 POKE 4,65: REM \$41
160 POKE 5,125:REM \$7D
170 L=USR (0)
180 REM ERROR TEST
190 IF L<O THEN STOP
200 REM END FILE TEST
210 IF L=0 THEN 370
220 REM GET LENGTH OF ORIGINAL LINE \#
230 A\$1EFT\$(A\$, ,L)
\(240 \operatorname{LL=LEN(STR\$ (\operatorname {VAL}(A\$)))~}\)
250 Rem put in the new line \#
\(260 \mathrm{~A} \$=\mathrm{STR} \$(\mathrm{LN})+\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{LL}+1)\)
270 LN \(=\mathrm{LN}+\mathrm{INC}\)
280 REM OUTPUT THE LINE
290 POKE 4,103:REM \(\$ 67\)
300 POKE 5,125:REM \$7D
\(310 \mathrm{Z}=\mathrm{USR}(\operatorname{LEN}(\mathrm{A} \Phi))\)
320 REM ERROR TEST
330 IF Z<O THEN STOP
340 REM DO THE NEXT LINE
350 GOTO 100
360 REM CLOSE THE OUTPUT FILE
370 AS=CHR\$(26):REM CONTROL Z
380 POKE 4,103:REM \(\$ 67\)
390 POKE 5,125:REM \$7D
\(400 \mathrm{Z}=\mathrm{USR}(1)\) :REM OUTPUT CONTROL \(z\)
\(410 \mathrm{Z}=\mathrm{USR}(0)\) : RHM CLOSE THE FILE
420 PRINT"***DONE***"
430 END
Figure 3
```

10 REM DEMO PHOGRAM FOR BASIC RENUMBER
15 FOR I=1 TO 10
16 PRINT I;
17 PRINT SQR(I)
20 NEXT I
25 REM GOTOS AND GOSUBS ARE NOT RENUMBERED
30 GOSUB 100
35. GOTO }1
100 REM A SUBROUTINE
105 LET C=C+1
110 PRINT C
115 RETURN
This is the program after renumbering.
120 REM DEMO PROGRAM FOR BASIC RENUMBER
160 PRINT I;
180 PRINT SQR(I)
200 NEXT I
220 REM GOTOS AND GOSUBS ARE NOT RENUMBERED
240 GOSUB 100
260 GOTO }1
280 REM A SUBROUTINE
300 LET C=C+1
3 2 0 ~ P R I N T ~ C ~
340 RETURN

```
system. They both use the variable AS for holding a record. When a record is read, the input subroutine tells you how many bytes of data were actually stored in A\$. When you write a record, you tell the output subroutine how many bytes from A\$ to write. Now, to read a record and to write it back to tape, all we have to do in BASIC is:
```

POKE 4,low address of input
subroutine
POKE 5,high address of input
subroutine
L = USR(0): REM READ A
RECORD INTO A\$
POKE 4,low address of output
subroutine
POKE 5,high address of output
subroutine
Z = USR(L): REM WRITE A
RECORD FROM A\$

```

Thus, dual cassette input and output becomes very easy.

\section*{Buffer Management}

Before we can begin actually using the dual cassette interface with BASIC, we need to overcome the AIM 65's single buffer problem. The approach we are taking is a brute force method. It does have the virtue, however, of being very simple. We call this simple software a buffer manager.

We will proceed by setting up our own input buffer and pointer, and our own output buffer and pointer. Each buffer will be 80 bytes long-the same as the AIM 65's. Whenever we request an input or output operation, the buffer manager will do the following:
1. Move our buffer and pointer to the AIM 65's buffer and pointer
2. Perform the read or write operation
3. Move the AIM 65's buffer and pointer back to our buffer and pointer.

Although there is a lot of data flying back and forth in RAM, the buffer manager keeps everything straight. It allows us to have an input and an output file open at the same time.

\section*{Loading the Buffer Manager}

The code for the buffer manager is shown in AIM 65 instruction format in figure 1. A hex dump is not included, due to the degree of customization that will be required for your system.

There are two routines shown in figure 1 . One handles text file input and the other text file output. These routines will now become the main entry points for all I/O operations. This means that whenever you want to read or write text files, your BASIC program should call the appropriate buffer manager and not the input or output subroutines themselves.

To load the buffer manager in your system, you need to do the following:
1. Set aside four areas of RAM for a total of 162 bytes.
\begin{tabular}{lc}
Area & Length \\
Input buffer pointer & 1 \\
Ouput buffer pointer & 1 \\
Input buffer area & 80 \\
Output buffer area & 80
\end{tabular}
2. Modify the code shown in figure 1 to use the pointer and buffer addresses which you have just established.
3. Make sure that the buffer manager's references to the text file input and output subroutines are correct.

Once you are satisfied that everything is correct, be sure to save the programs on tape.

The total memory requirements to support full dual cassette operations now become:
\begin{tabular}{lr}
Text file input subroutine & 164 \\
Text file output subroutine & 148 \\
Buffer manager code & 76 \\
Buffer manager RAM & \(\underline{162}\) \\
TOTAL & 550
\end{tabular}

Use this figure when responding to BASIC's MEMORY SIZE prompt. If you have a 4 K AIM 65 , you would respond with 3546 (4096 minus 550).

Do not let the 550 byte memory requirement worry you. There is still room left for a pretty good size BASIC program. Also, since you now have dual cassette capabilities, you can work on files that are larger than the available RAM in your system!

\section*{Sample Program}

Our sample program is a very simple BASIC renumber program. It only renumbers the lines. It will not update GOTOs and GOSUBs. They will have to be corrected manually.

The listing for the renumber program is shown in figure 2. We have included a sample run in figure 3. If you've got everything working properly, you should be able to get exactly the same results that we did. To use the renumber program, follow this step-bystep procedure.
1. Save the program you wish to renumber on tape.
2. Make sure that you've loaded the machine language programs and that BASIC is initialized accordingly.
3. Key in or LOAD the renumber program.
4. Put the tape containing the program to be renumbered in the input tape recorder.
5. Place a blank tape in the output tape recorder.
6. Space the blank tape to a point past the leader.
7. Type RUN to begin the renumbering.
8. You will be asked for a new starting line number and increment. Respond with the desired numbers.
9. You will be asked for the input device, file name, and tape drive number. Respond appropriately.
10. You will be asked for the output device, file name, and tape drive number. Respond appropriately.
11. Sit back and watch the blocks of data being read, processed, and written.
12. Rewind both tapes when the renumber program is done.
13. Load the renurnbered program.
14. Correct any GOTOs and GOSUBs.

The operation of the renumber program is very sinuple. It works by reading one line of the original program at a time. It then strips off the line number and replaces it with a new line number. Finally, it writes out the modified line to the output tape recorder.

You may want to expand this simple renumber program into a full renumber program that fixes GOTOs
and GOSUBs automatically. To do this, you will probably need to read the original program twice. The first time around, renumber the lines as we have already done. At the same time, build an array of old line numbers and the corresponding new line numbers. The second time that you read the tape, test each line for a GOTO or GOSUB. If one is present, you can find out what the new destination should be by referring to the table that you built the first time around. (This, of course, is not the best way to renumber BASIC programs. It is, however, a pretty good way to become familiar with file operations in BASIC.)

The program in figure 2 is straighforward. We followed all the procedures described in earlier articles for text file input and output. The only difference is that our POKEs to locations 4 and 5 set up references to the buffer managers and not to the text file I/O routines. One thing to remember is that you must always write a control-z to the end of any text file that you plan on LOADing with BASIC.

\section*{Conclusion}

This series of articles has described a way to make your AIM 65 a powerful data processor. We began by describing a way to read AIM 65 text files with BASIC. Next we added the capability to write text files. Finally, we combined these components into an integrated dual cassette system.

With the expenditure of 550 bytes of RAM and two tape recorders, your AIM 65 has almost all the capabilities of a floppy disk-equipped system. While we do not have the ability to do random access, we have practically unlimited storage capabilities. AIM 65 cassette I/O is fairly fast and the dual cassette interface really works!

There are many applications that are now opened up. For example, we have set up a home accounting system that compares expenditures against a budget. Let us hear about your applications.

\footnotetext{
Christopher Flynn has an AIM with 32 K of RAM and a Model 33 teletype for hardcopy output. His software interests include Assembly language and BASIC. To support his hobby, Chris is employed by the Fairfax County government as a systems analyst for the county's tax systems.
}

\section*{1st-MATE \({ }^{*}\)}

\section*{IS THE ULTI-MATE EXPANSION FOR YOUR PET}
- Adds 16 to 28K RAM
- Supports additional 16K EPROM/ROM with programmable address selection circuitry-Permits up to six 4K memory segments to share a single 4K address
- Programs EPROMs on board
- Adds 32 additional I/O lines, 4 timers, and 2 shift registers
- Adds customization area
- Uses existing or external housing and power
- Includes circuitry to support an externally mounted reset switch

1st-MATE
Thousands of our expansion boards for the AIM, SYM, and KIM are in use in industrial, scientific, university, and business environments. 1st-MATE is the first of a line of multifunction expansion boards and accessory products planned to supplement and extend the capabilities of the PET/CBM microcomputers. 1st-MATE has evolved from the popular DRAM PLUS currently being used with the AIM, SYM, and KIM. It has been customized to provide special support and features for the PET.

1st-MATE was first demonstrated at Commodore Business Machines' Philadelphia area Equipment Systems Show, December 13-14, 1980.

1st-MATE is available for demonstration and immediate delivery from local computer stores carrying CBM products.
\begin{tabular}{ccc}
TCB 110-16 & 1st-MATE, & 16K RAM, with cable \\
TCB \(110-28\) & 1st-MATE, 28K RAM, with cable & \(\$ 395.00\) \\
Prices quoted us - does not include shipoing \& handling. \\
To obtain the name and location of jour nearest dealer call or write:
\end{tabular}

\section*{Time}

\title{
This is a program which allows drawing in graphics mode by moving the cursor, with the keyboard, In any direction desired. This program also permits the usage of several different colors.
}

Charley and Mary Kozarski
1035 Fuller NE
Grand Rapids, Michigan 49503

Here is a program which allows drawing in graphics modes 3 through 8, using the keyboard alone. This is designed for Atari 800 or 400 owners who primarily use their computers for other than games. It's great for those who don't have joysticks but would like to doodle in graphics mode occasionally.

Controlling real-time graphics with the keyboard can be accomplished by using an IF..THEN statement in association with William Colsher's famous PEEK (764) command. Lines 45-85 look for a certain key to be pressed and if it is, then the graphics plot is moved one line in that particular direction.

Line 10 sets the maximum plot dimensions for that graphics mode. The GOSUB routine is used to keep the plot on the screen. Without it, moving the plot beyond the maximum limit for that mode would cause an ERROR 141 (cursor out of range). Also, at this time, the computer would kick out of graphics mode and you'd have to start your drawing from the beginning!

It is possible to change the color of the plot at any time without changing what has already been plotted. This can be done by lines 35 and 45 . Also, line

25 allows the present plot position to be indicated by blinking the cursor on and off.

One last thing worth mention-ing-one of the plot colors is black or background color, which allows you to erase anything you have already drawn.

We Atari owners would appreciate it if the rest of you Atari fans out there would start sending in programs and information that you think would be interesting or fun.

> Charles Kozarski works as an Electronics
> Technician for a large retailer. Computers have always fascinated him and he decided to explore them as a hobby. He owns an Atari 800 and spends a great deal of time developing programs.

Mary Kozarski is an underwriter for an insurance agency.
```

    GRAPHICS 5+16:X=40:Y=24:C=1
    10 XMAX=80:YMAX=48:REM-PLOT LIMITS
    15 POKE 764,255:REM-CLEAR LAST KEY
    20 REM(25)-BLINKS PRESENT PLOT POINT
    25 COLOR 0:IF C=4 THEN COLOR 2
    30 PLOT X,Y:FOR D=1 TO 50:NEXT D
35 COLOR C: PLOT X,Y: REM-SET COLOR
40 REM(45)-SET PLOT DIRECTIONS TO KEYS
45 IF PEEK (764)=18 THEN C=C+1: IF C>4 THEN C=1
50 IF PEEK (764)=6 THEN X=X-1: GOSUB 95
55 IF PEEK (764)=7 THEN X=X+1: GOSUE 95
60 IF PEEK (764)=14 THEN Y=Y-1: GOSUB 95
65 IF PEEK (764)=15 THEN Y=Y+1: GOSUB 95
70 IF PEEK (764)=48 THEN X=X - 1:Y=Y-1: GOSUB }9
75 IF PEEK (764)=50 THEN X=X +1:Y=Y-1: GOSUB }9
80 IF PEEK (764)=54 THEN X=X-1:Y=Y+1: GOSUB 95
85 IF PEEK (764)=55 THEN X=X +1:Y=Y+1: GOSUB }9
90 GOTO 15
95 REM=SET PLOT LIMITS!
100 IF X>=XMAX THEN X=0
105 IF Y>=YMAX THEN Y=0
110 IF X<O THEN X=XMAX-1
115 IF Y<O THEN Y=YMAX-1
120 RETURN

```
\begin{tabular}{|c|c|c|}
\hline KEY & & \\
\hline 41 & = & Move Plot Up \\
\hline \(1 \times\) & = & Move Plot Down \\
\hline 4 & \(=\) & Move Plot Left \\
\hline 促込 & \(=\) & Move Plot Right \\
\hline C & = & Change Plot Color \\
\hline ¢ & \(=\) & Move Plot Up Diagonal Left \\
\hline \[
8
\] & = & Move Plot Up Diagonal Right \\
\hline \[
\begin{gathered}
\mathrm{CLEAR} \\
<
\end{gathered}
\] & \(=\) & Move Plot Down Diagonal Left \\
\hline \[
\begin{gathered}
\text { INSERT } \\
>
\end{gathered}
\] & \(=\) & Move Plot Down Diagonal Right \\
\hline
\end{tabular}

NCRO

\title{
 \\ New Publications
}

Mike Rowe
New Publications
P.O. Box 6502

Chelmsford, MA 01824

This column lists new publications received for review and also reports on pertinent publication announcements received from book and periodical publishers. Some works mentioned here may be reviewed by MICRO at a later date.

\section*{Ohio Scientific}

Introductory works from Elcomp Publishing, Inc. 3873 L Schaefer Avenue, Chino, California 91710), both by J. Clothier and W. Adams, have confusing titles and have been promoted in a confusing way: The First Book of Ohio Scientific Vol. I (publisher's order no. 157) and The Second Book of Ohio Scientific (order no. 158). The first book carries an announcement for the second book (order no. 158) under the title The First Book of Ohio Scientific, Vol. II. Both books are largely compilations of material issued in various formats by the manufacturer or previously published elsewhere. Here are brief descriptions:

The first book (paperbound, 188 pages, \(\$ 7.95\)) covers the Challenger 1P and 1P MF, the Superboard II, the Challenger 4 P and \(4 \mathrm{P} M \mathrm{M}\), the Challenger 8 P and 8P DF, peripherals, software, and other introductory information.

The second book (paperbound, 188 pages, \(\$ 7.95\)) covers the OS-65 (version 2.0 disk operating system, microcomputer operating system, string variables, machine code, and the editor); the wordprocessor WP-2; I/O drivers; memory test program; and various other hardware and software data.

\section*{PET}

PRINTOUT, a magazine for users of PET and Commodore systems, published ten times a year in the United Kingdom, is now offered to readers in the U.S. It covers hardware,
reviews software, contains articles on programming and applications, and publishes photos and listings. A sample issue is available postpaid for US \(\$ 3.00\) and a subscription for US \(\$ 36.00\) from PRINTOUT, P.O. Box 48, Newbury, Berkshire RG16 OBD, England.

\section*{General 6502}

6502 Applications Book by Rodnay Zaks. 6502 Series, Volume III, Sybex (2344 Sixth Street, Berkeley, California 94710), 1979, 278 pages plus advertisements, over 200 illustrations, \(51 / 2 \times 8 \frac{1}{2}\), paperbound.
ISBN: 0-89588-015-6
\(\$ 12.95\)
Covers application techniques for the 6502. The book assumes an elementary knowledge of microprocessor programming on the level of the series' preceding volume, Programming the 6502.

CONTENTS: Introduction. The Input Output Chips-Introduction; Basic Definitions; The 6502 PIA; The 6522; Programming the 6522; The 6530 ROM-RAM I/O Timer (RRIOT); The 6532; Summary. 6502 Systems-Introduction; Standard 6502 System; The KIM-1; The SYM-1; The AIM 65; Other boards. Basic Techniques- Introduction. Section I, The Techniques: Relays; Switches; Speaker; A Morse Generator; Time of Day Clock; A Home Control Program; A Telephone Dialer. Section II, Combinations of Techniques: Introduction; Generating a Siren Sound; Sensing an Input Pulse; Pulse Measurement; A Simple Music Program; KIM Traffic Control; Learn the Multiplication Table; Summary. Industrial and Home Applica-tions-Introduction; A Traffic Control System; Dot Matrix LED; Displaying Switch Values; Tone Generation; Music; A Burglar Alarm; DC Motor Control; Analog to Digital Conversion (A Heat Sensor); Summary. The Peripherals-Introduction; Keyboard; Paper Tape Reader or ASCII Keyboard; Microprinter; Summary. Conclusions. Appendix A: A 6502 Assembler in BASIC-Introduction; General Description; Using the Assembler; Syntax; HP2000FBASIC. Appendix B: Multiplication Game: The Program. Appendix C: Program Listings. Appendix D: Hexadecimal Conversion Table. Appendix E: ASCII Conversion Table. Appendix F: 6502 Instructions.

\section*{General Microcomputer}

Small Business Programs by S. Roberts. Elcomp Publishing, Inc. (3873L Schaefer Avenue, Chino, California 91710], 1980, v, 118 pages, \(51 / 2 \times 81 / 2\), paperbound.
ISBN: 3-921682-57-6
\(\$ 14.90\)

Contains 32 brief business programs (averaging about 3 pages each) in Microsoft BASIC. According to the author (who developed them on PET 2001, CBM 3016, the Ohio Scientific Superboard, TRS-80, and the Sharp Computer MZ80K), the programs will run on any BASIC computer.

Microcomputers and Physiological Simulation by James E. Randall. Addison-Wesley Publishing Company, Inc.-Advanced Book Program (Reading, Massachusetts), 1980, xvi, 234 pages, paperbound.
ISBN 0-201-06128-7
\(\$ 14.50\)
An introduction to microcomputers and their use in mathematical simulations of physiological processes.

CONTENTS: Foreword by Arthur C. Guyton. Preface. Introduction-Mechanical Models; Mathematical Models; Analog Computers; Digital Computers; Teaching by Simulation; References. Microcomputer Components-Microprocessors; Semiconductor Memory; Keyboard; Cathode Ray Tube Displays; Mass Storage; Microcomputers; References; Microcomputer Periodicals; Manufacturers Cited. Operating Systems and Programming Languages-Monitors and Operating Systems; CP/M; Assemblers; BASIC; Other Programming Languages; References; Software Sources. Hardware Enhancements for Simulation-Graphics; Numerical Processors; References; Manufacturers Cited. Representative Microcomputers-TRS-80; Apple II; S-100 Bus Microcomputer; References. Compartmental Kinetics: A First Example-The Hydraulic Model; Computed Responses; The BASIC Program; References; Chapter Appendix. The Glucose Tolerance Test-The Insulin-Glucose Interaction Model; The BASIC Program; Computed Responses; References; Chapter Appendix. Cardiovascular System Mechanics-The Functional Relationships; Steady-State Solutions; Steady-State Exercises; Transient Solutions; References; Chapter Appendix. Arterial Pulse Pressure-The Model; Computed Responses; The BASIC Program; References; Chapter Appendix. Vectorcardiography and the Limb Leads-Computed responses; The BASIC Program; Chapter Appendix. Distortion of Waveforms-Computed Responses; Digital Filtering; Restoring Distorted Waveforms; The BASIC Program; References; Chapter Appendix. Axon Action PotentialsFormulation in BASIC; Output Displays; Properties of Excitation; Computation Methods; References; Chapter Appendix. Cardiac Action Potentials-Formulation in BASIC; Computed Responses; Output Display and Computation Methods; References; Chapter Appendix. Formatting Student Exercises-Turnkey Systems; Programming. Index.

\title{
Full Disassembly Listing on Small Systems
}

\begin{abstract}
Thls is a utllity program for the small system owner who publishes software listings. It examines a program in memory and Ilsts the program In disassembly format, Identifylng the operands of each op code. After printing the op code and the assoclated operands, it pauses to allow the operator to furnish label names and comments. Thus, a "cameraready" Ilsting can be produced even though the system doesn't have a large memory.
\end{abstract}

Ralph Tenny
P.O. Box 545

Richardson, Texas 75080

The First Book of KIM contained MINIDIS, by Dan Lewart. This program allowed the user to scan memory and identify any illegal 6502 op codes by blinking the KIM display. After I converted MINIDIS to drive a printer, I discovered that it allowed me to print each op code and the corresponding operands. However, it would also "disassemble" many other bytes and identify each according to the type of instruction it "ought" to be. After considerable thought, I began over and produced DISEDIT II, which would test for possible 6502 illegal op codes and sort the legal op codes according to the number of operands each uses. After each op code/operand combination, DISEDIT II would halt to allow the user to type labels, mnemonics and comments in a form to gladden the heart of any editor. This program functioned on an unexpanded KIM, but did not leave room for a large program.

DISEDIT II didn't really disassemble the code. If it had |typing out addresses, code and operands), it would also have typed in locations instead of labels, and would not (unless modified) have allowed for an opportunity to type in comments.

In the process of expanding my KIM, it got to be a hassle having both a program area and a zero-page look-up table, so the program was modified to be fully relocatable and ROMable. I will eventually have it in a ROM plugin module. The version shown is located at \(1200_{16}\) and uses the following zero-page buffers:
\[
\begin{aligned}
& 0000_{16} \text { - TEMP; temporary } \\
& \text { storage of op code be- } \\
& \text { ing tested. } \\
& 0002_{16} \begin{array}{l}
\text { - SAL; low byte of } \\
\text { starting address of pro- } \\
\text { gram being listed. }
\end{array} \\
& 0003_{16} \begin{array}{l}
\text { - SAH; high byte of } \\
\text { start address. }
\end{array} \\
& 0004_{16} \begin{array}{l}
\text { - EAL; low byte of end } \\
\text { address in auto list } \\
\text { mode. }
\end{array} \\
& 0005_{16} \begin{array}{l}
\text { - EAH; high byte of } \\
\text { end address. }
\end{array} \\
& 0007_{16} \begin{array}{l}
\text { - TMPY; storage for } \\
\text { current Y-index value. }
\end{array}
\end{aligned}
\]

Auto list mode is a last-minute addition which allows the listing to proceed from program start to end, without pausing for you to enter the labels, etc. This speeds up the debugging utility of the program considerably, and allows a quick check on accuaracy of program entry when keying in a new program. To activate the auto list mode, simply change two locations as follows: \(12 \mathrm{DD}_{16}-08\); \(12 \mathrm{E} 3_{16}-02\). This modification forces the branch to pass up STOP1, and the program runs continu.ously. If you have implemented sense switches, as I plan to, the program could be modified
slightly to test a sense switch and run in auto list or normal mode, at the setting of one switch.

After having the program around for a while, other uses for it have become apparent. For example, it requires quite a bit of concentration to check keyed-in data against the usual assembly-format listing. However, using DISEDIT IV presents the memory contents in the same format as the published listing. This speeds up entry checking and recognition of errors. Also, an illegal op code which results from an improper key entry will break up the entire pattern, so only operands require close checking to verify their accuracy.

Here is how to use the program: The user places the address of the first byte of executable code in \(0002_{16}\) and \(0003_{16}\) with the low byte first as usual with KIM. Note the comment after address \(12 \mathrm{E} 2_{16}\). If the code is to be modified for an exit to monitor, etc., then enter the end address in \(0004_{16}\) and \(0005_{16}\)

After loading the start address, simply go to location \(1200_{16}\) and hit GO. The printer will print the first line of machine code and wait for you to space over to the appropriate columns and type in labels, mnemonics, operands and comments for that line. Hit GO again, type, etc., and do this until you hit the end of the program. Of course, if you're only debugging, print out the whole program as fast as you can hit GO. (You could also change to auto list mode as outlined above.)

Meanwhile, the program works this way: The starting address is printed out, by the code beginning at label START. Next, the Y index is loaded \((0\), on the first pass) and used to fetch the first byte of code. At location \(121 \mathrm{~B}_{16}\) the lower nibble of the op code is stripped off and loaded into the \(X\) register.

\section*{PROGRAMMER FATIGUE?}

SYM-BUG/MONEX adds 15 commands to SYM's repertoire including an interacfive trace/debug Cassette © \(\$ 0200\) or \$3800: \$19.95. EPROM (2716-5v) © \(\$\) F000-\$F7 FF: \(\$ 39.95\). Commented source listing: \(\$ 9.95\). RAE-1/(2) FORMAT CASSETTE: \(\$ 35\) requires 8 K / Custom assembly add \(\$ 2.00\). Foreign add \(\$ 2.00\). SASE for more information.

Jeff Holtzman
6820 Delmar-203
St Louis, Missouri 63130
OSI CAP AND SUPERBOARD USERS
Programmable tone generator. 256 tones and stable duty cycle are both set with a. POKE statement Adds much more yersatilit to programming. Uses readily available parts. For complete plans and sample software send \(\$ 7.00\) check or money order to:

\section*{Monte Barker}

3423 W. Canoga
Anaheim, Califomia 92804
PET MACHINE LANGUAGE GUIDE Comprehensive manual to aid machine language programmer, Mote than 30 routines are filly detailed tho that the reader can put the nt to immediate use.
 VSA \& Masterchazge accented

Abacus Software.
PO. Box 721 ?
Grand Rapids, Michigan 49510
OHIO SCIENTIFIC
Animated Moon Lander sane for ci 1 nit C4. View a series of high restriction loots. ing lunar vistas as ygudesend fruity miles Accurate instrument reading cation landing sequence stewards wot successful landing see whatOSI Eaph tics can dol Other programs iv alible 498

Earthship
PO Box 489 Sussex, New
OHO SCiENTIFIC
Catchword, a mils blate eompentite word game uses the compute t to senate Letters and point hues setters are ape ton grabs by any payer The tod s pinite o many words as possible in co password orin. on your board The computer recognize. and penalizes you for alt sot es of stop pl playing. Cl and C4 \(\$ 9.95\) yasserea 6 ch
 available:
Y Eathohip
PO Box 489

DISk LOGBOOK \(A\) software system fox creating, matinaigo ing and printing an satay fado logbook preparing and staiesing 0 S ES and tracking progress toward multiple awards, 48 K Applesoft and d dsequiuect
 in Ohio

Smartware
2281 Cobble Stone Ct:
Dayton, Ohio 45431
DISARM FOR APPLE II
Fast 2-pass disassemble t Withilabels: creates source for S-CAssembler TVer 4 O) Adaptable to other APPLE 1 assemblers capable of reading text files Many operating features. Send SASE for more details Program Diskette and user documentation: \(\$ 25,00\) postpaid.

RAK-WARE
41 Ralph Road
West Orange; New Jersey 07052

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1270 & C9 C4 & & CMP & *\$C4 & IS IT CPY? \\
\hline 1272 & BOCl & & BCS & QSMK & THROW OUT THOSE GRTR. \\
\hline 1274 & 9031 & & BCC & TWO & REST ARE 2-BYTE CODES \\
\hline 1276 & C9 89 & TSTD & CMP & \#\$89 & GOT AN ILLEGAL? \\
\hline 1278 & FO BB & & BEQ & QSMK & YEP, THROW IT OUT \\
\hline 127A & 2910 & & AND & \#\$10 & SORT ODDS FROM EVENS \\
\hline 127C & F0 29 & & BEQ & TWO & TWO BYTE CODES \\
\hline 127 E & DO 2C & & BNE & THREE & \& REST ARE 3-BYTE CODES. \\
\hline 1280 & C9 9A & TSTE & CMP & \#\$9A & FIND AN ODD ONE \\
\hline 1282 & F0 1E & & BEQ & ONE & AND LOG IT. \\
\hline 1284 & C9 BA & & CMP & \#\$BA & GET AN EVEN ONE, \\
\hline 1286 & F0 1A & & BEQ & ONE & COUNT IT AS A ONE, \\
\hline 1288 & 2910 & & AND & \#S10 & SORT OUT THE EVEN ONES, \\
\hline 128A & D0 A9 & & BNE & QSMK & AND REJECT THE ODD ONES. \\
\hline 128C & F0 14 & & BEQ & ONE & CALL REST ONE-BYTE CODES. \\
\hline 128E & C9 OC & TSTF & CMP & \#\$0C & THIS ONE IS UNUSED \\
\hline 1290 & F0 A3 & & BEQ & QSMK & SO REJECT IT. \\
\hline 1292 & C9 BC & & CMP & \#\$BC & THIS ONE USED--TRY IT \\
\hline 1294 & F0 16 & & BEQ & THREE & THREE BYTE CODE \\
\hline 1296 & 2910 & & AND & \#\$10 & SORT OUT ODD ONES \\
\hline 1298 & F0 12 & & BEQ & THREE & KEEP THE EVEN ONES \\
\hline 129A & D0 99 & & BNE & QSMK & BRAND THE ODD ONES \\
\hline 129C & C9 9E & TSTG & CMP & \#\$9E & ONLY ONE MORE TO TRY \\
\hline 129E & F0 95 & & BEQ & QSMK & GOT HIM \\
\hline 12AO & DO OA & & BNE & THREE & KEEP REST AS THREE'S \\
\hline 12A2 & A5 00 & ONE & LDA & TEMP & GET CURRENT OP CODE \\
\hline 12A4 & 4C C2 12 & & JMP & PRTONE & AND PRINT IT ALONE \\
\hline 12A7 & A5 00 & TwO & LDA & TEMP & GET OP CODE \\
\hline 12A9 & 4C B8 12 & & JMP & PRTTWO & AND GIVE IT A FRIEND \\
\hline 12AC & A5 00 & THREE & LDA & TEMP & GET OPCODE \\
\hline 12AE & 20 2E 12 & PRTTHR & JSR & PRINT & AND GIVE IT A FAMILY! \\
\hline 12B1 & A4 07 & & LDY & TMPY & GET CURRENT INDEY \\
\hline 1283 & C8 & & INY & & \&BUMP IT ONE. \\
\hline 12B4 & B1 02 & & LDA & (SAL), Y & USE TO FETCH NEXT BYTE \\
\hline \(12 \mathrm{B6}\) & 8407 & & STY & TMPY & KEEP THE INDEX VALUE \\
\hline 1288 & 20 2E 12 & PRTTWO & JSR & PRINT & PRINT THE BYTE \\
\hline 12BB & A4 07 & & LDY & TMPY & GET THE INDEX \\
\hline 12BD & C8 & & INY & & ADD ONE \\
\hline 12BE & B1 02 & & LDA & (SAL), Y & AND GET ANOTHER BYTE. \\
\hline 12CO & 8407 & & STY & TMPY & REMEMBER THE INDEX \\
\hline 12 C 2 & 20 2E 12 & PRTONE & JSR & PRINT & PRINT A LONER \\
\hline 12 C 5 & E6 07 & NEXT & INC & TMPY & SET UP FOR NEXT PASS \\
\hline \(12 \mathrm{C7}\) & A5 07 & & LDA & TMPY & BY ADDING THE INDEX. \\
\hline 12C9 & AO 00 & & LDY & *\$00 & CLEAR Y INDEX \\
\hline 12CB & 8407 & & STY & TMPY & AND TMPY. \\
\hline 12CD & 18 & & CLC & & PREPARE TO ADD \\
\hline 12CE & 6502 & & ADC & SAL & THE ACCUMULATOR TO SAL. \\
\hline 1200 & 8502 & & STA & SAL & UPDATE SAL \\
\hline 1202 & 1503 & & LDA & SAH & AND GET HI BYTE \\
\hline 1204 & 6900 & & ADC & \#SOO & BUMP IT IF CARRY \\
\hline 1206 & 8503 & & STA & SAH & AND UPDATE SAH. \\
\hline 12 D 8 & A5 02 & & LDA & SAL & GET CURRENT POINTER \\
\hline 120 A & C5 04 & & CMP & EAL & = LAST LOCATION? \\
\hline 12DC & 9006 & & BCC & STOPA & WAIT FOR SLOW TYPIST! \\
\hline 12DE & A5 03 & & LDA & SAH & TEST SAH \\
\hline 12E0 & C5 05 & & CMP & EAH & LAST BYTE? \\
\hline 12E2 & 9000 & & BCC & STOPA & OPTIONAL PROV. FOR MON. EXIT \\
\hline 12 E 4 & 00 & STOPA & BRK & & WAIT FOR SLOWPOKE \\
\hline 12E5 & 00 & & BRK & & FILLER BYTE \\
\hline 12E6 & 20 2F 1E & PRESS & & CRLF & BRK STOPS IT HERE-- \\
\hline 12E9 & 4 C 0812 & & JMP & START & GO BACK FOR MORE \\
\hline 12EC & 48 A7 5E & 3764 A7 & 7 A7 & 7 A2 768 & 8037 8E AC 9C 37 \\
\hline
\end{tabular}

This index is used to locate a jump vector from the table at the end of the program. Note that this vector is stored at \(1780_{16}\) and that \(12_{16}\) is loaded into 1781. At \(122 \mathrm{~B}_{16}\) an indirect jump takes you to the particular sorting routine which tests the op code to see if it is legal. If it is, the sort routine also sets up to print the operands for that op code.

For example, let's assume that \(20_{16}\) is the op code under consideration. After the mask step at \(121 \mathrm{~B}_{16} X=0\). The jump vector at \(12 \mathrm{FA}_{\mathrm{I} 6}(\mathrm{X})\), where \(X\) is 0 , is \(48_{16}\). In other words, the program goes to \(1248_{16}\) to see if it has a legal op code.

At \(1248_{16}\) the first test is for \(20_{16}\) which tests true. The program goes directly to label THREE \(\left(12 \mathrm{AC}_{16}\right)\), where the op code is picked up from TEMP and printed. Since \(20_{16}\) is a three-byte op code, the program continues on through labels PRT2 and PRT1, then on to NEXT, which adds the current \(Y\) index |now up to 02 after having printed the JSR op code and the associated two address bytes |, and adds it to the start address in SAL. Next, SAH is updated if there was a carry, and TMPY zeroes TMPY so that location \(1215_{16}\) will begin with \(Y=0\) again. The program continues until you stop it, or it stops by finding it has qualified on the last address to be printed out. In the case of a two-byte code, the jump is to TWO and then PRT2; for a singlebyte code the jump sequence is ONE, PRT1.

If you wish to locate this program in another area of memory, simply change all page numbers (the third byte in any three-byte codes) from 12 to the desired location. For example, to begin the program at \(0200_{16}\) simply change all 12 's in the third byte to 02 . Note that all the other three-byte codes refer to KIM monitor locations, which must remain unchanged.

Ralph Tenny has worked in the electronics industry since 1954, and was working at Texas Instruments when micros came of age. In recent years, he has been working for George Goode \& Associates, Inc.. Besides general applications of micros in laboratory work there, he teaches Assembly language programming on the Texas Instruments TMS 9900 microprocessor. He has had a KIM-1 for about four years. Part of his work has been writing about micros-helping write a textbook, application notes, and instruction and user manuals.

\section*{POWER A PLUS II \({ }^{\text {m" }}\)}

Check out the specifications on this industrial quality power supply.

INPUT SPECIFICATIONS: \(\mathbf{1 0 5 - 1 2 5 / 2 1 0 - 2 5 0 ~ V A C , ~} 50-60 \mathrm{~Hz}\) OUTPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|}
\hline OUTPUT & RIPPLE \& NOISE & REGULATION \\
\hline \[
\begin{aligned}
& +5 \mathrm{VDC} @ 5.0 \mathrm{~A} \\
& \text { (OV,CF,RV) }
\end{aligned}
\] & \begin{tabular}{l}
10 mv . max. \\
(6) 0.0 to 4.5A
\end{tabular} & \(\pm 0.1 \%\), line and load with \(10 \%\) ithe chenge \\
\hline \[
\begin{aligned}
& +12 \text { VDC } @ 0.5 A \\
& \text { (TO, OV) }
\end{aligned}
\] & \begin{tabular}{l}
15 mv max. \\
(a) 0. to 0.5A
\end{tabular} & \(\pm 0.1 \%\), line and load with \(10 \%\) line change \\
\hline \[
\begin{aligned}
& \text { + } 24 \text { VDC 1.OA* } \\
& \text { (1.5A surge) } \\
& \text { (TO, OV, RV) }
\end{aligned}
\] & \begin{tabular}{l}
24 mv max. \\
(a) 0.0 to 1.0 A
\end{tabular} & \begin{tabular}{l}
\(\pm 5 \%\) nominal, \\
\(\pm 7 \%\) max.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Optional } \\
& -5 \text { VDC } @ 0.5 A \\
& \text { (TO, OV, RV) }
\end{aligned}
\] & \begin{tabular}{l}
15 mv max. \\
(1) 0.0 to 0.5A
\end{tabular} & \(+0.3 \%\), line and load with \(10 \%\) line change \\
\hline
\end{tabular}

Protection Key: OV - over voltage, CF - current foldback
RV - reverse voltage, TO - thermal overload
Weighs 4 pounds. This open frame model has all of the voltages required by the AIM/SYM/KIM, plus extra voltages and capacities for driving additional expansion boards and devices. Includes fuse holder, fuse, line cord, and switch. No other power supply you can buy offers this power, combination of voltages, quality and low price.

POWER A PLUS II \$65.
Dealer and OEM Inquiries Invited Prices quoted US - does not include shipping \& handiling.

\section*{DRAM PLUS \({ }^{\text {™ }}\)}

DRAM PLUS offers the most powerful memory expansion capabilities available for the AIM, SYM, \& KIM microcomputers. Its many Important features include:
- 16K or 32K Dynamic RAM with all refresh handled on the board and completely transparent to the host microcomputer.
- Memory does not have to be addressed as a single 16 K or 32 K segment. 4 K segments of memory may be placed on 4 K boundaries.
- Up to 16 K ROM/EPROM with provision for four ROMs or EPROMs: 2716/2516 2K EPROMs, 2732/2532 4K EPROMs, or 2332 ROMs. These may be mixed on the board.
- Two Versatile Interface Adapters, each with two 8-blt I/O ports, additlonal handshaking lines, two timers, and a serial-to-parallel shift register.
- Prototyping Area has space for adding circuits: memory write protection, floppy disk controller, communications devices, A/D or D/A, etc.
- EPROM Programmer handies all four types of EPROM: 2716/2516 2 K and 2732/2532 4K.
- Simple Power Requirements of +5 volts at 1 amp and +12 volts at 150 milliamps. On board regulators permit unregulated power to be used.

DRAM PLUS: 16K RAM \$295, 32K RAM \$395 Dealer and OEM Inquiries Invited
Prices quoted US - does not include shipping \& handling.

GOMPUYERIST*
34 Cheimsford St., Chelmsford, MA 01824 617/256-3649

\section*{AIM PLUS II "}

\section*{Power and Protection for the AIM}

This heavy duty enclosure provides protection for the AIM, has provision for the addition of one expansion board, and has a high quality power supply built-in. Turn your naked AIM into an attractive, compact system. The Power supply provides +5V @ 5 amps , enough for the AIM and several expansion boards, +24 V © 1 amp with surge capability to handle the AIM Printer, and Includes +12 V for use on various expansion boards and other devices.
The enclosure is made of tough, commercial strength thermoformed plastic and provides easy access to the printer and the expansion connectors. No disassembly of your AIM or cutting is required.
Priced at just \(\$ 125.00\) US, this is certainly the best way to give your AIM the protection it deserves and the power it requires.

Prices quoted US - does not include shipping \& handiling.

\section*{VIDEO PLUS II \({ }^{\text {w" }}\)}

What could you add to the Video PLUS board to make It better? YOU COULD-
- Put the character generator in EPROM so that the user could define his own character set - 128 or 256 characters
- Make the character width programmable so that up to 120 characters per line are possible in a dense mode, or well separated 80 characters In a word processing mode
- Add extra RAM for program execution
- Provide all of the necessary software to interiace to an AIM, SYM, or KIM on an EPROM
- Provide a number of additional display features such as flicker free operation, reverse video, character blank/unblank, support for keyboards with inverted strobes and/or data, ...
- Improve the ASK Video Software so that It does not use any of page zero or page one, making it totally transparent to the AIM, SYM and KIM monitors, editors, assemblers, ... (see note)
- Provide DIP switches to select the various options
- Provide full support, Including software, for running the board as a stand-alone terminal
- Provide an asynchronous communication facility with RS232 and 20 Ma Current loop operation at 50 to 19,000 baud
AND WE DIDI Video Plus il has all of the features of the original Video Plus, and all of the above features as well.
Note: The enhanced Video Plus II software is avallable to Video Plus owners at a nominal charge - \(\$ 10\) for cassette and documentation. VIDEO PLUS II: Standard board \(\$ 295\)

Options: Additional 4K RAM \(\$ 50\)
6502 Standalone processor \(\$ 20\)
Communications provision \(\$ 35\)
Dealer and OEM inquirles Invited
Prices quoted US - does not include shipping \& handiing.
 617/256-3649

\section*{SYM Bridge Trainer}

\begin{abstract}
An elementary program designed to operate on a SYM-1, and requiring less than \(1 / 2 \mathrm{~K}\) of RAM. It can easily be adapted to the KIM, or any other 6502. Its general principles can be used by anyone.
\end{abstract}

Len Green
15 Yotam Street
Achuza
34675 Haifa, Israel

A somewhat elderly physics teacher with no previous knowledge of computers, and shamefully little of electronics, I purchased one of the first SYM-1's in summer 1978. There was then no documentation available for novices like me. Thanks to MICRO, and more recently SYMphysis, the situation has improved immensely, and I have acquired much more SYM material during the past few months than in the whole previous \(11 / 2\) years. MICRO and other national magazines have published articles during the past year on clocks, music-makers, MorseCoders, typing trainers, etc., some of them overlapping; also games such as Nim, Mastermind, Noughts and Crosses and Lunar Lander. However, to the best of my knowledge, nothing has been published on my obsession prior to microprocessors, that is-bridge. The following is my undoubtedly crude and amateur attempt to rectify this omission.

Bridge is an intricate game involving the interaction of four players at the bidding stage and three players during the actual play. To simulate the game on a computer requires an extremely long program, and even such a program may not succeed in covering all of the game's different aspects. Several commercial packages are advertised, but since I haven't seen any of them, I cannot judge their merits and limitations. Conversely, a short program can only deal with some restricted aspect of the game, and hence is somewhat of a gimmick. This probably explains the paucity of bridge (and chess) routines printed in journals. A complete and entertaining game of blackjack, Mastermind and the like, can be compressed into about \(1 / 2 \mathrm{~K}\) bytes of machine code, which is a nice length for a magazine article. But with bridge, the same \(1 / 2 \mathrm{~K}\) will hardly be enough for the preliminaries and bidding, let alone the actual play itself!

This program only goes as far as the opening bids, but all the shuffling, dealing, arranging, and also opening bid routines together only occupy about \(1 / 3 \mathrm{~K}\) of RAM. It was designed to display fully on the 7 -segment panel of a minimal 1 K SYM (or KIM), and the display, timing and beeping routines add another 130 bytes or so, making a total listing of 463 bytes. As it stands, it can only be used to check, quiz or compare opening bids, although it can serve to improve speed in bidding, gain insight into the different configurations of the four hands, etc. However, many of the fundamental mechanisms for calling and playing bridge are present, including all four hands, point counts, suit lengths, short and long suits, notrump and pre-emptive distributions, etc. This program should provide a basis of routines which could be developed and expanded into a reasonably complete game of bridge, to run on SYM's 8 K extended onboard RAM, or possibly to be adapted for BASIC.

To operate, simply key in GO/200/CR. A deck is shuffled and the 52 cards dealt into the four hands N, E, S and W, each hand being arranged into the generally accepted order, high to low, of spades, hearts, diamonds and clubs. North's hand is then displayed card by card. " \(\mathrm{n}^{\prime}\) " on the left reminds you that North's hand is always displayed first, and the cards themselves appear on the extreme right. Record North's hand as it beeps away, and after the 13th card, the display blanks for 10 seconds, giving
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0200 & & & ORG & \$0200 & \\
\hline 0200 & 208688 & & JSR & ACCESS & UNWR ITE-PROTECT \\
\hline 0203 & A0 03 & & LDY & \#\$03 & SYSTEM RAM \\
\hline 0205 & 205803 & & JSR & INIT & FOR NORTH \\
\hline 0208 & 201802 & & JSR & DEAL & \& ROUND NORTH \\
\hline 0208 & A9 03 & PLAY & LDA & \#\$03 & ROUND E,S,\& W \\
\hline 0200 & & & PHA & & \\
\hline O20E & & LBLA & PLA & & \\
\hline 020F & & & tay & & \\
\hline 0210 & 88 & & DEY & & \\
\hline 0211 & 98 & & TYA & & \\
\hline 0212 & 48 & & PHA & & \\
\hline 0213 & 207003 & & JSR & inita & FOR E,S, \& W \\
\hline 0216 & 68 & & PLA & & \\
\hline 0217 & & & PHA & & \\
\hline 0218 & D0 F4 & & BNE & LBLA & \\
\hline 021A & 60 & & RTS & & END!--DISPLAY "W". \\
\hline 021B & A9 FF & DEAL & LDA & \#SFF & FILL CARBUF WITH \\
\hline 021D & A2 33 & & LDX & \#\$33 & ILLEGAL CARD \#SFF \\
\hline 021 F & 95 B0 & LBLB & STA & \$0080, X & \\
\hline 0221 & CA & & DEX & & \\
\hline 0222 & 10 FB & & BPL & LBLB & \\
\hline 0224 & A0 33 & & LDY & \#\$33 & \\
\hline 0226 & AD 1E A.4 & RAND & LDA & RIOTTI & 6532 RIOT TIMER \\
\hline 0229 & 6D 04 AO & & ADC & VIATI & 6522 VIA TIMER \\
\hline 022 C & 29 3F & FXCARD & AND & \#53F & GENERATE PSEUDO- \\
\hline O22E & 85 F8 & & STA & \$00F8 & RANDOM \\
\hline 0230 & 29 OF & & AND & \#50F & TRIO-DECIMAL \\
\hline 0232 & C9 00 & & CMP & \#\$00 & CARDS \\
\hline 0234 & B0 F0 & & BCS & RAND & \\
\hline 0236 & A5 F8 & & LDA & \$00F8 & \\
\hline 0238 & A2 33 & FILLPK & LDX & \#\$33 & CARD ALRFADY \\
\hline 023A & D5 B0 & LBLC & CMP & \$0080, X & IN PACK? \\
\hline 023 C & F0 E8 & & BEQ & RAND & try Again \\
\hline 023E & & & DEX & & \\
\hline 023 F & 10 F9 & & BPL & LBLC & \\
\hline 0241 & 99 B0 00 & & STA & \$0080, Y & CARDS INTO CARBUF \\
\hline 0244 & & & DEY & & \\
\hline 0245 & 10 DF & & BPL & RAND & \\
\hline 0247 & 208803 & ARRHAN & JSR & SEQUEN & HANDS INTO \\
\hline 024A & AO OC & EXHAN & LOY & \#SOC & BRIDGE SEQUENCE \\
\hline 024 C & B1 E4 & LBLD & LDA & (\$00E4), & , Y EXAMINE HAND-- \\
\hline 024E & 48 & & PHA & & \\
\hline 0245 & 208303 & & JSR & HIDIG & EXAMINE \\
\hline 0252 & F6 F0 & SULEN & INC & \$OOFO,X & HIGH ORDER DIGIT \\
\hline 0254 & & & PLA & & InC SUIT LENGTHS \\
\hline 0255 & 29 OF & HIPTS & AND & \#\$0F & \& LOW ORDER DIGIT \\
\hline 0257 & 38 & & SEC & & \\
\hline 0258 & E9 08 & & SBC & \#508 & SUBTRACT 8 POINTS \\
\hline 025A & 3007 & & BMI & LBLE & POSITIVE? \\
\hline 025C & 18 & & CLC & & \\
\hline 0250 & 65 EE & & ADC & SOOEE & SUM INTO HIGH-CARD \\
\hline 025F & 85 EE & & STA & SOOEE & POINT LOCATION \\
\hline 0261 & 85 EF & & STA & \$OOEF & COPY INTO TOTAL \\
\hline 0263 & 88 & LBLE & DEY & & POINT LOCATION \\
\hline 0264 & 10 E6 & & BPL. & LBLD & \\
\hline 0266 & A2 03 & SUPTS & LDX & \#\$03 & \# OF CARDS IN SLIIT \\
\hline 0268 & 38 & LBLF & SEC & & (S) \\
\hline 0269 & B5 F0 & & LDA & \$00F0, x & \\
\hline 0268 & E9 04 & & SBC & \#504 & SUBTRACT 4 FROM \\
\hline 026 D & 3005 & & BMI & DUPLIC & LENGTH. POSITIVE? \\
\hline 026F & 18 & & CLC & & \\
\hline 0270 & 65 EF & & ADC & SOOEF & ADD TO TOTAL POINTS \\
\hline 0272 & 85 EF & TOTPTS & STA & \$00EF & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0274 & B5 F & F0 & DUPLIC & LDA & \$00FO, X & COPY SUIT LENGTHS \\
\hline 0276 & 95 F & F4 & & STA & \$00F4, X & INTO \$F4 TO \$F7 \\
\hline 0278 & CA & & & DEX & & FOR STRONGEST \\
\hline 0279 & 10 & ED & & BPL & LBLF & SUIT \\
\hline 027B & AO & OC & DIHAN & LDY & \#SOC & DISPLAY CARDS \\
\hline 0270 & 98 & & LBLG & TYA & & OF HAND \\
\hline 027E & 48 & & & PHA & & \\
\hline 027F & B1 E & E4 & & LDA & (\$OOE4) & \\
\hline 0281 & 200 & 0703 & & JSR & DIIHANA & \\
\hline 0284 & 68 & & & PLA & & DISPLAY CARD \\
\hline 0285 & A8 & & & TAY & & PAUSE \& BEEP \\
\hline 0286 & 88 & & & DEY & & \\
\hline 0287 & 10 F & F4 & & BPL & LBLG & \\
\hline 0289 & A9 F & F4 & CHOOSU & LDA & \#\$F4 & SET UP CLUBS \\
\hline 028B & 85 E & E7 & & STA & \$00E7 & INDIRECT ADDRESSES \\
\hline 0280 & 85 E & E9 & & STA & \$00E9 & \\
\hline 028F & A9 F & F8 & & LDA & \#\$F8 & --ALSO SPADES+1 \\
\hline 0291 & 85 & EB & & STA & \$00EB & \\
\hline 0293 & 208 & 8B 03 & & JSR & SEQUEN & ARRANGE SU\|TS \\
\hline 0296 & A5 F & F7 & & LDA & \$00F7 & IN ORDER \\
\hline 0298 & A2 & 03 & & LDX & \#\$03 & GET LONGEST AND \\
\hline 029A & D5 F & F0 & LBLH & CMP & \$00F0, X & STRONGEST SUIT \\
\hline 029C & FO 0 & 03 & & BEQ & LBLI & \\
\hline 029E & CA & & & DEX & & \\
\hline 029F & 10 F & F9 & & BPL & LBLH & \\
\hline 02A1 & 86 F & F8 & LBLI & STX & \$00F8 & AND PUT INTO \$F8 \\
\hline 02A3 & A9 D & DB & & LDA & \#\$DB & PUT "2." INTO \\
\hline 02A5 & 8D 4 & 44 A6 & & STA & DISBUF & +04 D+4 \\
\hline 02A8 & A9 3 & 39 & & LDA & \#\$39 & PUT "C" INTO \\
\hline 02AA & 8 C & 45 A6 & & STA & DISBUF & +05 D+5 \\
\hline 02AD & A5 E & EF & GOBID & LDA & \$00EF & START BIDDING \\
\hline 02AF & C9 1 & 19 & & CMP & \#\$19 & T=25 POINTS OR MORE \\
\hline \(02 \mathrm{B1}\) & 90 & 02 & & BCC & LBLJ & ELSE CARRY ON \\
\hline 0283 & B0 3 & 3 C & & BCS & FINA & YES? FORCE TO FINA \\
\hline 0285 & C9 1 & 16 & LBLJ & CMP & \#\$16 & T=22 POINTS OR MORE? \\
\hline 0287 & 906 & 6E & & BCC & CONBID & ELSE GOT TO CONBID \\
\hline 0289 & A5 E & EE & NOTRUM & LDA & \$OOEE & NOTRUMP CALL? \\
\hline 02BB & C9 1 & 15 & & CMP & \#\$15 & H=21 POINTS? \\
\hline 02BD & FO 2 & 2A & & BEQ & FILLSU & ONLY 21: TO FILLSU \\
\hline 02BF & C9 & OF & & CMP & \#\$0F & \(\mathrm{H}=15\) POINTS? \\
\hline 02 Cl & F0 2 & 26 & & BEQ & FILLSU & ONLY 15! T0 FILLSSU \\
\hline 02 C 3 & A2 0 & 03 & & LDX & \#\$03 & \\
\hline 02 C 5 & B5 F & F0 & LBLK & LDA & \$00F0.X & \\
\hline \(02 C 7\) & C9 0 & 02 & & CMP & \#\$02 & SINGLETON OR VOID? \\
\hline 02 C 9 & 901 & 11 & & BCC & LONGSU & \\
\hline 02CB & DO 0 & 02 & & BNE & LBLL & ELSE CONTINUE \\
\hline 02CD & E6 E & ED & & INC & \$00ED & \\
\hline 02CF & CA & & LBLL & DEX & & \\
\hline 0200 & 10 F & F3 & & BPL & LBLK & CHECK ALL 4 SUITS \\
\hline 0202 & A5 E & ED & & LDA & \$00ED & \\
\hline 0204 & C9 0 & 02 & & CMP & \#\$02 & 2 DOUBLETONS? \\
\hline 02 D 6 & B0 0 & 04 & & BCS & LONGSU & YES? TO LONGSU \\
\hline 0208 & A9 & D4 & & LDA & \#\$04 & "N" INTO D+5 \\
\hline 02DA & D0 1 & 12 & & BNE & FIN & FORCE BRANCH TO FIN \\
\hline 02DC & A5 & EF & LONGSU & LDA & \$00EF & DISTRIBUTION POINTS? \\
\hline 02DE & C5 & EE & & CMP & \$00EE & I.E. 5 CARD SUIT \\
\hline O2EO & DO 0 & 07 & & BNE & FILLSU & THEN GOTO FILLSU \\
\hline 02E2 & A9 8 & 86 & FILLAC & LDA & \#\$86 & ELSE \\
\hline 02E4 & 8 C & 44 A6 & & STA & DISBUF & +04 "1" INTO D+4 \\
\hline 02E7 & DO 0 & 08 & & BNE & FINA & \& FORCE TO FINA \\
\hline 02E9 & A6 F & F8 & FILLSU & LDX & \$00F8 & TAKE LONGEST \\
\hline 02EB & BD & CO 03 & & LDA & SUIT, X & \& STRONGEST SUIT \\
\hline 02EE & 8 D 4 & 45 A6 & FIN & STA & Disbuf & +05 \& PUT INTO D+5 \\
\hline 02F1 & 48 & & FINA & PHA & & \\
\hline 02F2 & & 80 & & LDY & \#\$80 & DELAY ABOUT 10 SECS. (continued) \\
\hline
\end{tabular}
you time to make North's bid. SYM's verdict then beeps onto the display. Did you call correctly? If North makes a valid bid, the round stops there, since a short routine like this cannot cope with overcalls and responses. If, however, North passes, ". E " is displayed on the left of the display and the process is repeated for East's hand, followed by South's and finally West's.

Before you start bidding you will have to ascertain SYM's conventions in advance, as per recognized bridge practice. Regrettably, its criteria are mechanical and pretty limited, but then some human bridge players are no better. High card points are summed as usual, with ace counting as 4 ; king, 3 ; queen, 2; and jack, 1. Distribution points are added by incrementing for every card in each suit above four. This is possibly no more inaccurate than the method of counting doubletons, singletons and voids, which is also partially performed in this routine, but only used for testing no-trumps bidding.

Above 24 total points automatically produces a strong two club call, and generally below 13 points a no-bid. Between 22 to 24 points and between 16 to 18 points, two no-trump and one notrump calls are examined. The suit will then be no-trumps, providing that the high card points alone are not less than 22 or 16 points respectively, and the hand is balanced in the sense that there are no voids or singletons, and not more than one doubleton. This program does not examine individual suit stoppers. If no-trumps is eliminated, the longest and highest suit is chosen at the appropriate two or one level. If no suit longer than four cards is present, the bid will be a conventional one club, and a strong one club is bid with any hand possessing between 19 and 21 points. The usual element of confusion exists, in that any club call may possibly also be an ordinary genuine long club suit call. If no proper bid is valid, the routine tries one possible preemptive bid only. With a seven card suit or longer, and not less than 10 points including distribution, the bid will be three of the longest suit. Failing this, SYM will pass and no-bid with "P.S.".

To adapt for KIM, the upper zeropage storage locations can easily be relocated. The special SYM monitor routines and peripheral addresses have been underlined on the listing and
subroutines marked with asterisks. These must be replaced by their KIM or other microprocessor equivalents. The program utilizes both \(X\) and \(Y\) indexed indirect addressing and can be relocated anywhere else in memory. However, I have somewhat unethically cut out a number of bytes in DISBUF and DUMPT routines, and a couple of minor alterations will be necessary if the program is moved to considerably higher memory. DUMPT is a subroutine in the new revised SYM monitor, which is utilized here to give a cheap 3 byte fixed delay of about 10 seconds. If a different delay is desired, store a byte into TAPDEL at location \$A630 before the JSR to DUMPT:- 01 gives ? 4 seconds through to FF, which gives \(71 / 4\) minutes delay. Alternatively, this can be replaced by a standard delay routine. DISBUF in SYM's monitor System-RAM occupies \(\$ \mathrm{~A} 640=\mathrm{D}+\mathrm{O}\) to \(\$ \mathrm{~A} 645=\mathrm{D}+5\), the former storing the extreme left hand character to be displayed, and the latter the right hand one. Three of these six locations are used for the display, one is blanked out with \#00, and D+0 and \(\mathrm{D}+2\) are overwritten by the initial GO/200 command. When relocating to high memory on SYM, the necessity for any alteration to these two routines can be obviated if desired by simply adding a JMP to start address command at, say, location \(\$ 300\).

TV controls the period of DELAY logarithmically, and location \$031C can be altered for quicker or slower display of the cards. KIM owners note that the SYM monitor routine DELAY includes SCAND. It transfers the six segment codes previously stored in DISBUF to the 7 -segment display, and retains this display for the period set into TV. The deck of four hands is dealt into CARBUF zero-page locations \$00B0 to \$OOE3. Locations \$00E4 to \(\$ 00 \mathrm{~F} 8\) are used for indirect base addresses, SEQUEN locations, flags for points, suits, inbalance, long-suit, etc. The cards themselves do not get disturbed during the execution of the program and could be used later for continuing and extending the game. The display codes in the tables at the end have been chosen to be as clear and unambiguous as possible, within the obvious limitations of 7 -segments. One or two are a bit weird and need getting used to.

SYM has a useful Verify Checksum routine, amongst others, directly available at its keypad. In order to check that no byte has been keyed in incorrectly or subsequently altered, either before or after running the pro-

\begin{tabular}{|c|c|c|c|c|c|}
\hline 0384 & EA & & NOP & & PUT HIGH ORDER \\
\hline 0385 & 4A & & LSR & A & DIGIT INTO \\
\hline 0386 & 4A & & LSR & A & X INDEX REGISTER \\
\hline 0387 & 4A & & LSR & A & (BOTH NOP 'S ARE \\
\hline 0388 & 4A & & LSR & A & SUPERFLUDUS!) \\
\hline 0389 & \(A A\) & & TAX & & \\
\hline 038A & 60 & & RTS & & \\
\hline 038B & A2 00 & SEquen & LDX & \#\$00 & SUBROUTINE: \\
\hline 038D & A1 E7 & LBLQ & LDA & (\$00E7, X) &) REARRANGE IN \\
\hline 038F & C1 E9 & & CMP & (\$00E9, X) &) ASCENDING ORDER \\
\hline 0391 & 90 OC & & BCC & LBLR & CONTENTS OF ANY \\
\hline 0393 & A1 E7 & & LDA & (SOOE7, X) &) CONTIGUOUS \\
\hline 0395 & 85 E6 & & STA & \$00E6 & ZERO-PAGE \\
\hline 0397 & A1 E9 & & LDA & (\$00E9, X) &) MEMORY BLOCK... \\
\hline 0399 & 81 E7 & & STA & (\$00E7, X) & \\
\hline 039B & A5 E6 & & LDA & \$00E6 & \\
\hline 0390 & 81 E9 & & STA & (\$00E9, X) & ...START \& STOP+1 \\
\hline 039F & E6 E9 & LBLR & INC & S00E9 & INDEXED INDIRECT \\
\hline 03A1 & A5 E9 & & LDA & \$00E9 & ADDRESSES \\
\hline 03A3 & C5 EB & & CMP & \$00EB & \$E7 TO \$EC \\
\hline 03A5 & DO E6 & & BNE & LBLQ & ..\$E6 IS A \\
\hline 0317 & E6 E7 & & INC & SOOE 7 & WORK LOCATION \\
\hline 03A9 & A5 E7 & & LDA & SOOE 7 & \\
\hline 03AB & 85 E9 & & STA & \$00E9 & \\
\hline 03AD & A5 E9 & & LDA & \$00E9 & \\
\hline 03AF & C5 EB & & CMP & \$OOEB & \\
\hline 03B1 & DO DA & & BNE & LBLQ & \\
\hline 0383 & 60 & & RTS & & \\
\hline 03B4 & D7 & STRTAD & = & SD7 W & , START ADDRESSES \\
\hline 0385 & CA & & \(=\) & SCA S & \\
\hline 03B6 & BD & & = & \$BD E & \\
\hline \(03 \mathrm{B7}\) & B0 & & = & \$BO N & \\
\hline 0388 & E4 & ENDAD & = & \$E4 W & 1 END+1 ADORESSES \\
\hline 0389 & D7 & & \(=\) & \$D7 S & \\
\hline 03BA & CA & & = & \$CA E & \\
\hline 03BB & BD & & = & SBD N & \\
\hline
\end{tabular}
DISPLAY SEGMENT TABLES
\begin{tabular}{|c|c|c|c|c|}
\hline 03BC 3A & SEGMNT & = & \$3A & \(W\) (L') \\
\hline 03BD 6D & & = & \$60 & S \\
\hline 03be 79 & & = & \$79 & E \\
\hline 03BF 54 & & = & \$54 & \(n\) \\
\hline 03C0 39 & SUIT & \(=\) & \$39 & C \\
\hline 03C1 5E & & = & \$5E & d \\
\hline 03C2 76 & & = & \$76 & H \\
\hline \(03 \mathrm{C3} 60\) & & = & \$6D & S \\
\hline \(03 \mathrm{C4}\) D8 & Value & \(=\) & \$DB & 2. \\
\hline 03C5 CF & & = & \$CF & 3. \\
\hline 03C6 E6 & & = & \$E6 & 4. \\
\hline \(03 \mathrm{C7}\) AD & & = & \$AD & 5. (5.) \\
\hline \(03 \mathrm{C8}\) FD & & \% & \$FD & 6. \\
\hline 03 C 987 & & \% & \$87 & 7. \\
\hline 03CA FF & & \% & SFF & 8. \\
\hline O3CB E7 & & \% & \$E7 & 9. \\
\hline 03CC F8 & & = & \$F8 & 10 (E.) \\
\hline 03CD 9E & & = & \$9E & J. \\
\hline O3CE EB & & \% & \$EB & Q. (口.) \\
\hline 03CF F0 & & \% & \$FO & K. (F.) \\
\hline 0300 F7 & & = & \$F7 & \\
\hline
\end{tabular}
gram, the correct 4 digit checksum from location \$0200 to \$03D0 is \#F590.

Shortly after completing this article, I received SYM's mini 2 K Symbolic Assembler and have just got it up and running. Now for the first time I am experiencing the pros and cons of assembly language programming. To date I have been entirely confined to purely hand assembled machine code. Therefore, I merely put this program through my rudimentary SYM disassembler to produce the accompanying 6502 format listing, and added some pseudo-assembler labels and plenty of comments for elucidation.

The key routine of this program is FXCARD. It takes a stream of pseudorandom hexadecimals and alters them, where necessary, to the 52 unique triodecimal integers between \#00 and \#3C. The low order digit indicates the card's face value from two to ace. The high order digit indicates the suit in bridge strength order from clubs to spades. For example, the numbers \(3 \mathrm{C}, 38,32,2 \mathrm{~A}\), \(29,25,21,1 \mathrm{C}, 17,15,0 \mathrm{C}, 0 \mathrm{~B}, 06\) represent a maximum one no-trump hand;-Spades-A, T, 4; Hearts-Q, I, 7, 3; Diamonds-A, 9, 7; Clubs-A, K, 8. FXCARD simply ANDS out the hexadecimals with 3F, and filters out those ending in D, E and F. This system later enables simple examination of each card by merely ANDing plus right shifts. SULEN determines suit lengths (S), by incrementing four counters for cards with identical high order digits. HIPTS subtracts \#8 from the low order digits and sums all positive results giving the high-card point count (H). Afterwards, the distribution points for all suits longer than 4 cards are added to provide the total points \(|\mathrm{T}|\) in TOTPTS. DIHAN transfers the digits to the \(Y\) index register, and the two appropriate alphanumeric segment codes for each card are put into DISBUF, using indexed addressing. The cards of one hand are then displayed, accompanied by pauses and beeps. Arranging the cards of a hand into correct bridge sequence is performed conveniently by the standard subroutine SEQUEN, which also serves CHOOSU to determine the longest and strongest suit for declaring.

The pseudorandom \# generation is very crade. SYM bas 7 timers built into its 4 VIA's, and here one of the 6522's is used together with the 6532 timer. The statistics are probably highly questionable, but nevertheless RAND, at the cost of 6 bytes, seems to give the same sort of random hands I get when I actually play bridge. A more

\section*{MICRO wants to obtain more}

\section*{Forelgn and Domestic Dealers and Distributors}

To learn why you should carry MICRO products, (MICRO - the 6502 Journal, The BEST OF MICRO Series, and additional special interest publications) write or call:

\section*{James Anderson Marketing Director}

MICRO wants to tell advertisers more about why they should advertise in forthcoming issues. For details, please write or call:

\author{
Cathl Bland Advertising Manager MICRO \\ P.O. Box 6502 \\ Chelmsford, MA 01824 \\ (617) 256-5515
}

PROGRESSIVE COMPUTER SOFTWARE 405 Corbin Rd., York, Pa. 17403
(717) 845-4954

SOFTWARE-HARDWARE-SYSTEMS CUSTOM PROGRAMMING
s
APPLE \& HDE
ANNOUNCING!
* DISK HEAD * CLEANING KIT

Designed to professionally clean your HDE or APPLE 5-1/4" disk unit heads without disassembling the drive. Available soon for HDE 8' drives.

PCSO1DC HDE 5-1/4"
PCS02DC APPLE 5-1/4"

Complete kit for many
cleanings - order now!
\$24.95

Send SASE for complete catalog or PCS/HDE pgm. library information.
sophisticated routine can always be substituted if desired. FILLPK is doubtless very wasteful on time, but quite frugal on memory. It merely goes round the previous cards selected and rejects any valid trio-decimal smaller than 3D, which has been selected previously. Despite its time inefficiency, it only takes a fraction of a second to shuffle and deal out the whole deck. The rest of the program, apart from the deliberately built in delay and pauses, is virtually instantaneous.

The bidding program runs from maximum points downwards, finishing with no-bid in default of any valid bid. Routines for no-trumps, long suit, clubs etc., are used more than once. The bidding program should be clear from the comments in the listing, and the previously mentioned bidding criteria. The only aspect which possibly warrants any comment is the no-trump bidding.

On the possibly debatable hypothesis that a valid no-trump call takes precedence over others, the criteria adopted for no-trumps are the three that I mentioned earlier. There is at least partial overlapping with some of the other routines essential to the program, and therefore several different possibilities of programming for notrumps. The method I have chosen is not necessarily the shortest or best. In addition to the short suit tests for voids and singletons and doubletons, I have employed a test for 15 or 21 high card points. No additional tests are necessary since 14 high-card points, for example, together with the mandatory minimum of 16 total points, indicate at least 2 distribution points, and hence one 6 -card suit, or two five-card suits etc. It should be evident that all of these are inconsistent with the short suit criteria for no-trumps, and hence would in any case be invalidated later on, on that count. Incidentally, once any distribution points are discovered, there must obviously be at least one biddable suit present. It is then superfluous to check for a one club call, and so the routine skips LONGSU and branches direct to FILLSU. LONGSU is the general routine which compares the total points with the high-card points. If these are equal, there are no distribution points, no long suit, and one club is called. If they are unequal, FILLSU transfers the longest and strongest suit to DISBUF.

SYM has not been programmed to bid the ACOL or Precision systems or the like, but simply a homely hybrid of amateur conventions. Experienced
bridge players may be particularly shocked that SYM calls one club with any good 19 to 21 point hand, and also with a large range of hands strong and weak containing no long suit, in addition to the regular genuine one club hand. But all of this can be modified in the programming to conform with any conventions according to personal tastes and individual requirements.

If desired, the program can be easily be altered to continue round all four hands after valid bids, to redisplay a hand, to bid preselected or problem hands, and a scoring and timing system could be added to increase tension and interest. If an extra page or so of RAM is available, SYM's onboard 'scope interface can be exploited to display each complete hand much more aesthetically, incorporating conventional card graphics for the four suits if so desired.

This routine certainly does not cover all eventualities; I don't know whether there are any conventions which do. The other day SYM's North "picked up", Spades-void; HeartsA,K, Q,J, 8, \(7,5,4,2\); Diamonds-void; Clubs-T, \(9,8,4\) : and naturally "1.H." appeared on the display. My shouting that this was an obvious four or five hearts, or at the very least one strong club, in order to keep the bidding open for one round, was, of course, a waste of breath. At least nobody screamed back! To obviate similar anomalies, it might be worth adding bonus distribution points on an increasing sliding scale for 8 -card suits and longer.

I should like to take this opportunity to thank the several experienced SYMmers in the United States, England, and New Zealand who have assisted and encouraged me by corresponding over the past year. I should also like to express my appreciation to the authors of The First Book of KIM. Apart from generally acting as a stimulating catalyst and learning tool, I have also modified and built upon basic ideas contained in their Blackjack, Card Dealer and Sort routines.

\footnotetext{
Len Green was born and educated in London, has travelled extensively in Europe, and now resides in Israel, where he has lived for nearly 30 years. He enjoys experimenting with his SYM, which he purchased in 1978, and he still considers himself to be a 'newcomer"' to hobbyist computing.
}

\section*{Bad News - Good News About MICRO Subscriptions}

The bad news - MICRO must raise subscription rates, to cover increased costs of envelopes, postage, and handling.
The good news - the increase is only \(\$ 3.00\), and the cover price will remain unchanged! Subscribers will be saving \(25 \%\) over single-copy purchases.

More Good News-you can still enjoy MICRO for the next two years without a price increase because - MICRO will accept one- and twoyear subscriptions, or renewals at the present rates until March 15, 1981!

Send your order c/o Circulation Department, MICRO, P.O. Box 6502, Chelmsford, MA 01824.
\begin{tabular}{lcc}
\hline Type of Subscription & \multicolumn{2}{c}{ Rates } \\
\hline & Current & New \\
U.S. & \(\$ 15.00\) & \(\$ 18.00\) \\
Foreign surface mail & 18.00 & 21.00 \\
Central America - Air & 27.00 & 30.00 \\
South America/Europe - Air & 33.00 & 3600 \\
Other air mail & 39.00 & 42.00 \\
\hline
\end{tabular}

\section*{EXCERT, INCORPORATED AIM-65 SYSTEMS}

EXCERT specializes in AIM-65 System Integration. In addition, we sell Industrial quality power supplies from Condor, cases from the Enclosures Group, and expansion products from Seawell, MTU, The Computerist, Cubit, Optimal Technology and we integrate these Items Into the exact System YOU want! These Systems are completely Assembled and Tested (whenever possible and at no additional charge) and Warranteed for six (6) months. All YOU have to do Is plug in the line cord.

Here are several of the more popular configurations:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Here are several of the more popular configurations:} \\
\hline "BASIC" System & 4K AIM W/BASIC Case \& Power Supply Assembly \& Test & A65-4B ENC4 N/C TOTAL & \[
\begin{array}{r}
\$ 510 \\
100 \\
610
\end{array}
\] \\
\hline "A/D" System, & \begin{tabular}{l}
4 K AIM \\
8 A/D in-2 D/A out, 500 conv/sec Cable \\
Case \& Power Supply \\
Assembly \& Test
\end{tabular} & \begin{tabular}{l}
A65-4 \\
ADC1 \\
CABLE \\
ENC5A \\
N/C TOTAL
\end{tabular} & \[
\begin{gathered}
\$ 420 \\
115 \\
25 \\
129 \\
689
\end{gathered}
\] \\
\hline "32K" System & \begin{tabular}{l}
OK AIM \\
32K DRAM Plus \({ }^{\text {tm }}\)-EPROM-I/O \\
Cable \\
Case \& Power Supply \\
Assembly \& Test
\end{tabular} & \begin{tabular}{l}
A65-0 \\
MEB4 \\
CABLE \\
ENC3A \\
N/C TOTAL
\end{tabular} & \[
\begin{array}{r}
\$ 360 \\
395 \\
15 \\
119 \\
889
\end{array}
\] \\
\hline
\end{tabular}

For more Information, call or write for our complete Product Sheet:
EXCERT, INC
P.O. Box 8600

White Bear Lake, MN 55110
(612) 426-4114

\section*{Skyles Electric Works}

BASIC Programmer's, Toolkit \({ }^{(10)}\), Disk-O-Pro \({ }^{(10)}\), Command-O For PET \({ }^{\text {(13) }}\) Owners Who Want More Fun
And Fewer Errors with Their Programs
Here are thirty-five commands you'll need, all on dual chips you can install in two minutes without tools, on any PET or PET system. 2KB or 4 KB of ROM firmware on each chip with a collection of machine language programs available from the time you turn on your PET to the time you shut it off. No tape to load or to interfere with any running programs.

For PET/CBM 2001-8, -8N, -16N/B, -32N/B, 3016 and 3032
BASIC Programmers Toolkite commands
AUTO \({ }^{\text {ed }}\) DELETE \({ }^{\text {ed }}\) RENUMBER \({ }^{\text {ed }}\) HELP \(^{\text {ed }}\) TRACE \({ }^{\text {ed }}\) STEP \({ }^{\text {ed }}\) OFF \({ }^{\text {ed }}\) APPEND \({ }^{\text {ed }}\) DUMP \({ }^{\text {ed }}\) FIND \({ }^{\text {ed }}\)

\section*{BASIC Programmers Disk-O-Pro}

\title{
CONCAT \({ }^{880}\) DOPEN \({ }^{880}\) DCLOSE \({ }^{880}\) RECORD \({ }^{880}\) HEADER \(^{880}\) COLLECT \(^{880}\) BACKUP \({ }^{880}\) COPY \(^{880}\) APPEND \({ }^{880}\) DSAVE \({ }^{880}\) DLOAD \({ }^{880}\) CATALOG \({ }^{880}\) RENAME \({ }^{\text {B80 }}\) SCRATCH \({ }^{\text {B80 }}\) DIRECTORY \({ }^{\text {B90 }}\) INITIALIZE \({ }^{\text {BS }}\) MERGE \({ }^{\text {BS }}\) EXECUTE \({ }^{\text {Bs }}\) SCROLLed OUTed SET \(^{\text {ed }}\) KILLed EAT \({ }^{\text {ed }}\) PRINT USING \({ }^{\text {es }}\) SEND \({ }^{\text {bs }}\) BEEP \({ }^{\text {bs }}\)
}

\section*{NOTES:}
ed - a program editing and debugging command
B80 - a BASIC command also available on Commodore CBM 8016 and 8032 computers.
BS - a Skyles Electric Works added value BASIC command.
BASIC Programmers Toolkit is a trademark of Palo Alto IC's.
BASIC Programmers Disk-O-Pro \({ }^{\text {ase }}\), Command-O \({ }^{(120}\) are trademarks of Skyles Electric Works.
PET \({ }^{\top}\), CBM are trademarks of Commodore Business Machines.
AVAILABLE: USA/CANADA: Please contact your local dealer
England: Calco Software Lakeside House, Kingston Hill, Surrey KT2 7QT
GERMANY: Unternehmensberatung. Axel Brocker Lennebergestr 4, 6500 Mainz
Japan: Systems Formulate, 1-8-17 Yaesu Shinmaki-cho Bldg. IIF Chuo-ku, Tokyo JAPAN 103
Phone or write for information. We'll be delighted to answer any questions and to send you the complate Information package.

\section*{Skyles Electric Works}

\section*{Skyles Electric Works}

BASIC Programmer's, Toolkit \({ }^{(10)}\), Disk-O-Pro \({ }^{\text {© }}\), Command-O For CBM \({ }^{(10)}\) Owners Who Want More Fun And Fewer Errors with Their Programs

Here are nineteen commands you'll need, on a single chip you can install in two minutes without tools, on any CBM or CMB system. 4KB of ROM firmware on each chip with a collection of machine language programs available from the time you turn on your PET to the time you shut it off.

For CBM 8016 and 8032; BASIC 4.0

\section*{BASIC Programmers Command-O}

AUTO \({ }^{\text {ed }}\) DUMPed DELETE \({ }^{\text {ed }}\) FIND \({ }^{\text {ed }}\) (improved) HELP \({ }^{\text {ed }}\) KILLed OFF \(^{\text {ed }}\) TRACE \({ }^{\text {ed }}\) (improved) RENUMBER \({ }^{\text {ed }}\) (improved) INITIALIZE \(^{\text {Bs }}\) MERGE \({ }^{\text {BS }}\) MOVE \({ }^{\text {ss }}\) EXECUTE \({ }^{\text {bs }}\) SCROLLed OUT \(^{\text {ed }}\) SET \({ }^{\text {ed }}\) SEND \({ }^{\text {bs }}\) PRINT USING \({ }^{\text {ss }}\) BEEP \({ }^{\text {ss }}\)

\(<\) NOtICE
When you order Command-O, we will loan you a Toolkit until we deliver Command-O.

\section*{PRICES:}
\begin{tabular}{lr}
BASIC Programmers Toolkit (chip only) & \(\$ 40.00\) \\
BASIC Programmers Disk-O-Pro (chip only) & \(\$ 75.00\) \\
BASIC Programmers Command-O (chip only) & \(\$ 75.00\) \\
Interface boards (needed sometimes) & \(\$ 20.00-\$ 50.00\) \\
Instruction Manual (with redeemable \(\$ 5.00\) coupon) & \(\$ 5.00\)
\end{tabular}

Shipping and handling \$2.50 USA/Canada, \$10.00 Europe/Asia California residents please add \(6 \%\) or 6-1/2\% sales tax as required

Reserve your Disk-O-Pro, Command-O today
Toolkity immediate delivery, Disk-O-Pro delivery in December, Command-O delivery in January VISA, MASTERCHARGE ORDERS CALL (800) 538-3083 (except California residents) CALIFORNIA ORDERS PLEASE CALL (408) 257-9140

Now includes the Simplified Text Processor (STP)
For \(32 K\) PET, disk
3.0 or 4.0 ROMS or - OR - ORAPPPLE II
8032 (specify) 8032 (specify)
and DISKII
MAEFEATURES
- Control Files for Assembling Multiple named source files from disk
- Sorted Symbol table - Up to 31 chars./labei
- 27 Commands, 26 Pseudo-ops, 39 Error Codes
- Macros, Conditional Assembly, and a new teature we developed

Called interactive Assembiy
- Relocatable Object Code
- String search and replace, move, copy, automatic line numbering, efc.
STP FEATURES
- 17 text processing macros
- Right and left justification
- Variable page iengths and widths
- Document size limited only by disk capacity

Software lower case provision for APPLE It without lower case modification
ALSO INCLUDED
- Relocating Loader
- Sweet 16 macro library for APPLE and PET
- Machine Language macro library
- Sample files for Assembly and text processing
- Separate manuals for both APPLE and PET

PRICE
- MAE, STP, Relocating Loader, Library files, 50 page manual diskette - \(\$ 169.95\)

SEND FOR FREE DETAILED SPEC SHEET
EASTERN HOUSE SOFTWARE 3239 LINDA DRIVE WINSTON-SALEM, N.C. 27106
(919) 924-2889
(919) 748-8446

\section*{THE MAILING LABEL AND FILING SYSTEM}

From Avant-Garde Creations
only \(\$ 24.95\) ppd.
This unique system will handle both your filing needs and your mailing label needs.
It's uniqueness starts with user-determined variables (up to 10 options) and continues with a special COUNT/SORT routine that allows the user to sort up to 9 VALUES for each of any 9 (out of 18) variables. It will print mailing labels, do a regular print-out or just display the criteria-meeting records while it counts them. It will also range-sort for 3 particular variables.
It makes an alphabetized directory of names and record numbers. You can find records by name or by numbers in seconds. If you don't know the exact spelling there's a quick-find option for directoryreading.
You can customize your labels and print up to 6 lines of your variables on them.
It includes special quick-copy and backup programs.
An easy to use system, brimming with options and dynamics, which ends the need for separate filing and mailing label programs. Includes 40 -page program manual and disk. APPLE II PLUS, 48 K , one or two disk drives.
\(\$ 24.95\) ppd.
We accept VISA/Mastercharge
Write for our detailed brochure and more information:

Avant-Garde Creations P.O. Box 30161 Eugene, OR 97403

Dept. m

\section*{Winchester Backup}

ALLOY offers COST-EFFECTIVE Tape Sub-systems boasting File-Oriented Backup. Using this technique, a Maintenance backup need only contain Active or Changed Files. Furthermore, a single file may be restored without disturbing other modified files. The Cartridge-Tape products support the "FUNNEL" 6400 bpi product by Data Electronics (DEI). The 9-TRACK products support most Industry Compatible Formatted tape units including the new Clpher Microstreamer.

Cartridge-Tape Subsystems with up to 13.4
Mbytes are avallable for:
- Data General microNOVA and NOVA
- Ohio Scientific Challenger C2/C3
- S-100 under both CP/M \({ }^{\text {TM }}\) \& MP/M
- Intel Multibus under ISIS
- Z-80 processor piggy-back 5" \(\times 5\) "
- General Purpose RS-232 \& PARALLEL

9-Track Tape Subsystems with up to 45 Mbytes are available for:
- Ohio Scientific Challenger C2/C3
- S-100 under both CP/M \({ }^{\text {TM }}\) \& MP/M

\footnotetext{
Computer Products Division
}

By Loren Wright

\section*{Update on the VIC}

I had expected to have a VIC prototype in time for this month's column. I am assured by Commodore, however, that I will have one in time for February's PET Vet. Meanwhile, I have learned a few additional details. The price is \(\$ 299.95\), which includes 3.8 K of user RAM and a cable for a monitor, but not the TV modulator. The primary method of memory expansion is with a plug-in cartridge, containing 3 K of RAM and sockets for two 2716-type ROMs. These cartridges will be available to independent software houses, so that they can produce their own plug-in program cartridges for the VIC. The second method of expanding is through a master control board, which can accept \(3 \mathrm{~K}, 8 \mathrm{~K}\), or 16 K RAM expansion modules, other plug-in programs, or special cards, such as a planned IEEE-488 interface.

The VIC, unlike the PET and CBM machines, has a serial bus, and for this Commodore will sell a serial version of the CBM 2031 single floppy disk drive, and a serial printer. Other peripherals for the VIC will be offered later, but to use any of the existing parallel devices, the IEEE-488 card is required.

The official release of the VIC will coincide with the Consumer Electronics Show in Las Vegas in January, 1981.

\section*{Finding BASIC Variables}

Finding a BASIC variable is quite simple using a routine that already exists in the PET's BASIC ROMs. Two zero-page locations are used to store the name of the variable, and the routine returns the address of that variable in the next two locations. The two addresses for the name are set up with the ASCII codes for the characters. If the name doesn't have a second character, then 0 is entered. In addition, though, string variables have \(\$ 80\) ORed into the second address, and integer variables have \(\$ 80\) ORed into both locations.
\begin{tabular}{lcc}
Examples: & \\
Variable & VARNAM & VARNAM + \(\mathbf{1}\) \\
X & \(\$ 58\) & \(\$ 00\) \\
L\$ & \(\$ 4 \mathrm{C}\) & \(\$ 80\) \\
AB & \(\$ 41\) & \(\$ 42\) \\
D1 \(\%\) & \(\$ C 4\) & \(\$ B 1\)
\end{tabular}

Floating point variables are stored in a special 7-byte memory format-the name in two bytes, as above, the exponent, and four mantissa bytes. Integer variables reserve the same seven bytes, but only use the first four-two for the name and two for the integer in high, low order. Strings are actually stored in high memory, but in low memory seven bytes are reserved, of which five are used. The name occupies two bytes, followed by the length of the string, and the starting address (low, high) of the actual string in high memory.
\begin{tabular}{lccc}
& \multicolumn{3}{c}{ BASIC ROM Version } \\
& \(\mathbf{2 . 0}\) & \(\mathbf{3 . 0}\) & \(\mathbf{4 . 0}\) \\
& \\
VARNAM & \(\$ 94\) & \(\$ 42\) & \(\$ 42\) \\
VARNAM +1 & \(\$ 95\) & \(\$ 43\) & \(\$ 43\) \\
VRADLO & \(\$ 96\) & \(\$ 44\) & \(\$ 44\) \\
VRADHI & \(\$ 97\) & \(\$ 45\) & \(\$ 45\) \\
Primary FAC & \$B0-\$B5 & \$5E-\$63 & \$5E-\$63 \\
FNDVAR & \$CFD7 & \$CFC9 & \$C187 \\
MEMFAC & \$DA74 & \$DAAE & \$CCD8 \\
FACINT & \$DOA7 & \$D09A & \$C2EA
\end{tabular}

If VARNAM and VARNAM +1 are set up properly, a call to FNDVAR will return with the address of that variable in VRADLO,VRADHI. This address is also in the accumulator (low) and \(Y\) register (high], so in the case of a floating point variable, an immediate call of MEMFAC will move the number to the primary FAC (floating point accumulator). The conversion from memory format to FAC format is made on the way. A call to FACINT will convert the FAC to an integer in the fourth and fifth bytes (\$B3,\$B4 or \(\$ 61, \$ 62\) in high,low order).

The address indicated by VARADR, VARADR +1 is actually the location of the first byte after the name portion of the entry. With an integer variable, this address will contain the high byte of the integer value, but with a string variable, it will contain the length of the string. The next two bytes contain the actual address of the string in high memory. The following routine will copy the found string to memory starting at address XXXX (whatever you choose). Suggested locations for ADLO, ADHI are \(\$ 32, \$ 33\) (BASIC 3.0 and 4.0) and \(\$ 71, \$ 72\) (2.0).

LDY \#\$02
LDA (VRADLO), Y The third byte STA ADHI
DEY
LDA (VRADLO), Y The second
STA ADLO
DEY
LDA (VRADLO), Y The first-length
TAY
LOOP LDA (ADLO), Y
STA XXXX,Y
DEY
BNE LOOP
Now that you know how to find BASIC variables, what do you do with them? Well, a typical application is in a plotting program where the only variables of concern might be \(X\) and \(Y\). The BASIC program might have a FOR...NEXT loop on X, with Y calculated within the loop, followed by a SYS call to your routine which finds X and \(Y\) and then processes them for plotting on the screen.

If you know where the variables are, that means you can change them (carefully) without disturbing BASIC. All kinds of fancy string manipulations come to mind. Not only can the characters be changed, but also the lengths, names, and locations.

I have two additions to my column on documentation [MICRO 29:39]-Library of PET Subroutines and The PET Revealed, both by Nick Hampshire, \(\$ 19.95\) each. These have been available in the United Kingdom and by mail for quite a while, but now Commodore has "officially approved" them and plans to sell them through its dealers in the U.S.

The PET Revealed is a wellorganized collection of interesting and important information on the inner workings of the PET. The five general sections are: (1] The PET System Hardware, (2) The 6502 Microprocessor, (3) The PET Operating System, (4) The User Port, and (5) The IEEE Port and the 6520. Complete schematics, memory maps, BASIC subroutines, BASIC tokens, and lots of other charts and tables are included. Also included is a number of special application circuits and routines. This is a very useful book for anyone wanting to go beyond BASIC.

Library of PET Subroutines is a collection of common routines in BASIC and assembly language. A generalpurpose screen handler, random-access disk file management, and several sort programs are examples. Anyone wishing to take on a major programming project, without starting from scratch, should appreciate this book.

\section*{ON-LINE SYSTEMS}

\section*{PRESENTS}

\section*{HI-RES FOOTBALL}

\author{
By JAY SULLIVAN And KEN WILLIANIS
}

This is the football game you always thought your Apple was capable of, but no one seemed able to deliver!
Of course, Hi-Res Football portrays the field and players in fyltantmated Hi-Res Graphics, but do nothedffuse it with football games of the bricade variety. This game cap ures the Giategy aspects of an actual foofboin gome. As coach
 to your advadrage singes those critical fourth dowidndech fordtle forield positign ond nore St playfield, as quarterback ty of myst te able tedread the defense file constangly eyeing your receiver and ot the same time trying to "Fake Out" the denens. It is impossible to describe fhere the teelings one gets when you slaccessfid Complete that two minute 90 t. 6 gat drill or on defense when you sich the quarterback on third and gool. Pleáse visit a computer store in your 4 ea to request a demonstration. Thank you.
Runs on any 48K Apple II or II Plus, DOS 3.2 or 3.3. Available now for \(\$ 39.95\) on disk from your local computer store or you may order directly from: ON-LINE SYSTEMS 36575 Mudge Ranch Road Coarsegold, CA 93614 209-683-6858
ORDERS MAY DE CHECK, VISA, MASTER CHARGE OR'C.O.D.

Find Your Way Around The New Apple \({ }^{\bullet}\) DOS
With The Dakin5 \({ }^{\circ}\)
Programming Aids \(3.3^{\circ}\)

Dakin5 Corporation, a Colorado software house, is making available to the public 12 utility programs on one 16 sector diskette, utilizing the new Apple DOS 3.3, which provides \(23 \%\) more storage.
All of the Dakin5 Programming Aids 3.3 programs are also compatble with the Corvus Disk Drive system.
Features
- Remove REM statements, unreferenced (dead) code, and compress code to increase program speed and save memory and disk space.
- Copy any file or program from one diskette to another. Only the name is needed.
- Print or display a line cross reference and variable name cross reference.
- Print or display all or selected records from a text file.
- Display any sector of a given file or program, and then update any data within that sector, or specify the sector you wish to update, such as directory sectors and sectors occupied by DOS.
Apple is a registered trademark of Apple Computer Inc. The Controller is a registered trademark of Dakin5 Corporation.
- Create, print and modify your own text and Exec files.
- Perform 20 -digit arithmetic.
- Copy a diskette without DOS; initialize without DOS; verify source diskette; verify copied data is the same as the original.
- Use a powerful data entry routine that handles both string and numeric data.
Plus Many More Utility Programs for Sophisticated Programmers
Many of these utility programs have been developed and tested for inhouse use while producing The Controller tw business package for Apple Computer Inc.

Each programming aids package includes a program diskette and very complete documentation, all attractively packaged in a padded, blue print vinyl 3 -hole notebook with silver lettering. An identifying tab separates each program for convenient reference.
See your Appie dealer or contact Dakin5 Corporation, P.O. Box 21187, Denver, Colo. 80221. Telephone: 800-525-0463. VISA or MC welcome.

\section*{Dakin5}
\(\mathrm{D}_{\text {ecision }}\) \(\mathbf{S}_{\text {sstams }}\)

Dacision Systems P.O. Box 13006 Denton, TX 76203

\section*{SOFTWARE FOR THE APPLE II*}

ISAM-DS is an integrated set of Applesoft routines that gives indexed file capabilities is your BASIC programs. Retrieve by key, partial key or sequentially. Space from 10 your BASIC programs. Retrieve by key, partial key or sequentialy. Space mate
deleted records is automatically reused. Capabilities and performance that match deleted records is automatically
products costing twice as much.
\$50 Disk, Applesoft.
PBASIC-DS is a sophisticated preprocessor for structured BASIC. Use advanced logic constructs such as IF...ELSE..., CASE, SELECT, and many more. Develop programs for Integer or Applesoft. Enjoy the power of structured logic at a fraction of the cost of PASCAL.
\$35. Disk, Applesoft (48K, ROM or Language Card).
DSA - DS is a dis-assembler tor 6502 code. Now you can easily dis-assemble any machine language program for the Apple and use the dis-assembled code directly as input to your assembler. Dis-assembles instructions and data. Produces code compatible with the S-C Assembler (version 4.0), Apple's Toolkit assembler and others. \$25 Disk, Applesoft (32K, ROM or Language Card).

FORM-DS is a complete system for the definition of input and output froms. FORMDS supplies the automatic checking of numeric input for acceptable range of values, automatic formatting of numeric output, and many more features.
\(\$ 25\) Disk. Applesoft (32K, ROM or Language Card)
UTIL-DS is a set of routines for use with Applesoft to format numeric output, selectiveiy clear variabies (Applesoft's CLEAR gets everything). improve error handling, tiveiv intear variableshine language with Applesoft programs. Includes a special load routine for placing machine language routines underneath Applesoft programs. \$25 Disk, Applesoft.
SPEED-DS is a routine to modify the statement linkage in an Applesoft program to speed its execution. Improvements of \(5-20 \%\) are common. As a bonus, SPEED-DS includes machine language routines to speed string handling and reduce the need for garbage clean-up. Author: Lee Meador.
\$15 Disk, Applesoft 132K. ROM or Language Card).

\title{
Make a Clear Plastic Cover For Your Apple
}

\section*{E.J. Neiburger, D.D.S.}

1000 North Avenue
Waukegan, Illinois 60085

Your APPLE has a cover which, if removed, will allow you access to the boards and chips located on the mother board. What I describe below is a simple project that will create a clear plastic, duplicate cover that will protect your APPLE's innards-yet allow the curious to look in.

Buy a clear sheet of \(1 / 4\) thick window plastic (for example, Lexan) from your local hardware store. You will need an \(113 / 4\) - by 13 -inch piece. Place the plastic on two 12 -inch sections of \(11 / 2\)-inch square wood so that 5 inches of the plastic extends over the edge (see figures 1 and 2).

Heat evenly with a blowtorch until the plastic begins to sag. Push the 5 -inch section down until it contacts the table surface and hold until cool. Heat the plastic gradually to avoid bubbling or yellowing.

Glue two plastic blocks (1-X \(1 / 2-\mathrm{X}\) \(1 / 4\)-inch) to the back edge of the plastic, approximately 2 inches from either side. Attach self-adhesive fasteners, as seen on the APPLE cover and

Watch while you are computing!

Ellis "Skip" Neiburger is a practicing dentist, Editor of the Dental Computer Newsletter, Contributing Editor for the Physician's Micro Computer report and author of several computer science articles. He is director of Andent Inc., a computer applications firm. His interests involve the use of microcomputers in medical-dental treatment, robot systems, and practical real-world applications.

Figure 2
MCRO

\section*{space WAR}

You're in command in SPACE WAR! Destroy your opponent's ship by forcing him to collide with the sun or to explode upon reentry from hyperspace or challenge him face to face with missile tire You're in command of the speed and direction of your ship you control the timing of your :missiles You select the game mode from five options including Reverse Gravity. and the: battle begins Aced elate to place your shots-and escape into hyperspace before your opponent comes within range But be wary he (or she') may circle out of sight and reappear on the opposite side o! the galaxy' (This is the classic MIT game redesigned especially for the Apple)

\section*{and SUPER INVASION}
- Super Invasion is the original invasion game, with the original moon creatures and faster action than any other invasion game.
- Features superb high resolution graphics, nail-biting tension and hilarious antics by the moon creatures!
- Self-running "attract mode" of operation for easy learning and demonstrating of the game.
- As good in every way as the famous Invaders arcade game.
- High speed action! • Sound effects!
- Runs on the Apple II and the Apple II Plus

Fifty-five aliens advance and shower you with lethal writhing electric worms. As you pick off the aliens, one-by-one, they quicken their descent. They whiz across the screen wearing away your parapets, your only defense, coming closer and closer to your level. Super Invasion is the original invasion game with the original moon creatures and faster action than any other invasion game on the market

Super Invasion is available for only \(\$ 19.95\) on cassette (C S-4006) for a 32 K Apple II. Space War is \(\$ 14.95\) on cassette (CS-4009) for a 16 K Apple II. Space War and Super Invasion are on one disk (C S-4508) for a 48 K Apple II for only \(\$ 29.95\).

Send payment plus \(\$ 1.00\) shipping and handling to Creative Computing Software, P O. Box 789-M, Morristown, NJ 07960. NJ residents add \(\$ 1.00\) sales tax. Bankcard orders may be called in toll free to 800/631-8112. In NJ call 201/540-0445.

\section*{serssatioral software}

\title{
"NIBBLE IS TERRIFIC" (For Your Apple)
}

\section*{NBBLE 18: The Reference for Apple computing!}

RMBRE 18: One of the Fastest Growing new Magazines in the Personal Computing Field.

NBBELE 18: Providing Comprehensive, Useful and Instructive Programs for the Home, Small Business, and Entertainment.

NHBPLE 18: A Reference to Graphics, Games, Systems
Programming Tips, Product News and Reviews, Hardware Construction Projects, and a host of other features.

NBBELE I8: A magazine suitable for both the Beginner and the Advanced Programmer.

Each issue of NIBBLE features significant new Programs of Commercial Quality. Here's what some of our Readers say:
- "Certainly the best magazine on the Apple II"
- "Programs remarkably easy to enter"
- 'Stimulating and Informative; So much so that this is the first computer magazine I've subscribed to!"
- "Impressed with the quality and content."
- "NIBBLE IS TERRIFIC!"

In coming issues, look for:
Numeric Keypad Construction Lab \(\square\) Assembly Language Programming Column
Pascal Programming Column \(\square\) Data Base Programs for Home and Business
Personal Investment Analysis \(\square\) Electronic Secretary for Time Management
The GIZMO Business Simulation Game
And many many more!
NIBBLE is focused completely on the Apple Computer systems.
Buy NIBBLE through your local Apple Dealer or subscribe now with the coupon below.

\section*{Try a Rubsel}

NOTE:
First Class or Air Maid is required ior all APO. FPO and all toreign addresses
with the following additional amounts.
—USA. Canada, Mexico, APO. FPO \(\$ 7.50\)
-Central and South America \(\$ 9.00\)
—Europe \(\$ 12.00\)
- Asia and elsewhere \(\$ 15.00\)
(c) 1980 by MICRO-SPARC. INC. . Lincoin, Mass 01773. All rights reserved
*Apple Il is a registered trademark of Apple Computer Company

For kids of all ages

\section*{Quiz Master}

Quiz Master is a series of multiple choice question answer diskettes on selected subjects. Each diskette is full and has approximately 1000 questions on the specified subject. The first two disks are Movie trivia and Computer terminology.

The program that accesses the massive text file containing the questions and answers is designed so that you WILL learn about the subject.
This is accomplished by requiring you to try another answer, if you miss a question, until you get it right. This way, you will know the correct answer before you continue to the next question.

The operation of the program is very simple. First you are asked which question you would like to start with. When the question session starts, the number of correct and wrong answers is continuously displayed along with the percentage. This way you will always know how well you are doing. When you are tired and wish to end the session, you will be given the option to review the questions that you missed.

This system has been found to be a quick and easy way to learn about the subject matter.

Future offerings may be Star Trek, History, Science and a multitued of other topics.

Requirements: 16 K Apple II or II Plus and Disk. Retail Price: Movie Trivia \(\$ 12.95\)

Computer Tutor \(\$ 12.95\)

\section*{Hangman}

This program is the old traditional hangman game that we used to play as kids, with a pencil and paper. The big difference here is that the computer will choose the word from a text file that comes with over 450 words. You have the capability of changing any of the words or adding new words to the existing file. You also have the capability of starting new files and then choosing which file you wish the computer to get the words from. This is ideal for parents to put their childrens spelling words into separate files and then let the kids have a ball while learning how to spell them.

If you are not familiar with the hangman game, here is how it works. The computer chooses a word at random from the file. The computer then puts a gallows on the screen in LO-RES graphics with a Iine of dashes at the bottom, one dash for each letter of the word that has been chosen. You now try to guess the wore by guessing one letter at a time. If the letter is right, that letter replaces the corresponding dash on the screen. If the letter is wrong, you will get a raspberry sound and a part of the body is displayed on the gallows. You can have up to 8 wrong guesses, at which time the entire body is standing on the floor of the gallows. On the 9th wrong guess, you get a big raspberry sound, the floor hinges down and then the rope and your neck stretches. The word is then displayed with the file reference number. If you get the word right before the 9 th wrong guess you are a winner. In both cases, you simply hit the space bar and the computer chooses another word to start all over again.

Requirements: 32 K Apple or II Plus and Disk. Retail Price: \$14.95

For 6502 assembly users

\section*{DISASM/65}

A Lisa compatible disassembler for the Apple II or Apple II Plus. Disasm/65 generates a symbolic disassembled listing of a machine code program which can be reassembled using Lisa 2.0 or Lisa 1.5. Now Lisa uses can patch and/or modify systems such as DOS, Pascal, Basic and the Apple monitor. Disasm/65 can also be used to relocate machine language programs.

Disasm/65 handles instructions, Hex data, string data, address data and stack address data. This allows the user to correctly disassemble any code segment. Disasm/65 lets the user input the disassembly parameters, thus avoiding undefined instruction sequences encountered while using the mini-disassembler found in the Apple Monitor.

Requirements: 48 K Apple II or II Plus \& Disk. Retail price \(\$ 24.95\)

\section*{XREF/65}

A cross reference program for LISA 1.5 \& LISA 2.0. A cross-reference is vital for program development, documentation and debugging. XREF/65 lists all lables defined in a program. The line \# where the lable is defined, and the line \# of each occurrence of the lable within the program. XREF/65 also prints out an OPCODE frequency map for the program so that the user can see which OPCODES are used most frequently. The LISA 2.0 source listing for XREF/65 is provided as part of the package.
+PLUS on the same diskette:
SORT 2.0 (source included) sorts, aphabetically and numerically, LISA 2.0 symbol tables and prints the symbol table in an 80-column format.

\section*{+PLUS}

SC TO LISA (source included) converts SC Assembler II V3.2 files to LISA. Now SCASM II owners can easily upgrade to the more powerful LISA assembler.

Requirements: 48 K Apple II or II Plus \& Disk. Retail Price: \$19.95

ORDER FROM:

\author{
arer \\ SYSTEASX \\ P.O.Box 55518 \\ Riverside, Calif. 92517
}

We gladly accept Mastercard and Visa. Please Include card \#, Expiration date \& Signature. California residents add 6\% sales tax. All U.S.A. orders add \(\$ 2.00\) for \(S \& H\). Outside U.S.A. orders add \(\$ 15.00\) for \(S \& H\). please allow two weeks for personal or business check to clear.

\title{
Searching String Arrays
}

This machine language program makes searching a large string array considerably faster and easler.

Gary B. Little *101-2044 West Third Avenue Vancouver, British Columbia Canada V6J 1L5

Have you Apple users ever wanted to search through a string array to see if it contains a particular phrase? If you have, it's probable that you have written a rather short loop routine in Applesoft to do this. However, if you have a few thousand comparisons to make, the Applesoft version may take an undesirable length of time to grind out the desired results.

A much faster search can be carried out on the Apple II by using a search routine written in 6502 assembly language. Such a program is shown below.

To understand exactly how the program works it is necessary to analyze the method by which the Apple stores variables in its memory. The details are found on page 137 of the Applesoft II Basic Programming Reference Manual. For a one-dimensional string array, the storage pattern is as follows:

> NAME (2 bytes)
> OFFSET pointer to next variable (2 bytes)
> No. of dimensions (1 byte)
> Size \(1 . s t\) dimension (2 bytes)
> String\$(0) -length (1 byte)
> \(\quad\) —adcress low (1 byte)
> —address high (1 byte)

String \(\$(\mathrm{~N})\) (3 bytes)

N is the size of the 1st dimension. If the string array is the first array variable defined in a program, the memory location of the first byte of the trio of bytes, reserved for the Cth array variable, is given by PEEK (107) + 256*PEEK (108) \(+7+3^{*} \mathrm{C}\) (where \(0=\mathrm{C}=\mathrm{N}\)). This
is because the pointer to the beginning of the array space, and also to the beginning of the string array variable map, is found at \$6B,\$6C \((107,108)\) and there are \(7+3^{*} \mathrm{C}\) bytes before the three Cth array variable bytes.

If the phrase to be searched for (the search variable is the first simple variable defined in a program, the memory location of the first byte of the three bytes reserved for the length and location of the string is given by PEEK(105) +256 *PEEK(106) +2 . This is because the pointer to the beginning of the simple variable space, and also to the beginning of the simple variable map, is found at \(\$ 69, \$ 6 \mathrm{~A}\) \((105,106)\). There are two bytes before the three variable bytes.

To carry out the search, it is simply necessary to compare the string pointed to by \(\mathrm{SV}+3, \mathrm{SV}+4\) |where \(\mathrm{SV}=\mathrm{PEEK}(105)+256 * \operatorname{PEEK}(106))\) with the string pointed to by AV \(+8+\) \(3^{*} \mathrm{C}, \mathrm{AV}+9+3^{*} \mathrm{C}\) (where \(\mathrm{AV}=\operatorname{PEEK}(107)+256^{*}\) PEEK \((108)\) and C runs from 0 to N). This is precisely what is done in this assembly language routine.
\begin{tabular}{|c|c|c|c|c|}
\hline & LENS & EQU & \$0 & LENGTH OF SEARCH PHRASE \\
\hline & LENR & EQU & \$ 1 & LENGTH OF String array variable \\
\hline & SP & EQU & \$6 & POINTER TO SEARCH PHRASE \\
\hline & R P & EQU & \$8 & POINTER TO ARray variable table \\
\hline & RL & EQU & \$1A & POINTER TO ARray variable \\
\hline & NL & EQU & \$1C & ENDING ARRAY NUMBER \\
\hline & CL & EQU & \$1E & Starting array number (AND COUNTER) \\
\hline & SAVE & EQU & \$FF4A & SAve registers \\
\hline & RESTORE & EQU & \$FF3F & REStore registers \\
\hline & & ORG & \$300 & \\
\hline 0300: 20 4A FF & & JSR & SAVE & SAVE REGISTERS \\
\hline 0303: A0 00 & LOOP & LDY & \#\$00 & \\
\hline 0305: B1 08 & & LDA & (RP) , Y & GEt Length of variable \\
\hline 0307: 85 01 & & STA & LENR & AND STORE \\
\hline 0309: C8 & & INY & & \\
\hline 030A: B1 08 & & LDA & (RP), X & GET POINTER (LO) (continued) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 030C: & 851 A \\
\hline 030E: & C8 \\
\hline 030 F : & B1 08 \\
\hline 0311: & 851 B \\
\hline 0313 : & A5 01 \\
\hline 0315 : & C5 00 \\
\hline 0317: & 30 OF \\
\hline 0319: & A0 00 \\
\hline 031 B : & B1 06 \\
\hline 031D: & D1 1A \\
\hline 031 F : & D0 07 \\
\hline 0321: & C8 \\
\hline 0322 : & C4 00 \\
\hline 0324 : & F0 10 \\
\hline 0326 : & D0 F3 \\
\hline 0328 : & A5 1E \\
\hline 032A: & C5 1C \\
\hline 032 C : & DO OB \\
\hline 032E: & A5 \(1 F\) \\
\hline 0330 : & C5 1D \\
\hline 0332 : & D0 05 \\
\hline 0334: & E6 1F \\
\hline 0336: & 4C 3F \\
\hline 0339: & 18 \\
\hline 033 A : & A5 08 \\
\hline 033C: & 6903 \\
\hline 033 E : & \(90 \quad 02\) \\
\hline 0340: & E6 09 \\
\hline 0342: & 8508 \\
\hline 0344 : & 18 \\
\hline 0345: & A5 1E \\
\hline 0347: & 6901 \\
\hline 0349: & 9002 \\
\hline 034 B : & E6 1F \\
\hline 034 D : & 851 E \\
\hline 034F: & 38 \\
\hline 0350: & B0 B1 \\
\hline
\end{tabular}

The time savings that can be realized by using the routine can be seen by running the Applesoft demo program that is LISTed below. For example, an assembly language search of 2,000 string array variables takes only one second, whereas the same search done in Applesoft takes 19 seconds!

To use the search routine from within an Applesoft program, the following procedure must be followed:
1. POKE the length of, and the two pointers to, the search phrase into locations \(0,6,7\), respectively. This is done in line \#210 of the demo program.
2. POKE the number of the array variable from which the search is to proceed |' C '] in locations 30,31 (low,high). This is done in line \#220.

100 S \(\$={ }^{\prime \prime}\) : REM MUST BE FIRST DEFINED SIMPLE VARIABLE
\(110 \mathrm{~N}=2000:\) DIM R\$(N): REM MUST BE FIRST DEFINED ARRAY VARIABLE
120 GOSUB 1000: REM LOAD SEARCH ROUTINE
130 DEF \(F N M D(X)=X-256 *\) INT
(X / 256)
140 TEXT : HOME : PRINT TAB(8)
; : INVERSE : PRINT "STRING A RRAY SEARCH DEMO": NORMAL
150 PRINT : PRINT "RANDOM STRING S:": PRINT
160 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{N}: \mathrm{R} \$(\mathrm{I})=\mathrm{CHR} \$\)
\((65+26 * \operatorname{RND}(1))+\) CHR \(\$\)
\((65+26 * \operatorname{RND}(1)):\) PRINT
R\$(I);" "; NEXT I: PRINT : PRINT
```

170 INPUT "ENTER SEARCH STRING:
";S$: PRINT
180 SV = AV:C = 1
190 SV = PEEK (105) + 256 * PEEK
    (106)
200 AV = PEEK (107) + 256 * PEEK
        (108)
210 POKE 0, PEEK (SV + 2): POKE
        6, PEEK (SV + 3): POKE 7, PEEK
        (SV + 4)
220 POKE 30, FN MD(C): POKE 31, INT
        (C / 256)
230 POKE 28, FN MD(N): POKE 29, INT
        (N / 256)
240 POKE 8, FN MD(AV + 7 + 3* C
        ): POKE 9, INT ((AV + 7 + 3*
        C) / 256)
250 CALL 768
260 C = PEEK (30) + 256 * PEEK
        (31)
270 IF C > N THEN 300
280 PRINT S$;" MATCHES \#";C;" (P
HRASE: ";RS(C);")"
290 C = C + 1: IF C < = N THEN 1
90
300 PRINT : PRINT "MACHINE LANGU
AGE SEARCH COMPLETED"
310 PRINT : INPUT "PRESS 'RETURN
' FOR APPLESOFT SEARCH: ";A\$
: PRINT
320 FOR I = 1 TO N
330 IF S\$ = LEFT\$ (R$(I), LEN (
        S$)) THEN PRINT S$;" MATCHE
        S #";I;" (PHRASE: ";R$(I);")
340 NEXT I: PRINT : PRINT "APPLE
SOFT SEARCH COMPLETED": END
1000 FOR I = 768 T0 849: READ X:
POKE I,X: NEXT I: RETURN
1010 DATA 32,74,255,160,0,177,8,
133,1,200,177,8,133,26,200,1
77,8,133,27,165,1,197,0,48,1
5,160,0,177,6,209
1020 DATA 26,208,7,200,196,0,240
,16,208,243,165,30,197,28,20
8,11,165,31,197,29,208,5,230
,31,76,63,255,24,165,8
1030 DATA 105,3,144,2,230,9,133,
8,24,165,30,105,1,144,2,230,
31,133,30,56,176,177

```

\section*{圈 Uersalluriter}

VersaWriter is much more! Draw with brush, create schematic drawings, compute area and distance, edit pictures, save, recall and more.
VersaWriter requires ROM APPLESOFT and 48 K memory.

\section*{\$249 Suggested Retail}

\section*{UNIQUE OFFER}

Send us YOUR disk and \(\$ 1\). We will promptly return the disk with a slide package of 10 color pictures drawn with VersaWriter.

\author{
Mike Rowe \\ Club Circuit \\ P.O. Box 6502 \\ Cheimsford, MA 01824
}

The following club announcements are presented in zip code order.

\section*{APPLESHARE}

The purpose of this club is to allow persons interested in and using Apple Computers to exchange views, problems and experiences. Approximate number of members is 55 . Meetings held the last Tuesday of each month (7:30 p.m.), except December, at Computerworks. For more information, contact:

\author{
Mr. Jack Adinolfi, President \\ c/o Computerworks \\ 1439 Post Road East \\ Westport, Connecticut 06880
}

Philadelphia Area Computer Society
Subgroups for Apple and PET. Meets the third Saturday of each month at LaSalle College Science Building, 20th at Olney Avenue, Philadelphia, PA. HOTLINE telephone number for meeting news is \([215] 925-5264\). Approximate number of members is 300. For more information, contact:

Eric Hafler, President
P.O. Box 1954

Philadelphia, Pennsylvania
19105
The MicroComputer Investors Assoc. This group publishes 'The MicroComputer Investor'. Its purpose is utilizing microcomputers to assist in making and managing investments. General membership meeting will be held at PC81-Philadelphia, PA. For more information, contact:

Jack Williams
902 Anderson Drive
Fredericksburg, Virginia 22401

MICRO offers a free one year subscription to all clubs registered with us. For registration form write to:

MICRO Club Circuit
Box 6502
Chelmsford, MA 01824

\section*{A.C.E.S.}

The Apple Computer Enjoyment Society publishes a bi-monthly newsletter of approximately \(30-40\) pages. Their purpose is to inform and coordinate the knowledge of their members about the Apple in the least painful way. Meetings are held at \(7: 30 \mathrm{p} . \mathrm{m}\). at the N.E. High School, Ft. Lauderdale, FL, on the lst Wednesday of the month for even months and the 1st Thursday of the month for odd months. Membership is currently at \(130+\). For more information contact: Don Lehmbeck, President P.O. Box 9222 Coral Springs, Florida 33065 (305)524-ACES

\section*{Attention Educators}

Affiliated with the Cleveland Digital Group, this club's primary objective will be the investigation, discovery, and exchange of functional and innovative Computer-Aided Instruction ideas among interested computer, minicomputer, or microcomputer users and/or owners. Monthly meetings will be held every third Sunday at the Cleveland HeightsUniversity Heights main library, 2345 Lee Road, Cleveland Heights, Ohio. If you're interested, send a self-addressed stamped business envelope to:

\section*{Joyce Townsend}
P.O. Box 18431

Cleveland Heights, Ohio 44118
or call (216)932-6799

\section*{Michigan APPLE}

The purpose of this club is to help members have fun with their APPLES by sharing knowledge and information. Publishes a newsletter called "The Michigan APPLE-gram", which is printed 10 times per year. Meetings are held at 7:30 p.m. on the last Tuesday of each month at Southfield-Lathrup High School (12 miles east of Evergreen). Membership is currently at 300 . For more information, contact:

Jon Lawrence, President
c/o The Michigan Apple
P.O. Box 551

Madison Heights, Michigan 48071

\section*{Dental Computer Newsletter}

For Medical \& Dental Professionals using Micro \& Mini computers for treatment and office purposes. Membership is \(1,500+\). Meetings are held at address noted below. For more information, contact:
E.J. Neiburger, DDS, President

1000 North Avenue
Waukegan, Illinois 60085

\section*{OSIG Chicagoland}

Meets the second Monday of each month at 7:30 p.m. to exchange ideas, discoveries, gripes and puzzles. Don Peterson is the President. For more information, contact: Paul Rainey c/o York High School Math Department
355 W. St. Charles Road
Elmhurst, Illinois 60126
(312)530-1240, ext. 256

\section*{River City Apple Corps}

Meets the 2nd Thursday of each month at \(6: 30 \mathrm{p} . \mathrm{m}\). at the Old Quarry Library. Approximate number of members is 100. They have a monthly publication called "APPLE-DILLO". For more information, contact:

Lenard Fein
2015 Ford Street
Austin, Texas 78704

\section*{APPLEquerque Computer Club}

Our purpose is to foster knowledge and use of the Apple computer; to educate our members on successful programming skills and to provide a forum to exchange programs, ideas and techniques. Membership is currently at 38 . Meets on the first Tuesday and third Wednesday at a local computer store. For more information, contact:

James (Chuck) 'Segrest, Pres.
6609 Orphelia Ave. N.E.
Albuquerque, New Mexico
87109

\section*{Okinawa Computer Club}

Holds their meetings on the second and fourth Sunday of each month at 6:30 p.m. at the Halstead Pavilion (USAF Clinic), Kadena AFB, Okinawa, Japan. For more information contact:

Ralph Tullo
PSC \#2 Box 12558
APO SF, California 96367

\section*{Alice Apple Users Group}

This group meets every fourth Tuesday to exchange \(\mathrm{S} / \mathrm{W}\) and to propose usage of the Apple. Membership is currently at 20. For more information, contact:

Al DeSalvio, President
22 Hablett Crescent
Alice Springs, N.T.
Australia 5750

\section*{6502-Club Copenhagen}

Address change for this club:
John Svensson
c/o Torvelaengerne, 10
DK-2620 Albertslund
Denmark

\section*{Apple Fun}

We've taken five of our most popular programs and combined them into one tremendous package full of fun and excitement. This disk-based package now offers you these great games:
Mimic-How good is your memory? Here's a chance to find out! Your Apple will display a sequence of figures on a \(3 \times 3\) grid. You must respond with the exact same sequence, within the time limit.

There are five different, increasingly difficult versions of the game, including one that will keep going indefinitely. Mimic is exciting, fast paced and challenging-fun for all!
Air Fight Simulation-Your mission: Take off and land your aircraft without crashing. You're flying blind -on instruments only.
A full tank of fuel gives you a maximum range of about 50 miles. The computer will constantly display updates of your air speed, compass heading and altitude. Your most important instrument is the Angle of Ascent/Bank Indicator. It tells if the plane is climbing or descending, whether banking into a right or left turn.
After you've acquired a few hours of flying time, you can try flying a course against a map or doing aerobatic maneuvers. Get a little more flight time under your belt, the sky's the limit.
Colormaster-Test your powers of deduction as you try to guess the secret color code in this Mastermindtype game. There are two levels of difficulty, and three options of play to vary your games. Not only can you guess the computer's color code, but it will guess yours! It can also serve as referee in a game between two human opponents. Can you make and break the color code . . .?
Star Ship Attack-Your mission is to protect our orbiting food station satellites from destruction by an enemy star ship. You must capture, destroy or drive off the attacking ship. If you fail, our planet is doomed.
Trilogy-This contest has its origins in the simple game of tic-tac-toe. The object of the game is to place three of your colors, in a row, into the delta-like, mul-ti-level display. The rows may be horizontal, vertical, diagonal and wrapped around, through the "third dimension''. Your Apple will be trying to do the same. You can even have your Apple play against itself!
Minimum system requirements are an Apple II or Apple Il Plus computer with 32 K of memory and one minidisk drive. Mimic requires Applesoft in ROM, all others run in RAM or ROM Applesoft.
Order No. 0161AD \$19.95

\section*{Paddle Fun}

This new Apple disk package requires a steady eye and a quick hand at the game paddles! It includes: Inveders-You must destroy an invading fleet of 55 flying saucers while dodging the carpet of bombs they drop. Your bomb shelters will help you-for a while. Our version of a well known arcade game! Requires Applesoft in ROM.
Howitzer-This is a one or two person game in which you must fire upon another howitzer position. This program is written in HIGH-RESOLUTION graphics using different terrain and wind conditions each round to make this a demanding game. The difficulty level can be altered to suit the ability of the players. Requires Applesoft in ROM.
Space Wars-This program has three parts: (1) Two flying saucers meet in laser combat—for two players, (2) two saucers compete to see which can shoot out the most stars-for two players, and (3) one saucer shoots the stars in order to get a higher rank-for one player only. Requires Applesoft.
Golf-Whether you win or lose, you're bound to have fun on our 18 hole Apple golf course. Choose your club and your direction and hope to avoid the sandtraps. Losing too many strokes in the water hazards? You can always increase your handicap. Get off the tee and onto the green with Apple Golf. Requires Applesoft.

The minimum system requirement for this package is an Apple II or Apple II Plus computer with 32K of memory and one minidisk drive.
Order No. 0163AD \(\$ 19.95\)
Instant Software money. who wants to tap the limitless energy of our sun. Includes AppleDOS 3.2.
Order No. 0235AD (disk-based version) \$34.95 students can improve their math skills while playing these games: cheat the hangman. chance to fire at you. depleted and the computer's robot can shoot at yours. move your sub and fire at the enemy fleet. Order No. 0160AD \$19.9;

\section*{Solar Energy For The Home}

With the price of fossil fuels rising astronomically, solar space-heating systems are starting to become very attractive. But is solar heat cost-effective for you? This program can answer that question.

Just input this data for your home: location, size, interior details and amount of window space. It will then calculate your current heat loss and the amount of gain from any south facing windows. Then, enter the data for the contemplated solar heating installation. The program will compute the NET heating gain, the cost of conventional fuels vs. solar heat, and the calculated payback period-showing if the investment will save you

Solar Energy for the Home: It's a natural for architects, designers, contractors, homeowners. . . anyone
Minimum system requirements are an Apple II or Apple II Plus with one disk drive and 28 K of RAM.

\section*{Math Fun}

The Math Fun package uses the techniques of immediate feedback and positive reinforcement so that
Hanging-A little man is walking up the steps to the hangman's noose. But YOU can save him by answering the decimal math problems posed by the computer. Correct answers will move the man down the steps and

Spellbinder-You are a magician battling a computerized wizard. In order to cast death clouds, fireballs and other magic spells on him, you must correctly answer problems involving fractions.
Whole Space-Pilot your space craft to attack the enemy planet. Each time you give a correct answer to the whole number problems, you can move your ship or fire. But for every wrong answer, the enemy gets a

Car Jump-Make your stunt car jump the ramps. Each correct answer will increase the number of buses your car must jump over. These problems involve calculating the areas of different geometric figures.
Robot Duel-Fire your laser at the computer's robot. If you give the correct answer to problems on calculating volumes, your robot can shoot at his opponent. If you give the wrong answer, your shield power will be

Sub Attack-Practice using percentages as you maneuver your sub into the harbor. A correct answer lets you
All of these programs rin in Applesoft BASIC, except Whole Space, which requires Integes BASIC.

\title{
Apple* Software From Instant Software
}

\section*{Santa Paravia and Fiumaccio}

\section*{Buon giorno, signore!}

Welcome to the province of Santa Paravia. As your steward, I hope you will enjoy your reign here. I feel sure that you will find it, shall we say, profitable.

Perhaps I should acquaint you with our little domain. It is not a wealthy area, signore, but riches and glory are possible for one who is aware of political realities. These realities include your serfs. They constantly request more food from your grain reserves, grain that could be sold instead for gold florins. And should your justice become a trifle harsh, they will flee to other lands.
Yet another concern is the weather. If it is good, so is the harvest. But the rats may eat much of our surplus and we have had years of drought when famine threatened our population.
Certainly, the administration of a growing city-state will require tax revenues. And where better to gather such funds than the local marketplaces and mills? You may find it necessary to increase custom duties or tax the incomes of the merchants and nobles. Whatever you do, there will be farreaching consequences. . . and, perhaps, an elevation of your noble title.
Your standing will surely be enhanced by building a new palace or a magnificent cattedrale. You will do well to increase your landholdings, if you also equip a few units of soldiers. There is, alas, no small need for soldiery here, for the unscrupulous Baron Peppone may invade you at any time.
To measure your progress, the official cartographer will draw you a mappa. From

it, you can see how much land you hold. how much of it is under the plow and how adequate your defenses are. We are unique in that here, the map IS the territory.
I trust that I have been of help, signore. I look forward to the day when I may address you as His Royal Highness, King of Santa Paravia. Buona fortuna or, as you say, "Good luck". For the Apple 48K.
Order No. 0174A \(\$ 9.95\) (cassette version).
Order No. 0229AD \(\$ 19.95\) (disk. version).

\section*{TO ORDER}

\section*{Apple Cassettes}
\begin{tabular}{|c|c|}
\hline 0018A Golf & \$7.95 \\
\hline 0025A Mimic & \$7.95 \\
\hline 0040A Bowling/Trilogy & 57.95 \\
\hline 0073A Math Tutor I. & .95 \\
\hline 0079A Oil Tycoon. & 59.95 \\
\hline 0080A Sahara Warriors. & \$7.95 \\
\hline 0088A Accounting Assistant. & 7.95 \\
\hline 0094A Mortgage w/Prepayment Option/ & \\
\hline Financier. & \$7.95 \\
\hline 0096A Space Wars. & \$7.95 \\
\hline 0098A Math Tutor II. & \$7.95 \\
\hline 0174A Santa Paravia and Fium & 59.95 \\
\hline 0148A Air Flight Simulation & \$9.95 \\
\hline
\end{tabular}

\section*{We Guarantee It!}

\section*{PERFECT AIM}

\section*{ATTRACTIVE FUNCTIONAL PACKAGING FOR YOUR AIM-65 MICROCOMPUTER}
- Professional Appearance
- Striking Grey and Black Color Combination
- Protects Vital Components

ENGINEERED SPECIFICALLY FOR
THE ROCKWELL AIM-65
- All Switches Accessible
- Integral Reset Button Actuator
- Easy Paper Tape Replacement

EASILY ASSEMBLED
- Absolutely No Alteration of AIM-65 Required
- All Fasteners Provided
- Goes Together in Minutes

MADE OF HIGH IMPACT STRENGTH THERMOFORMED PLASTIC
- Kydex 100*
- Durable
- Molded-In Color
- Non-Conductive

\section*{AVAILABLE FROM STOCK}
- Allow Three to Four Weeks for Processing and Delivery
- No COD's Please
- Dealer Inquiries Invited

TO ORDER: 1. Fill in this Coupon (Print or Type Please)

> 2. Attach Check or Money Order and Mail to:

NAME \(\qquad\)
STREET \(\qquad\)
CITY \(\qquad\)
STATE
ZIP \(\qquad\)
SEE 1.1 PLEASE SHIP PREPAID \(\qquad\) SAE 1-1(s) © \(\$ 43.50\) each
California Residents Please Pay \(\$ 46.33\) (Includes Sales Tax)

\section*{enclosures group}

786 bush street
san francisco, california 94108

\title{
Interfacing the 6522 Versatile Interface Adapter
}

\begin{abstract}
The 6522 handles I／O for AIM， SYM，KIM，PET and Ohio Scientific microcomputer systems．This chip contains latches，counters，timers，shift registers，and handshaking lines，and provides a great deal of support for many interfacing applications．Here is how to include these capabilities in your system．
\end{abstract}

Marvin L．De Jong
Math／Physics Department
The School of the Ozarks
Pt．Lookout，Missouri 65726

One of the most popular interfacing in－ tegrated circuits in the 6500 family is the 6522 Versatile Interface Adapter．It is also a complex chip，and becoming familiar with it can be frustrating．In an earlier article published in MICRO，Oc－ tober 1979，＂ 6522 Timing and Count－ ing Techniques＂（17：27）we described how to use the T1 timer and the T2 counter／timer．In this article we give more of an overview of the entire chip， we supply some detailed interfacing circuits for adding 6522s to your microcomputer system，and we provide some useful charts that diagram the functions of the bits in various registers．I have found these latter charts to be very useful when writing assembly language programs that use the 6522 as an I／O device．With regard to the interfacing circuits included in this article，note that several 6502 systems manufacturers are offering pro－ totyping boards that mate with the motherboards or card file systems they sell．The interfacing circuits given herein are appropriate for wiring your own I／O board that might include several 6522s as well as other in－ tegrated circuits such as A／D con－ verters，V／F converters，and D／A converters．

Several single－board microcom－ puters use a 6522 as the I／O device．For example，the AIM 65，SYM－1，and the SUPERKIM make extensive use of the 6522 either as an on－board I／O device， or for the user＇s applications．

\section*{Interfacing the \(\mathbf{6 5 2 : 2}\)}

The 6522 is a 40 －pin integrated cir－ cuit that provides the user with two eight－bit I／O ports（each with two handshaking pins \(\}\) ，at serial data port， and two 16 －bit timer／counters．A pin configuration diagram is given in figure 1，and a block diagram is shown in figure 2．The 6522 has 16 internal registers that are selected by the logic levels on the four register select lines RS3－RSO．Table 1 summarizes the names of the various registers that are selected by RS3－RSO and the \(R / \bar{W}\) line．The \(1 / O\) ports are sometimes referred to as PAD and PBD， rather than the designations given in table 1 ．All of the functions of the 6522 are initiated and controlled by reading
\begin{tabular}{|c|c|c|}
\hline VSS \({ }^{-1}\) & 40 & \(\square C A 1\) \\
\hline PAO 2 & 39 & \(\square C A 2\) \\
\hline PAI \({ }^{-1}\) & 38 & RSO \\
\hline PA2 4 & 37 & －RS1 \\
\hline PA3 5 & 36 & －RS2 \\
\hline PA4 \({ }^{\text {c }} 6\) & 35 & －RS3 \\
\hline PA5 \({ }^{\text {P }}\) & 34 & 二 \(\overline{\text { RES }}\) \\
\hline PA6 88 & 33 & －D0 \\
\hline PA7 \(=9\) & 32 & 二D1 \\
\hline PBO 10 & 31 & －D2 \\
\hline P81 11 & 30 & －D3 \\
\hline PB2 12 & 29 & حD4 \\
\hline P83 13 & 28 & حD5 \\
\hline P84 14 & 27 & 二D6 \\
\hline P85 15 & 26 & 二D7 \\
\hline PB6 16 & 25 & － 12 \\
\hline PB7 17 & 24 & CSS1 \\
\hline CB1 \({ }^{18}\) & 23 & C CS2 \\
\hline CB2 19 & 22 & حR／W \\
\hline VCC \({ }^{20}\) & 21 & \(\square \overline{\mathrm{I} Q}\) \\
\hline
\end{tabular}

Figure 1．Pin configuration of the 6522．Courtesy of Rockwell International Corporation．
or writing to the registers listed in table 1．Thus，our first task is to connect the 6522 to a 6500 family microprocessor， the 6502 for example，so that we can read and write to the registers．

Refer to the block diagram of the 6522 shown in figure 2 ．The pins that concern us in the present context are the so－called＂chip access control＂ pins，the \(\bar{R} Q\) pin，and the pins \(D 7\)－D0 that connect to the microcomputer system＇s data bus．We begin with the chip access control pins and the IRQ pin．Several of these connections are straightforward：\(\overline{\text { RES }}\) will be connected to the system reset line and the \(\overline{\mathrm{RES}}\) pin on the microprocessor，\(R / \bar{W}\) is con－ nected to the \(R / \bar{W}\) line on the microprocessor， \(5_{2}\) goes to the microprocessor＇s \(5_{2}\) ，and the \(\overline{\text { IRQ }}\) pin is connected to the IRQ pin on the 6502 ． （A pull－up resistor，nominally 4.7 K ohms，is required for this latter connection．）

The remaining chip access control pins are used to address the 16 internal registers of the 6522 ．If pins RS3－RSO are connected to address lines A3－A0， respectively，then the 16 registers will occupy 16 contiguous memory loca－ tions in the address space of the com－ puter system．The registers will have the same order given in table 1．The location of the block of 16 memory locations in the address space of the computer system will be determined by how the high－order address lines are decoded to form the device－select pulses that are applied to the chip－ select pins CS1 and CS 2 ．

The design philosophy of most 6502 systems calls for R／W memory to be located at the low end of the address space and the microcomputer system ROM is located at the high end of the address space．Thus，I／O functions are usually located somewhere in the ＂middle＂of the address space．An ad－ dress decoding scheme to do this is described in figures 3 and 4.

Figure 2. Block diagram of the 6522. Courtesy of Rockwell International Corporation.

Assume that a page of memory space is to be dedicated to I/O functions, giving 256 locations. The 74LS04 and the 74LS30 in figure 3 are used to select any page of memory that ends in a three, seven, 11 , or 15 such as pages \(\$ 03, \$ 67, \$ 93, \$ \mathrm{AB}\), or \(\$ \mathrm{FF}\). The jumpers or switches connected to the 74LS30 select the page of memory that is to be used for I/O. This decoding scheme should allow the user sufficient flexibility to avoid both the R/W memory locations and the ROM locations.

The page select pulse, \(\overline{\mathrm{DS} \$ 93 \mathrm{XX}}\) in figure 3, is connected to a 74LS154 one-of-sixteen decoder that decodes address lines A7-A4. This decoder determines the high-order nibble of the low-order byte of the address in the page selected by the circuit of figure 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Register \\
Number
\end{tabular}} & \multicolumn{4}{|c|}{RS Coding} & \multirow[t]{2}{*}{Register Desig.} & \multicolumn{2}{|c|}{Desariptian} \\
\hline & RS3 & RS2 & RS1 & RSO & & Write & Read \\
\hline 0 & 0 & 0 & 0 & 0 & ORB/IRB & Output Register " \(B\) " & Input Register " \(\mathrm{B}^{\prime \prime}\) \\
\hline 1 & 0 & 0 & 0 & 1 & ORA/IRA & Output Register "A" & Input Register " A " \\
\hline 2 & 0 & 0 & 1 & 0 & DDRB & Data Direction Register & \\
\hline 3 & 0 & 0 & 1 & 1 & DDRA & Data Direction Register & \\
\hline 4 & 0 & 1 & 0 & 0 & TIC-L & T1 Low-Order Latches & T1 Low-Order Counter \\
\hline 5 & 0 & 1 & 0 & 1 & TIC-H & T1 High-Order Counter & \\
\hline 6 & 0 & 1 & 1 & 0 & TIL-L & T1 Low-Order Latches & \\
\hline 7 & 0 & 1 & 1 & 1 & TIL-H & T1 High-Order Latches & \\
\hline 8 & 1 & 0 & 0 & 0 & T2C-L & T2 Low-Order Latches & T2 Low-Order Counter \\
\hline 9 & 1 & 0 & 0 & 1 & T2C.H & T2 High-Order Counter & \\
\hline 10 & 1 & 0 & 1 & 0 & SR & Shift Register & \\
\hline 11 & 1 & 0 & 1 & 1 & ACR & Auxiliary Control Regis & \\
\hline 12 & 1 & 1 & 0 & 0 & PCR & Peripheral Control Regi & \\
\hline 13 & 1 & 1 & 0 & 1 & IFR & Interrupt Flag Register & \\
\hline 14 & 1 & 1 & 1 & 0 & IER & Interrupt Enable Regist & \\
\hline 15 & 1 & 1 & 1 & 1 & ORA/IRA & Same as Reg 1 Except & "Handshake" \\
\hline
\end{tabular}

Table 1. Addressing the 16 reglsters of the 6522. Courtesy of Synertek, Inc.

The 74LS154 circuit is given in figure 4. It devides a page of memory into blocks of 16 memory locations. Although only one of the device select pulses, DS \(\$ 930 \mathrm{X}\), is shown connected to an I/O device, the other device select pulses may be used to select other devices as they are added to your I/O board.

The 6522 decodes the address lines A3 - A0 and addresses its internal registers when \(\overline{\mathrm{CS}} 2\) is at logic zero and CS1 is at logic one. Thus, in figure 4 the device select pulse from the 74LS154 is connected to \(\overline{\mathrm{CS} 2}\), while CS1 is held at logic one. The 16 registers on the 6522 have addresses \(\$ 9300\) to \(\$ 930\) F starting with the PBD register at \(\$ 9300\) and ending with the PAD "No Handshake" register at location \(\$ 930 \mathrm{~F}\). Another 6522 could be added using any of the other 15 device selects from the 74LS154.

As mentioned before, the 74LS154 in figure 4 divides a page of memory into blocks of 16 locations. Other 74LS154s can be added to divide each of these blocks into separate memory locations; that is, device select pulses can be produced for each memory location in a block of 16 . The circuit of figure 5 indicates how this is accomplished. Although each 6522 added to the system requires 16 locations, there should be enough locations left, in the page that we choose for \(1 / O\) functions, to handle our requirements.

Suppose we wish to mount all the I/O circuits on a single I/O board (or card to be mounted on some kind of motherboard. The circuits in figures 3 to 5 could easily be wired on such a card with several 6522 VIAs and other I/O devices. In such a case, buffering of the data bus is usually implemented on the board, and frequently the address bus and the control bus are also buffered. The page select pulse from the SN74LS30 in figure 3 can be used to activate the data bus buffers when an I/O device on the card is selected. The circuit in figure 6 indicates one possible way to buffer the data bus using two SN74LS243 quadruple bus transceivers for buffers.

In figure 6 only one of the SN74LS243 buffers is shown in detail. Note that the buffers, three-state devices, are activated from left to right with a WRITE operation; that is, when the page select pulse is at logic zero and the \(\mathrm{R} / \mathrm{W}\) line is at logic zero. The buffers are activated from right to left with a READ operation; that is, when the

Figure 3. Programmable page select circult, preset for page \(\$ 93\) of the address space.

Figure 4. Using a SN74LS154 to select a 6522. The 6522 occupies 16 memory locations with addresses \(\$ 9300\) to \(\$ 930 \mathrm{~F}\). The page select signal is generated by the circult in Figure 3.

Figure 5. Using a 74LS154 to provide device select pulses for memory locations \$93F0-s93FF. The device select pulse DS\$93FX is from the 74LS154 In Flgure 4.
page select pulse is at logic zero and the \(\mathrm{R} / \mathrm{W}\) line is at logic one.

The 6522 VIA's data pins are connected to the DB7 - DB0 pins on the right-hand side of the SN74LS243s. Any other I/O devices will also be using these data lines. If the only I/O device on the I/O board is a single 6522, then data bus buffering might not be required.

Figure 7 illustrates how the address bus and the control bus may be buffered. The three-state devices shown are kept in their active states at all times. The 81LS97 is convenient to use because it buffers eight lines with one chip, so only two chips are required to buffer the entire address bus. Many other chips will do the same job, and you should feel free to substitute these.

Figure 6. Buffering the data bus for the \(1 / 0\) devices. \(\overline{\mathrm{DS}}\) is the page select signal from the 74LS30 in Figure 3. R/W Is the system READNWRITE line.

Figure 7. Buffering the address bus and the control bus.

\section*{Example 1. A program to make Port \(A\) an Input port and Port \(B\) an output port.}
\begin{tabular}{ll}
\(\$ 0300\) A9 FF & START \\
\(\$ 0302\) 8D 02 93 & \\
\(\$ 0305\) A9 00 & \\
\(\$ 0307\) 8D 03 93 &
\end{tabular}

LDA \$FF Store all ones in the data direction STA PBDD register of Port B.
LDA \(\$ 00\) Store all zeros in the data direction STA PADD register of Port A.

\section*{Table 2. Memory locations of the \(\mathbf{1 6} \mathbf{6 5 2 2}\) registers.}
\begin{tabular}{|c|c|}
\hline ADDRESS & REGISTER \\
\hline \$9300 & Port B - PBD \\
\hline \$9301 & Port A - PAD \\
\hline \$9302 & Port B Data Direction - PBDD \\
\hline \$9303 & Port A Data Direction - PADD \\
\hline \$9304 & Timer 1 Latch Low and Timer 1 Counter Low TILL T1CL \\
\hline \$9305 & Timer 1 Latch High and Timer 1 Counter High T1LH \& T1CH \\
\hline \$9306 & Timer 1 Latch Low - T1LL \\
\hline \$9307 & Timer 1 Latch High - T1LH \\
\hline \$9308 & Timer 2 Latch Low and Timer 2 Counter Low T2LL \& T2CL \\
\hline \$9309 & Timer 2 Counter High - T2CH \\
\hline \$930A & Shift Register - SR \\
\hline \$930B & Auxiliary Control Register - ACR \\
\hline \$930C & Peripheral Control Register - PCR \\
\hline \$930D & Interrupt Flag Register - IFR \\
\hline \$930E & Interrupt Enable Register - IER \\
\hline \$930F & Port A - PAD (Without handshaking) \\
\hline
\end{tabular}

Simple Input/Output Functions with the 6522

Now that we have interfaced the 6522 to a 6502 (or other 6500 family microprocessor), we are ready to interface it to some devices in the world outside of the microprocessor system.

There is a one-to-one correspondence between the pin functions (input or output) of a port and the bit values in the port's corresponding data direction register. A one in the data direction register bit configures the corresponding I/O pin to be an output pin, while a zero in the data direction register bit configures the corresponding I/O pin to be an input pin. Thus, if \(\$ \mathrm{FB}\) is loaded into PBDD, address \(\$ 9302\), using the decoding illustrated in the figures, then pins \(7,6,5,4\), and 3 of Port B (PBD) will be output pins, while pins 2, 1, and 0 will be input pins. Example 1 illustrates how all eight pins of Port B are configured as output pins, while all eight pins of Port A are configured as input pins.

Figure 8. Determining the function of the control pins CA1, CA2, CB1, and CB2 by the number stored in the peripheral control register (PCR).

Figure 9. Controlling various 6522 functions with the auxillary control register (ACR).

L_ SET BY TRANSITION ON CB2, CLEARDD BY READ OR WRITE OF PBD
SEE BY TRANSITION ON CB1, CLEARED BY READ OR YRITTE OF PBD
—_SET BY TTME-ONT OF T2, CLEARED BY READ T2 LOW OR WRITE T2 HIGH
SET BY TMER-NUT OF T1, CLEAPED BY READ T1 LON OR WRITE T1 HHGH
——SET WHEN ANY OTHER IPR BIT IS SET, CLEARED WHEN ALI OTHIR IFR BITS ARE CLEAR
Figure 10. The interrupt flag register (IFR). Any blt except IFR7 may also be cleared by writing a one into that blt.

Figure 11. Controlling the IRC pin on the 8522. If the IFQ pin Is enabled by a bit in the IER, then the 8522 IFQ pin wIII go to logic zero when the corresponding flag in the interrupt flag register is set.

Once the I/O port has been configured, data may be written to [STA instruction) an output port and read at (LDA instruction) an input port.

It is important to know that when the microcomputer is reset /a condition that also occurs during power-up conditions) all of the registers except the timer latches are cleared. Thus, the Port A and Port B pins are in the input condition after a reset. TTL integrated circuits whose inputs may be connected to the Port A or Port B pins will behave as if their inputs are at logic one. For example, if one of the pins of Port A controls a TTL circuit that in turn controls a motor, it is important that a logic one at that pin corresponds to the motor being in its off condition, because otherwise, the motor will start running as soon as power is applied to the computer.

It is also important to know that reading Port A gives the values of the logic levels on the Port A pins. Reading Port B, on the other hand, gives the logic levels stored in the output register, regardless of whether the pins are being loaded or not. Care must be used in using the read-modify-write instructions (ASL, LSR, INC, etc.) to operate on Port A, whereas these instructions will work for Port B.

\section*{The Functions of the Other 6522 Registers}

Although space does not permit an exhaustive explanation of all of the I/O options, we pause here to briefly describe the purpose of several of the control and flag registers on the 6522. Table 2 summarizes the addresses of all of the registers if the address decoding scheme described in figures 3 to 5 is used. In this section the peripheral control register (PCR), the auxiliary control register (ACR), the interrupt flag register (IFR), and the interrupt enable register (IER) are introduced. In the previous section the two I/O registers, PAD and PBD, were introduced, as well as their associated data direction registers, PADD and PBDD.

The peripheral control register controls the functions of the control pins on the 6522, namely CA1, CA2, CB1, and CB2. The significance of the various bit values in this register is outlined in figure 8 . The auxiliary control register controls the modes of the two counter/timers, the shift register, and controls the latching function of

Figure 12. Connecting a 6522 VIA to an ASCII encoded keyboard with a strobe puise.

Example 2. A program to initlailze the 6522 registers to read an ASCII keyboard with strobe.
\begin{tabular}{|c|c|c|c|}
\hline \$0300 A9 01 & \multirow[t]{5}{*}{START} & LDA \$01 & Enable latching on Port A with a trans- \\
\hline \$0302 8D OB 93 & & STA ACR & ition on CAl by setting ACRO to one. \\
\hline \multirow[t]{3}{*}{\$0305 8D OC 93} & & STA PCR & Make CAl active on positive \\
\hline & & & transition. \\
\hline & & & Remainder of main program is here. \\
\hline \multirow[t]{2}{*}{\$1414 200020} & & JSR & Jump to subroutine to read keyboard. \\
\hline & & KEYREAD & \\
\hline & & & More of the main program is here. \\
\hline \$2000 A9 02 & KEYREAD & LDA \$02 & Mask all bits of the IFR except IFR 1. \\
\hline \$0202 2C 0D 93 & WAITKEY & BIT IFR & Is IFR1 set? \\
\hline \$0205 F0 FB & & BEQ & No. Wait until key is pressed. \\
\hline & & WAITKEY & \\
\hline \$0207 AD 0193 & & LDA PAD & Yes. Read keyboard and clear IFR1. \\
\hline \$020A 60 & & RTS & Return from subroutine. \\
\hline
\end{tabular}

Example 3. A program to read an ASCII encoded keyboard on an interrupt basis.
\begin{tabular}{lll}
\$0300 A9 01 & START & LDA \$01
\end{tabular} Enable latching on Port A with a trans-
the two ports. The significance of the various bit values in this register are outlined in figure 9. Both of these registers are initialized by writing the appropriate binary number to the addresses given in table 2.

On the other hand, the interrupt flag register's contents are usually determined by external events, rather than writing to the register. For example, a negative transition on CA1 may set bit IFR1, causing the program to make a branch. Reading Port A would clear the same bit. (Our example of an ASCII encoded keyboard will make this clear in a few moments.) The various flags in the interrupt flag register are summarized in figure 10.

Finally, the interrupt enable register is used to choose between the option of having an event, say the time-out of the Tl timer, set a flag or set a flag and cause an interrupt request (IRQ signal). If, for example, IER6 is set by writing \$CO to the interrupt enable register (IER), then the time-out of timer T1 will cause the IRQpin on the 6522 to go to logic zero. If, on the other hand, IER6 is cleared by writing \(\$ 80\) to the interrupt enable register, then the time-out of timer T1 will not produce an IRQ signal. (Refer to figure 11 for details of the operation of the IER.)

Now that I have introduced these four registers, let me illustrate their use with an example, namely an input port for an ASCII encoded keyboard. Figure 12 shows the connections that are requires. It is assumed that the encoded keyboard provides a positive strobe when the seven bits of ASCII data are available. The program necessary to initialize the PCR and read the keyboard is given in example 2. We will set up the \(A C R\) to latch the data from the keyboard into Port A when the strobe occurs, and the keyboard is read by a subroutine that waits until the IFR1 flag is set before reading the keyboard. Such a program might be part of a BASIC interpreter in which the interpreter waits for keyboard entries and then stores them in memory as they are made. Note that the accumulator passes the ASCII code, plus the value of PA7, from the subroutine to the main program where it is processed. This program should be studied in connectron with figures 8 to 12 .

The keyboard could also be read on an interrupt basis. The modifications for this are shown in example 3. Note that the interrupt (\(\mathbb{R Q}\)) vector must point to the interrupt routine in order for example 3 to work. Also note that in both example 2 and 3 the Port A data direction register was not initialized to contain \(\$ 00\) because, it was assumed that a system power-up or reset accomplished this.

In example 3 there would very likeby be more instructions in the interrupt routine to process the keyboard data. For example, it might be stored in some kind of first-in-first-out (FIFO) memory. The important point of example 3 is the means by which the interrapt enable register (IER) is initialized.

Other uses for the control pins will appear in subsequent applications. For example, the control pins in the output mode may be used to initiate a conversion when D/A or A/D converters are interfaced to the 6522. Alternatively, in the input mode the control pins may be used to detect when a conversion is complete. This summarizes our overview of the 6522 .

The figures describing the bit functions of the control and flag registers will become a valuable reference for further work with the 6522.

\section*{CJM Microsystem}

The CJM Microsystem for the Apple II
The CJM Microsystem now provides Apple owners with the hardware they need to interface joysticks, sense external inputs, and control other devices such as audio or video recorders. The applications are endless.

Institutional Standards
All metal chassis and heavy duty cables and connestors allow the CJM Microsystem to meet the demands of the educational environment.

A Variety of Applications
The Microsystem can be used for many applicatons from games to sophisticated computer assisted instruction.
The Miscrostik can be used for graphics input, menu selection, or any screen oriented function.
The output modules such as the Microbox can run appliances, lamps, motors, relays or other loads from keyboard or program commands. The input modules can sense temperature, light, or
sound to provide external information.
sound to provide external information.
Specialized modules, such as the VTR Con-
troller can sense tape position and drive the VTR forward and reverse utilizing the input and output capabilities interactively.

The Graphics Kit Software
This is a disk based program written in Integer Basic and Assembly Language. It uses the Microstiks to simulate the Apple Graphics Pad and adds some extra features, including:
- Draw shapes in 8 modes using /Microstiks.
- Draw to both HIRES screens.
- Assemble shapes into tables.
- Select a color from the pallette using the Microstik cursor.
- Add text directly to drawings with auto scrolling in either direction.
- Move shapes around the HIRES screens and deposit them at the touch of a button. Press the button again to pick them up of the screen and move them wo a new location. Press a key to rotate the shape. Press another to bring up the next shape.
- There are more than 50 distinct drawing commends.
- The Animate Command cuts from screen 1 to screen two and back
- The Save Command saves ether screen for later use in custom programs as charts or graphs (ideal for CA applications).

CUM INDUSTRIES, INC.
P.O. Box 2367
Heston, VIrginia

22090

For the Apple II

\section*{Presenting the}
\[
>
\]

such

USE YOUR MASTERCHARGE OR VISA CARDS
\begin{tabular}{|lr|}
\hline APPLEXPANDER + S & \(\$ 54.95\) \\
\hline MICROSTIK & \(\$ 59.95\) \\
\hline AC CONTROL BOX & \(\$ 89.95\) \\
\hline RELAY CONTROL BOX & \(\$ 89.95\) \\
\hline LIGHT PEN & \(\$ 39.95\) \\
\hline GRAPHICS KIT SOFTWARE & \(\$ 49.95\) \\
\hline PL ADAPTER KIT & \(\$ 14.95\) \\
\hline
\end{tabular}

\section*{ORDER TODAY 703-620-244}

\section*{The Applexpander}

The APPIEXPANDER is the heart of the CJM MICROSYSTEM. The Applexpander plugs into the Apple Came I/O socket Once the expander is installed there will never be another need to access the garne socket. The expander butfers the input and output signals to the Game I/O. Providing the added safety needed to interface to the outside world.
The two input sockets accept a Microstik, Light Pen or an assortment of input devices such as temperature, audio or light sensors.
The output socket will drive the AC Control Box, Relay Modules, LED Arrays and other controllers.
The APPLEXPANDER+S includes an Auxiliary Speaker/ Headphone Jack, and Volume Control. The Apple speaker is automatically muted when a speaker is plugged into the remote jack. The volume control adjusts the sound level. When an external speaker (not included) is used, the sound quality of the Apple increases dramatically.

\section*{Microntik}

The CJM MICROSTIK is a dual axis joystick. It features an all metal rugged chassis, with a heavy duty cable and Jones plug. Each Microstik includes two pushbutton for interactive controd. Additional circuitry reduces the current draw so that two Microstiks can safely be used simultaneously through the game socket. These are high quality units constructed to withstand abuse. Extension cables are available as accessores.

SIRIUS SOFTWARE PRESENTS

\section*{Action Software For The Apple}

\section*{Both Barrels}

This package features two games: HIGH NOON and DUCK HUNT. Fun for the very young and the young at heart...you'll love the bad guy that falls off the roof and the dogs fighting over the ducks.

\section*{Star Cruiser}

STAR CRUISER is a fast action arcade game that can be played by ages 3 and up. SOFTALK magazine rated this one number three...need we say more?

\section*{Cyber Strike}

CYBER STRIKE This is brand new game for the APPLE II...a hi-res action adventure in space with a full 48 k of Assembly Language programming with animation and 3-D effects you haven't seen before. MIND BOGGLING! Everyone said a game like this wasn't possible on the APPLE II, but we did it. Also includes a real time clock (software implemented) and several levels of play. WARNING...THIS GAME REQUIRES PRACTICE TO PLAY SUCCESSFULLY! Uses either 13 or 16 sector APPLE II, IIt, or III.
*AFPLE If is a registered trademark of Apple Computer, Inc. HICHER TEXT is a cofyrighted product of Synergistic software. BOTH BARRELS, DUCK HINT, HJGH NOON, STAR CRIIISER, and CYEER STRIKE are all copyrighted products of SIRIUS SOFTWARE. All rights reserver.

\author{
Sirius Software
}

1537 Howe Ave, Suite 1OG Sacramenta, CA 95825

\section*{HAS YOUR APPLE READ ANY GOOD PROGRAMS LATELY? \\ APPLE II DISK SOFTWARE}

\section*{DATA BASE MANAGER}

\section*{IFO PROGRAM}

The IFO (INFORMATION FILE ORGANIZER) can be used for many applications such as: Sales Activity, Check Registers, Balance Sheets, Client/Patlent Records, Laboratory Data Reduction, Prescription Information, Grade Records, Malling Lists, A/R, Job Costing and much more. This can be accomplished without prior programming knowledge.
Up to 1,000 records with a maximum of 20 headers (catagories) and 10 report formats (user defined) can be stored on a single diskette, Information can be sorted on any header, both ascending and decending in alipha/numeric field. Mathematical functions can be performed on any 2 fleids to manipulate the information. Information can be searched on any header using \(>,<,=>_{1}=<_{1}=\), and first letter. Mailing list format provided. Fast assembly language Sort, Search and Read routines. Many error protection devices provided. Put your application program together in minutes instead of hours.
Frogram Diskette and Instruction Manual.
Maliling List Program and Instruction Manual.

\section*{IINVENTORY PROGRAM}

2 disk drives, menu-driven program. Inventory categories include: Stock\#, Description, Vendor ID, Class, Location, Reorder Pt., Reorder Qty., Qty. on Hand. Ail records can be entered, changed, updated, deleted, or viewed. Reports can be sorted in ascending/decending order by any category. There are 7 search reports (3 automatic). Calculates \(\$\) VALUE of Inventory and YTD, MTD, and period Items sold, accumulates inventory over a 13 -month period. Requires a 132-column, serial/parallel printer, total turnkey operation with bootstrap diskette.
Program Diskette and Instruction Manual. \(\qquad\) .\(\$ 140\)
PAYROLL PACKAGE*
2 disk drives, menu-driven program. Employee history include: Name, Address \#, Address \#2, City, State, Zip, Federal Exemption, State Ex. einptlon, Social Security "1, Date Employed, Dept. \#, Code, Employee \#, Status, Marital Status, Pay Rate, OT Rate, Vacation Rate, "Vacation Hours and Pension Plan. Program can generate weekly or biweekly payroll. Prints W-2, Qtr. Report, Pay Checks, Master and Current Flles. Federal and State witholding taxes are built into program. Maintains a Cash Disbursement journal, accumulates payroll for a 53 -weak period. Generates numerous type of payroll reports. Allows data to be searched, sorted and edited. Prints Deduction Register and more. Maintain up to 125 Employees/Expenses for quick and easy Payroll. Numerous error protection devices provided.
Program Diskette and Instruction Manual.
\(\$ 240\)
*PLEASE SPECIFY STATE WHEN ORDERING

\section*{APARTMENT MANAGER}

2 disk drives, menu-driven program written in assembly language and APPLESOFT II. All you will ever need to manage your apartment. Handles up to 6 Buildings with a maximum of 120 units each. Complete turnkey operation. Data categories include Apt. \#, Type, Tenant Name, Pets, Children, Security Deposit, Pet Deposit, Pool Deposit, Misc. Deposit, Rent Allowances, Date Moved In, Vacancy Date, Referral, Condition of Apt., Damage Amt. and Comment Line. Search, sort, enter, edit arid vacate tenants. Maintains MTD and YTD rent receipts as well as complete utility reports, rent lost by vacancies. Maintains Expenses, Vacated Tenants Report and much more.
Program Diskette and Instruction Manual.
\(\$ 325\)

\section*{PROFESSIONAL TIME AND BILLING}

2 disk drive program written in assembly language and APPLESOFT II. Completely menu driven. Maintain all billing of clients and personnel. Generates and Invoices. Numerous reports based on all types of criteria. Easy data entry for Rates, Clients, and Matters. Has Search, Sort, Change (on screen editing), Vlew and Balance Forward. If you are a Job Contractor, Attorney, Accountant, General Consultant, or anyone that needs to charge for time, this program is a must. Complete turnkey operation. Many Reports are produced to aid in the Time Analysis Process.
Program Diskette and Instruction Manual.
\(\$ 325\)
ALL PROGRAMS REQUIRE 48K and APPLESOFT II ON ROM OR AND APPLE II PLUS. ALL SOFTWARE IS COMPATABLE WITH PASCAL SYSTEMS. PROGRAMS RUN FROM ANY PORT OF THE COMPUTER WITH SERIALIPARALLEL PRINTERS. REQUIRES 1 DISK DRIVE UALLESS OTHERWISE NOTED.

SEND CHECKMMONEY ORDER or C.O.D. TO: SOFTWARE TECHNOLOGY for COMPUTERS P.O. BOX 428

BELMONT, MA 02178
(OR AVAILABLE FROM YOUR LOCAL DEALER)

SIRIUS SOFTWARE PRESENTS

\section*{Action Software For The Apple}

\section*{E-Z Draw}

E-2 DRAW is the software that started it all...the poor man's graphic tablet. But now it has been updated to 3.3 DOS and completely rewritten for the professional user. E-Z DRAW now includes the powerful HIGHER TEXT character generator written by Ron and Darrel Aldrich. With our new routines the fonts or any part of the picture can be flipped upside down, slanted left or right, rotated 90 or 180 degrees, mirrored or any combination of the above. Also the fonts or parts of the screen can be expander in width or heighth, or compressed in heighth or width. You can mix portions of pictures together, or save only a portion of the screen on disk. Now fully keyboard controlled for better accuracy. Professional documentation and 20 different and imaginative type styles included. Also included are commands to print the hi-res screen on the Trendcom or Silentype printers. Updates are available for the customer who already purchased E-Z DRAN 2.0. The update is only \(\$ 10.00\) for those who return their original disk directly to us...please don't bug your dealer for the update.

> *APPLE II is a registered trademark of Apple Computer, Inc. HICHER TEXT is a copyrighted product of Synergistic Software. Trendcom is a registere? trademark of Trendcom. Silentype is a registered trademark of Apple Computer, Inc. E-7. DRAW is a copyrighted product of SIRIUS SOFTWARE. All rights reserved.

\(\star\) Complete your accounting system with the soon to be reieased A/P package, featuring automatic application of credit and debit memos, open or closed item listing, full invoice aging, and multiple reports that provide a complete transaction review.
\(\star\) Your bookkeeping doesn't have to be a bulky, complicated process. The SBCS Accounting System is designed lor flexibility and high periormance with a cost efiactiveness sure to benefit your business!

YOU NEED EXPERIENCE WORKING FOR YOU
* Packages avallable at your local Apple dealer

SMALL BUSINESS COMPUTER SYSTEMS 4140 Greenwood, Lincoln, NE 68504 (402) 467-1878

A REAL TIME HI-RESOLUTION GRAPHICS GAME WITH SUPER SOUND EFFECTS. THREE SKILL LEVELS - NOVICE, AVERAGE ('Arcade' difficulty'') and EXPERT WHERE ASTEROIDS ARE ACTUALLY ATTRACTED TO YOUR SHIP!

\begin{abstract}
A checker game is presented using Challenger C1P graphics and the polled keyboard techniques explained in WIIIlam Taylor's series.
\end{abstract}

\section*{Les Cain}

1319 North 16th Street Grand Junction, Colorado 81501

I have been an avid fan of MICRO since August '79, and have enjoyed most of the articles. But everything is so serious, so come on let's have a few games. All work and no play makes Jack a dull boy.

What follows is a Checker game that uses Ohio Scientific graphics. As listed, the program is written to work on the 4 P and 8 P , but with slight modification it will also work on the \(1 P\). The only differences are the video memory and the keyboard polling routines. The keyboard routines are explained adequately in the Graphics Manual and in other articles written on the Ohio Scientific system, so I won't go into these routines. The video memory on the 1 P is 1 K with decimal 32 between horizontal rows, while the 4 P and 8 P have 2 K of memory with decimal 64 between horizontal rows.

I won't go into much detail as the listing explains the major program steps. Line 30 controls the video memory size and should be put in according to which computer is used. Line 310 reduces screen size to \(32 \times 32\) on the 4 P and 8 P , and should be left out for the 1P. Lines 730 through 1220 are
```

0 FORI=1TOBB:PRINT:NEXT
ST=535e7:CC=128
REM
40 REM ST=53:282 CC=64 FOR THE 1P
5 0 ~ R E M
60. SU=ST: CD=CCC/2: }\textrm{BO}=5U+12*CC+
70 PRINTTPB(10);"\#\# CHECKERS \#\#"
30 FORI=1TO1@: PRINT : NEXT: FORT=1TO1000: NEXT
90 REM GET CHOICE OF MEN FOR PLFYER
100 REM 21=PL_RYER KING 24=COMPUTER KING
110 REM
120 PRINT:PRINT:INPUT"DO YOU WANT RED OR BLRCK";PN\$
130 IF LEFT$<PN隼,1)="R" THEN Z1=82:Z2*66:Z3=226:Z4=4:GOTO 160
140 IF LEFT$<AN$,1><>"8" THEN 120
150 21=66: 22=82: 23=4: 24\approx226:G0T0 160
160 PRINT:PRINT:PRINT" INSTRUCTIONS:"
170 PRINT:PRINT:PRINT"MOUE FLRSHING CHECKER BOARD TO MON YOU"
180 PRINT"WFNT TO MONE BY U (UP), D (DOWNN"
190 PRINT"R (RIGHT), L (LEFT). PRESSS CPARRIAGE RETURN."
200 PRINT"THEN MOUE FLRSSING SQUARE TO THE POSITION"
210 PRINT"YOU WANT TO MONE TO PND PRESS CARRIAGE"
220 PRINT"RETURN. IF YOU HPUE FMOTHER MOUE A FLASHING"
230 PRINT"CHECKER BOARD WILL INOICATE WHICH MPN TO"
240 PRINT"MOUN. IF NO MOUE CPAN BE MPOE PRESS SPACE"
250 PRINT"EAR. A LINE FEED ENDS GPME EARLY."
260 PRINT:PRINT:PRINT" YOU ARE % " sPN%;" %"
270 PRINT: INPUT"TYPE C TO CONTIHUE";'NN$
280 FORI=1 TOSG:PRINT: NEXT
290 REM R\&B STPRTINGS PLACE FOR BOPRD
300 A=SU:B=9+( S*CD)+3
310 POKES6908,0:REM TAKE OUT FOR 1P
320 DIM S(8,8),R1(4),R(4)
330 REM SETUP BORRD ARRRY
340 DATR 1,4,1,4,0,4,-1,4,4,1,4,0,4,-1,4,-1,15
350 FORI=0TO7: FORJ=0GTOF:REAOX: IFX=15THEN3TD
360 S(I,J)=X:G0TO330
370 RESTORE: RERDS(I,J)
380 NEXTJ,I
390 B5="YOUR TURN":C\$="TRY RGAIN"
4 0 0 ~ R E M
41E REM START BORRO DISPLFY
426 REM SQUMRES FIRST
4 3 0 ~ R E M
440 FORI=1 TO4: FORJ=1 TO3
450 FORK=1 TO4:FORL=1TO3
460 FOKEA, 161:POKEE, 161
470 A=A+1:B=8+1:NENTL
480 A=A+3: B= B+3:NEXTK
490 A=f+(CD-24):B=B+(CD-24):NEXTJ
500 A=A+(3*CD):B=B+(3*CD):NEXTI
S10 REM BORDERS NEXT
520 R=SU+3:B=5U+(23**CD):C=B
530 F=SU+<3*CD):G=5U+23
540 FORI=1TO4:FORJ=1 103
550 POKEF,135:POKEB,128
560 R=A+1:B=B+1. NEXTJ
570 A=R+3:B=B+B:NEXTI
SBe FORI=1 TO4:FORI=1 TOS
590 POKEF,136:FOKEG,143
600 F=F+CD:G=G+CD:NEXTJ
610 F=F+(3*CD):G=G+(3*CD):NEXTI
629 REM CORNERS NEXT
630 POKESU+{23*CD), 209: POKESUH23, 207
640 G=-1:R(0)=-99
650 PGKESU+:25*CD)-3,32:REM CLEAR CURSOR

```
GEE REM POKE EORRD ARRRY

\section*{Dear Editor:}

Here are BASIC pack program mods for KIM BASIC and Ohio Scientific BASIC-in-ROM.

The program by George Wells 'SYM-1 BASIC Pack Program'" (MICRO 25:19] was an exceptionally welcome one, since most of us find our desire for full documentation in conflict with the limited memory space in our computer. As with many programs which interact with Microsoft BASIC, it is readily adapted to other implementations on other 6502 machines.

Make the following hanges in the references to BASIC internal code:
\begin{tabular}{lll}
& \begin{tabular}{l}
KIM \\
address
\end{tabular} & \begin{tabular}{l}
Ohio \\
Scientific \\
Superboard
\end{tabular} \\
Name & \$7B \\
OUT.POINT & \$7A & \$7B \\
GET.RAM & \(\$ C 0\) & \$BC \\
IN.RAM.PNT & \(\$ 256 B\) & \$A4A7 \\
TEST.ALPHA & \$2F33 & \$AD81
\end{tabular}

REM and DATA remain the same. The other three internal references occur sequentially in the program, beginning at \(\$ 013 \mathrm{~B}\) in the published program. These three, RST.BAS.PN, FIX.LIN.PN, and BASIC,WARM are replaced by one subroutine call. For KIM it is JSR \$23EE and for Ohio Scientific Superboard it is JSR \$A319. Due to the nature of the BASIC code at these points, this subroutine becomes an exit from the Pack program and you will be back in BASIC. The program's workings will be exactly as described in the article by Wells. To pack a program in BASIC workspace, exit to the monitor and GO at the start address of the program. Hit RETURN to fix the cursor and you can list your packed program, by typing LIST.

The KIM version tested was assembled at \$020E and the Ohio Scientific version was assembled at \(\$ 0222\). The page one location should work in both cases, but I have not tried this.

Many thanks to George Wells for this practical program. Thanks to John Gibbins for the use of the Superboard to test the Ohio Scientific version.

Sean McKenna 64 Fairview Ave.
Piedmont, California 94610
```

670 GOSUB 1780
670 GOSUB 1780
630 REM COWNT JUTPS
690 IFC1=12THEN1670
700 IFP I=12THEN172O
720 REM POLLED KEVBOPIRD RCUTINE
730 2=0
740 F1=1:F2=2
740 F1=1:F2=2
760 FOKE2073,96:K=57808
\60 FOKE2073,9%:K=57808
730 L2=L1-1:U2=\U1-1
790 kl=187
T30 KI=1B7
81G RENI GET MOUE
819 REM GET MOUE
630 PE=PEEK(LO)
64G POKELO,KI
BS0 FORT=1TOSO:NEXTT
360 FOkEL0,32
87G FORT=1T050: NEXTT
8B0 PGKELO, PE
690 REM L FOR L_EFT
906 IF F=64 THEN IF LI>0 THEN LImLI-1:LO=LO-3
910 REM LINE FEED TO END GRME EPRLY
920 IF F=1GTHEN POKE56900, 1:END:REM NO POKE FOR IP
936 REM CR TO INDICATE CHOICE MPDE
936 REM CR TO INDICRTE CHOICE MADE
950 REM SPACE BPR TO INDICRTE NO MOVE
960 POKEK, 2: IF PEEK(K)=16 THEN 1270
970 POKEK,64:IF PEEK (K)=4PNDZ=8 THEN }74
786 POKEK, 16:F=PEEK(K)
990 REM R FOR RIGHT
990 REM R FOR RIGHT IF L1<7 THEN L1=LL1+1:LO=LO+3
1010 REM U FOR UP
1020 IF F=4 THEN IF U1<7 THEN UImU1+1:LOmLO-3NCD
1030 POKEK, 2: IFPEEK (K)=16 THEN 1310
1040 POKEK,8:F=PEEK(K)
1050 REM D FOR DOWNN
1050 REM D FGR THENIF U1>0 THEN U1mU1-1:LO=LO+3*CD
1070 REM NO CHOICE GO AGAIN
1080 GOTO 820
1090 R1{F1)=L1:R1(F2)=|U1:IF L2=L1 OR U2=U1 THEN 1230
1100 KI=1G1:REM SOLID SQUPRE TO INDICPATE CHOICE
1100 KI=161:REM
l
1120 IF F1=1 THEN F1=3:F2=48GOTO 820
1130 E=R1(1):H}=R1(2
1140 R=R1(3):E=R1(4)
1150 IFS(E,H)=4ORS (A,B)<>0 THEN 1640
1160 S(A, B)=S(E,H):S(E,H)=={\& IFRBS(E-A)<>2THEN1260
1170 S((E+A)<Z)(H+B), 2)=0:P1=P1+18F2=48F1=3
l
l
1190 REM CLEFF PROMPT FNW U
1200 GOSUB 187O:GOSUS 1780
1220 KI=187:GOTO 820
1230 A1=R1 (F1):B1=R1 (F2)
1230 A1=R1 (F1>:B1=R1{F2)
1250 E=A:H=B: f\#=A1:B=B1:I=I+15:G0T0116e
1250 E=A: H=B: F=A1:B=B1:
l
1280 REM UPDATE BOPRD
1230 GOSUB 18%0:GOSUB 1780
1300 REM COMPIJTER'S TURN
1300 REM COMPIJTER'S TURN ( FOR (

```


```

1340 NEKTY, X:GOTO1510
1350 U=X+R:Ux=|+B: I FU QOCRU\PORUKEORU>TTHEN1400
1360 IFS(U,U):=0THENGOSUB1418: COTO1460
1370 IFS(U,U)<0THEN1400
1370 IFS(U,U)<QTHEN14400
1330 U=U+R:U=1+B: IFUK QORUKBOO
1390 IFSKU, \
1410 IFU=QRND'S(X,Y)=-1 THENQm@+2
1420 IFRBS(Y-J)=2THENQ=Q+5
1430 IFY=7THENQ=Q-2
1430 IFY=7THENQ=Q-2
1440 IFY=GORU=7THEMQ=Q+1
14S0 FORC=-1YD1STEP2:IFU+C<QORU+C>7ORU
146 IFS(U+C,U+G)<QTHENQ=A+1:G0TO1490
1470 IFU-C<QORU-C>TORU-G)7THEN1490

```

```

1490 NENTC: IFQ>R(Q)THENR(0)=Q:R(1)=X:R(2)=N8R(3)=U\&R(4)=|
1500 Q=0:RETURN
1500 Q=0:RETURN
1510 1FR(0)=-9
1520 R:0)=-99 ( IFR (4)=0THENS(R(3),R(4))=-2:G0TO1550
1540 S(R(3),R(4))=S(R(1),R(2))
1540 S(R(S),R(4))=S(R(1),R(2)
1560 S((R(1)+R(3)),2,(R(2)+R(4)) /2)=0:C1=C1+1
1190 REM CLEAR PRONPT FND UPDATE BOFRD

```
```

1570 X=R(3):Y=R(4):1FS(X,Y)=-1THENB=-2:FORR=-2TO2STEP4:GOSUR1610
1580 IFS(X,Y)=-2THENFORA=-2TO2STEP4: FORB=-2TO2STEP4:G0SUB1610:NEXTB
1590 NEXTA: IFR(0)<>-99 THENR(0)=-99:GOTO 1530
1600 GOTO 670
1610 U=XX+A:\J='+8: IFU<GORU>PORU<OORU>7THEN1630
1620 IFS(U,U)=0ANDS(X+A/2,Y+B/2)>QTHENGOSUB1410
1630 RETURN
1640 G0SUB18T0:FORI=1 TO9:POKEBO+I, RSC(M1DS<C\, I ) :NEXT
1650 E1=E1-1:FORT=1TOE00:NEXTT: GOSUR1870: IFP<\ITHEN740
1660 GOT0670
1670 FRINT"CONGRATLHATIONS YOU WON"
1690 REM RESTORE SCREEN SIZE FNO CONTROL C
1710 POKE56900, 1: POKE2073,173:EHHD
1720 PRINT"I WON TOUGH LUCK"
1730 REM
1740 FOKE56300,1:PGKE2073,173:END
1750 REM
1760 REM POKE BOFRD HRRR'Y
1770 REM
1780 D1=5U+(CD+1):FORJ=TTOOSTEP-1:FORI=0TO7
1790 IFS(I, J)=4THEFHPOKED1, 161:GOTO1850
1606 IFS(I,J)=0THEHPOKED 1,32:G0TO1850
810 IFS(I, J)=1THENPOKED1, 21:G0T01850
1826 IFS(I.J)=-1THENPOKED1,Z2:G0TO1850
1830 IFS(I, J)=2THENPOKED 1, Z3:G0T01850
1840 IFS(I.J)=-2THENPOKED 1,Z4
1850 DI=01+3:NEXT:DI=[D1+168:NEXT: RETURN
1360 REM CLEFR PRGMPT
1370 FORI=1TO40:PCIKEBO+1,32:NEXT:RETLRN

```
the polled keyboard routines for the 4P and 8P. There are sufficient REMARKS to change the PEEKs and POKEs, so that they match the 1P's keyboard routine. Line 1710 and 1740 should be POKE 530,0 for the 1 P. The routines from line 1780 to 1850 POKE to the screen the present location of the player's and the computer's checkers.

One final note: if you get tired of playing the game you can use the display to adjust your TV or monitor.

Les Cain is employed by Bureau of Land Management as a Civil Engineering Technician where he received training in time-sharing microcomputers.

\title{
WANTED! \\ Good Articles and Good Photos MICRO Pays Very Well!
}

MICRO is committed to covering all of the 6502 systems. To do this well we need a variety of articles on each system. We can always use more high-quality articles relating to AIM, SYM, KIM, Apple, Atari, PET/CBM and Ohio Scientific systems. We are especially interested in good articles which apply to 6502 systems in general.

Because we plan to use more illustrations than formerly, we encourage authors to "think pictorially" and to send us good line drawings and black and white photos.

We are also looking for black and white photos which might stand alone, with a brief caption. Photos of 6502 systems in unusual business or professional environments would be especially welcome. Photos used independently of articles will be paid for separately.

For details write or telephone:
Editorial Department
MICRO
P.O. Box 6502

Chelmsford, MA 01824
617/256-5515

NCRO

\section*{"THE BEST" IS HERE! THE BEST OF MICRO - Volume 3}

\section*{The most substantial MICRO articles - 320 pages organized by major microcomputers. (Covers June through May 1980.) \\ Suggested Retail \(\$ 10.00\) US and Canada}

\section*{YOUR MICRO DEALER HAS A COMPLETE INDEX TO OUR "BEST OF" VOLUMES.}

AIMSYNIKIM: Sharpen Your AIM \(\star\) AIM 6522 Based Frequency Counter \(\star\) Symbol Table Sorter/Printer for the AlM Assembler \(\star\) A Perpetual Calendar Printer for the AIM A Formatted Dump Routine for the AlM \(65 *\) A Complete Morse Code Seind/Receive Package for the AlM \(65 *\) An AlM-65 Notepad \(\star\) Extending the SYM-1 Monitor *SYM-1 BASIC "GET" Command \(\star\) SYMple Memory Expansion *SYM-1 Staged Loading Technique for Segmented Programs Expanding the SYM-1... Adding an ASCII Keyboard . Time of Day Clock and Caiendar for the SYM-1 * SYM-1 Tape Verification \(\star\) SYM-1 6532 Programmable Tlmer \(\star\) Dual Tape Drive for SYM-1 BASIC * SYMple BASIC Data Files * The First Book of KIM - on a SYM \(\star\) Expand KIM-1 Versatlity in Systems Applications \(\star\) KIM- 1 Tape Recorder Controller \(\star\) Card Shuffling Program for KIM-1 * EPROM for the KIM \(\star\) KIM Scorekeeper \(\star\) KIM - The Tuneamith \(\star\) Performing Math Functions in Machine Language \(\star\) Clocking KIM \(\star\) APPLE: The APPLE Stripper \(\star\) Search/Change In Applesoft \(\star\) Assembly Language Applesoft Renumber \(\star\) Data Statement Generator \(\star\) Applesoft Renumbering \(\star\) Common Variables on the APPLE II \(\star\) How to do a Shape Table Easily and Correctly! \(\star\) A HI•Res Graph-Plotting Subroutine in Integer BASIC for the APPLE II \& APPLE II HI-Res Picture Compression * Define Hi-Res Characters for the APPLE II * An EDIT Mask Routine In Applesoft BASIC \(\star\) Lower Case and Punctuation in APPLESOFT \& BI-Directlonal Scrolling \(\star\) Tape Execute File Create and Use \(\star\) KIM and SYM Format Cassette Tapes on APPLE II * A Digital Thermometer for the APPLE II * The Color Gun for the Apple II * APPLE II Speed Typing Test With input Time Clock \(\star\) Alarming APPLE * Life In the Fast Lane * Sorting with the APPLE II \(\star\) Sweet-18 Programming Using Macros * What's Where In the APPLE \(\star\) Disassembling the DOS 3.2 \(\star\) Intercepting DOS Errors from Integer BASIC * Applesoft II Shorthand * APPLE II Floating Point Uttlity Routines \(\star\) Osis Challenger II Cassette Techniques \(\star\) Tokens \(\star\) OSI BASIC In ROM * Shorthand Commands for Superboard II and Challenger C1P BASICs \(\star\) Poiling OSI's Keyboard \(\star\) OSI Fast Screen Erase under BASIC * Graphics and the Challenger C1P \(\star\) A Large Digit Clock \(\star\) Plotting and Movilng Characters * Hypocyciolds * Some Useful Memory Locatlons and Subroutines for OSI BASIC in ROM \(\star\) Structured BASIC Editor and Pre-processor \(\star\) \&treamlining the C2-4P \(*\) A Real-Time Clock for OSI Disk Systems \(\star\) How Do You Connect Pertpherals to Your Superboard II \(\star\) If You Treat It Nicely It Won't Byte \(\star\) PET/CAM: Case of the Missing Tape Counter \(\star\) Relocating PET BASIC Programs * MOVE IT: Relocating PET Source Programs and Object Code \(\star\) A Machine Language Screen Print Program - for the Old (or New) PET \(\star\) A 60XBO Life for the PET \(\star\) Speech Processor for the PET \(\star\) Stop That PETI \(\star\) Boolean Equations Reduced on the PET \(\star\) Reading Pet Cassettes Without a Pet \(\star\) Hooking PET to Ma Bell \(\star\) PET Cassette \(110 \star\) Plotting a Revolution \(\star\) New and Better PET User Port Printer Routines * Multiplexing PET's User Port \(\star\) An Additlonal I/O Interface for the PET \& GENERAL: Replace that PIA with a VIA \(\star\) To Tape or Not to Tape: What is the Question? \(\star 8522\) Timing and Counting Techniques \(\star\) Why a PET, APPLE, 6502 BASIC Compiler? A Simple Explanation * The Binary Sort \(\star\) Beginning Boolean: A Brief Introduction to Boolean Algebra for Computerista \(\star\) Subroutine Parameter Passing * Program Checksum Calculator * A Simple Temporature Measurement Program and Interface \(\star\)

\title{
At Your MICRO Computer Dealer Now \\ Complete your collection-ask about 'Best of' 1 and 2
}

If your local computer dealer does not have an adequate stock of this volume, you may order direct. MICRO will pay the shipping charges (anywhere in the world) on these orders untII March 31. Write or call:

\section*{OHIO}
geIENTIFIC
```

SUFERSOARII II \$279.60
614 EOARD EK \$279.0G
G20 EOHRI S S 95.00
GEI EUS FOR G10)
E3G EOMRD F 225.0日
(AIIS GOLOR ETL,.)
C4F Series 2 \$ 659.00
CEP-IF-3EK S290.60
ACEQ COLOR MONITOR
10 in.-NOT A TV-\$599.00
YIGA, MASTERCHARGE-D.K.-
************
ghiffiNG AND INE. CHARGE
ADIEI TO CREDIT ORIERS.
CHECKS MLST CLEAF EANK
EEFORE SHIPMENT:NO COD.
****:*:*:****
E\&I TECHNICAL SERVICE
5006 FARIS GRAVEL RD
HANNIEAL, MO.63401
314-245-0084

```


TOUCH TYPING - 15 lesson set teaches you to use all letters and numerals without the need to look at the keyboard. Requires \(32 \times 64\) display. 8 K . \(\$ 19.95\).
FAILSAFE +2-a sophisticated game based on the electronic warfare environment encountered by aircraft during nuclear war. 8K. \$8.95.
INTELLEGENT TERMINAL EMULATOR - down load, edit, then send tiles back to host computer. Full or half duplex, many other features. Disk systems. \$24.95.
DS-PORT - 18 page data sheet shows how to add parallel ports to your C1P without a 610 board. Includes photo positives. \(\$ 9.95\).
DS-20MA - Your C1P can use any ASCII 110 baud, 20MA periferal with the aid of this 14 page data sheet. \$8.95.
Send for a FREE complete software and hardware catalog.
Aurora Software Associates \(\xrightarrow{\text { P.O. Box } 99553}\) Cleveland, Ohio 44199
(216) 221-6981

\section*{ADVENTURES}
for
8K PET
16K TRS80 and Color 80
Fast, full-featured adventures.
All done in BASIC
with source provided.
* ESCAPE FROM MARS - Explore an ancient Martian city while you prepare for your escape.
* NUCLEAR SUBMARINE - Fast moving excitement at the bottom of the sea.
* PYRAMID - Our most advanced and most challenging adventure. Takes place in our own special ancient pyramid.
* VAMPIRE CASTLE - A day in old Drac's castle. But it's getting dark outside.
* DEATH SHIP - It's a cruise ship - but it ain't the love boat and survival is far from certain.
* TREK ADVENTURE - Takes place on a familiar starship. Almost as good as being there.

\section*{\$14.95 Each}

Aardvark Technical Services 1690 Bolton
Walled Lake, MI 48088 (313) 624-6316

\title{
Semi-Annual Index \\ June - November 1980* (Issues 25-30)
}

\section*{Articles}

\section*{Issue/Page}
\begin{tabular}{|c|c|}
\hline AIM & \\
\hline Share Your AIM Programs Jody Nelis & 25:23 \\
\hline AIM-65 File Operations Christopher J. Flynn & 26:61 \\
\hline Satellite Tracking with the AIM-65 C.R. MacCluer & 27:13 \\
\hline Loading KIM-1 Tapes to AIM Larry P. Gonzalez & 28:19 \\
\hline Compact Steve Bresson & 28:25 \\
\hline Tiny PILOT for the AIM Larry Kollar and Carl Gutekunst & 28:59 \\
\hline An Improved Morse Code Receive Routine and Interface Marvin L. DeJong & 29:23 \\
\hline Biorhythm: An AIM BASIC Programming Exercise P.E. Burcher & 29:51 \\
\hline AIM 65 File Operations: Writing Text Files with BASIC Christopher J. Flynn & 30:65 \\
\hline APPLE & \\
\hline A Little Plus For Your Apple II Craig Peterson & 25:7 \\
\hline APPLE II Integer BASIC Program List by Page Dave Partyka & 25:37 \\
\hline \begin{tabular}{l}
BASIC and Machine Language Transfers with Micromodem ll \\
George Dombrowski
\end{tabular} & 25:47 \\
\hline TRACER: A Debugging Tool for the APPLE II R. Kovacs & 25:59 \\
\hline Zoom and Squeeze Gary B. Little & 26:37 \\
\hline Data Statements Revisited Virginia Lee Brady & 27:7 \\
\hline \begin{tabular}{l}
Better Utilization of Apple Computer Renumber and Merge Program \\
Frank D. Chipchase
\end{tabular} & 27:17 \\
\hline Solar System Simulation with or without an Apple il David A. Partyka & 27:33 \\
\hline Applesoft Floating Point Routines R.M. Mottola & 27:53 \\
\hline Business Dollars and Sense in Applesoft Barton M. Bauers, Jr. & 27:65 \\
\hline Creating Shape Tables, Improved! Peter A. Cook & 28:7 \\
\hline A Versatile Hi-Res Function Plotter for the Apple II David P. Allen & 28:49 \\
\hline \begin{tabular}{l}
Mean 14: A Pseudo-Machine Floating Point Processor for the Apple II \\
R.M. Mottola
\end{tabular} & 28:67 \\
\hline PRINT USING for Applesoft Gary A. Morris & 29:14 \\
\hline Paged Printer Output for the APPLE Gary Little & 29:47 \\
\hline Cassette Label Program Dawn E. Ellis & 29:65 \\
\hline Step and Trace for the APPLE II Plus Craig Peterson & 30:61 \\
\hline ATARI & \\
\hline Introducing the Atari 800 William L. Colsher & 25:35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Atari Notes William L. Colsher & 27:57 \\
\hline A Versatile Hi-Res Function Plotter for the Atari 400 \& 800 David P. Allen & 30:47 \\
\hline KIM & \\
\hline VISA-KIM Joel Swank & 26:47 \\
\hline \begin{tabular}{l}
A "Stop-on-Address" Routine for KIM \\
R. MacDonald
\end{tabular} & 29:30 \\
\hline OHIO SCIENTIFIC & \\
\hline Put Your Hooks Into OSI BASIC Edward H. Carlson & 25:15 \\
\hline Hypocycloids on the 540 E.D. Morris & 25:57 \\
\hline Challenger II Communications Peter Koski & 26:53 \\
\hline Interface of OSI C1P With Heath Printer William L. Taylor & 27:47 \\
\hline A C1P and H14 System, Part 2 William L. Taylor & 28:30 \\
\hline An OSI Cheep Print Thomas Berger & 29:7 \\
\hline An Ultra-Fast Tape Storage System John E. Hart & 30:11 \\
\hline Ohio Scientific Users: Stop those SERRORS E.D. Morris, Jr. and Tim Finkbeiner & 30:37 \\
\hline PET & \\
\hline Lower Case Lister Rev. James Strasma & 25:11 \\
\hline \begin{tabular}{l}
PET-16 \\
Rev. James Strasma
\end{tabular} & 25:49 \\
\hline 'Stop That PET' - Update George R. Gaukel & 25:64 \\
\hline Hello, World John Sherburne & 26:31 \\
\hline Son of Screen Print Kenneth Finn & 27:61 \\
\hline Auto-Run-Save, Y-t Plotter, Canary for the PET Werner Kolbe & 28:14 \\
\hline Define Your Own Function Key on PET Werner Kolbe & 29:19 \\
\hline For Multiple File Tape Backups G.R. Boynton & 29:36 \\
\hline \begin{tabular}{l}
Self-modifying PET Programs \\
P. Kenneth Morse
\end{tabular} & 30:29 \\
\hline SYM & \\
\hline SYM-1 BASIC Pack Program George H. Wells, Jr. & 25:19 \\
\hline Slide Show for the SYM David P. Kemp & 25:53 \\
\hline SYM-1 Memory Search and Display Nicholas Vrtis & 26:7 \\
\hline SYM-Bell Randy Sebra & 30:17 \\
\hline
\end{tabular}
(continued)
\begin{tabular}{lc}
\begin{tabular}{l}
GENERAL \\
6502 Resource Update \\
Dr. William R. Dial
\end{tabular} & \(25: 65\) \\
\begin{tabular}{c}
Sorting Revealed \\
Richard C. Vile, Jr. \\
Variable Lister \\
Ray Cadmus
\end{tabular} & \(26: 13\) \\
\begin{tabular}{l}
Additions to Tiny Pilot \\
Bob Applegate
\end{tabular} & \(27: 19\) \\
\begin{tabular}{ll}
Nth Precision Add \& Subtract With Adjusted Processor \\
Status \\
Lawrence R. Golla
\end{tabular} & \(27: 21\) \\
\begin{tabular}{l}
BCD Input to a 6502 Microprocessor \\
Richard Saltero
\end{tabular} & \(27: 27\) \\
\hline
\end{tabular}
\begin{tabular}{lr}
\begin{tabular}{l}
XREFER \\
Joel Swank
\end{tabular} & \(28: 34\) \\
\begin{tabular}{l}
Undedicating a dedicated Microcomputer \\
David N. Borton
\end{tabular} & \(29: 27\) \\
\begin{tabular}{l}
Tiny Pilot Complemental (Co-Pilot) \\
Robert Schultz
\end{tabular} & \(29: 32\) \\
\begin{tabular}{l}
Hexadecimal Printer \\
LeRoy Moyer
\end{tabular} & \(29: 57\) \\
\begin{tabular}{l}
Programming with Pascal \\
John P. Mulligan \\
How to Use the Hooks \\
Richard Williams
\end{tabular} & \(29: 59\) \\
\begin{tabular}{l}
John Conway's Game of Life Using Display Devices \\
With Automatic Scrolling \\
Theodore E. Bridge
\end{tabular} & \(30: 7\) \\
\hline
\end{tabular}

\section*{Departments}
The MICRO Software Catalog
Mike Rowe*
6502 BIbliography
Dr. William R. Dial
MICRO Club Circuit
Mike Rowe*
MICROScope

Microprocessors in Medicine: The 6502
27:31 / 28:57 / 29:49 / 30:33

\section*{Issue/Page}

\author{
he MICRO Software Catalog
}

25:71/26:71/27:71
28:73/29:73/30:72
25:75/26:75/27:75
Up From the Basements
27:59/29:72/30:51 Jeff Beamsley
PET Vet
Loren Wright

28:48 / 29:39 / 30:27
28:76/29:76/30:76
Letterbox
26:60/27:56/29:6
Editorial
25:5/26:5/27:5/28:5/29:5/30:5

29:56 / 30:36
Jerry W. Froelich, M.D.
25:68 / 26:68/27:25

28:47 / 29:34/30:72
Robert M. Tripp
*Mike Rowe is a pseudonym for material prepared by MICRO's staff.

\section*{COPIES THE "UNCOPYABLE"}

Not just another disk copy program, The Locksmith makes a BIT by BIT copy of your disk. Duplication of just about any disk is possible with this program including "uncopyable" protected disks.

\section*{ENVIRONMENTALLY SAFE}

The Locksmith works under DOS 3.2 or 3.3 in either 13 or 16 sector environmehts and is compatable with disks created under Basic, Pascal, Fortran, \& other languages. Requirements are an APPLE II or APPLE II+ with EITHER one or two drives.

RELAX
No longer do you have to worry about spills, staples, or magnetic fields that destroy your valuable diskettes. The Locksmith allows you to make backups of your most valuable disks.

\section*{PAYS FOR ITSELF}

Time lost getting replacements of ruined disks, as well as avoiding outrageous charges for this service, will pay for The Locksmith in a short time.

\section*{REPLACEMENT POLICY}

The Locksmith uses an advanced bit copy technique which is insensitive to currently used disk protection methods. The Locksmith will copy virtually ANY diskette with one notable exception; ITSELF. Although we ship all disks with copies of the program on BOTH sides, we realize that accidents happen. Therefore, we offer a simple, no nonsense replacement policy. If you fold, staple, or mutilate your copy of The Locksmith (or otherwise render your disk unusable), just return the original and \(\$ 3.00\) (for postage, packing, and handling) for a prompt replacement.

\section*{ORDER TOLL FREE}

Mastercharge and Visa users call 1-800-835-2246 Toll Free anytime. Kansas residents call 1-800-362-2421. Or send \(\$ 74.95\). Florida residents add \(\$ 3.00\) sales tax.

OMEGA SOFTWARE SYSTEMS,INC
1574 lves Dairy Rd.
No. Miami, Fla. 33179
- Omega Software Systems

APPLE is a registered trademark of Apple Computer, Inc.

Dealer inquires invited.

OHIO SIENTITIE
(Prices effective Dec. 1, 1980)
WP6502 Word Processor Version 1.2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Cassette (all systemsl . \$ 50} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{8 Inch disk for 05650 Systems \$100}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{8 Inch disk for OS65U Systems \(\$ 100\)} \\
\hline Programmed Instruction Training Course & \\
\hline \multicolumn{2}{|l|}{Version 1.2 Enhancements} \\
\hline \multicolumn{2}{|l|}{DQ Mail (DMS Interface) \$ 75} \\
\hline OQ Duplicator (5 " single drive copier) & \$ 30 \\
\hline DQ Duplicator for \(8^{\prime \prime}\) & 30 \\
\hline \multicolumn{2}{|l|}{DO Justify ITTY \& Diablo L} \\
\hline Diablo/Qume \& all NEC Spinwriters & \\
\hline 65 D & \\
\hline 65U & 50 \\
\hline
\end{tabular}

DQ Justify (TTY \& Proportional Spacing) Parallel NEC Spinwriters \& Centronics 737
650
\(\$ 50\)
\(65 \cup\)
\$ 50
DQ Secretary. Dwo's enhanced ESD........... \(\$ 50\)
DQ Secrecary. Dwo's enhanced 654 for single user. timesharing and networking systems \$250
WP6502 Word Processor Version 1.3 (January 1, 1980)

Dwo Quong Fok Lok Sow 23 East 20th Street New York City, N.Y. 10003 (212) 673-6310

\section*{OSI PET}

Double your graphics for \(\$ 99.00\) !
\begin{tabular}{lr}
PET & \(80 \times 100\) \\
OSI C2, C4, or C8 & \(128 \times 128\) \\
OSI C1, or Superboard & \(64 \times 128\)
\end{tabular}

Easy to install - No assembly required Software included

Call Now - Toll Free
1-800-558-0870
Mastercharge or VISA accepted
Faragher Associates, Inc. 7635 W. Bluemound Road Milwaukee, Wisconsin 53213
SPECIAL INTRODUCTORY OFFER
Programmable Character Generator Board
\(\$ 89.95\)
You can use OSI's characters or you can make your own. Imagine you can now do true high resolution graphics \(512 \times 256\) dots in the \(64 \times 32\) screen format. And all under your control!

Other mods available - send for catalog.
SOFTWARE (with Documentation)
PC Chess V1.9
Play Chess against your computer!
Hellcopter Pllot: (64 CHR Video Only) An Excellent Graphics Program!
Golf Challenger
\$14.95
\$ 8.95
\(\$ 14.95\)
From 1 to 4 players. Play a round of golf on your 18 hole golf course. One of the best programs I have ever seen! You can even design your own course. Comes with full documentation (14 pages).

\section*{Two Very Intricate Simulations!}

Wild Weasel II: You operate a Sam Missile base during a Nuclear War. Not as easy as you think! You must operate in a three dimensional environment.
Fallsafe II: The shoe is on the other foot! Here you are In the attacking bomber and you must penetrate deep into enemy territory. Can you survive? An extremely complex electronic warfare simulation! SPECIAL: both for 19.95

Hardware: C1P Vldeo Mod: Makes your 600 Video every bit as good as the 4P and 8P. Gives 32/64 CHR/Line with guardbands 1 and 2 Mhz . CPU clock with 300, 600 and 1200 baud for Serial Port.

Complete Plans \$19.95
KIT(Hardware and Software) \$39.95
Installed: 32CHR - \$79.95, 64CHR-\$89.95
Extra K of Video RAM for 64CHR not included!
C1P Sound Effects Board: Completely programmable! For the discriminating hobbiest, the best board on the market for creating sound and music. Can be interrupt driven so that you can use it for gaming purposes. Has on board audio amp, 16 bit interval timer, 128 Bytes of RAM and two 8 bit parallel I/O Ports.
Assembled and tested \(\$ 89.95 \quad\) Bare Board \(\$ 39.95\) Both include Prog. Manual and Sample Software.

C1P HI Speed Cassette KIt: Gives a reliable 300, 600, and 1200 Baud. No symmetry adjustments - the ideal fix for OSI's cassette interface. Easily implemented in 30 minutes. Will save you time and money even the first night you use it!
\(\$ 12.95\)
Many, many more. Send for Catalog with free program (Hard Copy) and BASIC Memory Map. \$1.00. Two locations to serve you:

Progressive Computing
3336 Avondale Court, Windsor, Ontario
Canada, N9E 1X6
(519) 969-2500
or
3281 Countryside Circle, Pontiac TWP, MI 48057
(313) 373-0468

This January issue of the Ohio Scientific Small Systems Journal contains two articles, both based on machine language (assembly) programs.

The first article is an implementation of two system memory tests. Both of the tests will run on all Ohio Scientific computers, video or serial based.

The second feature this month is a compact implementation of the game of Life for Ohio Scientific 4PMF computers. The same program may be used on 8PDF systems by changing the origin in line 170 to \({ }^{*}=\$ 317 \mathrm{E}\). Life was developed by Professor John Conway at the University of Cambridge and was first described in the "Mathematical Games" column of the October, 1970 Scientific American.

Happy New Year!
Small Systems Journal 1333 S. Chillicothe Road Aurora, Ohio 44202

\section*{Memory Tests}

In this month's Small Systems Journal we are presenting two memory tests. The first test is a bit rotation test, while the second test uses a pseudo-random byte generator. The algorithms for each test will be explained in another part of the article. Either test will operate on all Ohio Scientific computers.

The most appropriate time to use a memory test is when new memory is installed in the computer. For example, expanding a Superboard II with 4K RAM to a system with 8K RAM.

On the other hand, there is no reason not to run an occasional memory test on an "up and running" computer. It gives you great peace of mind to have memory testing perfectly before you start any new major project.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline , & 339 & 02as & 9DCEDA & OUT & STA & \$DOCE, \(X\) & FOR & 0 SI & VIDEO \\
\hline 1 & 979 & 02月8 & E8 & & INX & & & & \\
\hline & 1000 & 02R9 & 8001F: & & STA & \$FCOI & FOR & QSI & SERIAL \\
\hline & 1010 & O2RC & 68 & & RTS & & & & \\
\hline & 1020 & & & & & & & & \\
\hline & 1030 & & & & ENO & & & & \\
\hline
\end{tabular}

\section*{Bit Rotation Test}

The bit rotation test uses the following five step algorithm:
1) Initially, set all memory under test equal to zero.
2) If location under test is not zero, error.
3) Rotate single bit through byte location (1, 2, 4, 8, etc.) and test if OK; if not OK, error.
4) Set location equal to \(F F_{16}\) and advance to next location.
5) Continue test pass at Step 2.

This test is very useful for locating address line short circuits. This is because every byte to be tested should be zero prior to the rotation test. If there is an address line short, setting the current byte under test (in Step 4) to hex FF will cause another byte higher in memory to also become hex FF. This test is also handy for easy identification of a totally defective memory chip since only one bit is examined at a time.

\section*{Pseudo-Random Test}

The pseudo-random data test uses the following test algorithm:
1) Write pseudo-random byte to location under test.
2) Advance to next location and continue with Step 1 until all memory under test has been written with the pseudo-random sequence.
3) Restart at initial test location.
4) Using same pseudorandom sequence, verify each location has not changed; if changed, error.
5) After all memory under test has been verified, restart at Step 1 with new pseudorandom sequence.

The pseudo-random test has the advantage, with respect to the bit rotation test, that it is very sensitive to data "pattern sensitivity". This means that "typical" RAM data is usefully approximated. A disadvantage of this type of test is that many complete passes of the test must be completed to assure good memory.

\section*{Running the Tests}

Each test is a very basic "bare bones" program. The starting and ending addresses of the memory to be tested must be preset before running the test. Upon completion of every test pass, an " \(X\) " will be displayed at your terminal device. If an error should occur, an "E" will be displayed and the test will stop.

To determine the cause of the error, the computer must be reset and the contents of memory at locations \(4,5,6\), and 7 examined. This will contain the address of the error (4 and 5), the expected data (6) and the data actually found in memory (7).

A couple of examples should clarify the test procedure. If memory between hex 0300 and hex 07FF inclusive is to be tested on a C4P, C1P, etc., the procedure would be as follows: (note: <CR> means RETURN)
1) enter the desired memory test into memory
2) Reset your computer and type M
3) Type - . \(0000 / 00<\mathrm{CR}>03\) \(<\mathrm{CR}>00<\mathrm{CR}>08\)
4) Type - . 0240 G

The test should begin execution and after several seconds, if all is well, begin to display a series of " \(X\) "'s.

To demonstrate an error condition, use the following procedure:
1) enter the bit rotation test
2) reset your computer and type M
3) type - . \(0000 / 00<\mathrm{CR}>\mathrm{FE}\) \(<C R>00<C R>F F\)
4) type - .0240 G

Using this method (testing ROM) an error ("E") should occur immediately. Reset your computer and examine memory using this sequence:
\[
\begin{aligned}
\text { type }- & .00041 \text { display - } 00 \\
& <C R>\text { display - FE } \\
& <C R>\text { display - } 00 \\
& <C R>\text { display }-\mathrm{A} 2
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 770 & & & ; & & , & \\
\hline :a & \(32 E 5\) & ASFE & & LOA & count ; & comes to life if exactly \\
\hline 796 & \(32 E 7\)
325 & \({ }_{\text {c9es }}\) & & CMP & *3 \({ }^{\text {P }}\); & three neighbors \\
\hline \%100 & З2E9 & De2s & & BNE & UPDATE & \\
\hline Eca & 32 EB & 63 & Random & PLA & , & it's not dead <yet \\
\hline 830 & 32EC & 38 & & SEC & & Its not deno (veris \\
\hline gas & 32ED & A5F1 & & LDA & SEED+1 & get a random color \\
\hline cra & 32EF & \({ }^{6554}\) & & \({ }_{\text {ADC }}\) & SEED+4 & IN ITS HONOR \\
\hline G6a & 32 F 1 & 65Fs & & ADC & seED+5 & \\
\hline 970 & \(32 F 3\) & 85F8 & & STA & SEED & \\
\hline Bea & 32F5 & 8 A & & TXA & & \\
\hline 890 & 32F6 & 48 & & PHA & & \\
\hline F06 & 32F7 & A204 & & LDX & * 4 & \\
\hline 919 & 32F9 & B5F8 & move & LDA & seed, \(X\) & \\
\hline 920 & 32F8 & 95F1 & & STA & SEED+1, \(\times\) & \\
\hline 930 & 32FD & CA & & DEX & & \\
\hline 940 & 32FE & 18F9 & & BPL & move & \\
\hline 950 & 3300 & 68 & & PLA & & \\
\hline 96 & 3301 & คค & & tex & & \\
\hline 970 & 3382 & ASF® & & LDA & SEED & \\
\hline 989 & & 0901 & & ORA & * 1 & \\
\hline 1909 & 3386
3307 & 48 & & PHA & & \\
\hline 1609 19.16 & 3307 & D90^ & & & UPDATE; & PUT IT RWAY \\
\hline 1009 & 3309 & ASFE & alive & LOA & count & If already alive, it \\
\hline 11036 & 3388 & C983 & & CMP & & STRYS THAT WAY IF \\
\hline 1948 & \({ }^{3380}\) & 3804 & & BMI & UPDATE; & 2. 3. OR 4 NEIGHBORS \\
\hline 1659 & 339F & C906 & & CMP & & \\
\hline 1060 & 3311 & 3808 & & BMI & random & \\
\hline 1879
1989 & 3313
3314 & \({ }_{\text {91Fb }}^{\text {98 }}\) & UPDATE & PLA & (vidbuf), y & update current cel \\
\hline 1099 & & & & & & \\
\hline \[
\begin{aligned}
& 1196 \\
& 1110
\end{aligned}
\] & 3316 & 285533 & & JSR & MOYEUP ; & move to next cell \\
\hline 1120 & 3319 & р889 & & ene & same & KEEP GOing \\
\hline (7) \(\begin{aligned} & 1138 \\ & 1149 \\ & 1140\end{aligned}\) & 3318 & \(4 \mathrm{C8732}\) & & & & \\
\hline 1150 & 331E & 18 & ahead & cle & s & MOVE AHEAD IM TEMPORRRY \\
\hline 1169 & 331F & 65FC & & adi & TEMP & POINTER \\
\hline 1170 & 3321 & 85 FC & & STA & TEMP & \\
\hline 1139 & 3323 & 9883 & & BCC & \({ }^{*+4}\) & \\
\hline 1196
1069 & 33325 & \({ }_{463733}\) & & & TEMP \({ }_{\text {Lockup }}\) & \\
\hline 1219 & & & & & & \\
\hline 12ec & 332a & 38 & behind & SEC & Ho, & move afick in temporary \\
\hline 1 ETg & \({ }_{3328}^{3328}\) & \({ }_{\text {85FF }}^{\text {85F }}\) & & STA & HOLD & \\
\hline 1eded & 3320 & \({ }_{\text {ESFF }}^{\text {ESFC }}\) & & SRC & Held & \\
\hline 1669 & 3331 & 95FC & & STA & TEMP & \\
\hline 1 E 79 & 3333 & 808z & & BCS & *+4 & \\
\hline 1238 & 3335 & C6FD & & DEC & TEMP +1 & \\
\hline 1569 & 3337 & 81FC & LOOKUP & LDA & (TEMP), Y & \\
\hline J120 & 33339 & 294F & & AND & *14 & SEE IF TEMPDRAR' CELL \\
\hline 12 & 3338 & C30E & & CMP & *14 & is alive and count it \\
\hline 1334 & \({ }_{3}^{3330}\) & \({ }_{\text {EGFE }}\) & & (8EQ & \({ }^{*+4}\) & \\
\hline 1359 & 3341 & 68 & & RTS & & \\
\hline 1356 & & & & & & \\
\hline 179 & 3342 & \(\mathrm{R933}^{\text {a }}\) & INIT & LDA & *333 ; & initialize pointers \\
\hline 1) & 3344
3346 & 3597e & & STA & V\$TPE & BUFFER 9*337E \\
\hline 2409 & 3343 & 85F8 & & Sta & uIdBuF & \\
\hline 1419 & 334\% & R9E\% & & LDP & **ED & \\
\hline 3+26 & \({ }^{334 \mathrm{C}}\) & 85F8 & & STR & \%IDSCR+1 & SCREEN 93EEBe \\
\hline 1.te6 & 3359 & \({ }_{\text {84FF }}\) & & STY & UIDSCR & \\
\hline 14.4.0 & 3352 & Rzas & & LDX & 4 & COUNT 8 Pages \\
\hline \(1+66\) & 3354 & 68 & & RTS & & \\
\hline 1438 & 3355 & cs & MOVEUP & Iny & ar & move pointers forhard \\
\hline 1499 & \({ }^{3356}\) & Deas & & BNE & OK & \\
\hline 1506 & 3358
3359 & E6F9 & & INC & YIDBUF +1 & \\
\hline \(15: 6\) & 3359
3350 & E6Fb & & INC & vidSCR+1 & \\
\hline 1568
+536 & \({ }^{33550}\) & \({ }_{69}\) & OK & \(\xrightarrow[\text { RTS }]{ }\) & & \\
\hline
\end{tabular}

This tells you that at location FEOO \({ }_{16}\) a zero was expected to be in memory, but \(\mathrm{A} 2_{16}\) was found to be in that location instead.

A similar error could be generated using the pseudo-random test, but the test data at location 6 would vary.

A complete assembly listing of both the bit-rotation test and the pseudo-random data test is given. Please note that these tests are both assembled at hex 0240. If you wish to have both tests in memory at the same time, one or the other must be re-assembled.

\section*{The Game of Life}

Life is perhaps the simplest simulation program around today. Life, as the name implies, deals with a life and death generation process based on a primitve cell which, in this implementation, translates to a location of video memory. If a cell starts out alive, that is, in color, then it will remain so if it is adjacent to 3,4 , or 5 other live cells. If a cell starts out dead, that is, black and white, then it will remain so unless adjacent to exactly three live cells. Thus, while the program is running, the screen shows a color pattern of the living and dead cells as each generation passes. As the program is set up, approximately 1.5 generations will be generated per second. However, if the random number generation is replaced by a single default color, execution is considerably quicker. (In fact, the random number generator was added to slow the program enough to observe the pattern changes.) Before running, the initial pattern may be entered into locations \$337E-\$3B7D which correspond directly to the color video at \$E000-\$E7FF.

To run the program, enter it as listed in the assembler, assemble it using "A3", and execute by typing "!GO 327E". The display will then show a pattern of live and dead cells changing more than once a second. To stop the program at any point, press the CONTROL key. You may then make any observations you wish on your "culture". To re-enter your program, again type "!GO 327E" and the program will continue with the next generation.

\section*{GALAXY SPACE WAR I}

Galaxy Space War 1 (WAR1) is a game of strategy in which the player has complete control of his space fleet's tactical maneuvers. Each fleet battles its way toward the opponents galaxy in an attempt to destroy it and win the war WAR1 simulates the actual environment encountered in a space war between two galaxies. Optimum use is made of Apples high resolution graphics (HIRES) and colors in displaying the twinkting stars universe the colored ships of each fleet. long range sensors colored illuminations. and the alternating blinking colors used in battles between ships Complementing HIRES are the sounds of war produced by Apples speaker
WAR1 is played between Apple and a player or between two players You may play with total knowiedge of each others fleet or only ships sensor knowledge of the opponents fleet Each player builds his starting tleet and adds to it during the game This building process consists of creating the size and shape of each ship positioning it. and then allocating the total amount of energy ter each ship.
During a player's turn he may dynamcially allocate his ships cotal energy between his screen/detection and attack/move parttions. The percentage of the total energy allocated to each partition determines its characteristics the screen/detection partition determines how much energy is in a ship's screens and the detection sector range of its short range sensors. The attack/move determines the amount of energy the ship can attack with. its attack sector range and the number of sectors it can move in normal or hyperspace
When an enemy ship is detected by short range sensors. It is displayed on the universe and a text enemy report appears. The report identifies the ship. its position amount ot energy in its screens. probable attack and total energy. a calculated de lection/attack/move range. and size of the ship. Also shown is the number of days since you last knew these parameters about the ship. When a ship s long range sensor probes indicate the existence of an enemy presence at a sector in space. this sector is illuminated on the universe.
An enemy ship is attacked and destroyed with attack energy. If your attack energy breaks through his screens, then his attack energy is reduced by two units of energy for every unit you attack with. A text batle report is output atter each attack. The program mantains your ship's data and the latest known data about each enemy ship. You may show ether data in text reports or display the last known enemy posttions on the universe, You can also get battle predictions between opposing ships The text output calcuiates the amount of energy required to destroy each ship for difterent energy allocations

> APPLE II, 48K, APPLESOFT ROM CARD, DISK II DOS 3.2

\section*{NIKROM TECHNICAL PRODUCTS PRESENTS A DIAGNOSTIC PACKAGE FOR THE APPLE II AND APPLE II + COMPUTER. \\ "THE BRAIN SURGEON"}

All major computer systerns are chocked for functional hardware analysis on a regular basis for logical as well as some practical reasons. Finding what is exactly wrong can account for most of the money consuming down-time.

Apple Computer Co . has provided you with the best equipment available to date. The Diagnostic's Package was designed to check every major area of your computer, detect errors, and report any malfunctions. The Brain Surgeon will put your system detect errors, and report any malfunctions. The Brain surgeon will put your

The Tests inolude:
- MOTHERBOARD ROM TEST FOR BOTH APPLE II ANO APPLE \(11+\)
- applesoft caro test - INTEGER CARD test - memory ram test - dISK dRive analysis - monitor alignment
- DC HAYES MICRODODEM II TEST

System Diagnosis is an invaluable aid to your program library even if your system is working fine. Hours have been wasted trying to track down a "program bug" when actually hardware could be the blame!

The Brain Surgeon allows you to be confident of your system. This can be critical when file handling, sorts or backups are involved. You must depend on your computer during all these critical times. Running The Brain Surgeon prior to these important functions helps to insure that your system is operating at peak performance.

The Brain Surgeon is easy to use and supplied on diskette with complete documentation.
PRICE: \(\$ 39.95\)
REQUIRES: 32 or 48K
APPLESOFI: 1 Disk Drive

Nikrom Technical Products
2S PROSPECT STREET - LEOMINSTER, MA 01453
APPLE is Pegistared

\section*{APPLE II PROGRAM FIRST TIME EVER ** VU \#3 **}

VU \#3 will allow the User to enter data into VISICALC* from any program by inserting data into a file. Then the program places the file into VISICALC* (well documented in the instr.)
VU \#3 will also transfer data generated from VISICALC* Into any of the User's programs.

\section*{*VISICALC is a Trademark of Personal Software, Inc.}
\(\$ 69.95\) plus \(\$ 4.95\) p. \& h.
PROGRESSIVE SOFTWARE
P.O. Box 273

Ply. Mtg., PA 19462
PA Residents Add 6\% Sales Tax

Name:
Disk Copy/Disk Space in ROM
System: Basic Apple II or Apple II Plus
Memory: \(\quad 32 \mathrm{~K}\) or 48 K
Language: Assembly (ROM Chip)
Hardware: Mountain Hardware's ROMPLUS Board Disk II with 3.2 or 3.3 DOS
Description: Plug this ROM into your ROMPLUS board and this utility will be a keyboard command away from your immediate use. Two disk utility programs on one ROM chip. DISK COPY will duplicate a disk with one disk drive, two disk drives with one controller, or two drives and two controllers. Initialization and volume number change are selectable. When DISK SPACE is activated it will read the track bit map on a disk and display the number of free sectors and bytes still available for use. The DISK SPACE routine will also allow you to read or write to any sector, on any track, from assembly language. Will operate with: DOS 3.2 or \(3.3,32 \mathrm{~K}\) or 48 K , Int, FP, LS, II or II Plus. Applesoft Renumber/Merge in ROM also available.
Copies: Many
Price: \(\quad \$ 49.95\)
Includes: User Documentation and Author: Frank D. Chipchase Available:

Name:
System:
Memory:
Language:
Hardware: Cassette Drive or Disk II Description: Hi-Res grid size up to \(64 \times 64\). Speed from 10 to 60 generations/minute at \(64 \times 64\) grid size. Over 100 pre-defined objects as given in various computer magazines. Options and sub-options are chosen by capital letters given below. The Modify option allows Build constellation, Create object, Delete constellation, Erase object, and Get object from grid. The Grid storage option allows Get grid from available storage (30 grids for 48 K \& DOS) or Put grid in storage. An Inspection option allows Objects, Constellations, or Grids to be automatically displayed for inspection or deletion. A Plot option allows Objects, Constellations, Hollow and Solid blocks, Lines, and Random points to be plotted on the grid. The Transfer option allows tables to be Loaded or Saved and grid storage to be Read or Written, using either Cassette or Diskette. Finally, there are Zero grid and Continue 'Life' generation options.
Price: \(\quad \$ 10.00\) for cassette or \(\$ 12.50\) for diskette.
Author: Available:

\section*{Harry L. Pruetz}

Microspan Software
709 Caldwell St.
Yoakum, TX 77995

Name:
System:
Memory:
Language:
Hardware:
Description: Plots stock and commodity price histories. Allows data base update by user to keep plot current. One year's price history included on disk. Data smoothing and digital filtering provide trend reversal indication.
Price: \(\quad \$ 50\) for Dow Jones Industrials. Other stock prices on request.
Author: Available:

Samuel P. Cook
Cook Compusystems
309 Lincolnshire
Irying, Texas 75061

Name:
System:
Memory:
48K and ROM Applesoft
Language: Applesoft and Machine Language

\section*{Hardware: Disk II}

Description: A menu driven collection of five utility programs. All programs work with DOS 3.2 and DOS 3.2.1. Copy-creates backup copies of your important program and data disks. Compare-verifies that a diskette is a copy of another. Certify-verifies that all used sectors on a diskette can be read. Statistics-reports the amount of used and unused space on a diskette both in number of sectors and as a percentage of the total diskette. Patch-a program for the advanced user who wants to access any byte on a diskette. With this program you can 'undelete' a deleted file, protect a bad sector from access, remove or add control characters in file names and much more.
Price: \(\quad \$ 19.95\) on diskette, with manual.
Author: Available: Hal Clark On-Going Ideas
RD \#1 Box 810
Starksboro, VT 05487

\section*{Name: Hex-ASCII Memory} Dump
System: Apple II or Apple II Plus Memory: Any
Language: \(\quad 6502\) Machine Code
Hardware: Apple II or Apple II Plus Description: A utility program designed for use in the software development environment. The ASCII conversion output makes locating textual data in memory extremely easy. Runs stand alone or interfaces to either BASIC through POKEs and CALLs. Output to video or printer. In interactive mode it supports paging, scrolling or stop-start. Four data entry formats and five control functions. Small, occupies only 512 bytes. Completely relocatable with monitor move command or BLOAD to address. An invaluable aid for the serious programmer.
Copies Just Released
Price: \(\quad \$ 15.95\) on disk includes \(\$ 15.95\) on disk includes
Author: Richard E. Rettke
Available: RER Software
1757 Acom Ct.
Menasha, WI 54952
\begin{tabular}{ll}
Name: & Modem Magic \\
System: & Apple II/Apple II Plus \\
Memory: & 48 K (ROM Applesoft) \\
Language: & Apples oft/Machine \\
& \begin{tabular}{l}
Language
\end{tabular} \\
Hardware: & \begin{tabular}{l}
D.C. Hayes Micro- \\
modem, Disk II
\end{tabular}
\end{tabular}

Description: Five programs to automatically download and upload data and programs to remote computers (such as a CBBS or another Apple). Special routines to strip out unnecessary 'formatting' blanks from BASIC programs (to minimize transmission time) and to properly handshake with slow receiving computers.
\begin{tabular}{|c|c|c|}
\hline Copies & 25 & \\
\hline Price: & \$40.00 & \\
\hline Author: & Gary Little & \\
\hline Available: & Gary Little & \\
\hline & \#101-2044 & West Third \\
\hline & Avenue & \\
\hline & Vancouver, & B.C., Canada \\
\hline & V6J 1L5 & \\
\hline
\end{tabular}

Name: Reading Comprehension
System: Apple II Plus
Memory: \(\quad 16 \mathrm{~K}\)
Language: BASIC
Hardware: Applesoft in ROM
Description: Has five short stories or poems that you must read. Speed of reading is set by your age. Then you answer 10 questions about the story or poem. Can change data on tape-on tape.
\begin{tabular}{ll}
Copies: & As Needed \\
Price: & \(\$ 10.00\) \\
Author: & Jim and Lois Willis \\
Available: & Jim Willis \\
& 1300 Hinton \\
& West Monroe, LA 71291
\end{tabular}

Name: Financial Management System
System: Apple II or Apple II Plus
Memory: \(\quad 48 \mathrm{~K}\) with ROM Applesoft
Language: Applesoft
Hardware: Disk II, Printer Optional Description: A disk-based home accounting system with unlimited files. User defined macros allow 1-3 keystroke entrys and automatic tax coding. Audit all files by tax code with monthly and year-to-date totals. Printer listings of disk files, balance, reconcile, search, audit, and macro lists.
Price: \(\quad \$ 29.95\) on disk includes diskette and complete documentation.
Author: D.R. Jarvis
Available: D.R. Jarvis Computing
1039 Cadiz Dr.
Simi, CA 93065
\begin{tabular}{ll}
Name: & \begin{tabular}{l}
The Environment \\
Dynarnic
\end{tabular} \\
System: & Apple II
\end{tabular} Description: This disk gives you a long, intense look at environment, its effects, aids to improving it, and ways of transcending or transforming it. The disk deals with differentiating between a good and bad environment, identifying positive environmental characteristics, oppressd aspects of yourself, and finding rare individuals who would be perfect for being part of a truly beautiful lifestyle/space. Lightning Bugs, Turn 'Em Loose!, and the incomparably unique Jungle Safari are 3 of the included Hi-Res (shape table) games. You'll love them and learn from them. Copies Many
Price: \(\quad \$ 15.95\) includes disk, Author: Avant-Garde Creations Available: Avant-Garde Creations P.O. Box 30161 MCC Eugene, OR 97403
\begin{tabular}{lll}
Name: & \begin{tabular}{ll}
2516/2716 & EPROM \\
& Programmer
\end{tabular} \\
System: & SYM.-1 & \\
Memory: & 8K & \\
Language: & BASIC & \\
Hardware: & 3rd 6522 VIA &
\end{tabular}

Description: With just \(\$ 5\) in spare parts, this powerful programmer package will 1) program EPROMS, 2] verify EPROM is cleared, 3) copy EPROM to memory, 4) display EPROM data, 5) display SYM memory, 61 enter new data into SYM memory, and more. Any number of bytes can be programmed (read) from (into) any area of memory. Instructions included.
\(\begin{array}{ll}\text { Copies: } & \text { New Release } \\ \text { Price: } & \$ 15\end{array}\) Author: Jack Gieryic Available: Jack Gieryic 2041 138th Ave. N.W. Andover, MN 55303

These listings are free. In order to obtain a free listing, however, software producers or distributors must follow the format used here. The description part of the listing may NOT exceed 12 typeset lines.

Listings are published in the order in which they are received. However, only one entry per company is accepted for publication in any single month. When more than one entry is submitted, the company submitting the entry must establish the relative priorities. If the software product or its price change after an entry is submitted, it is the responsibility of the company to notify MICRO prior to publication.

Name:
System:
Memory:
Language: 6502 Machine Code
Hardware: None Special
Description: This ROM Monitor provides a smart terminal program, BASIC program line recall/edit, ASCII file transfer between terminal/ROM BASIC/disk BASIC, program uploading/down loading, easy transfer of programs between tape and disk, serial output driver, keyboard corrected to typing format, screen clear. All features available at power on.
Copies Just Released
Price: \(\quad \$ 59.95\) for ROM and 11 page manual.
Author: Leo Weeks
Available: Micro Interface
3111 So. Valley View Blvd. Suite I-101
Las Vegas, NV 89102

Name: Video Games 2
System: \(\quad\) OSI \(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 8\) BASIC in ROM
Memory: 8 K
Language: BASIC
Hardware: None Special
Description: Video Games 2 consists of three games: Gremlin Hunt, Gunfight and Indy 5000. Gremlin Hunt is an arcade-style game for one to three players. Players try to run over 'gremlins' with their tanks. Gunfight is a duel of mobile artillery for one or two. Indy 5000 is a race game for one or two. Color and sound for machines so equipped.
Copies Just Released
Price: \(\quad \$ 15\) on cassette tape, ppd.
Author: Mike Bassman
Available: Orion Software
Associates
147 Main Street
Ossining, NY 10562

Name: \(\quad\) FIFO Morse Typewriter
System: \(\quad\) AIM \(65,1 \mathrm{~K}\) or 4 K
Memory: Needs 500 Bytes
Language: Assembly
Hardware: Simple keying circuit for transmitter included.
Description: For ham radio buffs. FIFO
operation, keyboard always active. Display automatically switches from keyboard to output buffer so that operator doesn't lose track. Delete, speed adjust features included.

\section*{Copies: Just Released}

Price: \(\quad \$ 9.95\). Object file cassette, source available.
Author: Alan M. Davis
Available: A. M. Davis
RFD \#2130, Route 106
Syosset, New York 11791

\title{
"COMPUTERS 'R' US" \\ A CONSUMER COMPUTERS SUBSIDIARY
} UNBEATABLE MAIL ORDER DISCOUNTS

\section*{"apple III}

\section*{APPLE COMPUTER}

PERIPHERALS
DISK II DAIVE CONTROLLER CARD With DOS 3.3. List \$445
DISK II DRIVE \& CONTHOLLER cerd. . DISK II DRIVE ONLY
GRAPHICS TABLET.
SILENTYPE PAINTER w/int. card SSM AIO SERIAUPARALLEL KIL
SSM AIO anoembled a tented.
SYMTEC LIGHT PEN SYBTEM
SYMTEC SUPER SOUND GENEAATOR SVA 8 INCH DIBK CONTROLLER CARD VERSA WAITER DIGITIZER EYGTEM. VIDEX VIDEOTERM EO COH H H W ARO VIDEX VIDEOTERM wiot OEX VISK DPIVE H \(1 \%\) R. SO DRIVE whithors.
3 HAYES MIC6O * 0 ?

\section*{APH MernPitin
}

PARALLEL PRHTEA KH:* COMMUNICAFIO.4**)
 LANQUAGE SYETIN WH: HATCAL

 ACers onis\%: A DMISHWN

\section*{Mountelm, \% \% \% \(+1 \%\)}
 SUPERTALKER SO200 BHECH
SYNTHISIZER SYBTEM + ROMPLUS w/keyboord flteer cowtho inthoux-
gYSTEM
INTAOLXX-10 controller cord only.
nOMWRITER EYSTEM.
MUSIC EYBTEM(18 volena/atoreol.
MO.DIA 18 CHANNELS
EXPANEION CHASSIS (B slotg).

\section*{Evinicy}

48K FOR ONLY *1049

\section*{APPLE II OR APPLE II PLUS}

\section*{APPLE ADD-ONS}

CORVUS 10 megaeyte hard dizk DRIVE SYSTEMw/pwr supply CORVUS CONSTELLATION. 455 16K MEMORY UPGRADE KIT .055 (TAS-40, APPLE II. SORCEREA) . 515 ABT NGMEAHC INPUT KEYPAD 165 (eppeatfy old or now kybrdi. ALF MUUEC SYNTHISIZER BRIGHTREN LICHTPEN. GPEE TEETE48 (1976) Int.
AAITHMETIC PROCESSOR card. SPEECHLINK 2000 /e4 Word Vocab.) MBR SUPR - MOG TV MODULATOR. MIGBOSOFT \(\geq-2\) EOTTCABD SYSTEM w/EPM 4 MiCnosgrt alsic WhCREWONKESE DIGISECTOR. UZEF lover ofees elinptex MEH SUPESTHMMNAL acotumne atod.

ArpL in or APPLE II PLUS OOFTMARE
1t. \% SOA4 with UAWGUAGE SYSTEM W. © 0 at HAN tor wne with LANGUAGE \%: EXSFEM,

Cefin) tor unt with MICROSOF
wh Somentho inch1.
 syistin.
 Intentery syitam
APPLEWBHEA Wors moeneno

 OOW JONE USHTOLIO EVALUATOR 20 A PLL CONTHEUTED VOLUMES 10 VISI-cALC by HentoNai sofiwane. DESKTOP/PLAN BY DESKTOP
165 COMPUTERS
155 CCA DATA MANAGEMENT SYSTEM 465 By PERSONAL SOFTWARE.
19 APPLEBUG ASSEMBLERIDISABSEMBLER. 76 ES5 APPLE DOS TOOL KIT.

16K \({ }_{\text {fов }}{ }^{\$ 799}\)

\section*{ATAR 800 \\ PEASONAL COMPUTER SYSTEN}

\section*{ATARI ACCESSORIES}

400 COMPUTER
820 PRINTER (40 col)
810 DISK DRIVE
410) Program Rocorder
822. THERMAL PRINTER 140 col 825: PRINTER (80 col imp.)
850 INTERFACE MODULE
ATARI 16K RAM MODULE
LIGHT PEN.
ACOUSTIC MODEM ICAT)
COMPUTER CHESS
space invaders
STAR RAIDERS.
SUPER BREAKOUT
3-II TIC.TAC.TOE
VIDEO EASEL
MUSIC COMPOSER

\section*{PRINTERS}

\section*{ANADEX DP. 8000}

ANADEX DP. 9500
BASE 2.
CENTRONICS 737
MPI 88 .T
PAPER TIGER IDS 440
w/grephics.
NEC SPINWRITER TRENDCOM 200 . SII.ENTYPE WIITE SILENTYPE W/int.........
EPSON TX. 80 w/graphics EPSON TX•80 w/graphics
EPSON MX-80 132 col.

VIDE MONTOE

(714) 698-8088
chedit card users please read terims of sale in ordering information

; 429
CIP MOD II
3K ROM BASIC
8K RAM EXPANDABLE TO 32K COLOR EXPANSION
48 LINE DISPLAY EXPANSIO

\section*{SOFTWARE}

PLOTTERS

\section*{- FAST DELIVERY}
-LOW PRICES
- COURTEOUS SERVICE
- KNOWLEDGEABLE STAFF
- LARGE VARIETY

\footnotetext{
JRDERING INFORMATION: Phone Ordars invited using VISA, MASTERCARD, AMEPICAN EXPRESS, or bank wire transfars. VISA a MC credit card service cherge of \(2 \%\). AE credit cerd service charge of \(5 \%\). Mall orders may sand charge card number (include expiration date), canshier's check, monoy ordor or porsonal check (allow 10 business days to clear.) Please Include atelephone number with all orders. Foreign orders fexcluding militery PO's) add \(10 \%\) for shipping and all funds must be in US doilars. Shippling. handiling and in. surance in U.S. add \(3 \%\). Californis residents add \(6 \%\) sales tax. Our low margins prohibit us to send cod or on account. All equlpment sublect to price change and avallability. Equipment ls now and completa with manulacturer warranty. We ship most ordors within 2 days. Order desk hours are Monday thru Saturday \(9-5\) PST, Send for FREE 1981 Catalog. WE ARE A MEMBER OF THE BETTER BUSINESS BUREAU AND THE CHAMBER OF COMMERCE
}

\title{
6502 Bibliography: Part XXVIII
}

\author{
Dr. William R. Dial \\ 438 Roslyn Avenue \\ Akron, Ohio 44320
}

\section*{797. Call - Apple 3, No. 5 (June, 1980)}

Wagner, Roger, "Text Output on the Apple IIr \(_{r}\) " pg. 7-17.
A maior article on how text is output to the Apple screen including an example machine language program which will scroll either page 1 or page 2 of the text both up and down.
Reynolds, William, III, "Applesoft Program Splitter," pg. 19-22.
Moves program lines inside a program in order to protect Apple HGR page(s) or for insertion of OP codes inside a program.
Golding, Val, 'Into Integer,'" pg. 31-32.
A discussion of the merits of Integer Basic for the Apple together with a program for Integer Basic String Array.
Curtiss, Dick, "CP/M for Apple II," pg. 33.
How to install the Control Program/Monitor (CP/M) on an Apple. Requires the new Z80 plug-in card. This is said to open the door for a whole new library of sophisticated programs available to the CP/M users.
Huelsdonk, Bob, "Making Basic Behave: Part III," pg. 35-37.
A continuation of the development of an Apple utility: this installment continues with the base program, adding input, edit, and disk file routines.
Reynolds, Lee, "EXEC Files on the Apple II," , pg. 39-40. Take advantage of the very useful EXEC function on the Apple.
Hertzfeld, Andy, "Init and Switch," pg. 43.
A Hex dump routine in machine language for the Apple II.
Golding, Val, "Write Apple," pg. 44.
A neat trick to save space by BSAVEing Applesoft integers or reals to disk. Also a routine for disabling the stop list at full page for the Apple disk Catalog command.
Hewitt, Jay, 'Disk I/O in Pascal," pg. 48.
Two programs, one in Basic and one in Pascal, to show how this routine translates from one system to the other.
Golding, Val J., "Applesoft Text Screen Dump," pg. 51. A short routine for the Apple.
798. Interface Age 5, No. 6 (June, 1980)

Leary, Richard A., "Mixed Interfaces,", pg. 108-112. Interfacing the 6502 to a Z-80.
Wetzel, Ken, "A Break Service Routine for a KIM-1 with a Teletype," pg. 132-135.

Routine allows listing of all the internal registers of the 6502 CPU whenever it encounters a breakpoint.
799. Dr. Dobb's Journal 5, Issue 6, No. 46 (June/July, 1980)

Bach, Stephen E., "ROM Byte-Finder for the Apple II," pg. 26.
Routine prints all 256 values and addresses in the ROM in the Apple.
Bach, Stephen E., 'Improvements to Apple User Interface,' pg .56.
Improvements for the Renumbering program in DDJ 42.
800. Byte 5, No. 6 (June, 1980)

Renbarger, John, "A Telephone-Dialing Microcomputer," pg. 140-170.

A simple hardware addition and software for the KIM-1 to provide telephone dialing on Touch-Tone systems.
801. Kilobaud Microcomputing, No. 42 (June, 1980)

Hadeishi, Mits, "Additional Indexing Features," pg. 20.

Routine for the PET.
Prentice, Al, "A File Sorting Program and its Diary," pg. 34-40.
Describes the development of a File-Sorting program for the Apple.
Monsour, Fred, "Cook's Memory Test for the 6502," pg. 178-179.

This program tests 8 k of RAM in less than 3 seconds.
802. Peek(65) 1, No. 6 (June, 1980)

Carroll, Michael B., "Auto-Loading Machine Language Casssette Tapes," pg. 7-8.

Here are two methods for OSI systems.
Morton, Ian A., "Large RAM and Long Programs," pg. 14. Some hints concerning inputting from cassette and keyboard on OSI micros.

\section*{803. Softside: Apple Edition (June, 1980)}

Truckenbrod, Joan, "Apple Graphics," pg. 12-14. A tutorial on Hi-Res graphics explaining how figures are moved in various directions.
Pelczarski, Mark, "Program for Your Disk System," pg. 33-34.
A special "hello" program for the Apple disk.
Pelczarski, Mark, 'High Resolution Drawings from The Magic Paint Brush," pg. 44-48.

Program is an adaptation of an earlier program to operate in high resolution graphics on the Apple.
Blackwood, Brian and George, "Intimate Instructions in Integer BASIC," pg. 49-54.
Lessons III, IV and V of the continuing tutorial for the Apple.
804. Creative Computing 6, No. 6 (June, 1980)

Ault, Robin, "More Error Trapping Input," pg. 10. Discussion pertinent to Apple and Applesoft programs.
Tubb, Philip, "Apple Music Synthesizer," pg. 74-83. With a computer controlled synthesizer it is claimed that almost any instrument or sound can be duplicated.
Anon., "Sound Apple Hint," pg. 89.
How to hear your Apple a little more clearly by adding an outboard speaker.
Heuer, Randy, "Apple Hi-Res Graphics Made Easy with the VersaWriter," pg. 92-93.

A review of a drawing board for the Apple.
Rogowski, Steve, "Graphics Goodies: The Case for Polar," pg. 98-103.

Graphics tutorial including a listing in Pascal for the Apple Turtlegraphics.
Simoni, Richard T., Jr., "The Intricate Graphs of the Polar Functions," pg. 104-107.

A computer program for the Apple to graph polar functions.
Vile, Richard C., Jr., "Apple Kaleidoscopes," pg. 110-113.

Methods of developing kaleidoscope routines.
805. OSI Users Independent Newsletter, No. 4 (June, 1980)

Curley, Charles, "Notes of the OS 65U," pg. 1-2.
POKEs of use to OS 65U video system users, other addresses of importance, etc.
Hooper, Phil, "String Finder Routine with Wild Card," pg. 4-5.
A string finder extension to the extended OSI monitor which allows for don't care bytes.
Curley, Charles, "BASIC," pg. 5. Several "little known" facts about 65U BASIC.
Curley, Charles, "Disassembly," pg. 5-6.
A quick and dirty mini assembler for the OSI system.
806. Stems from Apple 3, No. 6 (June, 1980)

Stein, Dick, 'Integer Renumber," pg. 4. To renuraber Integer programs change them to Applesoft, renumber with existing routines and then change back to Integer.
Robin, Neil A., "ROM/PROM Testing Program," pg. 9. A nearly foolproof method for calculating ROM/PROM checksums.
Hoggatt, Ken, "Random Number Analysis," pg. 10. A routine for the Apple to test your random number generator at several numbers and compare results.
Erickson, Fret and Hoggatt, Ken, ''Pascal Math Program," pg. 11-13. A listing in Pascal for the Apple is given.
Stein, Dick, "File Cabinet Changes," pg. 13. More changes for this oft-upgraded program.
Good, Bob and Reed, Ron, "Recdemo," pg. 14-15. Takes data Input from keyboard, writes 3 records to disk, reads 3 records from disk and displays data; in Apple Pascal.
807. G.R.A.P.E. (July, 1980)

Trusty, Doug and Lawson, Steve, "GRAPE Hi-Res Writing,' pg. 4.

Several routines for the Apple including Trusty Scroller, Hi-Res Writer, and English, Greek, Hebrew Type Fonts.
808. Rubber Apple Users Newsletter 3, No. 6 (July, 1980)

Anon., "Taking the GRRR Out of Graphics," pg. 3.
A tutorial on Hi-Res graphics, creating pictures, saving them and recovering pictures.
Anon., "Tabbing with Apple Peripherals," pg. 5.
With printer driver routines for parallel, serial and other printer systems.
809. MICRO No. 25 (June, 1980)

Peterson, Craig, "A Little Plus for Your Apple II," pg. 7-9.
A routine for the Apple II to provide the features of the Apple II Plus.
Carlson, Edward H., "Put Your Hooks Into OSI BASIC,"' pg. 15-17.

Extend your OSI BASIC in ROM? Very easy. This article tells how.
Nelis, Jody, "Share Your AIM Programs," pg. 23-33.
A routine for combining the AIM disassembler output with comments.
Partyka, Dave, "Apple II Integer BASIC Program List by Page,' pg. 37-39.

This program simplifies the viewing of an Apple listing by printing it page by page.
Dombrowski, George J., Jr., "BASIC and Machine
Language with the Micromodem II," pg. 47-48.
A program to send programs over phone wires using the Apple II and the D.C. Hayes Micromodem II.
Strasma, Rev. James, "PET-16," pg. 49-51.
For those PET owners who have envied the Sweet-16 software of the Apple, here is PET-16.
Kemp, David P., "Slide Show for the SYM," pg. 53-56. An Apple to SYM Picture Translator. Permits a SYM with visible memory to use the Apple cassette tapes to put on a slide show.
Kovacs, R., "TRACER: A Debugging Tool for the Apple II," pg. 59-61.
Use this program to make your Apple STEP/TRACE routines more useful.
Dial, Dr. Wm. R., "6502 Resource Update," pg. 65-66. A list of magazines which contain information about the 6502 microprocessor field on a reasonably regular basis. Includes addresses, subscription fees, etc.
Staff, "MICRO Club Circuit," pg. 68-69.
Another installment of 6502-related clubs.
Rowe, Mike (MICRO Staff), "The MICRO Software Catalog: XXI," pg. 71-73.

Fourteen new programs for 6502 systems are reviewed.
Dial, Dr. Wm. R., " 6502 Bibliography: Part XXI," pg. 75-77.

One hundred new references to 6502 -related articles.
810 The Apple Barrel 3, No. 5 (June/July, 1980)
Kramer, Mike, "File Cabinet Stuffer," pg. 7-9. A program for the Apple to allow examination, entering or changing values in the File Cabinet program.
Meador, Lee, "Disk Operating System-Part 3, DOS 3.2
Disassembly," pg. 10-14.
The third installment of a comprehensive series on the Apple DOS.
811. FortWorth Area Apple User Group Newsletter 1, No. 9 (July, 1980)
Stringham, David, "File Cabinet: Sorting Two Files," pg. 1-4.

Running File Cabinet on two Apple Disk Drives and using two files.
Anon., "Macro POP," pg. 7-8.
This assembly language program pops a 16 -bit address for Apple.
Meador, Lee, "Disassembly of DOS 3.2: Part VI," pg. 10-14.

The sixth installment of this major series on Apple DOS.
812. The Seed 2, No. 7 (July, 1980)

Kelley, Jim, "Quick Printer II Routine,", pg. 6. A short Machine Language routine for the Apple.
Webber, Stan, "Getting Fancy with Formats," pg. 11-12. A number of different types of formatting and examples of their implementation.
Crossman, Craig, "Apple Tricks," pg. 15.
How to fix an Apple program that will not list and selfdestructs when it has finished running.
Suitor, Dick, "The False Read of the 6502," pg. 17-18. A discussion of timing signals and reading data.
Steinmetz, Lori, 'DOS Patch to Double the Speed of Most Disk Operations," pg. 18. Short machine language patch to increase disk operation speed and other notes on disk operation.
Anon., "Apple Hi-Res Routines," pg. 19.
A list of entry points to program machine level Hi-Res graphics.

\section*{813. Compute, Issue 4 (May/June, 1980)}

Lock, Robert and DeJong, Marvin L., "Keeping Up the Payments," pg. 19..

Three Loan programs that should run on the AIM, Apple, Atari or PET.
Kushnier, Ron, "Computers-Boring, Boring, Boring," pg. 27.

Use of the PET to print out temperatures using an analog/digital converter and a temperature sensor.
Isaacs, Larry, "Inside Atari BASIC,'" pg. 31-34.
Information on how Atari BASIC stores programs in memory.
Deal, Elizabeth, "Big. Files on a Small Computer," pg. 42-46.

Program demonstrating a way of reducing storage requirements by a factor of eight-for the PET.
Davis, Harvey, "Algebraic Input for the PET," pg. 58. Description and listing of a useful routine for the PET.
Straley, Ron, "PET Data Copier," pg. 59.
Here is a routine that will copy any PET data file or data tape so you will have a backup data copy.
Butterfield, Jim, "Cross-Reference for the PET," pg. 63. Notes on the 2040 disk system, reading a BASIC Program as a file, and detailed syntax analysis, etc.
Greenberg, Gary, "PET GET with Flashing Cursor," pg. 77-78.
Program listing which permits the user to use the GET statement instead of the INPUT statement on the PET.
Herman, Harvey B., "PETting with a Joystick," pg. 89-90.
Install a joystick on your PET to save the keyboard from wear in games, etc.
Johnson, Chuck, ''PET and the Dual Joysticks," pg. 90. How to install two joysticks on your PET.

Thornburg, David D., "Made in the Shade: An Introduction to 'Three Dimensional' Graphics on the Atari Computers," pg. 97-98.

A tutorial on Atari Graphics. Setting and adjusting shades of color.
Lindsay, Len, " 'Enter' with Atari," pg. 103.
How to insert or append program segments on the Atari Computer.
Conrad, Tom, "Block Access Method Map for a Com-
modore 2040 Disk Drive, " pg. 104-106.
This map program will allow you to see where your files are allocated. Save and Delete files and observe the allocation technique.
McCarthy, C.A., "CHEEP PRINT: Hard Copy for Soft Cost," pg. 111-114.
CHEEP PRINT is a PET program, mostly in BASIC, and serves both to list the host program while it is under development, and as data output software after the program has been completed.
814. Southeastern Software Issue No. 19 (July, 1980)

McClelland, George, "Binary Search of Names File," pg. 5-9.

Here is a program to do a binary search of the NAMES FILE program given in previous SES Newsletters.
815. L.A.U.G.H.S. 2, No. 2 (July, 1980)

Connelly, Pat, "Animation," pg. 3-4.
General tutorial discussing Apple Hi-Res graphics.
816. Compute II, Issue 2 (June/July, 1980)

DeJong, Marvin L., "Some A/D and D/A Conversion Techniques," pg. 5-12. 6502 techniques applicable to AIM, KIM, SYM systems. Suggested hardware, A/D, D/A driver program for 6522 -based timing and driver program for KIM-1 interface.
Butterfield, Jim, "Some Routines from Microsoft
BASIC," pg. 13.
Addresses identifying the start of the area in which a large number of routines on the KIM, SYM, AIM and OSI Micros.
Zumchak, Gene, '"Nuts and Volts," pg. 17-19.
A good discussion of 6502 read/write timing. Interfacing to an existing system or a do-it-yourself prototype is not difficult as long as you understand and consider timing.
Beach, Edward B., "Fast Random Numbers for the 6502," pg. 24.
A short (two instructions) -Fast (ten microseconds) routine which produces an 8-bit random number (not pseudorandom).
Day, Michael E., "Part 2: RS232 Communications," pg. 27-29.

A list of the definitions of the RS232-C signals in the order of pin numbers. With detailed descriptions.
Butterfield, Jim, "BASIC Memory Map (Page 0)"', pg. 33. List showing assignments on zero page for KIM, SYM, AIM and OSI C2-4P.
Olsen, Rodger, "Creating Data Files on Tape with OSI Computers," pg. 41-45.
A 'how to' article on files on tape. With listings in BASIC for several routines realated to the subject.
Zumchak, Gene, "SYM High Speed Tape," pg. 55-56. How to improve the SYM tape read.

Nazarian, Bruce, "KIM Rapid Memory Load/Dump Routine," pg. 57-60.

A routine which works well for mass entering of long programs from a hex dump, where you can tell at a glance where any errors in your program are.
Herman, Harvey B., 'KIM-1 Tidbits,' pg. 60.
Several programs to facilitate the use of the KIM.
817. The Abacus II, 2, Issue 7 (July, 1980)

Anon., "Color Generation in Hi-Res: Part 2," pg. 3-5.

Part two on Apple Hi-Res graphics.
Robbins, Greg, "Extended Menu," pg. 5-7.
This menu program for the Apple Disk scrolls commands across the bottom of the screen and provides copy service as well as the full range of disk commands.
Anon, "IAC APNOTE-Out of Memory Errors," pg. 9. Notes on the Applesoft error message.
Davis, Jim and Freeman, Larry, "Relocatable Control Character Detector,' pg. 14-15. Program to detect control characters on the Apple except for CTRL-H, CTRL-M, CTRL-U or ESCape characters.
Anon., "IAC APNOTE: Applesoft Array Eraser," pg. 18. A short program to demonstrate how to erase Appleso Arrays.
818. Kilobaud Microcomputing, No. 43 (July, 1980)

Baker, Robert W. "PET Pourri," pg. 7-9.
Describes several new products for the PET; Programming Ideas and Tips; and discussion of programming style.
Prentice, Al, "A File Sorting Program and Its Diary," pg. 44-52. Second and concluding part completes the sorting routine and further explores the Apple DOS.
Derfler, Frank J., "Dial-Up Directory," pg. 68-70. Software programs for Modem-type communications.
Pytlik, William F., 'PET Pen," pg. 84-86.
Part 2 of 3 installments gives listing and construction details for a light pen for the PET.
Mazur, Jeffrey G. "Add Handshaking to Apple's High Speed Interface," pg. 136-138.
This modification allows the High Speed Interface board to handshake properly with printers. Does not require a software patch.

\section*{819. Nibble No. 4 (July, 1980)}

Harvey, Mike, "Forecasting and Planning with FAST," pg. 7.
Listing and documentation for FAST, a simulation and modeling tool for testing different strategies in the direct sales of multiple products and services, for the Apple.
Laird, Alexander, "Super Weaver!", pg. 63.
Super Weaver is a simulated 8-harness loom in Apple Hi-Res Graphics.
Staff, "Table Printing Made Simple," pg. 19. A formatting routine for the Apple.
Staff, "Dynamic Array Dimensioning," pg. 19-20. Automatically adjust program memory allocation to the specific mix of table specifications.

Connolly, Rick, "Designing a Simple 'Pointer' Subroutine," pg. 31.

A tutorial covering the development of a pointer routine which will return a key number to the main program of the Apple.
Harvey, Mike, "Build the Two-Tape Control Unit," pg. 35-37.

Hardware and Software article to increase flexibility of your tape storage.
Mottola, R.M., 'Hi-Res Packing for the Apple II,' pg. 41. How to keep your Applesoft program out of the way of the Hi-Res graphics screen on the Apple.
Harvey, Mike, "TRAC Screen Only Update," pg. 53.
Modification of the TRAC printer versions to run with Screen output only.
820. Personal Computing 4, No. 7 (July, 1980)

Walker, Alan, "Cassette Tape Labels," pg. 33. A program for the Commodore PET to print labels for cassette tapes.
Brown, DeWitt, "Amortization Tables," pg. 73-75.
Program to print customized amortization tables on the Apple.
821. Appleseed Newsletter 2, No. 2 (July, 1980)

Hyde, Bill, "Subroutine to Print the Lo-Res Screen," pg. 2.

Listing to print out Lo-Res apple graphics screens on a character printer using a different character for each color.
Wright, Don, "Applesoft Program List Formatter," pg. 5. A new and useful formatter program.

\section*{822. MICRO No. 26 (July, 1080)}

Vrtis, Nicholas; "SYM-1 Memory Search and Display,"
pg. 7-11.
Add two new commands to your SYM monitor to locate any string in memory and provide a means to display data as ASCII when desired.
Sherburne, John, "Hellow, World," pg. 31-35.
An analog interface for the PET.
Little, Gary B., 'Zoom and Squeeze," pg. 37-38.
A short program for the Apple II which makes it easier to edit BASIC programs.
Swank, Joel, "Viza-KIM," pg. 47-50.
A KIM Monitor program to display system parameters at each step. Uses the 6502 interrupt handling routine.
Koski, Peter, "Challenger II Communications," pg. 53-58.

Turn your OSI with a 502 CPU board into a 'standard' communications terminal.
Flynn, Christopher J., "AIM 65 File Operations," pg. 61-66.

Programs to solve the problem of missing file access statements in AIM BASIC.
Rowe, Mike (Staff), "The MICRO Software Catalog: XXII," pg. 71-73.

Thirteen new programs are reviewed.
Dial, Wm. R., "6502 Bibliography: Part XXI," pg. 75-77. About 95 new references on the 6502.

\section*{823. The River City Apple Corps Newsletter (July, 1980)}

Sethre, Tom, "Roots," pg. 5-6.
Looping in Apple machine language focussing on the specific task of duplicating the BASIC function of PRINTing a string.
Huffman, David G., "Shape Definition Conversion Table,' \({ }^{\prime}\) pg. 8-9.
A Hi-Res tutorial for Apple graphics.
824. Creative Computing 6, No. 7 (July, 1980)

Carpenter, Chuck, "Apple-Cart," pg. 150-152. How to get better sound out of your Apple, notes on booting disks, software over the phone, new assemblers and simulators.
Blank, George, "Outpost: Atari," pg. 154-155.
Notes on information resources for the Atari microcomputer; refers to Compute, Softside: Atari, and a new magazine, IRIDIS.

\section*{825. SoftSide: Apple Edition (July, 1980)}

Anon, ' User-Proofing Apple Programs," pg. 7-9. Check your programs for common problems met by Apple users.
Smith, Bill, ''ROM the Robot," pg. 12-19. Part Two in a graphics program in Apple Lo-Res.
Nevin, Scott, "Lo-Res Printout," pg. 34-36. Print out your Apple Lo-Res screen on your printer.
Truckenbrod, Joan, "Apple Graphics," pg. 85-88. The second in a series of articles on Hi -Res graphics for the Apple. Notes on generation of moving figures.
826. L.A.U.G.H.S. 2, No. 3 (July, 1980 Supplement)

Connelly, Pat, "Shaper," pg. 3-7.
How to lift a shape or object off the Apple Hi-Res screen and place it in your shape tables.
827. Stems From Apple 3, Issue 7 (July, 1980)

Anon., "Day of Month," pg. 8-10. A Pascal program for the Apple II.
International Apple Corps "APNOTES," pg. 15-19. Several APNOTES including Notes on Random Number Generation, Print Using Simulator, HIRES SCREEN Function, Pascal Hi-Res Load/Save to Disk, etc.
828. Peek(65) 1, No. 7 (July, 1980)

Sanders, Jim, "A Visit to Monte Carlo," pg. 2. A tutorial on random numbers with 2 examples for the OSI system.
Hawkins, Gary, "Conditional Control C." Interrupt your listing with a graceful exit and nothing happening to your files.
Kourany, Paul, "Higher Resolution Graphics and
Machine Language Save," pg. 7-9. A routine for improving the resolution of OSI graphics and a machine language save routine.
Lew, Kevin G., "Morse Code Practice," pg. 10-12. A code practice program for the OSI C2/4P using the audio out capabilities of the micro.
Atchley, Fred W., "The USR[X] Routine," pg. 19. An example machine language program and BASIC listing to implement it.
829. Byte 5, No. 7 (July, 1980)

Hallgren, Richard C., 'Interactive Control of a Videocassette Recorder with a Personal Computer," pg. 116-134.

Use of a computer to control videotaped material.
830. Peelings II 1, No. 2 (July/August, 1980)

Staff, "Apple Software Reviews," pg. 4-30. 22 new programs are reviewed in considerable detail.

\section*{831. Sym-Physis, Issue 4 (July/August, 1980)}

Gieryic, Jack, "Notes on SYM-1 Programs," pg. 3-11. Notes on several programs including Bill Gowan's Hi-Density Plot Routine, and a listing of a graphics program.
Gieryic, Jack, "Cursor Positioning/Graphics Primer," pg. 4-7. A primer tutorial with two KIM-2 examples.
Gieryic, Jack, "Complex Sound Generator Chip," pg. 7-8.

The SN76477N, a \(\$ 3\) chip from Radio Shack, can be used for generating a lot of interesting sounds.
Winter, Frank, ''TOPS - a Tape Operating System for the SYM,' pg. 12-14.

All about TOPS, with a BASIC source to demonstrate a typical program to create a data file.
Hobart, Joe, "An EPROM Burner for the SYM-1," pg. 15-18.

Description of interface, hardware and software for TI 2516 and 2716, 2532, 2732 EPROMS.
832. Sym-Physis, Issue 4 (July/August, 1980)

Gschwind, Hans W., "Handling Data Files and MultiParamenter USR Functions," pg. 19-24. Discussion of handling BASIC data files with listing and example of output.

\section*{833. Queue Catalogue, No. 2}

Staff, "Educational Software for Apple II, PET and TRS-80," pg. 1-55. A very complete listing of software (55 pages).
834. Compute 1, Issue 5 (July/August, 1980)

Staff, "Panasonic Microcomputer," pg. 5. The new Panasonic is 6502 -based with 1 K , expansion module for 12 K , very small and compact and about \(\$ 400\).
Budge, Joseph H., "Visicalc," pg. 19. A major software review.
Lock, Robert, "Basically Useful BASIC," pg. 21. Another article in this continuing series with examples of financial programs.
Deal, Elizabeth, "How to Program in BASIC with the Subroutine Power of FORTRAN,' " pg. 23-26. A listing for the PET is given.
Baker, Al, "Programming Hints for Atari/Apple," pg. 34-36.
Joystick and Menu selection routines.
Schmoyer, Jeff, "Apple II ROM Card Documentation," pg 49. Circuit Diagram for the ROM Card and discussion thereof.

\section*{ADVERTISERS' INDEX}

\section*{Missing A AICRO" ?}

> If you are missing a specific back issue of MICRO, ask your dealer for that particular issue. He can assist you in completing your collection.

For a complete reader's gulde to all technical articles, visit your local MICRO dealer. (This index is Ilsted by microcomputer, issue number, and "Best of"
Volume.) Be sure to sefer to the partial index in this issue.
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{It your dealer does not currently stock MICRO back issues, ask him "Why Not?" Back issues may be ordered ollectly from MICRO, when} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} pecessary:

\section*{NICRO}
P.O. Box 6502

Chelmsford, MA 01824 (617) 256-5515

\section*{HOW TO TURN AN APPLE INTO A TANK.}

With Computer Confict \({ }^{\text {T}}\) and a little imagination, we'll transform your staid and respectable Apple computer into the fearsome war machine of the Soviet Red Arrny. Computer Conflict actually consists of two fast-paced, action-packed war games played on full-color mapboards of Hi-Res graphics: Rebel Force and Red Attacld
REBEL. FORCE puts you in the role of a Soviet commander whose regiment must face a computer-directed guerrilla up rising which has overrun a vital town. Armed with your tank, heavy-weapons, and infantry units, your mission is to regain the town through the annihilation of the Rebel Force.

Your advance will be brutally opposed by minefields, ambushes, militia, and anti-tank guns - all skillfully deployed by your computer. Survival and success of your units will depend on your ability to take advantage of the variable terrains - open, forest, and rough - each of which has different movement costs and shelter values.

In this finely-balanced solitaire wargame, every move is played under reattime conditions: Procrastinate and lose. At
the same time, caution cannot be cast aside; severe unit losses will only result in a Pyhrric victory at best

With its five levels of difficulty (plus one where you make up your own), the computer can and will stress your tactical skills to their fullest.
RED ATTACKI simulates an invasion by a mixed Soviet tank and infantry force against a defending battalion. As the defender, your task is to deploy your infantry units effectively to protect three crucial towns - towns that must not fall!

As the Russian aggressor, your objective is to crush the resistance by taking two of these three towns with your tanks and infantry. With control of these strongpoints, the enemy's capitulation is assured.

Red Attack! is a two-player computer simulation of modem warfare that adds a nice touch: At the start of each game, the computer displays a random setup of terrains and units, providing every game with a new, challenging twist.

Computer Conflict, for \(\$ 39.95\), comes with the game program minitdisc and a rule book

\section*{OR A SPITFIRE.}

After you're done playing Computer Conflict, you may be: in a mood for something other than ground-attack wargames. In that case, Computer Air Combat is just what you need.

With Computer Air Combat, your screen lights up with an open sky generated by H -Res graphics offering global and tactical plots. Squint your eyes a bit, let loose your mind, and you'd swear your keyboard has melted into the throttle, rudder, altimeter, and other cockpit instrumentation of a World War II combat plane. In fact, any of 36 famous fighters or bombers, from a Spitfire and B-17 Flying Fortress to the Focke-Wulf 190 and A6M5 Zero. Each plane is rated - in strict historical accuracy and detail - for firepower, speed, maneuverability, damage-tolerance, and climbing and diving ability.

Practically every factor involved in flying these magnificent airplanes has been taken into account even down (or up?) to the blinding sun. Climb, dive, twist, and turn. Anything a real plane can do, you can do. However, the computer prevents all "illegal" moves - such as making an outside loop (which in real life, would disastrously stall a plane).

PLAY THE COMPUTER. Aside from being the game's perfect administrator and referee, the computer will serve as a fierce opponent in the solitaire scenarios provided: Dogfight, Bomber Formation, radar-controlled Nightfighter, and V-1 Intercept There's even an Introductory Familiarization Flight (with Air Race option) to help you get off the ground.

With the number and type of planes and pilot ability variable, you can make the computer as challenging as you want to give you the ultimate flying experience.
PLAY A HUMAN. Two can play this game as well, in dogfights and bomber attacks. Given a handicap of more or better planes or an ace pilot (or all of the above), even a novice at Computer Air Combat stands a chance to defeat a battle-hardened veteran.

For \(\$ 59.95\), Computer Air Combat gives you the game disc, a rule book, two mapboard charts (for plotting strategies between moves), and three player-aid charts.

\footnotetext{
Credit card holders, if you own an Apple \({ }^{\oplus 1 I} 48 \mathrm{~K}\) (Applesoft ROM) and a mini-floppy disc drive, call 800-227-1617 ext. 335 (toll free) and charge your order to your VSA or MASTERCHARGE In California, call 800-772-3545, ext 335.

To order by mail, send your check to: Strategic Simulations Inc, Dept PC, 465 Fairchild Drive, No. 108, Mountain View, CA 94043. All our games carry a 14-day money back guarantee to assure your satisfaction.

While you're at it, you can also get our other games:
}
\(\square\) Computer Bismarck for your Apple: \(\$ 59.95\)
Computer Bismarck, TRS-80 48K Disc: \(\$ 59.95\)
Computer Bismarck, TRS-80 32K Cassette: \(\$ 49.95\)
\(\square\) Computer Ambush (a tactical simulation of man-toman combat in WWII) for your apple: \(\$ 59.95\)
- Computer Napoleonics, the Battle of Waterloo for your Apple: \(\$ 59.95\)
\(\square\) Computer Quarterback (a realtime strategy football game): \$39.95

\section*{IF YOU'RE WAITING FOR THE PRICE OF WORD PROCESSORS TO FALL WITHIN REASON,}

\(\underset{\text { Comin }}{\text { Cosen }}\)

New, low cost computer technology is now available at a fraction of what you would expect to pay. This technology allowed Commodore to introduce the new and revolutionary CBM 8032 Computer.

WordPro PLUS turns this new CBM 8032 Computer into a sophisticated, time saving word processing tool. With WordPro PLUS, documents are displayed on the computer's screen. Editing and last minute revisions are simple and easy. No more lengthy re-typing sessions. Letters and documents are easily re-called from memory storage for editing or printing with final drafts printed perfectly at over five hundred words per minute!

Our nationwide team of professional dealers will show you how your office will benefit by using WordPro PLUS. At a price far less than you realize.

Invest in your office's future... Invest in WordPro PLUS... Call us today for the name of the WordPro PLUS dealer nearest you.

\footnotetext{
Professional Software Inc.
166 Crescent Road
Needham, MA 02194
(617) 444-5224

TELEX: 951579
}

\title{
The home computer you thought was yars awey is here.
}

cinllemger ap```

