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Abstract
A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that continues to inflict

unprecedented public health and economic burden in all nooks and corners of the world. Although the control

of COVID-19 has largely focused on the use of basic public health measures (primarily based on using non-

pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage and community

lockdowns), a number of exceptionally-promising vaccines are about to be approved for use in humans by the

U.S. Food and Drugs Administration. We present a new mathematical model for assessing the population-level

impact of the candidate vaccines, particularly for the case where the vaccination program is complemented with

a social-distancing control measure at a certain compliance level. The model stratifies the total population into

two subgroups, based on whether or not they habitually wear face mask in public. The resulting multigroup

model, which takes the form of a compartmental, deterministic system of nonlinear differential equations, is

parametrized using COVID-19 cumulative mortality data. Conditions for the asymptotic stability of the as-

sociated disease-free equilibrium, as well as expression for the vaccine-derived herd immunity threshold, are

derived. This study shows that the prospect of COVID-19 elimination using any of the three candidate vac-

cines is quite promising, and that such elimination is more feasible if the vaccination program is combined with

social-distancing control measures (implemented at moderate to high level of compliance).

Keywords: COVID-19; vaccine; social-distancing; herd immunity; face mask; stability; reproduction number.

1 Introduction

The novel coronavirus (COVID-19) pandemic, which started as a pneumonia of an unknown etiology late in De-

cember 2019 in the city of Wuhan, is the most devastating public health challenge mankind has faced since the

1918/1919 pandemic of influenza. The COVID-19 pandemic, which rapidly spread to essentially every nook and

corner of the planet, continues to inflict devastating public health and economic challenges globally. As of Decem-

ber 5, 2020, the pandemic accounts for 67, 021, 834 confirmed cases and 1, 537, 165 cumulative mortality globally.

Similarly, the United States, which recorded its first COVID-19 case on January 20, 2020, recorded 14, 991, 531
confirmed cases and 287, 857 deaths (as of December 5, 2020) [1].

COVID-19, a member of the Coronavirus family of RNA viruses that cause diseases in mammals and birds,

is primarily transmitted from human-to-human through direct contact with contaminated objects or surfaces and

through inhalation of respiratory droplets from both symptomatic and asymptomatically-infectious humans (albeit
there is limited evidence that COVID-19 can be transmitted via exhalation through normal breathing and aerosol [2].

The incubation period of the disease is estimated to lie between 2 to 14 days (with a mean of 5.1 days), and majority

of individuals infected with the disease show mild or no clinical symptoms [3]. The symptoms typically include

*Corresponding author: Email: agumel@asu.edu
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coughing, fever and shortness of breadth (for mild cases) and pneumonia for severe cases [3]. The people most at

risk of dying from, or suffering severe illness with, COVID-19 are those with co-morbidities (such as individuals

with diabetes, obesity, kidney disease, cardiovascular disease, chronic respiratory disease etc.). Younger people,

frontline healthcare workers and employees who maintain close contacts (within 6 feet) with customers and other

co-workers (such as meat factory workers, retail store workers etc.).

Although there are three exceptionally-promising candidate vaccines (by Pfizer, Inc., Moderna, Inc. and As-

traZeneca, Inc.) and antivirals undergoing various stages of development (Pfizer has filed for FDA Emergency

Use Authorization on November 20, 2020) [4], there is currently no safe and effective vaccine or antiviral that

has been approved for widespread use in humans, albeit the approval of the aforementioned candidate vaccines

is imminently expected by the end of 2020. Further, owing to its limited supply, the approved anti-COVID drug

remdesivir is limited for use to treat individuals in hospital who display severe symptoms of COVID-19. Hence,

due to the absence of safe and effective vaccines and antiviral for widespread use in humans, efforts to control and

mitigate the burden of COVID-19 remain focused on non-pharmaceutical interventions (NPIs), such as quarantine,

self-isolation, social (physical) distancing, the use of face masks in public, hand washing (with approved sanitizers),

community lockdowns, testing and contact tracing. Of these NPIs, the use of face masks in public is considered to

be the main mechanism for effectively curtailing COVID-19 [3, 5–8].

The Pfizer and Moderna vaccines, each of estimated protective efficacy of about 95% [4, 9, 10], are genetic

vaccines that are developed based on stimulating a mechanism that encourages the body to produce antibodies that

fights the SARS-CoV-2. Specifically, the vaccines use a synthetic messenger RNA (mRNA) that carries instructions

for making virus spike protein to gain entry into cells when injected into muscle tissue in the upper arm. This

triggers the immune system to recognize the spike protein and develop antibodies against it (so that when a human

is infected with SARS-CoV-2, his/her body is able to successfully fight it) [4, 11]. Two doses are required for both

the Pfizer and Moderna vaccine candidates (one to prime the immune system, and the second to boost it). For the

Pfizer vaccine, the second dose will be administered 19-42 days after the first dose. Further, the Pfizer vaccine

needs to be stored at a temperature of −70◦C. The second dose of the Moderna vaccine is administered three to

four weeks after the first dose. Further, the Moderna vaccine can be stored at refrigerated temperature of (2-8◦C),

with long-term storage conditions of −20◦C for at least six months [12]. The AstraZeneca vaccine, on the other

hand, has estimated protective efficacy of 70% [4, 9, 10]. It uses a replication-deficient chimpanzee viral vector that

causes infections in chimpanzees and contains the genetic material of the SARS-CoV-2 virus spike protein [10].

When injected into the human, the spike protein triggers the immune system to attack the SARS-CoV-2 virus that

infects the body [10]. AstraZeneca vaccine also requires two doses (one month apart) to achieve immunity, and,

unlike the Pfizer and Moderna vaccines, does not have to be stored in super-cold temperatures (it can be stored at

normal refrigerated temperature of (2-8◦C) for at least six months) [10]. Hence, owing to the imminence for the

approval of the aforementioned three candidate COVID-19 vaccines by the FDA, coupled with the primary role of

face masks usage, it is instructive to design new mathematical models that will allow for the realistic assessment of

the combined impact of the expected COVID-19 vaccines and face masks usage in a community.

Numerous mathematical models, of various types, have been developed and used to provide insight into the

transmission dynamics and control of COVID-19. The modeling types used include statistical [13], compartmen-

tal/deterministic (e.g., [3, 5, 7, 8]), stochastic (e.g., [14, 15]), network (e.g., [16]) and agent-based (e.g., [17]). The

purpose of the current study is to use mathematical modeling approaches, coupled with mathematical and statistical

data analytics, to assess the combined impact of the expected COVID-19 vaccines and face masks usage. A notable

feature of the model to be developed is its multigroup nature. Specifically, the total population will be subdivided

into two groups, namely those who habitually wear face mask in public and those who do not. Data for COVID-19

pandemic in the U.S. will be used to parametrize the model. The central goal of the study is to determine the min-

imum vaccine coverage level needed to effectively curtail (or eliminate) community transmission of COVID-19 in

the U.S., and to quantify the reduction in the required vaccine coverage if the vaccination program is supplemented

with face masks usage (under various face masks efficacy and compliance parameter space). The paper is orga-

nized as follows. The novel multigroup model is formulated in Section 2. The parameters of the model are also

estimated, based on fitting the model with U.S. COVID-19 data. The model is rigorously analysed, with respect

to the asymptotic stability of the disease-free equilibrium of the model, in Section 3. A condition for achieving
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community-wide vaccine-derived herd immunity is also derived. Numerical simulations of the model are reported

in Section 4. Discussions and concluding remarks are presented in Section 5.

2 Formulation of Mathematical Model

In order to account for heterogeneity in face masks usage in the community, the total population of individuals in

the community at time t, denoted by N(t), is split into the total sub-populations of individuals who do not habitu-

ally wear face mask in public (labeled “non-mask users”), denoted by N1(t), and the total sub-populations of those

who habitually wear face mask in public (labeled “mask users”), represented by N2(t). That is, N(t) = N1(t) +
N2(t). Furthermore, the sub-population N1(t) is sub-divided into the mutually-exclusive compartments of un-

vaccinated susceptible (S1u(t)), vaccinated susceptible (S1v(t)), exposed (E1(t)), pre-symptomatically-infectious

(P1(t)), symptomatically-infectious (I1(t)), asymptomatically-infectious (A1(t)), hospitalized (H1(t)) and recov-

ered (R1(t)) individuals, so that

N1(t) = S1u(t) + S1v(t) + E1(t) + P1(t) + I1(t) +A1(t) +H1(t) +R1(t).

Similarly, the total sub-population of the mask users, N2(t), is stratified into the compartments for unvaccinated

susceptible (S2u(t)), vaccinated susceptible (S2v(t)), exposed (E2(t)), pre-symptomatically-infectious (P2(t)),
symptomatically-infectious (I2(t)), asymptomatically-infectious (A2(t)), hospitalized (H2(t)) and recovered (R2(t))
individuals. Hence,

N2(t) = S2u(t) + S2v(t) + E2(t) + P2(t) + I2(t) +A2(t) +H2(t) +R2(t).

The equations for the rate of change of the sub-populations of non-mask users is given by the following determin-

istic system of nonlinear differential equations (where a dot represents differentiation with respect to time t):

Ṡ1u = Π+ ωvS1v + α21S2u − λ1S1u − (α12 + ξv + μ)S1u,

Ṡ1v = ξvS1u + α21S2v − (1− εv)λ1S1v − (α12 + ωv + μ)S1v,

Ė1 = λ1S1u + (1− εv)λ1S1v + α21E2 − (α12 + σ1 + μ)E1,

Ṗ1 = σ1E1 + α21P2 − (α12 + σP + μ)P1,

İ1 = rσPP1 + α21I2 − (α12 + φ1I + γ1I + μ+ δ1I)I1,

Ȧ1 = (1− r)σPP1 + α21A2 − (α12 + γ1A + μ)A1,

Ḣ1 = φ1II1 + α21H2 − (α12 + γ1H + μ+ δ1H)H1,

Ṙ1 = γ1II1 + γ1AA1 + γ1HH1 + α21R2 − (α12 + μ)R1,

(2.1)

where, λ1 is the force of infection, defined by:

λ1 = (1− cs)

[
(βP1P1 + βI1I1 + βA1A1 + βH1H1)

N1
+ (1− εo)

(βP2P2 + βI2I2 + βA2A2 + βH2H2)

N2

]
,

with βi {i = P1, I1, A1, H1, P2, I2, A2 and H2} the effective contact rate for individuals in the respective

P1, I1, A1, H1, P2, I2, A2 and H2 classes. The parameters 0 < εo < 1 and 0 < εi < 1 represent the outward

and inward protective efficacy, respectively, of face masks to prevent the transmission of infection to a susceptible

individual (εo) as well as prevent the acquisition of infection (εi) from an infectious individual, while 0 ≤ cs < 1
is a parameter that accounts social-distancing compliance.

In (2.1), the parameter Π is the recruitment (birth or immigration) rate of individuals into the population, α21 is

the rate of change of behavior for non-habitual face masks users to become habitual users (i.e., α12 is the transition

rate from group 2 to group 1). Furthermore, α12 is the rate at which habitual face masks users choose to be non-

habitual wearers. The parameter ξv represents the vaccination rate, and the vaccine is assumed to induce protective
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efficacy 0 < εv < 1 in all vaccinated individuals and wane at a rate ωv. Natural deaths occurs in all epidemiological

classes at a rate μ. Individuals in the E1 class progress to the pre-symptomatic stage at a rate σ1, and those in the

pre-symptomatic class (P1) transition out of this class at a rate σP (a proportion q of which become symptomatic,

and move to the I class at a rate qσP , and the remaining proportion, 1−q, move to the asymptomatically-infectious

class at a rate (1− q)σP ). Symptomatic infectious individuals are hospitalized at a rate φ1I . They recover at a rate

γ1I and die due to the disease at a rate δ1I . Hospitalized individuals die of the disease at the rate δ1H .

Similarly, the equations for the rate of change of the sub-populations of mask users is given by:

Ṡ2u = ωvS2v + α12S1u − λ2S2u − (α21 + ξv + μ)S2u,

Ṡ2v = ξvS2u + α12S1v − (1− εv)λ2S2v − (α21 + ωv + μ)S2v,

Ė2 = λ2S2u + (1− εv)λ2S2v + α12E1 − (α21 + σ2 + μ)E2,

Ṗ2 = σ2E2 + α12P1 − (α21 + σP + μ)P2,

İ2 = qσPP2 + α12I1 − (α21 + φ2I + γ2I + μ+ δ2I)I2,

Ȧ2 = (1− q)σPP2 + α12A1 − (α21 + γ2A + μ)A2,

Ḣ2 = φ2II2 + α12H1 − (α21 + γ2H + μ+ δ2H)H2,

Ṙ2 = γ2II2 + γ2AA2 + γ2HH2 + α12R1 − (α21 + μ)R2,

(2.2)

where,

λ2 = (1− cs)(1− εi)

[
(βP1P1 + βI1I1 + βA1A1 + βH1H1)

N1
+ (1− εo)

(βP2P2 + βI2I2 + βA2A2 + βH2H2)

N2

]
.

Thus, Equations (2.1) and (2.2) represent the multi-group model for assessing the population impact of face masks

usage and vaccination on the transmission dynamics and control of COVID-19 in a community. The flow diagram

of the model {(2.1), (2.2)} is depicted in Figure 1 (the state variables and parameters of the model are described in

Tables 5 and 6, respectively).

Some of the main assumptions made in the formulation of the multi-group model {(2.1), (2.2)} include the follow-

ing:

1. Homogeneous mixing (i.e., we assumed a well-mixed population, where every member of the community is

equally likely to mix with every other member of the community).

2. Exponentially-distributed waiting time in each epidemiological compartment.

3. The anti-COVID vaccine is imperfect. That is, the vaccine offers partial protective immunity (with efficacy

0 < εv < 1), which wanes over time (at a rate ωv). Further, it is assumed that the vaccine does not offer any

therapeutic benefit (such as slowing progression to active disease or increasing recovery rate in breakthrough

infections).

4. Although there is no definitive data on COVID-19 immunity, we assume that natural recovery from infection

confers permanent immunity against reinfection.

5. Endemicity assumption: although epidemic models (with no demographics) are typically used for studying

the dynamics of new epidemics, such as COVID-19, we assume that, for the purpose of vaccination program,

COVID-19 has attained endemic status. This is to account for the fact that the vaccine will be administered

to every member of the community (including newborns) for an extended period of time (perhaps years).

The implication of this assumption is that human demography (as represented by the recruitment parameter,

Π, and the natural death parameter, μ) must be incorporated into the model.

The multi-group model {(2.1), (2.2)} is an extension of the two-group mask-use model in [5] by, inter alia:
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Figure 1: Flow diagram of the model {(2.1), (2.2)}.

(i) allowing for back-and-forth transitions between the two groups (mask-users and non-mask-users), to account

for human behavioral changes vis a vis decision to either be (or not to be) a face mask user in public;

(ii) incorporating an imperfect vaccine, which offers protective efficacy (0 < εv < 1) against acquisition of

COVID-19 infection, which may wane over time (at a rate ωv);

(iii) allowing for disease transmission by pre-symptomatic and asymptomatically-infectious individuals.

2.1 Data Fitting and Parameter Estimation

In this section, cumulative mortality data for the US (from January 22, 2020 to November 16, 2020) will be used

to fit the model (2.1)-(2.2) in the absence of vaccination and estimate some of its key parameters. In particular,

the parameters to be estimated from the data are the community transmission rate for individuals who do not

wear face masks in public (β1), the transmission rate for individuals who habitually wear face masks in public

(β2), the inward efficacy of masks in preventing disease acquisition by susceptible individuals who habitually

wear face masks (εi), the outward efficacy of masks to prevent the spread of disease by infected individuals who

habitually wear face masks (εo), the proportion of individuals in the community who comply to social-distancing

measures while in public (cs), the rate at which people who do not wear masks adopt a mask-wearing habit (α12),

the rate at which those who habitually wear face masks stop wearing masks in public (α21), and the mortality

rates of symptomatic infectious and hospitalized individuals (δi and δh, respectively). It should be mentioned

that modification parameters ηP , ηI , ηA, and ηH relating to disease transmission by pre-symptomatic infectious,

symptomatic infectious, asymptomatic infectious and hospitalized individuals, respectively, are introduced in the

forces of infection λ1 and λ2, so that βj = ηjβk (j ∈ {Pk, Ik, Ak, Hk}, k ∈ {1, 2}). The model fitting was carried

out using MATLAB R2020b and the process involved minimizing the sum of the square differences between each

observed cumulative mortality data point and the corresponding mortality point obtained from the model (2.1)-

(2.2) in the absence of vaccination [3, 18, 19]. The choice of mortality over case data is motivated by the fact that
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mortality data for COVID-19 is more reliable than case data (see [7] for details). The estimated values of the fitted

parameters are tabulated in Table 1(a). The fitting of the model to the observed cumulative and daily mortality

data is depicted in Figure 2 (a). Furthermore, Figure 2 (b) compares the simulations of the model using the fitted

(estimated) and fixed parameters (given in Tables 1 (a) and (b)-(c)) with the observed daily COVID-19 mortality

for the US, showing a good fit.
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Figure 2: (a) Observed cumulative mortality data for the US (red dots) and predicted cumulative mortality

for the US from the model (2.1)-(2.2) (with no vaccination) for the period from January 22 to November

16, 2020. (b) Simulations of the model (2.1)-(2.2) using the fixed parameters in Table 1(b)-(c) and the es-

timated parameters from the cumulative COVID-19 mortality data for the US presented in Table 1(a). We

started the simulations of the pandemic near the disease-free equilibrium for the US. In particular, we used the

following initial conditions (with mask usage compliance initially set at 1% of the total current US popula-

tion): (S0
1 , E

0
1 , P

0
1 , I

0
1 , A

0
1, H

0
1 , R

0
1, S

0
2 , E

0
2 , P

0
2 , I

0
2 , A

0
2, H

0
2 , R

0
2) = (0.99 × 336218660 − 1, 0, 0, 1, 0, 0, 0, 0.01 ×

336218660, 0, 0, 0, 0, 0, 0).

Table 1: Baseline parameter values for the model (2.1)-(2.2). (a) Estimated (fitted) parameter values for the model

in the absence of vaccination, using COVID-19 mortality data for the US for the period from January 22, 2020 to

November 16, 2020. (b)-(c) Baseline values of the remaining fixed parameters of the model (2.1)-(2.2) extracted

from the literature or estimated using information from the literature.

(a) Fitted parameters

Parameter Value
β1 0.6566/day

β2 0.5249/day

cs 0.3051

εo 0.6304

εi 0.9965

α12 0.0459/day

α21 0.0010/day

δi 0.0008/day

δh 0.0025/day

(b) Fixed parameters

Parameter Value Source
σ1 1/2.5/day [20, 21]

σ2 1/2.5/day [20, 21]

σp 1/2.5/day [20, 21]

r (q) 0.2(0.2) [22, 23]

φ1I 1/6/day [24]

φ2I 1/6/day [24]

γI 1/10/day [17, 25]

γA 1/5/day [24]

γH 1/8/day [17]

(c) Fixed parameters

Parameter Value Source
Π 1.2× 104/day Estimated

μ 1/(79× 365)/day Estimated

ηP 1.25 Assumed

ηI 1.0 Assumed

ηA 1.50 Assumed

ηH 0.25 Assumed

ωv 0/day Assumed

ξv 2.97× 10−4/day Assumed

εv 0.70 [9, 10]
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3 Mathematical Analysis

Since the model {(2.1), (2.2)} monitors the temporal dynamics of human populations, all state variables and pa-

rameters of the model are non-negative. Consider the following biologically-feasible region for the model:

Ω =

{
(S1u, S1v, S2u, S2v, E1, E2, P1, P2, I1, I2, A1, A2, H1, H2, R1, R2) ∈ R16

+ : N(t) ≤ Π

μ

}
. (3.1)

Theorem 3.1. The region Ω is positively-invariant with respect to the model {(2.1), (2.2)}.

Proof. Adding all the equations of the model {(2.1), (2.2)} gives

Ṅ = Π− μN − δ1II1 − δ1HH1 − δ2II2 − δ2HH2. (3.2)

Recall that all parameters of the model {(2.1), (2.2)} are non-negative. Thus, it follows, from (3.2), that

Ṅ ≤ Π− μN. (3.3)

Hence, if N > Π
μ , then Ṅ < 0. Furthermore, by applying a standard comparison theorem [26] on (3.3), we have:

N(t) ≤ N(0)e−μt +
Π

μ
(1− e−μt).

In particular, N(t) ≤ Π
μ if N(0) ≤ Π

μ . Thus, every solution of the model {(2.1), (2.2)} with initial conditions in Ω
remains in Ω for all time t > 0. In other words, the region Ω is positively-invariant and attracts all initial solutions

of the model {(2.1), (2.2)}. Hence, it is sufficient to consider the dynamics of the flow generated by {(2.1), (2.2)}
in Ω (where the model is epidemiologically- and mathematically well-posed) [27].

3.1 Asymptotic Stability of Disease-free Equilibrium

The model {(2.1), (2.2)} has a unique disease-free equilibrium (DFE), obtained by setting all the infected compart-

ments of the model to zero, given by (where S∗
1u > 0, S∗

1v > 0, S∗
2u > 0 and S∗

2v > 0; their expressions are too

lengthy, hence not presented here)

E0 : (S∗
1u, S

∗
1v, S

∗
2u, S

∗
2v, E

∗
1 , E

∗
2 , P

∗
1 , P

∗
2 , I

∗
1 , I

∗
2 , A

∗
1, A

∗
2, H

∗
1 , H

∗
2 , R

∗
1, R

∗
2) =(

Π+ ωvS
∗
1v + α21S

∗
2u

α12 + ξv + μ
,
ξvS

∗
1u + α21S

∗
2v

α12 + ωv + μ
,
ωvS

∗
2v + α12S

∗
1u

α21 + ξv + μ
,
ξvS

∗
2u + α12S

∗
1v

α21 + ωv + μ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

The local asymptotic stability property of the DFE (E0) can be explored using the next generation operator method

[28, 29]. In particular, using the notation in [28], it follows that the associated non-negative matrix (F ) of new

infection terms, and the M-matrix (V ), of the linear transition terms in the infected compartments, are given,

respectively, by (where the entries fi and gi, i = 1, · · · , 8, of the non-negative matrix F , are given in Appendix I):

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f1 f2 f3 f4 0 f5 f6 f7 f8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 g1 g2 g3 g4 0 g5 g6 g7 g8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and,

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 0 0 −α21 0 0 0 0
−σ1 K2 0 0 0 0 −α21 0 0 0
0 −rσp K3 0 0 0 0 −α21 0 0
0 −(1− r)σp 0 K4 0 0 0 0 −α21 0
0 0 −φ1I 0 K5 0 0 0 0 −α21

−α12 0 0 0 0 K6 0 0 0 0
0 −α12 0 0 0 0 K7 0 0 0
0 0 −α12 0 0 0 −qσp K8 0 0
0 0 0 −α12 0 0 −(1− q)σp 0 K9 0
0 0 0 0 −α12 0 0 −φ2I 0 K10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where K1 = α12 + σ1 + μ,K2 = α12 + σP + μ,K3 = α12 + φ1I + γ1I + μ+ δ1I ,K4 = α12 + γ1A + μ,K5 =
α12 + γ1H + μ + δ1H ,K6 = α21 + σ2 + μ,K7 = α21 + σP + μ,K8 = α21 + φ2I + γ2I + μ + δ2I ,K9 =
α21 + γ2A + μ and K10 = α21 + γ2H + μ+ δ2H .

For mathematical tractability, the computations will be carried out for the special case of the model {(2.1), (2.2)}
in the absence of the back-and-forth transitions between the no-mask and mask-user groups (i.e., the special case

of the model with α12 = α21 = 0). Hence, from now on, we set α12 = α21 = 0. It follows that the control
reproduction number of the model {(2.1), (2.2)} (with α12 = α21 = 0), denoted by Rc, is given by (where ρ is the

spectral radius):

Rc = ρ(FV −1) = max{Rc1 , Rc2}, (3.4)

where,

Rc1 = (a11 + a22) +
√

(a22 − a11)2 + 4 a21a12, and Rc2 = (a11 + a22)−
√

(a22 − a11)2 + 4 a21a12, (3.5)

with a11, a12, , a21 and a22 defined in Appendix II. The result below follows from Theorem 2 of [28].

Theorem 3.2. The DFE (E0) of the special case of the model {(2.1), (2.2)}, with α12 = α21 = 0, is locally-
asymptotically stable if Rc < 1, and unstable If Rc > 1.

The threshold quantity Rc is the control reproduction number of the model {(2.1), (2.2)}. It measures the average

number of new COVID-19 cases generated by a typical infectious individual introduced into a population where

a certain fraction of the population is protected (via the use of interventions, such as face mask, social-distancing

and/or vaccination). The epidemiological implication of Theorem 3.2 is that a small influx of COVID-19 cases will

not generate an outbreak in the community if the control reproduction number (Rc) is brought to, and maintained

at a, value less than unity.

In the absence of public health interventions (i.e., in the absence of vaccination, face mask usage and social-

distancing), the control reproduction number (Rc) reduces to the basic reproduction number (denoted by R0),

given by:

R0 = Rc|cs=ε0=εi=εv=S∗
1v=S∗

2v=0 = max{R1, R2}, (3.6)

where,

R1 = (b11 + b22) +
√
(b22 − b11)2 + 4 b21b12, and R2 = (b11 + b22)−

√
(b22 − b11)2 + 4 b21b12, (3.7)

with b11, b12, b21 and b22 defined in Appendix II.
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3.2 Vaccine-induced Herd Immunity Threshold

Herd immunity is a measure of the minimum percentage of the number of individuals in a community that is

susceptible to a disease that need to be protected (i.e., become immune) so that the disease can be eliminated from

the population. There are two main ways to achieve herd immunity, namely through acquisition of natural immunity

(following natural recovery from infection with the disease) or by vaccination. Vaccination is the safest and fastest

way to achieve herd immunity [30, 31]. For vaccine-preventable diseases, such as COVID-19, not every susceptible

member of the community can be vaccinated, for numerous reasons (such as individuals with certain underlying

medical conditions, infants, pregnant women, or those who opt out of being vaccinated for various reasons etc.) [8].

So, the question, in the context of vaccine-preventable diseases, is what is the minimum proportion of individuals

that can be vaccinated we need to vaccinate in order to achieve herd immunity (so that those individuals that cannot

be vaccinated will become protected owing to the community-wide herd-immunity). In this section, a condition for

achieving vaccine-derived herd immunity in the U.S. will be derived.

It is convenient to define (where N∗
1 and N∗

2 represent the total size of the sub-population of Group 1 and Group

2 at disease-free equilibrium, respectively):

q1 = (1− cs)

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
and q2 = (1− cs)

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
. (3.8)

Using Equation (3.8), the expressions for a11, a12, a21 and a22 in Appendix II can be re-written as:

a11 = q1b11, a12 = q1(1− ε0)b12, a21 = q2(1− εi)b21, a22 = q2(1− εi)(1− ε0)b22. (3.9)

Furthermore, using (3.9) in (3.4) gives:

Rc = [q1b11 + q2(1− εi)(1− ε0)b22] +
√
[q2(1− εi)(1− ε0)b22 − q1b11]2 + 4q1q2b12b21(1− εi)(1− ε0).

(3.10)

Let f1v = S∗
1v/N

∗
1 and f2v = S∗

2v/N
∗
2 be the proportions of susceptible individuals in Groups 1 and 2,

respectively, that have been vaccinated at the disease-free equilibrium (E0). Hence, (3.8) can be re-written (in

terms of f1v and f2v) as:

q1 = (1− cs)(1− f1vεv) and q2 = (1− cs)(1− f2vεv). (3.11)

In order to compute the expression for the herd immunity threshold associated with the model {(2.1), (2.2)}, it is

convenient to let fv = max{f1v, f2v}. Using this definition in Equation (3.10) gives:

Rc = (1−cs)(1−fvεv)
{
[b11 + (1− εi)(1− ε0)b22] +

√
[(1− εi)(1− ε0)b22 − b11]2 + 4b12b21(1− εi)(1− ε0)

}
.

(3.12)

Setting Rc, in Equation (3.12), to unity and solving for fv gives the herd immunity threshold (denoted by f c
v ):

fv =
1

εv

{
1− 1

(1− cs)[b11 + (1− εi)(1− ε0)b22] +
√
[(1− εi)(1− ε0)b22 − b11]2 + 4b12b21(1− εi)(1− ε0)

}

= f c
v .

(3.13)

It follows from (3.13) that Rc < (>)1 if fv > (<)f c
v . Further, Rc = 1 whenever fv = f c

v . This result is

summarized below:

Theorem 3.3. Consider the special case of the model {(2.1), (2.2)} with α12 = α21 = 0. Vaccine-induced herd
immunity (i.e., COVID-19 elimination) can be achieved in the U.S., using an imperfect anti-COVID vaccine, if
fv > f c

v (i.e., if Rc < 1). If fv < f c
v (i.e., if Rc > 1), then the vaccination program will fail to eliminate the

COVID-19 pandemic in the U.S.
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The epidemiological implication of Theorem 3.3 is that the use of an imperfect anti-COVID vaccine can lead to the

elimination of the COVID-19 pandemic in the U.S. if the sufficient number of individuals residing in the U.S. is

vaccinated, such that fv > f c
v . The Vaccination program will fail to eliminate the pandemic if the vaccine coverage

level is below the aforementioned herd immunity threshold (i.e., if fv < f c
v ). Although vaccination, no matter

the coverage level, is always useful (i.e., vaccination will always reduce the associated reproduction number, Rc,

thereby reducing disease burden, even if the program is unable to bring the reproduction number to a value less

than unity), elimination can only be achieved if the herd immunity threshold is reached (i.e., disease elimination is

only feasible if the associated reproduction number of the model is reduced to, and maintained at, a value less than

unity). The pandemic will persist in the U.S. if Rc > 1. Figure 3 depicts the cumulative mortality of COVID-19

in the U.S. for various steady-state vaccination coverage levels (denoted by fv). This figure shows a decrease in

cumulative mortality with increasing vaccination coverage. In particular, a marked decrease in cumulative mortality

is recorded when herd immunity (i.e., fv > f c
v) is reached in the population.

Furthermore, Figure 4 depicts a contour plot of the control reproduction number (Rc) of the model, as a function

of vaccination efficacy (εv) and coverage (fv). This figure shows that the reproduction number decreases with

increasing values of vaccination efficacy and coverage. For instance, this figure shows that, with the baseline level

of social-distancing and face-mask usage in the U.S., although the AstraZeneca vaccine (with estimated efficacy

of 75%) can significantly reduces the reproduction number (from Rc ≈ 4.5 to about Rc ≈ 1.5 (hence, greatly

reduce disease burden), it is unable to lead to the elimination of the disease even if every member of the U.S.

population is vaccinated. However, such elimination is feasible using the AstraZeneca vaccine if the coverage level

of social-distancing is increased from the baseline (Table 2). For instance, if 60% of the U.S. population observe

social-distancing in public, the AstraZeneca vaccine can lead to COVID-19 elimination in the U.S. if about 89% of

the populace is vaccinated. The vaccination coverage needed to achieve elimination (using AstraZeneca vaccine)

decreases to a mere 35% if 80% of Americans will socially-distant in public (Table 2). If, on the other hand,

either the Moderna or Pfizer vaccine (with estimated efficacy of about 95%) is used, Figure 4 shows that, based on

the current baseline level of social-distancing coverage, vaccinating about 83% of the population will lead to the

elimination of the pandemic in the U.S. The vaccine coverage level needed to eliminate the pandemic (using either

of the Pfizer or Moderna vaccine) dramatically decreases to 26% if 80% social-distancing coverage can be reached

(Table 2).
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Figure 3: Simulations of the special case of the model {(2.1), (2.2)}, with α12 = α21 = 0, showing the cumulative

COVID-19 mortality in the U.S., as a function of time. (a) fv < f c
v (r = 0.5) (b) fv = f c

v (r = 0.7) (c)

fv > f c
v (r = 0.9). Other parameter values used in the simulations are as given in Table 1, with α12 = α21 = 0.
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Figure 4: Contour plot of the control reproduction number (Rc) of the model {(2.1), (2.2)}, with α12 = α21 = 0,

as a function of vaccine coverage (fv) and vaccine efficacy (εv), for the US. Parameter values used are as given in

Table 1, with α12 = α21 = 0.

Table 2: Herd immunity threshold (fv) for the U.S. for various levels of social-distancing coverage (cs). Parameter

values used are as given in Table 1, with α12 = α21 = 0.

Herd threshold Herd threshold Herd threshold Herd threshold
Vaccine type (efficacy) cs = 30% cs = 40% cs = 60% cs = 80%
AstraZeneca (εv = 70%) fv = 112% fv = 107% fv = 89.1% fv = 35.3%
Pfizer & Moderna (εv = 95%) fv = 82.5% fv = 78.9% fv = 65.7% fv = 26%

4 Numerical Simulations: Assessment of Control Strategies

The model {(2.1), (2.2)} will now be simulated to assess the population-level impact of the various intervention

strategies described in this study. In particular, the singular and combined impact of social-distancing, face mask

usage and the three candidate vaccines (by AstraZeneca, Moderna and Pfizer) on curtailing (or eliminating) the

burden of the COVID-19 pandemic in the U.S. will be assessed. Unless otherwise stated, the simulations will be

carried out using the estimated and baseline values of the parameters of the model tabulated in Table 1. Further,

the baseline initial condition for the face mask use group (assumed to be 1%) will be used.

4.1 Assessing the impact of mask-use

The model (2.1)-(2.2) is simulated to assess the community-wide impact of using face-masks alone on the pandemic

in the United States. Specifically, we simulate the model using the baseline values of the parameters in Table 1

and various initial values of the number of individuals who habitually wear face masks in public, right from the

very beginning of the pandemic (denoted by N2(0)). It should be noted that the parameters associated with other

interventions (e.g., vaccination-related and social-distancing-related parameters) are kept at their baseline values

given in Table 1. The simulation results obtained, depicted in Figure 5, generally show that the early adoption of

face masks measures play a vital role in curtailing the COVID-related mortality in the U.S., particularly for the case

when mask-wearers do not opt to give up mask wearing (i.e., when α21 �= 0). For the case where the parameters

associated with the back-and-forth transitions between the masking and non-masking groups (i.e., α12 and α21)

are maintained at their baseline values (given in Table 1), this figure shows that the size of the initial number

of individuals who wear face masks, right from the beginning of the pandemic, has only marginal impact on the

cumulative COVID-related mortality in the U.S., as measured in relation to the cumulative mortality recorded

when the initial population of mask wearers is at the 1% baseline level (Figure 5 (a)). On the other hand, for the

case when mask-wearers remain mask-wearers since the very beginning of the pandemic (i.e., α21 = 0), while

11



non-maskers in Group 1 can change their behavior and become mask-wearers (i.e., α12 �= 0), the initial number of

individuals who adopt masking from the beginning of the pandemic has a more pronounced effect on the cumulative

mortality (Figure 5 (b)), in relation to the baseline. In particular, if 25% of the U.S. population adopt mask-wearing

right from the beginning of the pandemic (and remain mask-wearers), up to 6% of COVID-related mortality can

be averted, in relation to the 1% baseline mask-wearing at the beginning of the pandemic (green curve, Figure 5

(b)). Further, the reduction in cumulative mortality rises to 11% (in relation to the baseline) could be achieved if

half of Americans opted to wear face masks since the very beginning of the pandemic (blue curve, Figure 5 (b)).

For the case when no back-and-forth transitions between the two (mask-wearing and non-mask-wearing) groups

is allowed (i.e., when α12 = α21 = 0), our simulations show a far more dramatic effect of face mask usage in

reducing COVID-19 mortality ( Figure 5 (c)). In particular, we showed that up to 92% cumulative mortality can

be averted, in comparison to the baseline, if 25% of the U.S. population adopted mask-wearing mandate right from

the beginning of the pandemic (green curve, Figure 5 (c)). Furthermore, 95% of the cumulative mortality could

have been prevented if 50% of the U.S. population were wearing face masks since the beginning of the pandemic

(blue curve, Figure 5 (c)).
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Figure 5: Assessment of the singular impact of face mask usage on COVID-19 pandemic in the U.S. Simulations

of the model (2.1)-(2.2), showing cumulative COVID-induced mortality, as a function of time, for (a) face mask

transition parameters (α12 and α21) maintained at their baseline values, (b) mask-wearers strictly adhere to wearing

masks (α21 = 0) and non-mask-wearers transit to mask wearing at their baseline rate (α12 �= 0), (c) non-mask

wearers and mask-wearers do not change their behavior (i.e., α12 = α21 = 0). Mask use change is implemented in

terms of changes in the initial population of individuals who wear face-masks (i.e., in terms of changes in the initial

total population size in Group 2, N2(0)). Parameter values used in the simulations are as given by the baseline

values in Table 1, with different values of α12 and α21.

4.2 Assessing the impact of social-distancing

In this section, we carry out numerical simulations to assess whether social-distancing alone (implemented right

from the very beginning of the pandemic) might be sufficient to contain the COVID-19 pandemic in the U.S. To

achieve this objective, the model {(2.1), (2.2)} is simulated using the parameters in Table 1 with various levels

of the social-distancing compliance parameter (cs) and all other control-related parameters (e.g., initial face mask

coverage and efficacy, vaccination rate and efficacy etc.) are maintained at their baseline values.

The simulation results obtained, depicted in Figure 6, show that the cumulative mortality (Figure 6 (a)) and

daily mortality (Figure 6 (b)) decrease with increasing social-distancing compliance. In the absence of social-

distancing (i.e., cs = 0), the simulations show that the U.S. could record up to 422, 013 cumulative deaths by

September 12, 2021 (Figure 6 (a), red curve). For this (social-distancing-free) scenario, the U.S. will record a

peak daily mortality of about 6, 585 deaths on March 21, 2020 (Figure 6 (b), red curve). It is further shown

that, if 30% of the U.S. population will be observing social-distancing in public, up to 24% reduction can be

recorded in the cumulative mortality, in relation to the cumulative mortality recording for the social-distancing-
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free scenario (Figure 6 (a), magenta curve). Similarly, up to 51% reduction can be achieved in daily mortality

(Figure 6 (b), magenta curve), and the pandemic would have peaked a month later (in April 2020; the daily

mortality at this peak would have been 3, 247). Further dramatic reduction in COVID-19 mortality is recorded as

social-distancing compliance is further increased. For instance, if 60% of the U.S. population adhere to the social-

distancing measures, about 62% of the cumulative deaths recorded (for the case with cs = 0) would have been

averted (Figure 6 (a), green curve). For this scenario, 87% of the daily deaths would have been prevented and the

pandemic would have peaked in June 2020 (the daily mortality at this peak would have been 864). Finally, if 75%
of the U.S. population complied with the social-distancing measures, right from the beginning of the pandemic,

the COVID-19 pandemic would have failed to generate a major outbreak in the U.S. (Figure 6, blue curves). In

particular, the cumulative mortality for the entire U.S. by September 21, 2021 will be about 20, 000. Thus, in

summary, the simulations in Figure 6 show that COVID-19 could have been effectively suppressed in the U.S.

using social-distancing at moderate to high compliance levels.
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Figure 6: Assessment of the singular impact of social-distancing on COVID-19 pandemic in the U.S. Simula-

tions of the model (2.1)-(2.2) showing (a) cumulative mortality, as a function of time; (b) daily mortality, as a

function of time, for various compliance levels of the social-distancing parameter (cs). Initial conditions used

are: (S0
1 , E

0
1 , P

0
1 , I

0
1 , A

0
1, H

0
1 , R

0
1, S

0
2 , E

0
2 , P

0
2 , I

0
2 , A

0
2, H

0
2 , R

0
2) = (0.99 × 336218660 − 1, 0, 0, 1, 0, 0, 0, 0.01 ×

336218660, 0, 0, 0, 0, 0, 0). Parameter values used in the simulations are as given by the baseline values in Ta-

ble 1.

4.3 Assessment of combined impact of vaccination and social-distancing

The model (2.1)-(2.2) will now be simulated to assess the community-wide impact of the combined vaccination

and social-distancing interventions. Although the vaccines are expected to be available by the end of the year 2020

or early in 2021, we assume that there will be some time lag before the vaccines are made widely available to the

general public. This is because the vaccines will initially be targeted to the people most at risk (notably the frontline

healthcare workers, nursing home residents and staff, essential workers, people with underlying conditions etc.)

before being made available to the general. For simulation purposes, we assume that the vaccines will be available

to the general public by March 15, 2021.

We consider the three vaccines currently on the verge of being approved by the FDA for use in humans, namely

the AstraZeneca vaccine (with estimated efficacy of 70%) and the Moderna and Pfizer vaccines (each with estimated

efficacy of about 95%). Simulations are carried out using the baseline parameter values in Table 1, with various

values of the vaccination coverage parameter (ξv). For these simulations, parameters and initial conditions related

to the other intervention (face mask usage) are maintained at their baseline values. Since the Moderna and Pfizer

vaccines have essentially the same estimated efficacy (≈ 95%), we group them together in the simulations.
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The simulation results obtained for the AstraZeneca vaccine, depicted in Figures 7 (a)-(c)), show that, in the

absence of vaccination (and with social-distancing at baseline compliance level), approximately 1, 388 will be

recorded on August 31, 2021 (red curves of Figures 7 (a)-(c)). Furthermore, this figure shows a marked reduction

in daily mortality with increasing vaccination coverage (ξv). This reduction further increases if vaccination is

combined with social-distancing (particularly with high enough compliance). For instance, with social-distancing

compliance maintained at its baseline value (cs = 0.3015), vaccinating at a rate of 0.00074 per day (which roughly

translates to vaccinating 250, 000 people every day) resulted in a reduction of the projected daily mortality on

August 31, 2021 by 14% (in comparison to the case when no vaccination is used; magenta curve in Figure 7 (a)).

In fact, up to 78% of the projected daily mortality for August 31, 2021 could be averted if, for this vaccination rate,

60% social-distancing compliance is attained (magenta curve in Figure 7 (c)). If the vaccination rate is further

increased to, for instance, ξv = 0.0015 per day (corresponding to vaccinating about 500, 000 people every day),

our simulations show a reduction of 26% in the projected daily mortality on August 31, 2020 if social-distancing

is maintained at its baseline level (gold curve, Figure 7 (a)). This reduction increases to 85% if the vaccination

program is supplemented with social-distancing with 60% compliance (gold curve, Figures 7 (c)). If 1 million

people are vaccinated per day (i.e., ξv = 0.003) per day, our simulations show that the use of AstraZeneca vaccine

could lead to up to 46% reduction in the projected daily mortality on August 31, 2021 if the vaccination program is

combined with social-distancing at baseline compliance level. Further reductions in the projected daily mortality

are recorded when either the Moderna or Pfizer vaccine (with moderate to high vaccination coverage) is used

(Figures 7 (d)-(f)), particularly if combined with social-distancing with high compliance (blue curves in Figures 7

(d)-(f)). These results are summarized in Table 3.
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Figure 7: Assessment of the combined impact of vaccination and social-distancing on daily mortality. Simulations

of the model (2.1)-(2.2), depicting daily mortality as a function of time, for various vaccine types and social-

distancing compliance (cs). (a)-(c): AstraZeneca vaccine. (d)-(f): Pfizer or Moderna vaccine. The vaccination

rates ξv = 7.4× 10−4, 1.5× 10−3, 3.0× 10−3, 5.9× 10−3 correspond, respectively, to vaccinating approximately

2.5× 105, 5.0× 105, 1.0× 106, 2.0× 106 people per day. Other parameter values of the model are as presented in

Table 1.
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Table 3: Percentage reduction in projected daily mortality on August 31, 2021, in relation to the daily mortality

in the absence of vaccination (1, 383 COVID-19 deaths on August 31, 2021), for different types of COVID-19

vaccines: AstraZeneca vaccine (efficacy εv = 0.7); Pfizer and/or Moderna vaccine (efficacy εv = 0.95), and

various compliance levels of social-distancing (cs) and number of individuals vaccinated per day.

Reduction with Reduction with Reduction with
Number of people cs = 0.3051 cs = 0.45 cs = 0.60

vaccinated per day εv = 70% εv = 95% εv = 70% εv = 95% εv = 70% εv = 95%

250,000 14% 15% 38% 39% 78% 79%

500,000 26% 29% 48% 51% 85% 87%

1,000,000 46% 51% 65% 69% 93% 95%

2,000,000 74% 80% 87% 91% 98.8% 99.5%

4.4 Impact of vaccination and social-distancing on time to pandemic elimination

The model (2.1)-(2.2) will now be simulated to assess the community-wide impact of the combined vaccination and

social-distancing interventions on the expected time the implementation of these interventions will take to result in

the elimination of the pandemic in the U.S. (i.e., time needed for the number of new COVID-19 cases to be essen-

tially zero). As in Section 4.3, we consider the three candidate vaccines (the AstraZeneca, Moderna and the Pfizer

vaccines). The model is simulated to generate a time series of new daily COVID-19 cases in the U.S., for various

vaccination coverage and social-distancing compliance levels. The results obtained, for the AstraZeneca vaccine,

depicted in Figures 8 (a)-(c), show a marked decrease in the time-to-elimination with increasing vaccination cov-

erage and social-distancing compliance. In particular, vaccinating 250, 000 people per day, with the AstraZeneca

vaccine, will result in COVID-19 elimination in the U.S. by late October of 2025, if the social-distancing compli-

ance is kept at its current baseline level of 30.51% (red curve of Figure 8 (a)). For this scenario, the elimination

will be reached in early October 2025 using either the Moderna or the Pfizer vaccine. If the vaccination rate is

further increases, such as vaccinating 1 million people every day, COVID-19 elimination is achieved much sooner.

For instance, for this scenario (i.e., ξv = 0.003 per day), the pandemic can be eliminated, using the AstraZeneca

vaccine, by mid July of 2022 if the vaccination program is combined with social-distancing at 60% compliance

(green curve of Figure 8 (c)). Here, too, using the Moderna or the Pfizer vaccine can lead to the elimination of the

pandemic a little sooner (by mid June 2022) if social-distancing is maintained at 60% (green curve, Figure 8 (f)).

A summary of time-to-elimination for the aforementioned, and other, scenarios is given in Table 4. In conclusions,

these simulations show that any of the three candidate vaccines considered in this study will lead to the elimination

of the U.S. The time-to-elimination depends on the vaccination rate and the compliance level of social-distancing.

The pandemic can be eliminated by as early as June of 2022 if moderate to high vaccination rate (e.g., 1 million

people are vaccinated per day) and social-distancing compliance (e.g., cs = 0.6) are attained and maintained.
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Figure 8: Effect of vaccination and social-distancing on time-to-elimination. Simulations of the model (2.1)-(2.2),

depicting the impact of three candidate vaccines against COVID-19 (the AstraZeneca vaccine, and the Pfizer or

Moderna vaccine) and social-distancing, on time-to-elimination of the pandemic in the U.S. (a)-(c): AstraZeneca

vaccine. (d)-(f): Moderna or Pfizer vaccine. The social-distancing compliance is cs = 0.3051 for (a) and (d),

cs = 0.45 for (b) and (e), and cs = 0.60 for (e) and (f). The vaccination rates ξv = 7.4× 10−4, 1.5× 10−3, 3.0×
10−3, 5.9× 10−3 correspond, respectively, to vaccinating approximately 2.5× 105, 5.0× 105, 1.0× 106, 2.0× 106

people per day. The values of the other parameters of the model used in the simulation are as given in Table 1.

Table 4: Time to eliminate the COVID-19 pandemic in the U.S., for various values of the vaccination rate (ξv) using

the three candidate vaccines (AstraZeneca vaccine with efficacy εv = 70%; the Moderna or Pfizer vaccine with

efficacy εv = 95%) and various levels of social-distancing compliance (cs). Parameter values used are as given in

Table 1.

Reduction with Reduction with Reduction with
Number of people cs = 0.3051 cs = 0.45 cs = 0.60

vaccinated per day εv = 70% εv = 95% εv = 70% εv = 95% εv = 70% εv = 95%

250,000 10/26/2025 10/09/2025 07/08/2025 07/15/2025 07/03/2024 06/06/2024

500,000 05/19/2024 05/14/2024 01/10/2024 12/26/2023 04/25/2023 04/02/2023

1,000,000 03/26/2023 03/06/2023 12/31/2022 12/11/2022 07/14/2022 06/18/2022

2,000,000 06/24/2022 06/09/2022 04/24/2022 04/05/2022 01/14/2022 12/21/2021

5 Discussion and Conclusions

Since its emergence late in December of 2019, the novel Coronavirus pandemic continues to inflict devastating

public health and economic burden across the world. As of December 5, 2020, the pandemic accounted for over 67

million confirmed cases and over 1.5 million deaths globally. Although control efforts against the pandemic have fo-

cused on the use of non-pharmaceutical interventions, such as social-distancing, face mask usage, quarantine, self-

isolation, contact-tracing, community lockdowns, etc., a number of highly promising (safe and highly-efficacious)
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anti-COVID vaccines are currently on the verge of being approved by the Food and Drug Administration (FDA)

for use in humans. In particular, two vaccine manufacturers, Moderna Inc. and Pfizer Inc., filed for Emergency Use

Authorization with the FDA in November 2020 (each of the two vaccines has estimated protective efficacy of about

95%). Furthermore, AstraZeneca vaccine, developed by the pharmaceutical giant, AstraZeneca, and University

of Oxford, UK, is undergoing Phase III of clinical trials with very promising results (estimated efficacy of 70%).

Mathematics (modeling, analysis and data analytics) has historically been used to provide robust insight into the

transmission dynamics and control of infectious diseases, dating back to the pioneering works of the likes of Daniel

Bernoulli in the 1760s (on smallpox immunization), Sir Ronald Ross and George Macdonald between the 1920s

and 1950s (on malaria modeling) and the compartmental modeling framework developed by Kermack and McK-

endrick in the 1920s [32–34]. The purpose of our study is to use mathematical modeling approaches, coupled with

rigorous analysis, to assess the potential population-level impact of the wide scale deployment of any (or combina-

tion of) the aforementioned candidate vaccines in curtailing the burden of the COVID-19 pandemic in the U.S. We

also seek to assess the impact of other non-pharmaceutical interventions, such as face mask and social-distancing,

implemented singly or in combination with any of the three vaccines, on the dynamics and control of the pandemic

in the U.S.

We developed a novel mathematical model, which stratifies the total population into two subgroups of indi-

viduals who habitually wear face masks in public and those who do not. The resulting two group COVID-19

vaccination model, which takes the form of a deterministic system of nonlinear differential equations, was initially

fitted using observed cumulative COVID-induced mortality data for the U.S. The model allows for the assessment

of social-distancing measures on combating the spread of the pandemic. The model was then rigorously analysed

to gain insight into its dynamical features. In particular, we showed that the disease-free equilibrium of the model

is locally-asymptotically stable whenever a certain epidemiological threshold, known as the control reproduction
number (denoted by Rc), is less than unity. The implication of this result is that (for the case when Rc < 1), a

small influx of COVID-infected individuals will not generate an outbreak in the community.

The expression for the reproduction number (Rc) was used to compute the nationwide vaccine-induced herd
immunity threshold. The herd immunity threshold represents the minimum proportion of the U.S. population that

needs to be vaccinated to ensure elimination of the pandemic. Simulations of our model shows, for the current

baseline level of social-distancing in the U.S. (at 30%), herd immunity cannot be achieved in the U.S. using the

AstraZeneca vaccine. However, achieving such herd immunity threshold is feasible using either the Moderna or

the Pfizer vaccine if at least 83% of the U.S. residents are vaccinated. Our simulations further showed that the

level of herd immunity needed to eliminate the pandemic decreases, for each of the three vaccines, with increasing

social-distancing compliance. In particular, if 80% of American residents adhere to social-distancing, vaccinating

only 35% and 26% with the AstraZeneca or Moderna/Pfizer vaccine, respectively, will generate the desired herd

immunity. In other words, this study shows that the prospect of achieving vaccine-derived herd immunity, using

any of the three candidate vaccines, is very promising, particularly if the vaccination program is complemented

with social-distancing measures with moderate to high compliance levels.

This study also shows that the use of any of the three vaccines (i.e., the AstraZeneca, Pfizer, or Moderna

vaccine) will dramatically reduce the burden of the COVID-19 pandemic in the U.S. (as measured in terms of

cumulative or daily COVID-induced mortality). The level of reduction achieved increases with increasing daily

vaccination coverage. Furthermore, the effectiveness of the vaccination program (using any of the three candidate

vaccines), to reduce COVID-19 burden, is significantly enhanced if the vaccination program is complemented with

other interventions, such as social-distancing (at moderate to high compliance levels). Our study further highlights

the fact that early implementation of masks adoption (i.e., face mask adoption from the very beginning of the

pandemic) plays a crucial role in effectively combating the burden of the COVID-19 pandemic (as measured in

terms of reduction in cumulative COVID-related mortality) in the U.S. It was further shown that the level of such

reduction is very sensitive to the rate at which mask-wearers opt to abandon mask-wearing (i.e., reverting to the

group of non-mask wearers). In other words, our study emphasize the fact that early implementation or adoption

of mask mandate, together with (strict) compliance to this mandate, plays a major role in effectively curtailing, or

halting, the COVID-19 pandemic in the U.S.

We further showed that the time-to-elimination of COVID-19 in the U.S., using a vaccine (and a non-pharmaceutical
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intervention), depends on the vaccination rate (i.e., number of people vaccinated everyday) and the level of com-

pliance of social-distancing measures in the country. Specifically, our study shows that the COVID-19 pandemic

can be eliminated in the U.S. by early June of 2022 if moderate to high vaccination rate (e.g., 1 million people

vaccinated per day) and social-distancing compliance (e.g., 60% social-distancing compliance) are achieved and

maintained. It should, however, be mentioned that the time-to-elimination is sensitive to the level of community

transmission of COVID-19 in the population (it is also sensitive to the effectiveness and coverage (compliance)

levels of the other (non-pharmaceutical) interventions, particularly face mask usage and social-distancing compli-

ance, implemented in the community). Specifically, our study was carried out during the months of November and

December of 2020, when the United States was experiencing a devastating third wave of the COVID-19 pandemic

(recording an average of 200, 000 confirmed cases per day, together with record numbers of hospitalizations and

COVID-induced mortality). This explains the somewhat longer estimated time-to-elimination of the pandemic,

using any of the three vaccines, for the case where social-distancing compliance is low. The estimate for the

time-to-elimination (using any of the three vaccines) will be shorter if the community transmission is significantly

reduced (as will be vividly evident from the reduced values of the transmission- and mortality-related parameters

of the re-calibrated version of our model).
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Table 5: Description of the state variables of the model {(2.1), (2.2)}.

State variable Description
S1u Population of non-vaccinated susceptible individuals who do not habitually wear face masks

S2u Population of non-vaccinated susceptible individuals who habitually face masks

S1v Population of vaccinated susceptible individuals who do not habitually wear face masks

S2v Population of vaccinated susceptible individuals who habitually wear face masks

E1 Population of exposed (newly-infected) individuals who do not habitually wear face masks

E2 Population of exposed (newly-infected) individuals who habitually wear face masks

P1 Population of pre-symptomatic infectious individuals who do not habitually wear face masks

P2 Population of pre-symptomatic infectious individuals who habitually wear face masks

I1 Population of symptomatically-infectious individuals who do not habitually wear face masks

I2 Population of symptomatically-infectious individuals who habitually wear face masks

A1 Population of asymptomatically-infectious individuals who do not habitually wear face masks

A2 Population of asymptomatically-infectious individuals who habitually wear face masks

H1 Population of hospitalized individuals who do not habitually wear face masks

H2 Population of hospitalized individuals who habitually wear face masks

R1 Population of recovered individuals who do not habitually wear face masks

R2 Population of recovered individuals who habitually wear face masks
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Table 6: Description of the parameters of the model {(2.1), (2.2)}.

Parameters Description
Π Recruitment (birth or immigration) rate into the population

μ Natural mortality rate

βP1(βP2) Effective contact rate for pre-symptomatic individuals who do not wear (wear)

face masks

βI1(βI2) Effective contact rate for infectious symptomatic individuals who do not wear (wear)

face masks

βA1(βA2) Effective contact rate for symptomatically-infectious individuals who do not wear (wear)

face masks

βH1(βH2) Effective contact rate for hospitalized individuals who do not wear (wear)

face masks

0 < ε0 < 1 Outward protective efficacy of face masks

0 < εi < 1 Inward protective efficacy of face masks

ωv Vaccine waning rate

α12 Rate at which non-habitual face masks wearers choose to become habitual wearers

α21 Rate at which habitual face masks wearers choose to become non-habitual wearers

ξv Per capita vaccination rate

0 < εv < 1 Protective efficacy of the vaccine

σ1(σ2) Rate at which exposed individuals who do not wear (wear) face masks progress to the

corresponding pre-symptomatic infectious stage

σP Rate at which pre-symptomatic infectious individuals progress to

symptomatically-infectious or asymptomatically-infectious stage

r(q) Proportion of pre-symptomatic infectious individuals who do not wear (wear) face masks

that become symptomatically-infectious

φ1I(φ2I) Hospitalization rate for symptomatically-infectious individuals who do not wear (wear)

face masks

γ1A(γ2A) Recovery rate for asymptomatically-infectious individuals who do not wear (wear)

face masks

γ1I(γ2I) Recovery rate for symptomatically-infectious individuals who do not wear (wear)

face masks

γ1H(γ2H) Recovery rate for hospitalized individuals who do not wear (wear) face masks

δ1I(δ2I) Disease-induced mortality rate for symptomatically-infectious individuals who do not

wear (wear) face masks

δ1H(δ2H) Disease-induced mortality rate for hospitalized individuals who do not wear (wear)

face masks
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Appendix I: Entries of the Non-negative Matrix F

f1 = (1−cs)βP1

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
, f2 = (1−cs)βI1

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
, f3 = (1−cs)βA1

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
,

f4 = (1− cs)βH1

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
, f5 = (1− cs)(1− ε0)βP2

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
,

f6 = (1− cs)(1− ε0)βI2

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
, f7 = (1− cs)(1− ε0)βA2

[
S∗
1u + (1− εv)S

∗
1v

N∗
1

]
,

f8 = (1− cs)(1− ε0)βH2

[
S∗
1u + (1− εv)S

∗
1v

N∗
2

]
, g1 = (1− cs)(1− εi)βP1

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
,

g2 = (1− cs)(1− εi)βI1

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
, g3 = (1− cs)(1− εi)βA1

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
,

g4 = (1− cs)(1− εi)βH1

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
, g5 = (1− cs)(1− εi)(1− ε0)βP2

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
,

g6 = (1− cs)(1− εi)(1− ε0)βI2

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
, g7 = (1− εi)(1− ε0)βA2

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
,

g8 = (1− εi)(1− ε0)βH2

[
S∗
2u + (1− εv)S

∗
2v

N∗
2

]
.

Appendix II

a11 =
K3K5K6K7K8K9K10σ1[f3σp(1− r) + f1K4] + rK4K6K7K8K9K10σ1σp(f2K5 + f4φ1)

2
10∏
i=1

Ki

,

a12 =
σ1K1K2K3K4K5 [rg2K4K5σp + (1− r)g3K3K5σp + rg4K4φ1σp + g1K3K4K5]

4
10∏
i=1

Ki

,

a21 =
σ2K6K7K8K9K10 [qf6K9K10σp + (1− q)f7K8K10σp + qf8K9φ2σp + f5K8K9K10]

4

10∏
i=1

Ki

,

a22 =
K1K2K3K4K5K8K10σ2[g7σp(1− q) + g5K9] + qK1K2K3K4K5K9σ2σp(g6K10 + g8φ2)

2

10∏
i=1

Ki

.
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b11 =
K3K5K6K7K8K9K10σ1[βA1σp(1− r) + βP1K4] + rK4K6K7K8K9K10σ1σp(βI1K5 + βH1φ1)

2
10∏
i=1

Ki

,

b12 =
σ1K1K2K3K4K5 [rβI1K4K5σp + (1− r)βA1K3K5σp + rβH1K4φ1σp + βP1K3K4K5]

4
10∏
i=1

Ki

,

b21 =
σ2K6K7K8K9K10 [qβI2K9K10σp + (1− q)βA2K8K10σp + qβH2K9φ2σp + βP2K8K9K10]

4

10∏
i=1

Ki

,

b22 =
K1K2K3K4K5K8K10σ2[βA2σp(1− q) + βP2K9] + qK1K2K3K4K5K9σ2σp(βI2K10 + βH2φ2)

2
10∏
i=1

Ki

.
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AN EXCURSION THROUGH THE LAND OF SHTUKAS

ANA CARAIANI

Abstract. Vincent Lafforgue made a deep breakthrough in the global Lang-

lands program over function fields: he gave a general construction of the “auto-

morphic to Galois” direction of the Langlands correspondence. This connects
spectral data attached to Hecke operators on the automorphic side with arith-

metic data coming from representations of the absolute Galois group of the

function field. Lafforgue dreamed up additional symmetries, known as excur-
sion operators, on the automorphic side, and used them as a guide towards the

correct Galois representation. The goal of this survey is to explain this result

and some key ingredients in its proof. We also mention several exciting, even
more recent developments in the field.

1. Introduction

The Langlands program is a “grand unified theory” of mathematics: an intri-
cate network of conjectures that touch on number theory, representation theory,
harmonic analysis, and even parts of theoretical physics. At its heart lies the prin-
ciple of reciprocity, or the Langlands correspondence, which is like a magical bridge
that connects different mathematical worlds.

The principle of reciprocity goes back to the eighteenth century to the celebrated
law of quadratic reciprocity, discovered by Euler and Legendre and proved by Gauss.
We can use this law to answer basic questions about whole numbers.

Question 1.1. Let ` ≥ 5 be a prime number. Can 3 be the last digit of a perfect
square in base `?

If the answer is “Yes” we say that 3 is a quadratic residue modulo `. If p and ` are
distinct odd prime numbers, we can define the Legendre symbol(p

`

)
=

{
1 if p is a quadratic residue modulo `;

−1 if p is not a quadratic residue modulo `.

The law of quadratic reciprocity says that(
p

`

)
·
(
`

p

)
= (−1)

p−1
2 ·

`−1
2 .

In particular, the number of solutions to the quadratic equation

x2 ≡ p (mod `)

when p 6= ` is either 0 or 2 and only depends on the residue of ` modulo 4p. As `
varies over prime numbers, this number is periodic with period 4p.

Set p = 3. Using quadratic reciprocity, we now see that the answer to Ques-
tion 1.1 depends only on ` modulo 12, i.e., on where ` lands on the 12-hour clock!
For example, 13, 37, 61 and 1093 are all congruent to 1 modulo 12, so the answer
is “Yes” for all these primes. On the other hand, 3 can never be the last digit of a

1
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perfect square modulo 5. Since 17, 29, 41 and 1637 are all congruent to 5 modulo
12, the answer is “No” for all these primes.

In the twentieth century, we have come to view quadratic reciprocity as a one-
dimensional reciprocity law, an instance of Langlands reciprocity for the group GL1

over the rational numbers Q. To generalize this, we first reformulate Question 1.1:
how do we characterize the set of primes ` such that the polynomial x2 − 3 splits
as a product of distinct linear factors modulo `?

This question can also be formulated for polynomials of higher degree, leading
to the notion of a reciprocity law as in [Wym72]. One can even formulate reci-
procity laws for polynomials in more than one variable. These higher degree and
higher dimensional reciprocity laws, discovered in the twentieth century, go beyond
the original number-theoretic setting, with the tantalizing potential of connecting
different areas of mathematics.

Example 1.2. The infinite product

F (q) := q

∞∏
n=1

(1− qn)2(1− q11n)2

and the Diophantine equation

E : y2 + y = x3 − x2

seem to know about each other in a mysterious way.
Indeed, if we consider N` to be the number of solutions of the congruence

y2 + y ≡ x3 − x2 (mod `),

then we obtain the following list of values for primes ` 6= 11:

` 2 3 5 7 13 17 19 23 29

N` 4 4 4 9 9 19 19 24 29

If we look at the coefficients a` of q` in the expansion of F (q) we obtain:

` 2 3 5 7 13 17 19 23 29

a` −2 −1 1 −2 4 −2 0 −1 0

Notice that we always have

a` +N` = `.

We see that F (q) is essentially a generating series for the solutions modulo ` of the
Diophantine equation E!

The generating series F (q) is the Fourier expansion of a modular form, a highly
symmetric holomorphic function on the upper-half plane. This naturally lives in
the world of harmonic analysis. The Diophantine equation E describes an elliptic
curve defined over Q. This naturally lives in the world of arithmetic algebraic
geometry.



AN EXCURSION THROUGH THE LAND OF SHTUKAS 3

The reciprocity law that relates F (q) and E is an instance of the modularity
of elliptic curves over Q, which was famously the cornerstone of the proof of Fer-
mat’s Last Theorem [Wil95, TW95]. This is a two-dimensional reciprocity law, an
instance of Langlands reciprocity for the group GL2 over Q.

There is a deep and fruitful analogy between the arithmetic of the integers,
with the special role played by prime numbers, and the geometry of curves defined
over finite fields, where prime numbers are replaced by the points of the curve.
The former setting is that of number fields, such as the field of rational numbers
Q, while the latter is the setting of function fields, such as the field of rational
functions Fp(t) with Fp := Z/pZ.

While the concept of Langlands reciprocity can be traced back to the work of
Euler, Legendre and Gauss in the number field setting, a parallel set of conjectures
and results about Langlands reciprocity developed in the function field setting from
the second half of the nineteenth century on. This culminated in the breakthrough
construction of the correspondence (in both directions) for the group GLn: by
Drinfeld in the case n = 2 [Dri80, Dri87b, Dri88, Dri87a] and by Laurent Lafforgue
for arbitrary n [Laf02].

In the past decade, Vincent Lafforgue [Laf18a] gave a highly original and com-
pletely general construction of the automorphic to Galois direction of the Langlands
correspondence in the function field setting. His construction applies to arbitrary
connected reductive groups: it gives a more elegant proof in the case of GLn, and
treats symplectic, unitary and exceptional groups, among others, with the same
method. The goal of this survey is to explain the statement of this beautiful theo-
rem of V. Lafforgue and discuss some of the key ideas that go into its proof.

Finally, we emphasize that there are many exciting, even more recent devel-
opments in the field that were inspired by or build on [Laf18a]. This includes
important results in the function field setting, such as the work of Böckle–Khare–
Harris–Thorne [BHKT19], which establishes a general potential automorphy result
(in the Galois to automorphic direction of the Langlands correspondence), the work
of Genestier–Lafforgue on the local Langlands correspondence [GL17], and the work
of Lafforgue–Zhu [LZ18] that goes in the direction of the Arthur–Kottwitz conjec-
tures.

In a development that was hard to foresee even a decade ago, this also includes
striking results in the number field setting, such as the work of Xiao–Zhu [XZ17]
on the Tate conjecture for the cohomology of Shimura varieties, and the spectac-
ular upcoming work of Fargues–Scholze [FS20] on the geometrization of the local
Langlands correspondence.

1.3. Organization. In § 2, we discuss the analogy between number fields and func-
tion fields. In § 3, we discuss the two sides of the global Langlands correspondence
in a more systematic way and work through concrete examples of reciprocity. We
conclude this section by discussing the statement of the main theorem of [Laf18a].

The technical heart of this survey consists of § 4 and § 5. In § 4, we give some
sense of the geometry of moduli spaces of shtukas. These are highly symmetric
geometric objects, which provide a link between the two sides of the Langlands
correspondence. In § 5 we explain how to extract a Galois representation from
a system of eigenvalues attached to certain excursion operators that act on the
automorphic side. The excursion operators are defined using moduli spaces of
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shtukas, but we formalize the information we need from § 4, so that it can be taken
largely as a black box.

1.4. Further references. In addition to the original research papers, we recom-
mend the following surveys on the Langlands correspondence. For more technical
surveys that describe the main result of [Laf18a], see [Hei18], [Str17] (which has a
particular detailed overview of the case of GL1), and [Laf18b] (which also discusses
some further developments in the function field setting). For a historical overview
of Langlands reciprocity in the number field setting see [Eme20] and [Wei16]. For
a cutting edge survey on the Langlands program that combines ideas from the
number field and function field settings, see [Sch18].

1.5. Acknowledgements. I am grateful to Toby Gee, Steven Sivek, and Matteo
Tamiozzo for useful conversations and for their comments on an earlier version of
this text.

2. Number fields and function fields

To discuss the global Langlands correspondence, we will need two main players:
a global field F and a reductive group G. In this section, we focus on the former.
The global field F can be a number field, i.e., the field of rational numbers Q or
a finite extension obtained by adjoining the roots of a polynomial with rational
coefficients, such as the real quadratic field Q(

√
3) or the imaginary quadratic field

Q(i). Alternatively, the global field can be a function field, i.e., the field of rational
functions on a smooth, projective and geometrically connected curve X defined
over the finite field Fq of order q = pf .

Example 2.1. Take X to be the projective line P1
Fq : this can be identified with the

space of lines in 2-dimensional affine space A2
Fq passing through the origin 0. As an

algebraic curve, P1
Fq can be constructed by gluing two copies of the affine line A1

Fq ,

with rings of functions Fq[t] and Fq[t−1], along the common open subset with ring
of functions Fq[t, t−1]. In this case, the function field of X is F = Fq(t), the field
of rational functions in one variable t over Fq.

Instead of studying global fields directly, we can first consider their completions,
which have a simpler structure and will play an auxiliary role. More precisely, a
place v of a global field F is a non-trivial multiplicative norm | | : F → R≥0, given
up to equivalence. The equivalence relation identifies | | and | |s for s ∈ R>0. The
completion of F with respect to a place v is called a local field.

For example, if F = Q, the places are:

• The infinite or archimedean place, where the norm is the usual absolute
value and the completion is the field of real numbers R.
• The finite or non-archimedean places, which correspond to prime numbers
p. The norm is such that two rational numbers are close if they are con-
gruent modulo a high power of p. For example, we can take the norm that
sends r ∈ Q× to p−np(r), where np(r) ∈ Z is the exponent of p in the prime
factorization of r.

The corresponding completion is the field of p-adic numbers Qp. The
elements in Qp of norm ≤ 1 form the ring of p-adic integers Zp. This ring
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can also be constructed as the inverse limit

Zp = lim←−
n

Z/pnZ

and then we can recover Qp by inverting p: Qp = Zp[1/p].

If F is the function field of a curve X over Fq, the places of F are in bijection
with the closed points of X, which are all defined over Fq or some finite extension
thereof. More precisely, the residue field at a closed point v of X is a finite extension
k(v) of Fq, and we set deg(v) to be the degree of this extension. We also define

nv : F× → Z

to be the order of vanishing of a rational function at v. We then obtain a multi-
plicative norm on F by

f ∈ F× 7→ q− deg(v)nv(f).

The completion Fv with respect to this norm has the following geometric interpre-
tation: it is the field of functions on a punctured formal neighbourhood of v in X.
The elements Ov ⊂ Fv of norm ≤ 1 can be identified with the ring of functions in
a formal neighbourhood of v in X.

For example, let X = P1
F5

= A1
F5
∪ {∞}. The places of the function field F of X

are:

• The place ∞, where the completion is the field of Laurent series F5((t−1))
and the ring of integers is the power series ring F5[[t−1]]. The place ∞ is
already defined over F5, so the degree is equal to 1.
• The place 0, where the completion is the field of Laurent series F5((t)) and

the ring of integers is the power series ring F5[[t]]. The place 0 is also defined
over F5, so the degree is equal to 1. We see that the roles of 0 and ∞ are
completely symmetric, so unlike in the number field setting, there is nothing
special about ∞.
• More generally, any monic irreducible polynomial in F5[t] defines a place of
F . For example, the polynomial t2 − 3 is irreducible in F5 (since we have
seen that 3 is not a square modulo 5), so this defines a place of degree 2
with residue field equal to F25.

This is the precise sense in which there is an analogy between prime numbers
and the closed points on a curve defined over a finite field. Note that, in the case of
a curve over a finite field, all the residue fields have the same prime characteristic
p, and all the norms are non-archimedean. Moreover, we can form the product
X×Fq X of the curve with itself, to obtain a surface over Fq, whereas it is not clear
how to do this with Z, or what to take the product over. All these properties add
extra flexibility to the function field setting.

Remark 2.2. To illlustrate the power of the analogy between number fields and
function fields, recall the Riemann zeta function, defined by the convergent series

ζ(s) =

∞∑
n=1

1

ns



6 ANA CARAIANI

for a real number s > 1. By the unique factorisation of integers into primes, this
admits an alternative Euler product formula

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where p runs over prime numbers. By analogy, if X is an algebraic variety over the
finite field Fp (so X is cut out by polynomial equations modulo p), then we can
define a zeta function

ζ(X, s) :=
∏
v

(
1− 1

#k(v)s

)−1

,

where v runs over the closed points of the algebraic variety X, and k(v) is the
residue field at the point v, a finite extension of Fp. This product can be shown to
converge when s > dimFp X.

The analogy between number fields and function fields led Weil to conjecture
that zeta functions of smooth projective varieties behave in many ways like the
Riemann zeta function [Wei49]. For example, he conjectured that they admit a
functional equation and satisfy an analogue of the Riemann hypothesis. The Weil
conjectures are now theorems due to Dwork, Grothendieck and his collaborators,
and Deligne. In turn, they inspired much of the development of modern algebraic
geometry and had a lasting impact on mathematics.

The analogue of the Riemann hypothesis in the function field setting was es-
tablished by Deligne in [Del74], whereas the original Riemann hypothesis in the
number field setting remains one of the most important open problems in mathe-
matics. Deligne’s proof exploited the additional flexibility of the more geometric
setting of function fields. We will see later on that V. Lafforgue’s construction of
the global Langlands correspondence also relies on this additional flexibility.

3. The global Langlands correspondence

In its modern, higher-dimensional incarnation, reciprocity matches spectral data,
such as systems of eigenvalues obtained from the topology of highly symmetric man-
ifolds, to arithmetic data, such as the number of solutions to polynomial equations
modulo primes. The spectral data, such as the set of coefficients of the generating
series F (q) in Example 1.2, lives on the automorphic side. The arithmetic data,
such as the data coming from the Diophantine equation E, lives on the Galois side.
The goal of this section is to discuss the two sides in a more systematic way.

3.1. The Galois side. Let F be a global field, which can be a number field or a
function field. An important question in number theory and arithmetic geometry
is to understand the structure of the absolute Galois group of F , where we view all
finite separable extensions of F inside the same algebraic closure F and consider
its group of automorphisms, which we denote by ΓF = Gal(F/F ). This can be
identified with the inverse limit

ΓF = lim←−
F ′

Gal(F ′/F ),

where F ′ runs over all finite Galois extensions of F , making ΓF into a profinite
topological group, that looks like a Cantor set. When F is a global field, this is an
extremely mysterious and highly non-abelian group.
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For a finite field Fq of order q = pf , we can similarly define

ΓFq := Gal(Fq/Fq) = lim←−
F

Gal(F/Fq),

where F runs over all finite Galois extensions of Fq. The structure theory of finite

fields shows that this Galois group is isomorphic to the profinite completion Ẑ of
Z, and is topologically generated by one element, the Frobenius automorphism.
Indeed, the multiplicative map x 7→ xq has the magical property that

(x+ y)q ≡ xq + yq (mod p),

so in characteristic p it is additive as well. This means that the map defines a field
automorphism of Fq, and its fixed subfield is precisely Fq. From now on, we denote
the Frobenius automorphism by Frobq.

Unlike the case of finite fields, it is hard to study the Galois groups of global
fields directly, so instead we appeal to an idea that has been extremely fruitful
in mathematics, and we study their representations. More precisely, we study
the continuous, finite-dimensional representations of ΓF ; these are called Galois
representations.

Example 3.2. The following is an expanded version of the example discussed in [Eme13].
In the spirit of Question 1.1, we can ask to characterize the rational prime numbers
` such that the cubic polynomial

f(x) = x3 − x− 1

splits into distinct linear factors modulo `. We first rephrase this as a question
about Galois representations.

Let K/Q be the splitting field of the polynomial f(x), i.e., the smallest field
extension of Q over which f(x) splits into linear factors. It can be shown that K
is a cubic extension of the imaginary quadratic field Q(

√
−23)1. The Galois group

Gal(K/Q) is isomorphic to S3, the symmetric group on 3 elements, and it acts on
the 3 roots of the polynomial via the permutation representation.

1

2 3

τ

1

2 3

σ

Figure 1. The symmetries of the equilateral triangle

To visualize this, consider the symmetries of the equilateral triangle. There is
the rotation τ by 120 degrees around its center, and the reflection σ around the
vertical axis passing through its center. The group S3 is generated by τ and σ,

1The prime 23 is special here because the discriminant of the cubic polynomial f(x) is equal

to −23. Modulo 23, the polynomial f(x) decomposes as (x− 10)2(x− 3) and has a repeated root.
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with the relations τ3 = 1, σ2 = 1 and στ = τ2σ. The action of S3 on the vertices
of the triangle is precisely the permutation representation.

For the polynomial f(x) to split into distinct linear factors modulo `, we need
the equation f(x) ≡ 0 (mod `) to have 3 distinct roots valued in F`. If ` 6= 23, the
3 roots will be distinct, and a priori valued in some finite field extension of F`. To
test whether the roots are actually valued in F`, it is equivalent to check whether
they are fixed under the action of the Frob`-automorphism of F` given by x 7→ x`.

An essential, but slightly subtle point is that the Frobenius automorphism Frob`,
a priori thought of as an element of the absolute Galois group of F`, determines a
well-defined conjugacy class in Gal(K/Q). To see why this might be true, we must
consider the relationship between the Galois groups of finite fields, local fields and
global fields. This can be encoded in the diagram

(3.2.1) Gal(Q`/Q`)
� � //

����

Gal(Q/Q) // // Gal(K/Q).

Gal(F`/F`)

The first inclusion is determined by a choice of embedding Q ↪→ Q`, so this inclusion
is well-defined only up to conjugacy. We choose a lift of Frob` from Gal(F`/F`) to
Gal(Q`/Q`). By (3.2.1), this gives rise to a conjugacy class in Gal(K/Q). Finally,
when ` 6= 23, one can show that this conjugacy class is independent of the choice
of lift.

To check that Frob` fixes the 3 roots, it is equivalent to check that the corre-
sponding conjugacy class in Gal(K/Q) has trace equal to 3 under the permutation
representation of S3. The group S3 admits a unique 2-dimensional irreducible rep-
resentation up to conjugation, given by

τ 7→
(
−1 1
−1 0

)
, σ 7→

(
0 1
1 0

)
.

The 3-dimensional permutation representation decomposes as the direct sum of the
trivial 1-dimensional representation and the 2-dimensional irreducible one. Write

ρK : Gal(K/Q) ' S3 ↪→ GL2(C)

for the corresponding 2-dimensional Galois representation. Note that this repre-
sentation has finite image in GL2(C). Therefore, it is continuous for the discrete
topology on C, and so for any topology on C.

Summarizing the discussion so far, we see that f(x) splits into distinct linear
factors modulo ` if and only if ρK(Frob`) has trace equal to 2. In order to char-
acterize the primes ` for which f(x) modulo ` splits as a product of distinct linear
factors, it is enough to find a generating function for the values {trρK(Frob`)}, and
select those primes for which the value is equal to 2.

Example 3.3. The cubic equation y2 + y = x3 − x2 (or rather its projectivization)
represents an elliptic curve E defined over Q. This is a smooth, projective curve of
genus 1 with a specified point, the point at ∞. The elliptic curve can be endowed
with a group structure defined over Q. For any prime number p, the pn-torsion
points

E(C)[pn] ' (Z/pnZ)2
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have algebraic numbers as their coordinates. This induces an action of the absolute
Galois group ΓQ on (Z/pnZ)2, and the actions are compatible as n varies. By
taking the inverse limit and inverting p, we obtain a continuous 2-dimensional
Galois representation

ρE : ΓQ → GL2(Qp).
Note that, unlike Example 3.2, the coefficients of ρE are the field of p-adic numbers
Qp. This representation does not have finite image, and the topology of ΓQ interacts
with the topology of Qp.

Recall that N` is the number of solutions to the congruence

y2 + y ≡ x3 − x2 (mod `).

Using a (version of the) Lefschetz fixed point formula, one can show that, for a
prime ` 6= 11, we have

1 +N` = #E(F`) = 1 + `− trρE(Frob`).

The summand 1 corresponds to the point at ∞. In order to compute N`, it is
enough to find a generating function for the values {trρE(Frob`)}.

More generally, if X/Q is an algebraic variety and ` is a prime number, its `-adic
étale cohomology groups Hi

ét(XQ,Q`) are continuous, finite-dimensional represen-

tations of ΓQ on Q`-vector spaces2. Étale cohomology is a cohomology theory for
algebraic varieties defined by Grothendieck, which behaves like singular cohomology
for manifolds and is a rich source of Galois representations.

The fundamental notion that this theory relies on is that of an étale morphism,
which is an algebraic analogue of the notion of local isomorphism in topology. A
morphism between smooth varieties is étale if and only if its differential at every
point is an isomorphism of tangent spaces. A finite separable extension of fields
gives rise to an étale morphism. Therefore, the étale theory subsumes Galois theory.

Example 3.4. Let X be a smooth, projective and geometrically connected curve
over a finite field Fq, and let F be the function field of X. A finite étale and

Galois cover of the curve X̃ → X determines a continuous representation of ΓF on

a finite set. Indeed, the function field F̃ of X̃ is a finite Galois extension of F and

determines a finite quotient Gal(F̃ /F ) of the profinite group ΓF .

More generally, the perspective on Galois theory developed by Grothendieck
shows that there is an equivalence of categories between:

• The category of finite sets equipped with a continuous action of the profinite
group ΓF .
• The category of finite separable F -algebras.

If U ⊆ X is an open and dense subset, the absolute Galois group ΓF has a profinite
quotient π1(U, η̄), the étale fundamental group of U (this also depends on a choice
of base point η̄, i.e., of an algebraic closure F of F ). The action of ΓF on some
finite set factors through π1(U, η̄) if and only if the corresponding finite F -algebra

F̃ extends to a finite étale cover Ũ → U .

2This does indeed generalize the construction via pn-torsion points in the special case of elliptic
curves: if X = E, the representation of ΓQ on H1

ét(EQ,Qp) is the dual of the representation ρE ,

which can be identified with the étale homology of E.
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Example 3.5. If X = P1
Fq with q = pf and p ≥ 3, we can take U to be the open

dense subset with ring of functions Fq[t, t−1] and let Ũ → U be the degree 2 cover
with ring of functions Fq[s, t, t−1]/(s2− t). The cover is étale because the derivative
d(s2−t)
ds = 2s is invertible over the whole of Ũ . We obtain a character of ΓF of

degree 2.

Let v denote a place of F , which is just a closed point of the curve X. Let
U ⊆ X be an open and dense subset that contains v. We have a diagram analogous
to (3.2.1)

(3.5.1) Gal(F v/Fv)
� � //

����

Gal(F/F ) // // π1(U, η̄).

Gal(k(v)/k(v))

As in the number field case, the first inclusion is well-defined only up to conjugacy.
The residue field k(v) is a finite extension of Fq, so the absolute Galois group

Gal(k(v)/k(v)) ' Ẑ is topologically generated by the Frobenius automorphism

x 7→ xq
deg(v)

. We denote by Frobv an element of Gal(F v/Fv) that lifts this Frobenius
automorphism. Since v ∈ U , one can show that the image of Frobv in the étale
fundamental group π1(U, η̄) is a well-defined conjugacy class, independent of the
choice of lift.

Now consider a Galois representation

ρ : ΓF → GLn(Q`),

that factors through π1(U, η̄) for some open and dense U ⊆ X. As v runs over all
places of X contained in U , we obtain a well-defined infinite set {trρ(Frobv)} of
numbers in Q`. This set represents the kind of arithmetic data we see on the Galois
side of the Langlands correspondence.

Question 3.6. Can we find a different way to generate the numbers {trρ(Frobv)}?

3.6.1. Langlands parameters. Galois representations are, roughly, the objects on
the Galois side of the Langlands correspondence. To be as general as possible, we
want to allow the Galois representations to be valued in general connected reductive
groups rather than just GLn. This brings us to the second main player needed to
formulate the global Langlands correspondence.

We let G be a connected reductive algebraic group defined over Q (in the number
field setting) or over Fq (in the function field setting). For example, we can take G
to be:

(1) the general linear group GLn, consisting of n× n invertible matrices;
(2) the special linear group SLn, consisting of n×n matrices of determinant 1;
(3) the projective general linear group PGLn, which is the quotient of GLn by

the subgroup of non-zero scalars, embedded diagonally;
(4) the symplectic group Sp2n, consisting of 2n×2n matrices that preserve the

standard symplectic form on a 2n-dimensional vector space;
(5) the special orthogonal group SOn, consisting of n× n matrices of determi-

nant 1 and who are equal to their transpose inverse.
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In this survey, we will assume our group is split over Q (or over Fq), which
means that it contains a split maximal torus defined over Q (or over Fq), equal
to a product of some number of copies of the multiplicative group Gm := GL1.
All the examples above are split groups: for instance, GLn contains the maximal
torus of diagonal matrices. This restriction still exhibits some of the richness of the
general theory, as we will see in the final paragraphs of this section, while making
the exposition substantially simpler.

The group G determines, through an explicit combinatorial recipe that involves

its root datum, a split reductive group Ĝ over Q` called the Langlands dual group

of G. The group Ĝ has a canonical description in terms of algebraic geometry3 and,
in some sense, controls the representation theory of G. Taking the Langlands dual

of Ĝ recovers the original group G (as a group over Q`).

G GLn SLn PGLn Sp2n SO2n+1 SO2n

Ĝ GLn PGLn SLn SO2n+1 Sp2n SO2n

Figure 2. Examples of connected reductive groups and their
Langlands dual groups.

Assume now that we are in the function field setting and that ` is a prime number
different from the characteristic p of Fq.

Definition 3.6.2. A global Langlands parameter for G is a conjugacy class of
homomorphisms

ρ : ΓF → Ĝ(Q`)
that factor through the étale fundamental group π1(U, η̄) for some open dense subset

U ⊆ X, that take values in Ĝ over a finite extension of Q`, and that are continuous
and semisimple.

Given a finite-dimensional algebraic representation W of Ĝ and a global Lang-
lands parameter ρ, we can consider the Galois representation W ◦ ρ and keep track
of the arithmetic data {tr(W ◦ρ)(Frobv)}, as v runs over all places of X contained in
U . By varying W , we can encode the semi-simple conjugacy class of each ρ(Frobv)

in Ĝ(Q`), as v runs over all places of X contained in U .

Example 3.7. If G = GL2 then Ĝ = GL2. Let ρ : ΓF → Ĝ(Q`) be a global
Langlands parameter. We can take W to be the standard representation of GL2 on
a two-dimensional Q`-vector space, in which case

tr(W ◦ ρ)(Frobv) = trρ(Frobv).

On the other hand, we can also consider the one-dimensional representation W
given by the determinant, in which case

tr(W ◦ ρ)(Frobv) = det ρ(Frobv).

We see that, by varying W , we can recover the coefficients of the characteristic
polynomial of each ρ(Frobv), which in turn recover the semi-simple conjugacy class
of each ρ(Frobv) in GL2(Q`).

3This canonical description uses the so-called geometric Satake equivalence, which appears
again in § 4 and § 5.
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3.8. The automorphic side. The objects on the automorphic side of the global
Langlands correspondence can seem more mysterious than the objects on the Galois
side, though in getting to know them better, one discovers that they have many re-
markable properties. To help build some intuition for the notion of an automorphic
form, we start by discussing the number field setting.

The generating functions that correspond to Examples 3.2 and 3.3 are modular
forms, which are examples of automorphic forms for the groups SL2 or GL2 over
Q. A modular form is a holomorphic function on the upper-half complex plane

H := {z ∈ C | Im z > 0}
that satisfies many symmetries and a growth condition. The symmetries are given in
terms of the action of the group SL2(Z) ⊂ SL2(R) on H by Möbius transformations:

z 7→ az + b

cz + d
for

(
a b
c d

)
∈ SL2(R).

Below is a picture of a fundamental domain for the action of SL2(Z) on H. Notice
that this fundamental domain is non-compact in the direction Im z → ∞; to
compactify it, one needs to add a cusp, which corresponds to the point i∞.

i∞

Figure 3. A fundamental domain for SL2(Z) acting on H

Because the action of SL2(R) on H is transitive, we can identify

H = SL2(R)/SO2(R),

where SO2(R) is the stabilizer of the point i ∈ H, and is a maximal compact
subgroup of SL2(R). A modular form f of weight k ≥ 1 and level Γ, where Γ ⊆
SL2(Z) is a subgroup cut out by congruence conditions, satisfies the automorphy
condition

f

(
az + b

cz + d

)
= (cz + d)kf(z).

Because of this automorphy condition, modular forms can be identified with certain
differential forms on the quotient

(3.8.1) Γ\H = Γ\SL2(R)/SO2(R).

Cusp forms are those modular forms that vanish at the cusps; they are those
automorphic forms that are genuinely new for the group SL2, rather than those
that essentially arise from a smaller group, the maximal torus GL1 of diagonal
matrices inside SL2.
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Example 3.9. For a prime p, define the congruence subgroup

Γ0(p) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod p)

}
Note that ( 1 1

0 1 ) ∈ Γ0(p). This means that a modular form f of some weight k and
level Γ0(p) satisfies f(z+ 1) = f(z), which implies that we can describe it using its
Fourier expansion.

Setting q := e2πiz, the power series expansion of the infinite product

G(q) = q

∞∏
n=1

(1− qn)(1− q23n)

is the Fourier expansion of a cusp form g(z) of weight 1 and level Γ0(23). We will see
that this is the “mirror image” on the automorphic side of the Galois representation
ρK of Example 3.2 under the global Langlands correspondence for GL2 over Q.

The power series expansion of the infinite product

F (q) = q

∞∏
n=1

(1− qn)2(1− q11n)2

is the Fourier expansion of a cusp form f(z) of weight 2 and level Γ0(11). We will see
that this is the mirror image on the automorphic side of the Galois representation
ρE of Example 3.3 under the global Langlands correspondence for GL2 over Q.

The data we would like to keep track of on the automorphic side is spectral data,
i.e., systems of eigenvalues. These are the eigenvalues of a commutative algebra of
Hecke operators that act on spaces of modular forms. Hecke operators encode the
symmetries of the tower of quotients of H obtained by imposing various congruence
conditions. For a fixed level Γ, we can let ` run over all but finitely many primes
and obtain in each case a diagram

(3.9.1) (Γ ∩ Γ0(`)) \H

xx &&

Γ\H Γ\H

where the map on the left is the natural projection, and the map on the right is
given by z 7→ ( ` 0

0 1 ) z followed by the natural projection. This diagram defines a
Hecke operator T` on the space of modular forms of level Γ (and arbitrary weight
k).

Example 3.10. There is a natural bijection between SL2(Z)\H and the set of lattices
Λ ⊂ C, taken up to homothety. This gives the following moduli interpretation for
the diagram (3.9.1) in the case Γ = SL2(Z). In that case, Γ ∩ Γ0(`) is just Γ0(`)

and the quotient Γ0(`)\H parametrizes pairs of lattices (Λ′
φ
↪→ Λ) such that the

quotient Λ/Λ′ has cardinality `. The map on the left sends such a tuple to Λ′ and
the map on the right sends it to Λ. The formula for the Hecke operator T` is

T`(f)(Λ) =
∑
Λ′,φ

f(Λ′).

for a modular or cusp form f .
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For varying `, the different Hecke operators commute; we can diagonalize them
simultaneously and consider those modular forms that are simultaneous eigenvec-
tors; these are called eigenforms. To an eigenform, we can associate the spectral
data consisting of the Hecke eigenvalues.

Example 3.11. Both cusp forms g(z) and f(z) from Example 3.9 are eigenforms.
Write

g(z) =

∞∑
n=1

an(g)qn = q − q2 − q3 + . . . .

By direct computation, one can show that the eigenvalue of the Hecke operator T`
on g(z) is equal to the `th Fourier coefficient a`(g). Similarly, if we write

f(z) =

∞∑
n=1

an(f)qn = q − 2q2 − q + . . . ,

the eigenvalue of the Hecke operator T` is equal to the `th Fourier coefficient a`(f).
In fact, for any cuspidal eigenform that is normalized such that the coefficient of q
equals 1, the Fourier coefficients recover the Hecke eigenvalues.

We now try to understand what kind of objects are automorphic forms in the
function field setting. Recall the double quotient (3.8.1) which can be rewritten as

GL2(Z)\GL2(R)/R>0SO2(R).

An automorphic form for GL2 over Q can be thought of as a function on the
quotient GL2(Z) \GL2(R). This parametrizes finite free (or projective) Z-modules
M of rank 2 together with a trivialization M ⊗ZR ' R2. In more geometric terms,
finite projective Z-modules of rank 2 are the same as rank 2 vector bundles over
Spec Z.

Analogously, an automorphic form for GLn defined over a curve X/Fq is a func-
tion on the set of isomorphism classes of rank n vector bundles on X. More gen-
erally, an automorphic form for a group G is a function on the set of isomorphism
classes of G-bundles on X. This set is denoted by BunG(Fq), and we will see later
on that it also has an algebro-geometric structure.

Remark 3.12. Assume G is a semisimple group, such as SLn. To make the analogy
with the number field case even more striking, choose any point v on the X, assumed
for simplicity to be a point of degree 1. We can trivialize a G-bundle on X in a
formal neighborhood of v and also on the open subset X \ {v}. To recover the
original G-bundle, we need to specify how to glue these two trivial G-bundles in a
punctured formal neighborhood of v. The transition function gives an element of
G(Fv), where Fv is the completion of F at v and can be identified with a Laurent
series ring Fq((t)). On the other hand, we must forget the two original trivializations.
The trivialization in the formal neighborhood of v gives an element of G(Ov), where
Ov is the power series ring Fq[[t]], a maximal compact subgroup of G(Fv). The
other trivialization gives an element of G(O(X \ {v})). We obtain the following
uniformization result

BunG(Fq) = G(O(X \ {v}))\G(Fv)/G(Ov),

which is formally analogous to the double quotient (3.8.1) we saw in the definition
of modular forms.
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For technical reasons, we impose a condition relative to the center Z of G: we
choose a finite index subgroup Ξ ⊆ BunZ(Fq) and consider functions on BunG(Fq)/Ξ.
We write

H := Ccusp
c

(
BunG(Fq)/Ξ,Q`

)
for the vector space of cuspidal automorphic forms for G with coefficients in Q`.
This is a finite dimensional Q`-vector space. The cuspidality condition picks out
those automorphic forms that are genuinely new for G, rather than those that can
be obtained from automorphic forms on smaller groups.

In order to read off spectral data from Ccusp
c

(
BunG(Fq)/Ξ,Q`

)
, we must now

define an action of Hecke operators on this vector space. These can be defined using
the diagram

(3.12.1) Hv,W

yy %%

BunG(Fq) BunG(Fq),

where v runs over closed points of the curve X and W runs over irreducible algebraic

representations of the Langlands dual group Ĝ over Q`. The diagram (3.12.1) has
the following moduli interpretation: Hv,W parametrizes tuples

( E
φ
// E ′ ),

where E and E ′ are G-bundles on X, and φ is a modification at v bounded by
W . This means that φ is an isomorphism between the restrictions of E and E ′
to X \ {v}, such that the order of the poles of φ at v is bounded, and it turns
out that this bound can be expressed naturally in terms of an irreducible algebraic

representation of Ĝ, such as W . The map on the left sends the tuple ( E
φ
// E ′ )

to E ′ and the map on the right sends it to E . The diagram (3.12.1) defines a Hecke
operator Tv,W on the space of cuspidal automorphic forms H.

Example 3.13. Let G = GL2, in which case we also have Ĝ = GL2. Assume for
simplicity that v has degree 1. The type of the singularity of φ is determined by a
double coset

GL2(Fq[[t]])\GL2(Fq((t)))/GL2(Fq[[t]]).

Every fractional ideal in Fq((t)) can be generated by a single element of the form td

with d ∈ Z. By the elementary divisor theorem, the set of such double cosets can
be identified with the set of diagonal matrices(

td1 0
0 td2

)
, d1 ≥ d2 ∈ Z,

which in turn can be identified with the set of dominant cocharacters of G. If
we set (d1, d2) = (1, 0), this imposes the following condition on the modification

( E
φ
// E ′ ): it should realize E ′ as a sub-G-bundle of E such that E/E ′ is the

skyscraper sheaf supported at v with fiber a one-dimensional Fq-vector space.
On the other hand, the cocharacter (1, 0) of G can be thought of as a character

of Ĝ = GL2, and the standard two-dimensional representation Std is the associated
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highest weight representation. We obtain a Hecke operator Tv,Std, given by the
formula

Tv,Std(f)(E) =
∑

(E′,φ)

f(E ′)

for a cuspidal function f , where E ′ ⊂ E runs over degree 1 modifications at v. This
is the function field analogue of the Hecke operator Tp from Example 3.10.

For fixed v and varying W , the Hecke operators Tw,W form a commutative al-
gebra, called the Hecke algebra, that is isomorphic to the Grothendieck ring of

representations of Ĝ with coefficients in Q`4. This is called the arithmetic Satake
isomorphism and it plays an essential role in formulating the Langlands correspon-
dence. As v varies among places of X, the different Hecke operators commute with
each other, so that it makes sense to decompose the space of cuspidal automorphic
forms H into Hecke eigenspaces. The spectral data that can be read off the au-
tomorphic side consists of systems of eigenvalues for the Hecke operators {TW,v}
acting on H.

3.14. The correspondence. To make the global Langlands correspondence as
concrete as possible, consider first the case of GL2 over Q.

(1) The cusp form g(z) of weight 1 and level Γ0(23) corresponds to the Galois
representation

ρK : Gal(Q/Q) � S3 ↪→ GL2(C).

This implies that, for any prime ` 6= 23, we have an equality between
spectral data and arithmetic data

(3.14.1) a`(g) = trρK(Frob`).

Therefore, for any ` 6= 23, we can read off the splitting behaviour of the
polynomial

x3 − x− 1 (mod `)

from the Fourier coefficient a`(g). By expanding the infinite product

q

∞∏
n=1

(1− qn)(1− q23n),

using for example [LMF20, Newform orbit 23.1.b.a], we see that the first
prime for which the polynomial splits into distinct linear factors is ` = 59.

(2) The cusp form f(z) of weight 2 and level Γ0(11) corresponds to the Galois
representation

ρE : Gal(Q/Q)→ GL2(Q`)
obtained from the elliptic curve

y2 + y = x3 − x2.

This implies that, for any prime ` 6= p we have an equality between spectral
data and arithmetic data

(3.14.2) a`(f) = trρE(Frob`) = 1 + `−#E(F`).

4This holds if we assume that
√
p ∈ Q`, otherwise we enlarge our coefficient field to be the

unramified extension of Q` of degree 2, which does contain
√
p.
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The following classical bound for elliptic curves was first established by
Hasse (and fits within the framework of the Weil conjectures)

|1 + `−#E(F`)| ≤ 2
√
` whenever ` 6= 11.

Together with (3.14.2), this implies that

|a`(f)| ≤ 2
√
` whenever ` 6= 11.

This is a special case of the Ramanujan–Petersson conjecture for GL2 /Q,
a famous conjecture with applications throughout mathematics and com-
puter science, which bounds the size of the Fourier coefficients of cuspidal
automorphic forms.

Remark 3.15. The relations (3.14.1) and (3.14.2) are called Eichler–Shimura rela-
tions. They are proved using a geometric argument, that relies on reinterpreting
the quotients Γ\H as solutions to certain moduli problems.

Going back to the function field setting, the following is a preliminary statement
of the main theorem proved in [Laf18a]. This establishes the automorphic to Galois
direction of the global Langlands correspondence for a general connected reductive
group G.

Theorem 3.16. There exists a canonical decomposition of the space of cuspidal
automorphic forms on G with coefficients in Q`

(3.16.1) H =
⊕
ρ

Hρ,

where the RHS is indexed by global Langlands parameters

ρ : ΓF → Ĝ(Q`)

as in Definition 3.6.2, which factor through π1(X, η̄).
This decomposition is stable under the action of the Hecke operators at all places

v of X and matches spectral data with arithmetic data as expected. Explicitly,

for each place v and each finite dimensional algebraic representation W of Ĝ, the
eigenvalue of the Hecke operator TW,v on Hρ is equal to tr(W ◦ ρ)(Frobv).

Remark 3.17.

(1) In fact, V. Lafforgue proves a more general version of Theorem 3.16 that
incorporates a non-trivial level structure at a finite set of places N ⊂ X.
This means that he considers a space of cuspidal automorphic forms with
deeper level at places in N , and decomposes this space in terms of Lang-
lands parameters that factor through the profinite group π1(X \N, η̄). The
compatibility between the spectral data and the arithmetic data makes
sense and holds only at places v ∈ X \N . For simplicity of exposition, we
restrict ourselves to the case without level structure.

(2) In the case of G = GLn, this theorem was proved by Drinfeld for n =
2 [Dri80] and L. Lafforgue for arbitrary n [Laf02]. Their proofs rely on
the Arthur–Selberg trace formula, a difficult method in harmonic analysis
and representation theory. V. Lafforgue gave a unified proof that works for
general G and that avoids the trace formula completely.
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The compatibility between the spectral data seen on the automorphic side, con-
sisting of the eigenvalues of the Hecke operators {TW,v}, and the arithmetic data
{tr(W ◦ρ)(Frobv)} seen on the Galois side is not always enough to characterize the

decomposition in (3.16.1). This is a subtle, but crucial point. If G = Ĝ = GLn,
the compatibility between the spectral data and the arithmetic data does suffice
to characterize the decomposition. There are two reasons for this: firstly, by the
Cebotarev density theorem, the set {Frobv} is dense in the profinite group π1(X, η̄),
as v runs over all the places of X. Secondly, representations valued in GLn(Q`) are
determined by their traces.

As we have seen in Example 3.7, the arithmetic data recovers the semi-simple

conjugacy class of each ρ(Frobv) in Ĝ(Q`). However, it is sometimes possible to
have two global Langlands parameters

ρi : π1(X, η̄)→ Ĝ(Q`), for i = 1, 2,

such that ρ1(Frobv) and ρ2(Frobv) are conjugate in Ĝ(Q`) for every v, but the

representations ρ1 and ρ2 are not conjugate in Ĝ(Q`). This can happen, for ex-

ample, if G = SLn and Ĝ = PGLn, for n > 2. On the automorphic side, this
phenomenon corresponds to a failure of multiplicity one, cf. [Bla94, Lap99]. On the
Galois side, this phenomenon has been studied in [Lar94, Lar96]: it is formulated in
terms of representations that are locally (element-wise) conjugate but not globally
conjugate.

This leads us to the key new idea introduced in [Laf18a] and exploited to prove
Theorem 3.16. One needs to enlarge the algebra of Hecke operators that act on the
automorphic side to a commutative algebra B of excursion operators that contains
all the information needed to recover a Langlands parameter. Heuristically, one
should think of the algebra B as the algebra of regular functions on the coarse
moduli space of Galois representations5. A system of simultaneous eigenvalues for
the excursion operators is a maximal ideal of B and thus determines, by geometric
invariant theory, a semi-simple Galois representation.

If we believed in a refined “geometric” version of the Langlands correspondence,
such a correspondence would relate the space of cuspidal automorphic forms H to
a coherent sheaf on the corresponding moduli stack of Galois representations. This
leads to a heuristic explanation for why H could admit an action by the excursion
algebra B (see also [Laf18b, Remark 8.5]). V. Lafforgue constructed the action of
B on H using the geometry of moduli spaces of shtukas. In the case of G = SLn
with n > 2, the example of locally but not globally conjugate Langlands parameters
shows that the excursion algebra B is strictly larger than the Hecke algebra. This
shows that the excursion algebra B, which was not considered before [Laf18a], plays
a fundamental role in the very formulation of the global Langlands correspondence,
as soon as we leave the realm of GLn!

4. Moduli spaces of shtukas

In the function field setting, we have seen that automorphic forms are certain
functions on the set BunG(Fq), that classifies isomorphism classes of G-bundles on
the curve X. One goal of this section is to explain that this set has a geometric
structure, as the Fq-points of the moduli stack of G-bundles on X. We aim to give

5This heuristic was originally suggested by Drinfeld and recently made rigorous in [Zhu20].
We discuss this perspective more in § 5.
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an idea of the geometry of BunG and of the geometry of the related moduli stacks
of Hecke modifications.

We then describe much more general geometric objects, that are moduli stacks
of shtukas6 on X. The cohomology groups of the moduli stacks of shtukas gen-
eralize the spaces of automorphic forms on G and play a fundamental role in the
construction of global Langlands parameters in [Laf18a]. We begin to explain why
this is the case by discussing a famous lemma of Drinfeld. In this section, we follow
the exposition in [Hei18] and [Laf18b].

4.1. The moduli stack of G-bundles. It is more natural to consider the set
BunG(Fq) as a groupoid, i.e. a category where all the morphisms are invertible.
This categorical perspective allows us to keep track of G-bundles on X together
with their (finite) groups of automorphisms.

This perspective also leads to the discovery of an algebro-geometric object called
BunG that parametrizes G-bundles on X. To a scheme S over Fq, BunG associates
the groupoid BunG(S) of G-bundles on X × S. Roughly, one could think of a G-
bundle on X × S as a family of G-bundles on X parametrized by the points of the
scheme S. The geometric object BunG is an Artin stack defined over Fq. Rather
than give the precise definition, we mention that a typical example of an Artin
stack is a quotient of an algebraic variety by an algebraic group; one can show that
BunG looks like this locally.

To recover the groupoid BunG(Fq) we take the Fq-valued points of BunG. Recall
that an Fq-valued point is the same as a geometric point that is fixed by the Frobe-
nius automorphism Frobq, so we could also recover BunG(Fq) by taking Frobenius
fixed points.

We can upgrade the diagram (3.12.1) that is used to define Hecke operators to
a diagram of (ind-)stacks

(4.1.1) HeckeG

zz &&

BunG BunG ×X,

where the object at the top is the so-called Hecke stack. For S a scheme over Fq,
the groupoid HeckeG(S) is the category of tuples

(x, E , E ′, φ : E
φ
// E ′ )

where x : S → X is a point on the curve, E and E are G-bundles on X×S, so objects

in BunG(S), and φ : E
φ
// E ′ is a modification at x, i.e. an isomorphism away

from the graph Γx ⊂ X × S of the point x. The advantage of (4.1.1) over (3.12.1)
is that the situation is much more geometric now, and we can allow the point x to
move along the curve X.

More generally, we can even consider a version HeckeG,I of the Hecke stack that
parametrizes modifications φ at a finite set (xi : S → X)i∈I of S-valued points
of X. This version lives over a product XI of I copies of the curve X. As we
have done before to define Hecke operators, we can consider substacks of HeckeG,I
where we bound the poles of a modification φ at each xi in terms of an irreducible

algebraic representation Wi of Ĝ. We can still move the points xi along the curve

6The term shtuka was introduced by Drinfeld; it means “thing” in Russian.
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X, but the advantage of having more than one copy of the curve is that we can
also allow different points to collide.

These ideas can be made precise and ultimately lead to the geometric Satake
equivalence, that relates the geometry of Hecke stacks for G with the representa-

tion theory of the Langlands dual group Ĝ. This equivalence is due to Lusztig,
Drinfeld, Ginzburg and Mirkovic-Vilonen [MV07] and plays a fundamental role in
the Langlands program over function fields and, in particular, in [Laf18a].

4.2. Moduli stacks of shtukas. We now construct some moduli stacks that gen-
eralize the groupoid BunG(Fq), which can be thought of as a discrete, i.e. zero-
dimensional stack. These generalizations are moduli stacks of G-shtukas. They
were first introduced by Drinfeld for G = GLn [Dri80] and then generalized by Var-
shavsky [Var04] to all reductive groups G, and with an arbitrary number of “legs”.
The moduli stacks of shtukas combine, in a precise sense, the Hecke stacks we have
seen above together with taking Frobenius-fixed points.

Let I be a finite set and, for each i ∈ I, choose an irreducible algebraic repre-

sentation Wi of Ĝ over Q`. We can then form the representation

W := �i∈IWi

of the product ĜI of I copies of Ĝ. We define ShtI,W to be the (underlying reduced)
stack over XI whose points over an Fq-scheme S classify G-shtukas. More precisely,
the objects of the groupoid ShtI,W (S) are:

• points (xi)i∈I : S → XI called the legs of the shtuka;
• a G-bundle E on X × S.
• an isomorphism

φ : E |X×S\∪i∈IΓxi

∼→ (IdX × FrobS)∗E |X×S\∪i∈IΓxi
,

such that the relative position at xi of the modification φ is bounded in
terms of the representation Wi for each i ∈ I.

The moduli stack ShtI,W naturally lives over XI , by the map that sends a shtuka
to its legs. This fact is the first hint that the cohomology groups of ShtI,W could
provide a link to Langlands parameters.

Remark 4.3. The stack ShtI,W is a Deligne–Mumford stack, which is a particular
case of an Artin stack, but is a much nicer geometric object. The typical example
of a Deligne–Mumford stack is the quotient of an algebraic variety by a finite étale
group scheme. One can show that ShtI,W looks like this locally. In topology, the
corresponding notion is that of an orbifold.

Example 4.4. Set I = ∅ and let W = 1 be the trivial representation. We claim that
Sht∅,1 can be identified with the discrete stack BunG(Fq). To see this, note that
the moduli problem for Sht∅,1 consists of G-bundles E on X × S together with an
isomorphism

E ∼→ (IdX × FrobS)∗E .

Since G-bundles on X × S are classified by BunG(S), we see that Sht∅,1 consists
precisely of the Frobq-fixed points of BunG. These are precisely the Fq-valued
points.
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We will be interested in Hcusp
I,W , the cuspidal part of the étale cohomology7 of

ShtI,W . We remark that the original condition imposed in [Laf18a] is a techni-
cal condition called Hecke-finiteness. This is equivalent to cuspidality by work of
Xue [Xue20]. The vector spaces Hcusp

I,W are also known to be finite-dimensional

Q`-vector spaces by [Xue20].
By Example 4.4, the finite-dimensional vector spaces Hcusp

I,W generalize the space

of cuspidal automorphic forms on G. However, when I is non-empty, the Hcusp
I,W

contain much more information: we claim that each Hcusp
I,W is a continuous repre-

sentation of the group ΓIF , obtained by taking a product of I copies of the absolute
Galois group ΓF . The fact that there are several copies of the absolute Galois group
acting is fundamental and quite subtle; it relies on a famous lemma of Drinfeld,
which we discuss in the next subsection.

4.5. Drinfeld’s lemma. Let U ⊆ X be an open dense subset. For any element
i of a finite set I, we can define an ith partial Frobenius morphism Frobi on the
self-product U I . Explicitly, this is given by

Frobi : U I → U I ,Frobi(xi) = FrobU (xi) and Frobi(xj) = xj for all j 6= i.

For any scheme Y → U I , we say that a morphism F : Y → Y lies “above” Frobi if
the diagram

Y

��

F // Y

��

U I
Frobi // U I

is commutative.

Lemma 4.5.1 (Drinfeld [Dri80, Laf02, Lau04]). There is an equivalence of cate-
gories between:

• The category of finite sets equipped with a continuous action of π1(U, η̄)I .
• The category of finite étale covers Y → U I , equipped with partial Frobenius

morphisms, i.e. morphisms Fi : Y → Y above each Frobi with i ∈ I, that
commute with each other and whose composition is equal to FrobY .

Remark 4.6. As we have seen above, a finite étale cover Y → U I is equivalent
to a finite set equipped with a continuous action of the étale fundamental group
π1(U I , η̄I). Lemma 4.5.1 says that the additional structure needed to upgrade
this to a continuous representation of π1(U, η̄)I is given by the partial Frobenius
morphisms.

We would like to apply Lemma 4.5.1, at least when I is non-empty, to show
that the cohomology groups Hcusp

I,W are endowed with continuous actions of ΓIF . To

achieve this, we first introduce certain generalizations Sht′I,W of ShtI,W , where we
factor the modification φ as a composition of modifications supported at each of
the points (xi)i∈I .

Choose an identification of the finite set I with {0, . . . , n− 1} for some positive
integer n. We let Sht′I,W be the (underlying reduced) Deligne–Mumford stack whose

7To be precise, we consider the middle degree `-adic intersection cohomology with compact
support of the fiber of ShtI,W /Ξ over a generic geometric point of XI .



22 ANA CARAIANI

points over an Fq-scheme S classify tuples

(4.6.1)

(
(xi)i∈I , E0

φ1 // E1
φ2 // . . . // En−1

φn // En
)
,

where

• xi : S → X are S-points of X for i ∈ I;
• for i ∈ I, Ei is a G-bundle on X × S;
• we have En := (IdX ×FrobS)∗E0 by definition and, for all i ∈ I, there is an

isomorphism

φi+1 : Ei |X×S\Γxi
∼→ Ei+1 |X×S\Γxi .

such that the relative position of Ei with respect to Ei+1 at xi is bounded
in terms of the representation Wi.

There is an obvious morphism

Sht′I,W → ShtI,W

that forgets the intermediate modifications. It turns out that this induces an iso-
morphism on the level of the cohomology groups in which we are interested.

The advantage of considering Sht′I,W over ShtI,W is that the former can be
equipped with partial Frobenius morphisms that are defined moduli-theoretically.
Indeed, we can consider the morphism F0 : Sht′I,W → Sht′I,W that shifts the tuple
in (4.6.1) one step to the left. Explicitly, it sends it to the tuple(

(x′i)i∈I , E1
φ2 // . . . // En−1

φn // En
φn+1
// En+1

)
,

with x′0 := FrobX(x0), x′i := xi for i ≥ 1, En+1 := (IdX × FrobS)∗E1 and φn+1 :=
(IdX × FrobS)∗φ1.

Recall our identification of I with the set {0, 1, . . . , n − 1}. The morphism F0

lies above the partial Frobenius Frob0 on XI . We are allowed to permute the
(xi)i∈I , because we can do so over the open subset of XI where the points are pair-
wise distinct. This means that we can also construct commuting partial Frobenius
morphisms F1, . . . , Fn−1. By a version of Lemma 4.5.1, these partial Frobenius
morphisms are precisely the extra structures we need to endow the cohomology
groups Hcusp

I,W with a continuous action of ΓIF .

5. Excursion operators and Galois representations

The goal of this section is to explain how to go from the cohomology of the moduli
spaces of shtukas discussed in § 4 to Galois representations. It turns out that we
can take these cohomology groups as a black box for this part of the argument.
We formalize what we know so far into a system of functors that satisfy certain
compatibilities, and we explain heuristically how these functors give rise to a semi-
simple Galois representation. In addition to [Laf18a] and [Laf18b], we also follow
the perspective developed in [Zhu20].

Let Ĝ be a split reductive group over Fq. Let Rep Ĝ denote the category of finite-

dimensional algebraic representations of Ĝ on Q`-vector spaces. Let Rep ΓF denote
the category of continuous, finite-dimensional representations of ΓF on Q`-vector
spaces. Assume that we have a system of Q`-linear functors

I : Rep ĜI → Rep ΓIF , W 7→ HI(W ),
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where I runs over the category of (possibly empty) finite sets. Concretely, this

means that, for every ĜI -equivariant morphism

u : W →W ′,

there exists a ΓFI -equivariant morphism

HI(u) : HI(W )→ HI(W
′).

Assume also that the functors HI satisfy certain compatibilities. More precisely,
every map of finite sets ζ : I → J induces a diagonal morphism

ĜJ → ĜI , (gj)j∈J 7→ (gζ(i))i∈I

which in turn induces a restriction functor on the level of representations Rep ĜI →
Rep ĜJ , W 7→ W ζ . Then the system of functors HI should be equipped with
isomorphisms

χζ : HI(W )
∼→ HJ(W ζ)

which satisfy the following properties:

• these isomorphisms are functorial in W ;
• they are ΓJF -equivariant, where the action of ΓJF on HI(W ) factors through

the diagonal morphism ΓJF → ΓIF , (γi)i∈J 7→ (γζ(i))i∈I ;
• they are compatible with composition.

Example 5.1. If W is an irreducible representation of ĜI , we could take

HI(W ) := Hcusp
I,W ,

the cuspidal part of the cohomology of the moduli stack of shtukas with legs in-
dexed by the finite set I and modifications bounded by W , as described in § 4. In
particular, this gives

H∅(1) = H = Ccusp
c (BunG(Fq)/Ξ,Q`),

the space of cuspidal automorphic forms on G. Associated to the map ∅ → {0}
there is an isomorphism

H∅(1)
∼→ H{0}(1),

where the LHS parametrizes shtukas with no legs and the RHS parametrizes shtukas
with an inactive leg.

More generally, the geometric Satake equivalence allows us to define each HI as

a functor Rep ĜI → Rep ΓIF and to prove that these functors satisfy the desired
additional compatibilities.

Given such a system of functors, satisfying all these compatibilities, V. Lafforgue
proves Theorem 3.16 in three steps.

(1) He constructs an action of a certain excursion algebra B on H∅(1).

(2) A Ĝ-valued pseudo-representation is a notion that generalizes the charac-

teristic polynomial of a representation when Ĝ = GLn. He extracts the data

of a Ĝ-valued pseudo-representation of ΓF from the action of the excursion
algebra B.

(3) Finally, he goes from Ĝ-valued pseudo-representations to Ĝ-valued semi-
simple representations.
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We first recall the explicit construction of excursion operators on H∅(1), then
we give a more conceptual explanation of this action in terms of the moduli stack

of Ĝ(Q`)-valued representations of ΓF .
Let I be a non-empty finite set. Let (γi)i∈I ∈ ΓIF . We let ζ : I → {∗} be the

unique map. For any W ∈ Rep ĜI , we write W∨ for the Q`-linear dual of W .

Choose x ∈ W∆(Ĝ), ξ ∈ (W∨)∆(Ĝ); by definition, these give rise to Ĝ-equivariant
morphisms x : 1 → W ζ and ξ : W ζ → 1. We can define an excursion operator as
the following composition:

(5.1.1) H∅(1) ∼
// H{∗}(1)

H{∗}(x)
// H{∗}(W )

χ−1
ζ

∼
// HI(W )

(γi)i∈I

��

H∅(1) H{∗}(1)
∼oo H{∗}(W )

H{∗}(ξ)
oo HI(W ).

χζ

∼oo

The excursion operator consists of three steps:

• a creation step induced by x, which creates I legs over the generic point of
the curve X;
• the action of (γi)i∈I , which moves the I legs shtuka independently and

brings them back to the same generic point;
• an annihilator operator induced by ξ, which annihilates the I legs.

According to [Laf18b], this is called an excursion operator because it moves around
the legs of the shtuka. Using the properties of the system of functors (HI)I , one
can prove that the excursion operators satisfy certain important compatibilities. A
crucial one is the following fact, which will make the link to pseudo-representations.

Fact 5.1.1. The excursion operator defined in (5.1.1) only depends on (γi) ∈ ΓIF
and on the function

f : ĜI → Q`, (gi) 7→ 〈ξ, (gi)x〉.
We therefore denote the excursion operator by SI,f,(γi).

As I, f and (γi) vary, the SI,f,(γi) generate a commutative algebra B.

Note that the function f is invariant under the diagonal action of Ĝ on both

the left and the right; denote these by ∆(al(Ĝ)) and ∆(ar(Ĝ)) respectively. If we
rewrite our non-empty finite set as I t {∗}, we have excursion operators defined in
terms of

Q`[ĜI∪{∗}]∆(al(Ĝ))×∆(ar(Ĝ)) ' Q`[ĜI ]AdĜ.

The algebra on the RHS is by definition the algebra of regular functions on the

geometric invariant theory (GIT) quotient ĜI//Ĝ, where the action of Ĝ on ĜI is
the adjoint action, given by conjugation.

The heuristic is now the following. We should think of the I-tuple (γi) ∈ ΓIF as
a homomorphism from the free group on I generators to the absolute Galois group
ΓF , giving a way to “probe” ΓF by a free finitely generated group. If we forgot
about the topology on ΓF , and viewed it merely in the category of groups, we could
recover it as the direct limit of its finitely generated subgroups. This means that
we could reconstruct ΓF by probing it with finite sets I.

The stacky quotient ĜI/Ĝ is a moduli of Ĝ-valued representations of the free

group on I generators, up to Ĝ-conjugacy. The associated GIT quotient ĜI//Ĝ
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parametrizes Ĝ-valued pseudo-representations. As I ranges over all finite sets, the

direct limit of the algebras Q`[ĜI ]AdĜ should recover the algebra of regular functions

on the GIT quotient of Ĝ-valued representations of ΓF , up to Ĝ-valued conjugacy.

On the other hand, the direct limit of the algebras Q`[ĜI ]AdĜ over all finite sets
I is precisely the algebra B of all excursion operators. Therefore, a maximal ideal

of B should be the same data as a Ĝ(Q`)-valued pseudo-representation of ΓF . In

turn, the latter is equivalent to a semi-simple Ĝ(Q`)-valued representation.

Example 5.2. Let Γ be the free group on one element and Ĝ = GLn /Q`. We have
a natural map

Tr : Hom(Γ,GLn)/GLn → Hom(Γ,GLn)//GLn

from the stacky moduli of GLn-valued representations of Γ, up to conjugacy, to
the moduli of GLn-valued pseudo-representations. Hom(Γ,GLn)//GLn is an open
subset of n-dimensional affine space AnQ` and Tr is the map that sends a ma-

trix up to conjugacy to its characteristic polynomial. In turn, the Q`-valued
points of Hom(Γ,GLn)//GLn are in bijection with semi-simple conjugacy classes
in GLn(Q`).

The above heuristic is made rigorous through the following theorem proved
in [Laf18a].

Theorem 5.3. For each Q`-valued maximal ideal ν of B there exists a unique
global Langlands parameter ρ, such that the following equality holds for all I, f and
(γi)i∈I :

(5.3.1) ν(SI,f,(γi)i∈I ) = f((ρ(γi))i∈I).

The key ingredient in the proof of this theorem is a result of Richardson [Ric88],

which identifies the points of the GIT quotient ĜI//Ĝ with semi-simple conjugacy

classes: conjugacy classes of tuples (gi)i∈I ∈ Ĝ such that the Zariski closure of the

subgroup of Ĝ generated by the gi is itself a reductive group. This uses the fact

that there is a bijection between the points of the quotient ĜI//Ĝ and the closed

orbits of the conjugation action of Ĝ on ĜI .
Finally, in order to deduce Theorem 3.16 from Theorem 5.3, one needs to express

Hecke operators as particular instances of excursion operators. Let v be a place of

X and W be an irreducible algebraic representation of Ĝ. It turns out that the
Hecke operator Tv,W can be recovered as the excursion operator S{1,2},f,(Frobv,1),

where f ∈ Q`[Ĝ\Ĝ2/Ĝ] is defined by f((g1, g2)) := trW (g1g
−1
2 ). This compatibility

between Hecke operators and excursion operators is not at all obvious. Observe
that it follows from (5.3.1) that, for each maximal ideal ν of B with associated
Langlands parameter ρ, we have the equality

ν(S{1,2},f,(Frobv,1)) = tr(W ◦ ρ)(Frobv),

which is reminiscent of the Galois side of Eichler–Shimura relations such as (3.14.1)
and (3.14.2). The compatibility between Hecke operators and excursion operators is
proved in [Laf18a] using a geometric argument and represents a vast generalization
of the Eichler–Shimura relations.



26 ANA CARAIANI

References

[BHKT19] Gebhard Böckle, Michael Harris, Chandrashekhar Khare, and Jack A. Thorne, Ĝ-
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globale, J. Amer. Math. Soc. 31 (2018), no. 3, 719–891.

[Laf18b] , Shtukas for reductive groups and Langlands correspondence for function fields,

Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol.

I. Plenary lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 635–668.
[Lap99] Erez M. Lapid, Some results on multiplicities for SL(n), Israel J. Math. 112 (1999),

157–186.

[Lar94] Michael Larsen, On the conjugacy of element-conjugate homomorphisms, Israel J. Math.
88 (1994), no. 1-3, 253–277.

[Lar96] , On the conjugacy of element-conjugate homomorphisms. II, Quart. J. Math.

Oxford Ser. (2) 47 (1996), no. 185, 73–85.
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GETTING A HANDLE ON THE CONWAY KNOT

JENNIFER HOM

Abstract. A knot is said to be slice if it bounds a smooth disk in the 4-ball.

For 50 years, it was unknown whether a certain 11 crossing knot, called the

Conway knot, was slice or not, and until recently, this was the only one of the
thousands of knots with fewer than 13 crossings whose slice-status remained a

mystery. We will describe Lisa Piccirillo’s proof that the Conway knot is not

slice. The main idea of her proof is given in the title of this talk.

1. Introduction

Here is a 3-ball:

and here is a 3-ball with a handle attached:

This is the Conway knot:
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Our knots will live in the 3-sphere S3, which is the boundary of the 4-ball B4.
A knot is slice if it bounds a smooth disk in the 4-ball. The term slice comes from
the fact that such knots are cross sections (i.e., slices) of higher dimensional knots.

Main Theorem (Piccirillo [Pic20]). The Conway knot is not slice.

This knot is not the Conway knot:

It is called the Kinoshita-Terasaka knot, and it is related to the Conway knot by
mutation, that is, we cut out a ball containing part of the knot, rotate it 180◦, and
glue it back in.

180◦

The Kinoshita-Terasaka knot is slice. Here is a slightly different diagram of the
Kinoshita-Terasaka knot. As we can see, it bounds an immersed disk in S3:

Thinking of this immersed disk as sitting in the S3 boundary of the 4-ball, we
can push the surface into the 4-ball and eliminate the arcs of self-intersection by
pushing one sheet of the surface near the arc deeper into the 4-ball, giving us an
embedded disk in the 4-ball.

One way to study knots is to use a knot invariant. A knot invariant is a mathe-
matical object (like a number, a polynomial, or a group) that we assign to a knot.
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Knot invariants can be used to distinguish knots. Certain knot invariants obstruct
a knot from being slice. One such invariant is Rasmussen’s s-invariant, which to a
knot K assigns an integer s(K). If s(K) 6= 0, then K is not slice.

Since the Conway knot and the Kinoshita-Terasaka knots are mutants, they have
a lot in common. For example, the s-invariant of both knots is zero. In fact, all
known knot invariants that obstruct sliceness vanish for the Conway knot. That
leads one to wonder: how did Piccirillo show that the Conway knot is not slice?
Her key idea was to find some other knot K ′ such that the Conway knot is slice if
and only if K ′ is slice, and to obstruct K ′ from being slice. The goal of these notes
is to give some context for her result and sketch the main ideas of her proof.

2. Telling knots apart

The fundamental group is one of the first algebraic invariants encountered in a
topology class. A knot is homeomorphic to S1, so its fundamental group is always
isomorphic to the integers. However, instead of studying the knot, we can study
the space around the knot. That is, we consider the knot complement, consisting of
the 3-sphere minus a neighborhood of the knot. The knot group is the fundamental
group of the knot complement.

Typically, one studies knots up to ambient isotopy. Intuitively, this means that
we can wiggle and stretch our knot, but we cannot cut it nor let it pass through
itself. Since isotopic knots have homeomorphic complements and homeomorphic
spaces have isomorphic fundamental groups, the knot group is an invariant of the
isotopy class of a knot.

Here are two knots, the unknot and the trefoil:

Example 2.1. The knot group of the unknot is Z.

Example 2.2. The knot group of the trefoil is 〈x, y | x2 = y3〉. This group is
non-abelian, since it surjects onto the symmetric group S3. Therefore, the trefoil
and the unknot are different.

Since it can often be difficult to tell if two group presentations describe iso-
morphic groups, it can be convenient to pass to more tractable invariants. One
example is the Alexander polynomial, denoted ∆(t), which Fox [Fox53] showed can
be algorithmically computed from a group presentation for the knot complement.

Example 2.3. The Alexander polynomial of the unknot is 1.

Example 2.4. The Alexander polynomial of the trefoil is t2 − t+ 1.

Example 2.5. The Conway knot and the Kinoshita-Terasaka knot both have
Alexander polynomial 1.
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The Alexander polynomial is invariant under mutation, which explains why the
Conway knot and the Kinoshita-Terasaka knot have the same Alexander poly-
nomial. There are several other polynomial knots invariants, such as the Jones,
HOMFLY-PT, and Kauffman polynomials, all of which are also invariant under
mutation. Knot Floer homology [OS04] and Khovanov homology [Kho00] cat-
egorify the Alexander and Jones polynomials; that is, to a knot, they assign a
graded vector space whose graded Euler characteristic is the desired polynomial. A
certain version of knot Floer homology is invariant under mutation [Zib19], as are
versions of Khovanov homology [Blo10, Weh10]. Moreover, Rasmussen’s s-invariant
is invariant under mutation [KWZ19]; this gives a quick way to determine that the
s-invariant of the Conway knot is zero, since it is the mutant of a slice knot.

As we already observed, isotopic knots have homeomorphic complements. What
about the converse? If two knots have homeomorphic complements, then are they
isotopic? This question was answered in the affirmative in 1989 by Cameron Gordon
and John Luecke [GL89], who proved that knots are determined by their comple-
ments. This is in contrast to links. For example, the two links below have homeo-
morphic complements, but are not isotopic, since in the first, both components are
unknots, while in the second, one component is the trefoil.

3. Measuring the complexity of a knot

How can we measure the complexity of a knot K? One such measure is the
unknotting number, denoted u(K), which is the minimal number of times a knot
must be passed through itself to untie it. Both the Conway knot and the Kinoshita-
Terasaka knot can be unknotted by changing a single crossing, hence the unknotting
number is one for both of them. Note that a knot has unknotting number zero if
and only if it is the unknot.

There is a natural way to add together two knots K1 and K2, called the connected
sum, denoted K1#K2. Here is the connected sum of the trefoil and the Conway
knot:
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What is the unknotting number ofK1#K2? A natural guess is that u(K1#K2) =
u(K1)+u(K2). One can readily check that u(K1#K2) ≤ u(K1)+u(K2). However,
whether or not the reverse inequality holds remains an open question!

Here is another measure of complexity. Every knot in the 3-sphere bounds a
compact, oriented, connected surface. Such surface is called a Seifert surface for
the knot. Recall that compact, oriented surfaces with connected boundary are
characterized up to homeomorphism by their genus. The surfaces below are all
have genus one:

The boundary of each of the first two surfaces is the unknot. The boundary of the
last surface is the trefoil.

The genus of a knot K is the minimal genus of a Seifert surface for K. The
unknot is the only knot that bounds a disk. In other words, a knot had genus zero
if and only if is the unknot. In contrast to unknotting number, we know how genus
behaves under connected sum; Schubert [Sch49] showed that genus is additive under
connected sum, that is, g(K1#K2) = g(K1) + g(K2).

Example 3.1 ([Gab86]). The Conway knot has genus three. The Kinoshita-
Terasaka knot has genus two.

The unknot is the only knot with unknotting number zero, and it’s also the
only knot with genus zero. What about a measure of complexity where there are
nontrivial knots that are also simple? Enter the slice genus.

Recall that S3 is the boundary of the 4-ball, and that a knot K in S3 is slice if
it bounds a smooth disk in the 4-ball. Such a disk is a called a slice disk for K.
Not every knot K bounds a smooth disk in the 4-ball, but every knot does bound a
smooth compact, oriented, connected surface in the 4-ball. (One way to obtain such
a surface is by pushing a Seifert surface for K into the 4-ball.) The minimal genus
of such surface is called slice genus of K. Slice knots are precisely those knots with
slice genus zero. Of course the unknot is slice, but there are also infinitely many
nontrivial knots which are slice. For example, the Kinoshita-Terasaka knot is slice.
Unlike the ordinary genus of a knot, slice genus is not additive under connected
sum.

The Alexander polynomial can obstruct sliceness: if K is slice, then ∆K(t) is of
the form tnf(t)f(t−1) for some polynomial f and some natural number n.

Example 3.2. The trefoil is not slice, since its Alexander polynomial t2 − t+ 1 is
irreducible.

Closely related to the notion of sliceness is the following equivalence relation:
two knots K0 and K1 are concordant if they cobound an annulus A in S3 × [0, 1],
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where the boundary of A is K0 ⊂ S3×{0} and K1 ⊂ S3×{1}. One can check that
a knot is slice if and only if it concordant to the unknot.

Note that we required our surfaces to be smoothly embedded. What would
happen if we just asked for topologically embedded disks in B4? It turns out that
every knot bounds a topologically embedded disk in B4. Recall that the cone of
a space X is Cone(X) = (X × [0, 1])/(X × {0}). Since Cone(S3,K) = (B4, B2),
every knot K in S3 bounds a topological disk in B4, but the disk is not smoothly
embedded, because of the cone point. Rather than requiring smoothness, one can
instead require that the disk be locally flat; a knot that bounds a locally flat disk
is called topologically slice. Freedman [Fre83] proved that any knot with Alexander
polynomial one is topologically slice; in particular, the Conway knot is topologically
slice. Work of Donaldson [Don83] implies that there are topologically slice knots
that are not slice. Many slice obstructions actually obstruct topological sliceness,
which is part of the reason why showing the Conway knot is not slice is so difficult.

4. An equivalent condition for sliceness

There are many invariants that obstruct sliceness, such as the aforementioned
factoring of the Alexander polynomial, integer-valued invariants τ and ν coming
from knot Floer homology [OS03, OS11], and Rasmussen’s integer-valued invariant
s coming from Lee’s perturbation of Khovanov homology [Ras10, Lee05]. These
invariants (and many more!) all vanish for the Conway knot. (In my PhD thesis,
I defined a new slice obstruction. One of the first questions people asked me was
what its value was on the Conway knot; sadly, the obstruction vanishes for the
Conway knot.)

Recall that in Section 2, starting from a knot K in S3, we built a 3-manifold,
the knot complement. Piccirillo’s strategy for showing that the Conway knot is not
slice relies on building a 4-manifold, called the knot trace, from a knot K in S3. We
will denote the trace of K by X(K). The following folklore result (see [FM66]) is
a key ingredient in Piccirillo’s proof:

Trace Embedding Lemma. A knot K is slice if and only if its trace X(K)
smoothly embeds in S4.

In contrast to the fact that knots are determined by their complements, knots
are not determined by their traces. That is, there exist non-isotopic knots K and
K ′ with the same (i.e., diffeomorphic) traces [Akb77]. Allison Miller and Lisa
Piccirillo [MP18] proved something even stronger: they showed that there exist
knots K and K ′ with the same trace such that K and K ′ are not even concordant.
This disproved a conjecture of Abe [Abe16]. Miller and Piccirillo’s result implies
that it’s possible to have knots K and K ′ with the same trace, but for, say, s(K)
to be zero while s(K ′) is nonzero.

We are slowing uncovering Piccirillo’s strategy for proving the Conway knot is
not slice: find a knot K ′ with the same trace as the Conway knot, and show that
K ′ is not slice. Then the Trace Embedding Lemma implies that the Conway knot
is not slice either.

5. Handles and traces

Let Bn denote the n-ball. Recall the 3-ball with a handle attached from be-
ginning of these notes. More specifically, the handle consists of B1 × B2 attached
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to S2 = ∂B3 along S0 × B3 = ∂B1 × B2. This handle is called a 3-dimensional
1-handle.

attaching region

core

More generally, we consider an n-dimensional k-handle Bk×Bn−k. Such a handle
can be attached to an n-manifold M with boundary by identifying a submanifold
Sk−1 × Bn−k ⊂ ∂M with Sk−1 × Bn−k = ∂Bk × Bn−k. The submanifold Sk−1 ×
Bn−k ⊂ ∂M is called the attaching region of the handle. The core of the handle is
Bk × {0}, where we think of Bk as the unit ball in Rk.

To build the knot trace, we will consider a 4-dimensional 2-handle B2 × B2

attached to S3 = ∂B4. We need to specify the attaching region S1 × B2 ⊂ S3.
This is just a tubular neighborhood of a knot. (The careful reader will note that
we need to specify a parametrization of the neighborhood with S1 × B2; this is
called the framing of the knot. For ease of exposition, we will largely suppress this
key point from our discussion.) The trace of a knot K is the result of attaching a
(0-framed) 2-handle to S3 = ∂B4 along K. This is just a higher dimensional analog
of the 1-handle attached to the 3-ball above.

6. Knots with the same trace

In order to understand Piccirillo’s construction of a knot with the same trace as
the Conway knot, it will be helpful to consider an analogy one dimension lower, in
3-dimensions, where we can more easily visualize things.

Consider the 3-ball with a 1-handle attached. Recall that a (3-dimensional)
2-handle is just a thickened disk B2 × B1, which we attached along an annulus
S1 ×B1. Suppose we attached a 2-handle along the grey annulus:

Observe that the resulting manifold M1 is homeomorphic (in fact, diffeomorphic,
after smoothing corners) to B3!
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We could instead attach a 2-handle along the following grey thickened curve:

This would yield a manifold, M2, which is again homeomorphic to B3.
If we attached 2-handles to both of the grey curves, we obtain a manifold M

that is homeomorphic to B3 with a 2-handle attached. Note that M is built from
a 3-ball, one 1-handle, and two 2-handles. We could view M as M1

∼= B3 with a 2-
handle attached or we could view M as M2

∼= B3 with a 2-handle attached. Notice
that the attaching regions for these 2-handles are just (thickened) embedded circles
in S2 = ∂B3. Of course, embedded circles in S2 are not especially interesting. But
what happens when we bump things up a dimension?

Now consider the trace X(C) of the Conway knot C. Piccirillo found a clever
way to build X(C) as a 4-ball, a 1-handle, and two 2-handles. (All of the handles
here are 4-dimensional.) If you take the 4-ball, the 1-handle, and the first 2-handle,
you get a 4-ball, and the second 2-handle is attached along the Conway knot C in
S3 (the boundary of the 4-ball). On the other hand, if you take the 4-ball, the 1-
handle, and the second 2-handle, you still get a 4-ball, and the remaining 2-handle
is attached along some different knot K ′. This means that C and K ′ have the same
trace! Here is Piccirillo’s knot K ′ that has the same trace as the Conway knot:

7. Proof of the Trace Embedding Lemma

Now that we have seen handles and traces, we will sketch the proof of the Trace
Embedding Lemma.

Suppose that K is slice. This means that K bounds a smooth disk in the 4-ball.
Recall that S4 is the union of two 4-balls, say B4

1 and B4
2 . Think of K as sitting in

the common S3 boundary of these two 4-balls. Since K is slice, it bounds a slice
disk D in say B4

2 . Recall that a 4-dimensional 2-handle is just D2 ×D2. Then B4
1
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together with a closed neighborhood of D is the trace of K, smoothly embedded in
S4. A schematic of S4 as the union of two 4-balls is shown below:

B4
1

B4
2

K

S3

The slice disk is represented by the thick grey curve. The trace of K consists of B4
1

together with a neighborhood of the slice disk for K.
Now suppose that X(K) embeds in S4. Consider the piecewise linear embedded

S2 in X(K) consisting of the core of the 2-handle together with the cone of K.
Smoothly embed X(K) in S4; composition gives a piecewise linear embedding of S2

in S4, which is smooth away from the cone point p. Now take a small neighborhood
around p in S4. The complement of this neighborhood is a 4-ball B. Consider the
piecewise linear embedding of S2 intersected with B; we’ve cut out the cone point,
so this gives a slice disk in B for K in ∂B. A schematic of the trace embedded in
S4 is shown below:

p
S3slice disk for K

K

The 4-ball B is everything outside of the S3 dotted circle, and the thick grey curve
shows the slice disk for K.

8. Showing that K ′ is not slice

The goal is now to find a way to show that K ′, the knot that shares a trace with
the Conway knot, is not slice. It turns out that some slice obstructions, such as the
invariant ν coming from knot Floer homology, are actually trace invariants: if two
knots K1 and K2 have the same trace, then ν(K1) = ν(K2) [HMP19].

Luckily, the same is not true for Rasmussen’s s-invariant. Using a computer
program and some simple algebraic observations, Piccirillo shows that s(K ′) = 2,
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implying that K ′ is not slice. Since K ′ and the Conway knot have the same trace,
the Trace Embedding Lemma implies that the Conway knot is not slice.

9. What’s next?

Now that we know exactly which knots with fewer than 13 crossings are slice,
what’s next? Of course, one could try to determine exactly which knots with fewer
than 14 or 15 crossings are slice. But why not try to apply some of our tools to
other open problems?

The smooth 4-dimensional Poincaré conjecture posits that a smooth 4-manifold
that is homeomorphic to S4 is actually diffeomorphic to S4. To disprove the conjec-
ture, one wants to find an exotic S4, that is, a smooth 4-manifold that is homeomor-
phic but not diffeomorphic to S4. One possible approach (outlined in [FGMW10])
to disprove the smooth 4-dimensional Poincaré conjecture relies on Rasmussen’s
s-invariant, as follows.

There are many constructions of potentially exotic 4-spheres Σ (see, for example
[CS76]; note that certain infinite subfamilies of these are known to be standard by
[Akb10, Gom10, MZ19]). By removing a neighborhood of a point in Σ, one can
instead study potentially exotic 4-balls β. The difficult part is now determining
whether or not β is exotic, or if it is in fact just the standard B4.

While slice obstructions like ν actually obstruct a knot from being slice in an
exotic 4-ball, it remains possible that the s-invariant only obstructs a knot from
being slice in the standard 4-ball. The game is then to try to find a knot K that is
slice in a potentially exotic 4-ball β. If s(K) is non-zero, then K is not slice in the
standard 4-ball, thereby implying that β must be exotic.

Both of the key steps in this approach (constructing the potentially exotic 4-ball
and computing s) seem difficult. But maybe there is some other way to get handle
on the problem in order to trace a solution. I look forward to hearing a Current
Events Bulletin talk about such a result!
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Rectangles, Curves, and Klein Bottles

Richard Evan Schwartz ∗

October 20, 2020

1 Introduction

This article starts with the question of picking out four special points on a
curve in the plane and ends with a discussion of Shevchishin’s theorem that
you cannot embed a Klein bottle in R4, four dimensional Euclidean space,
if it is Lagrangian. I will explain below what this means.

The notorious Toeplitz Conjecture, which goes all the way back to 1911,
asks whether any Jordan curve contains 4 points which make the vertices of
a square. (The edges of the square might intersect the curve in a messy way.)
Such a collection of points is called an inscribed square. Figure 1 shows an
example of a red square inscribed in a hexagon.

Figure 1: A square inscribed in a hexagon.

It is important to remember that a Jordan curve is any continuous loop
in the plane. If you put reasonable constraints on the curve, then the result
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has been known for a long time. In 1913, A. Emch [E] proved the result
for convex curves. In 1929, L. G. Shnirlmann [Shn] proved the result for
sufficiently smooth curves. In general, the problem is that the curve could
be unreasonable. Perhaps you start with a polygon, and then make little
changes to the curve on small scales. Then you go in with a microscope and
make even smaller changes, and so on.

The square peg problem has a long and sprawling history. See, for in-
stance, [AA], [ACFSST], [CDM], [E], [FG], [H1], [H2], [Jer], [Mak1],
[Mak2], [Ma1], [Ma2], [M], [N], [NW], [S1], [Shn], [St], [Ta], [Tv], [Va].
B. Matschke’s paper [Ma] gives a survey of what had been known up to
2014, and I. Pak’s book [Pa] has an even more recent survey. The state of
the art is the recent result [FG] that a locally 1-lipschitz Jordan curve has
an inscribed square. What this condition means is that locally the curve is
parametrized by a distance-non-increasing map from the line into the plane.

One can relax the question and ask about inscribed rectangles. The first
general result along these lines, due to H. Vaughan, is that every Jordan
curve (no matter how wild) has an inscribed rectangle. The reference for
this is a bit hard to track down. Vaughan gave the proof in a lecture at
U.I.U.C. in the 1977. My own involvement in this business is that I proved
[S2] that any Jordan curve really has a lot of inscribed rectangles: All but
at most four points of any Jordan curve are vertices of inscribed rectangles.

As an aside, M. Meyerson [M] proved in 1980 that all but at most 2 points
of any Jordan curve are vertices of inscribed equilateral triangles. This kind
of result is not known for any other shape of triangle – e.g., right-angled
isosceles – though M. Neilson [N] shows that a dense set of points in any
Jordan curve are vertices of inscribed triangles of any desired shape.

Just like triangles, a rectangle has a shape to it, namely its aspect ratio,
the ratio of its length to its width. One can ask whether every Jordan curve
has an inscribed rectangle of any given aspect ratio. In 2018, C. Hugelmeyer
made the first progress on this problem, showing in [H1] that every smooth
Jordan curve has an inscribed rectangle of aspect ratio

√
3. He later showed

the following result [H2]: For any smooth Jordan curve, at least one third
of the aspect ratios (as measured in a natural way) arise as aspect ratios of
inscribed rectangles. This result involved a clever conversion of the problem
into a question about certain Moebius bands intersecting in R4. Roughly
speaking, Hugelmeyer constructs a continuous 1-parameter family of em-
bedded Moebius bands, all having the same boundary. Using topological
methods and a bit of measure theory, he then shows that at least one third
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of the pairs have to intersect away from their boundary.
This year (as of this writing, 2020), Josh Greene and Andrew Lobb [GL]

made a breakthrough on the aspect ratio problem for inscribed rectangles.
They proved that any smooth Jordan curve has inscribed rectangles of every
aspect ratio. Their proof builds in Hugelmeyer’s idea, and considers a related
1-parameter family of Moebius bands embedded in R4. The added twist is
that they use the additional structure of R4 coming from its identification
with C2, the space of pairs of complex numbers, and this allows them to
bring in tools from symplectic geometry. They then use symplectic methods
to show that every pair of Moebius bands must intersect each other away
from the common boundary. This breakthrough was the subject of a recent
article in Quanta magazine [Q].

Where do the Klein bottles come from? Well, if two Moebius bands meet
along a common boundary then their union is a Klein bottle with a kind
of seam along the boundary. Suitably smoothing out this seam, you wind
up with a Klein bottle. As I will explain, Greene and Lobb arrange for
both the embeddings and the smoothing to be compatible with symplectic
geometry, and the result is that the Klein bottle has the special property of
being Lagrangian.

In this article, I will give an account of some of my favorite results in this
area, and then focus on the Greene-Lobb result. More honestly, I will give an
account of the results whose proofs I actually understand well enough to give
a nice explanation. The reader should know that my taste is partly dictated
by my ignorance of the wider field. I am probably omitting a lot of beautiful
material just by accident.

Here is an outline of the paper. In the brief §2, I will say a few words
about Jordan curves. In §3 I will sketch proofs of Meyerson’s Theorem and of
the square peg result for Jordan curves which are locally graphs of functions,
as well as a few other related results. The material in §3 is not needed for the
Greene-Lobb result. In §4 I will explain the ideas behind the Greene-Lobb
result, using some of the symplectic geometry as a black box.

This article is a companion to my (upcoming) talk at the Current Events
section of the 2021 J.M.M. meetings. I would like to thank David Eisenbud
for inviting me to speak on this topic. I would like to thank Dan Cristofaro-
Gardiner and Josh Greene for helpful conversations. I would also like to thank
the Simons Foundation for their support, in the form of a Simons Sabbatical
Fellowship, and also the Institute for Advanced Study, in the form of a 1-year
membership funded by a grant from the Ambrose Monell Foundation.
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2 Jordan Curves

2.1 Basic Definition

A Jordan curve is the image J = f(S1) of a continuous and one-to-one map
f : S1 → R2. Here S1 is the unit circle. The famous Jordan Curve Theorem
says that R2 − J has two components, one bounded and one unbounded.
The bounded one is called the inside and the unbounded one is called the
outside. There are many proofs of the Jordan Curve Theorem. See e.g. [T].

The case for polygons is fairly elementary: Color the points of R2 − J
black or white according as to whether a generic ray emanating from the point
intersects J an odd or an even number of times. (The argument given in §3.4
below justifies the claim that this parity does not depend on the line.) These
black and white regions turn out to be the inside and the outside regions.

If you want to avoid using the Jordan Curve Theorem, which in general
is rather tricky to prove, let me suggest an alternate definition. Say that a
special Jordan curve is the image h(S1) where h : R2 → R2 is a homeomor-
phism – i.e., a bijection which is continuous and whose inverse is continuous.
In this case, J automatically inherits the topological properties of S1, such
as having an inside and an outside. The Jordan Curve Theorem and the
2-dimensional Shoenflies Theorem together say that every Jordan Curve is
special.

2.2 Polygonal Approximation

A Jordan curve is approximable by a sequence {Jn} of polygons such that
d(Jn, J) → 0 as n → ∞. Here, d(Jn, J) is the infimal value of ε so that
every point of J is within ε of Jn and vice versa. This metric is called the
Hausdorff metric.

Every Jordan curve J is approximable by polygons. The cheapest ap-
proach to proving this is just to “connect the dots”. Take a finite sequence
of points going around J and then connect these points in their cyclic order.
This will produce a polygon that approximates J , and the approximation
gets better the more points we take. In general these polygons need not be
embedded, and so you have to do some careful pruning to make this work.

One case where the connect-the-dots approach works cleanly is when J
is a local graph. What this means is that there is a finite covering N1, ..., Nk

of J by rectangles, and a corresponding collection of rotations ρ1, ..., ρn such
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that ρj(J ∩Nj) is the graph of a function in Nj for each j = 1, ..., k.
The connect-the-dots approach produces a sequence of polygonal approx-

imations {Jn}. Being polygons, these approximations are automatically local
graphs. However, the method does better. The approximations can be made
to be local graphs in a uniform way, in the sense that the above finite list of
coverings and rotations works for all members of the approximating family.

Here is a sketch of Tverberg’s proof in the general case.

Lemma 2.1 Every Jordan curve is approximable by polygons.

Proof: Impose a grid of mesh size 1/n on the plane and (for the sake of
cleanliness) adjust the grid so that none of its vertices belong to J . Let
Q be a some square in the grid. As we traverse S1 there is a smallest arc
AQ ⊂ S1 such that f(S1 − AQ) is disjoint from Q. Say that Q-surgery is
the operation of replacing f(S1 − AQ) by the line segment connecting the
endpoints of f(S1 − AQ) and keeping the rest of J the same. The resulting
loop you get from Q-surgery need not be embedded, though it intersects Q
in a line segment whose endpoints belong to J .

The curve J intersects finitely many grid squares, say Q1, ..., Qm. (Order
them in some way.) Starting with J0 = J , let J1 be the result Q1-surgery on
J . Let J2 be the result of Q2-surgery on J1. And so on. The curve Jn is an
embedded polygon whose vertices all lie in J . Though Jn may intersect fewer
grid squares than J , it still must be a good approximation for the following
reason: If Jn fails to intersect some grid square that J intersects, it means
that there was a nearby surgery that wiped out this intersection, and so Jn
contains a point near the missing square. ♠

There is one additional case where we use this kind of polygonal approx-
imation. Following Meyerson, say that a triod is the union of 3 continuous
arcs joined at a single point, like the letter Y , and otherwise disjoint from
each other. The triod is polygonal if it is a finite union of line segments. The
same kind of polygonal approximation shows that an arbitrary triod can is
approximable by polygonal triods.
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3 Some Results about Inscribed Shapes

3.1 Triangles with an Arbitrary Shape

Let ∆ be a triangle. Say that another triangle T has the same shape as ∆
if there is an orientation preserving similarity which maps ∆ to T . Such a
map is the composition of a rotation, a dilation, and a translation. In this
section I will prove that every point of every differentiable Jordan curve is
the vertex of an inscribed triangle of any given shape. This result is, in a
sense, the triangular analogue of the Greene-Lobb result.

Let J be a differentiable curve and let p0 be a point on J . Let pt be a
parametrization of the J so that as t ranges from 0 to 1 the point pt moves all
the way around J , say counterclockwise. For each choice of t ∈ (0, 1) there
is a unique point qt so that the points (p0, pt, qt) are vertices of a triangle Tt
which has the same shape as ∆. In Figure 2, I have drawn Tt in red when t
is near 0 and in blue when t is near 1.

Figure 2: A family of triangles

Notice the in Figure 2 the point qt, in yellow, starts out on the inside of J
when t is near 0 and switches to the outside when t is near 1. Since qt varies
continuously, there must be some time u ∈ (0, 1) for which pu ∈ J . But then
all the vertices of Tu lie in J . This completes the proof.

The proof gives a bit more: Any point of differentiability on any Jordan
curve is the vertex of triangles of arbitrary shape.
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3.2 Meyerson’s Theorem

Meyerson’s Theorem says that all but at most 2 points of an arbitrary Jordan
curve J are vertices of inscribed equilateral triangle. In this section I will
give a proof that is complete modulo details of polygonal approximation.
The proof here is somewhat like Meyerson’s proof, and of course is based on
his ideas, but it relies more heavily on polygonal approximation to make the
analysis simpler.

Lemma 3.1 Suppose that p0 ∈ J is some point, and there exist two other
points p′1, p

′
2 in the region bounded by J such that p0p

′
1p
′
2 is an equilateral

triangle. Then J has an inscribed equilateral triangle with vertex p0.

Proof: Let B and U denote the bounded and unbounded components of
R2 − J . Let ρ be the 60 degree rotation about p0 such that R(p′1) = p′2.
Consider extending the rays p0p

′
1 and p0p

′
2 outward until they first hit J at

points p1, p2. Without loss of generality p0p1 is not longer than p0p2. Hence
R(p1) ∈ J ∪ B. Let q1 be a point of J maximally far from p0. We have
R(q1) ∈ J ∪ U . So, by continuity there is some r1 ∈ J such that R(r1) ∈ J .
Our equilateral triangle has vertices p0, r1, R(r1). ♠

Recall that a triod is a continuous version of the letter Y . Call the triod
good if there is an equilateral triangle inscribed in the triod having one end
of the triod as vertex. Otherwise call it bad . Call such triangles end-inscribed
triangles . The key observation is that any 3 vertices of J are the endpoints
of a triod that stays entirely in the region bounded by J . This is easy to see
if J is a special Jordan curve. Just take one for the round disk and map it
over.

Suppose for the moment that all triods are good. Choose any a, b, c ∈ J
and take a triod staying entirely inside J and having a, b, c as endpoints. Since
this triod is good, there is an equilateral triangle inscribed in it having one of
a, b, c as vertex, say a. But then the previous lemma applies to this triangle
and shows that J has an inscribed equilateral triangle with a as vertex. So,
to prove Meyerson’s Theorem we just have to show that all triods are good.

We will prove that all triods are good in three steps: polygonal triods,
end-straight triods, general triods. The polygonal case really shows the meat
of the argument. The other cases just amount to fooling around with ap-
proximations and limits.
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Lemma 3.2 A polygonal triod is good.

Proof: Assume not, for the sake of contradiction. Let A denote the union
of the first two legs of T . Let a be the endpoint of T not in A. For any x ∈ T
let Ax denote the result of rotating A by 60 degrees clockwise about x. When
x ∈ T − ∂A, the we have ∂A ∩ Ax = ∅ and A ∩ ∂Ax = ∅. Otherwise we’d
get the desired triangle. This means that the mod 2 intersection number Ix
between A and Ax is well-defined and constant for all x ∈ T − ∂A.

Let b be an endpoint of A. The two arcs A and Ab meet only at b and
make a 60 degree angle. So, by compactness, Ax and A cross exactly once, at
x, for x sufficiently close to b. Hence Ix = 1 for all x ∈ T −∂A. In particular,
Ia = 1. But then we have an inscribed equilateral triangle with vertex a. ♠

A triod is end straight the triad is polygonal sufficiently near the ends.

Lemma 3.3 An end straight triod is good.

Proof: Let T be end-straight. We can approximate T by a sequence {Tn}
of polygonal triods having the same final segments. By the previous lemma,
Tn has an end-inscribed equilateral triangle ∆n. Not all points of ∆n can be
on the same final segment of Tn. Note also that Tn → T and T is embedded.
Combining these two observations, we see that there is a uniform positive
lower bound to the size of ∆n. Hence we can take a limit and find the end-
inscribed equilateral triangle on T . ♠

Lemma 3.4 An arbitrary triod is good.

Proof: Now let T be an arbitrary triod, with ends a, b, c. For any large
integer n, move out along the triple point of T until you reach the first point
that is exactly 1/n from a. Call this point a′. Likewise define b′, c′. Let Tn
be the triod obtained by adding the segments aa′, bb′, cc′ and erasing the
arcs of T which join a to a′, etc. If n is large enough, all points of T ′ − (aa′)
are further than 1/n from a. Etc.

By construction Tn is end-straight. Let ∆n be an end-inscribed triangle
on Tn. Note that ∆n, being equilateral, cannot have a as a vertex, and an-
other vertex on aa′. So, either ∆n is inscribed in T , and we’re done, or else
(after relabeling) ∆n has a as a vertex and one point in bb′. Letting n→∞
we get an inscribed equilateral triangle with both a and b as vertices. ♠
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3.3 Squares Inscribed in Local Graphs

In this section I will show that any local graph has an inscribed square.
If some J has an inscribed square Q, then the vertices of Q inherit two

cyclic orders, one from the inclusion in Q and one from their inclusion in J .
We call Q gracefully inscribed in J if these two orders coincide. Below I will
sketch a proof that every polygon has a gracefully inscribed square.

Let {Jn} be a sequence of polygons approximating a local graph J and
having the uniformity property discussed in connection with this approxi-
mation. Let Qn be a square gracefully inscribed in Jn. After passing to a
subsequence we reduce to two cases. Either there is a positive lower bound δ
to the diameters of Qn or else there is a single point p ∈ J such that Qn → p.
In the first case we can take a limit on a subsequence and find a square of
sidelength at least δ inscribed in J . Let us rule out the second case.

Figure 3: A contradiction at a small scale

Rotating and scaling, we can assume that the limit point is the origin,
and that J and Jn intersect [−1, 1]2 in sets which are graphs of functions.
This is meant to hold for all n. The cyclic order on the vertices of Qn imposed
by Jn goes from left to right, as indicated in Figure 3. However, this order
cannot coincide with the cyclic on the vertices imposed by Qn. This is a
contradiction. So, the second case cannot occur.

This proof suggests a stronger version of the square peg conjecture that
has been discussed quite often in connection with this problem. Say that a
polygon P is wide if the bounded component of R2 − P contains a disk of
radius 1.

Conjecture 3.5 (Big Peg) There is some ε0 > 0 with the following prop-
erty. Every wide polygon has an inscribed square of sidelenght at least ε0.

The Big Peg Conjecture and polygonal approximation immediately im-
ply the original Square Peg Conjecture. The Big Peg Conjecture is quite
seductive because it only involves polygons.
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3.4 A Warmup Problem

Before getting to the existence of gracefully inscribed squares, let’s consider a
warmup problem that captures many features of the argument we give below.
The argument we give is one of the steps in the proof of the polygonal Jordan
curve theorem.

Let’s prove that a generic horizontal line intersects a generic polygon X
an even number of times. Here, a generic polygon means one having no
pair of vertices on the same horizontal line. A generic horizontal line (with
respect to X) is one which does not contain a vertex of X. Let L1 be a
generic line. Start with a line L0 lying entirely below X. Let Lt be the
family of horizontal lines which sweeps upward. Call a parameter t critical
if Lt contains a vertex of X and otherwise ordinary .

At the ordinary parameters, the intersection points vary continously and
so their number does not change. There are only finitely many critical pa-
rameters, and at each critical parameter there is only one intersection point
that lies at a vertex. As we wiggle the line up or down near a critical param-
eter, we see that near the critical parameter there are only three things that
can happen. Figure 4 shows two of them, and the third possibility is like the
first one but turned upside-down.

Figure 4: The behavior of intersection points.

In all cases, the parity of the number of intersections does not change. So,
L1 intersects X an even number of times. An examination of the argument
shows that all we really needed was that X does not have any horizontal
sides. We made X even more generic just so as to deal with the critical
intersections one at a time.
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3.5 Existence of Gracefully Inscribed Squares

We show that a generic polygon has an odd number of gracefully inscribed
squares. Here generic means that no two sides of the polygon are parallel,
no three sides lie in lines having a triple intersection, no three vertices lie in
a square, and so on. The reasons for using generic polygons are similar to
the reasons in the warmup problem. For instance, if a polygon has two long
parallel sides close together it will have infinitely many inscribed squares.

There are a variety of proofs that a generic polygon has an odd number of
inscribed squares. See [Shn], [St] or [P, Theorem 23.11]. These arguments
do not specifically ask for gracefully inscribed squares, but the variational
proof – at least the one I sketch below – works when we restrict our attention
to gracefully inscribed squares.

Suppose P1 is a generic polygon. Start with some easy-to-understand
polygon P0 having the same number of sides as P1 and having an odd num-
ber of inscribed squares. For instance, P0 could be a slight perturbation of
a subdivision of an obtuse triangle. Now consider a continuous family Pt of
polygons that interpolates between between P0 and P1. You cannot neces-
sarily make all the polygons in the family completely generic. For instance,
you may not be able to avoid some edges becoming parallel along the way.
However, if the edges of Pt are very short, then a square inscribed in Pt can
have at most 2 vertices inscribed in this union of parallel edges. Also, you
can make coincidences like parallel edges happen one at a time.

Say that a vertex of an inscribed square is critical if it is a vertex of Pt,
and otherwise ordinary. Call the square critical if it has a critical vertex, and
call the parameter t critical if there is an associated critical square. We can
make the family generic enough so that there are only finitely many critical
parameters, and at each critical parameter there is only one critical square,
and this critical square has only one critical vertex. Morever, we can make all
the ordinary vertices vary continuously with the parameter. The continuity
property is a “local” one: it only involves a statement about how a polygon
interacts with at most 4 lines, and it can be settled by a direct algebraic
calculation as in [S1] or [S2]. So, the square count changes only when we
pass through a critical parameter.

What happens when we pass through a critical parameter? Notice that
the question is also local: at most 5 lines are involved. Figure 5 shows
a typical picture. The black edges at the intersection point are edges of
the polygon and the red and blue segments are meant to depict the lines
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containing these edges.

Figure 5: The behavior of intersection points.

We can think of the square in question as two copies of the same square,
one red and one blue. The red (respectively blue) square is inscribed in the
union of the black and red (respectively blue) lines. As the parameter varies,
the red square and the blue squares separate from each other in a continuous
way. We can translate the picture so that the red and blue lines always
intersect at the origin. If the family is generic enough, the critical vertices,
both from the red square and the blue square, vary monotonically through
the origin.

We have illustrated this with the figures at the right. The yellow inter-
section points are the locations of the critical vertices just before we reach
the critical parameter and the green points indicate the positions just after.
Figure 5 shows the four possibilities for the directions that the points can
move as a function of the varying parameter. The directions indicate the mo-
tion as a function of the parameter. The red and blue squares may or may
not be inscribed in the polygon; it depends on whether the critical vertices
lie on the segments of the polygon or on the red or blue segments extending
them. In the bottom left case at right in Figure 5, both squares are inscribed
in the polygon before the critical parameter and neither are inscribed after.
In the top left case, one polygon is inscribed in the polygon before and one
is inscribed after. The other two cases have similar treatments. Thus, the
parity of the number of inscribed squares does not change as we pass through
a critical point.

Notice that if the squares are gracefully inscribed before, they are grace-
fully inscribed after. So, the parity of the number of graceful squares does not
change either. Finally, the square inscribed in a (subdivided, perturbed) ob-
tuse triangle is gracefully inscribed. Our initial polygon has an odd number
of gracefully inscribed squares and therefore so does the final one.
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3.6 Existence of an inscribed Rectangle

In the next chapter I will explain Vaughan’s proof that every Jordan curve
has an inscribed rectangle. For the reader who really wants an elementary
explanation, Vaughan’s proof leaves a bit to be desired: It requires some
graduate level algebraic topology. Let me sketch a different proof based on
the material in my papers [S1] and [S2]. This proof is more complicated but
avoids algebraic topology.

It turns out that generically the space of rectangles inscribed in 4 lines
is a 1-dimensional manifold. Rather beautifully, the set of centers of these
rectangles generically forms a hyperbola. See [S1]. This fact, coupled with
the kind of analysis done in the previous section, shows that the space of
rectangles inscribed in a generic polygon is a 1-dimensional manifold. Some
of the components are loops and some of the other components are arcs. The
endpoints of the arc components correspond to rectangles of aspect ratio 0
or ∞. (Working with labeled rectangles, we can tell the difference.) It turns
out that a component of the manifold in question contains an even number
of gracefully inscribed squares unless it has one of two properties:

• It is a loop connecting a gracefuly inscribed square ABCD to the same
inscribed square BCDA with its vertices rotated. Call this a rotator .
Every vertex of the polygon is the vertex of some rectangle in the
rotator.

• It is an arc whose one end corresponds to rectangles of aspect ratio
near 0 and whose other end corresponds to rectangles of aspect ratio
near∞. Call this a sweepout . All but at most 4 vertices of the polygon
are vertices of a rectangle in a sweepout.

Given that there are an odd number of graceful squares, the generic polygon
has an odd number of rotators and sweepouts combined; hence at very least
it has one or the other. The existence of a sweepout would establish that
the polygon has inscribed rectangles of every aspect ratio, but I could not
rule out the existence of rotators. But, in either case, if we have sequence
of polygons {Jn} approximating a Jordan curve, we can extract from either
a sweepout or a rotator a uniformly large rectangle Rn (in the sense of its
minimum side length) inscribed in Rn. (I’ll say more about this below.) The
limit limRn will be a nontrivial rectangle inscribed in J . In [S2] I soup
up this argument to show that all but at most 4 points of J are vertices of
inscribed rectangles.
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Now I will say more about finding the big rectangle Rn. Consider a set
Sn of (say) 100 disjoint points on Sn. We choose so that {Sn} converges to
a set S of 100 distinct points on J . Each rectangle R inscribed in Jn cuts
Jn off into 4 arcs, A,B,C,D going in order. Let I(R) denote the number
of points in A ∪ C minus the number of points in B ∪D. By a rough form
of continuity, we can always find some rectangle Rn, either in a rotator or
a sweepout, having |I(Rn)| < 10. Then some pair of adjacent arcs cut off
by Rn, say An, Bn, are such that that Sn ∩ An and Sn ∩ Bn each have at
least 10 points. By construction, no side of Rn can shrink to a point. I have
deliberately used more points than strictly necessary so as to avoid needing
a careful count.

14



4 Existence of Inscribed Rectangles

4.1 Vaughan’s Theorem

Let me first explain Vaughan’s argument that every Jordan curve has an in-
scribed rectangle. This result was the inspiration for the work of Hugelmeyer
and Greene-Lobb. The argument relies on the topological fact that there are
no continuous embeddings K of a Klein bottle into R3. Working with ho-
mology and cohomology, we have H1(K) = Z ⊕Z/2 and Alexander Duality
gives H1(R3 −K) = Z ⊕ Z/2 but this last group must be torsion free, by
the Universal Coefficient Theorem.

Given a Jordan curve J , let S denote the set of unordered and unequal
pairs of points in J . The space S is a Moebius band. There are various
ways to see this. This topological statement works the same for any Jordan
curve, so we might as well consider the unit circle, and we also might as well
consider it as a subset of the real projective plane. Every unordered pair of
points in the circle determines a unique point in RP 2: Take the two tangent
lines to the circle at these points and intersect them. (If the points coincide
it is natural to take this intersection point to be equal to the point itself
rather than the entire line of intersections.) This map identifies the space S
with the complement of the closed unit disk in the projective plane, and this
is a Moebius band.

Vaughan defines a map φ : S → R3 by the formula

φ(a, b) =
(a+ b

2
, |a− b|

)
. (1)

Geometrically φ maps the ordered pair to a point encoding the midpoint
of the segment ab and its length. If φ(a1, b1) = φ(a2, b2) it means that the
corresponding segments have the same length and meet at their midpoint.
This gives an inscribed rectangle. So, we just have to prove that φ is not
one-to-one.

We argue by contradiction. Notice that the image φ(S) lies in the upper
half space, and φ(∂S) lies in the XY -plane. Let ρ denote reflection in the
XY -plane. The union

K = φ(S) ∪ φ(∂S) ∪ ρ ◦ φ(S)

consists of 2 Moebius bands meeting along their boundary and thus is a Klein
bottle. The 3 pieces separately are disjoint, and if φ is one-to-one then K is
embedded. This contradicts the non-existence of an embedded Klein bottle.
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4.2 Symplectic Geometry

The standard symplectic structure on R4 can be described entirely in terms
of real numbers but is nice to describe it in terms of complex numbers. We
can naturally identity R4 with the space C2. The map is given by

(x1, y1, x2, y2)→ (z1, z2), zj = xj + iyj.

On C2 there is a natural operation on pairs of vectors V,W ∈ C2. Writing
V = (V1, V2) and W = (W1,W2), we define

〈V,W 〉 = V1W 1 + V2W 2. (2)

Here z denotes the complex conjugate of z. This is known as a Hermitian
inner product . It is linear in each argument and also 〈V,W 〉 = 〈W,V 〉.

It is instructive to write this in real coordinates. Let V = (a1+ia2, a3+ia4)
and W = (b1 + ib2, b3 + ib4). Then

〈V,W 〉 = (a1b1 + a2b2 + a3b3 + a4b4) + i(a1b2 − a2b1 + a3b4 − a4b3).

The real part of this expression is the dot product, and the imaginary part
is (up to a “rotation”) the standard symplectic form on R4. We will write
the imaginary part as ω. So,

ω(V,W ) = Im〈V,W 〉. (3)

The complex structure gives a nice map on C2, namely iV = (iV1, iV2).
This operation extends to an operation on planes in C2 of indeed on any
other set. We just multiply every vector in the set by i. A 2-plane Π ⊂ R2

is called totally real if iΠ and Π are perpendicular. This condition is the
same as requiring that ω, when restricted to the plane, is identically 0. The
plane R2 sitting inside C2 is the prototypical totally real plane. Any plane
spanned by (1, 0) and (0, u), for unit complex u, is totally real. The reason
is that the map (z, w)→ (z, uw) preserves the Hermitian inner product and
maps R2 to the plane we are considering.

A 2-plane Π is called complex if iΠ and Π are parallel. The plane C1 ⊂ C2

is the prototypical complex plane. The general plane Π in C2 is some kind
of interpolation between these two cases: Π and i(Π) will make some angle
that ranges between 0 and π/2. This angle is sometimes called the angle of
holomorphy .
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4.3 Lagrangian Surfaces

Let U be an open set in R4. A diffeomorphism from U to R4 is a bijection
f : U → R4 which is non-singular and smooth. This is to say that the
differential map df (the matrix of partial derivatives) is invertible, and f has
partial derivatives of all orders. The Inverse Function Theorem says that f−1

will have these same properties.
A smooth embedded surface Σ ⊂ R4 is a set with the following property.

For each point p ∈ Σ there is an open disk ∆p and a smooth diffeomor-
phism φ : ∆p → R4 which maps Σ ∩ ∆p to a R2. In other words, up to
diffeomorphism, Σ looks locally just like a plane sitting in R4. Each point
p ∈ Σ has a tangent plane Tp. This is the plane which the differential of
our diffeomorphism φ maps to R2. There seem to be two senses of what it
means for Σ to be Lagrangian. The weak definition is that there is no point
p for which Tp is complex. The strong definition is that Tp is totally real for
all p ∈ Σ. Shevchishin’s Theorem about Klein bottles works for the weak
definition (and, of course, for the strong definition as well). The construc-
tion by Greene and Lobb gives a Klein bottle which, if embedded, would be
Lagrangian in the strong sense.

It is well known that one can embed the Klein bottle as a surface in R4.
The classic approach is to almost embed it in R3 as one of those famous glass
blown models, and then fix it up. These glass blown models do not quite
work, because one of the necks of the bottle crashes through the surface and
makes a seam. This is shown in Figure 7.

Figure 7: A Klein bottle in R3 with a seam.

To embed this surface in R4 we add a fourth coordinate to separate out
the two parts of the surface which crash into each other. Imagine traveling
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on the outside of the bottle, starting at the base and moving around. Make
the 4th coordinate zero near the base and then (initially moving left to right)
gradually increase it as you move around. By the time you wind around to
the seam, the neck has a large positive 4th coordinate and is disjoint from
the seam. Now gradually decrease the 4th coordinate so that the neck can
rejoin with the base in R4.

Shevchishin’s Theorem says, in particular, that some tangent plane along
the resulting surface must be complex.

Theorem 4.1 (Shevchishin) There does not exist a smooth Lagrangian
Klein bottle in C2.

Here is a lower dimensional analogy. Let X be the plane with the origin
removed. Each point p ∈ X has a special tangent line through it, namely the
line through p that is perpendicular to the ray 0p. It is possible to embed
the circle in X in many ways, but it is impossible to do so in such a way
that its tangent line is never special. The tangent line will be special at each
point of the embedded circle that is maximally far from the origin.

There are several proofs of Shevchishin’s result, though from talking to
symplectic geometry folks I have the impression that perhaps some of the
proofs initially had gaps in them. All the proofs rely on some symplectic
geometry machinery that is beyond the scope of the article. One of the
proofs is in the paper [N] by S. Nemirovski.

I won’t pretend to understand a proof of Shevchishin’s Theorem, but let
me give you a sense of the depth of the result. I will repeat, as filtered through
my own understanding, the sketch of a proof that Helmut Hofer mentioned
when I asked him about it after Josh Greene’s talk at IAS. Any errors in
this account are due to my misunderstanding. The space K has a smooth
foliation by closed loops. This is easy! Each of these loops can be filled in by a
pseudo-holomorphic curve. This is harder. The Lagrangian condition forces
these holomorphic curves to be transverse to K, and then certain technical
conditions force them to vary continuously and to be disjoint.

Consider the union of these disks. If we remove one of them, then topo-
logically we have the product of a disk and a segment. When we put in the
missing one we are gluing the ends of this solid tube together. There are
essentially two choices for the gluing: orientation preserving and orientation
reversing. Now for the punchline: A pseudo-holomorphic curve has a canon-
ical orientation coming from the (almost) complex structure involved in its
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definition. So, the gluing must be orientation preserving and therefore the
union must be a solid torus rather than a twisted disk bundle. But then the
boundary of a solid torus cannot be a Klein bottle, and this is a contradiction.

I got the impression that the details of this approach have not been worked
out. Nemirovski’s proof goes through something called Luttinger surgery and
a result of Gromov-McDuff on the classification of open symplectic manifolds
which are standard (i.e. look like symplectic R4) at infinity. The Gromov-
McDuff result, in turn, involves the kind of pseudo-holomorphic disks men-
tioned above.

4.4 Lagrangian Smoothing

The classic bump function is a smooth function f such that f(x) = 0 for
|x| ≥ 2 and f(x) = 1 for |x| ≤ 1. This function is used all over the place
in the theory of smooth manifolds. It is also used in the construction below,
which is called Lagrangian smoothing .

Let’s consider a very simple situation first. In C2 we consider two totally
real planes which intersect along a line. The first plane is Π1 = R2. The
second plane also goes through the origin and is spanned by (1, 0) and (0, i).
Both planes contain the vector (1, 0) and so intersect along a line. Let

Y = Π1 ∪ Π2.

Note that Y is the union of 2 totally real planes. Put another way, Y is the
union of 2 Lagrangian surfaces which meet transversely along a curve which
happens to be a line.

Now consider a family of planes Xt that is perpendicular to Π1 and Π2.
The plane Xt contains the point (t, 0) and is spanned by the vectors (0, 1)
and (0, i). These planes are all complex planes, parellel to the second copy
of C, namely {0} × C. Each plane Xt intersects Y in the union Yt of two
perpendicular lines, as shown at left in Figure 8. We can produce a surface
by replacing each Yt by a union Zt of two smooth curves, as shown at right
in Figure 8. We can make Yt and Zt agree outside, say, the unit disk. This
construction makes use of a bump function.
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Y

Figure 8: A local model for Lagrangian smoothing

The union Z =
⋃
Zt is a Lagrangian surface which agrees with Y outside

a small neighborhood of the line. The reason why Z is Lagrangian is that the
tangent planes at each point are spanned by vectors of the form (0, u) and
(1, 0) for some unit complex u. As we have already mentioned, such planes
are totally real.

This operation is a local model for Lagrangian smoothing Suppose we
have 2 Lagrangian embedded surfaces which meet along a closed curve. Using
a suitable change of coordinates, which comes from a variant of the so-called
Darboux Theorem, one can arrange that the local picture is just like in the
simple model above. One then performs the local surgery described above
and produces a union of 2 disjoint Lagrangian surfaces which agrees with the
original union outside a small-as-you-like neighborhood of the original curve
of intersection. The details of this coordinate change are worked out in [GL].

4.5 Sketch of the Proof

Inspired by Hugelmeyer’s papers, [H1] and [H2], Greene and Lobb use a
construction that is similar to the one given in the proof of Vaughan’s Theo-
rem. They also consider the space S of unordered distinct points on J . They
define the map φ : S → C2 using the map

f(a, b) =
(a+ b

2
,

(a− b)2

2
√

2|a− b|

)
. (4)

One can extract from f(a, b) the location of the center of ab, the length of
ab, and twice the angle that it makes with the X-axis. They also introduce
the map

Rφ(z, w) = (z, eiφ(w)). (5)
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If f(a1, b1) = R2φ◦f(a2, b2) it means that the segments a1b1 and a2b2 have
the same midpoint and the same length. Also, one of them is a rotation of the
other through an angle of φ. Therefore, an intersection like this corresponds
to an inscribed rectangle whose diagonals make an angle of φ. Let

Mφ = R2φ ◦ f(S).

The set M0 is an embedded Moebius band because one can recover a and b
from f(a, b). The set Mφ is just a rotation of M0. These two Moebius bands
limit on a common boundary, namely f(∂S). The union

Kφ = M0 ∪ f(∂S) ∪Mφ

is a Klein bottle, and it is embedded unless M0 and Mφ intersect away from
their common boundary.

The upshot of the discussion above is that if Kφ is not embedded, then
J has an inscribed rectangle whose diagonals make an angle of φ with each
other. To prove that J has an inscribed rectangle of every aspect ratio it
suffices to prove that Kφ is never embedded.

Greene and Lobb have cooked up their map so that M0 is Lagrangian in
the strong sense. There are two main points to the proof. First, f extends
to a map from C2 to C2 which preserves the symplectic form ω. So, f maps
Lagrangian surfaces to Lagrangian curves. Second, the set of ordered distinct
pairs of points in J is a Lagrangian surface inside C2. Indeed, the tangent
plane at each point of J is spanned by vectors of the form (z, 0) and (0, z).

The union Kφ has a seam along f(∂S) that looks locally like one quarter
of the left side of Figure 8, except that the angle between the two surfaces is
2φ rather than π/2. The left side of Figure 9 shows what we mean.

Figure 9: Another Lagrangian smoothing construction.

Simplifying things a bit, what Greene and Lobb do is smooth out the
seam by doing “half” of the Lagrangian smoothing discussed above. The
result would be a smooth embedded Lagrangian Klein bottle, which is a
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contradiction. This proves that M0 and Mφ indeed intersect away from their
common boundary.

Let me say a few more words about what it means to do “half” the
Lagrangian smoothing. What they do is pass to a double cover, writing f as
a composition f = σ ◦ f̂ , where f̂ is a map defined in a way very similar to
f and σ is a 2-fold branched covering map from K̂φ to Kφ. Here K̂φ is the

object like Kφ that is constructed using f̂ in place of f . They perform the

smoothing of K̂φ in a way that is equivariant with respect to σ, and then
they push down the image via σ. Effectively, this does the smoothing as
indicated in Figure 9.
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