The Basics of Quantum Computing

Tyler Burkett

What is a Qubit?

- Based on some quantum system with a binary set of states when measured
- Can store 0 and 1 like a regular bit
- Can also be in a superposition of 0 and 1
- Measuring a qubit causes it to collapse into either a 0 or 1 if its in a superposition

Dirac (Bra-Ket) Notation

Ket

$$
|\phi\rangle=\left[\begin{array}{c}
\alpha \\
\beta \\
\vdots
\end{array}\right]
$$

$$
\mathbb{R}^{N}:\langle\phi|=|\phi\rangle^{T}=\left[\begin{array}{lll}
\alpha & \beta & \cdots
\end{array}\right]
$$

$$
\mathbb{C}^{N}:\langle\phi|=|\phi\rangle^{\dagger}=\left[\begin{array}{lll}
\alpha^{*} & \beta^{*} & \cdots
\end{array}\right]
$$

Dirac (Bra-Ket) Notation

Inner Product

$$
\left\langle\phi^{\prime} \mid \phi\right\rangle=\left[\begin{array}{lll}
\alpha^{\prime *} & \beta^{\prime *} & \ldots
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta \\
\vdots
\end{array}\right]=\alpha^{\prime *} \alpha+\beta^{\prime *} \beta+\cdots
$$

Outer Product

$$
|\phi\rangle\left\langle\phi^{\prime}\right|=\left[\begin{array}{c}
\alpha \\
\beta \\
\vdots
\end{array}\right]\left[\begin{array}{lll}
\alpha^{\prime *} & \beta^{\prime *} & \ldots
\end{array}\right]=\left[\begin{array}{ccc}
\alpha \alpha^{\prime *} & \alpha \beta^{\prime *} & \ldots \\
\beta \alpha^{\prime *} & \beta \beta^{\prime *} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Tensor Product

$$
|\phi\rangle\left|\phi^{\prime}\right\rangle=\left|\phi \phi^{\prime}\right\rangle=\left[\begin{array}{c}
\alpha \\
\beta \\
\vdots
\end{array}\right] \otimes\left[\begin{array}{c}
\alpha^{\prime} \\
\beta^{\prime} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\alpha \alpha^{\prime} \\
\alpha \beta^{\prime} \\
\beta \alpha^{\prime} \\
\beta \beta^{\prime} \\
\vdots
\end{array}\right]
$$

Dirac (Bra-Ket) Notation

$$
\langle\psi| A|\phi\rangle=\left[\begin{array}{lll}
\gamma & \delta & \cdots
\end{array}\right]\left[\begin{array}{ccc}
A_{00} & A_{01} & \cdots \\
A_{10} & A_{11} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta \\
\vdots
\end{array}\right]
$$

Qubit Representation

- Value represented by a vector in \mathbb{C}^{2}
- Normalized
- First coefficient is always taken to be real
$|\phi\rangle=\sin \left(\frac{\theta}{2}\right)|0\rangle+\cos \left(\frac{\theta}{2}\right) e^{i \varphi}|1\rangle$

Measuring Qubits

- Measurement is probabilistic

- Probability of measuring 0 or 1 based on coefficients of state

$$
\begin{aligned}
& p(0)=|\langle 0 \mid \phi\rangle|^{2} \\
& p(1)=|\langle 1 \mid \phi\rangle|^{2}
\end{aligned}
$$

- Superpositions can't be measured; measurements cause the qubit to collapse into $|0\rangle$ or $|1\rangle$

$$
p\left(0 x_{1} x_{2}\right)=\sum_{x_{1}, x_{2} \in\{0,1\}}\left|\left\langle 0 x_{1} x_{2} \mid \phi\right\rangle\right|^{2}
$$

Qubit Entanglement

Entanglement describes when a set of qubits exist in a state where the state of the whole set cannot be completely separated into the states of its individual qubits.

Separable

$$
\begin{aligned}
\left|\phi_{1}\right\rangle & =\frac{|00\rangle+|01\rangle+|10\rangle+|11\rangle}{2} \\
& =\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle+|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Non-Separable

$$
\left|\phi_{2}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

Bell States

$$
\begin{aligned}
& \left|\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} \\
& \left|\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\
& \left|\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}} \\
& \left|\beta_{11}\right\rangle=\frac{|10\rangle-|10\rangle}{\sqrt{2}}
\end{aligned}
$$

Operations on Qubits

- Operations on n qubits can be described by $2^{n} \times 2^{n}$ matrices in \mathbb{C}
- Operations must be unitary; $U U^{\dagger}=U^{\dagger} U=I$
- Unitary implies
- Operations must be reversible
- Operations preserve norms of vectors they are applied to

Classical Operations

Classical Operations (Cont.)

AND (Toffoli/CCNOT)

$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& \text { OR } \\
& {\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Quantum Operations (Cont.)

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& |0\rangle \mapsto|+\rangle \\
& |1\rangle \mapsto|-\rangle \\
& {\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}
\end{aligned}
$$

Quantum Operations (Cont.)

Rotate-X

$$
\left[\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & i \sin \left(\frac{\theta}{2}\right) \\
-i \sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -\sin \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

Rotate-Z
$q \quad 0-\underset{(p i / 2)}{R Z}$
(pi/2)

$$
\left[\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta / 2}
\end{array}\right]
$$

Qubits Aren't a Free Lunch

- The fact that operations must be unitary puts restrictions bits don't have
- No cloning/No deleting theorem

Cloning

$$
U(|\phi\rangle|\psi\rangle)=|\phi\rangle|\phi\rangle
$$

Deleting

$$
U(|\phi\rangle|\phi\rangle)=|\phi\rangle|0\rangle
$$

Superdense Coding

$$
\begin{gathered}
(I \otimes I)\left|\beta_{00}\right\rangle \Rightarrow\left|\beta_{00}\right\rangle \\
(X \otimes I)\left|\beta_{00}\right\rangle \Rightarrow\left|\beta_{01}\right\rangle \\
(Z \otimes I)\left|\beta_{00}\right\rangle \Rightarrow\left|\beta_{10}\right\rangle \\
(X Z \otimes I)\left|\beta_{00}\right\rangle \Rightarrow\left|\beta_{11}\right\rangle
\end{gathered}
$$

Quantum Teleportation

Other Applications

- Quantum Systems Simulations
- Applications in AI
- Quantum Random Walks
- Quantum Support Vector Machines
- Quantum Cryptography
- Key Distribution
- Eavesdropping Detection
- Integer Factoring Algorithms (Shor's Algorithm)

Recommended Reading \& Tools

Quantum Algorithm Implementations For Beginners, Abhijith J. et al.

Quantum Computation and Quantum Information, Michael A. Nielsen \& Isaac L. Chuang

A Course in Quantum Computing (for the Community College) Volume 1, Micheal Loceff

IBM Quantum Composer

