The importance of ecological, biological and medicinal properties of *Diplorhynchus condylocarpon* (Müll. Arg.) Pichon (Apocynaceae) in Tropical Africa

Alfred Maroyi

Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

(Received 19 November, 2020; Accepted 12 April, 2021)

ABSTRACT

Diplorhynchus condylocarpon (Müll. Arg.) Pichon is a shrub or small tree which occurs naturally in Angola, Botswana, the Democratic Republic of Congo (DRC), Malawi, Mozambique, Namibia, South Africa, Tanzania, Zambia and Zimbabwe. This study aims to provide some information about the ecological, biological and medicinal properties of *D.condylocarpon* in tropical Africa. This review examines the existing literature on the ecological, biological and medicinal properties of *D. condylocarpon*. This study revealed that the aerial part, bark, fruit, latex, leaf, root, root bark and stem bark infusions and/or decoctions of *D. condylocarpon* are mainly used as anthelmintic and galactagogue, and traditional medicines for headache, abdominal pains, snake bites, respiratory problems, blackwater fever, fever, malaria, sexually transmitted infections and gastro-intestinal problems. Ethnopharmacological research revealed that the species is characterized by alkaloids, antibacterial, antiplasmodialand antiprotozoan activities. The data from this study should contribute to improved management and conservation of *D. condylocarpon* in tropical Africa, considering concerns about anthropogenic pressure on plant biodiversity.

Key words : Apocynaceae, Diplorhynchus condylocarpon, Indigenous pharmacopeia, Traditional medicine

Introduction

The genus *Diplorhynchus* Welw. ex Ficalho and Hiern is a monotypic genus of the Apocynaceae family with one recognized species, *D. condylocarpon* (Müll. Arg.) Pichon (Leeuwenberg *et al.*, 1985). The genus name *Diplorhynchus* is based on two Greek words "*Diplo*" and "*rhynchos*" which mean "double" and "beak", respectively (Palmer and Pitman, 1972). The species name *condylocarpon* is based on two Greek words "*kondylos*" and "*knuckle*" which mean "a projection" and "fruit", respectively, in reference to the beak-like shape of fruits which are associated with the species (Palmer and Pitman, 1972). Synonyms of *D. condylocarpon* include *Aspidosperma condylocarpon* Muell. Arg., *D. angolensis* Büttner, *D.* angustifolia Stapf, D. condylocarpon spp. angolensis (Büttner) Duvign., D. condylocarpon ssp. mossambicensis (Benth. ex Oliv.) Duvign., D. condylocarpon ssp. mossambicensis var. mossambicensis f. angustifolius (Stapf) Duvign., D. condylocarpon ssp. mossambicensis var. psilopus (Welw.) Duvign., D. condylocarpon ssp. mossambicensis var. psilopus f. microphylla Duvign., D. mossambicensis Benth. ex Oliv., D. poggei Schum., D. psilopus Welw. ex Fic. & Hiern, D. welwitschii Rolfe and Neurolobiumcymosum Baill. (Plaizier, 1980; Leeuwenberg et al., 1985). The English common names of D. condylocarpon include "horn-pod tree", "Rhodesian rubber tree", "Transvaal rubber tree" and "wild rubber" (Palgrave, 2002). Diplorhynchus condylocarpon (Figure 1) is a multi-stemmed, slender and deciduous

shrub or small tree growing to a height of 12 metres (Palgrave, 2002). The bark is grey-brown to black in colour, thick, corky and fissured in small square sections. The leaves of *D. condylocarpon* are simple, opposite, more or less drooping, elliptic in shape and shiny yellowish green in colour above, paler below with entire and waxy margins. The flowers of the species occur in terminal sprays, white to cream in colour and faintly scented. *Diplorhynchus condylocarpon* produces two hard, woody, dark reddish brown fruits or follicles with pointed tips speckled with small whitish dots or lenticels when mature.

Fig. 1. *Diplorhynchus condylocarpon*. A: branch showing a fruit and B: branch showing flowers (photos: B Wursten and M Hyde)

Diplorhynchus condylocarpon has been recorded south of the equator in Angola, Botswana, the Democratic Republic of Congo (DRC), Malawi, Mozambique, Namibia, South Africa, Tanzania, Zambia and Zimbabwe (Figure 2). The species has been recorded in dry sandy loamy and rocky soils of savannas, bushveld, open woodlands, wooded grassland and of open forests often on rocky outcrops and stony hillsides at an altitude ranging from sea level to 1700 m above sea level (Plaizier, 1980). Diplorhynchus condylocarpon is an important medicinal plant in tropical Africa (Vasisht and Kumar, 2004; de Ruijter, 2008) and the bark of the species is sold in informal herbal medicine markets in Malawi and exported to Botswana, Zambia and Zimbabwe (Meke et al., 2017). Similarly, the fruits of D. condylocarpon are sold in informal herbal medicine markets in South Africa (Cunningham, 1993). The bark fibre of D. condylocarponis used in Mozambique and Zimbabwe for weaving clothes or blankets and other handcrafts (Ellert, 1984; Bruschi et al., 2014; Van Wyk and Gericke, 2018). All parts of D. condylocarpon contain milky sap or latex which is

Eco. Env. & Cons. 27 (August Suppl. Issue) : 2021

sticky and used as birdlime and glue, also applied to the hides of drums to improve their quality and tone in Angola, DRC, Malawi, South Africa and Zambia (Morris, 1996; Fowler, 2002; Van Wyk and Van Wyk, 2013; Latham and Mbuta, 2014; Lautenschläger et al., 2018). The leaves of D. condylocarpon are browsed by game and livestock (Van Wyk and Van Wyk, 2013; Schmidt et al., 2017). The edible caterpillars (Bunaeaalcinoe) feed on the leaves of D. condylocarpon (Latham and Mbuta, 2014). Diplorhynchus condylocarpon is fire-resistant and withstands repeated burning (Palgrave, 2002). Poles of D. condylocarponare used as fence posts and have been known to take root (Maroyi 2012; Schmidt et al., 2017). It is therefore, within this context that the current study was undertaken aimed at documenting the ecological, biological and medicinal properties of D. condylocarpon in tropical Africa.

Materials and Methods

Results of the current study are based on literature search on the ecological, biological and medicinal properties of *D. condylocarpon* throughout its distributional range using information from internet databases. The databases used included Scopus, Google Scholar, PubMed and Science Direct. Other sources of information used included pre-electronic sources such as journal articles, theses, books, book chapters and other scientific articles obtained from the University library.

Results and Discussion

Medicinal uses of Diplorhynchus condylocarpon

Medicinal uses of *D. condylocarpon* have been recorded in Angola, Botswana, DRC, Malawi, Mozambique, Namibia, Tanzania, Zambia and Zimbabwe (Table 1), representing 90.0% of the countries where the species is indigenous. The aerial part, bark, fruit, latex, leaf, root, root bark and stem bark infusions and/or decoctions of *D. condylocarpon*are mainly used as anthelmintic and galactagogue, and traditional medicines for headache, abdominal pains, snake bites, respiratory problems, blackwater fever, fever, malaria, sexually transmitted infections and gastro-intestinal problems (Table 1, Figure 2). Other medicinal applications of *D. condylocarpon*in at least two countries and supported by at least two literature sources include the use of aerial part,

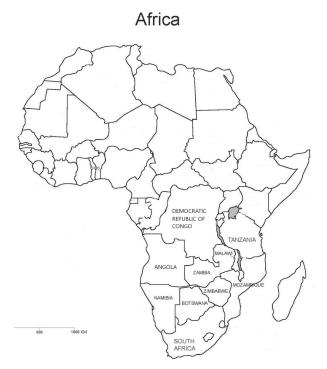


Fig. 2. Geographical distribution of *Diplorhynchus condylocarpon* in tropical Africa

bark, fruit, latex, leaf, root, root bark and stem bark infusions and/or decoctionsas colic in Angola and Tanzania (Hedberg *et al.*, 1982; Novotna *et al.*, 2020), and traditional medicine for blennorrhoea and sore eyes in DRC and Tanzania (Chhabra and Uiso, 1991; de Ruijter, 2008; Kokwaro, 2009; Amuri *et al.*, 2018), diabetes mellitus in DRC and Tanzania (Moshi and Mbwambo, 2002; de Ruijter, 2008; Amuri *et al.*, 2018), infertility in Tanzania and Zimbabwe (Gelfand *et al.*, 1985; Chhabra *et al.*, 1987; de Ruijter, 2008), sores and wounds in Malawi and Tanzania (Palmer and Pitman, 1972; Ruffo, 1991; de Ruijter, 2008; Latham and Mbuta, 2014) and vertigo in

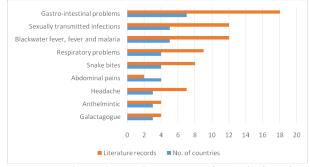


Fig. 2. Medicinal applications of *Diplorhynchus condylocarpon* derived from literature records

Angola and Mozambique (Bruschi *et al.*, 2011; Lautenschläger *et al.*, 2018). In Namibia, the roots of *D. condylocarpon* are mixed with those of *Annona stenophylla* Engl. and Diels, *Diospyroschamaethamnus* Mildbr., *Strychnospungens* Soler. and *Bobgunniamada gascariensis* (Desv.) J.H. Kirbr. and Wiersema as remedy for malaria and psychological problems (Von Koenen, 2001; Dushimemaria *et al.*, 2017; Maroyi, 2019).

Nutritional, phytochemical and biological properties of *Diplorhynchus condylocarpon*

Researchers such as Becker and Lohrmann (1992) and Dierenfeld *et al.* (1995) investigated the nutritional properties of *D. condylocarpon* leaves and twigs (Table 2). A wide variety of nutrients associated with different parts of *D. condylocarpon* (Table 2) imply that the species could be a source of health promoting nutrients such as calcium, copper, crude fibre, iron, magnesium, phosphorus, potassium, proteins, sodium and zinc when utilized as fodder. Stauffacher (1961), Monseur *et al.* (1962) and Bisset (1980) identified alkaloids from the stem bark and root bark of *D. condylocarpon* (Table 2).

The aqueous extract of *D. condylocarpon* roots and stems are reported to have useful sympatholytic properties (Raymond-Hamet, 1969).Mulyangote (2016) evaluated the antibacterial activities of aqueous and dichloromethane and methanol (1:1) extracts of *D. condylocarpon* roots against *Escherichia coli*, *Staphylococcus aureus*, *Bacillus subtilis* and *Shigellasonnei*using the disk diffusion method. The extracts exhibited weak activities against the tested pathogens with the zone of inhibition ranging from 3.0 mm to 10.0 mm (Mulyangote, 2016). These findings could be used to corroborate traditional uses of *D. condylocarpon*extracts as traditional medicines against microbial infections.

Clarkson et al. (2004) evaluated the antiplasmodial activities of water, dichloromethane and dichloromethane : methanol (1:1) extracts of D. condylocarpon roots against Plasmodium falciparum strain D10 using the parasite lactate dehydrogenase (pLDH) assay. The dichloromethane : methanol (1:1) extract exhibited weak activities with half maximal inhibitory concentration (IC₅₀) value of 24.0 µg/ml (Clarkson et al., 2004). Mokoka (2013) evaluated antiplasmodial activities the of dichloromethane: methanol (1:1) whole plant part extracts of D. condylocarpon against Plasmodium falciparum KI strain using G-3H-hypoxanthine incor-

Medicinal uses	Parts used	Country	Reference
Abdominal pain	Root decoction taken orally	Malawi, Mozambique,	Gelfand et al., 1985;
Abortifacient	Root infusion taken orally	Tanzania and Zimbabwe Tanzania	Chhabra <i>et al.</i> , 1987 Chhabra <i>et al.</i> , 1987
Abormacient	Root infusion taken of any	Tanzama	Chhabra <i>et al.,</i> 1987; Moshi and Mbwambo, 2002
Anorexia	Root infusion taken orally	Zimbabwe	Gelfand <i>et al.</i> , 1985
Anthelmintic	Root decoction taken orally	Angola, Malawi and	Morris, 1996; Bester,
		Tanzania	2006; Lautenschläger <i>et al.,</i> 2018
Aphrodisiac	Root decoction taken orally	Tanzania	Luoga <i>et al.,</i> 2000; Moshi and Mbwambo, 2002
Bilharzia	Leaf and root decoction taken orally	Tanzania	Watt and Breyer- Brandwijk, 1962; Shangali <i>et al.</i> , 2008; Kacholi, 2014
Blackwater fever,	Leaf, root, root bark and stem	Angola, Namibia,	Von Koenen, 2001;
fever and malaria	bark decoction taken orally	Tanzania, Zambia and Zimbabwe	Fowler, 2006; Ngarivhume <i>et al.</i> , 2015
Malaria and psychological problems	Roots mixed with those of <i>Annona</i> stenophylla Engl. & Diels, <i>Diospyroschamaethamnus</i> Mildbr., <i>Strychnospungens</i> Soler. and <i>Bobgunniamadagascariensis</i> (Desv.)	Namibia	Von Koenen, 2001; Dushimemaria <i>et al.,</i> 2017; Maroyi, 2019
Blennorrhoea and sore eyes	J.H. Kirbr. & Wiersema Root and root bark decoction applied topically	DRC and Tanzania	Chhabra and Uiso, 1991; de Ruijter, 2008; Kokwaro, 2009;
Colic	Fruit and root decoction	Angola and Tanzania	Amuri <i>et al.,</i> 2018 Hedberg <i>et al.,</i> 1982;
	taken orally	-	Novotna et al., 2020
Diabetes mellitus	Root decoction taken orally	DRC and Tanzania	Moshi and Mbwambo, 2002; de Ruijter, 2008; Amuri <i>et al.,</i> 2018;
Epilepsy	Leaf infusion taken orally	Angola	Lautenschläger <i>et al.,</i> 2018
Facilitate child birth	Roots	Tanzania	de Ruijter, 2008; Kokwaro, 2009
Galactagogue	Bark, leaf and root decoction	Malawi, Namibia and	Ruffo, 1991; Morris, 1996;
Gastro-intestinal	taken orally Bark, leaf and root decoction	Tanzania Angola Malawi	Leffers, 2003 Storrs, 1979: Chinomana
problems (diarrhoea,	taken orally	Angola, Malawi, Mozambique, Namibia,	Storrs, 1979; Chinemana et al., 1985; Chinsembu
dysentery, indigestion		Tanzania, Zambia and	<i>et al.</i> , 2015; Mulyangote,
and stomach		Zimbabwe	2016; Lautenschläger et
complaints)	Loof and root desection	Malawi Tanzania and	al., 2018 Watt and Brover
Headache	Leaf and root decoction taken orally	Malawi,Tanzania and Zambia	Watt and Breyer- Brandwijk, 1962; Fowler,
Heart complaints	Root infusion taken orally	Malawi	2002; Morris, 1996
Hernia	Root decoction taken orally	Tanzania	Chhabra et al., 1987;
Hydrocele and testicle inflammation	Root and root bark decoction taken orally	Tanzania	Luoga <i>et al.,</i> 2000 Hedberg <i>et al.,</i> 1982; de Ruijter, 2008; Kokwaro,

Table 1. Medicinal uses of Diplorhynchus condylocarpon

ALFRED MAROYI

Table 1. Continued ...

Medicinal uses	Parts used	Country	Reference
Infertility	Root decoction taken orally	Tanzania and Zimbabwe	Gelfand <i>et al.</i> , 1985;
			Chhabra <i>et al.,</i> 1987; de
T	Destinfusion taken angles	Teneratio	Ruijter, 2008
Leprosy	Root infusion taken orally	Tanzania	Chhabra <i>et al.,</i> 1987; Chhabra and Uiso, 1991
Menstrual problems	Root infusion taken orally	Malawi	Morris, 1996
Mosquito repellent	Latex	Angola	Lautenschläger <i>et al.</i> , 2018
Rectal prolapse	Stem bark infusion taken orally	Tanzania	Hedberg <i>et al.</i> , 1982; de
Recui prompse	Stellt bark infusion taken orany	Turizuniu	Ruijter, 2008
Respiratory problems	Fruit and root decoction	Malawi, Tanzania, Zambia	Gelfand <i>et al.</i> , 1985;
(cough, measles,	taken orally	and Zimbabwe	Chhabra <i>et al.</i> , 1987;
pneumonia and	2		Morris, 1996; Fowler, 2002
tuberculosis)			
Sexually transmitted	Leaf and root decoction taken	Botswana, Malawi, Tanzania	
infections (gonorrhoea,	orally	Zambia and Zimbabwe	1989; Chhabra and Uiso,
syphilis and venereal			1991; Mavi, 1996;
diseases)			Ndubani and Höjer, 1999
Snakebites	Aerial part, latex and root	Angola, DRC, Tanzania and	Storrs, 1979; Bester, 2006;
	decoction applied topically	Zambia	Latham and Mbuta, 2014;
Sores and wounds	Park loof and most descettion	Malauri and Tanaania	Lautenschläger <i>et al.</i> , 2018
Sores and wounds	Bark, leaf and root decoction	Malawi and Tanzania	Ruffo, 1991; de Ruijter, 2008
Vertigo	applied topically Latex, leaf and root decoction	Angola and Mozambique	Bruschi <i>et al.,</i> 2011;
vertigo	taken orally	Angola and Mozambique	Lautenschläger <i>et al.</i> , 2018
Vomiting	Latex and root infusion	Mozambique	Bruschi et al., 2011
· childing	taken orally	mozamorque	2100011 00 011 2011
Womb disinfection	Root infusion taken orally	Angola	Novotna et al., 2020
Ethnoveterinary	Root decoction applied topically	Zimbabwe	Mwale et al., 2006
medicine (ectoparasites)			

poration assay with chloroquine (IC₅₀ = $0.05 \,\mu\text{M}$) as a positive control. The extract exhibited weak activities with IC₅₀ value of 43.9 μ g/ml (Mokoka, 2013). Mokoka (2013) also evaluated the antiprotozoal activities of dichloromethane: methanol (1:1) whole plant part extracts of D. condylocarpon against Trypanosoma bruceirhodesiense, Trypanosomacruzi and Leishmaniadonovani using in vitro assays with melarsoprol (IC₅₀ = 0.03 μ M), benznidazole (IC₅₀ = 0.5 μ g/ml) and miltfosine (IC₅₀ = 0.2 μ g/ml) as reference drugs. The extract exhibited activities with IC_{50} values ranging from 29.4 µg/ml to 63.9 µg/ml against IC₅₀ values ranging from 0.004 μ g/ml to 0.4 µg/ml exhibited by the positive controls (Mokoka, 2013). This pharmacological evaluation is of importance in the traditional uses of D. condylocarpon and future research focusing on control and management of malaria and protozoan diseases in tropical Africa.

Conclusion

The present review summarizes the ecological, biological and medicinal properties of *D. condylocarpon* in tropical Africa. Detailed studies focusing on phytochemical evaluations including toxicological, *in vivo* and clinical studies to corroborate the traditional medical applications of the species are recommended. Therefore, future research should focus on the molecular modes or mechanisms of action, pharmacokinetics and physiological pathways for specific extracts of the species including identification of the bioactive compounds of the species and their associated pharmacological activities.

Conflict of interest

No conflict of interest is associated with this work.

Nutritional and phytochemical components	Value	Plant parts	Reference
14-hydroxy-(-)-akuammicine	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.</i> , 1962; Bisset, 1980
Acid detergent bound protein (%)	1.5 - 1.7	Leaves and twigs	Dierenfeld et al., 1995
Acid detergent fibre (%)	27.6 - 44.2	Leaves and twigs	Dierenfeld <i>et al.</i> , 1995; Becker and Lohrmann, 1992
Acid detergent lignin (g/100g)	17.0 - 19.2	Leaves	Becker and Lohrmann, 1992
Ash (%)	4.7 – 10.3	Leaves and twigs	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
á-tocopherols (ìg/g)	12.0 - 72.0	Leaves	Dierenfeld et al., 1995
Calcium (g/100g)	1.1 – 1.5	Leaves	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Condylocarpine	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.</i> , 1962; Bisset, 1980
Copper (ìg/g)	3.8	Leaves	Dierenfeld <i>et al.</i> , 1995
Crude protein (%)	6.5 – 11.0	Leaves and twigs	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Diplorrhyncine	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.</i> , 1962; Bisset, 1980
Diplorrhyne	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.</i> , 1962; Bisset, 1980
Iron (ìg/g)	45.0	Leaves	Dierenfeld et al., 1995
Magnesium (g/100g)	0.3 – 0.5	Leaves	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Manganese (ìg/g)	60.8	Leaves	Dierenfeld et al., 1995
Metabolizable energy (MJ/kg)	5.4 - 5.5	Leaves	Becker and Lohrmann, 1992
Mossambine	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.,</i> 1962; Bisset, 1980
Neutral detergent fibre (%)	41.2 - 58.3	Leaves and twigs	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Nor-fluorocurarine	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.</i> , 1962; Bisset, 1980
Phosphorus (g/100g)	0.2	Leaves	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Potassium (g/100g)	0.5 - 1.2	Leaves	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Sodium (g/100g)	0.009 - 0.2	Leaves	Becker and Lohrmann, 1992; Dierenfeld <i>et al.</i> , 1995
Stemmadenine	-	Root and stem bark	Stauffacher, 1961; Monseur <i>et al.</i> , 1962; Bisset, 1980
Sulfuric acid lignin (%) Tombozine	11.4 – 13.4 -	Leaves and twigs Root and stem bark	Dierenfeld <i>et al.,</i> 1995 Stauffacher, 1961; Monseur <i>et al.,</i> 1962;
			Bisset, 1980
Water (%)	43.1 - 46.5	Leaves and twigs	Dierenfeld <i>et al.</i> , 1995
ã-tocopherols (ìg/g)	1.1 - 2.0	Leaves	Dierenfeld <i>et al.</i> , 1995
Zinc (ìg/g)	14.0	Leaves	Dierenfeld et al., 1995

Table 2. Nutritional and phytochemical composition of Diplorhynchus condylocarpon

References

nal. 30 : 218.

- Amuri, B., Maseho, M., Simbi, L., Duez, P. and Byanga, K. 2018. Ethnobotanical survey of herbs used in the management of diabetes mellitus in Southern Katanga Area/DR Congo. *Pan African Medical Jour-*
- Becker, K. and Lohrmann, J. 1992. Feed selection by goats on tropical semi-humid rangeland. *Small Ruminant Research.* 8: 285-298.
- Bester, S.P. 2006. *Diplorhynchus condylocarpon* (Müll.Arg.) Pichon. National Herbarium. Available from: http:/

/www.plantzafrica.com/plantcd/ diplorhycond.htm.

- Bisset, N.G. 1980. Phytochemistry. In: Leeuwenberg, A.J.M. (Ed.), Engler and Prantl's Die natürlichenpflanzenfamilien, fam. Loganiaceae, Vol. 28b(1). Duncker and Humblot, Berlin, pp. 211-237.
- Bruschi, P., Mancini, M., Mattioli, E., Morganti, M. and Signorini, M.A. 2014. Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. *Journal of Ethnobiology and Ethnomedicine*. 10:59.
- Bruschi, P., Morganti, M., Mancini, M. and Signorini, M.A. 2011. Traditional healers and laypeople: A qualitative and quantitative approach to local knowledge on medicinal plants in Muda (Mozambique). *Journal* of Ethnopharmacology. 138 : 543–563.
- Chhabra, S.C. and Uiso, F.C. 1991. Antibacterial activity of some Tanzanian plants used in traditional medicine. *Fitoterapia.* 62 : 499–503.
- Chhabra, S.C., Mahunnah, R.L.A. and Mshiu, E.N. 1987. Plants used in traditional medicine in Eastern Tanzania. I. Pteridophytes and Angiosperms (Acanthaceae to Canellaceae). *Journal of Ethnopharmacology*. 21 : 253–277.
- Chinemana, F., Drummond, R.B., Mavi, S. and De Zoysa, I. 1985. Indigenous plant remedies in Zimbabwe. *Journal of Ethnopharmacology*. 14 : 159–172.
- Chinsembu, K.C., Hijarunguru, A. andMbangu, A. 2015. Ethnomedicinal plants used by traditional healers in the management of HIV/AIDS opportunistic diseases in Rundu, Kavango East Region, Namibia. *South African Journal of Botany*. 100 : 33–42.
- Clarkson, C., Maharaj, V.J., Crouch, N.R., Grace, O.M., Pillay, P., Matsabisa, M.G., Bhagwandin, N., Smith, P.J. and Folb, P.I. 2004. *In vitro* antiplasmodial activity of medicinal plants native to or naturalised in South Africa. *Journal of Ethnopharmacology*. 92 : 177-191.
- Cunningham, A.B. 1993. African medicinal plants: setting priorities at the interface between conservation and primary health care. People and Plants working paper 1, UNESCO, Paris.
- deRuijter, A. 2008. Diplorhynchus condylocarpon (Müll.Arg.) Pichon. In: Schmelzer, G.H. andGuribFakim, A. (Eds.), Plant Resources of Tropical Africa: Medicinal Plants 1. Backhuys Publishers, Wageningen, pp. 229-230.
- Dierenfeld, E.S., du Toit, R. and Braselton, W.E. 1995. Nutrient composition of selected browses consumed by black rhinoceros (*Dicerosbicornis*) in the Zambezi Valley, Zimbabwe. *Journal of Zoo and Wildlife Medicine*. 26(2): 220-230.
- Dushimemaria, F., Du Preez, C.I. and Mumbengegwi, D.R. 2017. Randomized anticancer and cytotoxicity activities of *Guibourtiacoleosperma* and

Diospyroschamaethamnus. African Journal of Traditional Complementary and Alternative Medicine. 14(4): 1–7.

- Ellert, H. 1984. The material culture of Zimbabwe. Longman, Harare.
- Fowler, D.G. 2002. Traditional ila plant remedies from Zambia. *Kirkia*. 18(1): 35-48.
- Fowler, D.G. 2006. Traditional fever remedies: A list of Zambian plants. Royal Botanic Gardens, Kew, Richmond.
- Gelfand, M., Mavi, S., Drummond, R.B. and Ndemera, B. 1985. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia. Mambo Press, Gweru.
- Hedberg, I. and Staugård, F. 1989. Traditional medicinal plants: Traditional medicine in Botswana. Ipeleng Publishers, Gaborone.
- Hedberg, I., Hedberg, O., Madati, P.J., Mshigeni, K.E., Mshiu, E.N. and Samuelson, G. 1982. Inventory of plants used in traditional medicine in Tanzania. 1. Plants of the families Acanthaceae - Cucurbitaceae. *Journal of Ethnopharmacology*. 6 : 29-60.
- Kacholi, D.S. 2014. Indigenous tree uses, use-values and impact of human population on forest size, structure and species richness in Uluguru, Morogoro, Tanzania. *Tanzania Journal of Science*. 40 : 33-48.
- Kokwaro, J.O. 2009. *Medicinal Plants of East Africa*. University of Nairobi Press, Nairobi.
- Latham, P. and Mbuta, A.K. 2014. Useful plants of Bas-Congo province, Democratic Republic of Congo. Department for International Development (DFID), London.
- Lautenschläger, T., Monizi, M., Pedro, M., Mandombe, J.L., Bránquima, M.F., Heinze, C. and Neinhuis, C. 2018. First large-scale ethnobotanical survey in the province of Uíge, northern Angola. *Journal of Ethnobiology and Ethnomedicine*. 14 : 51.
- Leeuwenberg, A.J.M., Kupicha, F.K., Barink, M.M., Beentje, H.J., de Kruif, A.P.M., Plaizier, A.C. andZwetsloot, H.J.C. 1985. Apocynaceae. In: Launert, E. (Ed.). *Flora Zambesiaca*. Vol. 7, part 2. Flora Zambesiaca Managing Committee, London, pp. 395–503.
- Leffers, A. 2003. Gemsbok bean and Kalahari truffle. Gamsberg MacMillan, Windhoek.
- Luoga, E.J., Witkowski, E.T.F. and Balkwill, K. 2000. Differential utilization and ethnobotany of trees in Kitulanghalo Forest Reserve and surrounding communal lands, Eastern Tanzania. *Economic Botany*. 54(3): 328-343.
- Maroyi, A. 2019. Annona stenophylla Engl. & Diels: Review of its botany, medicinal uses and biological activities. Journal of Pharmaceutical Science and Research. 11: 3385-3390.
- Maroyi, A. 2012. Local plant use and traditional conservation practices in Nhema communal area, Zimbabwe. International Journal of African Renaissance Studies

Eco. Env. & Cons. 27 (August Suppl. Issue) : 2021

Multi-Inter- and Transdisciplinarity. 7(1): 109-128.

- Mavi, S. 1996. Medicinal plants and their uses in Zimbabwe. In:Norman, H., Snyman, I., Cohen, M. (Eds.), Indigenous knowledge and its uses in southern Africa. *Human Sciences Research Council, Pretoria*, pp. 67–73.
- Meke, G.S., Mumba, R.F.E., Bwanali, R.J. and Williams, V.L. 2017. The trade and marketing of traditional medicines in southern and central Malawi. *International Journal of Sustainable Development and World Ecology.* 24(1) : 73-87.
- Mokoka, T.A. 2013. The discovery and characterization of antiprotozoal compounds from South African medicinal plants by a HPLC-based activity profiling technique. PhD Thesis, University of KwaZulu-Natal, Durban.
- Monseur X, Goutarel, R., Le Men, J., Wilson, J.M., Budzikiewicz, H. and Djerassi, K. 1962. Alkaloids of Diplorrhyncus condylocarpon subsp. mossambicensis (Benth.) Duvign. (Apocyneaeae). 2. Structure of mossambine (diplorrhyncine). Bulletin de la Société Chimique de France. 1962 : 1088-1092.
- Morris, B. 1996. Chewa medical botany: A study of herbalism in southern Malawi. International African Institute, Lit Verlag, Hamburg.
- Moshi, M.J. and Mbwambo, Z.H. 2002. Experience of Tanzanian traditional healers in the management of non-insulin dependent diabetes mellitus. *Pharmaceutical Biology*. 40 (7) : 552-560.
- Mulyangote, L.T. 2016. Ethnobotany and bioactivity of medicinal plants used to treat symptoms associated with gastro-intestinal infections in Namibia. MSc Dissertation, University of Namibia, Windhoek.
- Mwale, M., Gadzirayi, C.T., Mapiye, C., Nemaunga, M., Kuchenga, M.M. and Mupangwa, J.F. 2006. Use of ethno-veterinary medicine for the control of cattle parasites by smallholder farmers in Mutasa district, Zimbabwe. *Southern African Journal of Education and Science Technology*. 1(2) : 111-117.
- Ndubani, P. and Höjer, B. 1999. Traditional healers and the treatment of sexually transmitted illnesses in rural Zambia. *Journal of Ethnopharmacology*. 67 : 15–25.
- Ngarivhume, T., Van'tKlooster, C.I.E.A., de Jong, J.V.T.M. and Van der Westhuizen, J.H. 2015. Medicinal plants used by traditional healers for the treatment of malaria in the Chipinge district in Zimbabwe. *Journal of Ethnopharmacology*. 159 : 224–237.
- Novotna, B., Polesny, Z., Pinto-Basto, M.F., Van Damme, P., Pudil, P., Mazancova, J. and Duarte, M.C. 2020.

Medicinal plants used by 'root doctors', local traditional healers in Bié province, Angola. *Journal of Ethnopharmacology*. 260 : 112662.

- Palgrave, M.C. 2002. *Keith Coates Palgrave Trees of Southern Africa*. Struik Publishers, Cape Town.
- Palmer, E. and Pitman, N. 1972. Trees of southern Africa, covering all known indigenous species in the Republic of South Africa, South-West Africa, Botswana, Lesotho and Swaziland. AA Balkema, Cape Town.
- Plaizier, A.C. 1980. A revision of *Adenium*Roem. etSchult. and of *Diplorhynchus* Welw. ex Fic. etHiern. (Apocynaceae). *Medel Land bouw Wageningen*. 80: 1-40.
- Raymond-Hamet, P. 1969. Total extract of *Diplorhynchus* mossambicensis, useful as sympatholytic. *Chemical Abstracts.* 71 : 53587.
- Ruffo, C.K. 1991. A Survey of Medicinal Plants in Tabora Region, Tanzania. Dar es Salaam University Press, Dar es Salaam.
- Shangali, C.F., Zilihon, I.J. E., Mwang[^]ingo, P.L.P. andNummelin, M. 2008. Use of medicinal plants in the Eastern Arc mountains with special reference to the Hehe ethnic group in the Udzungwa Mountains, Tanzania. *Journal of East African Natural History*. 97 : 225254.
- Schmidt, E., Lotter, M. and McCleland, W. 2017. Trees and shrubs of Mpumalanga and Kruger National Park. Jacana Media, Johannesburg.
- Stauffacher, D. 1961. Alkaloideaus Diplorrhyncus condylocarpon (Muell. Arg.) Pichon ssp. mossambicensis (Benth.) Duvign. Helvetica Chimica Acta. 44 : 2006-2015.
- Storrs, A.E.G. 1979. Know your trees: Some of the common trees found in Zambia. Forest Department, Ndola.
- Van Wyk, B. E. and Gericke, N. 2018. *People's Plants: A Guide to Useful Plants of Southern Africa*. Briza Publications, Pretoria.
- Van Wyk, B. and Van Wyk, P. 2013. Field guide to trees of southern Africa. Struik Nature, Cape Town.
- Vasisht, K. and Kumar, V. 2004. Compendium of medicinal and aromatic plants: Africa. Earth, Environmental and Marine Sciences and Technologies, ICS-UNIDO, Area Science Park, Trieste, Italy.
- Von Koenen, E. 2001. Medicinal Poisonous and Edible Plants in Namibia. Klaus Hess Publishers, Windhoek.
- Watt, J.M. and Breyer-Brandwijk, M.G. 1962. The medicinal and poisonous plants of southern and eastern Africa. E. and S. Livingstone Ltd, London.

S8