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1. INTRODUCTION 

1.1. Weed Management 

The weed pest is one of the most serious problems for agriculture and environment. 

Infesting plants generate a great obstacle to the normal flow of superficial waters, destroy 

the natural habitat, seriously damage the archaeological and monumental areas, and cause 

heavy losses to crop production and to pasture industry. Many plants of agrarian interest 

may dieback when the weed grows in the same field absorbing water, food substances, and 

sunlight. Furthermore, they represent a serious impediment to the normal agrarian activity. 

The diffusion of weed reduces the pasture areas with consequent deterioration of animal 

food.  

In agricultural fields, weeds seem to have coevolved with crop plants since 

prehistoric time as evidenced by pollen analysis techniques indicating that both share 

common evolutionary lines. Distribution of weeds is determined by various environmental 

and biological characteristics. Human activities are mainly responsible for their regional 

patterns and have certainly played an important role in their spread. Plant species are also 

affected when their habitat are disturbed (Harlan and deWelt, 1965). Weeds have evolved 

due to continuous selection pressure imposed by humans, technological advancement, 

and/or through agricultural practices. The role of humans in selecting crop plants vis-à-vis 

evolution of weeds is clear from the fact that over 40 percent of the world’s total weed 

species belong to Asteracee (sunflower family) and Poacee (grass family), which happen to 

provide over half of world’s food and food products (Kohli et al., 2006). 

The effort to control weeds is as old as agriculture itself. Humans, however, were 

familiar with weeds even before the dawn of agriculture, as several aboriginal nomadic 

tribes suffered from allergies, hay fever, and other health problems caused by poisonous 

plants. The control of weed diffusion has been achieved with agrochemicals belonging to 

different class of organic compounds. They are usually used in very large amounts in 
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agriculture, thus causing serious problems to human and animal health and producing 

heavy environmental pollution. In fact, these substances have frequently low specificity 

and are weakly or not biodegradable, accumulate in food plants and in layer, and drinkable 

water. Furthermore, the chemical control has short-life and must usually be repeated on an 

annual or semi-annual basis. Nevertheless, it would not be wise to kill or eradicate weeds, 

as that would mean deliberate genetic erosion in the modern era of rapid biodiversity loss 

causing imbalance in the natural ecosystems. Thus an urgent need exists to get ride of 

adverse effects of weeds without affecting the natural balance. Management of weeds, 

should, therefore, be achieved through strategies that do not affect the sustainability of 

agroecosystems and the life support system. The biological agents offer the advantage of 

being compatible with the environment, often with high specificity and represent a long 

term solution also in the control of weed particularly resistant to chemical herbicides. 

Therefore, many efforts have been made to biologically control the weeds using their 

natural antagonists as microorganisms and/or insect. Among the microorganisms, fungi are 

the most common pathogens of plants and therefore for weeds as well. Some insects and 

fungi, which satisfy the criteria of efficacy, specificity and long-time persistence, have 

been already commercialised essentially outside from Europe (Bottiglieri et al., 2000). 

Recently, researches have been started to isolate phytotoxins produced by some fungi 

pathogenic for weeds and use them as natural herbicides. The goal of such a project is to 

use natural substances, their derivatives or synthetic analogues with increased efficacy and 

specificity to avoid the release of microorganisms, and the possibility that they became 

host of other organisms. There are many reasons why natural substances might be good 

sources of molecules or molecular templates for herbicides. These compounds are the 

result of coevolution of the producing organism and its biotic environment. Natural 

compounds often have a shorter environmental half life than synthetic compounds, thus 

reducing environmental impact. Since many phytotoxins isolated from fungi pathogenic 
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for agrarian plants are not specific, they may be considered as potential natural herbicides 

in native forms or as derivatives and analogues (Graniti et al., 1989; Delfosse, 1990; 

Strobel, 1991; Strobel et al., 1991). 

The first approach is the isolation of microorganisms from tissues of infected 

infesting plants, followed by selection of the strains with higher specificity and virulence. 

The second step is to find appropriate conditions for the in vitro growth of the fungi to 

obtain culture filtrates with high phytotoxicity against the host plants. Next, the 

phytotoxins are isolated, characterised and in some cases derivatized before to be tested as 

potential herbicides. Finally, the knowledge of the chemical structure of these substances 

may allow the partial or total synthesis of the most appropriate natural herbicide. 

Furthermore, (if they are a virulent factor), the toxins could be used in indirect mode as 

biomarkers, to select the best fungal strain or to optimise for their large scale production 

(Evidente, 2006; Evidente and Abouzeid 2006) and in combination with low dose of 

herbicides and the phytopathogenic fungus, to develop integrated weed management 

strategy. 

Phytotoxins are defined as microbial metabolites that are harmful to plants at very 

low concentrations. Most of the plant pathogenic fungi produce toxins in culture and in 

their hosts. Frequently, these compounds play an important role in the pathogenesis as 

reproduce some or even all of the symptoms of the disease. In many cases the toxins are 

low molecular weight compounds belonging to a variety of class of natural products. They 

are able to diffuse from the site of the infection to surrounding tissues or are translocable 

within the plant. The virulence of the plant pathogen may depend on its capability to 

synthesize one or more toxins. Only few phytotoxins are known as host-specific toxins, 

more frequently they are phytotoxic for a broad range of plant species. In some cases 

studies on their mode of action and their role as "vivo-toxin" have also been carried out 



 

 
 

8

(Strobel, 1982, Graniti et al., 1989; Ballio and Graniti., 1991; Evidente, 1997; Upadhyay 

and Mukerji, 1997; Evidente and Motta 2001).  

The main aim of this research involving several worldwide institutions was either to 

isolate new promising strains of weed pathogenic fungi and/or to enhance its efficacy. 

Further experiments are still in progress to overcome the important problems that arise 

during the practical application of phytotoxins in integrated crop management. 

Unfortunately, these are seriously limited by the very low amounts of bioactive compounds 

frequently produced by weed pathogenic fungi. Therefore, the stereostructural 

determination of phytotoxins could assist in realizing their simple and convenient total 

synthesis, to furnish amount of metabolites sufficient to carry out experiments on their 

biological activities, mode of action, and toxicity. Furthermore, the synthetic phytotoxins 

could be used either to develop methods allowing the selection of fungal strains for 

mycoherbicide application or to prepare derivatives and analogues with modulated and/or 

increased biological activity and specificity, which could be used in greenhouse or field 

experiments in view of their practical application (Evidente and Abouzeid, 2006). 

Some examples on the use of phytotoxic metabolites extracted and purified from 

different fungal species in the last years and applied for weed control researches are 

illustrated in the successive paragraph of this section. 

 

1.2. Phytotoxins in the management of weeds infesting pasture and important 

agrarian crops 

 From infected leaves of Erigeron annuus L. a fungus identified as Phoma 

putaminum was isolated. E. annuus, commonly named annual fleabane, is an indigenous 

weed from North America widely found in field and pastures all over Europe, including 

Italy. The main phytotoxin present in the culture filtrates organic extract, named 

putaminoxin, was characterised by spectroscopic methods (essentially 1D and 2D 1H- and 
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13C-NMR and HRESI MS) as (5S)-5-hydroxy-9-propyl-6-nonen-9-olide (1, Fig. 1.1). The 

structure of this new 10-macrolide was confirmed by conversion of the toxin into the 

corresponding 5-O-acetyl- and 6,7-dihydro-derivatives by standard acetylation and 

catalytic hydrogenation, respectively. The absolute stereochemistry of the secondary 

alcohol at C-5 was determined by applying the GC Horeau's method (Evidente et al., 

1995). Further investigation was carried out to ascertain whether associated toxins could be 

responsible for the high phytotoxicity of the organic culture extract. Four structurally 

related metabolites, named putaminoxin B-E were identified (2-5, Fig. 1.1) (Evidente et 

al., 1997; 1998a). When assayed on annual fleabane by leaf-puncture assay, as well as on 

some weedy and cultivated plants, putaminoxin proved to be more toxic than the 

putaminoxin analogues and previous cited derivatives. The latter were all inactive due to a 

modification of the nonenolide ring and the alkyl side chain. On the basis of these results, 

the structural features that appeared to be of primary importance for the phytotoxic activity 

of the toxin were the presence of both the unchanged hydroxy group at C-5 and the alkyl 

side chain at C-9 (Evidente et al., 1998b).  

Many of these structural features appear to be important for the activity of 

pinolidoxin (6, Fig 1.1), a phytotoxic metabolite isolated from Ascochyta pinodes solid 

culture, which is a pathogenic fungus responsible for pea anthracnose (Evidente et al., 

1993b). In addition, three minor correlated toxins were isolated from the same fungus and 

characterized as 7-epi-, 5,6-dihydro-, and 5,6-epoxy-pinolidoxin (7-9, Fig. 1.1) (Evidente 

et al., 1993a). Pinolidoxin [2-(2,4-hexadienoloxy)-7,8-dihydroxy-9-propyl-5-nonen-9-

olide] is another non specific phytotoxic nonenolide which, being structurally related to 

putaminoxin, may be proposed as a potential natural herbicide. Therefore, a structure-

activity relationships study was carried out using pinolidoxin, three previously cited 

analogues and three synthetic derivatives (7,8-O,O'-diacetyl-, 7,8-O,O'-isopropylidene-, 

and 5,6,11,12,13,14-hexahydro-pinolidoxin). Pinolidoxin, compared to its analogues and 
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derivatives, showed the highest phytotoxicity on both cultivated plants and weeds. 

Therefore, also for the activity of pinolidoxin, primarily important features are the presence 

of an unmodified diol system between C-7 and C-8 with the correct stereochemistry and 

the functionalization and the conformational freedom of the nonenolide ring. The 

hexadienoyloxy residue at C-9 did not affect the activity (Evidente et al., 1998b). 

In view of a possible use as natural herbicides, the fungicide and zootoxic activity 

of both toxins putaminoxin and pinolidoxin (1 and 6) and some of their analogues and 

derivatives were assayed. On Geothricum candidum, none of the compounds tested proved 

to be toxic. Only the derivatives and analogues of pinolidoxin demostrated zootoxicity 

when assayed on larvae of brine shrimp (Artemia salina L.). 

The conducted structure-activity relationship studies provided useful information on 

the variability of biological properties, with respect to the chemical structure, either the 

presence or absence of active groups and/or chain. The availability of these metabolites in 

large amounts or the use of large-scale production system could allow the testing of these 

toxins in greenhouse or field experiments to evaluate their potential practical application as 

new and original modified natural compounds (Evidente and Abouzeid, 2006). 

Among the four species belonging to the genus Xanthium (namely, X. occidentale, X. 

orientale L., X. italicum Mor. and X. cavanillesii Schouw.), which constitute the Noogoora 

burr complex, X. occidentale was the first to be reported in Australia, and is becoming the 

most destructive and widespread species (Morin et al., 1994). The biological control of this 

noxious weed, mainly with the use of plant pathogens, such as Alternaria zinniae has been 

proposed.  

The structure of two metabolites (10 and 11, Fig. 1.2), was determined by extensive 

use of spectroscopic methods (1D and 2D 1H- and 13C-NMR and HRESI MS). The 

structure and the configuration of the two toxins were confirmed by X-ray analysis. From 

all the above data, 10 appeared to be identical to brefeldin A, the macrocyclic cytotoxic 
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and antimicrobial metabolite previously isolated from microscopic fungi (Penicillium, 

Ascochyta, Alternaria, and Curvularia) (Betina, 1992; Tietjen et al., 1983; Coombe et al., 

1968), and 11 to the α,β-dehydrocurvularin, the octaketide lactone also produced by a 

number of fungal species (Penicillium, Curvularia, Cercospora and Stemphylium spp.) 

(Caputo and Viola, 1977; Robenson and Strobel, 1981; Arai et al., 1989; Lai et al., 1989). 

This was the first report on the production of these two phytotoxins by a strain of A. 

zinniae, a good candidate for the biological control of X. occidentale with the inundative 

approach (Vurro et al., 1998). Even though some toxic properties of both compounds have 

already been reported (Suzuki et al., 1970; Tietjen et al., 1983; Robeson and Strobel, 1985; 

Betina, 1992), some aspects seemed to be interesting, even for a practical approach. Tietjen 

et al. (1983) demonstrated that brefeldin A was particularly active against species 

belonging to the Asteraceae family and only on two out of the twenty-two non Asteraceae 

species tested. In fact, the application of droplets containing around 0.3 µg of toxin caused 

the faster appearance of wide necrotic spots, both on host leaves and cotyledons. In 

contrast, the effect of this metabolite at the tested concentration on other non-host plants 

was lower or nil. Furthermore, the toxin caused severe necrosis also when it was applied 

on host leaves and cotyledons without puncture, which was not observable for non-host 

plants. This unusual observed effect suggested using the spray application.  

 Vurro and Ellis (1997) showed that some fungal toxins, applied at concentration 

which causes no macroscopic toxic effects, are able to suppress phenylalanine ammonia 

lyase induction, which can be one of the first steps of the mechanism of defence of plant 

from pathogen attack. Thus, a suitable application could be the possible use of brefeldin A 

at very low concentration, in a mycoherbicide suspension, together with A. zinniae conidia 

to block the defence reaction of X. occidentale and help the pathogen to cause a more 

severe disease, and hence to obtain a better control of the weed.  
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Striga hermontica (Del.) Benth, commonly called witchweed, is a parasitic weed 

which causes severe losses in many important cereal crops, mainly in sorghum, corn, 

millet, rice and sugarcane. The loss of grain-sorghum yield due to striga infestation may 

reach up 70% and in case of severe infestation there may no yield at all. S. hermonthica is 

still very difficult to control, even using herbicides and fertilisers, cultural methods and 

resistant crop varieties. Abbasher and Sauerborn (1992) suggested the use of pathogenic 

microorganisms, including Fusarium nygamai Burgess and Trimboli, which proved to be 

particularly promising. From the acidic organic extract of culture filtrates, the main 

phytotoxins were identified, using essentially spectroscopic method (1H- and 13C-NMR 

and FAB and EI MS), as fusaric and 9,10-dehydrofusaric acids (12 and 14, Fig. 1.2). Their 

corresponding methyl esters (13 and 15, Fig. 1.2) were also isolated for the first time as 

naturally occurring compounds at very low level (Capasso et al., 1996). Fusaric acids (12 

and 14) have been already described as toxic metabolites produced from other species of 

Fusarium (Turner, 1971; Turner and Aldridge, 1983; Luz et al., 1990; Abraham and 

Hensenn, 1992). The phytotoxic properties of fusaric acids and their methyl esters, were 

further investigated using biological assay on striga plants, seedlings, leaves and seeds in 

order to test their possible use as natural herbicides. The application of very low amounts 

of toxins (10-6 M) caused a dramatic reduction of seed germination, while on punctured 

leaves caused the appearance of large necrotic spots. The use of these metabolites against 

Striga, possibly in combination with other cultural and biological methods, could assist in 

controlling this weed (Zonno et al., 1996). 

The perthotrophic fungal species Ascochyta caulina (P. Karst.) v.d. Aa and v. Kest. 

has been proposed as a mycoherbicide against Chenopodium album (Kempenaar, 1995), 

also known as common lambsquarter or fat hen, a common worldwide weed of many 

arable crops as sugar beet and maize (Holm et al., 1977). The application of 

pycnidiospores of the fungus to C. album plants causes the appearance of large necrosis of 
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leaves and stems and, depending on the amount of necrosis developed, plants show 

retarded growth or death. 

 A. caulina belongs to a well-known toxin-producer genus (Strange, 1997), and the 

possible use of fungal toxins as an alternative or in addition to the use of pathogens in 

weed biocontrol (Strobel et al., 1991), is under investigation. The culture filtrates of A. 

caulina, showing high phytotoxicity on leaves and cuttings both of host and non-host 

plants was examined to ascertain the chemical nature of the phytotoxic metabolites. Three 

toxins were isolated using gel-filtration combined to TLC methods and characterized using 

spectroscopic (essentially 1D and 2D 1H and 13C-NMR and ESI MS) and chemical 

methods. The main toxin, named ascaulitoxin (16, Fig. 1.3) was characterized as the N2-β-

D-glucopyranoside of the 2,4,7-triamino-5-hydroxyoctandioic acid (Evidente et al., 

1998c). The other two toxins, which as 16 are non-protein aminoacids, were characterized 

as the trans-4-amino-D-proline and the ascaulitoxin aglycone (17 and 18, Figure 1.3) 

(Evidente et al., 2000; 2001).  

Tested on fat hen in the leaf-puncture assay, 16 caused the appearance of necrotic 

spots surrounded by chlorosis. Particularly relevant in size was necrosis on sugarbeet (Beta 

vulgaris L.). Clear necrosis also appeared both on some weeds and on cultivated plants. 

Still clear, but of reduced size, were necrosis on tomato (Lycopersicon esculentum Mill.) 

and redroot pigweed (Amaranthus retroflexus L.). Assayed on fungi (G. candidum) as well 

as on bacteria (Pseudomonas syringae and Escherichia coli), ascaulitoxin showed no 

antimicrobial activity (Evidente et al., 1998c). 

  Considering its interesting phytotoxicity on C. album, and the lack of activity 

against fungi and bacteria, further studies are planned on the role of ascaulitoxin in the 

plant disease and on the mechanism of action. These aspects are important because the 

toxin could be used as natural herbicide, either in combination with toxic metabolites 

present in the culture filtrate of A. caulina, or with the pathogen itself, as well as with other 
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control methods in the integrated weed management approach (Evidente, 2006; Evidente 

and Abouzeid, 2006).  

However, any pratical application of this toxin appears to be seriously limited by 

the very low amounts of this metabolite present in the fungal culture filtrates. Therefore, 

efforts were first directed to devise a convenient and simple method of total synthesis. 

Because the naturally occurring toxin, is only one of the possible sixteen stereoisomers, the 

determination of the relative configuration of the four chiral centres (C-2, C-4, C-5 and C-

7) of ascaulitoxin appeared to be the most pressing and relevant problem to establish its 

absolute stereochemistry and to realize its stereoselective synthesis. The determination of 

the relative stereochemistry of the ascaulitoxin molecule was performed by NMR 

configuration analysis, based on the evaluation of the omo (3JHH)- and hetero (2JCH and 

3JCH)- nuclear coupling constants, in combination with ROESY (Rotating Overhauser 

Effect Spectroscopy) responses (Matsumori et al., 1995, 1996, 1999, Wu et al., 2000; 

Bassarello et al., 2001). 

Assayed on punctured leaves, 17 had a drastic effect on the host plant, causing the 

rapid appearance of large necrosis surrounding the puncture point. On other dicot leaves, 

the phytotoxicity varied from large necrotic areas (poppy, annual mercury, cucumber, wild 

cucumber), through medium ones (tree of heaven, tomato, common sowthistle), to small 

necrotic spots (black nightshade). An interesting aspect is the lack of toxicity when 17 was 

assayed on several monocots, both cultivated (wheat, oat, barley) as well as wild 

(canarygrass, slender foxtail, wild oat). When tested at up to 10-5 M on cut young fat hen 

seedlings, the toxin caused wide necrosis and dryeness of cotyledons, while no effect could 

be seen on stems (Evidente et al., 2000). The toxin lacks antifungal and antibiotic activities 

when assayed on G. candidum and on P. syringae ssp. syringae and E. coli, as already 

described for the ascaulitoxin, and has no zootoxicity when tested on brine shrimp larvae 

(Artemia salina L.).  
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To purify the three phytotoxins produced by A. caulina, an alternative method 

based on ion exchange chromatography was developed to overcome difficulties and high 

costs, and to obtain a mixture of all three toxins suitable for further experiments in view of 

their practical application. The mixture of toxic metabolites (350 mg/l) (Vurro et al., 

2001), was used in greenhouse, field, and formulation experiments either alone or in 

combination with the pathogen, its culture filtrate, or with a low-dose herbicide, to 

biocontrol host plant. The efficacy of the toxins mixture was compared with that of the 

culture filtrate alone or in combination with the fungus. In glasshouse experiments it 

showed the same toxicity as culture filtrates when applied at the same concentration as the 

latter (2 mg/ml). The phytotoxins mixture influenced the growth of C. album even at the 

lowest concentration. Greenhouse experiments also showed that the use of solutions from 

the toxins mixture (1 mg/ml) in conjunction with spores of A. caulina (at 106/ml) improved 

the biocontrol efficacy of this fungus by more than 30 percent. Furthermore, the 

simultaneous application of toxins or fungal spores with low dose of herbicides at one-fifth 

of the labelled rate, such as metribuzin which act as an inhibitor of photosynthesis at the 

level of photosystem II, and rimsulfuron which is an aceto-lactate synthase inhibitor, gave 

better results than single-agent treatments. The efficacy improvement of rimsulfuron, 

which is nearly ineffective against C. album when used at the labelled concentration, could 

have an interesting practical application in terms of management of herbicide resistance. 

Furthermore, exploration of toxin activity could expand the action spectrum of herbicides 

or biocontrol agents (Vurro et al., 2001). 

Formulations containing different combinations of A. caulina conidia, its 

phytotoxins, and low-dose herbicides have been tested. A significant improvement in the 

efficacy of the fungus was achieved in glasshouse trials with an aqueous formulation 

containing PVA (polyvinyl alcohol, 0.1 percent v/v), Psyllium (a plant derived 

polysaccharide, 0.4 percent w/v), Sylgard 309 (a surfactant, 0.1 percent v/v), nutrients, and 
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conidia (5 x 106/ml). Field trials have investigated the performance of A. caulina conidia 

applied at different development stages of C. album either as a single treatment or 

combined with sublethal doses of herbicides or with the fungal phytotoxin. With the 

available formulation, favourable weather conditions are needed to obtain the infection in 

the field. The efficacy of the strain of A. caulina used so far has proved to be inadequate to 

justify its development as a bioherbicide. This is probably due to its low virulence (Netland 

et al., 2001). 

 

1.3. Biological control of grass weeds  

In many countries, annual and perennial grasses are among the most problematic 

weeds for various crops (Holm et al., 1977). Of all the possible causes of loss in cereal 

yields, weeds, such as annual grasses are one of the most important; this is due to their 

similarity in morphology, physiology and ecology to the crop species.  

Such weeds are difficult to control because of their prodigious seed production, 

which is responsible for their reproduction and diffusion, their tolerance to the chemical 

herbicides available, and their growth habits that can enable them to escape from chemical 

and mechanical control practices. Tactics that reduce the input of seed can improve long-

term control of infesting grasses.  

Considering the increasing number of weed species that are tolerant or resistant to 

the use of herbicides (Naylor, 2002), and the difficulties in finding new chemical active 

compounds, biocontrol microorganisms and new herbicides from natural sources are 

receiving a renewed interest. One such strategy could be the massive application of seed-

borne pathogens as bioherbicides. Pathogens damaging the seed in the inflorescence or 

preventing flowering have also potential for biological control. 

Some promising fungal pathogens have been identified, and their use as inundative 

agents has been proposed (Zhan and Watson, 1997; Chandramohan and Charudattan, 
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2001); furthermore, some fungal phytotoxins have been identified and considered as 

potential natural herbicides (Hallock et al., 1988; Kastanias and Tokousbalides, 2000). 

Pathogenic fungi isolated from grass weeds were found in several fungal collections and 

many strains were collected (Fracchiolla, 2003). Such investigation was aimed at finding 

producers of toxic metabolites with herbicidal activities against grass weeds.   

1.3.1. Biological control of Bromus spp. 

Pathogens damaging the seed in the inflorescence or preventing flowering have also 

potential for biological control. Agents that attack the reproductive output of weeds are 

frequently used in biological control programmes against weeds in pastures, rangeland and 

natural habitats. Pyrenophora semeniperda (Brittlebank & Adam) Shoemaker, a seed-

borne pathogen that causes several symptoms in infected plants, has been proposed as a 

bioherbicide (Campbell et al., 1996). P. semeniperda was first described in Europe in 

1841, and later in Australia, New Zealand, North America and South Africa. The fungus 

infects seeds and leaves of over 35 genera of grasses including all the winter cereals and 

six dicotyledonous genera (Medd, 1992). In brome grass (Bromus spp.) and wheat 

(Triticum aestivum L.) it has been reported to cause death of seed primordia and 

subsequent abortion of seed (Neergard, 1979). The most striking symptom is the 

production of vegetative fungal stromata on infected seeds, which can lead to a reduction 

in the germination capacity or a decrease in seedling vigour. The ability of P. semeniperda 

to infect seeds, when applied as conidial suspension to the inflorescence of several grassy 

weed-species, has also been demonstrated. Since some annual grasses may occur in 

pastures or crops used as forage, any potential bioherbicidal agent should be devoid of 

toxic effects on livestock. Equally, there should be no risk of introducing toxins to grains 

that are harvested for human consumption.  
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It is well known that other species of Pyrenophora produce toxins, some of which 

are potentially dangerous (Bach et al., 1979; Friis et al., 1991). When grown on wheat 

kernels, P. seminiperda showed to produce cytochalasins, a large group of fungal 

metabolites having different biological activities (Natori and Yahara, 1991; Abate et al., 

1997; Vurro et al., 1997; Evidente and Motta, 2001). Three new cytochalasans, named 

cytochalasins Z1, Z2 and Z3 (19, 20 and 21, Fig. 1.4) were isolated and characterised by 

spectroscopic analysis carried out also in comparison with the spectral data of several 

cytochalasins already known (Cole and Cox, 1981; Vurro et al., 1997; Evidente and Motta 

2001). Other cytochalasins isolated from the same organic extract were identified, using 

the same spectroscopic techniques, as the already known cytochalasins F, T, deoxaphomin 

and cytochalasin B (28-30 and 26, Fig. 1.5). Cytochalasins Z1 and Z2 proved to be 

structurally related to cytochalasin T, whereas cytochalasin Z3 was related to cytochalasin 

B, which was produced in very large amounts (Evidente et al., 2002). 

In seedling assays on wheat and on tomato, the most active compounds were 

cytochalasin B, its 21,22-dihydroderivative (31, Fig. 1.5), prepared by NaBH4 reduction of 

26 (Bottalico et al., 1990), cytochalasins F, Z3 and deoxaphomin. They were all able to 

reduce the root length by about 50%. In the puncture assay, only deoxaphomin, at the used 

concentration, showed the ability to produce small necrotic lesions, whereas no effects 

were produced in the immersion assay by any of the tested cytochalasins. The existing 

structural correlation of cytochalasins Z1 and Z2 with cytochalasin T, and of cytochalasin 

Z3 with CB was also observed biologically. The first two were inactive, whereas the other 

two proved to be active in the root elongation assay (Evidente et al., 2002). These results 

were in accordance with those previously described in structure-activity relationship 

studies, which showed the important role of the hydroxy group at C-7 in conferring 

biological activity (Bottalico et al., 1990; Capasso et al., 1991; Vurro et al., 1997). These 
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results also showed that modification of the benzyl residue determine the lacking of 

activity. 

Considering the potential applications and the availability of large amount of solid 

cultures of Phoma exigua var. heteromopha (Schulzer et Sacc.) Noordeloos et Boerema, 

which is a good producer of cytochalasins in solid and liquid culture (Vurro et al. 1997), an 

investigation, was carried out to look for new cytochalasins yielded by this fungus. P. 

exigua var. heteromorpha is the causal agent of a severe disease of Oleander (Nerium 

oleander L.) observed in 1985 in a nursery near Bari, Italy (Vurro et al., 1997).  

Three new cytochalasans, named cytochalasins Z4, Z5, and Z6 (22-24, Fig. 1.4) were 

isolated from the wheat culture of P. exigua var. heteromorpha together with the known 

cytochalasin A, B, 7-O-acetylcytochalasin B, F, T, Z2, Z3,  and deoxaphomin (25-29, Fig. 

1.5, 20 and 21, Fig. 1.4 and 30, Fig. 1.5). All three new cytochalasins were characterised as 

24-oxa[14]cytochalasans by extensive use of NMR and MS techniques. Cytochalasins Z4 

and Z5 proved to be structurally related to cytochalasin B, whereas Z6 was related to 

cytochalasin F (Evidente et al., 2003).  

Cytochalasins Z1 and Z5 represents the first two examples of a 24-

oxa[14]cytochalasan bearing a p-hydroxybenzyl residue at C-3 of the perhydroisoindolyl-

1-one moiety, and therefore, differed from the other [14] cytochalasans showing a phenyl, 

isopropyl or an indol-3-yl residue at C-10 and having a different functionalised 

macrocyclic ring (Cole and Cox, 1981; Natori and Yahara, 1991; Vurro et al., 1987). 

Furthermore, Z6 is the first 24-oxa[14]cytochalasan showing the epoxy group located 

between C-6 and C-7 of the perhydroisondolyl-1-one residue, the deoxygenation of C-20, 

and the hydroxylation of C-19, as already observed for Z3.   

In tomato seedling assay, at 10-4 M, only Z6 proved to be slightly active causing 30% 

inhibition of root elongation, whereas Z4 and Z5 were inactive. When assayed at the same 
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concentration on brine shrimps (A. salina L.), only Z5 caused a quite low mortality of 

larvae (21%), whereas Z4 and Z6 were both inactive (Evidente et al., 2003).  

Cytochalasins have been considered as potential mycotoxins. If high level of toxins 

were really produced in vivo, this could, in practice, make it hazardous to use these fungi 

as a biological control agent against grass weeds. Hence, studies are planned to quantify 

the presence of such toxins in naturally infected seeds, as well as to estimate their stability 

and impact in the environment. 

1.3.2. Biological control of Lolium perenne  

Some of the selected fungal strains were able to produce highly phytotoxic culture 

filtrates, particularly one strain of Drechslera siccans, isolated from Lolium perenne L., 

another annual and perennial grass which are one of the most important causes of loss in 

cereal yields. From the culture filtrates of D. siccans, a new phytotoxic trisubstituted 

naphthofuroazepinone, was isolated and named drazepinone (32a, Fig. 1.6). It was  

characterised as a 3,5,12a-trimethyl-2,5,5a,12a-tetrahydro-1H-naphtho[2’,3’:4,5]furo[2,3-

b]azepin-2-one on the basis of its spectroscopic properties (essentially NMR and MS). The 

relative stereochemistry of drazepinone was based on NOESY correlations (32b, Fig. 1.6). 

Applied to wounded leaves, the toxin caused necrosis on almost all the species tested. 

Necrosis severity ranged from very wide, as in the case of Urtica dioica, to small ones as 

those observable applying the toxin to Setaria viridis and L. perenne leaves. The necrosis 

on Euphorbia helioscopia and Mercurialis annua leaves, both Euphorbiaceae, and C. 

album were also interesting. On the opposite, Amaranthus retroflexus and Bromus sp. were 

completely unaffected by the toxin. The symptoms caused by drazepinone and by the 

culture filtrates appeared to be almost the same, both in term of speed of appearance and 

size of necrosis, although the concentration of drazepinone in the culture filtrates is much 
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lower with respect to the pure solution. This could mean that, besides drazepinone, the 

main toxin in the culture extracts, the fungus could produce other bioactive compounds. 

Drazepinone showed a weak fungistatic activity on G. candidum causing only a 

slight reduction of the fungal growth and it proved to be completely inactive when tested 

on P. syringae and Lactobacillus plantarum (a Gram- and a Gram+ bacterium, 

respectively). Assayed for zootoxic activity at 10-3 M, the metabolite caused the total 

mortality of shrimp larvae, which decreased to 81% and 12% when assayed at 10-4 and 10-5 

M, respectively (Evidente et al., 2005). 

Drechslera is a well-known genus producing phytotoxic metabolites. Most of those 

pathogens and their toxins have been deeply studied being agents of very severe diseases 

of cropped cereals (Tatum, 1971; Padmanabhan, 1973; Strobel et al., 1988). Some species 

were also isolated from grass weeds (Chandramohan and Charudattan, 2001), and their 

toxins proposed as potential natural herbicides (Kastanias and Tokousbalides, 2000; 

Kenfield et al., 1989a; 1989b). Toxins with structure completely different from 

drazepinone were previously isolated from other strains of the same fungus, such as de-O-

methyldiaporthin (Hallock et al., 1998) and siccanol (Lim et al., 1996), an isocoumarin and 

a bicyclic sesterterpene, respectively. Siccanol completely inhibited the root of Italian 

ryegrass (L. multiflorum Lam.) seedlings at a level of 100 ppm (Lim et al., 1996). De-O-

methyldiaporthin was almost inactive when assayed on host plants (L. perenne L. and A. 

sativa L.), whereas it was toxic when assayed on corn, crabgrass, and soybean, and on 

Barnyard grass and spiny amaranth (Hallock et al., 1998), with a toxicity resembling that 

caused by drazepinone. 

The original chemical structure of drazepinone, the interesting phytotoxic activity, 

the low activity against fungi and bacteria, and the relatively low zootoxicity, suggest 

further studies for its use as an environmentally friendly and safe herbicide (Evidente and 

Motta, 2001). 
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1.3.3. Biological control of Digitaria sanguinalis 

Drechslera gigantea Heald & Wolf is a cosmopolitan fungal pathogen found 

throughout North and South America, Japan, and other regions (Sivanesan, 1992). It causes 

a zonate eye-spot disease of grasses, banana, and coconut (Sivanesan, 1992; Farr et al., 

1989). Under severe levels of disease, the leaf spots may coalesce, causing leaf lesions and 

leaf blight. Infected leaves may be killed. The extensive studies carried out over the past 

five years have shown that this fungus is effective for grass management under field 

conditions, alone and in combination with two other grass pathogens, Exserohilum 

longirostratum and E. rostratum (Chandramohan and Charudattan, 2001; Chandramohan 

et al. 2002). Typically, symptoms of D. gigantea leaf blight appear in about one week after 

the fungus is sprayed on the grass foliage and the disease progresses steadily over the 

following two to three weeks. The treated foliage is killed and the control lasts for 10 

weeks or more. Rhizomes are not killed and the grasses will re-grow after a period of 

mycoherbicide-caused suppression.  

Considering the potential of the genus in producing bioactive metabolites, and 

considering our interest in finding new toxins produced by weed pathogens to be tested as 

new natural herbicides, it seems of interest to investigate the production of novel 

metabolites by this proposed mycoherbicide isolated in Florida from diseased large 

crabgrass (Digitaria sanguinalis) (Photo 1), when growth in both liquid and solid cultures. 

This is one of the aims of the present thesis. 

 

1.4. Biological control of Cirsium arvense and Sonchus arvensis (Asteracee) 

Perennial weeds are common problem in different crops. They are especially harmful 

in agricultural systems with reduced herbicide usage because of their tolerance to 

traditional mechanical control methods. Such the typical plant species are Cirsium arvense 

(L.) Scop. (Photo 2) and Sonchus arvensis L. (Photo 3) (both from Asteraceae) commonly 
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called Canada thistle and perennial sowthistle, respectively (Donald, 1990; Lemna and 

Messersmith, 1990).  

Canada thistle is a persistent perennial weed that grows vigorously, forming dense 

colonies and spreading by roots growing horizontally that give rise to aerial shoots. It 

spreads by seed, either by wind or as a contaminant in crop seed. Canada thistle is native to 

south Eastern Europe and the eastern Mediterranean area. It has spread to most temperate 

parts of the world and is considered an important weed all around the world as it infests 

many habitats such as cultivated fields, roadsides, pastures and rangeland, railway 

embankments, and lawns (Holm et al., 1977; 1997).  

Classified as a noxious weed in many states and provinces, perennial sowthistle is a 

problem in several crops, where it causes economic losses due to reduced crop yields, 

increased cultivation and herbicide expenses, and land depreciation. At high densities (27 

shoots/m2), it has reduced spring wheat yields up to 45 percent in North Dakota. Perennial 

sowthistle is also a host of several economically important plant pests (Lemna and 

Messersmith 1990). A native of Eurasia, perennial sowthistle is distributed from 

Scandinavia south to Italy and east to the western portions of the former Soviet Union 

(Holm et al., 1977; 1997). Since its introduction to North America, it has spread widely 

throughout the northern United States and southern Canada. The plant has also established 

in South America, Australia, and New Zealand. Widely established in temperate regions, it 

is not found in the tropics (Lemna and Messersmith 1990). 

Herbicides recommended for chemical control of the perennials in non-organic 

cropping systems are restricted to few active substances (clopyralid, dicamba, 

chlorsulfuron, bentazon, phenoxy-acids), and they are low selective (Lemna and 

Messersmith, 1990; Kloppenburg and Hall, 1990; Grekul et al., 2005). Obviously, new 

compounds should be actually developed as herbicides against the composite weeds. 
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The natural compounds acting as herbicides, phytotoxins or their synthetic analogues, 

could be used for the development of new agrochemicals against weeds (Evidente and 

Abouzeid, 2006; Rimando and Duke, 2006). Many plant pathogens, especially 

necrotrophic and hemibiotrophic fungi, produce phytotoxins responsible for disease 

development (Hoppe, 1998). Numerous surveys were carried out to find pathogens of 

Cirsium arvense (Berestetsky, 1997; Leth and Andreasen, 1999; Bailey et al., 2000). The 

mycobiota of S. arvensis was studied less extensively (Berestetski and Smolyaninova, 

1998). Several pathogens, as Stagonospora cirsii Davis and Ascochyta sonchi (Sacc.) 

Grove (syn. Phoma exigua Desm. var. exigua) were found to be common for both host 

plants. Phyllosticta cirsii and Phomopsis cirsii were isolated from Cirsium arvense only.  

The genus Ascochyta includes many phytopathogenic fungi that are responsible for 

severe diseases of many plant species (Mel’nik, 1971; 2000).  They cause lesions on 

leaves, stems, blossoms and pods, and discoloration of the hypocotyl, cotyledons, and 

roots. Some of these pathogens are soil-borne and often persist in or on soil and plant 

debris. Some species have also been proposed as mycoherbicides for the biological control 

of noxious weeds, e.g.: Ascochyta caulina (P. Karst.) v.d. Aa and v. Kest. for the biological 

control of Chenopodium album L. (Netland et al., 2001), or Ascochyta cypericola against 

Cyperus rotundus L. (Upadhyay et al., 1991). These pathogens produce phytotoxins and 

their involvement in the appearance of symptoms has been proposed (Evidente et al., 

1993a; 1993b; 1998b; 2000; Strange, 1997).  

Ascochyta sonchi (Sacc.) Grove was isolated from necrotic leaves of Sonchus 

arvensis L., and of Cirsium arvense L. (Scop.). Several strains of this fungus were isolated 

and their potential as mycoherbicides is under evaluation.  

The main toxin, named ascosonchine (33, Fig. 1.7), was purified from the liquid 

culture of a strain of A. sonchi and chemically characterized and proposed as natural 

herbicide in addition or as an alternative to the use of the pathogen (Evidente et al., 2004). 
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Ascosonchine is an enol tautomer of 4-pyridylpyruvic acid, characterised as (Z)-2-

hydroxy-3-(4-pyridyl)-2-propenoic acid, showing interesting selective herbicidal 

properties, but is without antibacterial, antifungal, or zootoxic activities. The comparative 

assessment of virulence of many strains is difficult and time consuming. Thus attemptes 

were carried out to correlate the in vitro production of ascosonchine with its ability to 

cause the disease. If a positive correlation will be found, more virulent strains could be 

simply selected by quantifying the production of toxic metabolites in vitro. For this 

purpose, a HPLC method has been developed for the easy and rapid analysis of 

ascosonchine in the culture filtrates. This method has been applied to evaluate the 

production of ascosonchine by nine different A. sonchi strains isolated from different 

origins, as well as to optimize ascosonchine production conditions. The results obtained are 

reported in this thesis. In particular the method evidenced the presence of two atypical 

Ascochyta strains. 

The pycnidial fungus Stagonospora cirsii J.J. Davis is a foliar pathogen of C. 

arvense, which biological potential for development of a mycoherbicide was demonstrated 

(Berestetskiy et al., 2005). In preliminary study it was found that fungus was capable of 

producing phytotoxins because its culture filtrate demonstrated phytotoxic activity to 

leaves and roots of the weed (Mitina et al., 2005). Recently, with the purpose of finding 

new natural potential herbicides, the main phytotoxic metabolite produced by S. cirsii in 

liquid culture, named stagonolide (34, Fig. 1.7), was isolated and characterized as a new 

phytotoxic nonenolide (Yuzikhin et al., 2007). 34 showed strong phytotoxicity on host and 

other non host and cultivated plants and a selective activity on seedling of Cirsium arvense 

and others Asteracee (Yuzikhin et al., 2007). 

Considering the interesting results obtained on the basis of previous experiences 

made with phytopathogenic fungi, which in solid culture produced increased and/or 

different phytotoxins in respect to those isolated from liquid culture, the fungus has been 
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also grown on a solid medium, and the residue obtained by organic solvent extraction has 

been analysed with the aim of finding new phytotoxic metabolites.  

Recently, the fungus Phyllosticta cirsii has been evaluated as a possible biocontrol 

agent of Canada thistle (Berestetskiy et al., 2005). Species belonging to the genus 

Phyllosticta are known to produce bioactive metabolites, including non-host phytotoxins, 

e.g.: phyllosinol, brefeldin and PM-toxin isolated by cultures of Phyllosticta sp., 

(Sakamura et al., 1965), P. maydis (Comstock et al., 1973) and P. medicaginis, (Entwistle 

et al., 1974) respectively.  

Considering the interest for bioactive metabolites produced by weed pathogens as 

sources of novel natural herbicides, it seem of interest to investigate the production of 

toxins by the two atypical Ascochyta sonchi strains, Stagonospora cirsii and Phyllosticta 

cirsii. This is another main aim of the present thesis. 

 

1.5. Biological control of parasitic weeds 

Parasitic plants are among the worst weed problems, being responsible for major 

losses to many crops. Orobanche spp. (broomrapes) are holoparasitic plants which have 

lost their autotrophic way of life. This genus comprise together 170 species distributed 

predominantly in the Northern Hemisphere (Schneeweiss et al., 2004) and have adapted to 

obtain its organic and inorganic resources by parasitizing the roots of a range of plant 

species mainly in wild ecosystems. They are responsible for major losses to vegetable, 

legume, and sunflower crops by interfering with water and mineral intake and by affecting 

photosynthate partioning (Parker et al., 1993; Joel et al., 2007). Orobanche species vary in 

their host specificity. Most species have a rather narrow host range. For instance, species 

such as O. densiflora Salzm. ex Reut., O. gracilis Sm. and O. hederae Duby. are highly 

specialists parasitizing few wild species in nature. However, a few species of those genera 

have become weedy adapting to parasitize crops in agricultural environment. These are 



 

 
 

27

usually more generalists. Species such as O. aegyptiaca (Pers.) (syn. Phelipanche 

aegyptiaca), O. crenata Forsk., O. minor Sm and O. ramosa (L.) Pomel (syn. P. ramosa) 

(Photos 4 and 5), parasitize a wide range of crops since antiquity (Sauerborn et al., 1991; 

Parker, 1994). However others are far more specific as O. cumana Wallr. parasitizing only 

sunflower (Parker et al., 1993; Joel et al., 2007) and O. foetida Poir that parasitizes many 

wild species of Leguminosae (Pujadas-Salvá, 2002), and only recently has been reported as 

weedy on faba bean (Kharrat et al., 1992) and vetch (Rubiales, 2005). 

The Orobanche seeds germinate only if stimulated by the host root exudates. A 

radicle emerges through the seed coat which grows toward the host root and adheres to it 

by forming an appressorium. Subsequently the parasite penetrates the host root and 

connects the vascular tissue through an organ called haustorium which serves as an 

endophytic bridge through which the nutrient and water transfer is established from the 

host to the parasite. The parasite stores the resources stolen to the host in a storage organ 

called tubercle. Furthermore, the parasites have a long underground phase, and by the time 

they emerge much of the damage has already been produced. 

Due to its unusual life cycle and the total dependence by the host, traditional control 

methods very often are impractical. The use of herbicides is not easy due to their 

economical or ecological unfeasibility, or lack of tolerance to the herbicides in some crops, 

which might overcome by the use of transgenic crops with target site herbicide resistance 

(Joel et al., 1995; Surov et al., 1997; Aviv et al., 2002).  

Biological control is considered an attractive approach for broomrape control. Plant 

pathogens have also been proposed as source of natural herbicides (Strobel et al., 1991) 

because they produce many toxic metabolites (Evidente and Motta, 2001). A number of 

toxins such as fusaric and 9,10-dehydrofusaric acids have been isolated from Fusarium 

species isolated from O. ramosa plants. Organic extract from liquid culture caused total 

inhibition of seed germination (Abouzeid et al., 2004). Verrucarins, A, B, M and L acetate, 
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roridin A, isotrichoverrin B, and trichoverrol have been isolated from liquid cultures of the 

fungus Myrothecium verrucaria. Neosolaniol was isolated from Fusarium compactum. All 

these compounds belong to a different subgroup of trichothecenes and proved to be potent 

inhibitors of O. ramosa seed germination and possess strong zootoxic activity when 

assayed on Artemia salina brine shrimps (Andolfi et al., 2005). However at very low 

concentration (10-7), roridin A showed very low zootoxic activity preserving a strong 

phytotoxic activity. These results suggest that roridin A could be proposed as a natural 

herbicide for the control of O. ramosa. 

Considering that the seed germination of parasitic plants depends upon the presence 

of stimulating exudates produced by the roots of the host plant, an alternative approach for 

the management of parasitic host plants, the so called “suicidal germination”, is under 

investigation. This latter consists in the induction of seeds germination by the application 

of a germination stimulant to the soil, in the absence of host. The parasite seeds germinate 

but, in the absence of the host will die in few days, resulting in a reduction of seed bank. 

Therefore, much attention has been focused on the isolation and identification of 

germination stimulants (Humphrey et al., 2006). A number of compounds from the 

terpenoids group have been identified as germination stimulants, starting from strigol, 

which was isolated from the root exudates of cotton (Cook et al., 1972) and found also 

later in maize, millet, sorghum and clover (Siame et al., 1993; Sato et al., 2003; Yoneyama 

et al., 2004); sorgolactone, isolated from the root exudates of sorghum (Hauck et al., 

1992); alectrol, isolated from cowpea and red clover (Müller et al., 1992); orobanchol, 

isolated from red clover (Yokota et al., 1998). Besides, 10 compounds have been detected 

as strigolactones in root exudates of pea, tomato, tobacco and other plant species 

(Yoneyama et al., 2006).  

Recently some investigation were carried out on the fenugreek (Trigonella foenum-

graecum L.) root exudates, which has been reported as having potential as trap crop of O. 
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ramosa as it induces O. ramosa seed germination but is little infected (Fernández-Aparicio 

et al., 2008), to ascertain its effects on the germination of O. crenata, O. ramosa and O. 

foetida seed and to determine the metabolites responsible on the interactions between 

different plants (Abebe et al., 2005). On the contrary, fenugreek roots have been suggested 

to inhibit O. crenata germination resulting in reduced infection in faba bean or pea 

intercropped with fenugreek (Bakheit et al., 2002; Evidente et al., 2007). The main 

inhibiting metabolite, named trigoxazonane, was isolated and chemically characterized as a 

new monosubstituted troxazonane (Evidente et al., 2007). 

Among several fungal metabolites tested with the aim of finding new natural 

stimulants, Yoneama and co-authors (Yoneama et al., 1998) reported that cotylenins and 

fusicoccins  induced high seed germination (>50%) of S. hermonthica (Del.) Benth and O. 

minor at concentrations as low as 10-5 M. They also reported that the answer of plants is 

species dependent. 

Fusicoccin (FC, 35, Fig. 1.8) is the major carbotricyclic phytotoxic diterpenoid 

produced by Fusicoccum amygdali Delacr., the causative fungal agent of peach and 

almond canker, isolated in 1962 (Ballio et al., 1964) and structurally described in 1968 

(Ballio et al., 1968a; Barrow et al., 1968). Many studies were carried out on the chemical, 

biosynthetic and biological properties of this toxin and on structure-activity relationships 

(SAR) (Ballio and Graniti, 1991; Ballio et al., 1991; Evidente et al., 1984; Marrè, 1979). 

Ophiobolins, are sesterterpenoid phytotoxins close related to fusicoccins and cotylenins 

and are produced by the pathogenic fungi Bipolaris species, which usually infect rice, 

maize and sorghum. Many study were carried out on the organisms that produce the 

various ophiobolins, the structural variations of ophiobolins, the biological actions of 

ophiobolins in plants, animals and microrganisms, and the mode of actions and the 

possible use of ophiobolin A (36, Fig. 1.8) as a calmodulin antagonist (Au et al., 2000). 

The efficacy of FC in stimulating seed germination of parasitic plants was previously 
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reported (Ballio and Graniti, 1991; Marrè, 1979), and considering the availability of 

several derivatives and natural analogues of FC and its aglycone, as well as of cotylenol, 

due to previous works on the purification and identification of those compounds in 

Professor Evidente lab, a structure-activity study was carried out using the seeds of another 

parasitic plant species, O. ramosa, which proved to be useful in a preliminary screening. In 

both groups of glycosides and aglycones (including cotylenol), the most important 

structural feature to impart activity appeared to be the presence of the hydroxyl group at C-

19 (Evidente et al., 2006). Furthermore, the dideacetyl FC, which is easy prepared by 

alkaline hydrolysis of FC, is a good candidate to promote a suicidal germination of O. 

ramosa. 

Considering these results and that of the FC efficacy in stimulating seed germination 

of parasitic plant could be species dependent, we decided to carry out a study testing the 

effect of some FC derivatives and ophiobolin A on seed germination of different 

Orobanche species namely O. aegyptiaca, O. ramosa, O. crenata, O. cumana, O. 

densiflora, O. foetida, O. gracilis, O. hederae, and O. minor. This is the third aim of the 

present thesis. 
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2. OBJECTIVES 

 The first aim of the present thesis is to isolate and characterize by spectroscopic 

technique and chemical methods, the phytotoxic metabolites produced in liquid and solid 

cultures by Dreschlera gigantea, a potential mycoherbicide of grass weeds, isolated in 

Florida from naturally infected large crabgrass (Digitaria sanguinalis). 

The second aim of the present thesis is to isolate and characterize by spectroscopic 

methods, the phytotoxins produced by fungi belonging to different genera as Stagonospora 

cirsii and Phyllosticta cirsii, proposed as mycoherbicides of Cirsium arvense and Sonchus 

arvensis, two noxious perennial weeds widely occurring in the temperate region of the 

world. Furthermore, the development of an analytical method to quantify the ascosonchine 

content in several Ascochyta sonchi strains, isolated from C. arvense and S. arvensis 

leaves, as well as the isolation and characterization by spectroscopic methods of phytotoxic 

metabolites produced in liquid and solid cultures by two atypical A. sonchi strains, is 

described.   

The third aim of the present thesis is to use some natural compounds to stimulate the 

seed germination of the parasitic Orobanche spp. as an alternative and environmentally 

friendly approach, the so called “suicidal germination”. This work was carried out in 

collaboration with the agronomist groups. 

Finally, the biological activity of the phytotoxins isolated as potential herbicides, 

carried out in collaboration with the plant pathologist groups involved, is described. 
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3. MATERIALS AND METHODS 

3.1. Fungi 

Dreschlera gigantea was isolated from Prof. R. Charudattan, during extensive field 

surveys in Florida, from naturally infected large crabgrass (Digitaria sanguinalis) 

(Chandramohan and Charudattan, 2001). It was stored in PDA slants both in the Biological 

Control of Weeds Collection at the Plant Pathology Department, University of 

Florida/IFAS, Gainesville, FL, USA (N. LCLF-1) and in the Collection of the Institute of 

Food Production Sciences, CNR, Bari, Italy (strain N. 7004). 

Ascochyta sonchi strains were isolated by Dr. A. Berestetskiy, from necrotic lesions 

of diseased leaves of both Cirsium arvense and Sonchus arvensis collected from fields of 

different locations, as shown in Table 5.5.1, and identified as A. sonchi (Sacc.) Grove 

according to Mel’nik (2000). Fungal strains were maintained on agar slants (PDA) at 5 °C 

and deposited in the Collection of the All-Russian Institute of Plant Protection, St. 

Petersburg, Russia. 

Two atypical A. sonchi strains were isolated as described above, identified as A. 

sonchi (Sacc.) Grove according to Mel’nik (2000), and then renamed to Phoma exigua 

Desm. var. exigua (Boerema et al., 2004). Fungal strains were maintained on agar slants 

(PDA) at 5 °C and deposited in the Collection of the All-Russian Institute of Plant 

Protection, St. Petersburg, Russia. For conidial production, the strains were grown on malt 

extract agar (Difco, Detroit, USA) or oatmeal agar (25) at 24 ± 2 °C, first for 4 days in the 

dark and then for 10 days under alternate near-UV light (14 h light/day). Under these 

conditions fungal colonies sporulated abundantly. The conidia were rinsed from the agar 

slants by adding sterile water (containing 0.01% Tween-20). Spore suspensions were then 

filtered through cheesecloth and the conidial concentrations were adjusted to 1x107 

conidia/ml. Measurements, description of fungal colonies, NaOH spot test were made 

using the Phoma manual (Boerema et al., 2004). 
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Stagonospora cirsii and Phyllosticta cirsii, isolated from diseased leaves of Cirsium 

arvense (L.) Scop., were supplied by Dr. A. Berestetskiy, All-Russian Institute of Plant 

Protection, St. Petersburg, Russia, and maintained in the Collection of the same institute. 

The strains were stored in sterile tubes containing potato-sucrose-agar (PDA) at 5°C and 

subcultured when needed. 

 

3.2. Plant material  

The weedy species assayed were collected by Dr. D. Olmedo Rubiales, Istitute for 

Sustainable Agriculture, CSIC, Cordoba, Spain. O. aegyptiaca was collected from plants 

parasitizing chickpea in Israel, O. crenata collected on faba bean in Spain, O. cumana 

collected on sunflower in Spain, O. foetida collected on faba bean in Tunisia, O. minor 

collected on red clover in Chile, and O. ramosa collected on tobacco in Spain. 

Additionally, some non-weedy species were included for comparisons: O. densiflora 

collected on Lotus creticus in Spain, O. gracilis collected on Retama monogyna in Spain 

and O. hederae collected on ivy in France.  

Capsules were air dried and opened, allowing seeds extrusion. The material was then 

sifted through thin sieves to separate seeds from other vegetable residues, and finally clean 

seeds were collected and stored in plastic vials at 5 °C until their use. 

 

3.3. General Procedures 

Melting point was measured on an Axioskp Zeiss miscroscope coupled with a 

Metteler FP90 electric hot plate. Optical rotation was measured in CHCl3 solution on a 

Jasco P-1010 digital polarimeter and the CD spectrum was recorded on a JASCO J-710 

spectropolarimeter in MeOH solution. 
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IR spectra were recorded as neat on a Perkin-Elmer Spectrum One FT-IR 

Spectrometer and UV spectra were taken in MeCN solution on a Perkin-Elmer Lambda 25 

UV/Vis spectrophotometer. 

1H- and 13C-NMR spectra were recorded at 600, and at 150 and 75 MHz, 

respectively, in CDCl3 on Bruker spectrometers. The same solvent was used as internal 

standard. Carbon multiplicities were determined by DEPT (Distortionless Enhancement by 

Polarization Transfer) spectra (Berger and Braun, 2004). DEPT, COSY-45 (Correlated 

Spectroscopy), HSQC (Heteronuclear Single Quantum Correlation), HMBC 

(Heteronuclear Multiple Quantum Correlation) and NOESY (Nuclear Overhauser Effect 

Spectroscopy) experiments (Berger and Braun, 2004), were performed using Bruker 

microprograms. Chemical shifts are in δ (ppm). 

Coupling constants (J) are in Hertz. The following symbols were used: s=singlet; br 

s: broad singlet; d: doublet; dd: double doublet; ddd: doublet of double doublet; t: triplet; q: 

quartet; m: multiplet. 

ESI (ElectroSpray Ionization) and HRESI MS (High Resolution ElectroSpray 

Ionization Mass Spectroscopy) spectra were recorded on Waters Micromass Q-TOF Micro 

Agilent 1100 coupled to JOEL AccuTOF (JMS-T100LC) spectrometers. EI MS spectra 

were taken at 70 eVon a QP 5050 Shimadzu spectrometer. 

Analytical and preparative TLC were performed on silica gel (Merck, Kieselgel 60 

F254, 0.25 and 0.50 mm, respectively) or reverse phase (Whatman, KC18 F254, 0.20 mm) 

plates; the spots were visualized by exposure to UV light and I2 vapours or by spraying 

first with 10% H2SO4 in methanol and then with 5% phosphomolybdic acid in methanol, 

followed by heating at 110 °C for 10 min. Column chromatography was performed on 

silica gel (Merck, Kieselgel 60, 0.063-0.200 mm).  

Analytical and HPLC grade solvents for chromatographic use were purchased from 

Carlo Erba (Milan, Italy). All other analytical grade chemicals were purchased from Merck 
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(Darmstadt, Germany). Water was HPLC quality, purified in a Milli-Q system (Millipore, 

Bedford, MA, USA). Disposable syringe filters, Anotop 10-0,2 μm, were purchased from 

Whatman (Springfield Mill, Maidstone, Kent, UK). 

The HPLC system (Shimadzu, Tokyo, Japan) consisted of a Series LC-10AdVP 

pump, FCV-10AlVP valves, SPD-10AVVP spectrophotometric detector and DGU-14A 

degasser. The HPLC separations were performed using a Macherey-Nagel (Duren, 

Germany) high-density reversed-phase Nucleosil 100-5 C18 HD column (250x4.6 mm i.d.; 

5 μm) provided with an in-line guard column from Alltech (Sedriano, Italy).  

The sample of p-hydroxybenzaldehyde was purchased from Merck (Dramstadt, 

Germany). 
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4. EXPERIMENTAL 

4.1. Production, extraction and purification of ophiobolins from Dreschlera gigantea 

culture filtrate 

The fungus was grown and maintained on Petri dishes containing PDA (potato-

dextrose-agar, Oxoid, England) by Dr. M. Vurro, Institute of Food Production Sciences, 

CNR, Bari, Italy. For the production of toxic metabolites, flasks (1 l) containing a mineral 

defined medium (350 ml), (Pinkerton and Strobel, 1976), were seeded with mycelium 

fragments obtained from colonies actively growing on PDA. The cultures were incubated 

under shaken conditions (100 rpm) at 25 °C in the dark for 8 days, then filtered, assayed 

for phytotoxic activity and lyophilized for the successive purification steps.  

The lyophilized material obtained from the culture filtrates (2.7 l) was dissolved in 

distilled water (300 ml, final pH 4.2) and extracted with ethyl acetate (3x300 ml). The 

organic extracts were combined, dehydrated with Na2SO4, filtered and evaporated under 

reduced pressure. The brown oil residue (393.5 mg) proved to be highly toxic when 

assayed as described below on detached leaves of Phalaris canariensis. It was fractionated 

by column chromatography eluted with CHCl3-iso-PrOH (96:4, v/v) yielding 10 groups of 

homogeneous fractions (1.3, 3.4, 149.0, 24.4, 2.6, 5.7, 26.0, 5.5, 9.3, 69.2 mg). The last 

fraction was eluted with methanol. The residue of the third fraction (149.0 mg) was 

crystallized three times with ethyl acetate-n-hexane (1:5) and gave the main metabolite (43 

mg) as white crystals. The pure metabolite was identified as ophiobolin A (36). The 

residues obtained from the mother liquors of ophiobolin A crystallization (55 mg) were 

purified by preparative TLC [eluent EtOAC-n-hexane (5.5:4.5, v/v)] affording three bands. 

The first of them (Rf 0.55, 45 mg) was further purified by preparative TLC [CHCl3-iso-

PrOH (96:4, v/v)] yielding a further amount of ophiobolin A (24.5 mg) as a white 

crystalline solid, for a total of 67.5 mg (25.0 mg/l) and 6-epi-ophiobolin A (37, Rf 0.32, 4.1 

mg, 1.5 mg/l ). The second band of the first TLC (Rf 0.66) appeared to be a homogeneous 
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amorphous solid (Rf 0.62, eluent CHCl3-iso-PrOH (96:4, v/v), 3.0 mg, 1.1 mg/l) and was 

identified as 3-anhydro-6-epi-ophiobolin A (38). The residue of the third band of the first 

TLC (Rf 0.80) gave a homogenous oil, named ophiobolin E (40, 1.3 mg, 0.48 mg/l). The 

residue of the seventh fraction (26.0 mg) of the first column, containing ophiobolin A and 

another metabolite, was further purified by two successive preparative TLC steps [EtOAC-

n-hexane (5.5:4.5, v/v) and CHCl3-iso-PrOH (94:6, v/v)], yielding a further amount of the 

main metabolite (36) (2.43 mg, for a total of 69.9 mg, 25.9 mg/l) and another amorphous 

solid identified as ophiobolin I (39) [Rf  0.20, eluent CHCl3-iso-PrOH (94:6, v/v)0.8 mg, 

0.3 mg/l].  

4.1.1. Ophiobolin A (36) 

Ophiobolin A, obtained as a white crystals, had: mp 182-185 °, [α]25
D +270° (c 0.4), 

IR νmax 3468 (O-H), 1740 (C=O), 1664 (C=C) cm-1, UV λmax nm 

(logε) 238 (4.1) [(Nozoe et al., 1965): mp 182°, [α]D +270°, IR νmax(CHCl3) 3500, 1743, 

1633 cm-1; UV λmax(EtOH) nm (ε) 238 (13800)], [(Li et al., 1995): mp 170-172°, [α]D= 

+265.5° (c=1.0, CHCl3), IR νmax 3500, 1730, 1690, 1660, 1625 cm-1],  1H NMR spectrum 

differed from those reported (Li et al., 1995; Canales et al., 1988) for the following signals, 

δ: 2.04 and 1.37 (1H each, m, H2C-13),  1.41 (1H, dd, J=12.0 and 3.8 Hz, H-12A); 13C 

NMR spectrum was very similar to those already reported (Li et al., 1995): EI MS m/z (rel. 

int.): 401 [M+H]+(11), 383 [M+H-H2O]+ (15), 319 [M+H-C6H10]+ (28), 300 [M-C6H10-

H2O]+ (33), 273 [M-C8H13-H2O]+ (32), 164 (100); ESI MS (+) m/z: 401 [M+H]+, 423 

[M+Na]+, 439 [M+K]+. 

4.1.2. 6-epi-ophiobolin A (37) 

  6-epi-ophiobolin A, obtained as amorphous solid had: [α]25
D +44° (c 0.1) 

[(Sugawara et al., 1987): [α]D +46° (c 5.3, CHCl3)]; IR νmax 3445 (O-H), 1742 (C=O), 

1683 ( unsatureated C=O) cm-1, [(Kim et al., 1984): IR νmax
film: 3450, 1740, 1684, 1640 
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cm-1]; UV λmax nm (log ε) 235 (4.0); 1H NMR spectrum differed from those reported 

(Canales et al., 1988; Sugawara et al., 1987) only for the following signals, δ: 2.18 (1H, br 

q, H-15), 1.80 and 1.40 (1H, each, m, H2C-13);  13C NMR spectrum differed from those 

reported (Kim et al., 1984) only for the following signals, δ: 54.8 (t, C-4), 53.4 (d, C-2), 

25.8 (q, C-25); EI MS m/z: 401 [M+H]+(1), 383 [M+H-H2O]+ (2), 319 [M+H-C6H10]+ (2), 

300 [M-C6H10-H2O]+ (3), 273 [M-C8H13-H2O]+ (3), 164 (40), 107 (100), [(18): EI, m/z: 400 

(M)+, 382, 273, 176, 165]; ESI MS (+) m/z: 401 [M+H]+, 423 [M+Na]+, 439 [M+K]+. 

4.1.3. 3-anhydro-6-epi-ophiobolin A (38) 

  3-anhydro-6-epi-ophiobolin A, obtained as an amorphous solid had: [α]25
D +7 (c 

0.1); IR νmax 1685 (α,β unsaturated C=O), 1645 (C=C) cm1; UV λmax nm (log 

ε) 225 (3.6), 235 (4.0); 1H NMR spectrum differed from those reported (Canales et al., 

1988; Sugawara et al., 1987) only for the following signals, δ: 2.24 (1H, dd, J=6.7 and 3.8 

Hz, H-15), 1.99 (1H, dd, J=13.2, 2.5 Hz, H-13A), 1.80 (H, m, H-12A), 1.42 and 1.77 (1H 

each, m H2C-1);  13C NMR spectrum differed from those reported (Kim et al., 1984) only 

for the following signals, δ: 177.1 (s, C-3), 49.3 (d, C-6), 35.5 (d, C-15), 22.3 (q, C-22), 

17.2 (q, C-20). EI MS  m/z: 383 [M+H]+(27), 301 [M+H-C6H10]+ (45), 273 [M-C8H13]+ (3), 

175 (100); ESI MS (+) m/z: 383 [M+H]+, 405 [M+Na]+, 421 [M+K]+. 

4.1.4. Ophiobolin I (39) 

Ophiobolin I, obtained as a white crystals, had: [α]25
D +46.7 (c 0.2); IR νmax: 3409 

(O-H), 1682 (α,β unsaturated C=O), 1619 (C=C) cm-1 [(Li et al., 1995): [α]25
D +48.6° (c 

1.0, CHCl3); IR νmax 3450, 1680, 1657, 1613 cm-1]; UV λmax nm (log ε) 225 (4.3) ;  1H 

NMR spectrum is very similar to those previously reported (Li et al., 1995; Sugawara et 

al., 1987; Sugawara et al., 1988); ESI MS m/z: 385 [M+H]+, 407 [M+Na]+, 423 [M+K]+ 

[(Sugawara et al., 1988): EIHR MS C25H36O3 (M+; obsd m/z: 384.2665 (M)+, 366.2559]. 
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4.1.5. Ophiobolin E (40) 

  Ophiobolin E, obtained as an amorphous solid had : [α]25
D +10.4° (c 0.16), IR νmax 

3435 (O-H), 1682(α,β unsaturated C=O), 1629 (C=C) cm-1; UV λmax nm (log ε) 233 (3.2), 

220 (3.11); 1H and 13C NMR spectra: see Table 5.1.1; HRESI MS (+) m/z 421[M + K]+, 

405.2412 [M + Na]+ (calcd. for C25H34O3Na, 405.2406), 383 [M+H]+; ESI MS (-) m/z: 

381[M-H]-. 

 

4.2. Production, extraction and purification of ophiobolins from D. gigantea solid 

culture  

The fungus was also grown on a solid medium by Dr. M. Vurro, Institute of Food 

Production Sciences, CNR, Bari, Italy. Steamed and autoclaved wheat kernels placed in 1 l 

flasks were seeded using a spore suspension of the fungus, and kept at 25 °C for 4 weeks. 

After incubation and fungal growth, the kernels were dried and finely minced; 1 kg of 

dried material was extracted with CH2Cl2. The organic extracts were combined and 

evaporated under reduced pressure, affording a brown oily residue. The latter was de-fatted 

by n-hexane extraction and then extracted with CH2Cl2. The CH2Cl2 extracts were 

combined, dehydrated by Na2SO4 and evaporated under reduced pressure yielding a brown 

oil (781.3 mg) showing a strong phytotoxic activity when assayed as described below.  

This latter was fractionated by column chromatography eluted with CHCl3-iso-PrOH 

(24:1), yielding 10 groups of homogeneous fractions, weighting 2.4, 4.8, 46.0, 5.5, 128.5, 

9.7, 27.9, 49.3, 30.0, and 474.2 mg, respectively. The purification of the residue of the 

third group (46.0 mg) by two successive preparative TLC steps on silica gel (CHCl3-iso-

PrOH (24:1); EtOAC-n-hexane (1.2:1), respectively) gave a very small amount of 

ophiobolin A (36, 1 mg/kg) as an amorphous solid. The residue of the seventh fraction 

(27.9 mg) was purified by preparative TLC (silica gel, CHCl3-iso-PrOH (2.3:1) producing 
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four bands. The first of them (14.2 mg) was further purified using two successive steps by 

preparative TLC on reversed-phase [EtOH-H20 (1.5:1), Rf 0.23] and by silica gel [petrol-

Me2CO (2.3:1)], respectively, yielding a white amorphous solid (Rf 0.30, 1.4 mg/kg) 

named 8-epi-ophiobolin J (43). The residue of the eighth fraction (49.3 mg) was purified 

by preparative TLC on silica gel, [CHCl3-iso-PrOH (24:1)] producing six bands. The most 

polar of them (12.6 mg) was further purified by preparative TLC [silica gel, petrol-Me2CO 

(2.3:1)], yielding ophiobolin B (41) as a white amorphous solid (Rf 0.49, 1.2 mg/kg). The 

residue of the ninth fraction (30 mg) was purified by preparative TLC [CHCl3-iso-PrOH 

(24:1)] producing six bands. The first of them (8.9 mg/kg) appeared to be a homogeneous 

amorphous solid [Rf 0.23 and Rf  0.49, silica gel CHCl3-iso-PrOH (24:1) and petrol-Me2CO 

(2.3:1)] and was identified as ophiobolin J (42). 

4.2.1 Ophiobolin B (41)  

Ophiobolin B, obtained as an amorphous solid, had: [α]25
D +230° (c 0.1), IR νmax 

3418 (O-H), 1736 (C=O), 1685 (α,β unsaturated C=O), 1636 (C=C) cm-1, UV λmax nm (log 

ε) 234 (3.51) [(Li et al., 1995): [α]D +236.4° (c 0.1, CHCl3), IR (KBr) νmax 3460, 1720, 

1659, 1620 cm-1];  1H and 13C NMR spectra were very similar to that already reported (Li et 

al., 1995); ESI MS (+) m/z: 441 [M+K]+, 425 [M+Na] +, 403[M+H]+. 

4.2.2. Ophiobolin J (42) 

  Ophiobolin J, obtained as an amorphous solid, had: [α]25
D +46 (c 0.14), IR νmax 

3408 (O- H), 1688 (α,β unsaturated C=O), 1626 (C=C) cm-1,  UV λmax nm (log ε) 260 

(3.81) [(Sugawara et al., 1988): [α]D +48° (c 1.7, CHCl3)]; IR νmax 3395, 1678, 1614, cm1; 

UV λmax nm (log ε)262 (3.96); The 1H NMR spectrum was integrated in respect to those 

already reported (Sugawara et  al., 1988) for the following signals, δ: 2.25 (1H, m H-15), 

2.16 and 1.85 (2H, both m, H-9), 1.94 (1H, m. H-10), 1.91 and 1.08 (2H, both m, H-1), 

1.77 and 1.54 (2H, both m, H-16), 1.73 (2H, m, H-12), 1.54 and 1.40 (2H, both m, H-13); 
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The 13C NMR spectrum was very similar to that already reported (Sugawara et  al., 1988). 

EI MS  m/z: 401 [M+H]+(1), 383 [M+H-H2O]+(9), 365 [M+H-2xH2O]+(7) 175 (100); ESI 

MS (+) m/z: 439 [M+K]+, 423[M+Na]+. 

4.2.3. 8-epi-ophiobolin J (43) 

 8-epi-ophiobolin J obtained as an amorphous solid had: [α]25
D +31.1 (c 0.1); IR νmax: 

3388 (O-H), 1673 (α,β unsaturated C=O), 1614 (C=C)cm-1; UV λmax nm (log ε) 262 

(3.64); 1H and 13C NMR spectra: see Table 5.1.1; HRESI MS (+) m/z 439[M + K]+, 

423.2515 [M +Na]+ (calcd. for C25H34O3Na, 423.2511), 401 [M+H]+, 383 [M+H-H2O]+; 

ESI MS (-) m/z: 399 [M-H]-. 

 

4.3. Production of Ascochyta sonchi culture filtrates 

A conidial suspension for each of the 9 strains (approximately 106 conidia ml-1) was 

prepared and added to 1 l Roux bottles containing 200 ml of M-1 D medium (Pinkerton 

and Strobel, 1976). The cultures were incubated under static conditions at 25 °C in the dark 

for 4 weeks, then filtered, lyophilized and stored until determination of the ascosonchine 

content. Each strain was cultured in triplicate. Strain 240 was also used for a time course 

experiment of ascosonchine production. M-1 D medium in Roux bottles was prepared, 

inoculated and incubated as described above, and the culture filtrates were harvested 

weekly for 8 weeks. Additionally, parallel inoculated medium was cultured on a shaker 

(100 rpm) at 25 °C in the dark. The culture filtrates were harvested at three-day-intervals 

for 12 days. Culture filtrates were lyophilized and stored until determination of the 

ascosonchine content. The growth of fungi was carried out by Dr. M. Vurro, Institute of 

Food Production Sciences, CNR, Bary, Italy. 
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4.4. HPLC analysis of A. sonchi culture extracts 

Aliquots of the samples (20 μl) extracted from the lyophilised A. sonchi culture 

filtrate, were injected for analysis, having the mobile phase of 1:1, v/v methanol and HPLC 

grade water at a flow rate of 1 ml/min. Detection was performed at 230 nm, corresponding 

to the maximum ascosonchine absorption. The ascosonchine standard sample was purified 

and identified from A. sonchi culture filtrates as described previously (Evidente et al., 

2004). The HPLC calibration curve for quantitative ascosonchine determination was 

performed with absolute amounts of the toxin standard dissolved in methanol in the range 

between 7 and 700 μg/ml, in triplicate for each concentration. A HPLC linear regression 

curve (absolute amount against chromatographic peak area) for ascosonchine was obtained 

based on weighted values calculated from nine concentrations of the standard in the above 

range.  

The samples were prepared as follows: lyophilised fungal culture filtrates, equivalent 

to 100 ml liquid culture, were extracted by CHCl3-iso-propanol (9:1 v/v) (3x20 ml). The 

organic phases were combined, filtered through paper and evaporated under reduced 

pressure. The samples were dissolved in methanol, and aliquots (20 μl) were injected into 

the HPLC instrument. Each sample was assayed in triplicate. The quantitative 

determination of the metabolite was calculated interpolating the mean area of their 

chromatographic peaks with the data of the calibration curves.  

4.4.1. Recovery studies  

Recovery studies were performed using the lowest ascosonchine producing strain (S-

10). Pure ascosonchine was added to the culture filtrate from 0.3 to 2.0 mg/l. The samples 

were prepared as described above and the extracts analysed by HPLC to determine 

recovery. Three replicate injections were performed for each concentration. The recovery 

throughout the range was more than 96 ±2.8%. 
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4.5. Production, extraction and purification of phytotoxins in Phoma exigua var. 

exigua strains C-177 and S-9 solid and liquid cultures 

A conidial suspension of the strain C-177 (approximately 106 conidia/ml) was 

prepared and added to 2 l Roux bottles containing 300 ml of M-1 D medium (Pinkerton 

and Strobel, 1976). The culture (1 l) were incubated under static conditions at 25 °C in the 

dark for 4 weeks, then filtered and extracted with EtOAc (3x500 ml). The organic extract 

were combined, dried (Na2SO4), filtered and evaporated under reduced pressure to give an 

oily residue (101.0 mg). For the production of solid culture, the fungi (C-177 and S-9) 

were grown on autoclaved millet in ten 1000-ml Erlenmeyer flasks (millet 100 g, water 60 

ml) for 14 days in the darkness. Fungal metabolites were extracted from dry mycelium 

accordingly to a protocol described in the paragraph 4.2, which was slightly modified. The 

dried material (800 g) was extracted with the mixture acetone-water (1:1, 2 l). After 

evaporation of acetone, NaCl (300 g/l) was added to the aqueous residue, and the latter was 

extracted with EtOAc (3x500 ml). The organic extracts were combined, dried (Na2SO4) 

and evaporated under reduced pressure yielding brown oily residue 1.43 g and 305 mg for 

C-177 and S-9 culture, respectively. The growth of fungi as well as the extraction of fungal 

metabolites was carried out by Dr. A. Berestetskiy, All-Russian Institute of Plant 

Protection, St. Petersburg, Russia. 

The organic extract (1.43 g) obtained from P. exigua var. exigua  strain C-177 solid 

culture was fractionated by column chromatography eluted with CHCl3-i-PrOH (92:8, v/v), 

yielding ten groups of homogeneous fractions. The residue of the second fraction (103.6 

mg) was further fractionated by column chromatography eluted with EtOAc-n-hexane (6:4, 

v/v), yielding seven groups of homogeneous fractions. The residues of the third (329.8 mg) 

and fourth (244.0 mg) fraction groups of the initial column were crystallized separately 

twice from EtOAc-n-hexane (1:5, v/v) giving white needles of cytochalasin B (25, 220 and 
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200 mg respectively, 525 mg/kg). The mother liquors (77.5 and 22.7 mg, respectively) of 

cytochalasin B crystallisation were combined and fractionated by column chromatography 

eluted with EtOAc-n-hexane (6:4, v/v), yielding eight groups of homogeneous fractions. 

The residue of the second fraction (5.2 mg) showed to be a homogeneous amorphous solid 

identified as p-hydroxybenzaldehyde [44, EtOAc-n-hexane (6:4, v/v), Rf 0.62, 6.5 mg/kg]. 

The residue of the fifth fraction (32.5 mg) of the last column chromatography was 

fractionated by preparative TLC [eluent petroleum ether: acetone (65:35, v/v)] yielding 

three groups of fractions. The less polar of these fractions (4.6 mg) was further purified by 

preparative TLC [eluent EtOAc-n-hexane (6:4, v/v)] affording cytochalasin F as a 

homogeneous amorphous solid (28, Rf 0.43, 1.4 mg, 1.8 mg/kg). The sixth fraction (8.6 

mg) of the last column chromatography was purified by preparative TLC [eluent petroleum 

ether: acetone (65:35)] yielding deoxaphomin as a homogeneous amorphous solid (30, Rf 

0.31, 4.0 mg, 5.0 mg/kg). 

The organic extract (100 mg) obtained from P. exigua var. exigua  strain C-177 

liquid culture (1 l of M1-D) was fractionated by column chromatography eluted with 

CHCl3-i-PrOH (92:8, v/v), yielding nine groups of homogeneous fractions. The residue of 

the second fraction (13.6 mg) was further purified by preparative TLC [eluent EtOAc-n-

hexane (6:4, v/v)] affording p-hydroxybenzaldehyde (Rf 0.62, 1.0 mg) and cytochalasin B 

(Rf 0.25, 2.2 mg) both as homogeneous amorphous solids. 

The organic extracts (305 mg) obtained from P. exigua var. exigua strain S-9 solid 

culture was fractionated by column chromatography eluted with CHCl3-i-PrOH (92:8, v/v), 

yielding seven groups of homogeneous fractions. The residue of first fraction (14.4 mg) 

was purified by preparative TLC [eluent EtOAc-n-hexane (6:4, v/v)] yielding cytochalasin 

B (Rf 0.32, 4.2 mg). The residues of the second (51.6 mg) and third (83.1 mg) fraction 

groups of the first column chromatography were crystallized separately twice from EtOAc-
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n-hexane (1:5 v/v) giving white needles of cytochalasin B (32.3 and 61.1 mg respectively, 

122 mg/kg). The mother liquors (18.1 mg) of cytochalasin B crystallisation of the third 

fraction were purified by preparative TLC [eluent EtOAc-n-hexane (6:4, v/v)] affording 

deoxaphomin (30, Rf 0.26, 2.5 mg, 3.1 mg/kg) as a homogeneous amorphous solid. The 

residue of fourth fraction (11.0 mg) of the first column chromatography was purified by 

preparative TLC [eluent EtOAc-n-hexane (6:4, v/v)] yielding cytochalasin Z2 (20, Rf 0.20, 

1.6 mg, 2 mg/kg) as a homogeneous amorphous solid. The fifth fraction (10.2 mg) of the 

first column was purified by preparative TLC with the same solvent yielding cytochalasin 

Z3 (21, Rf 0.11, 1.7 mg, 2.1 mg kg-1) as a homogeneous amorphous solid. 

 

4.6. Production, extraction and purification of nonenolides from Stagonospora cirsii 

solid culture  

The fungus was grown on autoclaved millet in 1000-ml Erlenmeyer flasks (millet 

100 g, water 60 ml) for 14 days in the darkness, by Dr. A. Berestetskiy, All-Russian 

Institute of Plant Protection, St. Petersburg, Russia. Fungal metabolites were extracted 

from dry mycelium accordingly to the protocol reported in the paragraph 4.2.  

The organic extract (1 g) obtained from the culture (1 kg) was purified by silica gel 

column eluted with CHCl3-i-PrOH (9:1), obtaining 13 groups of homogeneous fractions. 

The residues of the second and third fractions were combined (353 mg) and further 

purified by a column chromatography eluted with EtOAc-n-hexane (65:35), yielding 13 

groups of homogeneous fractions. The residues (65 mg) of the fourth fraction was purified 

by preparative TLC on silica gel, eluting with EtOAC-n-hexane (7:3), gave four bands, the 

fourth of them yield a crystalline solid (51, Rf 0.27; 18.6 mg) named stagonolide H. The 

second of them (Rf 0.33, 10.7 mg) was further purified by preparative TLC on reversed-

phase, using as eluent MeOH-H20 (1.5:1), to yield a homogeneous oily compound (Rf 0.31, 
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1.6 mg), named stagonolide F (49), and another band (8.3 mg), which was further purified 

in the same conditions yielding another homogeneous oily compound (Rf 0.43, 2.9 mg), 

named stagonolide E (48). The residue (49 mg) of the seventh fraction of the same column 

was further purified by preparative TLC on silica gel, using as eluent CHCl3-i-PrOH (93:7) 

to give four bands. The metabolite associated to the main of them (Rf 0.39, 18.0 mg/kg) 

was obtained as crystalline solid and named stagonolide D (47). The residue (69.8 mg) of 

the tenth fraction from the initial column was purified by preparative TLC on silica gel, 

using CHCl3-i-PrOH (88:12), to yield six bands. The fifth band (Rf 0.27; 27.0 mg) was 

further purified by preparative TLC on silica gel, eluted with EtOAc-MeOH (96:4), 

yielding two homogeneous oily compounds: one was named stagonolide G (50, Rf 0.45; 

1.5 mg) and the other was indentified as modiolide A (53, Rf 0.52; 12 mg). The residue 

(30.4 mg) of the eleventh fraction of the initial column was purified by preparative TLC on 

silica gel, using CHCl3-i-PrOH (88:12) as eluent, to yield five bands. The fourth band (Rf 

0.28; 10.6 mg) was further purified by preparative TLC on silica gel, eluted with EtOAc-

MeOH (96:4), yielding a homogeneous oily compound (Rf  0.48; 2.0 mg), named 

stagonolide I (52).  

 The residue (39.3 mg) of the twelfth fraction of the initial column was purified by 

preparative TLC on silica gel, using as eluent CHCl3-i-PrOH (88:12) to yield six bands. 

The fifth band (Rf 0.19, 15.2 mg) was further purified by preparative TLC on silica gel, 

eluted with EtOAC-MeOH (5:5), yielding two homogeneous oily compounds named 

stagonolides B and C (45 and 46, Rf 0.85 and 0.84, 2.0 and 8.0 mg, respectively). 

4.6.1. Stagonolide B (45) 

Stagonolide B, obtained as a colourless oil had: [α]25D: +20 (c 0.1); UV λmax nm < 

200; IR νmax 3388 (OH), 1710 (C=O), 1595 (C=C), 1232 (O-CO) cm-1; 1H and 13C NMR 
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spectra: see Tables 5.8.1 and 5.8.2; HRESI MS (+) m/z: 267.2821 [M+Na]+ (calcd for 

C12H20NaO5, 267.1208). 

4.6.2. Stagonolide C (46) 

Stagonolide C, obtained as a colourless oil had: [α]25D: +48 (c 0.2); UV λmax nm < 

200; IR νmax 3358 (OH), 1723 (C=O), 1239 (O-CO) cm-1; 1H and 13C NMR spectra: see 

Tables 5.8.1 and 5.8.2; HRESI MS (+) m/z: 223.2168 [M+Na]+ (calcd for C10H16NaO4, 

223.0935), 239 [M+ K]+. 

4.6.3. Stagonolide D (47) 

Stagonolide D, obtained as a white crystalline solid, had: [α]25D: -82 (c 0.2); UV λmax 

nm < 200; IR νmax 3434 (OH), 1732 (C=O), 1643 (C=C), 1221 (O-CO) cm-1; 1H and 13C 

NMR spectra: see Tables 5.8.1 and 5.8.2; HRESI MS (+) m/z: 221.0781 [M+Na]+ (calcd 

for C10H14NaO4, 221.0790). 

4.6.4. Stagonolide E (48) 

Stagonolide E, obtained as a colourless oil had: [α]25D: -186 (c 0.2); UV λmax nm (log 

ε): 250 (3.37); IR νmax 3399 (OH), 1718 (C=O), 1651 (C=C), 1605 (C=C), 1254 (O-CO) 

cm-1; 1H and 13C NMR spectra: see Tables 5.8.1 and 5.8.2; HRESI MS (+) m/z: 205.0852 

[M+Na]+ (calcd for C10H14NaO3, 205.0841). 

4.6.5. Stagonolide F (49) 

Stagonolide F, obtained as a colourless oil had: [α]25D: -27 (c 0.1); CD [Ө]25 nm: 

209.6 (+135165), 254 (+19474) [(Fucsher and Zeeck, 1997), for aspinolide: [α]23D= -43.8 

(c= 0.3 MeOH); CD (MeOH): λextr [Ө]23 (MeOH)= 209.8 nm (-6800), 283 (+740)]; UV 

λmax nm < 200; IR νmax 3375, 1729, 1663, 1237 cm-1; 1H and 13C NMR spectra: see Tables 

5.8.1 and 5.8.2; HRESI MS (+) m/z: 207.1943 [M+Na]+ (calcd for C10H16NaO3, 207.0997). 
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4.6.6. Stagonolide G (50) 

Stagonolide G, obtained as a colourless oil, had: [α]25
D +96 (c 0.1); UV λmax < 200 

nm; IR νmax 3388 (OH), 1765 (C=O), 1727 (C=C) cm-1; 1H and 13C NMR spectra, see 

Tables 5.8.5 and 5.8.6; HRESI MS (+) m/z 223.2355 [M+Na]+ (calcd for C10H16NaO4, 

223.2264).  

4.6.7. Stagonolide H (51) 

Stagonolide H, obtained as a white crystalline solid, had: [α]25
D +12 (c 0.2); UV λmax 

< 200 nm; IR νmax 3426 (OH), 1723 (C=O), 1635 (C=C), 1239 (O-CO) cm-1; 1H and 13C 

NMR spectra, see Tables 5.8.5 and 5.8.6; HRESI MS (+) m/z 219.2056 [M+Na]+ (calcd for 

C10H12NaO4, 219.1945) 

4.6.8. Stagonolide I (52) 

Stagonolide I, obtained as a colourless oil, had: [α]25
D +50 (c 0.2); UV λmax < 200 nm; 

IR νmax 3278 (OH), 1713 (C=O), 1640 (C=C), 1217 (O-CO) cm-1; 1H and 13C NMR 

spectra, see Tables 5.8.5 and 5.8.6; HRESI MS (+) m/z 221.2117 [M+Na]+ (calcd for 

C10H14NaO4, 221.2105). 

4.6.9. Modiolide A (53) 

Modiolide A, obtained as a colourless oil, had: [α]25
D +38 (c 0.2, MeOH); UV MeOH 

λmax 204 nm (ε 6400); IR νmax 3436 (OH), 1713, 1280 cm-1 [(Tsuda et al., 2003): [α]25
D 

+42 (c 0.25, MeOH); UV (MeOH) λmax (log) 204 nm (ε 6400)]; 1H and 13C NMR spectra, 

see Tables 5.8.5 and 5.8.6; HRESI MS (+) m/z 205.0852 [M+Na]+ (calcd for C10H14NaO3, 

205.0841; [(Tsuda et al., 2003): EI MS m/z 180 (M-H2O)+ and 198 (M)+; HREI MS m/z 

198.0892 (M+, calcd. for C10H14O4, 198.0891)]. 
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4.7. Production, extraction and purification of phyllostictines, phyllostoxin and 

phyllostin from Phyllosticta cirsii culture filtrates. 

For the production of phytotoxic metabolites, Roux bottles (1 l) containing a mineral-

defined medium (200 ml) (Pinkerton and Strobel, 1976), were seeded with mycelial 

fragments obtained from colonies actively growing on PDA plates. The cultures were 

incubated under static conditions at 25 °C in the dark for four weeks, then filtered on filter 

paper (Whatman n. 4), assayed for phytotoxic activity and lyophilised by Dr. M. Vurro, 

Institute of Food Production Sciences, CNR, Bari, Italy.  

The lyophilised material obtained from the culture filtrates (7.7 l) was dissolved in 

distilled water (700 ml, final pH 4.4) and extracted with EtOAc (3x700 ml). The organic 

extracts were combined, dehydrated with Na2SO4, filtered and evaporated under reduced 

pressure. The brown oily residue (1.26 g) proved to be highly phytotoxic when assayed as 

below described on detached thistle leaves. It was purified by silica gel column eluted with 

CHCl3-i-PrOH (9:1), and 9 groups of homogeneous fractions were obtained. All the 

fractions were tested for their phytotoxic activity. The residue (74.0 mg) of the second 

fraction, which proved to be highly phytotoxic, was further purified by a column 

chromatography eluted with CHCl3-i-PrOH (96:4), yielding 10 groups of homogeneous 

fractions. The residue of the toxic fifth fraction (359 mg) was purified by a preparative 

TLC on silica gel eluted with EtOEt-EtOAc (9:1) yielding a fraction (Rf 0.38), which 

proved to be a mixture of at least two metabolites. It was further purified by preparative 

TLC on reverse phase eluted with EtOH-H20 (6:4) yielding the main toxin and another 

metabolite named phyllostictines A and B (54 and 55), both as homogeneous oily 

compounds [Rf 0.36 and Rf 0.58, EtOH-H20 (6:4), 85 and 7.7 mg, 11.0 and 1.0 mg/l, 

respectively]. The residues of the sixth (3.6 mg) and seventh (23.2 mg) fractions were 

combined and purified by preparative TLC on silica gel eluted with CHCl3-iso-PrOH (9:1) 
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yielding a homogeneous solid amorphous compound, which was named phyllostoxin [62, 

Rf 0.7, CHCl3-iso-PrOH (9:1), 6.0 mg, 0.78 mg/l]. The residue of third fraction of the first 

column (64.0 mg), was purified by a preparative TLC on silica gel eluted with CHCl3-iso-

PrOH (7:3) yielding a crystalline solid compound, which was named phyllostin [63, Rf 

0.60, CHCl3-iso-PrOH (7:3), 7.0 mg, 0.90 mg/l]. The residue of the sixth fraction of the 

first column (74.7 mg), was further purified by preparative TLC on silica gel eluted with 

EtOEt-EtOAc (9:1) yielding a homogeneous oily compound [Rf 0.13, EtOEt-AcOEt (9:1), 

3.6 mg, 0.5 mg/l] named phyllostictine D (57). Finally, the residue of the eight fraction of 

the first column (25.9 mg) was further purified by a preparative TLC on silica gel eluted 

with CHCl3-i-PrOH (9:1) yielding a homogeneous oily compound [Rf 0.32, CHCl3-i-PrOH 

(9:1), 6.6 mg, 0.9 mg/l] named phyllostictine C (56).  

4.7.1. Phyllostictine A (54)  

Phyllostictine A, obtained as a colourless oil, had: [α]25D: -87.5 (c 0.2);  IR νmax 3394 

(OH), 1704 (C=O), 1632 (C=C), 1440 (N-CO) cm-1; UV λmax nm (log ε) 263 (4.07); 1H 

and 13C NMR spectra: see Tables 5.11.1 and 5.11.2; HRESI MS (+) m/z: 673.3680 

[C34H54N2NaO10, calcd. 673.3677, 2M+Na]+, 348.1800 [C17H27NNaO5, calcd. 348.1787, 

M+Na]+, 326.1962 [C17H28NO5, calcd. 326.1967, M+H]+; HRESI MS (-) m/z: 324.1815 

[C17H26NO5, calcd. 324.1811, M-H]-, 649.3678 [C34H53N2O10, calcd. 649.3700, 2M-H]-; EI 

MS m/z (rel. int.) 294 [M-MeO]+ (22), 276 [M-MeO-H2O]+ (5), 251 [M-MeO-CO-Me]+ 

(2), 71 [Et-N=C=O]+ (100). 

4.7.2.  Phyllostictine B (55) 

Phyllostictine B, obtained as a colourless oil, had: [α]25D: -99.8 (c 0.07); IR νmax 

3407 (OH), 1705 (C=O), 1633 (C=C), 1444 (O-CO) cm-1; UV λmax nm (log ε) 262 (4.13); 

1H and 13C NMR spectra: see Tables 5.11.1 and 5.11.2; HRESI MS (+) m/z: 914.4429 

[3M+Na]+; 617.2984 [C30H46N2NaO10, calcd. 617.3050, 2M+Na]+, 320.1443 
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[C15H23NNaO5, calcd. 320.1474, M+Na]+, 298.1628 [C15H24NO5, calcd. 298.1655, M+H]+; 

HRESI MS (-) m/z: 296.1500 [C15H22NO5, calcd. 296.1498, M-H]-; EI MS m/z (rel. int.) 

298 [MH]+ (8), 280 [MH-H2O]+ (4), 266 [M-MeO]+ (32), 248 [M-MeO-H2O]+ (13), 223 

[M-MeO-CO-Me]+ (5), 71 [Et-N=C=O]+ (100). 

4.7.3. Phyllostictine C (56) 

Phyllostictine C, obtained as a colourless oil, had: [α]25D: -45.5 (0.1); IR νmax 3395 

(OH), 1704 (C=O), 1634 (C=C), 1452 (N-CO) cm-1; UV λmax nm 262 (3.60); 1H and 13C 

NMR spectra: see Tables 5.11.1 and 5.11.2; HRESI MS (+) m/z: 1046.7240 [3M+Na]+; 

705.4676 [2M+Na]+, 364.2303 [C17H27NNaO6, calcd. 364.1736, M+Na]+. 

4.7.4.  Phyllostictine D (57) 

Phyllostictine D, obtained as a colourless oil, had: [α]25D: -70.2 (0.2); IR νmax 3409 

(OH), 1707 (C=O), 1634 (C=C), 1444 (N-CO) cm-1; UV λmax nm (log ε): 262 (3.25); 1H 

and 13C NMR spectra: see Tables 5.11.1 and 5.11.2; HRESI MS (+) m/z: 1040.6378 

[3M+Na]+; 701.3964 [2M+Na]+, 362.2050 [C17H25NNaO6, calcd. 362.1580, M+Na]+. 

4.7.5. Acetylation of phyllostictine A  

Phyllostictine A (54, 3.7 mg) was acetylated with pyridine (20 μl) and Ac2O (40 μl) 

at room temperature overnight. The reaction was stopped by addition of MeOH and the 

azeotrope formed by addition of C6H6 was evaporated by a N2 stream. The oily residue was 

purified by preparative TLC [silica gel, CHCl3-i-PrOH (96:4)] to give the 15-O-acetyl and 

the 11,15-O,O’-diacetyl derivatives of phyllostictine A (58 and 59) both as homogeneous 

compounds (Rf 0.48 and 0.77, 2.4 and 0.5 mg). Derivative 58 had: [α]25D: -55.6 (0.1); IR 

νmax 3423 (OH), 1725 (C=O), 1708 (C=O), 1635 (C=C), 1440 (N-CO), 1370 (O-CO), 1225 

(O-CO) cm-1; UV λmax nm (log ε): 256 (3.58); 1H and 13C NMR spectra differed from those 

of 54 for the following signals, δH: 5.59 (1H, s, H-15), 2.19 (3H, s, MeCO); δC: 172.4 (s, 

MeCO), 71.1 (d, C-15), 20.9 (q, MeCO) ; ESI MS (+) m/z: 757 [2M+Na]+, 390 [M+Na]+. 
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Derivative 59 had: [α]25D: +125 (0.04); IR νmax 1739 (C=O), 1732 (C=O), 1639 (C=C), 

1442 (N-CO), 1368 (O-CO), 1218 (O-CO) cm-1; UV λmax nm (log ε): 262 (3.34); 1H and 

13C NMR spectra differed from those of 54 for the following signals, δH: 5.59 (1H, s, H-

15), 5.20 (1H, d, J = 11 Hz, H-11) 2.13 and 1.99 (3H each, s, 2xMeCO); δC: 170.1 and 

169.9 (s, 2x MeCO), 81.6 (d, C-11), 68.1 (d, C-15), 22.1 and 20.8 (q, 2xMeCO); ESI MS 

(+) m/z: 841 [2M+Na]+, 432 [M+Na]+ . 

4.7.6. (S)-α-Methoxy-α-trifluorophenylacetate (MTPA) ester of phyllostictine A (60).  

(R)-(-)-MPTA-Cl (30 μl) was added to phyllostictine A (54, 1.0 mg), dissolved in dry 

pyridine (50 μl). The mixture was kept at room temperature. After 1 h, the reaction was 

complete, and MeOH was added. The pyridine was removed by a N2 stream. The residue 

was purified by preparative TLC on silica gel [CHCl3-i-PrOH (96:4)] yielding 60 as an oil 

(Rf 0.36, 0.5 mg): [α]25
D - 15.5 (c 0.01); UV λmax log (ε) 263 (3.78) nm; IR νmax  3410, 

1746, 1718, 1628, 1446, 1272, 1241 cm-1; 1H spectrum differed from that of 54 for the 

following signals, δ 7.61-7.42 (5H, m, Ph), 5.85 (1H, s, H-15), 4.17 (1H, d, J=10.3 Hz, H-

11), 3.51 (3H,s, MeO), 1.78 (2H, m, H2-10), 1.56 and 1.38 (1H each, m, 5.04 H2-11); ESI 

MS (+) m/z 564 [M+Na]+, 308 [M+H-PhC(OMe)CF3COO]+ . 

4.7.7. (R)-α-Methoxy-α-trifluorophenylacetate (MTPA) ester of phyllostictine A (61).  

(S)-(+)-MPTA-Cl (30 μl) was added to phyllostictine A (54, 1.0 mg), and dissolved 

in dry pyridine (50 μl). The reaction was carried out under the same conditions used for 

preparing 60 from 54. Purification of the crude residue by preparative TLC on silica gel [Rf 

0.36, CHCl3-i-PrOH (96:4)] yielded 61 as an oil (0.7 mg): [α]25
D –69.0 (c 0.1); UV, IR and 

EI MS were very similar to those of 61; 1H spectrum differed from that of 54 for the 

following signals, δ 7.62-7.42 (5H, m, Ph), 5.79 (1H, s, H-15), 4.10 (1H, d, J=10.2 Hz, H-

11), 3.62 (3H,s, MeO), 1.61 (2H, m, H2-10), 1.32 and 1.25 (1H each, m, 5.04 H2-11) ; ESI 

MS (+)  m/z  564 [M+Na]+, 308 [M+H-PhC(OMe)CF3COO]+ . 
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4.7.8. Phyllostoxin (62) 

Phyllostoxin, obtained as an amorphous solid, had: [α]25D: +32.8 (c 1.0, CHCl3); IR 

νmax 1714 (C=O), 1671 (α,β unsaturated C=O), 1658 (OC=O), 1628 (C=C) cm-1; UV λmax 

(log ε) nm 321 (3.51), 254 (4.21), 242 (4.21) ; 1H and 13C NMR spectra: see Table 5.11.5; 

EI MS (rel. int) m/z: 232 [M-CO]+ (58), 217 [M-MeCO]+(100), 204 [M-

CH2=C=C=O]+(66), 189 [M-CO-MeCO-]+(64), 175 [M-CO-CH2=C=C=O]+(30), 161 [M-

MeCO-CH2=C=C=O]+ (23), 43 [MeCO]+ (76); HRESI MS (+) m/z: 487.2070 

[C28H32NaO6, calcd. 487.2097, 2xM-CO+Na]+, 465.2254 [C28H33O6, calcd. 465.2277, 

2xM-CO+H]+, 255 [M-CO+Na]+. 

4.7.9. Phyllostin (63) 

Phyllostin, obtained as a white crystal, had: mp 138-142 °C; [α]25
D: -29.4 (c 0.1, 

MeOH); IR νmax 3419 (OH), 1715 (C=O), 1628 (C=C), 1303, 1251 (O-CO) cm-1 [(Isogai et 

al., 1985): mp: 133-135 °C, [α]D= -188.75° (c=2.0 MeOH), IR (nujol) 3410 (OH), 1750 

(C=O), 1725 (C=O); (Alberg et al., 1992):  R mp 160-165 °C; S mp 136-137 °C; 

(Muralidharam et al., 1990): mp 128-129 °C]; UV λmax nm (log ε) 280 (2.97), 242 (sh); 1H  

and 13C NMR spectra: see Table 5.11.5; HREI MS (rel. int) m/z: 242.0802 [C11H14O6, 

calcd. 242.0790, M]+ (0.9), 225 [M-OH]+(0.4), 214 [M-CO]+(62), 211 [M-MeO]+(0.9), 170 

[M-CO-CO2]+ (44), 142 [M-2XCO-CO2]+ (66), 95 (100); ESI MS(+), m/z: 281 [M+K]+, 

265 [M+Na]+. 

 

4.8. Fungal metabolites in the biocontrol of weeds  

4.8.1. Fungal metabolites in the suicidal germination of Orobanche spp. 

Fusicoccin (35) was produced by Fusicoccum amygdali as reported by Ballio et al., 

(1968a). The crystalline sample of 35 obtained as previously reported (Ballio et al., 1968b) 

preserved at -20 °C under dark for about 26 years showed by TLC [eluent CHCl3-iso-
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PrOH (9:1)] and 1H-NMR analyses the presence of some minor alteration products, that 

probably are the well known isomers formed by the shift of the acetyl group from the C-3 

to C-2 and C-4 of the glucosyl residue, respectively, (allo- and iso-FC) (Ballio et al., 1972) 

of the sugar moiety. Therefore, the sample was purified by a column chromatography 

[eluent CHCl3-iso-PrOH (9:1)]. The corresponding dideacetyl derivative (DAF, 64) was 

prepared by alkaline hydrolysis of 35 according to the procedure previously reported 

(Ballio et al., 1970) and purified by preparative TLC [eluent CHCl3-iso-PrOH (4:1)]. The 

purity of 35 and 64 were checked by TLC and 1H-NMR analysis.  

The other FC derivatives and analogues, whose purity was ascertained by TLC and 

1H-NMR, were prepared according to the references listed below: 65 (Evidente et al., 

1984); 66 (Ballio et al., 1981); 67 and 68 (Chiosi et al., 1983); 69 (Ballio et al., 1968a); 70 

(Randazzo et al., 1979). 

Ophiobolin A (36) was obtained from the purification of the ethyl acetate extract of 

Drechslera gigantea as previously reported (see paragraph 4.1).  

4.8.2. Fungal metabolites in the management of C. arvense and S. arvensis 

Stagonolide, putaminoxin and pinolidoxin (34, 1 and 6) were obtained by 

purification of the organic extract of S. cirsii, P. putaminum and A. pinodes cultures, 

respectively, as previously described (Evidente et al., 1993; 1995; Yuzikhin et al., 2007). 

Deoxaphomin and cytochalasins A, B, 7-O-acetyl-cytochalasin B, cytochalains F, T, Z2 

and Z3 (30 and 25-29, 20 and 21) were obtained by the purification of the organic extract 

of P. exigua var. heteromorpha solid culture as previously reported (Evidente et al., 2003). 

7,8-O,O'-diacetyl- and 7,8-O,O'-isoprophylidene-pinolidoxin (71 and 72) were prepared 

from 6 according to the chemical derivatization previously reported (Evidente et al., 

1993b) as well as 21,22-dihydro-, 7-O-acetyl- and 7,20-O,O’-diacetyl-cytochalasin B (73, 

27 and 75), were prepared by chemical modification of 26 as previously reported 

(Bottalico et al., 1990). 
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4.9. Biological assay  

4.9.1. Leaf-puncture assay.  

The assessment of toxicity, culture filtrates, organic extracts, chromatographic 

fractions and pure metabolites were assayed by using a leaf-puncture assay on the suitable 

host and non host wild or cultivated plants. Pure toxins, as well as extracts and fractions, 

were first dissolved in a small amount of suitable solvent and then diluted to the desired 

final concentrations with distilled water. The assays were carried out by Dr. M. Vurro, 

Institute of Food Production Sciences, CNR, Bari, Italy, and by Dr. A. Berestetskiy All-

Russian Institute of Plant Protection, St. Petersburg, Russia. 

4.9.1.1. Assay of ophiobolins 

Ophiobolin A, 3-anydro-6-epi-ophiobolin A, 6-epi-ophiobolin A and ophiobolin I, 

were tested at 50, 100 and 250 µg/ml on 13 weed species (eight mono- and five di-

cotyledonous) listed in the Table 5.3.1.  

Ophiobolins B, E and J and 8-epi-ophiobolin J were assayed for their phytotoxicity 

on four weedy plants, as reported in the Table 5.3.2. Droplets (8 µl) of the assay solutions 

were applied to cut segments (length around 5 cm) of leaves detached from young plants 

grown in greenhouse conditions, on which small circular superficial lesions (0.5 mm) have 

previously been produced by using a glass capillary. After droplet application, leaf 

segments were kept on moistened paper filters in Petri dishes, in a growth cabinet at 25 °C 

under continuous fluorescent lights (10,000 lux). Droplets of DMSO solution (up to 4 %) 

were applied to leaves as control. Symptoms appearance was observed 2 days after droplet 

application. Symptoms were evaluated using a visual empiric scale from 0 (no symptoms) 

to 3 (diameter of the necrotic area: 3 mm or wider).  

4.9.1.2. Assays of cytochalasins and nonenolides 

Cytochalasins, nonenolides and their derivatives, were tested at 1 mg/ml on Cirsium 

arvense and Sonchus arvensis leaves. A drop of test solution (10 μl) was placed in the leaf 
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disc centre. The discs of 1 cm in diameter were cut out from well expanded leaves of 

Cirsium arvense and Sonchus arvensis grown in greenhouse. The discs were placed on 

moistened filter paper in transparent plastic boxes and wounded with sharp needle in the 

centre. The treated discs were incubated under alternate artificial light and temperature: 8 h 

in darkness at 20 °C and 16 h under light at 24 °C. After 48 h of the incubation the leaf 

disc necrotic area was measured.  

4.9.1.3. Assay of phyllostictines, phyllostoxin and phyllostin 

Phyllostictines A, B, C and D, phyllostoxin and phyllostin were tested at 

concentrations of around 6 x 10-3 M. Droplets (20 μl) of the assay solutions were applied to 

punctured detached leaves, that were then kept in moistened chambers under continuous 

light. Symptoms appearance was observed 3 days after droplet application.  

4.9.1.4. Assay of stagonolides and modiolide A 

 Stagonolides B, C, D, E, F, G, H and I and modiolide A were tested at 1 mg/ml as 

previously reported (see paragraph 4.9.1.2.)  

Additionally, a spectrum of phytoxicity of stagonolide H (51) was evaluated at 1 

mg/ml on a number of plant species using a leaf disk-puncture bioassay: Chicorium intybus 

L. (chicory), Aegopodium poagraria L. (bishop's weed), Trifolium pretense L. (red clover), 

Raphanus sativus L. (radish), Solanum lycopersicum L. (tomato), Elytrigia repens (L.) 

Desv. ex Nevski (couch-grass), and Zea mays L. (corn), as reported in the Table 5.9.2. The 

plants were produced from seeds in greenhouse and the discs were obtained as previously 

reported (Yuzikhin et al, 2007). The concentration of MeOH was 2% v/v, which is non 

toxic to leaves of all plants in the control. 

4.9.2. Seedlings bioassay of stagonolides G-I and modiolide A  

Seedlings of chicory with rootlets of 1-2 mm length were soaked for 1 h in a 1 mg/ml 

solution of compound 50-53 (concentration of MeOH 2%), and then incubated on a 



 

 
 

57

moistened Petri dish as previously reported (Yuzikhin et al, 2007). The length of rootlets in 

treatment was compared with the control (2% MeOH). The assays were carried out by Dr. 

A. Berestetskiy, All-Russian Institute of Plant Protection, St. Petersburg, Russia. 

4.9.3. Seed germination tests of ophiobolin A and fusicoccin derivatives  

The stimulatory activity of ophiobolin, fusicoccin and its derivatives on germination 

of nine broomrape species was tested in vitro at concentration 10-4, 10-5, 10-6, 10-7 M. 

Seeds of O. aegyptiaca, O. crenata, O. cumana, O. densiflora, O. foetida, O. gracilis, O. 

hederae, O. minor, O. ramosa were sterilised with formaldehyde and spread over 2 cm 

diameter disc of glass fibber filter paper (GFFP, Whatman GF/A) at a density of 50 

seeds/cm2 (Fernández-Aparicio et al., 2008). Three replicate discs per compound were 

prepared with each Orobanche species. The GFFP discs containing the seeds were 

individually placed in small Petri dishes (6 cm diameter) and moistened with 250 µl of 

sterile distilled water. The dishes were placed in the dark at 20 ºC for 10 days to break 

dormancy of broomrape seeds. For bioassays each compound was dissolved in 0.7% 

methanol mixed with 125 µl of sterile distilled water and applied to each GFFP disc 

carrying the conditioned seeds of Orobanche. The synthetic germination stimulant GR24 

(Johnson et al., 1976) was used as a positive control at 10 ppm. In order to allow valid 

comparisons, 0.7% methanol was also added to GR24 dilution. As negative control sterile 

distilled water with 0.7% methanol, was included in the experiment. After treatment, 

dishes containing the discs were maintained in the dark at 20 ºC for seven days. At this 

stage 100 broomrape seeds per disc were studied under a stereoscopic microscope at 30x 

magnification to determine the percentage of germination. Seeds with an emerged radicle 

were scored as germinated. The assays were carried out by Dr. D. Rubiales Olmedo, 

Istitute for Sustainable Agriculture, CSIC, Cordoba, Spain. Data were approximated to 

normal frequency distribution by means of angular transformation and analysis of variance 
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(ANOVA) was conducted using SPSS 15.0 on the percentage of broomrape germination 

observed, with broomrape species, the inductor effect performed by each compound, 

concentration at which each compound was applied and their interaction as factors.  

4.9.4. Assessment of virulence of Ascochyta sonchi strains  

For the assessment of fungal virulence clonally propagated plants were used. 

Underground shoots of C. arvense and S. arvensis were cut into small pieces (length about 

5 cm). The shoot sections were placed in plastic pots (diameter 13 cm, height 11 cm) and 

covered with soil mixture (sand: peat; 1:3) at a depth of 5 cm. Plants were grown under 16 

h artificial light per day at 24 °C day/20 °C night and inoculated at the rosette stage of 5–7 

leaves.  

Two techniques of inoculation were used. Conidial suspension was applied on 10 

mm diameter leaf disks cut from expanded leaves of C. arvense and S. arvensis (10 µl per 

disk, 12 disks per treatment). Before inoculation, half of the disks were wounded in the 

centre with a sharp needle. Leaf disks were incubated in plastic containers at 25 °C under 

continuous light. Symptoms and disease severity were assessed 7 days after inoculation. 

Additionally, whole plants were sprayed with a hand atomiser using the same conidial 

suspension (2 ml per plant, 10 plants per treatment), and they were immediately covered 

with polyethylene bags to keep high humidity for 48 h. Symptoms and disease severity 

were assessed 14 days after conidial application. The types of experiments were carried out 

twice. The assessment of the virulence of A. sonchi strains was carried out by Dr. M. 

Vurro, Institute of Food Production Sciences, CNR, Bari, Italy. 

4.9.5. Zootoxic activity  

The zootoxic activity was tested on the infusorium, Colpoda steinii. (GOST, 1997) or 

on larvae of Artemia salina L. (brine shrimp) (Bottalico et al., 1990). The assays were 

carried out by Dr. A. Berestetskiy, All-Russian Institute of Plant Protection, St. Petersburg, 
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Russia, and by Dr. M. Vurro, Institute of Food Production Sciences, CNR, Bari, Italy, 

respectively. 

4.9.5.1. Assay of stagonolides B-F 

Stagonolides B, C. D, E and F were assayed on Colpoda steinii. The standard 

Lozina-Lozinskogo media (2 ml) was added to the dried infusorium culture containing 

about 5000 cells per ml and then the resulted suspension was incubated for 24 h at 25 °С 

before use. The toxin solution in 4% EtOH was added to the infusoria suspension (1:1 v/v) 

to its final concentration 0.05 mg/ml. After a course of incubation (from 3 to 180 min) the 

number of immobile cells (%) was counted. In the control treatment C. steinii culture was 

prepared in 4% EtOH. If 100% of the infusoria cells become immobile within 3-min 

exposure with the toxin, the tested substance demonstrates strong toxicity; if they loose 

activity in ≥180 min the substance should be evaluated as low toxic. 

4.9.5.2. Assay of phyllostictine A-B, phyllostoxin and phyllostin  

Phyllostictines A and B, phyllostoxin and phyllostin were tested on larvae of A. 

salina L. (brine shrimp) at concentrations between 10-3 and 10-4 M, as previously described 

(Bottalico et al, 1990). Brine shrimp eggs were hatched in artificial sea water. Larvae (30-

50) were placed in sea water solution (0.5 ml) containing the toxins. After 48 hours larvae 

mortality was recorded and expressed as a percentage value. 

4.9.6. Antimicrobial activity of phyllostictine A-B, phyllostoxin and phyllostin  

 The antifungal activity of phyllostictines A and B, phyllostoxin and phyllostin was 

tested up to 100 µg/disk on G. candidum, whereas the antibiotic activity was assayed on 

Lactobacillus sp. and E. coli, as previously described. (Bottalico et al., 1990). The assays 

were carried out by Dr. M. Vurro, Institute of Food Production Sciences, CNR, Bari, Italy. 

4.9.7. Photometric assays of cytochalasin B and stagonolide  

  Light absorption of leaves treated with phytotoxins was registered in vivo with a 

photometer LAFOT and a spectrophotometer SPEFOT. Both instruments were developed 
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in St. Petersburg Agrophysical Institute, Russia (Lisker, 1991). LAFOT works at the wave 

of 632.8 nm. At this wavelength the absorption level closely correlates with the 

chlorophyll content in plants (Lisker and Dmitriev, 1998; 1999). SPEFOT reads the optical 

parameters of plant tissue in the spectrum from 450 to 1100 nm and can register relative 

quantitative changes of a number of plant pigments including chlorophylls and carotenes. 

The absorption values were expressed as percentage of initial power of radiation. Ten leaf 

discs per treatment were analysed with LAFOT after 0 (control), 2 and 4 h post toxin 

application. Photometric assay with SPEFOT at the wavelength range of 450–950 nm was 

conducted after 24 h post treatment of discs with stagonolide and cytochalasin B. The 

assays were carried out by Dr. A. Berestetskiy, All-Russian Institute of Plant Protection, 

St. Petersburg, Russia. 

4.9.8. Electrolyte leakage assays of cytochalasin B and stagonolide  

 Conductivity meter Tercon-04 (Agrophysical Institute, St. Petersburg, Russia) was 

used for in vivo evaluation of the electrical resistivity of leaf tissues of C. arvense 24 h post 

treatment with stagonolide, cytochalasin B, and water (control). The discs boiled in water 

for several minutes were used as a positive control. For the assay, a treated leaf disc (10 

replicate discs per treatment) placed between two copper electrodes was exposed to current 

at the electric tension of 1 V. Its electric resistivity was measured with determined intervals 

since 5 to 150 sec after beginning of the current. The resulted data were expressed as a 

ratio between the first measurement (5 sec post beginning of the current) and following 

measurements of the resistivity. 

Data obtained with the above mentioned technique were compared with observations 

based on routine electrolyte leakage assay. Treated leaf discs were washed with distilled 

water, cut into small pieces and soaked for 30 min in water, and electrical conductivity of 

resulted water extracts was measured by a conductivity meter. The assays were carried out 

by Dr. A. Berestetskiy, All-Russian Institute of Plant Protection, St. Petersburg, Russia. 
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5. RESULTS AND DISCUSSION 

5.1. Chemical characterization of ophiobolins from D. gigantea liquid culture, 

potential herbicides of weedy grasses 

The organic extract of D. gigantea culture filtrates, showing a strong phytotoxic 

activity was purified by column and TLC chromatography as described in the 

experimental. The main metabolite was isolated as a crystalline white solid (25.0 mg/l) and 

identified by spectroscopic methods (essentially 1H and 13C NMR and MS techniques) as 

ophiobolin A (36, Fig. 5.1.1). The physical and the spectroscopic data were similar to those 

previously reported in literature (Nozoe et al., 1965; Li et al., 1995; Canales et al., 1988). 

This result was also confirmed by a direct X-ray analysis carried out on the natural 

metabolite in collaboration with Prof. A. Tuzi, Department of Chemistry, University 

“Federico II” of Naples, Italy. The other three compounds were isolated as amorphous 

solids but in lower amounts (1.5, 1.1 and 0.3 mg/l) compared to 36 and by preliminary 

spectroscopic investigation, appeared to be closely related to ophiobolin A. They were 

identified by comparison of their spectral data, essentially 1H and 13C NMR and MS data, 

as 6-epi-ophiobolin A, 3-anhydro-6-epi-ophiobolin A, and ophiobolin I (37, 38 and 39, 

Fig. 5.1.1). Their physical and spectroscopic data were similar to those reported in 

literature (Canales et al., 1988; Kim et al., 1984; Li et al., 1995; Suguwara et al., 1987; 

1988). 

The residues of the ophiobolin A mother liquor crystallization were combined and 

purified as in detail reported in the experimental yielding a further ophiobolin (0.48 mg/l, 

40, Fig. 5.1.1) as a homogeneous compound. This latter had a molecular formula of 

C25H34O3 as deduced from HRESIMS spectrum consistent with 9 degrees of unsaturations. 

Compared to ophiobolin A, it showed the significant absence of one oxygen atom and the 

increase of one unsaturation. The preliminary 1H and 13C NMR (Figg. 5.1.2 and 5.1.3) 

investigation showed noteworthy differences in respect with the spectra of known 
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ophiobolins, although the typical systems of the α,β-unsaturated aldehydic group of the 

octacyclic B ring substantially appeared unaltered (Breitmaier and Volter, 1987; Pretsch et 

al., 2000) as also confirmed by the analysis of the COSY and HSQC (Figg. 5.1.4 and 

5.1.5) (Berger and Braun, 2004). Some significant differences seemed present in both the 

pentacyclic rings A and C. In fact, the ketone group on C-5 and the typical AB system due 

to the H2C-4 present in 36 were absent in 40, with the consequent increase of the 

multiplicity and complexity of the region of methylene protons of the 1H NMR spectrum 

(Table 5.1.1) and due to both H2C-4 and H2C-5 resonating between δ 2.45 and 1.50. 

Furthermore, the broad doublet (J = 6.99 Hz) of H-6 appeared significantly upfield shifted 

(Δδ 0.36) δ 2.85 (Pretsch et  al., 2000). However, in the ring A the presence of tertiary 

hydroxylated quaternary carbon C-3 and the corresponding geminal methyl group appeared 

evident, as their corresponding signals were observed in the 13C NMR spectrum as a 

singlet and a quartet at typical chemical shift values of δ 78.9 and 29.2 (Breitmaier and 

Volter, 1987), while the methyl group appeared as a singlet in the 1H NMR spectrum at the 

expected chemical shift value of δ 1.34 (Pretsch et al., 2000). These structural features are 

in agreement with the signal recorded in the IR spectrum (Fig. 5.1.6) for α,β-unsaturated 

carbonyl and hydroxy groups (Nakanishi and Solomon, 1977), as well as the typical 

maximum absorption recorded in the UV spectrum (Fig. 5.1.7) at 233 nm (Scott, 1964). 

Considering the lack of the ketone group at C-5 and the presence of four rings and the 

double bond of the isoprenyl side [C(17)-C(25)], the remaining two unsaturations of 40 

should be located in the ring C. In fact, the 1H spectrum of 40 showed a broad triplet (J= 

5.4 Hz) typical of an olefinic proton (Pretsch et al., 2000) at δ 5.08 (H-12) and, compared 

to the spectrum of ophiobolin A, the absence of the signals of H-10 as well as those of the 

two methylene groups H2C-12 and H2C-13. The comparison of the corresponding 13C 

NMR spectra showed the absence in 40 of the significant oxygenated quaternary carbon of 
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C-14, and the methine and the methylene carbons of C-10 and C-12 and C-13, while four 

olefinic carbons were present at the typical chemical shift values expected for a suitable 

substituted 1,3-cyclopentadienylic ring (Breitmaier and Voelter, 1987). Of these, the 

secondary carbon at δ 124.5 was attributed to C-12 while the three remaining quaternary 

carbons present at δ 159.6, 158.8 and 133.0 were assigned to C-13, C-10 and C-14, 

respectively, on the basis of the couplings observed in the HMBC spectrum (Fig. 5.1.8, 

Table 5.1.1) (Berger and Braun, 2004). The 1,3-dienylic nature of the ring C was in 

agreement with the typical bands observed in both IR (Nakanishi and Solomon, 1987) and 

UV spectra (Scott, 1964) of 40. Finally, the ether bridge of D ring should be present 

between C-17 and C-13, considering the typical chemical shift value of δ 159.6 shown by 

C-13 in the 13C NMR spectrum (Breitmaier and Voelter, 1987). Consequently, 40 

represents the first ophiobolin in which the D ring became a substituted dihydropyran ring, 

joined with the C ring trough the C(13)-C(14) bond and bearing the secondary methyl 

group and the 2,2-dimethylvinylidene side chain at 4- and 2-positions in respect to the 

oxygen atom. The chemical shifts of the secondary methyl group (Me-CH-15) as well as 

those of the dimethylvinyledene tail at C-17 are very similar to those reported for the 

ophiobolin A. As expected, substantially different appear to be the signal of H-17 and H-

18, both resonating as broad doublets at δ 3.85 and 5.84 in the 1H NMR spectrum (Pretsch 

et al., 2000), as well as those of C-17 downfield shifted (Δδ 14.9) at δ 85.7 in the 

corresponding 13C NMR spectrum (Breitmaier and Voelter, 1987).  

On the basis of the correlations observed in the COSY and HSQC spectra, the 

chemical shift was attributed to all the protons and the corresponding carbons and reported 

in Table 5.1.1. The structure of this ophiobolin is depicted in 40. Considering that in 

literature the name ophiobolin E appears not to be attributed to any compound (Au et al., 

2000), we decided to assign this name to 40.  



 

 
 

64

The structure of ophiobolin E was supported by several 1H,13C long-range 

correlations and the effects recorded for 40 in the HMBC and NOESY (Fig. 5.1.9) spectra 

(Table 5.1.1 and 5.1.2) (Berger and Braun, 2004), and by data of its HRESI MS spectra. 

The latter, recorded in positive mode, in addition to the sodium cluster [M+Na]+ at m/z 

405.2416, showed the potassium [M+K]+ cluster and the pseudomolecular ions at m/z 

421and 383, respectively. When recorded in negative modality the ESI MS spectrum 

showed the significant pseudomolecular ion [M-H]- at m/z 381. 

 

5.2. Chemical characterization of other ophiobolins from D. gigantea solid culture 

Grown on solid culture, D. gigantea produced different ophiobolins. The organic 

extract was purified by a combination of column and preparative TLC, as in details 

reported in the experimental, giving four ophiobolins, all isolated as amorphous solids. 

Three of them were identified as ophiobolins A (obtained in very low amounts in respect to 

the liquid culture of the same fungus), B and J (41 and 42, Fig. 5.2.1), by comparison of 

their spectroscopic properties, essentially 1H and 13C NMR and MS data. Their physical 

and spectroscopic data were very similar to those reported in the literature (Li et al., 1995; 

Sugawara et al., 1988). The fourth ophiobolin appeared to be a new compound closely 

related to ophiobolin J, as shown by the same molecular formula of C25H34O3 deduced 

from its HR ESIMS and by the comparison of their IR, UV and 1H and 13C NMR spectra 

(Figg. 5.2.2-5.2.5). In particular, the only significant difference observed in the 1H NMR 

spectrum was the signal of H-8 which appears in both compounds as a double doublet at δ 

4.68 and 4.70 in 42 and 43, respectively, but differently coupled with the protons of the 

adjacent H2C-9. In fact, the coupling constants measured for H-8 were 10.0 and 9.9 Hz in 

43 while the same in 42 were 5.7 and 4.5 Hz respectively. On the basis of these results, the 

structure of 8-epi-ophiobolin J was assigned to 43 (Fig. 5.2.1). This is the first ophiobolin 

showing the epimerization of C-8.  
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The correlations observed in the COSY and the HSQC spectra (Figg. 5.2.6 and 5.2.7) 

allowed to assign the chemical shifts to all the protons and the corresponding carbons of 43 

(Table 5.1.1) which, as expected, were very similar to those of 42 (Sugawara et al., 1988).  

The structure of 8-epi-ophiobolin J (43) was supported by several 1H,13C long-range 

correlations and the effects recorded for 43 in the HMBC and NOESY spectra (Figg. 5.2.8 

and 5.2.9, Table 5.1.1 and 5.1.2). Particularly significant appeared to be the clear NOE 

effect observed between H-8, having a β-position, and the Me-22 located on the same side 

of the molecule.  

The structure of 43 was also supported by the data of its HRESI MS spectra (Fig. 

5.2.10). The latter, recorded in positive mode, in addition to the sodium cluster [M+Na]+ at 

m/z 423.2515, showed the potassium [M+K]+ cluster and the pseudomolecular ions at m/z 

439 and 401, respectively, and the ion at m/z 383 generated from this latter by loss of H2O. 

When recoded in negative modality the ESI MS spectrum showed the significant 

pseudomolecular ion [M-H]- at m/z 399.  

 

5.3. Biological activity of ophiobolins 

Ophiobolin A proved to be highly toxic to almost all the plant species tested (Table 

5.3.1), already at the lowest concentration used (1.25 10-4 M; 3.2 µg droplet-1). Among 

dicotyledons, Sonchus oleraceus appeared to be particularly sensitive, whereas almost all 

of the monocotyledons were very sensitive. On the opposite, even at the highest 

concentration used, the phytotoxin was almost inactive to Cynodon dactylon. Compared to 

ophiobolin A, 6-epi-ophiobolin A proved to have almost the same spectrum of plant 

sensitivity, but at a lower intensity. With regard to 3-anydro-6-epi-ophiobolin A, it was 

almost inactive to most of the plant tested, with the exception of Setaria viridis and 

Diplotaxis erucoides. Ophiobolin I proved to be inactive, even at the highest concentration, 

to all the plants tested. 
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Tested on four weedy plants using the leaf-puncture assay only ophiobolins B and J 

proved to be toxic (Table 5.3.2), whereas the two new ophiobolins, ophiobolin E and 8-epi-

ophioblin J, appeared to be inactive on all the tested plant species. In particular, ophiobolin 

B was highly toxic to Bromus sp. and Hordeum marimum leaves, but less toxic to the other 

two weed species. The same range of toxicity, but at a lower level, was observed for 

ophiobolin J.  

It is interesting to note a certain level of selectivity of the toxins. In fact, on average 

ophiobolins proved to be more active to grass weeds in respect to dicotyledonous species. 

Ophiobolin A proved to be more active to almost all the plant species tested, in comparison 

with 6-epi-ophiobolin A, whereas the 3-anhydro compound was much less toxic, being 

almost inactive to many of the plant tested, even at the highest concentration used. 

Furthermore, the ophiobolin I proved to be inactive to all the species tested. On the basis of 

these results structural features important for the phytotoxicity appear to be the hydroxy 

group at C-3, the stereochemistry at C-6 and the aldehyde group at C-7. These results are 

in agreement to the previously reported data (Pena-Rodriguez et al., 1989). The modulated 

activity of ophiobolin B on the different tested plants appears to be similar to that 

previously reported for ophiobolin A. This result was predictable because the two 

ophiobolins are structurally closely related. Moreover Ophiobolin J, having reduced or no 

activity, is related to ophiobolin I, which had proved to be inactive. This activity is in 

agreement with the phytotoxicity previously observed for the same toxin (Sugawara et al., 

1988). The different phytotoxicity showed by the two ophiobolins J and I could be 

attributed to the different conformation that the octacyclic B ring can assume, as a 

consequence of the different position of the double bond, which is located between C-7 

and C-8 in 39, and between C-6 and C-7 in 42. Probably, when present, the epimerization 

of the hydroxy group of C-8, observed for the first time in 43, imparts the total loss of the 

activity. The noteworthy structural differences present in the ophiobolin E could justify the 



 

 
 

67

observed inactivity on the tested plants. In fact, this latter ophiobolin showed the 

conversion of the cyclopentane C ring, present in all the other ophiobolins, into a 1,3-

cyclopentadiene joined with the D ring, which in turn is present for the first time as a 

tetrasubstituted dihydropyran ring. Consequently, the configuration of the octacyclic B ring 

as well as that of the 2,2-dimethylvinylidene residue at C-17 should be substantially 

changed. Moreover, as a further difference in respect to the other ophiobolins, 40 showed 

the lack of the ketone group at C-5, which determines a different A ring conformation.  

The ophiobolins are a group of polycyclic sesterterpenoid with a common basic 

structure. They are secondary phytotoxic metabolites produced by pathogenic fungi 

attacking several crops, such as rice, maize and sorghum. Ophiobolin A was the first 

member of the group to be isolated and characterized independently by Canonica 

(Canonica et al., 1966) and Nozoe (Nozoe et al., 1966). In addition to ophiobolin A, 

several analogs were isolated in the late sixties and their structures determined. These 

include ophiobolin B from B. oryzae (Itai et al., 1967), ophiobolin C from B. zizanie 

(Nozoe et al., 1966), ophiobolin D from Cephalosporium caerulens (Itai et al., 1967: 

Nozoe et al., 1967), and ophiobolin F from B. maydis (Nozoe et al., 1968). A wealth of 

information has been accumulated regarding the biological activities of ophiobolins as well 

as on their biosynthesis, even if neither the enzymes nor the genes responsible have been 

identified (Au et al., 2000). The isolation of ophiobolins from this strain of D. gigantea 

isolated by Digitaria sanguinalis is enough surprising considering Kenfield et al. (1989a), 

had previously studied the metabolites produced by another strain of D. gigantea and 

reported only the isolation of gigantenone as the main toxin. Although being both 

terpenoids, gigantenone belongs to the chemical subgroup of sesquiterpenes, whereas 

ophiobolins belong to that of sesterterpenoids. Several biological investigations have also 

described gigantenone as a promising compound in different areas of research such as 

pathological physiology, photosynthetic efficiency, senescence, vegetation propagation, 
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and development of selective herbicides (Kenfield et al., 1989a). Many biological 

properties were reported for ophiobolins, too. For example, they can reduce root and 

coleoptile growth of wheat seedlings, inhibit seed germination, change cell membrane 

permeability, stimulate leakage of electrolytes and glucose, or cause respiratory changes 

(Au et al., 2000). In our assays, the necrotic spot lesions on leaves induced by the 

application of drops of toxins resemble those caused by the pathogen, even if those 

symptoms are not as specific as the pathogen. For this reason, further studies are in 

progress to evaluate the possibility of enhancing the efficacy of the promising 

mycoherbicide D. gigantea with the joint application of sublethal doses of the toxins.  

Changes in culturing conditions can strongly influence the biosynthetic production of 

ophiobolins as already reported. For example, B. maydis was able to produce ophiobolin A, 

3-anhydro-ophiobolin A, ophiobolin B and ophiobolin L when grown in liquid conditions 

(Li et al., 1995), whereas it produced ophiobolin M, 6-epi-ophiobolin M, ophiobolin C, 6-

epi-ophiobolin C, ophiobolin K and 6-epi-ophiobolin K when grown on solid media 

(Tsipouras et al., 1996). 

Ophiobolins are also toxic to animals. For example, the LD50 doses of ophiobolin A 

for mice are 238 mg/kg when administered subcutaneously, or 73 mg/kg, orally (Nakamura 

and Ishibashi, 1958). Even if they are much less toxic (as acute toxicity) compared to other 

powerful mycotoxins [e.g.: oral  LD50 for T-2 toxin and aflatoxin B1 is ranging between 0.6 

and 6.1 mg/kg, and between 0.4 and 18 mg/kg, respectively, depending on the animal 

species (Bottalico, 2004)], their real impact in the environment should be evaluated, as 

well as their effect to non-target organisms, and their fate after the introduction in the 

environment, if considered as possible natural herbicides.  
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5.4. Stimolation of seed germination of Orobanche spp. by ophiobolin A and 

fusicoccin derivatives 

Ophiobolins share the same carbotryciclic diterpenoid ring with fusicoccins and 

cotylenins, other two groups of microbial metabolites produced by Fusicoccum amygdali, 

the causal agent of almond and peach disease (Ballio and Graniti, 1991), and by 

Clamidiosporum sp. 501-7W. (Sassa, 1971; Sassa et al., 1972).  

Fusicoccin (FC) at lower concentration (10-6-10-8 M) showed other interesting 

biological activities as seed germination, stomata opening and hormone like properties. 

Considering these activities, a structure-activity relationship (SAR) study was carried out 

using FC and some its derivatives to induce a suicidal germination of Orobanche ramosa 

seeds. The most active compound appeared to be the dideacetyl FC, which being easily 

prepared in high yield by alkaline hydrolysis from FC, could have a potential practical 

application (Evidente et al., 2006). This prompted to perform further study using 

fusicoccin derivatives and close related terpenoid as ophiobolin A to evaluate the 

stimulation of seed germination of different Orobanche species. 

In this SAR study a total of 9 compounds were used, and 6 of them are FC 

glucosides, two FC aglycones and ophiobolin A (36). In particular, beside FC (35, Fig. 

5.4.1), the following compounds were tested for their capacity to stimulate the seed 

germination of Orobanche species: the glucoside derivatives 64-68 (Fig. 5.4.1) prepared 

from FC by “ad hoc” chemical modification; the 8,9-isopropylidene derivative of FC 

deacetyl aglycone (69, Fig. 5.4.1), which was prepared by chemical degradation of the 

sugar moiety of 35, and its 19-O-trytil-12-oxo derivative (70, Fig. 5.4.1); ophiobolin A 

isolated from liquid culture filtrates of D. gigantea.  

The Orobanche species used were O. aegyptica, O. crenata, O. cumana, O. 

densiflora, O. foetida, O. gracilis, O. hederae, O. minor and O. ramosa. A positive 

germination control was obtained by stimulating the seed germination of all the species 
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using the synthetic stimulant GR24 (Johnson et al., 1976) in the conditions detailed 

reported in the experimental and by adding 0.7% of methanol, which is the final 

concentration of this solvent present in the solution of the compound tested. A negative 

control using sterile distilled water with 0.7% of methanol was also used. 

The results reported in Figure 5.4.2 showed that GR24 at the concentrations tested 

has a high stimulatory activity (inducing 55 to 90% seed germination) of O. crenata, O. 

cumana, O. minor, O. aegyptiaca and O. ramosa, but not of O. densiflora, O. foetida, O. 

gracilis or O. hederae. As expected with the negative control practically all the species did 

not showed any germination.  

The compounds were tested in the concentration range of 10-4-10-7 M in the 

conditions detaily reported in the experimental. The results of the bioassays are reported in 

Figure 5.4.3. There were significant differences in the broomrape germination due to the 

broomrape species tested (ANOVA, p<0.001), to the compound tested (ANOVA, 

p<0.001), and to the concentration used (ANOVA, p<0.001) and their second and third 

order interaction (ANOVA, p<0.001).  

Practically, only O. aegyptiaca, O. ramosa, O. cumana and O. minor were stimulated 

up 50% in the range of the concentration tested but only by the fusicoccin derivative 67 

and 68 and by ophiobolin A (36). The other fusicoccin derivatives were inactive, except 

the 8,9-isopropylidene derivative of FC deacetyl aglicone (Fig. 5.4.3 A) that showed a 

relatively highly stimulation on O. minor about 35%. Compound 69 was assayed at higher 

concentration (10-7 M) and on the same species and other ones were practically inactive 

inducing at maximum a 10% of stimulation against the 55% of stimulation previously 

observed on O. ramosa (Evidente et al., 2006).  

Our results on response of O. minor and O. ramosa to fusicoccin and its derivatives 

differed slightly to previous reports (Yoneyama et al., 1998; Evidente et al., 2006). We 

found FC to be little active on O. minor and O. ramosa, whereas Yoneyama et al. (1998), 
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found high stimulation (56 and 86%) when assayed at 10-5 and 10-4 on O. minor and 

medium (37 and 25%) on O. ramosa (Evidente et al., 2006).  

The most active FC derivatives 67 and 68, which are differently acetylated isomers 

of the 16-O-demethyl-de-t-pentenyl-FC, were prepared by chemical modification of 

fusicoccin by reaction with a Fritz and Schenk reagent normally used for the acetylation of 

highly hindered hydroxy group (Fritz and Schenk, 1959). The structural modification 

induced by this reaction was essentially the cleavage of the ether bond and the expansion 

of the cyclopentane ring A to the cyclohexane or cyclohexene ring as can be observed in 

67 and 68, respectively. Derivative 67 (Fig. 5.4.3 C) showed the same stimulatory effect 

(about 20%) on O. aegyptiaca, O. cumana and O minor in the concentration range 10-4-10-

6  M,  which rapidly decreased at 10-7 M. O. ramosa showed a lesser extent germination 

with a maximum of 10% at 10-5 M, that agree with the results previously observed 

(Evidente et al., 2006). Derivative 68 (Fig. 5.4.3 D) showed a modulate activity that is 

species and concentration dependent. The highest stimulatory effect was observed on O. 

aegyptiaca, whose germination increased from 20% at 10-4 M at up 50% at 10-5 M and 

rapidly decreased with the decrease of concentration. O. cumana showed a similar 10% of 

germination at 10-4 M and increased up to 40% at 10-6 M and then rapidly decreased with 

the decrease of concentration. O. minor showed a similar 10-17% of germination at all the 

concentrations assayed. Finally, O. ramosa was practically not stimulated up to 10-5 M and 

little stimulated (<10%) at higher concentrations. In agreement with this result a low 

stimulatory effect (10%) was also previously observed testing 68 on the same species. 

The results observed with both 67 and 68 are remarkable as the chemical 

modification induced on the cyclopentane ring A consequently determine a strong 

modification of the conformation of the carbotricyclic ring that is an important feature to 

impart activity to FC as previously demonstrated in some SAR study (Ballio and Graniti, 

1991; Ballio et al., 1991; Pini et al., 1979). 
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Similarly ophiobolin A (36) induced (Fig. 5.4.3 B) a stimulation depending from the 

broomrape species and the concentration. No stimulation was observed at concentration 

more than 10-5 M for O. aegyptiaca and O. cumana, while for the other two species, O. 

minor and O. ramosa, the stimulation started at 10-6 M. For the first two species the 

stimulation increased up to 10-6 M and then rapidly decreased with the decrease of 

concentration for O. aegyptiaca, while for O. cumana a linear increasing was inversely 

observed in respect to the concentration. For O. minor and O. ramosa the stimulation 

rapidly increased with the decrease of concentration.  

 

5.5. Analysis of ascosonchine content in A. sonchi strains, a potential mycoherbicide 

for biocontrol of Cirsium arvense and Sonchus arvensis 

 A simple and sensitive HPLC method was developed for the quantitative analysis of 

the ascosonchine (33, Fig. 1.7) to assess its possible role in the disease induced by A. 

sonchi on both C. arvense and S. arvensis. Preliminary tests at various elution conditions 

with standard ascosonchine on reverse phase C-18 and C-8 showed unresolved, 

asymmetric peaks, which highly delayed the return to baseline. This was due to a strong 

adsorption on stationary phase. On the basis of earlier positive experience in developing a 

HPLC method for the analysis of fusaric and 9,10-dehydrofusaric acids (Amalfitano et al., 

2002), which are pyridilcarboxylic toxins closely related to ascosonchine, the use of a high 

density C-18 stationary phase drastically reduced this phenomenon. Attempts were made to 

found the best elution conditions using this stationary phase. The same conditions 

appropriate for the analysis of fusaric acids with methanol and 1% dipotassium hydrogen 

phosphate in HPLC grade water adjusted to pH 7.35 with concentrated phosphoric acid 

(1:1, v/v) as the mobile phase at a flow rate of 1 ml/min and an isocratic gradient over 15 

min was used. In these conditions, an asymmetrical broad peak for ascosonchine (Fig. 

5.5.1 A) was obtained. The elution with an isocratic gradient of acetonitrile with the same 
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buffer (1:1, v/v) at a flow rate of 1 ml/min over 15 min yielding a poorer elution profile 

(Fig. 5.5.1 B) with different peaks, probably due to different tautomeric forms of 

ascosonchine. Satisfactory shape peak was finally obtained by eluting with an isocratic 

gradient of methanol and HPLC grade water (1:1, v/v, pH 6.2) at a flow rate of 1 ml/min 

over 15 min (Fig. 5.5.1 C). The recovery of ascosonchine added to the culture filtrate is 

near 100%. These results indicated that the simple CHCl3:iso-propanol (9:1 v/v) extraction 

was adequate for quantitative analysis of metabolites in culture filtrates.  

 These latter conditions were used to quantify the ascosonchine content in the culture 

filtrates of different C. arvense and S. avernsis strains (Table 5.5.1). The characteristics of 

the calibration curves, the absolute range and the detection limits (LOD) of ascosonchine 

are summarized in Table 5.5.2. Regression analysis suggests that the calibration curves are 

linear. A representative HPLC chromatogram of the CHCl3-iso-propanol soluble culture 

filtrate of A. sonchi (strain C-240) is presented in Figure 5.5.1 D. The metabolite 

chromatographic peak (a) in the sample was coincident to the 4.6 min retention time of the 

ascosonchine standard. The retention times were highly reproducible, varying less than 

0.50 min. For all strains matrix substances absorbing at 230 nm were eluted within the first 

4 minutes. No further peaks appeared when samples were eluted with a higher percentage 

of water in the mixture, but the retention time increase. This and the high similarity of the 

features of the metabolite peak in samples with those of the purified standard, suggested 

other substances were not present that had overlapping peaks. Using the HPLC conditions 

described, ascosonchine could be quantitatively and reproducibly detected at 10 ng. Poor 

reproducibility was observed at levels lower than 10 ng. 

 The ascosonchine content in culture filtrates of seven of the nine strains tested 

ranged between 0.5 and 2.7 mg/l (strain S-10 and C-240, respectively), whereas two strains 

(S-9 and C-177) did not produce any measurable ascosonchine (Fig. 5.5.2). The toxin 

content in the culture of the standard strain (S-7) determined by HPLC (1.4 mg/l) was 
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higher than that obtained by chemical purification (1.1 mg/l) of the same strain grown in 

identical conditions (Evidente et al., 2004). This can be probably due to metabolite losses 

occurred during the complex purification and/or differences in fungal growth.  

 There were significant differences in virulence (at p<0.05) among C. arvense strains 

(Figure 5.5.3) when tested on both intact and wounded leaf disks.  The first symptoms, 

round necrotic lesions, appeared 5 days after inoculation. Generally, disease severity was 

significantly higher (at p<0.05) in wounded leaf disks than in intact ones (Figure 5.5.3) 

(r=0.78 at p<0.05). The most virulent strains were C-177, C-216 and C-240, causing 

necrotic lesions up to 45 % the total leaf surface on wounded leaves, whereas strains S-7 

and C-180 were avirulent on intact leaf disks of C. arvense, and almost avirulent on 

wounded leaf disks. None of the strains were virulent to intact or wounded leaf disks of S. 

arvensis. 

 Although the conditions for the infection were supposed to be very favourable (high 

inoculum concentration and long period of leaf wetness), all the strains tested on whole 

plants of C. arvense showed a low level of pathogenicity (data not shown), and only in 

some cases the total lesion size reached 25% of the total leaf area. They were able to infect 

mainly wounded leaf tissue of the weeds.  

Positive relationships between virulence and production of toxins have been found in 

some cases (Kumar et al., 2002; Reino et al., 2004). In our case, this hypothesis seems not 

to be supported, considering that strains S-9 and C-177, no in vitro ascosonchine 

producers, and strains S-10 and C-182, low toxin producers, were all able to cause leaf 

disease. The two best ascosonchine producers, strains C240 and C-208 (2.7 and 1.9 mg/l, 

respectively) were both isolated from leaves of C. arvense, but so were C-177 and C-182, 

among the worst ascosonchine producers (0 and 0.7 mg/l, respectively). The origin of the 

host plant (Russia or Norway) does not seem to have any relation with virulence or the 

ability to produce toxin.  



 

 
 

75

 Strain C-240 grown in static conditions synthesized ascosonchine at a linear rate 

from the first to the fifth week (from 0.15 to 3.1 mg/l), and reached the maximum content 

at the eighth week (8.30 mg/l) (Fig. 5.5.4). The fungus produced up to almost 1 mg/l, in 12 

days in shake culture (Fig. 5.5.5). Considering the variability in ascosonchine production 

among strains, further studies would be necessary to optimize and maximize toxin 

production for potential use as a natural herbicide, or in combination with a pathogen, in 

biological control.  

 Because the toxin was detected in the later stages of the growth of A. sonchi (8 

weeks for static culture, and 12 days in shaken conditions), after the stationary phase and 

when the mycelium started to be senescent, the toxin could be a product of fungal 

deterioration.  

 

5.6. Taxonomic characterization of Phoma exigua var. exigua in vitro.  

  Even though ascosonchine was not in the culture extracts of the strains S-9 and C-

177, both proved to be highly toxic when tested using the leaf disk assay (data not shown).  

Preliminary chemical and spectroscopic (1H and EI- and ESI-MS spectra) analyses of the 

other main metabolites confirm they were different from ascosonchine and seemed to be 

closely related to those produced by some other Phoma and Pyrenophora species 

(Evidente and Motta, 2001; Evidente and Abouzeid, 2006).  

These results suggested studies to ascertain the taxonomy and the nature of 

phytotoxins produced by this two atypical Ascochyta strains. 

The strains differed in growth rate significantly (p<0.05) on both diagnostic agar 

media. However, their 7-day old colony dimensions were in accordance to the description 

of P. exigua var. exigua. No considerable differences in colony morphology were found in 

all the strains obtained from both C. arvense and S. arvensis. All the strains demonstrated 

E+ reaction (green following by red staining of the agar media) to a drop of 6 N NaOH 
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applied to colony margins, which is important species feature of P. exigua var. exigua. 

This reaction means presence of antibiotic E in culture media, which is produced only by 

this species (Boerema et al., 2004). Moreover, a comparison of internal trascribed spacer 

(ITS) sequences from our strains of P. exigua var. exigua with those uploaded in GenBank 

showed their identity (G. Múle, M. Vurro, personal communication). These results support 

the re-classification of S-9 and C-177 strains in the Phoma exigua var. exigua sp. 

  

5.7. Chemical characterization of phytotoxins from Phoma exigua var. exigua  strains 

S-9 and C-177 solid and liquid cultures. 

Fungal cultures of P. exigua var. exigua strain C-177 grown on wheat kernels were 

extracted with water-acetone mixture, evaporated and residual aqueous solution re-

extracted with ethyl acetate, then dried to give an abundant brown oil (1.14 g/kg). It was 

fractionated by silica gel column chromatography as reported in detail in the experimental. 

The residues of the second and third fractions were combined (for a total of 573.8 mg) and 

crystallized from EtOAc-n-hexane and gave the main metabolite. It was identified as the 

well known cytochalasin B (26, Fig. 5.7.1., 525 g/kg) by comparing its spectroscopic (1H 

and 13C NMR and ESI MS spectra), physic (melting point) and chromatographic behaviour 

[Rf 0.32 by TLC, eluent EtOAc-n-hexane (6:4, v/v)] with those of a standard sample 

(Capasso et al., 1987). The mother liquors of the cytochalasin B crystallisation were 

combined and fractionated by silica gel column, as described in detail in the experimental. 

The residue of the second fraction appeared to be a homogeneous amorphous solid. It was 

identified as the p-hydroxybenzaldehyde (44, Fig. 5.7.1, 6.5 mg/kg) by comparing its 

spectroscopic data (1H and 13C NMR and ESI-MS spectra) and chromatographic behaviour 

[Rf  0.48 by TLC, eluent CHCl3-Me2CO-AcOH (90:10:0.3, v/v/v)] with those reported in 

literature (Shimada et al., 1999) and with those of a standard commercial sample. The 
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residue of the fifth fraction of the same column was further purified by two TLC steps as 

reported in the experimental yielding a homogeneous amorphous solid. It was identified as 

cytochalasins F (27, Fig. 5.7.1, 1.4 mg/kg) by comparing its spectroscopic (1H and 13C 

NMR and ESI-MS spectra) and chromatographic behaviour [Rf 0.43 by TLC, eluent 

EtOAc-n-hexane (6:4, v/v)] with those of a standard sample (Capasso et al., 1991). The 

residue of sixth fraction of the cited column purified by TLC as reported in the 

experimental, gave a homogeneous amorphous solid. It was identified as deoxaphomin (30, 

Fig. 5.7.1, 5.0 mg/kg) by comparing its spectroscopic (1H and 13C NMR and ESI-MS 

spectra) and chromatographic behaviour [Rf  0.31 by TLC eluent petroleum ether: acetone 

(65:35, v/v)] with those of a standard sample (Capasso et al., 1988).  

The ethyl acetate organic extract (101.0 mg/l), obtained by extraction of the culture 

filtrates of the same strain (C-177) of P. exigua var. exigua, was fractionated by a silica gel 

column as in detail reported in the experimental. The residue of the second fraction was 

further purified by preparative TLC as reported in the experimental yielding p-

hydroxybenzaldehyde and cytochalasin B (1.0 and 2.2 mg/l, respectively) both as 

homogeneous amorphous solids.  

Finally the organic extract (377.5 mg/kg) of the solid culture of P. exigua var. exigua 

strain S-9, obtained as in detail reported in the experimental, was fractionated by silica gel 

column. The residue of the first fraction was purified by TLC as reported in the 

experimental giving cytochalasin B as a homogeneous amorphous solid (5.2 mg/kg). The 

residue of the second and third fraction was independently crystallized from EtOAc-n-

hexane yielding cytochalasin B as white needles (122 mg/kg). The mother liquors were 

combined and purified by preparative TLC as reported in the experimental, giving 

deoxaphomin as a homogeneous amorphous solid (3.1 mg/kg). The residue of the fourth 

and fifth fraction of the initial column were further purified by TLC as reported in the 

experimental, giving two homogeneous amorphous solids, which was, in turn, identified as 
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cytochalasins Z2 and Z3 (20 and 21, Fig. 5.7.1, 2.0 and 2.1 mg/kg, respectively) by 

comparing their spectroscopic (1H and 13C NMR and ESI-MS spectra) and 

chromatographic behaviour with those of a standard sample (Evidente et al., 2002).  

The identification of the isolated metabolites was also supported by the extended 

NMR investigation using bidimensional (COSY, HSQC and HMBC) techniques.  

Some of the isolated cytochalasins (B, F and deoxaphomin) are well known 

metabolites isolated from different fungi (Vurro et al., 1997), while cytochalasins Z2 and 

Z3 were isolated for the first time, together to other well known cytochalsins B, F, T, Z1 

and deoxaphomin, from wheat solid culture of Pyrenophora semeniperda (Brittlebank & 

Adam) Shoemaker, a seed-born pathogen proposed as bioherbicide for biological control 

of grass weed (Evidente et al., 2002). These two cytochalasins Z2 and Z3, which showed 

together to cytochalasin Z1 an originally structure between the 24-oxa[14]cytochalasan 

subgroup, were biologically characterized testing their capacity to inhibit the germination 

of wheat and tomato seedlings in comparison to the other above cited cytochalasins and the 

21,22-dihydroderivative of cytochalasin B (Evidente et al., 2002). Cytochalasins Z2 and 

Z3 were successively isolated from solid culture of Phoma exigua var. heteromorpha 

(Schulzer et Sacc.) Noordeloos et Boerema, previously reported as Ascochyta 

heteromorpha (Schulzer et Sacc.) Curzi, grown in the same conditions. P. exigua var. 

heteromorpha is the causal agent of a foliar disease of oleander (Nerium oleander L.), 

observed in a nursery near Bari, Italy, and was extensively studied for its capacity to 

produce phytotoxins in liquid cultures. In fact, many already cited cytochalasins were 

isolated from this culture filtrates as cytochalasins A, B, 7-O-acetylcytochalasin B, 

cytochalasins F, T and deoxaphomin and also new cytochalasins as U, V and W, with the 

first two belong to the 25,26-dioxa[16]- and the 25-oxa[15] subgroups of cytochalasans, 

while cytochalasin W is close to cytochalasins B (Vurro et al., 1997). When grown on 

solid culture P. exigua var. heteromorpha showed an increased capacity to synthesized 
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cytochalasins. In fact, cytochalasins B was isolated in very large yield together with 

cytochalasins A, F, T, 7-O-acetyl cytochalasin B, Z2 and Z3, as reported in paragraph 

1.3.1. 

p-Hydroxybenzaldehyde was already known phytotoxic metabolite of fungi 

pathogenic for some agrarian crops (e.g. apple, stone-leek and onion, and grapewine) 

(Venkatasuwaiah et al., 1991; Guo et al., 1996; Tabacchi et al., 2000) and forestall plant as 

a Ceratocystis spp., associated with blu stain of pine (Ayer et al., 1986). It was also 

isolated as plant growth metabolites from phytopatogenic Monilia spp. (Arinbasarov et al., 

1988) and as toxin of fungi pathogenic for weeds (Botryosphearia obtusa; Pythium 

aphanididermatum) (Capasso et al., 1987; Venkatasuwaiah et al., 1991). Assayed on C. 

arvense and S. arvensis by leaf disk puncture assay, p-hydroxybenzaldehyde was inactive. 

A representative culture of P. exigua var. exigua, the type species of the section 

Phyllostictoides of the genus Phoma, was reported to produce both cytochalasins A and B, 

and antibiotic E (Boerema et al., 2004; van der aA et al., 2000). A strain of P. herbarum, 

which is type species of the genus Phoma, was found to produce cytochalasins C, D and E 

(El-Kady and  Mostafa, 1995). Furthermore, the isolation of cytochalasins from cultures of 

Phoma exigua var. heteromorpha (Vurro et al., 1997), P. multipora (Zhori and Swaber, 

1994), and Phoma spp. (Wyss et al., 1980; Grafa et al., 1974) demonstrates these 

metabolites to be typical for some species or their groups form the genus Phoma, whereas 

they were not found at present time in Ascochyta spp.   

 The production of cytochalasins additionally supports the re-classification of 

Ascochyta sonchi, in particular, strains C-177 and S-9 to P. exigua var. exigua, which 

synthesize the above described cytochalasins (B, F, Z2, Z3 and deoxaphomin) and 

antibiotic E. However, the production of secondary metabolites is not always related to 

taxonomy. For instance, differentiation between Phoma foveata and P. exigua both isolated 
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from potato was inconsistent when it was based only on the production of a secondary 

metabolite and on the colony morphology (Macdonald et al., 2000). 

Several authors proposed P. exigua var. exigua, in particular strain C-177 

(Berestetskiy, 2005; Berestetskiy et al., 2005), a potential mycoherbicide against C. 

arvense. However, this specie was demonstrated to be capable of producing high amounts 

of known cytochalasins that possess both phytotoxic and cytotoxic activity. Their latter 

activity restricts usefulness of the fungus as a biocontrol agent. 

 

5.8. Chemical characterization of stagonolides from Stagonospora cirsii solid culture, 

potential herbicides of C. arvense and S. arvensis 

The solid culture of S. cirsii (1 kg) was exhaustively extracted as reported in the 

experimental. The organic extract, showing a high phytotoxic activity, was purified by a 

combination of column and TLC as described in the experimental giving five metabolites 

the main of which as crystallized solid and the other ones as four homogenous amorphous 

solid. Stagonolide (34, Fig. 5.8.1) previously isolated from other authors (Yuzikhin et al., 

2007), as the main phytotoxin from the culture filtrate of the same fungus was not found. 

Preliminary 1H and 13C investigations showed that all metabolites have a nonenolide 

nature, being structurally close themselves and with stagonolide, and consequently were 

named stagonolides B-F (45-49, Fig. 5.8.1).  

Stagonolide B (45) gave a molecular formula of C12H20O5 as deduced from HRESI 

MS spectrum consistent with 3 unsaturations, two of which are a double bond and a 

carbonyl lactone group as deduced from the IR spectrum. Preliminary 1H and 13C NMR 

investigations showed the third one is the nonenolide ring. The IR spectrum (Fig. 5.8.2) 

also showed bands attributable to hydroxy groups (Nakanishi and Solomon, 1977) while the 

UV spectrum had no absorption maxima. The 1H and 13C spectra (Figg. 5.8.3 and 5.8.4) 

showed systems very similar to those herbarumins, the phytotoxins with potential 
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herbicidal activity isolated from Phoma herbarum (Rivero-Cruz et al., 2000; 2003). In 

particular, stagonolide B differs from herbarumin I (Rivero-Cruz et al., 2000), for the 

presence of a further secondary hydroxylated carbons located at C-4 as showed by the 

broad singlet observed at δ 4.63 in the 1H NMR spectrum, which correlated in the COSY 

spectrum (Fig. 5.8.5) with H-6, H-5 and H2-3 at δ 6.00, 5.65 and 2.10 and 1.88, 

respectively. This proton (H-4) in the HSQC spectrum (Fig. 5.8.6) coupled with the carbon 

(C-4) present as at the very typical chemical shift value of δ 68.6 (Breitmaier and Voelter, 

1987). The couplings observed in the COSY and HSQC spectra allowed to assign the 

chemical shift to all protons and corresponding carbons (Tables 5.8.1 and 5.8.2, 

respectively) and to stagonolide B the structure of a 4,7,8-trihydroxy-9-n-propyl-5-nonen-

9-olide (45). This structure was supported by the sodium cluster observed in the HRESI 

MS spectrum (Fig. 5.8.7) at m/z 267.2821 and by the several couplings observed in the 

HMBC spectrum (Fig. 5.8.8, Table 5.8.3) (Berger and Braun, 2004).  

The other four nonenolides C-F (46-49) showed in common the lacking of the n-

propyl group at C-9, which was substituted by a methyl group.  

Stagonolide C (46) was assigned a molecular formula of C10H16O4 as deduced from 

HRESI MS spectrum consistent with the same 3 unsaturations of 45 as deduced from IR 

spectrum and preliminary 1H and 13C NMR investigations. The IR spectrum (Fig. 5.8.9) 

showed also bands attributable to hydroxy group (Nakanishi and Solomon, 1977) while the 

UV spectrum had no absorption maxima. The inspection of both 1H and 13C NMR spectra 

(Figg. 5.8.10 and 5.8.11) showed that 46 in comparison to 45, beside the substitution of the 

n-propyl at C-9 with a methyl group, differed for the deoxygenation of C-8. In fact, in the 

1H NMR spectrum,  H-7 appears as a multiplet overlapped to H-4 at δ 4.10 that in the 

COSY spectrum (Fig. 5.8.12) coupled with the protons of CH2-8, resonating as a double 

doublet (J=13.8 and 2.6 Hz) and a doublet of double doublets (J=13.8, 11.2, 2.6 Hz) at δ 
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1.88 and 1.77, respectively, which in turn coupled with the double quartet (J=11.2 and 6.2 

Hz) of H-9 at δ 5.14. This latter coupled with the Me-10, a doublet (J=6.2 Hz) resonating 

at δ 1.22. The two protons of H2C-8 and those of Me-10 in the HSQC spectrum (Fig. 

5.8.13) coupled with the signals present at the typical chemical shift value of δ 43.4 (C-8) 

and 21.3, respectively (Breitmaier and Voelter, 1987). The couplings observed in the 

COSY and HSQC spectra allowed to assign the chemical shifts to all protons and 

corresponding carbons (Tables 5.8.1 and 5.8.2, respectively) and to stagonolide C the 

structure of 4,7-dihydroxy-9-methyl-5-nonen-9-olide (46). This structure was supported by 

the sodium and potassium clusters observed in the HRESI MS spectrum (Fig. 5.8.14) at 

m/z 223.2168 and 239.2462, respectively, and by the several couplings observed in the 

HMBC spectrum (Fig. 5.8.15 and Table 5.8.3). 

Stagonolide D (47) gave a molecular formula of C10H14O4 as deduced from HRESI 

MS spectrum consistent with 4 unsaturations, with three the same of 45. The IR spectrum 

showed bands attributable to a hydroxy group. Both 1H and 13C NMR spectra (Figg. 5.8.16 

and 5.8.17) demostrated that 47 in comparison to 45, beside the substitution of the n-propyl 

at C-9 with a methyl group as in 46, possessed an epoxy group located between C(7)-C(8). 

In fact, the 1H NMR spectrum (Table 5.8.1) showed the presence of two double doublets 

(J=4.8 and 3.9 Hz) and (J=3.9 and 2.6 Hz) assigned to H-7 and H-8 at δ 3.65 and 3.05, 

respectively, which are typical chemical shifts value to a 1,2-disubstituted oxiran ring 

(Batterham, 1972;  Pretsch et al., 2000). As expected, in the COSY spectrum (Fig. 5.8.18) 

H-7 coupled with the double doublet (J=17.0, 4.8 Hz) of the adjacent olefinic proton (H-6) 

at δ 5.64 while H-8 coupled with the double quartet (J=6.7 and 2.6 Hz) of H-9 at δ 5.34. 

The two oxiran protons of H-7 and H-8, in the HSQC spectrum (Fig. 5.8.19) coupled with 

the signals present at the typical chemical shift values of δ 55.4 and 58.2 (C-7 and C-8), 

(Breitmaier and Voelter, 1987). The coupling observed in the COSY and HSQC spectra 
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allowed to assign the chemical shift to all protons and corresponding carbons (Tables 5.8.1 

and 5.8.2, respectively) and to stagonolide D the structure of 7,8-epoxy-4-hydroxy-9-

methyl-5-nonen-9-olide (47). This structure was supported by the sodium cluster observed 

in the HRESI MS spectrum at m/z 221.0781 and by the several couplings observed in the 

HMBC spectrum (Fig. 5.8.20 and Table 5.8.3).  

Stagonolide E (48) gave a molecular formula of C10H14O3 as deduced from HRESI 

MS spectrum consistent 4 unsaturations, two of them being a lactone and nonenolide ring 

as in 45. The IR spectrum also showed bands attributable to hydroxy and some double 

bond groups (Nakanishi and Solomon, 1977) while the UV spectrum (Fig. 5.8.21) had an 

absorption maximum at 250 nm due probably to the extended conjugation of the carbonyl 

lactone group with one or two double bonds (Scott, 1964). This was confirmed by the 

inspection of both 1H and 13C NMR spectra (Figg. 5.8.22 and 5.8.23), which when 

compared to that of 45, beside the substitution of the n-propyl at C-9 with a methyl group 

as in 46, showed the presence of signal systems of a 1,4-disubstituted dienyl residue 

located between C-2 and C-5. In fact, the 1H NMR spectrum (Table 5.8.1) showed the 

presence of two broad doublets (J=11.6 Hz) and (J=15.4 Hz), a doublet (J=15.4 Hz) and a 

double doublet (J=15.4 and 9.6 Hz) assigned to H-3 and H-4, H-2 and H-5 at the typical 

chemical shits of δ 6.60 and 6.12, 5.84 and 5.73 (Pretsch et al., 2000). In the COSY 

spectrum (Fig. 5.8.24) besides the coupling between H-2 with H-3 and H-4 with H-5, a 

very weak coupling (J=1.3 Hz) was also observed between H-3 and H-4. Furthermore, H-5 

coupled with the proton of an adjacent secondary hydroxylated carbon (HO-CH-6) 

resonating as a doublet of double doublets (J=9.6, 9.0 and 3.8 Hz) at the typical chemical 

shift values of δ 4.24. In the HSQC spectrum (Fig. 5.8.25), the four protons of the 1,4-

dienyl systems and those of the adjacent hydroxylated secondary carbons coupled with the 

signals observed at the typical chemical shifts values of δ 140.2, 139.6, 126.6 and 125.6 
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(C-5, C-3, C-4 and C-2) and δ 73.7 (C-6) (Breitmaier and Voelter, 1987). The coupling 

observed in the COSY and HSQC spectra allowed to assign the chemical shift to all 

protons and corresponding carbons (Tables 5.8.1 and 5.8.2, respectively) and to 

stagonolide E the structure of 6-hydroxy-9-methyl-2,4-nonadien-9-olide (48). This 

structure was supported by the sodium cluster observed in the HRESI MS spectrum at m/z 

205.0852 and by the several couplings observed in the HMBC spectrum (Fig. 5.8.26 and 

Table 5.8.3). 

Stagonolide F (49) gave a molecular formula of C10H16O3 as deduced from HRESI 

MS spectrum consistent with 3 unsaturations. These, as deduced from IR (Fig. 5.8.27), UV 

spectra and preliminary 1H (Fig. 5.8.28) and 13C NMR investigations, are the same of those 

observed in putaminoxin, the main phytotoxic nonenolide with potential herbicidal activity 

isolated from Phoma putaminum together some other its congeners (Evidente et al., 1995; 

1997; 1998a) as reported in the paragraph 1.2. Both 1H and 13C NMR spectra of 49 in 

comparison to putaminoxin (Evidente et al., 1995) showed that the two nonenolides differ 

only for the substitution of the n-propyl at C-9 in putaminoxin with a methyl group in 49. 

Accordingly stagonolide F could be formulated as 5-hydroxy-9-methyl-6-nonen-9-olide 

(49). This structure was supported by the sodium cluster observed in the HRESI MS 

spectrum (Fig. 5.8.29) at m/z 207.1943. 

As regard the relative stereochemistry of the epoxy group in stagonolide D (47) it 

was assigned by comparison of the 3JH,H spin systems with the data reported for suitable 

1,2-disubstituted cis- and trans-oxyrans (Batterham, 1972;  Pretsch et al., 2000). The 

stereochemistry of the double bonds of all nonenolides was determined comparing the 

coupling constants of the olefinic system considered with the value reported in literature 

(Pretsch et al., 2000). The double bonds between C(5)-C(6) in stagonolides B-D (45-47) 

and between C(4)-C(5) and C(6)-C(7) in stagonolide E (48) and F (49) are trans, while the 
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double bond between C(2)-C(3) in 48 is cis considering the typical J5,6, J4,5, and J6,7 and 

J2,3 values, respectively (Pretsch et al., 2000). 

The relative stereochemistry of the chiral carbons of stagonolides B-F (45-49) was 

essentially determined by comparison of the 3JH,H spin systems involved with those of 

herbarumin I and/or putaminoxin of which the absolute stereochemistry was independently 

determined (Evidente et al., 1995; Rivero-Cruz et al., 2000). In particular, in stagonolide B 

(45): H-4 is α (J4,5=2.6 Hz) while in putaminoxin, in which H-5 is β (J5,6=9.4 Hz). In turn, 

H-7 is β (J5,7=2.6 Hz and J7,8=J7,9=2.4 Hz), as in herbarumin I (J5,7=J7,8=J7,9=2.5 Hz); H-8 

is β and H-9 is α (J7,8=2.4 Hz and  J8,9=9.5 Hz) as in herbarumin I (J7,8=2.5 Hz and J8,9=9.8 

Hz).  

The relative configuration assigned to stagonolides B-E (45-48) is in full agreement 

with the NOE effects observed in the NOESY spectra (Figg. 5.8.30-5.8.33), the main of 

which were reported in Table 5.8.4, and with the inspection of Dreiding models. 

Significant NOESY effects were observed: in the spectrum of 45 between H-8 and H-7, 

and the protons of CH2-10 and CH2-11; in the spectrum of 46 between H-7 and H-9; in the 

spectrum of 47 between H-7 and H-9; and in the spectrum of 48 between H-3 and H-2 and 

H-4. 

Stagonolide F appears to be a diastereomer of aspinolide A, a fungal metabolite 

isolated together to other nonenolides and polyketides from Aspergillus ochraceus and for 

which any biological activity was reported (Fucsher and Zeeck, 1997). These results were 

confirmed by the similar spectroscopic data observed for 49 and aspinolides (Fucsher and 

Zeeck, 1997) and by the different optical properties such as the specific optical rotation and 

CD data (see experimental).  

In conclusion the five new nonenolides could be formulates  as following: 

stagonolide B (45): (5β,8α,9α,10β)-5,8,9-trihydroxy-10-propyl-3,4,5,8,9,10-hexahydro-
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oxecin-2-one; stagonolide C (46): (5α,8β,10β)-5,8-dihydroxy-10-methyl-3,4,5,8,9,10-

hexahydro-oxecin-2-one; staganolide D (47): (1α,2α,7α,10α)-7-hydroxy-2-methyl-3,11-

dioaxa-bicyclo[8.1.0]undec-8-en-4-one; stagonolide E (48): (7α,10β)-7-hydroxy-10-

methyl-7,8,9,10-tetrahydro-oxecin-2-one; stagonolide F (49): (6α,10β)-6-hydroxy-10-

methyl-3,4,5,6,9,10-hexahydro-xecin-2-one. 

Further purification of the organic extract by a combination of column 

chromatography and TLC yielding four metabolites (50-53, Fig. 5.8.34). Compound 51 

was obtained as a solid, and compounds 50, 52 and 53 as homogenous oils. Preliminary 1H 

and 13C NMR investigations showed that all metabolites were nonenolides. 

Further investigation (essentially 1D and 2D NMR and MS techniques) showed that 

one of these nonenolides had the same structure as modiolide A (53). In particular, the 

NMR data previously recorded in CDCl3 (Figg. 5.8.35 and 5.8.36 and Tables 5.8.5 and 

5.8.6) differed from those reported in CD3OD because of solvent difference (Tsuda et al., 

2003). Modiolide A was previously isolated in conjunction with the analogous modiolide 

B. These were the first two 10-membered macrolides isolated from the culture broth of a 

fungus separated from the horse mussel Modiolus auriculatus, collected at Hedo Cape, 

Okinawa Island, which was identified as Paraphaeosphaeria sp. The antibacterial and 

antifungal activities of modiolides A and B against Micrococcus luteus (MIC value 16.7 

mg/ml) and Neurospora crassa (MIC value 33.3 mg/ml), respectively, were also reported 

(Tsuda et al., 2003). The first total synthesis of modiolide A, based on the whole-cell yeast 

catalysed asymmetric reduction of a propargyl ketone, was recently described (Matsuda et 

al., 2007). 

The three new nonenolides were structurally similar to stagonolide and stagonolides 

B-F, previously isolated from the culture filtrates of the same fungus and, consequently, 

were named stagonolides G-I (50-53). All three new stagonolides lacked an n-propyl group 
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at C-9, present in stagonolide and stagonolide B, the n-propyl group being substituted in 

each case by a methyl group, as in stagonolides C-F.  

Stagonolide G (50) had a molecular formula of C10H16O4 as deduced from HRESI 

MS data consistent with three degrees of unsaturation, two of which resulted from a double 

bond and a lactone group as deduced from the IR spectrum and preliminary 1H and 13C 

NMR investigations. The IR spectrum (Fig. 5.8.37) also showed bands attributable to 

hydroxy groups (Nakanishi and Solomon, 1977) while the UV spectrum had no absorption 

maxima. Inspection of the 1H NMR spectrum (Fig. 5.8.38 and Table 5.8.5) showed the 

presence of a doublet of double doublets (J=11.1, 7.7 and 5.2 Hz) and a double doublet 

(J=11.1 and 8.2 Hz) at  δ 5.67 and 5.60, typical of two protons (H-6 and H-7, respectively) 

of a cis-1,2-disubstituted olefinic group (Sternhell, 1969; Pretsch et al., 2000) and signals 

of two oxymethine carbons (H-4 and H-8) resonating as a very complex multiplet and a 

double doublet (J=8.2 and 8.2 Hz) at δ 4.54 and 4.11, respectively. H-4 coupled in the 

COSY spectrum (Fig. 5.8.39) with two doublets of double doublets (J=14.5, 7.7, 7.7 and 

14.5, 5.2, 5.2 Hz) of CH2-5 at δ  2.63 and 2.48, and with a multiplet and a doublet of 

double doublets (J=17.7, 10.9 and 9.5 Hz) of CH2-3 at δ 2.35 and 1.95, respectively. H-8, 

in turn, coupled with H-7 and with a double quartet (J=8.2 and 6.5 Hz) of H-9 at δ 3.67. 

The 13C NMR spectrum (Fig. 5.8.40 and Table 5.8.6) showed the signals typical of a 

lactone carbonyl, two secondary olefinic, and three oxymethine carbons at δ 178.0, 132.5, 

and 127.8, and 79.6, 72.3 and 70.8, which, from the couplings observed in the HSQC 

spectrum (Fig. 5.8.41), were attributed to C-1, C-7 and C-6, and C-4, C-8 and C-9, 

respectively (Pretsch et al., 2000). The couplings observed in the same spectrum also 

allowed assignment of the resonances observed in the 13C NMR spectrum at δ 33.7, 28.7, 

27.5 and 18.7 to C-5, C-2, C-3, and C-10 (Breitmaier and Voelter, 1987). 



 

 
 

88

The coupling observed in the COSY and HSQC spectra allowed assignment of the 

chemical shifts to all protons and corresponding carbons (Tables 5.8.5 and 5.8.6, 

respectively) and for stagonolide G the structure of 4,8-dihydroxy-9-methyl-6-nonen-9-

olide (50).  

This structure was supported by the sodium cluster observed in the HRESI MS 

spectrum at m/z 223.2355 and by the couplings observed in the HMBC spectrum (Fig. 

5.8.42 and Table 5.8.7).   

Stagonolide H (51) had a molecular formula of C10H12O4 as deduced from the HRESI 

MS spectrum consistent with five degrees of unsaturation, three of which were the same as 

in 50. The IR spectrum (Fig. 5.8.43) showed bands attributable to a hydroxy group 

(Nakanishi and Solomon, 1977), while the UV spectrum had no absorption maxima. Both 

1H and 13C NMR spectra (Fig. 5.8.44 and 5.8.45) showed that 51 compared with 50, 

differed by the presence of a C(5)-C(6) double bond instead of C(6)-C(7), the presence of 

an additional C(2)-C(3) double bond, and of a C(7)-C(8) epoxy group as in stagonolide D. 

In fact, the 1H NMR spectrum (Table 5.8.5) showed the presence of two double doublets 

(J=15.9 and 2.2 Hz and J=15.9 and 1.6 Hz), a doublet (J=12.0 Hz), and a double doublet 

(J=12.0 and 6.4 Hz) at δ 5.96 and 5.88, and at δ 5.93 and 6.11, typical of two protons (H-5 

and H-6) of a trans-disubstituted double bond, and two protons (H-2 and H-3) of a cis-

disubstituted olefinic group (Sternhell, 1969; Pretsch et al., 2000). Furthermore, a double 

doublet (J=4.3 and 1.6 Hz) and a broad doublet (J=4.3 and < 1.0 Hz), which were assigned 

to H-7 and H-8, were observed at δ 3.65 and 2.94, respectively, typical chemical shift 

values for a 1,2-disubstituted oxirane ring (Batterham, 1972; Pretsch et al., 2000). As 

expected, in the COSY spectrum (Fig. 5.8.46) H-7 coupled with the double doublet of the 

adjacent olefinic proton (H-6), while H-8 coupled with the broad quartet (J=6.9 and < 1.0 

Hz) of H-9 at δ 5.43. H-3 coupled with H-4 (δ  4.76, brd, J=6.4 and 2.2 Hz) oxymethine 
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that also coupled with the olefinic adjacent H-5. The 13C NMR spectrum (Table 5.8.6) 

showed, in addition to the lactone carbonyl resonance at δ 167.7 (C-1), the signals typical 

of four olefinic carbons (δ 133.9, 131.3, 126.1 and 119.7), two oxymethine carbons (δ 66.9 

and 65.6), and of an epoxy ring, (δ 56.3 and 55.8). These resonances could be assigned via 

the HSQC spectrum (Fig. 5.8.47) to C-3, C-5, C-2 and C-6, and C-4 and C-9, and C-8 and 

C-7, respectively. The same technique also allowed the assignment of the resonance at 

δ 18.6 to C-10 (Breitmaier and Voelter, 1987). 

The coupling observed in the COSY and HSQC spectra permitted the assignment of 

chemical shifts to all protons and corresponding carbons (Tables 5.8.5 and 5.8.6, 

respectively), and to stagonolide H the structure 7,8-epoxy-4-hydroxy-9-methyl-2,5-

nonadien-9-olide. This structure was supported by the sodium clusters observed in the 

HRESI MS spectrum at m/z 219.2056, and by the couplings observed in the HMBC 

spectrum (Fig. 5.8.48 and Table 5.8.7).  

Stagonolide I (52) had a molecular formula C10H14O4 as deduced from the HRESI 

MS spectrum which was consistent with four degrees of unsaturation, being the same as 

51, as deduced from the IR spectrum and preliminary 1H and 13C NMR results. The IR 

spectrum (Fig. 5.849) showed also bands attributable to the hydroxy group (Nakanishi and 

Solomon, 1977), while the UV spectrum had no absorption maxima. Examination of both 

the 1H and 13C NMR spectra (Figg. 5.8.50 and 5.8.51) showed that 52 in comparison to 51, 

differed by the absence of the C(7)-C(8) epoxy group, for the cis-configuration of the C(5)-

C(6) double bond and the presence of a second oxymethine carbon (C-7). In fact, in the 1H 

NMR spectrum, H-7 appeared as a broad doublet of double doublets (J=9.8, 8.2 and 3.0 

Hz) at δ 4.97, which in the COSY spectrum (Fig. 5.8.52) coupled with H-6 (δ 5.50, dd, 

J=10.3 and 8.2 Hz), and with the protons of CH2-8, (δ 2.24, dd, J=13.9, 9.8 and 7.0 Hz) 

and (δ 1.87, dd,  J=13.9, 3.9 and 3.0) respectively. The latter, in turn, coupled with the 
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multiplet of H-9 at δ 5.11. Furthermore, the olefinic H-5 resonated as a double doublet 

(J=10.3 and 9.6 Hz) at δ 5.40 being also coupled with H-4 (δ 5.71, brdd, J=9.6, 4.0 and 2.1 

Hz) which was also coupled with the adjacent olefinic proton H-3 (δ 6.31, dd,  J=11.8 and 

4.0 Hz), and this, in turn, with H-2 (δ 5.68, dd, J=11.8 and 2.1 Hz). The 13C NMR 

spectrum (Fig. 5.8.51 and Table 5.8.6) showed, apart from the expected signal of the 

lactone carbonyl at δ 164.8 (C-1), resonances typical of four olefinic carbons (δ 149.1, 

134.5, 129.4 and 121.0) as well as those of three oxymethine carbons (δ 68.4, 66.8 and 

64.5). These resonances could be assigned via HSQC spectrum (Fig. 5.8.53) to C-3, C-6, 

C-5 and C-2, and C-9, C-4 and C-7, respectively. The couplings observed in the same 

spectrum also allowed to assign the signals observed in the 13C NMR spectrum at 

δ  42.6 and 20.8 to C-8 and C-10, respectively (Breitmaier and Voelter, 1987). 

The coupling observed in the COSY and HSQC spectra confirmed the chemical 

shifts of all protons and corresponding carbons (Tables 5.8.5 and 5.8.6, respectively) and 

permitted assignment of the structure of stagonolide I as 4,7-dihydroxy-9-methyl-2,5-

nonadien-9-olide. This was supported by the sodium cluster observed in the HRESI MS 

spectrum at m/z 221.2117 and by the couplings observed in the HMBC spectrum (Fig. 

5.8.54 and Table 5.8.7).  

The relative configuration of the epoxy functionality in stagonolide H (51), as well 

the configuration of the double bonds of all nonenolides was determined using the same 

methods reported above for stagonolides B-F.  

The relative configuration of the stereogenic carbons of stagonolides G-I (50-52) was 

essentially determined as previously described for stagonolides B-F using as comparison, 

modiolide A and herbarumin I, the absolute configuration of which was independently 

determined by CD, using a suitable derivative, and NOESY and molecular mechanics 

modelling, respectively (Rivero-Cruz et al., 2000; Tsuda et al., 2003). In particular, in 
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stagonolide G (50), H-8 is α (J7,8=J8,9 = 8.2 Hz) as is H-7 in modiolide A (J6,7 =7.5 and 

J7,8=11.4 Hz); H-9 is α (J8,9=8.2 Hz) as in herbarumin I (J8,9=9.8 Hz), H-4 should be β as 

no effect was observed in the NOESY spectrum (Fig. 5.8.55) between this proton and H-8 

and H-9 being both α.  In stagonolide H (51), H-4 is α  (J3,4=6.4 and J4,5=2.2 Hz) while in 

modiolide A H-4 is β (J3,4=3.5 and J4,5=7.3 Hz), H-7 and H-8 both are β (J6,7=1.6 and 

J8,9<1.0 Hz) as is stagonolide D in which H-7 and H-8 are both β (J6,7=4.8 and J7,8=3.9 and  

J8,9=2.6  Hz); H-9 is β (J8,9<1.0 Hz), while in herbarumin I H-9 is α (J8,9=9.8 and 2.5 Hz). 

Finally, in stagonolide I (52), H-4 is β  (J3,4=4.0 and J4,5=9.6 Hz) as is modiolide A 

(J3,4=3.5 and J4,5=7.3 Hz), H-7 is α (J6,7=8.2 and J7,8=9.8 Hz) as is modiolide A (J6,7=7.5 

and J7,8=11.4 Hz), H-9 is α as (J8,9=7.0 and J8,9 =3.9 Hz) in modiolide A (J8,9=11.4 and 

J8,9’=2.5 Hz).  

The relative configuration assigned to stagonolides G-I (50-52) is in agreement with 

the NOE effects observed in the NOESY spectra (Figg. 5.8.55-5.8.57 and Table 5.8.8). In 

fact, a significant NOE effect was observed in stagonolides G and H between H-8 and H-9, 

and H-7 and H-8, respectively. 

In conclusion the three new nonenolides could be formulates  as following: 

Stagonolide G (50): (5α,9β,10β)-5,9-Dihydroxy-10-methyl-3,4,5,6,9,10-hexahydro-

oxecin-2-one, Stagonolide H (51): (1β,2α,4β,10β)-7-hydroxy-2-methyl-3,11-dioxa-

bicyc[8.1.0]undeca-5,8-dien-4-one, Stagonolide I (52): (5α,8β,10β)-5,8-dihydroxy-10-

methyl-5,8,9,10-tetrahydro-oxecin-2-one. 

5.9. Biological activity of stagonolides B-I and modiolide A  

Tested by leaf disc-puncture assay at the concentration 1 mg/ml, nonenolides B–F 

shown no toxicity to C. arvense and S. arvensis whereas stagonolide was highly toxic to 

both plants. Stagonolide and stagonolide C were low toxic to Colpoda steinii (Protozoa) 

tested at 0.05 mg/ml, other stagonolides were non-toxic.  
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Stagonolides G-I and modiolide A, tested on Cirsium arvense in the same conditions 

reported above, had different phytotoxic activities. Stagonolide H was the most toxic to the 

leaves of C. arvense, stagonolide I and modiolide A were significantly less active, whereas 

stagonolide G was inactive (Fig. 5.9.1). The minimum concentration of stagonolide H 

causing leaf lesions in C. arvense was about 30 μg/ml (~1.5x10-4 M) (Figure 5.9.2). It is 

similar to the level of activity of stagonolide (Yuzikhin et al., 2007). 

At 1 mg/ml only stagonolide H inhibited root growth in chicory seedlings (85% 

comparing to control), while other compounds were inactive at the concentration used. 

Stagonolide H appeared to have less inhibitory activity to chicory seedlings than 

stagonolide, which showed similar activity at 1 μg/ml (Yuzikhin et al., 2007). 

Leaves of eight plant species were found to have different sensitivities to stagonolide 

H (51). Leaves of C. arvense were significantly more sensitive to 51 (necrotic lesion 

diameter ~ 7.5 mm, 72 h post application) than other plants tested (necrotic lesion diameter 

< 4 mm). Tomato leaves were slightly sensitive to the toxin (Figure 5.9.3). Stagonolide H 

showed both high phytotoxicity and selectively, and this phytotoxin may be considered a 

potential natural herbicide. 

Modiolide A exhibited strong phytotoxicity on radish leaves (necrotic lesion 

diameter ~ 7 mm, 72 h post application) whereas other plants tested were significantly less 

sensitive to the toxin (necrotic lesion diameter < 2.5 mm). 

The results of biological activity showed that both the functionalization and the 

conformational freedom of the nonenolide ring appear to be important structural features to 

impart toxicity. Macrolides, and particularly nonenolides, are common naturally occurring 

compounds. Structurally close nonenolides appear to be the putaminoxins and the 

herbarumins, phytotoxins with potential herbicidal activity that were isolated from Phoma 

putaminum (Evidente et al., 1995; 1997; 1998a) and Phoma herbarum (Rivero-Cruz et al., 

2000; 2003), respectively. Other phytotoxins are the pinolidoxins and aspinolides A-C 
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isolated from Ascochyta pinodes (Evidente et al., 1993a; 1993b) and A. ochraceus 

(Fucsher and Zeeck, 1997), respectively. In addition, the structurally close nonendien-9-

olide are modiolide and fusanolide, isolated from Paraphaesphaeria sp. (Tsuda et al., 

2003; Matsuda et al., 2007) and Fusarium sp. (Shimada et al., 2002), respectively. 

 

5.10. Cytochalasins and nonenolides for the management of C. arvense and S. arvensis  

5.10.1. Phytotoxic activity of different fungal toxins on leaves of C. arvense and S. 

arvensis  

Phoma exigua var. exigua and Stagonospora cirsii have shown to produce as 

phytotoxins, cytochalasins and nonenolides. Conseguently, a SAR study was carried out 

using compounds belonging to both class of natural compounds and some their derivatives 

(Figg. 5.10.1 and 5.10.2).  

Among 15 compounds tested by leaf disc-puncture bioassay, stagonolide (34) 

demonstrated the highest level of toxicity to leaves of C. arvense (Fig. 5.10.3). Other 

nonenolides, putaminoxin (1) and 7,8-O,O’-isopropylidene-pinolidoxin (72, Fig. 5.10.1), 

were significantly less toxic. Among cytochalasins, only cytochalasin A (25) was shown to 

be highly toxic for the weed (Fig. 5.10.3).  

Deoxaphomin (30) was the most toxic compound for punctured leaf discs of S. 

arvensis. Stagonolide, cytochalasin A and cytochalasin B (26) shown high level of 

phytotoxicity. Other cytochalasins were moderately toxic (Fig. 5.10.3).  

Pinolidoxin and 7,8-O,O’-diacetylpinolidoxin (6 and 71) were practically non toxic 

to leaves of both weeds (Fig. 5.10.3). 

The results demonstrated a different behaviour of the two plants (C. arvense and S. 

arvensis) in response to the compounds assayed (Fig. 5.10.3). The natural nonenolides 

were more toxic than cytochalasins on C. arvense. Among them the more toxic were 
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stagonolide and putaminoxin (34 and 1) which differ by the location of nucleophilic 

(hydroxy and double bond) groups on the same fragment between C-5 and C-8 of the 

macrocyclic ring. Pinolidoxin (6), and its two derivatives (71 and 72), having a marked 

modifications in respect to 34 and 1 in both the functional groups and the conformational 

freedom of the nonenolide ring, showed a strong decrease or practically the total loss of 

toxicity. These results are in fully agreement with data on a structure activity relationships 

study performed assaying putaminoxin and pinolidoxin together to their natural and 

synthetic analogs on several other weeds and cultivated plants (Evidente et al, 1998b).  

Cytochalasins are more toxic than nonenolide on S. arvensis. Among them the more 

toxic appear to be deoxaphomin, cytochalasins A and B (30, 25 and 26), which possess a 

[13]carbocyclic or a [14]lactonic macrocyclic ring, respectively, joined with an unalterated 

perihydroisoindolyl residue. In this latter moiety, the presence of the secondary hydroxyl 

on C-7, which lack in 28, 29 and 20 or was acetylated in 27 and 74, (Fig. 5.10.1), appear to 

be an important feature to impart toxicity. Furthermore, the significant decrease of toxicity 

observed testing the 21,22-dihydroderivative of cytochalasin B (73, Fig. 5.10.1) and 

cytochalasins Z3 (21) also indicate the importance of the functionalization on C-20 and the 

conformational freedom of the macrocyclic ring. These results are in accordance with 

those previously described in structure activity relationships studies (Bottalico et al., 1990; 

Capasso et al., 1991; Vurro et al., 1997; Evidente et al., 2002). 

5.10.2. Effect of selected toxins on photometric properties of Cirsium arvense leaves 

Five toxins were selected to study their effect on relative chlorophyll content in C. 

arvense leaves by measuring the light absorption at the wavelength of 632.8 nm. The first 

necroses on leaf discs appeared 6-8 hours post toxin application. Comparing to control, 

significant changes in the light absorption of leaf discs were caused by cytochalasin A after 

2 hours post treatment (Table 5.10.1). The ability of C. arvense leaves to absorb light of 
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the wave 632.8 nm was significantly decreased by stagonolide, putaminoxin and both 

cytochalasins A and B after 4 hours post treatment. Negative effect of both studied 

nonenolides on the light absorption and relative chlorophyll content was about 2 times 

higher than the effect caused by the cytochalasins. The effect of deoxaphomin on relative 

chlorophyll content was not profound. The changes in the light absorption at the wave 

632.8 nm and development of lesions in leaves of C. arvense caused by the toxins did not 

correlate (Table 5.10.1).  

Both cytochalasin B and stagonolide caused significant decrease of the light 

absorption at the wave 450 nm (Table 5.10.2). This observation is most likely connected 

with the reduction of the content of β-carotene or/and chlorophyll b in leaf tissue of C. 

arvense, because both pigments have a peak of resonant absorption near this wavelength 

(Britton, 1983).  

The increased level of light absorption at 530 and 550 nm was found to be caused by 

both toxins. However, stagonolide had significantly stronger effect at the wavelength 550 

nm than cytochalasin B. It is known that there is the peak of light absorption of 

cytochrome C in the wavelength range of 530-550 nm. Cytochrome C is a soluble protein 

with a heme prosthetic group that is involved in mitochondrial electron transport. Possibly, 

the toxins affected the concentration of cytochrome C in leaf tissue of C. arvense.  

The reduction of light absorption in the wavelength region of 630-690 nm by C. 

arvense leaves was observed after the treatment of leaf discs by stagonolide only. The 

peaks of light absorption in this region are characteristic for chlorophyll intermediates, 

protochlorophyllide and chlorophyllide. Tentoxin (a phytotoxin of several Alternaria spp.) 

and some synthetic herbicides similarly were found to affect chlorophyll synthesis as by in 

vitro spectrometry observations (Duke et al., 1991). 
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Stagonolide also was found to significantly increase light absorption by C. arvense 

leaves in near infrared spectra (Table 5.10.2). Repeated experiments supported the data. At 

the wavelength more than 700 nm leaves of healthy plants are usually transparent for 

radiation and the light absorption is minimal or absent. It is known that 

bacteriochlorophylls, "reduced" forms of plant chlorophyll (without phytol moiety), have 

absorption maxima from 800 and 875 nm (Britton, 1983).  

The results of photometric assays performed with different equipment were in 

accordance.  In fact, the nonenolides, in particular stagonolide and putaminoxin (34 and 1), 

appear to more affect the light absorption at different wavelengths than cytochalasins 

(cytochalasins A and B, 25 and 26) and probably the same structural features above 

discussed for each group of compounds are important to impart this activity. 

5.10.3. Effect of selected toxins on conductometric properties of Cirsium arvense 

leaves  

In vivo measurement of electrical resistivity in leaf tissues of C. arvense showed its 

growth (up to 100 Ohm) during course of the electrical current in the intact discs (Fig. 

5.10.4). Under electrical tension cell ions were accumulated at electrodes and interfered the 

current. In boiled discs initial increasing of resistivity was changed by its falling to the 

minimal values (about 10 Ohm) after 150 seconds post the first measurement. Leaf discs 

treated with cytochalasin B did not expressed considerable changes of resistivity during 

measurement time. The resistivity dynamics of discs treated with stagonolide was linear 

and similar to control but with lower angle (Fig. 5.10.4). The results allow to assume that 

stagonolide practically did not affect the permeability of cellular membranes, while 

cytochalasin B caused electrolyte leakage from cells of leaf tissues of C. arvense.  

This observation was supported by another experiment. It was shown that 

conductivity of water extracts obtained from leaf discs treated with stagonolide was similar 
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to control treatment and was two times lower than conductivity of the extracts from discs 

treated with cytochalasin B (Fig. 5.10.5). 

These results did not surprise considering the well know effects of cytochalsins, in 

particular cytochalasins B (26), in certain plants. This cytochalasin inhibited cytoplasmatic 

streaming, organelle movement, cell division, pollen germination, cell wall metabolisms 

and auxin transport (Natori and Yahara, 1991). 

 

5.11. Chemical characterization of phytotoxins from Phyllosticta cirsii culture filtrate, 

potential herbicides of C. arvense 

The liquid culture of P. cirsii (7.7 l) was exhaustively extracted as reported in the 

experimental. The organic extract, having high phytotoxicity, was purified by a 

combination of column chromatography and TLC as described in the experimental. Four 

metabolites were obtained as homogeneous oily compounds (11.0, 1.0, 0.9 and 0.5 mg/l, 

respectively), which were named phyllostictine A-D (54-57, Fig. 5.11.1). Preliminary 1H 

and 13C investigations allowed to demonstrate that these metabolites have close related 

structures being, as described below, four novel oxazatricycloalkenones. 

Phyllostictine A (54) is the main phytotoxic metabolite, and has a molecular formula 

C17H27NO5, as deduced from HRESI MS spectra, consistent with 5 unsaturations. Two of 

them were a tetrasubstituted double bond and a carbonyl lactame group, as deduced from 

the IR spectrum and preliminary 1H and 13C NMR investigations. The IR spectrum (Fig. 

5.11.2) also showed bands attributable to hydroxy groups (Nakanishi and Solomon, 1977) 

while the UV spectrum (Fig. 5.11.3) exhibited an absorption maximum typical of α,β-

unsaturated lactames (Scott, 1964). In particular, the 1H NMR spectrum (Fig. 5.11.4 and 

Table 5.11) of phyllostictine A showed the presence of one broad and two sharp singlets at 

δ 4.45, 3.91 and 1.27 respectively, attributable to the protons of a secondary hydroxylated 

carbon (HO-CH-15), to a methoxy and to a tertiary methyl (Me-C-5) group, respectively 
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(Pretsch et al., 2000). H-15 appeared long-range coupled (J<1 Hz) in the COSY spectrum 

(Fig. 5.11.5) with the broad singlet of a hydroxy group resonating at δ 3.61. A broad 

singlet attributable to another hydroxy group was also observed at δ 2.80. In the same 

spectrum, the significant presence of two sharp doublets (J=0.9 Hz), typical of an AB 

system of an oxygenated methylene group (H2C-14), as well as, a multiplet due to a proton 

of another hydroxylated secondary carbon (HO-CH-11), were observed at δ 5.08 and 5.03, 

and 4.04, respectively. In the COSY spectrum the latter coupled with one or both the 

protons of the adjacent methylene group (H2C-10) resonating as complex multiplet at δ 

1.80, which were, in turn, coupled with the protons of the successive methylene group 

(H2C-9) observed as multiplets at δ 1.58 and 1.37, respectively. The region of the aliphatic 

protons presented also a very complex multiplet at δ 1.30-1.26 attributable to the protons 

of three other methylene groups (H2C-8, H2C-7 and H2C-6) (Pretsch et al., 2000) which are 

coupled themselves and with the protons of H2C-9, as appeared from the COSY spectrum. 

Furthermore, the triplet (J=7.1 Hz) of the methyl (MeCH2-N) of a N-ethyl group resonated 

at δ 0.83 and in the COSY spectrum coupled with the protons of the adjacent methylene 

group (MeCH2-N) which overlapped at δ 1.30 with the complex signals of the above 

described methylene groups (H2C-8, H2C-7 and H2C-6) (Pretsch et al., 2000). The 13C 

NMR spectrum (Fig. 5.11.6 and Table 5.11.2) showed the presence of the signals of a 

lactame carbonyl and those of the α,β-conjugated tetrasubstituted double bond at the 

typical chemical shifts values of δ 166.6, 156.2 and 136.3 (C-3, C-2 and C-1), respectively 

(Breitmaier and Voelter, 1987). The oxygenated methylene and two hydroxylated methyne 

carbons observed at δ 92.7, 86.3 and 68.4 were attributed to C-14, C-11 and C-15 

respectively, also based on the coupling observed in the HSQC spectrum (Fig. 5.11.7), as 

well as the signals at δ 64.5, 17.1 and 14.1 were assigned to the methoxy, the tertiary 

methyl (Me-C-5) and the methyl group of the N-ethyl residue and those at δ 27.5 and 26.5 
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to the methylene carbons C-10 and C-9 (Breitmaier and Voelter, 1987). Finally, the two 

signals at δ 104.3 and 71.8 were assigned to the dioxygenated and nitrogen linked 

quaternary carbons C-12 and C-5 (Breitmaier and Voelter, 1987). The latter represents the 

closure of the 3,5-dihydroxy-4-methoxy-11-methylcycloundec-1-ene macrocyclic ring. 

This hypothesis was confirmed by the typical chemical shifts values of δ 29.7, 29.3 and 

22.6 (C-8, C-7 and C-6, respectively) observed for the carbons of the other three methylene 

groups belonging to the macrocyclic ring (Breitmaier and Voelter, 1987) and the couplings 

observed in the HMBC spectrum (Fig. 5.11.8 and Table 5.11.3). The correlations observed 

in this latter spectrum also allowed to locate the tertiary methyl group on C-5, which 

represents one of the bridge-head carbons of the junction between the macrocyclic and the 

N-ethyl β-lactame (2-azetidone) rings, while the other one is the olefinic carbon C-1. 

Based also on the coupling observed in the HMBC spectrum (Table 5.11.3), the remaining 

unsaturation was attributed to a 2,2,3,4-tetrasubstituted 2,3,5-thrihydrofuran ring which 

was joined with the macrocyclic ring through two bridge-head carbons, namely the other 

quaternary olefinic (C-2) and the deoxygenated quaternary (C-12) carbons. On the basis of 

these results phyllostictine A appears to be a new oxazatricycloalkenones, to which the 

structure of a 4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-aza-tricyclo 

[10.2.1.0*2,5*]pentadec-1-en-3-one (54) can be assigned. This structure was confirmed by 

the results observed in the ESI and EI mass spectra. In fact, the HRESI MS spectrum (Fig. 

5.11.9) recorded in positive modality showed sodium clusters formed by the toxin itself 

and the corresponding dimmer at m/z 348.1800, [M+Na]+ and 673.3680 [2M+Na]+, 

respectively, as well as the pseudomolecular ion [M+H]+ at m/z 326.1962. The same 

spectrum, recorded in negative modality, showed the pseudomolecular ion [M-H]- and that 

of the corresponding dimmer [2M-H]- at m/z 324.1815 and 649.3678, respectively. 

Significant were the data of the EIMS spectrum which did not show the molecular ion but 
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peaks due to fragmentation typical of the presence both a β-lactame and a suitable 

substituted trihydrofuran ring, methoxy, hydroxy and tertiary methyl groups (Porter, 1985; 

Pretsch et al., 2000). In fact, the molecular ion losing in succession the methoxy group and 

H2O generated the ions at m/z 294 and 276. Alternatively, the molecular ion losing in 

succession the methoxy group followed by CO and Me residues yielded the ion at m/z and 

251. Significant for the presence of the β-lactame residue is the most abundant ion [Et-

N=C=O]+ observed at m/z 71 (Porter, 1985).  

The structure assigned to phyllostictine A was further supported by converting the 

toxin into the mono- and di-acetyl derivatives (58 and 59) by the usual reaction with 

pyridine and acetic anhydride. The spectroscopic data of both derivatives were full 

consistent with the structure 54 assigned to the toxin. In particular, the IR spectrum of the 

15-O-acetylphyllostictine A (58) still showed the presence of hydroxy groups, which are 

obviously absent in that of the 11,15-diaceyl derivative (59). The 1H and 13C NMR spectra 

of 58 differed from those of 54 for the significant downfield shift (Δδ 1.14) of H-15 at δ 

5.59 and for the presence of the singlet of the acetyl group ad δ 2.19, respectively (Pretsch 

et al., 2000), and for the presence of the signals of the acetyl group observed at δ 172.4 

(MeCO) and 20.9 MeCO), (Breitmaier and Voelter, 1987). Similarly, the same spectra of 

59, compared to those of 54, showed, respectively, the downfiled shift of both H-15 and H-

11 (Δδ 1.14 and 1.16) at δ 5.59 and 5.20 and the presence of the singlets of two acetyl 

groups at δ 2.13 and 1.99 (Pretsch et al., 2000), and the signals of the two acetyl groups at 

δ 170.1 and 169.9 (two MeCO) and δ 22.1 and 20.8 (two MeCO), (Breitmaier and Voelter, 

1987). 

The other three phyllostictines B-D (55-57) appear to be very closely related to 

phyllostictine A and each other. 
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Phyllostictine B (55) has a molecular formula of C15H23NO5 as deduced from HRESI 

MS spectra consistent with the same 5 unsaturations of 54, which are in agreement with the 

IR bands and the preliminary 1H and 13C NMR investigations, but differed for the lack of 

two CH2 groups. As expected, the IR and UV spectra (Figg. 5.11.10 and 5.11.11) were 

very similar to those of 54. The investigation of the 1H and 13C NMR spectra (Figg. 

5.11.12 and 5.11.13, and Tables 5.11.1 and 5.11.2) confirmed that the two toxins differed 

for the size of the macrocyclic ring, which is a 3,5-dihydroxy-4-methoxy-11-

methylcycloundec-1-ene in 54, while is a 3,5-dihydroxy-4-methoxy-9-methyl-cyclonon-1-

ene in 55. The couplings observed in the COSY and HSQC spectra (Figg. 5.11.14 and 

5.11.15) allowed to assign the chemical shifts to all the protons and the corresponding 

carbons (Tables 5.11.1 and 5.11.2, respectively) and to phyllostictine B the structure of 4-

ethyl-9,13-dihydroxy-10-methoxy-5-methyl-11-oxa-4-aza-tricyclo[8.2.1.0*2,5*]tridec-1-

en-3-one (55). This structure was supported by the several couplings observed in the 

HMBC spectrum (Fig. 5.11.16 and Table 5.11.3) and by the pseudomolecular ion and 

sodium clusters observed in the HRESI MS spectrum (Fig. 5.11.17) for the toxin itself and 

its dimmer and trimmer at m/z 298.1628 [M+H]+ and 320.1443 [M+Na]+, 617.2984 

[2M+Na]+, 914 [3M+Na]+, respectively. Furthermore, the same spectrum recorded in 

negative modality showed the pseudolmolecular ion [M-H]- at m/z 296.1500. The stucture 

55 was further supported by the data of its EIMS spectrum, which showed, beside the 

pseudomolecular ion [MH]+ at m/z 298, ions produced by fragmentation mechanisms 

similar to those observed in 54. In fact, the pseudomolecular ion by loss of H2O generated 

the ion at m/z 280, as well as the molecular ion [M]+ produced the ions at m/z 266, 248 and 

223 by successive loss of methoxy, H2O and Me residues, respectively. Finally, the most 

abundant ion [Et-N=C=O]+, which is significantly due to the presence of the β-lactame 

residue, was observed at m/z 71 (Porter, 1985; Pretsch et al., 2000). 
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Phyllostictine C (56) has a molecular formula of C17H27NO6  as deduced from HRESI 

MS spectrum consistent with the same 5 unsaturations of 54, which are in agreement with 

the IR bands (Fig. 5.11.18) and the preliminary 1H and 13C NMR investigation. A 

comparison of both 1H and 13C NMR spectra (Figg. 5.11.19 and 5.11.20) of phyllostictine 

C with those of 54 showed that the two toxins differed for the substituent at C-5 and for the 

macrocyclic ring size, which in 56 is a 3,5-dihydroxy-4-methoxy-10-(1-hyroxyethyl)-

cyclodec-1-ene. In fact, in the region of the aliphatic methylene group of both spectra of 56 

signals accounting for only four methylene protons are present, and lacked the signal of the 

tertiary methyl group, which in 54 is linked to C-5. On the contrary, the significant 

presence of the signals of 1-hydroyethyl group was observed (Breitmaier and Voelter, 

1987; Pretsch et al., 2000). In particular, the 1H NMR spectrum (Fig. 5.11.19) showed 

presence of the multiplet due to the proton of a further secondary hydroxylated carbon 

(MeCH-OH), the doublet (J = 6.2 Hz) of the adjacent terminal methyl group (Me-CH-OH), 

and the broad singlet of a further hydroxy group at δ 3.80, 1.18 and 1.61, respectively 

(Pretsch et al., 2000). The 13C NMR spectrum (Fig. 5.11.20) showed the signals of the 

corresponding secondary hydroxylated carbon (MeCH-OH) and methyl group (MeCH-

OH) at δ 68.1 and 23.6 (Breitmaier and Voelter, 1987). The couplings observed in the 

COSY and HSQC spectra (Figg. 5.11.21 and 5.11.22) allowed to assign the chemical shifts 

to all the protons and the corresponding carbons (Tables 5.11.1 and 5.11.2, respectively) 

and to phyllostictine C the structure of 4-ethyl-10,14-dihydroxy-5-(1-hydroxyethyl)-11-

methoxy-12-oxa-4-aza-tricyclo[9.2.1.0*2,5*]tetradec-1-en-3-one (56). This structure was 

supported by the several couplings observed in the HMBC spectrum (Fig. 5.11.23 and 

Table 5.11.3) and by the sodium clusters observed in the HRESI MS spectrum (Fig. 

5.11.24) for the toxin itself and its dimmer and trimmer at m/z 364.1707 [M+Na]+, 705 

[2M+Na]+ and 1046 [3M+Na]+, respectively. 
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Phyllostictine D (57) has a molecular formula of C17H25NO6 as deduced from HRESI 

MS spectrum consistent with 5 unsaturations, four of which were the same observed 54 

and in agreement with the IR bands (Fig. 5.11.25) and preliminary 1H and 13C NMR 

investigations. A comparison of both 1H and 13C NMR spectra (Figg. 5.11.26 and 5.11.27) 

of phyllostictine D with those of 54 showed that the two toxins differed for the size and the 

functionalization of both the lactame and macrocyclic rings. In 57 the lactame appears to 

be an N-methyl-δ-lactame (2-piperidone) always joined, through the same two bridge-head 

carbons to the macrocyclic ring, which in 57 is 3,5-dihydroxy-4-methoxy-10-methyl-9-

oxo-cyclodec-1-ene. In fact, the region of the aliphatic methylene and methyl groups of 

both 1H and 13C NMR spectra of 57, compared to those of 54, showed substantial 

differences. Complex multiplets and one singlet accounting for only three methylene 

groups belong to the macrocyclic ring and the methyl group bonded to the bridge-head 

quaternary carbon (C-7) were observed in the 1H NMR spectrum. In addition, the triplet 

(J=7.3 Hz) and the singlet of a methylene (CH2-5) and methyl (N-Me) bonded to a nitrogen 

atom were observed at the typical chemical shifts values of δ 2.44 and 2.14 respectively 

(Pretsch et al., 2000), while the protons of the other methylene (CH2-6) group of the δ-

lactame ring adjacent to CH2-5 resonated as two complex multiplets at δ 1.61 and 1.36. In 

the 13C NMR spectrum the carbons of these two methylene groups and that of N-methyl 

group appeared at the very typical chemical shifts values of δ 43.6, 23.6 and 29.9 (C-5, C-6 

and Me-N), respectively (Breitmaier and Voelter, 1987). In addition, the signal of a 

saturated ketone group (O=C-8) was observed at the expected chemical shift value of δ 

210.0 (Breitmaier and Voelter, 1987). The couplings observed in the COSY and HSQC 

spectra (Figg. 5.11.28 and 5.11.29) allowed to assign the chemical shifts to all the protons 

and the corresponding carbons (Tables 5.11.1 and 5.11.2, respectively) and to 

phyllostictine D the structure of 12,16-dihydroxy-13-methoxy-4,7-dimethyl-14-oxa-4-aza-
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tricyclo[11.2.1.0*2,7*]hexadec-1-en-3,8-dione (57). This structure was supported by the 

several couplings observed in the HMBC spectrum (Fig. 5.11.30 and Table 5.11.3) and by 

the sodium clusters observed in the HRESI MS spectrum (Fig. 5.11.31) for the toxin itself 

and its dimmer and trimmer at m/z 362.1548 [M+Na]+, 701 [2M+Na]+ and 1040 

[3M+Na]+, respectively.  

The absolute stereochemistry of the secondary hydroxylated carbon C-15 of 

phyllostictine A (54) was determined applying the Mosher’s method (Dale et al., 1969; 

Dale and Mosher, 1973; Ohtani et al., 1991). By reaction with the R-(-)-α-methoxy-α-

trifluorophenylacetate (MTPA) and S-(+)MTPA chlorides, phyllostictine A was converted 

in the corresponding diastereomeric S-MTPA and R-MTPA esters (60 and 61 respectively), 

whose spectroscopic data were consistent with the structure assigned to 54. The 

comparison between the 1H NMR data (see experimental) of the S-MTPA ester (60) and 

those of the R-MTPA ester (61) of 54 [Δδ (60-61): H-11 +0.07; H2-10 +0.17; H-9 +0.24; 

H-9' +0.13] allowed to assign an S-configuration at C-15. The significant effects observed 

in the NOESY spectrum (Table 5.11.4) allowed to assign the relative configuration to C-

12, C-11 and C-5 being the MeO, H-11 and Me-C(5) at the same side of the molecule, 

while the double bond appeared to have an E-configuration (Pretsch et al., 2000). 

Considering the absolute S-stereochemistry determined for C-15, the absolute 

stereochemistry of C-5, C-11 and C-12 should be R, S and S, respectively. 

On the basis of the similar spectroscopic properties of phyllosticitines B-D with those of 

phyllostictine A and the NOESY effects recorded for these toxins (Figg. 5.11.32 and 

5.11.33 and Table 5.11.4), the absolute stereochemistry of the chiral centres of 55-57 could 

be assigned as that observed in 54 and as depicted in their structural formulae with the 

exception of C-7 of 57, which should be S as the substituent priority is opposite in respect 

to that of 54. 
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Besides phyllostictine A-D, two other compounds were obtained as an amorphous 

and crystalline solid, respectively, which were named phyllostoxin and phyllostin (62 and 

63, 0.78 and 0.90 mg/l, Fig. 5.11.34). 

Preliminary 1H and 13C NMR investigation showed that the two metabolites were 

considerably different from phyllostictines A-D. 

Phyllostoxin (62), the most phytotoxic metabolite, together with phyllostictine A, has 

a molecular formula of C15H16O4 as deduced from HRESI MS spectrum, consistent with 8 

unsaturations four of which were attributed to a tetra-substituted benzene ring, and the 

other four to a ketone, an ester and a conjugated carbonyl group in agreement with the 

typical bands and absorption maxima observed in both IR (Fig. 5.11.35) and UV spectra.  

 The 1H spectrum (Fig. 5.11.36 and Table 5.10.5) showed the doublets (J=9.9 Hz) of 

two ortho-coupled aromatic protons at the typical chemical shift values of δ 7.88 and 6.15 

(H-5 and H-4) (Pretsch et al., 2000). Furthermore, the singlets typical of an aromatic and 

acetyl methyl group were observed at δ 2.36 (Me-11) and 2.00 (Me-10) respectively, 

together with the triplet (J=7.5 Hz) of the methyl (Me-14) of a propionyl residue 

resonating at δ 0.66. In the COSY spectrum the latter coupled with the two double quartets 

(J=14.8 and 7.5) of the protons of the adjacent methylene group (CH2-13), which, in turn, 

resulted also bonded to the saturated ketone group (O=C-12) by the correlations observed 

in the HMBC spectrum (Fig. 5.11.37 and Table 5.11.5). The couplings observed in the 

same spectrum allowed assignment the remaining methyl group (Me-15), resonating as 

singlet at δ 1.42, at the quaternary carbon C-7 (Pretsch et al., 2000).  In the 13C NMR 

spectrum (Fig. 5.11.38 and Table 5.11.5) C-7 appeared at the typical chemical shift value 

of δ 53.6 (Breitmaier and Voelter, 1987) and on the basis of the correlation observed in the 

HMBC spectrum (Table 5.11.5), it appeared also bonded to the propionyl residue. C-7 

represents the fourth carbon of a disubstituted cyclobutanone ring, which accounted for the 
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remaining unsaturation of 62. In the HMBC spectrum this latter ketone group (O=C-8), 

resonating at δ 170.0, coupled with H-5, and with the quaternary methyl group Me-15. The 

disubstituted cyclobutanone ring joined the benzene ring through its bridge-head 

quaternary carbons C-1 and C-6, appearing in the 13C NMR spectrum at the typical 

chemical shifts values of δ 115.8 and 121.1 (Breitmaier and Voelter, 1987). In the same 

spectrum, the acetyloxy and the aromatic methyl carbons, appeared at δ 175.0 (O=C-9), 

10.6 (Me-10) and 17.8 (Me-11), and were assigned, on the basis of the coupling observed 

in the HMBC spectrum, on C-2 and C-3 of the benzene ring, respectively. The latter two 

carbons were observed at typical chemical shift values of  δ 161.0  and 130.0 (C-2 and C-

3) as well as the signals at δ 138.0 and 124.0 were assigned to C-5 and C-4, respectively 

(Breitmaier and Voelter, 1987), also on the coupling observed in the HSQC spectrum (Fig. 

5.11.39). The signals of the propionyl and the tertiary methyl group were observed at δ 

201.0 (O=C-12), 33.0 (C-13) and 9.6 (C-14) and 24.0 (C-15), respectively and were 

attributed also on the basis of the couplings observed in the HSQC spectrum. On the basis 

of these results phyllostoxin proved to be a new fungal metabolite having the structure of 

acetic acid 3,7-dimethyl-8-oxo-7-propionyl-bicyclo[4.2.0]octa-1,3,5-trien-2-yl ester (62). 

This structure was confirmed by the results observed in the ESI and EI MS spectra. In fact, 

the HRESI MS spectrum, recorded in positive modality, showed sodium clusters formed 

by the molecular ion after the loss of C=O and those of the corresponding dimmer at m/z 

255 and 487.2070, together with the protonated ion of the cited dimmer at m/z 465.2254. 

Furthermore, the EIMS spectrum did not show the molecular ion, but ions produced by a 

fragmentation mechanism typical of the functionalities present in 62 (Pretsch et al., 2000). 

In fact, the molecular ion by loss of CO produced the ion at m/z 232 and this, in turn, by 

alternatively loss of MeCO or CH2=C=C=O residues yielded the ions at m/ 189 and 175, 

respectively. The most abundant ion at m/z 217 was formed from the molecular ion by loss 
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of the acetyl residue and this, in turn, by the loss of CH2=C=C=O residue generated the ion 

at m/z 161. When the molecular ion lost the CH2=C=C=O residue yielded the ion at m/z 

204. Finally, also the significant acetyl ion was observed at m/z 43.  

The structure of phyllostoxin appears quite rigid as observed by the inspection of its 

Deriding model. The NOE effects observed in the NOESY spectrum (Table 5.11.6) 

showed the expected proximity of both the aromatic protons (H-4 and H-5), that of the 

protons of the methylene (CH2-13) with both the terminal methyl (Me-14) groups of the 

propionyl residue and the quaternary methyl group (Me-15), as well as that of the aromatic 

methyl (Me-11) and the methyl (Me-10) of the acetyloxy groups. These results confirmed 

the structure assigned to 62. 

 Phyllostin (63) has a molecular formula of C11H14O6 as deduced from HRESI MS 

spectrum, consistent with 5 unsaturations, three of which were attributed to the two ester 

carbonyl groups and to a trisubstituted conjugated double bond, as also in agreement with 

the typical bands and absorption maxima observed in both IR (Fig. 5.11.40) and UV 

spectra. 

The 1H NMR spectrum (Fig. 5.11.41 and Table 5.11.7) showed the presence of a 

broad singlet typical of an olefinic proton (H-7) at δ 6.75, which in the COSY spectrum 

coupled with both the proton (H-8) of a secondary hydroxylated carbon and one proton of 

the methylene group (CH2-5), resonating as a broad doublet (J=8.4) and a doublet of 

double doublets (J=17.5, 9.9, 3.3) at the expected chemical shift values of δ 4.54 and 2.40 

respectively (Pretsch et al., 2000). The latter (H-5’), in turn, coupled both with the double 

doublet (J=17.5 and 6.1 Hz) of the geminal proton (H-5) at δ 2.99, and with the proton of 

the adjacent secondary oxygenated carbon (CH-4a), which resonated at δ 3.76 as a doublet 

of double doublets (J=9.9, 8.6 and 6.1), being also coupled with the double doublet (J=8.6 
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and 8.4 Hz) at δ 4.34 due to the proton of the adjacent secondary oxygenated carbon (CH-

8a). The latter also coupled with the proton H-8 above described.  

These results showed in 63 the presence of a tetrasubstituted cyclohexene ring joined 

to a trisubstituted 2-oxo-1,4-dioxan ring. In fact, the 1H NMR spectrum also showed the 

quartet (J=7.0) of a secondary oxygenated carbon belonging to this latter ring, which 

coupled, in the COSY spectrum, with the doublet (J=7.0 Hz) of the adjacent methyl group 

(Me-9), and the singlet of an ester methoxy group (Me-11) at δ 3.78 (16). The 13C NMR 

spectrum of 63 (Fig. 5.11.42 and Table 5.11.7) showed the expected presence of two ester 

carbonyl groups, the quaternary olefinic carbon and the methoxy group at δ 169.0, 167.0, 

132.0 and 52.4 and were assigned also based on the HMBC correlations (Fig. 5.11.43 and 

Table 5.11.7) to C-2, C-10, C-6 and C-11, respectively (Breitmaier and Voelter, 1987). The 

signals of the secondary olefinic carbon and those of four oxygenated methine carbons 

were observed at typical chemical shift values of δ 137.0, 84.3, 73.1, 70.3 and 70.2 and, 

were assigned to C-7, C-8a, C-3, C-4a and C-8, respectively, on the basis of the HSQC 

couplings (Fig. 5.11.44). Furthermore, the signals of the methylene and the secondary 

methyl groups at δ 29.8 and 17.9 were assigned to C-5 and C-9, respectively (Breitmaier 

and Voelter, 1987). The several interesting correlations observed in the HMBC spectrum 

(Table 5.11.7) joined the tetrasubstituted cyclohexene ring to the trisubstituted 2-oxo-1,4-

dioxan ring through the bridge-head carbons C-4a and C-8a, and to locate the 

carboxymethyl and the methyl groups at C-6 and C-3, respectively. On the basis of these 

results phyllostin is assigned the structure of a 8-hydroxy-3-methyl-2-oxo-2,3,4a,5,8,8a-

hexahydro-benzo[1,4]dioxine-6-carboxylic acid methyl ester (63). 

This structure (63) was confirmed by the data obtained from the EI and ESI MS 

spectra. In fact the HRESI MS spectrum showed the molecular ion at m/z 242.0802 and 

ions formed by fragmentation mechanisms typical of the ring nature and functionalities 
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present in 63 (Porter, 1985; Pretsch et al., 2000). The molecular ion losing in succession 

CO, CO2 and CO residues produced ions at m/z 214, 170 and 142, respectively. 

Alternatively, the molecular ion yielded the ions at m/z 225 and 211, by loss of OH or 

MeO residues, respectively. The ESI MS spectrum showed the potassium and sodium 

clusters at m/z 281 and 265.  

 On the basis of above NMR data and the several NOE couplings observed in the 

NOESY spectrum (Table 5.11.6) the relative stereochemistry of junction between the two 

rings and the four chiral carbons was assigned as depicted in 63. As deduced from a 

Dreiding model inspection, the tetrasubstituted cyclohexene and the trisubstituted 2-oxo-

1,4-dioxan rings assume a half-chair and a like-chair conformation, respectively. They 

appeared trans joined considering the typical axial-axial values (J=8.6 Hz) measured for 

the coupling between H-4a and H-8a (Pretsch et al., 2000). This conformation and the 

relative stereochemistry of all the chiral centres were definitively assigned by an X-ray 

diffrattometric analysis of 63, and resulted to be: 3R,4aS,8R,8aS or its enantiomer 

3S,4aR,8S,8aR. 

5.12. Biological activity of phyllostictine A-D, phyllostoxin and phyllostin  

When tested at concentration around 6 x 10-3 M by the leaf puncture assay on C. 

arvense, phyllostictines had different toxicity. Phyllostictine A was particularly active, 

causing the fast appearance of large necrotic spots (about 6-7 mm of diameter). 

Phyllostictines B and D were slightly less toxic compared to the main metabolite, whereas 

phyllostictine C was almost not toxic (Table 5.11.8). These results showed a clear 

structure-activity relationship between the phytotoxic activity and the structural feature 

characterizing the phyllostictine group. In fact, the most toxic compound appeared to be 

phyllostictine A (54) in which the 3,5-dihydroxy-4-methoxy-11-methylcycloundec-1-ene 

macrocyclic ring is joined with both the N-ethyl β-lactame and the 2,2,3,4-tetrasubstituted-

2,3,5-thrihydrofuran rings. The phytotoxicity decreases in phyllostictines B and D, in 
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which the dimension and the conformational freedom of the macrocyclic ring are changed 

but its functionalization remains unalterated. When also this latter changes in combination 

with the size and the conformational freedom, as in phyllostictine C (56), which showed a 

higher steric hindered 1-hydroethyl group at C-5 instead of the methyl group as in 54, the 

toxicity was completely lost. The N-ethyl β-lactame ring appears to be less important for 

the activity as phyllostictine D (57), in which it became an N-methyl δ-lactame, showed 

the same level of toxicity of 55. The importance of the 2,2,3,4-tetrasubstituted-2,3,5-

trihydrofuran rings remains to be ascertained, by assaying derivatives showing 

modifications of this moiety prepared from phyllostictine A. 

The antimicrobial and the zootoxic activities were assayed only for phyllostictines A 

and B, being phyllostictines C and D isolated in very low amounts.  

In the antifungal assay on Geotrichum candidum, phyllostictines A and B, were 

completely inactive assayed up to 100 µg/disk. Assayed against bacteria, only 

phyllostictine A was active against Lactobacillus sp. (Gram+) species, already at 5µg/disk, 

whereas both compounds were completely inactive against Escherichia coli (Gram-) even 

when tested up to 100 µg/disk. 

When tested on brine shrimp (Artemia salina L.) larvae only phyllostictine A caused 

the total larval mortality when assayed at 10-3 M, and a still noticeable mortality at 10-4 M 

(24%), whereas phyllostiine B proved to have a negligible activity. 

In both antimicrobial and zootoxic activities, the integrity of the 

oxazatricycloalkenone system present in phyllostictine A appears an important feature to 

preserve the activity.  

When tested on punctured C. arvense leaves at concentration of 10-3 M 

(20μl/droplet) phyllostoxin proved to be phytotoxic, causing the rapid appearance of large 

necrosis, similar to those caused by phyllostictine A. On the contrary phyllostin, assayed at 
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the same concentration, proved to be no phytotoxic. Both phyllostoxin and phyllostin, 

when assayed at concentrations up to 100 μg/disk did not show antimicrobial activity 

towards Geotrichum candidum and Gram- and Gram+ bacteria Escherichia coli and 

Lactobacillus sp., respectively. No toxicity was caused by both toxins to brine shrimps 

(Artemia salina L.) larvae when assayed up to 10-3 M. 

Phyllostictines A-D are the first four fungal metabolites described to belong to an 

oxazatricicloalchenone group and to occur for the first time as natural compounds with 

interesting biological activity. In particular the main fungal metabolite, phyllostictine A, 

showed potentially strong herbicidal properties not associated to antifungal and zootoxic 

activities, while a selective antibiosis was exhibited against Gram+ bacteria. Compounds 

containing macrocyclic rings as well as furan derivatives are quite common as naturally 

occurring compounds and some of them are biologically active (Turner and Aldrige, 1983; 

Tringali, 2001), while compounds containing β-lactame (2-azetidone) are only known as 

synthetic substances and some of them have pharmacological application as 

hypocholesterolemic agents (Williams, 2006; Vaccaro et al., 1996). 2-Piperidones are 

known as naturally occurring compounds and essentially as metabolites of plants 

(Nagarajan et al., 2005) and animals (Wood, 2002). 

 Phyllostoxin appeared to be a new bicyclooctatrienyl derivative with a strong 

phytotoxic activity not associated to antimicrobial or zootoxic activities. Therefore this 

toxin could represent a potential new natural herbicides. Further studies are in progress in 

order to produce the active compound in larger amounts, allowing a more accurate 

biological characterization. Phyllostoxin appeared to be the first bicyclooctatrienyl 

derivative naturally occurring, being the other reported, synthetic or intermediate 

compounds (Grieco et al., 1980; Kobayashi et al., 1992a; 1992b).  

 Phyllostin, which proved to have no toxicity in any of the assays performed, is one of 

the possible sixteen stereoisomers having the same structure, of which one is a fungal 
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metabolite (Isogai et al., 1985) while the others are all synthetic compounds (Chen and 

Low, 1966; Alberg et al., 1992). Phyllostin appeared to be the diastereomer of the 5-lactyl 

shikimate lactone previously isolated from a Penicillium sp. (Isogai et al., 1985) for which 

the absolute stereostructure 3S,4aR,8R,8aR was established by two independent 

enantioselective synthesis (Muralidharam et al., 1990; Alberg et al., 1992). In the same 

paper, Alberg et al. (1992), also described the preparation of the 3R,4aR,8R,8aR 

diastereomer of 63. As expected, the spectroscopic (IR, 1H and 13C NMR and MS) data of 

phyllostin were similar to those described in literature for the natural (Isogai et al., 1985; 

Muralidharam et al., 1990) and synthetic (Alberg et al., 1992) diastereomers but the physic 

(melting point and specific optical rotation) properties appeared quite different as reported 

in the experimental. Furthermore, the data of the crystalline cells are also quite different in 

respect to those reported (Chen and Low, 1966) of an unidentified diastereomer of 63, 

previously synthesized by Sprecher and Sprinson (1962). 
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6. CONCLUSIONS 

i) From D. gigantea, a mycoherbicide proposed for the biocontrol of grass weeds, 

were isolated some well know sesterterpenoids, as ophiobolin A, (the main metabolite), 6-

epi-, 3-anhydro-6-epi-ophiobolin A, and ophiobolins B, J and I.  

Two further new ophiobolins were isolated and named ophiobolin E and 8-epi-

ophiobolin J. These two latter are the first ophiobolins which present, a diidropyran ring 

joined to ring C and the epimerization at C-8, respectively. 

Considering the biological activity showed by ophiobolin A, it could be proposed as 

potential natural herbicide alone or in combination with the fungus for the management of 

grass weeds. 

ii) Ophiobolin A and close related fusicoccin, the main diterpenoid phytotoxin 

produced by Fusicoccum amygdaly and some its derivatives assayed at lower 

concentration they are phytotoxic, appeared to induce the germination of different 

Orobanche spp. The results showed that this stimulation is specie and concentration 

dependent. However this one represents an alternative method, called “suicidal 

germination” for the biocontrol of Orobanche spp.  

iii) Phytopathogenic fungi belonging to different genera were proposed for the 

biocontrol of C. arvense and S. arvensis as Ascochyta, Stagonospora and Phyllosticta.  

The investigation on the toxins produced by nine A. sonchi strains with different 

origin showed that two of them were atypical isolates. The latter were reclassified, on the 

basis of biochemical, molecular and chemical studies as Phoma exigua var. exigua species. 

This classification was confirmed by the isolation from their cultures of several well 

known cytochalasins which are typical toxic metabolites produced by Phoma species. 

iv) From S. cirsii were isolated ten new nonenolides, nine of which are new naturally 

occurring compounds. Among them only stagonolide and stagonolide H appeared to have a 
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significant phytotoxic activity and could be proposed for their practical application in 

agriculture for the management of the two Asteracee. 

v). A structure-activity relationship study, carried out using 15 compounds among 

cytochalasins, nonenolides and their derivatives, showed that the most phytotoxic 

compound on C. arvense was stagonolide, while deoxaphomin appeared to be the most 

toxic on S. arvensis. The conformational freedom is an important factor to impart the 

toxicity of the nonenolides, while the presence of the two hydroxy groups at C-7 and C-20, 

and the conformational freedom of the macrocyclic ring, for the cytochalasins. 

Stagonolide was a strong inhibitor of photosynthesis on C. arvense leaves, while 

cytochalain B showed a strong effect on cell membrane permeability. 

vi). P. cirsii showed to produce four phytotoxins with a very original carbon 

skeleton. These named phyllostictines A-D, are the first natural oxazatricicloalchenones. 

The most phytotoxic compound appeared to be phyllostictine A, whose phytotoxicity was 

dependent for the size and functionalization of the macrocyclic ring. The β-lactame ring 

appeared to be not essential. 

Lacking zootoxic and antimicrobial activity, phyllostictine A appear to be an ideal 

potential natural herbicide. 

Furthermore, two new metabolites were isolated and named phyllostoxin, which is a 

new pentasubstituted bycicloctatrienyl acetic acid ester, showing a strong phytotoxicity at 

same level of phyllostictine A, and phyllostin, a new pentasubstituted 

hexahydrobenzodioxine carboxylic acid methyl ester showing no activity. 
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Photo 1. Digitaria sanguinalis 
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Photo 2. Cirsium arvense 
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Photo 3. Sonchus arvens 
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 Photo 4. Orobanche ramosa infesting cabbage field 

 
 

 
Photo 5. Orobanche ramosa infested tomato field 
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Figure 1.1. Structure of putaminoxin (1), pinolidoxin (6) and some their analogues (2-5 and 
7-9) isolated from Phoma putaminum and Ascochyta pinodes culture filtrates, respectively 
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Figure 1.2. Structure of brefeldin A (10) and α,β-dehydrocurvularin (11)  isolated from 
Alternaria zinniae culture filtrates and fusaric acid (12), 9,10 dehydrofusaric acid (14) and 
corresponding methyl esther (13 and 15) isolated from Fusarium nygamai culture filtrates 
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Figure 1.3. Structure of ascaulitoxin (16), trans-4-aminoproline (17) and the ascaulitoxin 
aglycone (18) isolated from Ascochyta caulina culture filtrates 
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Figure 1.4. Structure of cytochalasins produced by Pyrenospora seminiperda (19-21) and 
Phoma exigua var. heteromorpha (20-24) 
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Figure 1.5. Structure of cytochalasins isolated from Phoma exigua var. heteromorpha 
culture filtrates and some their derivatives 
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Figure 1.6. Structure of drazepinone isolated from Dreschlera siccans culture filtrates 
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Figure 1.7. Structure of ascosonchine (33) and stagonolide (34) isolated from A. sonchi  
and Stagonospora cirsii culture filtrates, respectively 
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Figure 1.8. Structure of fusicoccin (35) and  ophiobolin A (36)
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Figure 5.1.1. Structure of ophiobolins isolated from D. gigantea culture filtrates
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Figure 5.1.2. 1H NMR spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded at 600 MHz 
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Figure 5.1.3. 13C NMR spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded at 300 MHz 
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Figure 5.1.4. COSY spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded at 600 MHz 



 

 
 

157 

 
 

Figure 5.1.5. HSQC spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded at 600 MHz 
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Figure 5.1.6. UV spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded in MeCN solution 
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Figure 5.1.7. IR spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded as neat 
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Figure 5.1.8. HMBC spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded at 600 MHz 
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Figure 5.1.9. NOESY spectrum of ophiobolin E, isolated from D. gigantea culture filtrates, recorded at 600 MHz 
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Figure 5.2.2. Ophiobolins isolated from D. gigantea solid culture 
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Figure 5.2.2. IR spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded as neat 
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Figure 5.2.3. UV spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded in MeCN solution 
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Figure 5.2.4. 1H NMR spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded at 600 MHz 
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Figure 5.2.5. 13C-NMR spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded at 300 MHz 
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Figure 5.2.6. COSY spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded at 600 MHz 
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Figure 5.2.7. HSQC spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded at 600 MHz 
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Figure 5.2.8. HMBC spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded at 600 MHz 
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Figure 5.2.9. NOESY spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded at 600 MHz 
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Figure 5.2.10. ESI MS spectrum of 8-epi-ophiobolin J, isolated from D. gigantea solid culture, recorded in positive modality  
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Figure 5.4.1. Structures of fusicoccin (35), some of its derivatives (64-68), and fusicoccin deacetyl aglycone derivatives (69 and 70) 
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Figure 5.4.2.  Percentage of germination of O. aegyptiaca, O. crenata, O. cumana, O. densiflora, O. foetida, O. gracilis, O. hederae, O. minor, O. ramosa seeds 

induced by the positive treatment control (GR24) and the negative treatment control (sterile distilled water). Error bars represent +/-2 SE 
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Figure 5.4.3. Percentage of germination of O. aegyptiaca, O. crenata, O. cumana, O. densiflora, O. foetida, O. gracilis, O. hederae, O. minor and O. ramosa 

seeds induced by A) 8,9-isopropylidene derivative of FC aglycone (69)  B); Ophiobolin A (36); C) FC derivative 67; D) FC derivative 68. Error bars represent 

+/-2 SE 
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Figure 5.5.1. HPLC profiles with a flow rate of 1 ml/min. A-C: ascosonchine standard; D: Culture extract of A. sonchi strain C-240 A) isocratic gradient of methanol and 1% 

dipotassium hydrogen phosphate in water adjusted to pH 7.35 with concentrated phosphoric acid (1:1, v/v). B) isocratic gradient of acetonitrile with the same buffer (1:1, v/v). 

C) isocratic gradient of methanol and HPLC grade water (1:1, v/v). D) isocratic gradient of methanol and HPLC grade water (1:1, v/v).
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Figure 5.5.2. Content of ascosonchine in the culture filtrates of A. sonchi strains 
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Figure 5.5.3. Virulence of A. sonchi strains to intact and wounded leaf disks of C. arvense 
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Figure 5.5.4. Time course of ascosonchine production in static cultures of A. sonchi strain 

C-240 
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Figure 5.5.5. Time course of ascosonchine production in shaken cultures of A. sonchi strain 
C-240 
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Figure 5.7.1. Phytotoxins isolated from Phoma exigua var. exigua strains C-177 and S-9 
liquid and solid cultures 
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Figure 5.8.1. Stagonolides B-F (45-49) isolated from S. cirsii solid culture 
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Figure 5.8.2. IR spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded as neat 
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Figure 5.8.3. 1H NMR spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.4. 13C NMR spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.5. COSY spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.6. HSQC spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.7. ESI MS spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded in positive modality 
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Figure 5.8.8. HMBC spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.9. IR spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded as neat 
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Figure 5.8.10. 1H NMR spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.11. 13C NMR spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.12. COSY spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.13. HSQC spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.14. ESI MS spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded in positive modality 
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Figure 5.8.15. HMBC spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.16. 1H NMR spectrum of stagonolide D, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.17. 13C NMR spectrum of stagonolide D isolated from S. cirsii solid culture recorded at 300 MHz 
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Figure 5.8.18. COSY spectrum of stagonolide D, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.19. HSQC spectrum of stagonolide D, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.20. HMBC spectrum of stagonolide D, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.21. UV spectrum of stagonolide E, isolated from S. cirsii solid culture, recorded in MeCN solution 
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Figure 5.8.22. 1H NMR spectrum of stagonolide E, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.23. 13C NMR spectrum of stagonolide E, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.24. COSY spectrum of stagonolide E, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.25. HSQC spectrum of stagonolide E, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.26. HMBC spectrum of stagonolide E, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.27. IR spectrum of stagonolide F, isolated from S. cirsii solid culture, recorded as neat 
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Figure 5.8.28. 1H NMR spectrum of stagonolide F, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.29. ESI MS spectrum of stagonolide F isolated from S. cirsii solid culture recorded in positive modality 
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Figure 5.8.30. NOESY spectrum of stagonolide B, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.31. NOESY spectrum of stagonolide C, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.32. NOESY spectrum of stagonolide D, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.32. NOESY spectrum of stagonolide D, isolated from S. cirsii solid culture, recorded at 600 MHz
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Figure 5.8.34. Structures of stagonolide G-I and modiolide A, isolated from S. cirsii solid 
culture
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Figure 5.8.35. 1H NMR spectrum of modiolide A, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.36. 13C NMR spectrum of modiolide A, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.37. IR spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded as neat 
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Figure 5.8.38. 1H NMR spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.39. COSY spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.40. 13C NMR spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.41. HSQC spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.42. HMBC spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.43. IR spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded as neat 
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Figure 5.8.44. 1H NMR spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.45. 13C NMR spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.46. COSY spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.47. HSQC spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.48. HMBC spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.49. IR spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded as neat 
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Figure 5.8.50. 1H NMR spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.51. 13C MR spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded at 300 MHz 
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Figure 5.8.52. COSY spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.53. HSQC spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.54. HMBC spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.55. NOESY spectrum of stagonolide G, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.56. NOESY spectrum of stagonolide H, isolated from S. cirsii solid culture, recorded at 600 MHz 
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Figure 5.8.57. NOESY spectrum of stagonolide I, isolated from S. cirsii solid culture, recorded at 600 MH
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Figure 5.9.1. Phytotoxicity of  nonenolides at 1 mg/ml in the Cirsium arvense leaf disk-puncture 
bioassay (48 hours post application) 
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Figure 5.9.2. Dose-response relationship for stagonolide H by the C. arvense leaf disc-puncture 
bioassay (48 hours post application). Bars indicate standard deviation 
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Figure 5.9.3. Effect of stagonolide H at 1 mg/ml on a range of various plant species using a leaf 
disc-puncture assay (72 hours post application) 
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Figure 5.10.1. Structure of nonenolides and some their derivatives used in the structure-activity 
relationship study 
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Figure 5.10.2. Structure of cytochalasins and some their derivatives used in the structure-activity 
relationship study 
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Figure 5.10.3. Effect of different toxins on C. arvense and S. arvensis using a leaf disc-puncture 
assay 

Figure 5.10. 4. Effect of toxins on light absorption by leaves of C. arvense in the range of 730-950 
nm 
 
 

Figure 5.10.5. Effect of cytochalasin B and stagonolide on in vivo resistivity of C. arvense leaves 
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Figure 5.11.1. Structures of phyllostictines A-D isolated from P.cirsii culture filtrates
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Figure 5.11.2. IR spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded as neat 
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Figure 5.11.3. UV spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded in MeCN solution 
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Figure 5.11.4. 1H NMR spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.5. COSY spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.6. 13C NMR spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.7. HSQC spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.8. HMBC spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.9. ESI MS spectrum of phyllostictine A, isolated from P. cirsii culture filtrates, recorded in positive modality 
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Figure 5.11.10. IR spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded as neat 
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Figure 5.11.11. UV spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded in MeCN solution 
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Figure 5.11.12. 1H NMR spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.13. 13C NMR spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.14. COSY spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.15. HSQC spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.16. HMBC spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.17. ESI MS spectrum of phyllostictine B, isolated from P. cirsii culture filtrates, recorded in positive modality 
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Figure 5.11.18. IR spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded as neat 
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Figure 5.11.19. 1H NMR spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded at 600 MHz
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Figure 5.11.20. 13C NMR spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded at 300 MHz 
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Figure 5.11.21. COSY spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.22. HSQC spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.23. HMBC spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.24. ESI MS spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded in positive modality 
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Figure 5.11.25. IR spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded as neat 
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Figure 5.11.26. 1H NMR spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.27. 13C NMR spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded at 300 MHz 
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Figure 5.11.28. COSY spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.29. HSQC spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.30. HMBC spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.31. ESI MS spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded in positive modality 
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Figure 5.11.32. NOESY spectrum of phyllostictine C, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.33. NOESY spectrum of phyllostictine D, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.34.  Structure of phyllostoxin and phyllostin isolated from P. cirsii culture filtrates
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Figure 5.11.35. IR spectrum of phyllostoxin, isolated from P. cirsii culture filtrates, recorded as neat 
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Figure 5.11.36. 1H NMR spectrum of phyllostoxin, isolated from P. cirsii culture filtrates, recorded at 300 MHz 
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Figure 5.11.37. HMBC spectrum of phyllostoxin, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.38. 13C NMR spectrum of phyllostoxin, isolated from P. cirsii culture filtrates, recorded at 300 MHz 
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Figure 5.11.39. HSQC spectrum of phyllostoxin, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.40. IR spectrum of phyllostin, isolated from P. cirsii culture filtrates, recorded as neat 
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Figure 5.11.41. 1H NMR spectrum of phyllostin, isolated from P. cirsii culture filtrates, recorded at 300 MHz 
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Figure 5.11.42. 13C NMR spectrum of phyllostin, isolated from P. cirsii culture filtrates, recorded at 300 MHz 
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Figure 5.11.43. HMBC spectrum of phyllostin, isolated from P. cirsii culture filtrates, recorded at 600 MHz 
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Figure 5.11.44. HSQC spectrum of phyllostin, isolated from P. cirsii culture filtrates, recorded at 600 MHz
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Table 5.1.1. 1H  and  13C NMR data of ophiobolin E and 8-epi-ophiobolin J (40 and 43). The chemical shifts are in δ values (ppm) from TMS a 

 40  43  
C δb δH J (Hz) HMBC  δb δH J (Hz) HMBC 

1 30.4 t 1.50 m 
1.17 m 

 2.85, 2.37, 0.89  49.7 t 1.96 dd 
1.10 m 

11.8, 1.4 3.16, 1.57, 1.34 

2 45.7 d 2.37 bt  1.87 1.17, 0.89  45.8 d 3.16 d  11.8 2.08, 1.96, 1.10 
3 78.9 s   2.85, 1.50, 1.34, 1.17  175.7 s   6.03, 3.16, 2.08, 1.96 
4 53.2 t 2.45 d 

1.50 m 
13.1 1.69, 1.50, 1.34  131.9 d 6.03 s  3.16, 2.08 

5 25.3 t 2.05 m 
1.69 m 

1.3   198.0 s   6.03, 3.16, 2.08 

6 46.3  d 2.85 br d 6.99 9.49, 2.45, 1.50  138.6 s   6.03, 3.16, 2.08 
7 141.5 s   9.49, 2.94, 2.85, 2.48, , 2.45  149.0 s   1.89 
8 152.7 d 7.13 dd 5.3, 2.0 2.94, 2.85, 2.48, 1.50, 0.89  72.1 d 4.70 dd 10.0, 9.9  1.89 
9 26.0 t 2.94 d 

2.48 dd 
19.7 
19.7, 5.3 

7.13  34.3 t 1.89 m (2H)  1.89 

10 158.8 s   2.20  51.1 s 1.89 m  1.96, 1.89, 1.68, 1.51 
11 58.0 s   7.13, 2.94, 2.85, 2.48  43.6 s   1.96, 1.89, 1.68, 1.57, 1.34, 1.51, 1.10 
12 124.5 d 5.08 br t 5.4   30.3 t 1.68 m 

1.51 m 
 2.20, 1.57, 1.34 

13 159.6 s   5.84, 3.85, 0.93  42.4 t 1.57 m 
1.34 m 

  

14 133.0 s     95.8 s   2.20, 1.89, 1.79, 1.68, 1.51, 1.34, 1.02 
15 33.0  d 2.20 m   1.50  36.0 d 2.20 dq 13.7, 6.9 1.79, 1.68, 1.02 
16 35.5 t 1.69 m 

1.50 m 
 0.93  42.0 t 1.79 m 

1.68 m 
 2.20, 1.02 

17 85.7 d 3.85 br d  2.9 5.84  71.9 d 4.54 dd 15.7, 7.2 2.20, 1.79 
18 125.8 d 5.84 br d 2.9 1.67, 1.59  127.0 d 5.16 br d  7.2 1.79, 1.69, 1.64 
19 134.0 s   1.67, 1.59  134.5 s   4.54, 1.69, 1.64 
20 29.2 q 1.34 s  1.50, 1.17  17.4 q 2.08 s  6.03 
21 193.4 d 9.49 s  7.13, 2.94  56.7 t 4.74 br s   
22 14.1 q 0.89 s    22.7 q 1.10 s  1.96, 1.89, 1.57, 1.34, 1.10 
23 22.7 q 0.93 d 7.0   16.3 q 1.02 d 6.9 2.20, , 1.79, 1.68 
24 c 18.0 q 1.59 s    18.1 q 1.64 s  5.16, 1.79 
25c 25.6 q 1.67 s    25.9 q 1.69 s  5.16, 1.79, 1.64 

a2D 1H, 1H (COSY) and 2D 13C, 1H  (HSQC) NMR experiments delineated the correlations of all protons and the corresponding carbons. 
bMultiplicities determined by DEPT spectrum. 
cThese assignments can be exchanged (They were made by comparison with analogues Li et al., 1995). 
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  Table 5.1.2. 2D 1H-NOE (NOESY) data obtained for ophiobolin E and 8-epi-ophiobolin J (40 and 43) 

40 43 

Considered Effects Considered Effects 

9.49 (H-21) 7.13 (H-8), 2.85 (H-6), 1.17 (H-1’) 5.16 (H-18) 4.54 (H-17), 2.20 (H-15), 1.79 (H-16), 1.68 (H-16’) 

7.13 (H-8) 9.49 (H-21), 2.94 (H-9), 2.48 (H-9’), 0.93 (Me-23) 4.74 (H2-21) 4.70 (H-8), 3.16 (H-2) 

5.84 (H-18) 3.85 (H-17), 2.20 (H-15), 1.69 (H-16), 1.50 (H-16’), 0.93 

(Me-23) 

4.70 (H-8) 4.74 (H2-21), 1.89 (H2-9), 1.10 (Me-22) 

5.08 (H-12) 2.20 (H-15), 1.69 (H-16), 1.50 (H-16’) 4.54 (H-17) 5.16 (H-18), 1.79 (H-16), 1.68 (H-16’), 1.02 (Me-23) 

3.85 (H-17) 5.84 (H-18), 1.50 (H-16’), 0.93 (Me-23)    

2.94 (H-9) 7.13 (H-8), 2.48 (H-9’), 2.20 (H-15), 0.93 (Me-23) 3.16 (H-2) 4.74 (H2-21), 1.96 (H-1), 1.10 (Me-22) 

2.85 (H-6)  9.49 (H-21), 2.37 (H-2), 1.50 (H-4’), 1.34 (Me-20) 2.20 (H-15) 5.16 (H-18) 

2.48 (H-9’) 9.49 (H-21), 2.94 (H-9), 0.89 (Me-22) 1.96 (H-1) 3.16 (H-2) 

2.45 (H-4) 1.50 (H-4’), 1.34 (Me-20), 1.17 (H-1’) 1.89 (H2-9) 4.70 (H-8) 

2.37 (H-2) 2.85 (H-6), 1.50 (H-1) 1.79 (H-16) 5.16 (H-18), 4.54 (H-17) 

2.20 (H-15) 2.94 (H-9), 1.69 (H-16), 1.50 (H-16’), 0.93 (Me-23) 1.68 (H-16’) 5.16 (H-18), 4.54 (H-17) 

1.69 (H-16) 5.84 (H-18), 5.08 (H-12), 2.20 (H-15) 1.10 (Me-22) 4.70 (H-8), 3.16 (H-2) 

1.50 (H-16’) 5.84 (H-18), 5.08 (H-12), 3.85 (H-17), 2.20 (H-15) 1.02 (Me-23) 4.54 (H-17) 

1.50 (H-4’) 2.85 (H-6), 2.45 (H-4)   

1.50 (H-1) 2.37 (H-2)   

1.34 (Me-20) 2.85 (H-6), 2.45 (H-4)    

1.17 (H-1’)  9.49 (H-21), 2.45 (H-4)   

0.93 (Me-23) 7.13 (H-8), 5.84 (H-18), 3.85 (H-17), 2.94 (H-9), 2.20 

(H-15) 

  

0.89 (Me-22)  2.48 (H-9’)   
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 Table 5.3.1. Effect of ophiobolins (36-38) in the leaf puncture assay on different weed species* 

 36 37 38 
 
Species 6.3x10-4    2.5x10-4    1.3x10-4     6.3x10-4  2.5x10-4  1.3x10-4    6.3x10-4   2.5x10-4   1.3x10-4   
 monocotyledons 
Avena ludoviciana Dur. 3 3 3 2 2 2 0 0 0 
Bromus sterilis L. 3 2 1 2 1 1 1 1 1 
Cynodon dactylon (L.) Pers. 1 0 0 2 1 0 0 0 0 
Digitaria sanguinalis (L.) Scop. 3 3 3 3 2 2 1 1 0 
Echinochloa crus-galli (L.) 
Beauv. 3 3 3 2 2 1 1 1 1 
Oryzopsis miliacea (L.) Aschers 3 2 1 2 1 1 1 1 1 
Phalaris canariensis L. 3 3 3 3 2 1 1 1 1 
Setaria viridis (L.) Beauv. 3 3 3 3 3 3 2 2 2 
          
 dicotyledons 
Amaranthus retroflexus L. 3 2 2 1 1 1 0 0 0 
Chenopodium album L. 3 2 2 3 2 2 1 1 0 
Convolvulus arvensis L. 2 2 2 2 2 2 0 0 0 
Diplotaxis erucoides (L.) DC. 2 2 2 2 2 2 3 3 2 
Sonchus oleraceus L. 3 3 3 3 3 3 1 1 0 
*Diameter of necrosis on leaves: 3 = necrosis > 3 mm; 2 = necrosis between 2 and 3 mm; 1 = necrosis    
between 1 and 2 mm; 0 = no necrosis 

 
 
 

 

 

 

Table 5.3.2. Effect of ophiobolins B and J (41 and 42) on various weed 

species tested by leaf puncture assay 

Species Compounda 

 41 42 

Avena sterilis ++b + 

Bromus sp. ++++ ++ 

Hordeum murinum ++++ ++ 

Oryzopsis miliacea  + - 
a 0.5 mg ml-1 - droplets 15 µl 
bDiameter of necrosis on leaves: ++++ = necrosis diameter > 6 mm; ++ = necrosis 
between 4 and 2 mm; + = necrosis between 2 and 1 mm; - = no necrosis 
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Table 5.5.1. Origin, host and year of isolation of the Ascochyta strains used in 
the present work 
Strain Region Host plant Year of isolation 

S-7 Saint-Petersburg, Russia 1998 

S-9 

S-10 
Northern Osetia, Russia 

Sonchus arvensis 

C-177 Oslo, Norway 

C-180 Northern Osetia, Russia 

C-182 

2002 

C-208 

C-216 

Saint-Petersburg, Russia 

C-240 Northern Osetia, Russia 

Cirsium arvense 

2003 

 

 

 

 

Table 5.5.2. Analytical characteristics of calibration curve for ascosonchine 

Rt 

(min) 

Range 

(μg) 

Slopea Intercepta SD,a y % r2 Number of 

data point 

Detection 

limit (pg) 

4.6 0.14-14 15599 917.7 0.73 0.9987 27 1.8 
aCalculated in the form y=a+bx where y=chromatographic peak area and x=μg of toxin 
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 Table 5.8.1. 1H NMR data of stagonolides B-F (45-49)a,b,c 

  45 46 47 48 49 

Position  δH J (Hz)  δH J (Hz)  δH J (Hz)  δH J (Hz)  δH J (Hz) 

2  2.47 br dd (14.6, 14.3) 

2.08 ddd  (14.3, 5.4, 2.8) 

 2.03 (2H) m  2.28 ddd (13.0, 7.4, 1.8)  

2.11 dd (13.0, 11.2) 

 5.84 d (11.6)  2.35 t (7.5) 

2.00 m 

3  2.10 br dd (15.0, 14.6) 

1.88 m 

 2.29 m 

2.03 m 

 2.05 dd (14.0, 1.8) 

2.00 ddd (14.0, 11.2, 4.3) 

 6.60 br d (11.6)  2.05 (2H) 

4  4.63 br s  4.10 m  4.13 ddd (8.4, 7.4, 4.3)  6.12 br d (15.4)  2.00 m 

1.60 m 
5  5.65 dt (16.1, 2.6)  5.42 dd (15.6, 10.2)  5.52 dd (17.0, 8.4)  5.73 dd (15.4, 9.6)  4.06 ddd (10.2, 9.3, 3.3) 

6  6.00 br d (16.1)  5.58 dd (15.6, 9.4)  5.64 dd (17.0, 4.8)  4.24 ddd (9.6, 9.0, 3.8)  5.27 br dd (15.1, 10.2) 

7  4.51 br s  4.10 m  3.65 dd (4.8, 3.9)  2.08 ddd (14.2, 9.0, 3.8) 

1.73 ddd (14.2, 9.5, 9.0) 

 5.66 ddd (15.1, 10.7, 3.4) 

8  3.58 br dd (9.5, 2.4)  1.88 dd (13.8, 2.6) 

1.77 ddd (13.8, 11.2, 2.6)

 3.05 dd (3.9, 2.6)  1.85 dd (15.8, 9.0) 

1.60 m 

 2.30 m 

2.05 m 

9  4.94 td (9.5, 2.4)  5.14 dq (11.2, 6.2)  5.34 dq (6.7, 2.6)  4.98 dq (11.7, 6.5)  5.15 ddd (12.7, 6.4, 3.4) 

10  1.88 m 

1.57 m 

 1.22 d (6.2)  1.37 d (6.7)  1.21 d (6.5)  1.18 d (6.4) 

11  1.37 m 

1.25 m 

        

12  0.91 t (7.4)         
aThe chemical shifts are in δ values (ppm) from TMS.  b2D 1H, 1H (COSY) 13C, 1H  (HSQC) NMR experiments delineated the correlations of all protons 
and the corresponding carbons.cThe assignments are in agreements with the values reported for herbarumins (Rivero-Cruz et al., 2000), putaminoxin 
(Evidente et al., 1995) and aspinolides (Fucsher and Zeeck, 1997).



 

 
 

289

 

 

  Table 5.8.2. 13C-NMR data of stagonolides B-F (45-49)a,b,c 

  45 46 47 48 49 

Position  δC multd  δC multd  δC multd  δC multd  δC multd 

1  176.0 qC  174.5 qC  173.5 qC  168.2 qC  174.8 Qc 

2  27.8 CH2  34.4 CH2  31.2 CH2  125.6 CH  32.1 CH2 

3  31.7 CH2  31.5 CH2  35.0 CH2  139.6 CH   31.5 CH2 

4  68.6 CH  74.4 CH  75.1 CH  126.6 CH  34.3 CH2 

5  127.5 CH  133.0 CH  134.2 CH  140.2 CH  71.8 CH 

6  127.1 CH  135.8 CH  128.1 CH   73.7 CH  134.5 CH 

7  73.7 CH  72.0 CH  55.4 CH  37.4 CH2  131.3 CH 

8  73.6 CH  43.4 CH2  58.2 CH   30.4 CH2  35.0 CH2 

9  70.2 CH  67.7 CH  65.7 CH   73.2 CH  75.4 CH 

10  33.6 CH2  21.3 CH3  16.2 CH3  21.4 CH3  21.7 CH3 

11  18.0 CH2         

12  12.1 CH3         
aThe chemical shifts are in δ values (ppm) from TMS. b2D 1H, 1H (COSY, TOCSY) 13C, 1H  
(HSQC) NMR experiments delineated the correlations of all protons and the corresponding 
carbons. cThe assignments are in agreements with the values reported for herbarumins,13 

putaminoxin20 and aspinolides.23 dMultiplicities determined by DEPT spectrum. 
 
 

 
 Table 5.8.3. HMBC data of stagonolides B-E (45-48) 

  45  46  47  48 

C  HMBC  HMBC  HMBC  HMBC 

1  H-9, H2-2, H2-3  H-9, H-4, H2-2, H2-3  H-9, H2-2  H-9, H-3, H-2 

2  H-4, H-3  H-5, H-4, H2-3  H2-3  H-4 

3  H2-2  H2-2  H-5, H-4, H2-2  H-2 

4  H-6, H-5, H2-2, H2-3  H-6, H2-3  H-6, H2-3, H2-2   H-6, H-5 

5  H-6, H-4, H-3’  H-6, H-4, H2-3  H-7, H-6, H-4, H2-3  H2-7, H-5 

6  H-7, H-5,  H2-8, H-7, H-5,   H-7, H-5, H-4  H2-7, H-4 

7  H-6, H-5,   H2-8, H-5  H-8, H-5  H-9, H-5, H2-8 

8  H-9, H-7  H-7, H-6, Me-10  H-9, H-7,Me-10  H2-7,Me-10 

9  H-8, H-10’  H-8’, Me-10  Me-10  H2-8, Me-10 

10  H-9, H-8, Me-12  H2-8  H-9  H-9, H-8 

11  H-9, H2-10, Me-12       

12  H-10’, H-11’       
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  Table 5.8.4. 2D 1H-NOE (NOESY) data obtained for stagonolides B-E (45-48) 
45  46  47  48 
Cosidered Effects  Cosidered Effects  Cosidered Effects  Cosidered Effects 
H-9 H2-10, H2-11, Me-12   H-6 H-7, H-8’  H-6 H-7, H-8, H-4, H2-3  H-3 H-4, H-2 

H-8 H2-11, H2-10,  

H-7, H-6 

 H-5 H-4, H2-2   H-5 H-7, H-8, H-4, H-2’  H-4 H-6 

H-7 H-8, H-6,   H-7 H2-8, H-6  H-9 H-8, Me-10  H-9 H-8, Me-10 

H-6 H-8, H-7, H-2  H-9 Me-10, H2-8, H-7  H-4 H2-3  H-5 H-7’, H-6 

H-5 H-4, H-2’  H-4 H-5, H-3’  H-7 H-8  H-6 H-8’, H-7, H-5, H-4  

H-4 H2-3     H-8 H-9, H-7, Me-10    

      Me-10 H-9, H-8    
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 Table 5.8.5. 1H-NMR data for stagonolides G-I (50-52) and Modiolide A (53)a,b,c 

  50 51 52          53 

Position  δH (J in Hz)  δH (J in Hz) δH (J in Hz)  δH (J in Hz 

2  2.56 (2H) m  5.93 d (12.0) 5.68 dd (11.8, 2.1)  5.89 d (12.5) 

3  2.35 m  

1.95 ddd (17.7, 10.9, 9.5) 

 6.11 dd (12.0,6.4) 6.31 dd (11.8, 4.0)  5.91 d (12.5) 

4  4.54 m  4.76 br dd (6.4, 2.2) 5.71 br ddd (9.6, 4.0, 2.1)  4.79 br d (8.7) 

5  2.63 ddd  (14.5, 7.7, 7.7) 

2.48 ddd (14.5, 5.2, 5.2) 

 5.96 dd (15.9, 2.2) 5.40 dd (10.3, 9.6)  5.74 dd (15.9, 8.7) 

6  5.67 ddd  (11.1, 7.7, 5,2)  5.88 dd (15.9, 1.6) 5.50 dd (10.3, 8.2)  5.63 dd (15.9, 10.4) 

7  5.60 dd (11.1, 8.2)  3.65 dd (4.3, 1.6) 4.97 br ddd (9.8, 8.2, 3.0)  4.26 br dd (10.4, 11.1, 3.2)) 

8  4.11 dd (8.2, 8.2)  2.94 br d (4.3, <1.0) 2.24 ddd (13.9, 9.8, 7.0) 

1.87 ddd (13.9, 3.9, 3.0) 

 1.92 ddd (12.9, 3.2, 1.2) 

1.81 ddd (12.9,11.1, 10.8) 

9  3.67 dq (8.2, 6.5)  5.43 br q (6.9, <1.0) 5.11 m   5.31 ddq (10.8, 6.3, 1.2) 

10  1.15 d (6.5)  1.50 d (6.9) 1.41 d (6.5)  1.28 d (6.3) 

OH  5.67 br s  4.85 br s 5.88 br s  1.67 br s 

OH  3.64 s   

 

5.72 br s  1.56 br s 
aThe chemical shifts are in δ values (ppm) from TMS. b2D 1H, 1H (COSY) 13C, 1H (HSQC) NMR experiments 
delineated the correlations of all protons and the corresponding carbons.cThe assignments are in agreement with the 
values reported for stagonolides B-F,  modiolides (Tsuda et al., 2003) and herbarumins (Rivero-Cruz et al., 2000) 
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Table 5.8.6. 13C-NMR data for Stagonolides G-I (50-52) and Modiolide A (53)a,b,c 
  50 51 52 53 

Position  δC mult.d  δC mult.d δC mult.d  δC mult.d 

1  178.0 qC  167.7 qC 164.8 qC  167.0 qC 

2  28.7 CH2  126.1 CH 121.0 CH  122.8 CH 

3  27.5 CH2  133.9 CH 149.1 CH  136.1 CH 

4  79.6 CH  66.9 CH 66.8 CH  71.3 CH 

5  33.7 CH2  131.3 CH 129.4 CH  131.0 CH 

6  127.8 CH  119.7 CH 134.5 CH   137.3 CH 

7  132.5 CH  55.8 CH 64.5 CH  72.1 CH 

8  72.3 CH  56.3 CH 42.6 CH2   42.7 CH2 

9  70.8 CH  65.6 CH 68.4 CH   68.7 CH 

10  18.7 CH3  18.6 CH3 20.8 CH3  21.3 CH3 

aThe chemical shifts are in δ values (ppm) from TMS. b2D 1H, 1H (COSY, TOCSY) 13C, 
1H  (HSQC) NMR experiments delineated the correlations of all protons and the 
corresponding carbons. cThe assignments are in agreement with the values reported for 
stagonolides B-F,  modiolides (Tsuda et al., 2003) and herbarumins (Rivero-Cruz et al., 
2000) dMultiplicities determined by DEPT spectrum. 

 
 
 
 

 
 

Table 5.8.7. HMBC data for Stagonolides G-I (50-52) and Modiolide A (53) 

  50   51  52  53 

C  HMBC  HMBC  HMBC  HMBC 

1  H2-2  H-3, H-2,   H-3, H-2  H-2 

2    H-4, H-3  H-4   

3  H2-2  H-4, H-2  H-5, H-2   

4  H2-5, H-3’  H-6, H2-3  H-6, H-5  H-6, H-3, H-2  

5  H-7, H-3’  H-7, H-6, H-4, H-3  H-7, H-6, H-4  H-7, H-6, H-3 

6  H-8, H2-5,  H-7, H-5, H-4   H-7, H-5  H-5, H-4 

7  H2-5  H-8, H-6, H-5  H2-8, H-5  H2-8, H-5 

8  H-7  H-7, H-6, Me-10  Me-10, H-7  Me-10, H-6 

9  H-8, Me-10  H-8, Me-10  H2-8  Me-10, H-8’ 

10    H-9, H-8  H-9, H-8   
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Table 5.8.8. 2D 1H-NOE (NOESY) data obtained for Stagonolides G-I (50-52) and Modiolide A (53). 

50  51  52  53 
Considered Effects  Considered Effects  Considered Effects  Considered Effects 
H-9 Me-10, H-8, H-7   H-9 Me-10, H-8  H-9 Me-10, H2-8  H-9 H-8, Me-10 

H-8 Me-10, H-9, H-7, 

H2-5  

 H-8 H-9, H-7  H-7 H-8’  H-8 H-9, H-7, Me-10 

H-7 H-9, H-8,   H-7 H-8, H-6  H-6 H-8’  H-7 H-8 

H-6 H2-5, H-4  H-4 H-5, H-3  H-3 H-2  H-6 H-7, H-8, H-4 

H2-5 H-8, H-6, H-4, 

H2-3 

       H-5 H-7, H-8, H-4 

H-4 H-6, H2-5, H2-3        H-4 H-3 

         Me-10 H-9, H-8 
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Table 5.10.1. Effect of toxins on light absorption by leaves of C. arvense at 
632.8 nm 

Absorption, % 
Toxins before 

treatment 
after 2 hours 
post treatment 

after 4 hours 
post treatment 

Change 
after 4 
hours (%) 

Stagonolide 68,1 63,4 53,5a -21 
Putaminoxin 62,0 53,4 47,8a -24 
Deoxaphomin 60,6 60,9 56,6 -7 
Cytochalasin A 66,3 57,8a 58,8a -11 
Cytochalasin B 66,3 60,8 54,4a -18 
Control 63,8 61,6 61,8 -3 
aValues marked with asterisk are significantly (p<0.05) differed from values 
before treatment 

 
 

Table 5.10.2. Effect of toxins on light absorption by leaves of C. arvense  in the range of 450–
950 nm 

Absorption, % 
Comparison of means with 
Student’s coefficient Wavelengt

h (nm) 
Control cytochalasin B Stagonolide Control vs. 

cytochalasin B 
Control vs. 
stagonolide 

cytochalasin B 
vs. stagonolide 

450 62.6 58.6 58.5 4.40a 2.77 a 0.07 
470 77.1 76.8 76.8 0,31 0,10 0,02 
490 74.1 74.9 71.1 0.36 1.98 a 1.93 
510 59.9 63.3 62.2 1.81 0.99 0.74 
530 44.5 48.7 53.4 2,04 a 3.70 a 1.94 
550 44.4 49.4 54.4 2.38 a 4.85 a 2,02 a 
590 65.2 66.4 63.9 0.84 0.87 1.61 
610 68.4 69.8 66.1 0.70 1.37 1.71 
630 70.9 72.4 66.7 0.84 2.14 a 2.76 a 
650 78.5 78.2 70.5 0.15 2.15 a 1.98 a 
670 85.6 85.7 76.1 0.12 3.65 a 3.62 a 
690 62.6 64.8 55.0 0.98 3.46 a 3.49 a 
710 19.1 21.9 26.0 0.97 3.02 a 1.47 
730 1.3 2.9 16.8 1.07 5.91 a 4.79 a 
750 0.5 2.6 16.2 1.64 7.12 a 5.44 a 
770 2.2 3.9 18.0 0.91 6.93 a 5.39 a 
790 3.1 4.0 16.8 0.43 5.07 a 4.31 a 
810 4.3 5.4 17.5 0.49 5.63 a 2.60 a 
830 4.2 6.0 17.0 0.82 5.47 a 4.27 a 
850 3.3 4.2 14.3 0.49 4.96 a 3.95 a 
870 1.4 3.25 10.8 1.12 4.70 a 3.25 a 
890 1,0 2.2 4.2 0.97 1.68 0.91 
910 0.19 1.2 3.1 1.32 1.98 1.13 
930 0.02 0.9 3.4 1.49 2.41 a 1.61 

    aValues marked with asterisk significantly (p<0.05) differed from each other 
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Table 5.11.1. 1H NMR data of phyllostictines A-D ()a,b 

δH    Position 
 54 55 56 57 
5    2.44 (2H) t (7.3 Hz)
6 1.30 (2H) m 1.33 (2H) m 1.34 (2H) m 1.61 m 

1.36 m 
7 1.30 (2H) m 1.58 m 

1.38 m 
1.40 (2H) m  

8 1.30 m 
1.26 m 

1.80 (2H) m 1.60 m 
1.38 m 

 

9 1.58 m 
1.37 m 

4.02 m 1.80 (2H) m 1.36 (2H)m 

10 1.80 (2H) m  4.03 m 1.61 m 
1.40 m 

11 4.04 m   1.81 (2H) m 
12  5.08 d (J=1.0 Hz) 

5.04 d (J=1.0 Hz) 
 4.02 m 

13  4.48 br s 5.07 d (J=1.0 Hz) 
5.05 d (J=1.0 Hz) 

 

14 5.08 d (J=0.9 Hz) 
5.03 d (J=0.9 Hz) 

 4.46 br s  

15 4.45 br s   5.06 d (J=1.3 Hz) 
5.04 d (J=1.3 Hz) 

16    4.47  br s 
MeN    2.14 s 
MeCH2N 1.30 (2H) m 1.33 (2H) m 1.48 (2H) m  
MeCH2N 0.83 t (J=7.1 Hz) 0.91 t (J=6.6 Hz) 0.95 t (J=7.1 Hz)  
Me-C(5) 1.27 s 1.26 s   
MeCH(OH)-
C(5) 

  3.80 m  

MeCH(OH)-
C(5) 

  1.18 d (J=6.2 Hz)  

Me-C(7)    1.26 s 
MeO 3.91 s 3.92 s 3.91 s 3.92 s 
OH 3.61 (br s), 2.80 

(br s) 
3.10 (br s), 2.20 
(br s) 

3.29, 2.45, 1.61(all 
br s) 

3.06 (br s), 2.24 (br 
s) 

aThe chemical shifts are in δ values (ppm) from TMS. 
b2D 1H, 1H (COSY) 13C, 1H  (HSQC) NMR experiments delineated the correlations of all the protons 
and the corresponding carbons. 
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Table 5.11.2. 13C NMR data of phyllostictines A-D (54-57)a,b 

Position δC mc    

 54 55 56 57 

1 136.3 s 136.3 s 136.4 s 136.4s 

2 156.2 s 156.0 s 156.0 s 155.9 s 

3 166.6 s 166.2 s 166.4 s 166.3 s 

5 71.8 s 71.8 s 71.8 s 43.6  

6 22.6 t 22.6  25.6 t 23.6 t 

7 29.3 t 26.2 t 29.2 t 71.8 t 

8 29.7 t 27.5 t 26.4 t 210.0 s 

9 26.5 t 86.18 d 27.4 t 28.8 t 

10 27.5 t 104.2 s 86.2 d 26.3 t 

11 86.3 d   27.3 t 

12 104.3 s 96.2 t  86.0 d 

13  68.9 t 92.6 t 104.4 s 

14 92.7 t  68.6 d  

15 68.4 d   92.6 t 

16    68.1 d 

MeCH2N 31.8 t 31.6 t 39.2 t  

MeCH2N 14.1 q 14.1 q 14.1 q  

MeN    29.9 q 

Me-C(5) 17.1 q 17.1 q  16.5 q 

MeCH(OH)-C(5)   68.1 d  

MeCH(OH)-C(5)   23.6 q  

Me-C(7)     

MeO 64.5 q 64.6 q 64.6 q 64.6 q 
aThe chemical shifts are in δ values (ppm) from TMS.  
b2D 1H, 1H (COSY, TOCSY) 13C, 1H  (HSQC) NMR experiments delineated the correlations of all 
the protons and the corresponding carbons. 
cMultiplicities determined by DEPT spectrum 
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Table 5.11.3. HMBC data of phyllostictines A-D (54-57). 
C HMBC    

 54 55 56 57 

1 H2-14 H2-12 H2-13 H2-15 

2 H-15, H2-14, H-11 H-13, H2-12, H-9 H-14, H2-13  H-16, H2-15, MeO 

5 H-15, H2-6, Me-C(5) H-13, Me-C(5) H-14, H2-6, 

MeCH2N 

H2-6, MeN 

6 Me-C(5) MeCH2N, H-9, H-

7’ 

 H2-5, MeN 

7  Me-C(5)  H2-6, Me-C(7) 

8  H-9  H2-6, H2-5 

9 H2-10 H2-8 H-10  

10 H-11, H2-9,  H-13 H2-9, H2-8  

11 H-15, H2-10, H2-9  H-14  

12 H-15   H2-11, H2-10 

13    H-16 

MeN    H2-6, H2-5 

MeCH2N MeCH2N MeCH2N MeCH2N  

MeCH(OH)-
C(5) 

  MeCH(OH)-C(5)  
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Table 5.11.4. 2D 1H NOE (NOESY) data obtained for phyllostictines A-D (54-57) 

54 55 56 57 
Considered Effects Considered Effects Considered Effects Considered Effects 
H-15 H2-14, H-11, MeO, Me-

C(5) 
H-13 H2-12, H-9, MeO, OH, 

OH, H-7, Me-C(5) 
H-14 H2-13, H-10, MeO, 

OH, OH, 
MeCH(OH)-C(5)  

H-16 H2-15, H-12,  MeO, OH, 
OH, H2-5, Me-C(7) 

H-11 H-15, MeO, H2-10, H-
9’  

H-9 H-13, MeO, OH, H2-8, 
H2-7 

H-10 H-14, MeO, H2-9, 
H2-8 

H-12 H-16, MeO, H2-5, OH,  
H2-11, H2-10,  Me-C(7) 

MeO H-15, H2-14, H-11, OH, 
OH, Me-C(5) 

MeO H2-12, H-13, H-9, OH, 
H2-8, H-7 

MeO H-14,  H2-13, H-10, 
OH 

MeO H2-15, H-16, H-12, H-10, 
Me-C(7) 

    MeCH(OH)-
C(5) 

MeCH2N H2-5 MeN 



 

 
 

299

 

 

 

 

 

Table 5.11.5 1H and 13C NMR data of Phyllostoxin (62)a,b 

C δc 1H J, Hz HMBC 

1 115.8 (s)   6.15 

2 161.0 (s)   2.00, 2.36 

3 130.0 (s)    

4 124.0 (d) 6.15 (d) 9.9 2.36 

5 138.0 (d) 7.88 (d) 9.9  

6 121.1 (s)    

7 53.6 (s)   6.15, 2.11, 1.95, 1.42, 0.66 

8 170.0 (s)   7.88, 2.11, 1.42 

9 175.0 (s)   2.00 

10 10.6 (q) 2.00 (s)   

11 17.8 (q) 2.36 (s)   

12 201.0 (s)   7.88, 2.11, 1.95, 1.42 

13 33.0 (t) 2.11 (dq) 

1.95 (dq) 

14.8, 7.5 

14.8, 7.5 

1.42, 0.66 

14 9.6 (q) 0.66 (t) 7.5 2.11, 1.95 

15 24.0 (q) 1.42 (s)   
 aThe chemical shifts are in δ values (ppm) from TMS.  b2D 1H, 1H (COSY, TOCSY) 
13C, 1H  (HSQC) NMR     experiments delineated the correlations of all protons and the 
corresponding carbons.  
cMultiplicities determined by DEPT spectrum 

 
 
 
 
 
 
 
 
 



 

 
 

300

 
 
 
 
 
 

 

 

Table 5.11.6. 1H and 13C NMR data of Phyllostin (63)a,b 

C δc 1H J, Hz HMBC 

2 169.0 (s)   4.41, 1.58 

3 73.1 (d) 4.41 (q) 7.0 3.76, 1.58 

4a 70.3 (d) 3.76 (ddd) 9.9, 8,6, 6.1 4.41, 2.99, 2.40 

5 29.8 (t) 2.99 (dd) 

2.40 (ddd) 

17.5, 6.1 

17.5, 9.9, 3.3 

6.75, 4.34, 3.76 

6 132.0 (s)   3.76, 4.54, 2.99, 2.40 

7 137.0 (d) 6.75 (br s) 7.4 4.54, 2.99, 2.40 

8 70.2 (d) 4.54 (br d) 8.4 4.34 

8a 84.3 (d) 4.34 (dd) 8.6, 8.4 6.75, 4.54, 3.76, 2.99 

9 17.9 (q) 1.58 (d) 7.0 4.41 

10 167.0 (s)   6.75, 3.76, 2.99, 

11 52.4 (q) 3.78 (s)   

OH  2.63 (br s)   
aThe chemical shifts are in δ values (ppm) from TMS.  b2D 1H, 1H (COSY, TOCSY) 
13C, 1H  (HSQC) NMR experiments delineated the correlations of all protons and the 
corresponding carbons.cMultiplicities determined by DEPT spectrum. 
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Table 5.11.7. 2D 1H NOE (NOESY) data Obtained for Phyllostoxin and Phyllostin (62 and 63) 

 62                                  63 

Considered Effects  Considered Effects 

7.88 (H-5) 6.15 (H-4)  6.75 (H-7) 4.54 (H-8) 

6.15 (H-4) 7.88 (H-5)  4.54 (H-8), 6.75 (H-7), 3.76 (H-4a) 

2.36 (Me-11) 2.00 (Me-10)   4.41 (H-3) 3.76 (H-4a), 1.58 (Me-9) 

2.11 (H-13) 1.95 (H-13’), 1.42 (Me-15), 0.66 (Me-14)  4.34 (H-8a) 2.40 (H-5’) 

1.95 (H-13’) 2.11 (H-13), 1.42 (Me-15), 0.66 (Me-14)  3.78 (Me-11)  2.40 (H-5’) 

1.42 (Me-15) 2.11 (H-13), 1.95 (H-13’)  3.76 (H-4a) 4.54 (H-8), 4.41 (H--3), 2.99 (H-5) 

0.66 (Me-14) 2.11 (H-13), 1.95 (H-13’)  2.99 (H-5) 3.76 (H-4a), 2.40 (H-5’)  

   2.40 (H-5’) 3.78 (Me-11), 4.34 (H-8a), 2.99 (H-5) 
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Table 5.11.7. Effect of phyllostictines A-D  in the puncture assay  on thistle leaves 

Phyllostictine Toxicity (20 µl/droplet) 

A ++++ a 

B +++ 

C - 

D +++ 
 

aToxicity determined using the following scale: - = no toxic; +++ =  necrosis 3-5  
mm; 
 ++++ = wider necrosis 
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