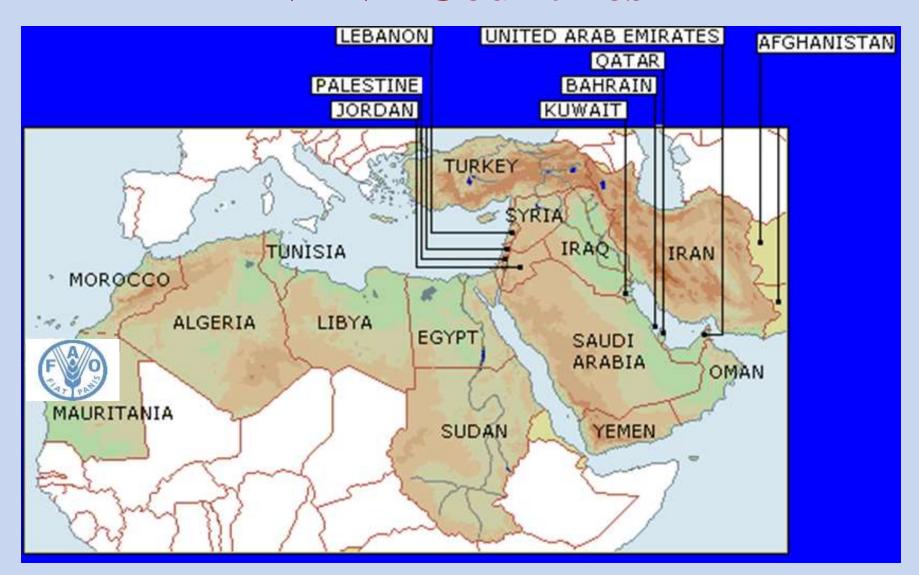
Climate Change Impact on Plant Pests and Diseases and

on Weeds

Prof. Bouzid NASRAOUI

منظمة وقاية النباتات للشرق الأدناء Near East Plant Protection Organization


DG / National Research Agronomic Institute of Tunisia (INRAT)
University of Carthage, Tunis, Tunisia

- Consultation Workshop on the NERC 34th Document - (Rabat, Morocco, 5-6 February 2018)

[Copyright©]

NENA Countries

Climate Change Components

3 Components:

Temperature: Globally increasing

Moisture: Changing, depending on the area

CO₂: Increasing in the atmosphere

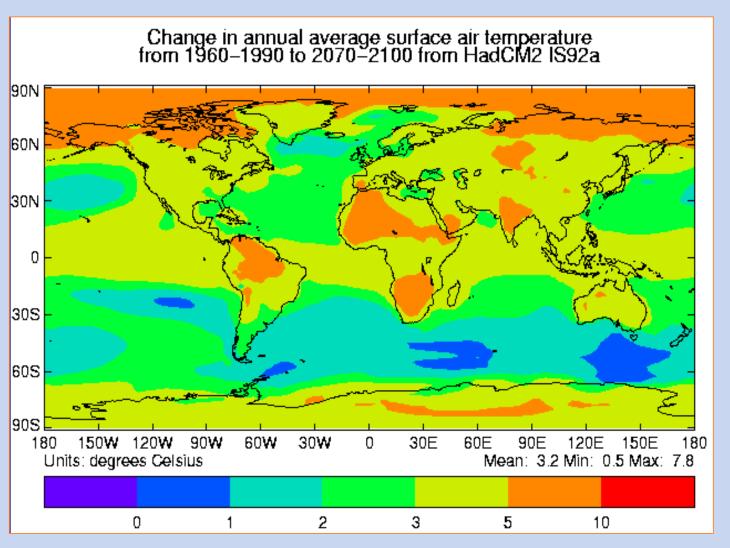
Climate change not uniform in the world

Some areas — Hotter and dryer

Other areas — Wetter

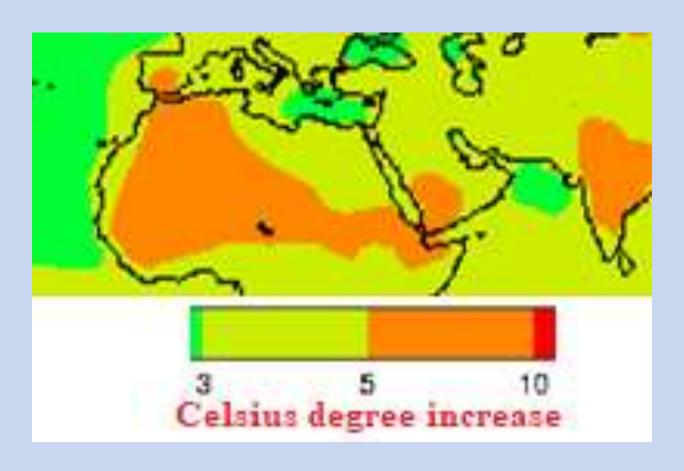
Climate Change Components

Extreme climatic phenomena:

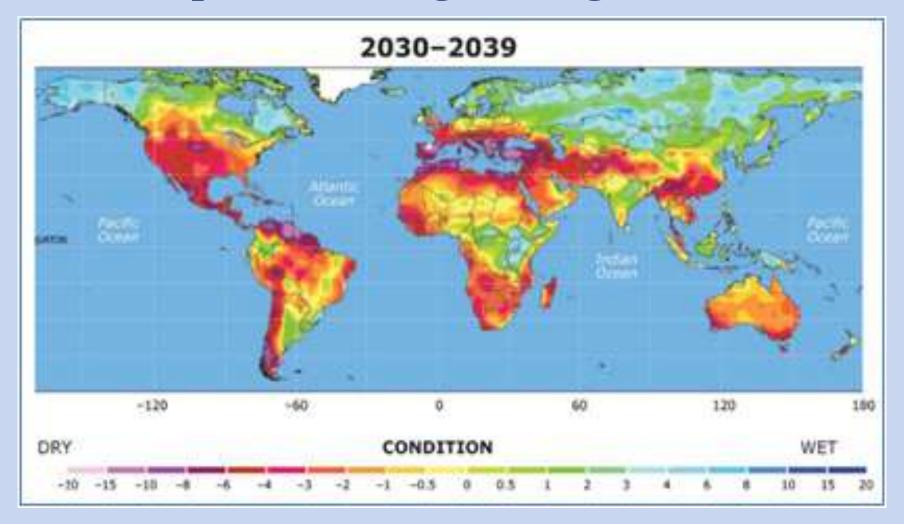

Very high temperatures, Unusual flooding,,

Would be more and more frequent

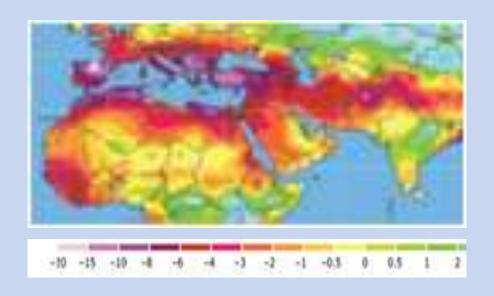
Climate change: Crucial impacts on plant pathogens and pests and on weeds


Temperature change in the world:

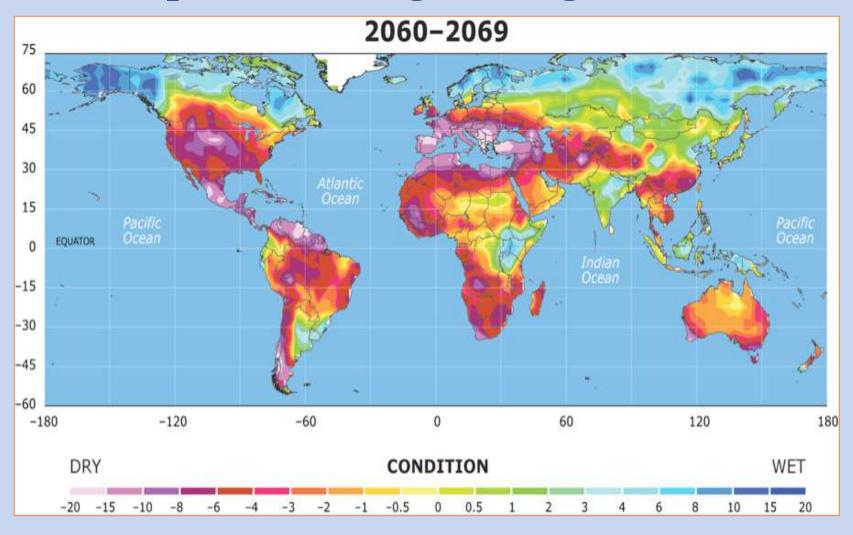
From 1960/1990 to 2070/2100


Temperature increase in NENA Region:

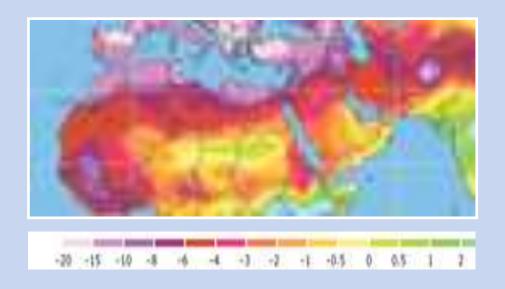
From 1960/1990 to 2070/2100


Moisture change in the world:

Precipitation change during the 2030's


Moisture change in NENA Region:

Precipitation change during the 2030's


Moisture change in the world:

Precipitation change during the 2060's

Moisture change in NENA Region:

Precipitation change during the 2060's

Climate Change Impact

Plant Pathogens

Climate Change Impact

Three factors needed for a disease development:

- (1) Pathogen in contact with (2) host Plant, and
- (3) Environment favorable.

Environmental change, affects disease severity in:

- Plant: resistance, growth, development,...
- Pathogen: multiplication, virulence, dispersal,...

Climate change: affects occurrence and epidemic evolution of plant diseases

Usually, pathogens develop best on plants in moderate temperatures (often 10-30 °C)

Global warming: low temperature areas \rightarrow temperatures increase \rightarrow areas harbor more pathogens under suitable temperatures, and plants might be less resistant

- Potato late blight (*Phytophthora infestans*): develops well between 7 and 27 °C → earlier seasonal temperature increase (global warming) → earlier pathogen attacks → more severe epidemics → more fungicide treatments.
- Cereal Fusarium diseases (Fusarium spp.):
 Favored in drought stressed plants → with temperature increase → more severe attacks

- Cereal stem rust ($Puccinia\ graminis$): adapted to relatively high temperatures \rightarrow develops in new areas where temperatures would turn from medium to slightly higher.
- Cereal leaf rust ($Puccinia\ recondita$): epidemic late season \rightarrow develop earlier due to earlier increase of temperatures during the season.

- Cereal yellow rust (Puccinia striiformis): already heat-tolerant races exist \rightarrow disease spreading more as epidemics (already adapted to global warming).
- Barley yellow dwarf virus: More drought \rightarrow increase the spread aphids (virus vectors) \rightarrow more epidemic disease.

Climate Change Impact: Changing Moisture / Pathogens

Examples:

- With frequent and extreme precipitations \rightarrow moisture increases greatly \rightarrow more favorable to many diseases: Beet tumor (*Urophlyctis leproides*), Apple scab (*Venturia inaequalis*), Potato late blight (*Phytophthora infestans*),...

Climate Change Impact: Changing Moisture / Pathogens

- With lower precipitations → moisture decreases → more favorable to other diseases:
 Powdery mildew (*Erysiphe* spp.).
- More precipitations → plant sizes bigger → more shade, less sunrays → higher moisture: favorable to many diseases.

Climate Change Impact: Increasing CO₂ / Pathogens

- Industrial activities \rightarrow releasing more and more CO_2 in the atmosphere \rightarrow higher CO_2 level intensifies plant growth \rightarrow bigger canopies \rightarrow higher moisture favorable to the majority of pathogens.
- Higher CO_2 levels induce intense sporulation of many fungal pathogens \rightarrow higher spore dissemination and survival \rightarrow more diseases.

Climate Change Impact: Increasing CO₂ / Pathogens

- Higher CO_2 level \rightarrow slow down crop residue decomposition \rightarrow better conditions to overwintering pathogens \rightarrow diseases start with higher levels of inoculum \rightarrow earlier and faster disease epidemics.

Climate Change Impact

Plant Insect Pests

Climate Change Impact

Climate Change influences insects: survival, development, geographic habitat, population size,...

Since insects are cold-blooded organisms

Temperature has the major effect on these pests, (compared to Moisture and CO₂)

- Rising temperature \rightarrow accelerate insect development \rightarrow more generations/year.
- Warmer winter temperature \rightarrow lower winter insect mortality \rightarrow increase their populations.

- Insects colonize cold areas + high altitudes more than before

Insect natural enemies/rising temperature \rightarrow insect develops/passes rapidly through the vulnerable life stages before parasitoid emergence \rightarrow parasitism reduced

Window of parasitism opportunity: closed or very reduced

- Potato beetle (*Leptinotarsa decemlineata*), would extend with rising temperature.
- Pea leaf miner (*Liriomyza huidobrensis*), would extend in warmer winter areas.
- Corn moth (Ostrinia nubilalis), would be able to produce additional generations.

- Cabbage worm (*Pieris brassicae*), would increase in diversity, range and abundance with rising temperature.
- Gypsy moth (*Lymantria dispar*), would increase in outbreaks in future warmer areas.
- Pine processionary (*Thaumetopoea pityocampa*), would enhance its overwintering in warmer climate.

- Rising temperature \rightarrow not allow farmers to grow anymore some crop species \rightarrow closely specific insects decrease in populations.
- Insect populations reduced \rightarrow become insufficient for their natural enemies (pathogens, parasitoids, predators) \rightarrow that endangers useful living organisms.

Climate Change Impact: Changing Moisture / Insects

- Some insects largely extend in areas becoming very rainy, others are sensitive to heavy rain removing or killing them.
- Populations of rain-preferred insects would be reduced in areas becoming dryer, leaving space to new insect populations more adapted to drought.

Climate Change Impact: Increasing CO₂ / Insects

Experiment:

Soybean grown under higher CO_2 atmospheric concentration \rightarrow more damaged by a range of its insects: probably more simple sugars in leaves stimulates more pest feeding.

Climate Change Impact

Invasive Weeds

Climate Change Impact: Invasive Weeds

- Rising temperature \rightarrow enhances invasive weed expansion into higher altitude and latitude.

- More rainfall and moisture \rightarrow fevores invasive weed development.

Climate Change Impact: Invasive Weeds

- Higher CO_2 level \rightarrow stimulates invasive weed photosynthesis.

- Any factor that increases the environmental stress on crops \rightarrow makes them less competitive against weeds.

Climate Change Impact: Bioaggressor Management

- More crop bioaggressors \rightarrow need more pesticide treatments \rightarrow more resistance risk + more environment pollution.
- Slower decomposition of crop residues \rightarrow increase pathogen inoculums and pest populations \rightarrow harder management.

(Bioaggressors: Pathogens + Insect pests + Weeds)

Climate Change Impact: Bioaggressor Management

Exclusion and quarantine regulation of bioaggressors \rightarrow become more difficult for authorities because they appear and evolve more frequently on more crops.

(Bioaggressors: Pathogens + Insect pests + Weeds)

Thank You

