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Review of Geometric Uncertainty
Quantification in Gas Turbines
Due to the manufacturing error and in-service degradation of gas turbines, there is
always a deviation between the actual geometry and the design geometry. This geometric
deviation has a prominent uncertainty characteristic, resulting in a dispersion of the gas
turbine performance and thereby reducing the manufacturing qualification rate and serv-
ice life. As the performance and reliability requirements of gas turbines increase continu-
ally, more and more attention has been paid to the quantitative study of the effect of the
geometric uncertainty on performance. In this paper, the main sources and features of
gas turbine geometric uncertainty are reviewed first. Then, the basic principles, charac-
teristics, and application in gas turbines of different uncertainty quantification (UQ)
methods are reviewed. Finally, the progress, challenges, and prospects for correlational
research are summarized in the conclusion. [DOI: 10.1115/1.4047179]
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1 Introduction

1.1 Background. Gas turbines are widely used in aviation,
power stations, military applications, and other fields. As the core
components in gas turbines energy conversion process, turboma-
chinery components such as the fan, compressor, and turbine are
directly related to the performance and service life of the entire
device.

However, due to the manufacturing error and in-service degra-
dation, there are various unavoidable geometric deviations from
the design geometry in the fan, compressor, and turbine. During
the manufacturing process, factors that may cause the geometric
deviation include the inherent geometric errors of the processing
system, mechanical deformation/thermal deformation of the proc-
essing system, internal strains of the workpiece, and assembly
errors of the workpiece. On the other hand, during the operation
process, factors such as corrosion, erosion, oxidation, and fouling
will lead to geometric deviations. This geometric deviation has a
prominent uncertainty characteristic, resulting in a dispersion of
the gas turbine performance and thereby reducing the manufactur-
ing qualification rate and service life. In recent years, with the
increase of the performance and reliability requirements of gas
turbines, the sensitivity of performance to the geometric uncer-
tainty increase continually and the requirement for geometric
accuracy is rising gradually. Therefore, more and more attention
has been paid to the quantitative study of the effect of the geomet-
ric uncertainty on performance.

Through the quantitative study of uncertainty, the distribution
characteristics of the gas turbine performance can be obtained,
and the performance qualification rate can be evaluated [1,2].
Moreover, the key geometric parameters with important impacts
on performance can be identified and the corresponding tolerances
can be optimized, which can lay the foundation for the improve-
ment to the design, manufacturing, and maintenance processes
[1,3]. Also, geometric robustness design optimization based on
the quantitative results can help improve the gas turbine perform-
ance and life and reduce the overall cost [2].

1.2 Uncertainty Quantification Methods. The deterministic
simulation method cannot take into consideration the influence of
uncertainty factors [4]. Therefore, uncertainty quantification (UQ)

methods have been developed rapidly as an effective way to deal
with various uncertainty problems [5]. A series of UQ methods
have been applied to the research of gas turbines, among which the
sampling-based method is the simplest in principle and direct to
implement through random simulation [6]. However, the sampling-
based method requires a large number of simulation calculations. In
this instance, surrogate-model-based methods and polynomial chaos
(PC) methods [7] have been developed as low-cost alternatives to
the original high-fidelity simulation model to predict gas turbine
performance. Also, the performance and geometric variables are
approximately linearly dependent under a small variation range [8].
Under this assumption, the sensitivity-based method can be adopted
to greatly save computing resources [9].

1.3 Review Aims. In recent years, significant research pro-
gress has been made in UQ methods applied to gas turbines. Sev-
eral methods with different advantages/disadvantages have been
developed to deal with UQ problems in different situations. How-
ever, there are still some challenges in this field. The purpose of
this paper is to summarize predominant geometric uncertainty var-
iables due to out-of-tolerance manufacturing and in-service deteri-
oration, and to review the state-of-the-art research progress and
challenges and to propose research prospects of UQ studies in the
gas turbine field. The objects of this review are focused on the
fan, compressor, and turbine. In the following part of this paper,
the main sources and features of gas turbine geometric uncertainty
are reviewed first. Then, the basic principles, characteristics, and
application in gas turbines of different uncertainty quantification
methods are reviewed, including sampling-based method,
sensitivity-based method, surrogate model-based method, and PC
method. Finally, the progress, challenges, and prospects for corre-
lational research are summarized in the conclusion and recom-
mendation sections.

2 Sources of Geometric Uncertainty in Gas Turbine

Geometric uncertainties in gas turbines mainly occur during the
manufacturing and in-service processes. As shown in Fig. 1,
almost every component of a gas turbine will be influenced by
geometric uncertainties. Moreover, the main characteristics and
effects of geometric uncertainties from different sources are dif-
ferent. The purpose of this section is to give a review of observa-
tions and documented cases about geometric uncertainties from
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both sources, identify the associated influencing factors, and sum-
marize effects on performance.

2.1 Manufacturing Geometric Uncertainty. Due to differ-
ent geometric and aerodynamic characteristics of the fan, com-
pressor, and turbine, the effects of geometric uncertainties are
diverse in different components. Therefore, the geometric uncer-
tainties are reviewed separately for different parts.

2.1.1 Fan. A fan is usually used in the turbofan engine as the
first compression component, and it is characterized by the large
volume, high flowrate, and low-pressure ratio [10]. A typical man-
ufacturing process of a fan blade can be found from Ref. [11].

The blade surface geometric data can be obtained by optical
scanning of a manufactured fan blade, based on which the geomet-
rical uncertainty model can be constructed. In this process, an
effective method is principal component analysis (PCA), which is
a widely used statistical dimensionality reduction technique. The
principle is to find a few uncorrelated principal components
(eigenmodes) to retain as much information as possible of the orig-
inal variables. Detailed mathematical derivation and application
methods are described in Refs. [2] and [12]. A typical PCA study
on the fan is executed by Schnell et al. [1], based on geometric
measured data of nine rotor blades of a counter-rotating turbofan.
The PCA results indicate that the first four eigenmodes can already
contain 99.1% of the cumulated geometric uncertainty (shown in
Fig. 2). In addition, the correspondences between each eigenmode
and dimensionless design parameters can be found in Ref. [1],
which indicates visible uncertainty of the leading-edge bluntness,
leading-edge radius, chord, and leading-edge metal angle. Based
on the PCA results, a geometric uncertainty model can be con-
structed and then used for UQ analysis (as shown in Sec. 4).

Also, to assess the overall influence, full-stage three-
dimensional (3D) computational fluid dynamics (CFD) simula-
tions are conducted for each of the nine blades at 100% speed.
The results indicate that the fluctuation interval of isentropic effi-
ciency is within Dgis ¼ 60:05% at most of the operating condi-
tions while the fluctuation at the near instability point increases to
60:1%. Therefore, it is indicated that a given geometric deviation
can produce different degrees of influence on performance in dif-
ferent working conditions. Moreover, the standard deviation of
the total pressure ratio is about Dpt ¼ 0:0008 at almost all operat-
ing points [1]. This indicates that the impact of fan blade manu-
facturing error on the performance can be relatively small under a
high manufacturing accuracy.

The implementation of PCA requires sufficient measured blade
geometric data. However, in many studies related to gas turbines,
high-resolution measurement data for new or used blades is not

available. In the absence of such data, heuristic information such
as expert opinions and experience can be adopted to describe geo-
metric uncertainty. Also, known statistical features can be used to
construct geometric uncertainty models of similar blades (e.g.,
blades manufactured by the same process) [2].

For manufacturing geometric uncertainty of fans, researches
based on heuristic information mainly focused on blade leading
edge, as the leading edge is considered to be the most influential
geometric factor in the transonic flow field in fans [1]. A thinner
leading-edge profile can reduce the shock loss near the leading
edge, especially in supersonic flow, which in turn reduces overall
losses [8]. By optimizing the leading edge, Giebmanns et al. [8]
increase the total pressure ratio and isentropic efficiency of a fan,
with the highest efficiency increasing by 0.5% relatively.

In addition, the seal leakage flow at the rear of a fan can also
impact performance. The experimental result from Zamboni et al.
[13] shows that the secondary flow in the core blade channel inter-
acts with fan seal leakage flow, bringing about high losses in the
hub area. For a fan with a bypass ratio of 7.7 and a stator behind
it, when there is a 1.5% leakage flowrate, the loss increases to
three times that of 0% leakage flow, and the flow capacity is
reduced by 6.5%.

In summary, the impact of manufacturing geometric uncer-
tainty on fan performance can be relatively small under a high
manufacturing accuracy. However, shorter fan axial distances
and more sensitive design of core engine also continue to enhance
the effects of manufacturing geometric uncertainty on fan
performance [4].

Fig. 1 Uncertainty due to in-service degradation and manufacturing errors in a turbofan [4]

Fig. 2 Shapes of the first 4 modes from PCA and defined non-
dimensional parameters to characterize each mode [1]
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2.1.2 Compressor. Different from the fan, the size of a com-
pressor is usually small, and thus, the relative geometric uncer-
tainty is larger under the same manufacturing precision, bringing
about a more considerable influence on the performance [4].
Moreover, a strong adverse pressure gradient further enlarges the
effect of geometric uncertainty. Therefore, the influence of the
geometric uncertainty on compressor performance has attracted
much attention. In addition, for aviation applications, as the
requirements for light-weighting increase, the size of the compres-
sor is continuously reduced, leading to higher requirements on
geometric accuracy.

The compressor geometric uncertainty model can be con-
structed by the PCA method [2], which is originally introduced by
Garzon [2] based on the surface measurement results of 150 com-
pressor rotor blades. PCA results indicate that the first six eigenm-
odes can contain 99% of the total scatter in the original
measurement data, and there is non-negligible maximum thick-
ness uncertainty, trailing edge angle uncertainty, leading-edge
radius uncertainty while there is no significant uncertainty of
chord length in the measured airfoils. The advantage of PCA is
that it can be used to analyze and describe any type of geometric
uncertainty. However, the principal components extracted do not
directly correspond one to one with the design parameters which
are more familiar to engineers. Therefore, Lange et al. [14] pro-
posed a new probabilistic model for compressor blades, which can
convert measured blade profile into uncertainty features of typical
blade profile parameters, such as chord length, stagger angle,
leading-edge thickness, and trailing edge thickness.

In addition to the researches based on geometric measurement
data, many studies directly focus on some critical geometric
parameters to explore the impact on compressor performance.
Marson [15] summarizes possible manufacturing uncertainties of
compressor blades, among which several parameters have
attracted much attention in existing researches, including leading-
edge shape, tip clearance, surface roughness, and some other
parameters, as described below.

Blade leading edge. The compressor blade leading edge has an
important effect on performance. In addition, due to the small value
of leading-edge radius, which can be only 0.2–0.5 mm in a typical
transonic or supersonic compressor [16,17], leading-edge uncer-
tainty may be very serious due to insufficient machining accuracy,
blade surface coating, or other processing errors. For example, a typ-
ical blade surface uniform coating with a thickness of 0.025 mm
[16] can increase the leading-edge radius by over 10%.

Studies have shown that the leading-edge shape change will
reduce aerodynamic efficiency mainly by increasing shock losses
[18], flow separation losses [19,20], or the wake/leading-edge inter-
action [17]. It is also worth reminding that the influence will be dif-
ferent under different conditions. For example, the relative total
pressure loss of a transonic compressor rotor increases more quickly
with the leading-edge radius under a higher Mach number [18]. In
addition, experimental research on the transonic Rotor 14 also
shows that the influences are more visible at higher speed: when the
leading-edge thickness near the blade tip is doubled, the highest effi-
ciency reduced by 3.5% at design speed while no apparent perform-
ance deterioration appears at lower speeds (90% and 70% design
speed) [20]. By quantifying the effect of the leading-edge shape on
the performance, the precision control of each manufacturing pro-
cess can be guided such as the coating process [16]. Also, the
leading-edge uncertainty will change the compressor operating
range [21]. According to the experience from isolated airfoils, the
blunt and smooth leading edge can provide a wider working range.
Herring et al. [22] obtain results consistent with the isolated airfoil
experience under lower speed and higher pitch conditions. However,
Carter’s experimental results under typical Mach number and pitch
conditions indicate that a smaller leading-edge radius will result in a
wider operating range, especially at high speeds [19].

In addition, it is worth noting that although the leading-edge
shape is important to compressor performance, the manufacturing

tolerance is difficult to be measured: the error of optical measure-
ment is usually about 15 lm and can reach more than 10% of the
leading-edge thickness [4].

Blade tip clearance. Blade tip clearance is another important
parameter [23] which has a great influence on compressor effi-
ciency, especially in the high pressure (HP) stages. Factors affect-
ing the tip clearance during manufacturing and assembly mainly
include: component thermal expansion; deformation under a load
of components; dimensional tolerance and position in the manu-
facturing process; buckling caused by uneven heating and loading;
component position changes caused by the fit clearance [24].

The increase in tip clearance can reduce compressor pressuriza-
tion capacity and efficiency. Based on a large number of experi-
mental data [25], it has been summarized that when the rotor tip
clearance is larger than 1% of the chord length, there is almost a
linear relationship: 1% of chord length increase in tip clearance
will lead to 4.6% losses of the peak pressure rises. As for effi-
ciency, research based on a single-stage axial compressor [26]
showed that when the rotor tip clearance is less than 0.8% span,
there is an optimum clearance to maximize efficiency. When the
rotor tip clearance is between 0.8% and 3.4% span, the relation-
ship between tip clearance and efficiency is almost linear, and
when tip clearance increases by 1% span, efficiency decreases
about 1%, which is mainly caused by the leakage flow mixing.
Finally, when the tip clearance is greater than 3.4% span, the sen-
sitivity of efficiency to tip clearance is reduced due to a weakened
mixing loss. Moreover, for multistage axial compressors, the tip
clearance uncertainty will also change the matching between dif-
ferent stages. As tip clearance increases, the front stage operating
point tends to be closer to the surge point while that of the rear
stage tends to be closer to the choke point, thus causing a wors-
ened matching resulting in higher efficiency losses [27].

Moreover, tip clearance also affects compressor operational sta-
bility. Vo [28] points out that there is a close relationship between
blade tip region flow and the rotating stall phenomenon that
occurs when the compressor internal flow is unstable. Baghdadi
[29] has collected a large amount of experimental data which indi-
cates that when the tip clearance is less than 1% of the chord
length, compressor stability is not sensitive to tip clearance. How-
ever, within the conventional tip clearance range (1.5–3% chord
length), the tip clearance and compressor surge margin are almost
linear, and when tip clearance increases by 1% chord length, surge
margin is reduced by about 8% relative to the maximum surge
margin.

Blade surface roughness. Blade surface roughness resulting
from the manufacturing process is also a signification parameter
in the compressor [30]. When the blade surface is rough, the blade
friction loss will increase, while when the surface roughness is
reduced to a certain extent, it will not affect compressor perform-
ance, which is considered to be aerodynamically smooth.
Research on a single-stage axial compressor [31] shows that com-
pared with the rough machined blade, both hand-filed and highly
polished blades can improve efficiency significantly while there is
almost no difference between hand-filed and highly polished
blades.

In addition, the effect of roughness varies with position and
condition. Experimental analysis [32] showed that the surface
roughness near the leading-edge and peak-suction regions is very
influential to performance, especially in the design condition or
conditions with less mass flowrate. According to measurements
by Bons [30], the loss difference between rough and smooth
blades of a HP compressor cascade will increase with Rec when
Rec is in the range of 3� 105 to 1� 106. Moreover, as the density
and hence Rec in the HP compressor is much higher than that in
the low pressure (LP) compressor, the influence of surface rough-
ness in the HP compressor is more noteworthy.

Other geometric parameters. Due to the limitation of structural
strength and processing technic, filets at compressor blade root,
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stator blade root, and tip are usually unavoidable. The filet will
affect flow separation [33], and it has been shown that the addition
of filet can suppress the original stall condition [34]. The filet
radius also has a small effect on the hub loss. In addition, the
geometry of the leading-edge filet was found to have no effect on
loss although there is usually visible manufacturing error in the
leading edge [35].

In addition, the increase of leakage flow through stator shroud
seals or rotor dovetails will also decrease compressor efficiency [36].

2.1.3 Turbine. In turbines, the geometric characteristics, man-
ufacturing process, and internal flow characteristics are very dif-
ferent from those of fans and compressors [10]. The internal flow
in a turbine is primarily a positive pressure gradient and compli-
cated cooling systems are usually adopted in turbine blades. In
turbines, manufacturing uncertainties may be the main cause of
the large variety of turbine life [37].

Researches on the manufacturing geometrical uncertainty of the
turbine are mainly categorized into two types: some researches
focus on the performance variation with blade shape uncertainty,
while many studies have focused on the effects of cooling system
geometry on performance and life.

Blade tip filet and tip clearance. Flow conditions in the turbine
blade tip clearance region have an important impact on overall
flow loss and blade tip heat loading. Figure 3 shows the influence
of blade tip filet radius r and tip clearance G on leakage mass
flowrate M and tip heat loading H, which is obtained by simula-
tion of a HP turbine [38]. It is indicated from Fig. 3 that when the
tip clearance is doubled (from 0.75% to 1.5% span), the leakage
flow will increase by 70%. Also, the leakage flow increases
rapidly with the filet radius. The increase in M will enhance leak-
age vortices and stage losses.

Blade surface roughness. The surface treatment process of a
blade may lead to excessive surface roughness, which causes per-
formance degradation [30]. Thermal barrier coatings can increase
surface roughness by 10 times and may lead to severe loss. Specif-
ically, the degree to which performance is affected varies with the
Reynolds number [39]. To reduce roughness and improve effi-
ciency, new coating technology or polishing [39] can be adopted.

Cooling hole shape. The cooling hole is very important for tur-
bine cooling efficiency and life. However, as the sizes of cooling
holes are usually very small, manufacturing uncertainties/defects
are apt to occur. Therefore, many studies have focused on the
manufacturing variations of cooling holes.

Laser drilling is a common method to produce film cooling
holes, which is a fast but rough process and can result in irregular
holes [40]. Defects in film cooling holes can be relatively large
and reach 25% of the hole diameter [41]. The influence of cooling
hole uncertainty varies under different velocity ratio [40]. In addi-
tion, under the same condition, the defect in the depth of the hole
has no visible effect while that near the leading edge or outlet of
the hole has a larger influence on cooling efficiency. What’s more,
Moeckel et al. [37] studied the effect of cooling hole diameter at

different locations. The results show that the diameter of the hole
on the pressure side and near the trailing edge has the greatest
influence on the blade section average temperature, which in turn
affects the creep failure rate.

Cooling hole surface roughness. With the development of addi-
tive manufacturing (AM) technology using metal powder, gas
turbine component manufacture by AM has achieved more and
more attention. However, the parts produced by the current metal
additive manufacturing technology have a large surface rough-
ness, which is especially difficult to be smoothed in small internal
passages.

Additive manufacturing for turbine blade will induce shape
uncertainties in the cooling hole (surface roughness and flow area
uncertainties, as shown in Fig. 4) [42]. When the hole diameter is
small, it is almost completely blocked, while when the hole diam-
eter is large, the relative roughness is reduced and the influence is
reduced. In addition, the impact varies with the build direction of
the cooling holes, as described in Ref. [42]. Further research
shows that reduction of flow area will lead to lower coolant flow-
rate, while the surface roughness will affect the overall cooling
efficiency significantly by influencing film cooling, in-hole con-
vection and internal convection [42]. To reduce the roughness,
different materials can be used in AM according to Ref. [43].

Summary of parameters. Bunker [44] systematically summa-
rizes the impact of manufacturing tolerances on turbine cooling
performance and presents a summary of the typical manufacturing
factors affecting turbine cooling, including the blade and cooling
system geometry. More details can be obtained in Ref. [44].

Furthermore, Bunker using a simplified airfoil cooling model to
evaluate the impact of several geometric parameters on the maxi-
mum turbine metal temperature in typical manufacturing toleran-
ces and the Pareto diagram obtained is shown in Fig. 5. As can be
seen from the figure, the film cooling geometry is the most signifi-
cant, in which the film hole diameter and the length-to-diameter
ratio L/D are the most influential coefficients whose manufactur-
ing tolerance may make the maximum turbine metal temperature
increase by 40 K. However, according to Ref. [44], 20 K increase
in metal temperature may reduce the blade life by nearly 33% in
severe conditions. According to Ref. [45], if the blade surface
metal temperature deviates from the predicted value by 25 K, the
blade life can be halved. This highlights the importance of consid-
ering the geometrical uncertainty in the overall life of turbines in
the design process.

2.2 In-Service Geometric Uncertainty. During the gas tur-
bine engine in-service period, due to corrosion, erosion, oxidation,
fouling, and other factors, geometric uncertainty and performance
deterioration will occur in compressors, fans, and turbines, which
may significantly increase fuel consumption and operating costs.
Performance deterioration phenomena of gas turbines are mainly
divided into the following three types [46]: (1) recoverable deteri-
oration: can be removed during gas turbine operation period; (2)
nonrecoverable deterioration: not removable during engine opera-
tion but recoverable during overhaul; (3) permanent deterioration:
residual degradation even after overhaul.

There are many studies on gas turbine component degradation
and overall performance decrease [47]. Analysis based on JT3D
and JT8D turbofan engine performance degradation data show
that 60–70% of the observed increase in engine fuel consumption
is caused by the deterioration of the fan and compressor, while
10–15% is due to turbine deterioration and the rest is related to
the engine seal and clearance [47]. Also, because of the difference
between the working medium constituent and the thermodynamic
state in fan, compressor, and turbine, the inducement of perform-
ance degradation and the impact are significantly different.

To quantify the in-service geometric uncertainty, the geometric
uncertainty model can be constructed based on measured blade
geometric data using a method such as the PCA. However, in

Fig. 3 Leakage mass flow and heat loading under different
geometric parameters [38]
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many studies, blade measured data are not available. In order to
construct the geometric uncertainty models in such conditions,
influential uncertainty variables with their corresponding statisti-
cal behavior can be determined based on available literature or
experience [48,49]. Therefore, the primary geometry uncertainty
variables resulting from different causes during operation are
reviewed as follows.

2.2.1 Fan. When operating in a dusty environment, the fan
blades are subject to aggressive particles, resulting in blade
erosion and unrecoverable degradation in performance. Erosion of
a fan can result in increased engine fuel consumption and reduced
efficiency, mass flowrate, power, and surge margin [50].

The erosion pattern of the fan blade can be simulated by parti-
cle trajectory prediction [51], based on which the performance
degradation and life prediction model of the fan under erosion
conditions can be obtained [52]. Researches have indicated that
the decrease in fan performance under erosion is mainly due to
changes in blade leading/trailing edge shapes, reduction in chord
length, increase in tip clearance, and surface roughness [52].

To improve the blade’s resistance to erosion, the coating pro-
cess can be applied based on a clear erosion pattern. Moreover,
the degradation of eroded blade performance due to the leading-
edge deviation and reduced chord length can be recovered by
blade airfoil remodeling during overhaul [53]. On the other hand,
the effect of the tip clearance variation due to erosion on the per-
formance is also very significant. However, the standard repair

process corresponding to an increased clearance does not have
any performance optimization potential.

2.2.2 Compressor. Over the past few decades, compressor in-
service deformation effect on performance has been a major con-
cern in a lot of studies. A study by Roberts [53] pointed out that
compressor blade degradation may result in an increase in the
thrust specific fuel consumption by 3% or more. In fact, a 0.5–1%
fuel change could mean the difference between an aircraft opera-
tor’s profit and loss [53].

The causes of compressor in-service degradation mainly
include fouling, erosion, corrosion, and wear. Among them, foul-
ing is a major form of recoverable degradation, while erosion,
corrosion, and wear can cause unrecoverable degradation of the
compressor [46].

Fouling. Fouling is a serious degradation phenomenon of com-
pressors and a major form of recoverable degradation [46]. Com-
pressor blade fouling can occur when there are factors such as
airborne salts, industrial pollution, gas turbine exhaust, mineral
precipitation, and so on. The blade fouling pattern can be obtained
by experimental or analytical approaches [50]. Fouling can result
in blade aerodynamic profile deterioration and hence loss of
compressor flow capacity and efficiency, which in turn leads to
rematching of the whole engine and reduced output power and
thermal efficiency [54]. Moreover, compressor operating stability
will also be affected: since fouling reduces the mass flowrate and
increase the pressure ratio of the first stage of the compressor,

Fig. 4 Scan shape of cooling hole cross section by AM [42]

Fig. 5 Pareto chart of blade metal temperature deviation with manufacturing factors [44]
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affecting the performance of the latter stages and reduces the flow
coefficient of the second stage. This effect will continue for sev-
eral stages until the surge is induced from the latter stages [55].

Erosion. Erosion means that the blade material is removed by
hard particles such as gravel and dust. Erosion is not a major prob-
lem for industrial gas turbines due to the presence of air filtration
systems, while in aircraft engines is serious because it is easy to
inhale gravel, dust, water in the puddles, and so on when flying at
low altitudes, taking off, and landing. Erosion can account for
45% of the total performance degradation of modern turbofan
engines [46]. The blade fouling pattern can be obtained by experi-
mental or analytical approaches [50]. The decrease in perform-
ance is mainly due to the leading-edge bluntness increase, trailing
edge sharpening, chord length decrease, surface roughness
increase, and tip clearance increase. In addition, significant loss of
tip solidity may cause a compressor surge [50].

Corrosion. The deposits on compressor blades usually contain
sodium chloride and potassium chloride, which can form an
aggressive acid by combining with water and cause blade pitting
corrosion [46].

Compressor pitting corrosion can significantly increase blade sur-
face roughness [56] and enhance the turbulent flow in compressor
[57], thereby reducing the compressor aerodynamic performance
[58] or even leading to compressor stall in extreme cases [59].

Wear. Wear is a serious problem in the early operation periods
of engines. It may be caused by thermal growth and centrifugal
growth. Wear can lead to an increase in the clearances including
tip clearance and sealing clearance, which is an irrecoverable
deterioration. Tip clearance increase is a crucial reason for com-
pressor efficiency decrease, which in turn leads to a decrease in
engine power and efficiency. In addition, blade tip stall may also
be caused by tip clearance increase. An increase in the seal clear-
ance will cause a flow recirculation effect, which produces a simi-
lar effect to that of the tip clearance.

For compressor in-service degradation problems, protective
coatings can be applied, such as corrosion-resistant coating, anti-
oxidation coating, and fouling resistant coatings [60]. However, it
is worth noting that the coating application process itself can
introduce geometric and performance uncertainty as well, more
details can be seen in Sec. 2.1.2.

2.2.3 Turbine. Different from fan and compressor, the turbine
is a hot end component and the temperature of the internal work-
ing fluid is very high. Therefore, the turbine in-service degrada-
tion phenomena not only include fouling, erosion, and corrosion,
but also include specific problems in hot end components such as
high-temperature oxidation, sulfurization, and hot corrosion.

Fouling. Although fouling is mainly present in cold-end compo-
nents, it may also occur in the turbine. Pollutants that cause the tur-
bine fouling can enter the gas turbine through influent air, liquid
fuel, fuel additives, or NOx controlled injection fluid. Within the
turbine, some ash, metals, and unburned hydrocarbons with a low
melting point are deposited due to a drop in static temperature.
Fouling will increase blade surface roughness, and thus result in
the changes of boundary layer transition and increased losses. In
addition, the thermal load of the turbine blade will be further
increased and the blade metal wall temperature and life will be
affected, which in turn will result in reduced overall engine effi-
ciency [61], increased fuel consumption and increased exhaust gas
temperature [62]. In addition, fouling on the turbine guide vanes
may change the throat area, affecting the compressor-turbine
match and causing the matching points to deviate from the design
point, and thus results in performance degradation. Furthermore,
the blade and disk cooling system can also be affected by fouling,
resulting in reduced component life or even component failure.

Erosion. Erosions in the turbine involve particle erosion and hot
gas erosion. Solid particles are inevitably ingested during gas turbine

operation [63]. The erosion caused by particulate matters will affect
the aerodynamic performance and cooling performance of the tur-
bine by changing the blade surface roughness, the turbine vane
throat area, and the cooling hole flow area. On the other hand, hot
gas erosion usually appears when there is intermittent cooling insuf-
ficiency or when the blade coating is broken, and it will influence
turbine performance by affecting surface roughness [46].

High-temperature oxidation, sulfuration, and hot corrosion.
When the surface temperature of the nickel-based super-alloy is
reached to 538 �C, the alloy will react with the oxidation and
high-temperature oxidation will occur. The oxide layer will tend
to be broken when the engine starts, stops, or vibrates. This phe-
nomenon will affect the blade surface roughness or the cooling
hole flow area [46].

In addition, there may be sulfide coming from fuel combustion
flow into the turbine, react with the blade surface protective layer
and produce highly corrosive Na2SO4 slag, which is a sulfuration
phenomenon. At high temperatures, the protective layer under the
slag will be destroyed. Especially, when there appears sulfuration
in the blade end-wall region or leading/trailing regions, there
might be significant influence [46].

Hot end components are usually faced with combined oxidation
and sulfuration problems, which is known as hot corrosion [46].
Turbine hot corrosion can be divided into two categories: among
825–950 �C, the blade base metal may be removed, while in
700–800 �C a layered corrosion scale appears [64].

High-temperature creep. Due to the high temperature in the tur-
bine, the first-stage guide vane is susceptible to creep deformation,
which in turn causes a change in the throat area. In most cases, the
area will increase. The uncertainty in the throat area will change
the compressor-turbine match and the operating line, as shown in
Fig. 6, and thus, the aerodynamic performance or operating stabil-
ity will be affected [46].

2.3 Summary of Geometric Uncertainty Influencing Fac-
tors. The main sources of geometric uncertainty variables that
affect the performance vary significantly in different components
due to the differences in their geometric and operating environ-
mental characteristics. Montomoli et al. [4] summarize the influ-
ence of geometric uncertainties from different sources
(manufacturing, in-service, and unknown sources) on several per-
formance parameters (efficiency, stability, work, and life) in dif-
ferent components of a turbofan, as in Fig. 1.

Based on the review of Fig. 1, Secs. 2.1 and 2.2, the predomi-
nant geometric uncertainty factors of each component can be sum-
marized as follows:

Fig. 6 Effect of turbine guide vane throat area on the operating
line of gas turbine [46,65]
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2.3.1 Fan. The performance of a fan is mainly affected by the
in-service uncertainty and is also affected by the manufacturing
uncertainty. In-service geometric degradation factors mainly
include leading/trailing edge shapes change, chord length reduc-
tion, tip clearance increase and surface roughness increase caused
by particle intake erosion. These factors may lead to a decrease in
fan efficiency and flowrate, thus resulting in a decrease in overall
engine efficiency and work. As for manufacturing uncertainty, the
leading-edge shape change or seal leakage increase may lead to
significant performance reduction.

2.3.2 Compressor. The performance of the LP compressor is
affected by both manufacturing and in-service uncertainty, while
the performance of the HP compressor is mainly affected by the
manufacturing uncertainty due to its small size.

On the one hand, as for manufacturing uncertainty, blade
leading-edge shape change, tip/seal clearance increase, surface
roughness increase, filet radius change are the predominant factors
and may lead to a reduction of the engine efficiency, stability, and
work. As for in-service uncertainty, the performance deterioration
is mainly due to nozzle area decrease, leading-edge bluntness
increase, trailing edge sharpening, chord length decrease, surface
roughness increase, and tip/seal clearance increase.

2.3.3 Turbine. The HP turbine performance is mainly affected
by manufacturing uncertainty and also affected by the in-service
uncertainty, while the LP turbine performance is virtually affected
by neither manufacturing nor in-service uncertainties according to
Fig. 1.

On the one hand, as for manufacturing uncertainty, the increase
of blade tip clearance or surface roughness may reduce the aero-
dynamic efficiency, thereby reducing overall engine efficiency
and work. Also, the manufacturing uncertainty of cooling systems
such as the increase of film hole diameter and the increase of cool-
ing hole surface roughness may lead to serious cooling perform-
ance deterioration and hence service life reduction. On the other
hand, as for in-service uncertainty, factors that cause performance
deterioration mainly include the increase of blade surface rough-
ness, the change of turbine vane throat area, and the decrease of
cooling hole flow area.

3 Geometric Uncertainty Quantification Method

As the deterministic simulation method cannot take into consid-
eration the influence of geometric uncertainty factors [4], a large
number of researches have been conducted to develop different
UQ methods to quantify this influence [5]. The purpose of this
section is to give an overview of the UQ process and introduce the
principles of different UQ methods adopted in the gas turbine
field.

3.1 Uncertainty Quantification Process. The typical UQ
analysis schematic is presented in Fig. 7. The first step is uncer-
tainty definition, which means to determine the distribution of the
uncertainty input variable X, which can be obtained through
experiments [66] or expert opinions and is usually expressed by
the probability density function (PDF). The next step is uncer-
tainty propagation, which means to determine the distribution of
response variable Y, based on the distribution of X, and the model
defining the quantitative relation between X and Y. Finally, the
uncertainty certification is conducted to evaluate the confidence

coefficient of the quantification results by comparing the distribu-
tion of Y obtained from UQ simulation and that from experiments.
Then, a series of uncertainty analyses, such as reliability evalua-
tion, can be carried out based on the quantification results [4].

The UQ methods applied to gas turbines mainly include the
sampling-based method, sensitivity-based method, surrogate
model-based method, and PC method, which will be reviewed
separately below.

3.2 Principle of Uncertainty Quantification Methods

3.2.1 Sampling-Based Method. The sampling-based method
quantifies the influence of uncertainty by conducting stochastic
simulation and is the most straightforward UQ method. The
Monte Carlo (MC) method is one of the most extensively applied
sampling-based methods due to the simple principle [6].

The basic idea of MC method is [6]: a pseudo-random sampling
of independent random variables vector n is conducted to build a
set of samples of input stochastic variables fX1; X2;…; XNg,
wherein X is the independent random variable vector and
X � XðnÞ, N is the number of samples. Each sample corresponds
to a unique solution Yi � Y ni

� �
; i ¼ 1; 2;…, which can be deter-

mined by the system model MðY; XÞ ¼ 0. The collection
fY1;Y2;…YNg is called a collection of sample solutions, based
on which the statistical characteristics of Y can be estimated. For
example, the mathematical expectation Ŷ and variance r2

Y can be
evaluated according to the following formula:

Ŷ ¼ lim
N!1

1

N

XN

i¼1

Yi@i (3.1)

r̂Y
2 ¼ 1

N � 1

XN

i¼1

ðYi � ŶÞ2 (3.2)

where @i is the relative weight of the sample i, and
PN
i¼1

@i ¼ N (for
unbiased sampling, @i � 1).

The MC method is not only simple but also very robust [67], as
it does not require any assumptions or conditions about the var-
iance of the input variables, the regularity of YðnÞ or the form of
the model. However, the MC method requires a high-fidelity
model which might be expensive to solve in complicated prob-
lems. In addition, the samples are not spatially filled essentially
[68], which results in a slow convergence rate OðrYN�1=2Þ [6]. In
response, some improved methods have been developed, such as
the quasi-Monte Carlo (QMC) method which can converge faster
at a rate of OðlnNd=NÞ [6] (as shown in Fig. 8).

3.2.2 Sensitivity-Based Method. The sensitivity-based meth-
ods describe uncertainty propagation by using the derivative of
the objective function, i.e., the sensitivity derivative. The basic
idea of this method is: first, the sensitivity derivative is obtained
by difference methods or solving input–output correlation

Fig. 7 UQ analysis schematic
Fig. 8 Pseudo-random sample set of the MC and QMC meth-
ods on a unit square (N 5 128) [6]
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equations. Second, the approximate function between Y and X is
constructed based on the sensitivity derivative, or the random
space dimension reduction is performed, and then the UQ analysis
can be carried out.

Sensitivity derivatives can be calculated by the finite difference
method, tangent linear method, or adjoint method [69], among
which the adjoint method is the primary focus in researches due to
the high efficiency and high precision of sensitivity calculation
[70]. Its basic principle is: first, the flow control differential equa-
tion is adopted as a constraint, and then the adjoint operator is
used to introduce the variation of the flow equation into the varia-
tion of the response variable Y. By eliminating the influence of the
flow field variation on the variation of the response variable Y, the
adjoint equation and the corresponding sensitivity can be deter-
mined. Define the response variable Y

Y ¼ Yðx;XÞ (3.3)

where x is the flow field variable, and X is the geometric variable.
Variation of the Y is

dY ¼ @Y

@x
dxþ @Y

@X
dX (3.4)

The flow control equations R meet the condition:

R x;Xð Þ ¼ 0 (3.5)

Its variation is

dR ¼ @R

@x
dxþ @R

@X
dX ¼ 0 (3.6)

Introducing adjoint operator W and combing the Eqs. (3.4) and
(3.6), there is

dY ¼ @Y

@x
�WT @R

@x

� �
dxþ @Y

@X
�WT @R

@X

� �
dX (3.7)

If the first-term coefficient in the right end of Eq. (3.7) is zero, the
influence of the flow field variation on the variation of the objec-
tive function can be eliminated, thereby determining the adjoint
equation and sensitivity G, as shown in the following equations,
respectively

@Y

@x
�WT @R

@x
¼ 0 (3.8)

G ¼ dY

dX
¼ @Y

@X
�WT @R

@X
(3.9)

It can be known from Eq. (3.9) that after determining the flow
field and the adjoint field, it is only necessary to disturb the geo-
metric boundary variable and realize the grid variation for the cal-
culation of the sensitivity. Therefore, for each response variable
Y, all the sensitivity information can be determined by solving the
flow control equation and adjoint equation only once. So, it is
very effective as the sensitivity calculation time is independent of
the random spade dimension d.

After obtaining the sensitivity derivative, the perturbation
method can be used to construct an approximate correlation
between X and Y using a first or second-order truncated Taylor
series. The probability distribution of Y is approximated by the
probability distribution of its low-order approximation and can
be calculated directly based on the probability distribution of
X [71]. This method is simple and effective and can significantly
reduce the computational resources required [69]. However, its
main disadvantage is the limitations in nonlinear correlation
capture, i.e., the method is usually only applicable to small
input variable biases because only in such conditions the

response variables can be considered to vary linearly with input
variables [8].

Moreover, the sensitivity derivative can also be used to identify
uncertainty variables with a significant impact on performance
and reduce the dimension d of the random uncertainty space.
Then, other UQ methods such as MC can be used to implement
more accurate UQ analysis considering only the critical variables
[72]. This method is the most suitable when the dimension d is
large and the magnitudes of the uncertainty influence are only
large for a small number of random parameters.

3.2.3 Surrogate Model-Based Method. To reduce the compu-
tational cost while maintaining the accuracy, the surrogate model-
based methods have been developed as a low computational cost
alternative to the original high-fidelity model for the sampling-
based method [68]. The basic idea of the surrogate model-based
method is: by analyzing the initial sampling set, to construct an
approximate surrogate model Ŷ ¼ f̂ ðX; CÞ � f ðXÞ, which is eas-
ier to compute than the original high-fidelity model Y ¼ f ðXÞ. In
the equation, C is the undetermined coefficient vector to be esti-
mated from the initial sample set.

The techniques for constructing surrogate models mainly
include response surface models (RSM) [73], neural networks
[74], support vector regression (SVR) models [48], and Gaussian
stochastic process models [75]. RSM is a simple and extensively
applied surrogate model. The RSM can be constructed by the
design of experiment and interpolation or regression techniques
[73]. A set of initial training datasets obtained by the design of
experiment techniques and high-fidelity model simulations is rep-
resented by ðXðiÞ; YðiÞ; i ¼ 1; 2;…;NÞ, and the quadratic RSM of
Y can be expressed as

Ŷ ¼ C0 þ
X

1�j�p

CjXj þ
X

1�j�p;k�j

Cjðp�jþ2Þþk�1XjXk (3.10)

where C0; Cj; Cjðp�jþ2Þþk�1 are the undetermined coefficients
which can be estimated by interpolation or regression. Once the
undetermined coefficient is determined, the output value Y can be
directly determined by the RSM and the input vector X.

The surrogate model-based method can significantly reduce the
amount of simulation required, greatly shortening the computation
time and resources required for UQ analysis, and have significant
advantages in the UQ application in a complicated system. How-
ever, some major problems faced by this method include the com-
putational resources required to obtain the initial sampling set and
construct the surrogate model, and the UQ analysis error that may
be introduced by the difference between the surrogate model and
actual input–output correspondence.

3.2.4 Polynomial Chaos Method. The PC method is one of
the most widely used methods for UQ analysis through CFD mod-
els. The PC method is based on the homogeneous chaos theory
[76], and the basic idea is to decompose the random variable into
separable deterministic and random components and project the
variables onto a random space with a set of completely orthogonal
polynomials UiðnÞ as the basis [77]. Specifically, the response
variable affected by random variables can be expressed as

Y ¼
XP

i¼0

ciUiðnÞ (3.11)

where ci is the undetermined coefficient which represents the fluc-
tuation amplitude of the i-th mode; UiðnÞ is the random basis
function corresponding to the i-th mode, and according to the
Askey scheme [77], there are different optimal polynomials Ui nð Þ
for different PDFs of input variables; and P ¼ ðdþpÞ!

d!p! , is a function

of the PC expansion order p and random dimension d. By solving
the undetermined coefficient ci, a complete input–output function
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can be obtained and the statistical features of Y can be evaluated
by

E½Y	 ¼ c0 (3.12)

Var½Y	 ¼
XP

i¼1

½c2
i hU2

i i	 (3.13)

When determining ci, according to whether the govern equation
solver (such as CFD solver) needs to be modified, the PC method
can be divided into intrusive polynomial chaos (IPC) and nonin-
trusive polynomial chaos (NIPC) methods.

The random Galerkin method is a typical IPC method [78].
Since the new PC equation has different characteristics from the
original governing equation and is usually more complicated, a
new CFD solver is needed. Under certain conditions, it has been
proved that the error of the p-th order truncated expansion
decreases exponentially as the polynomial order p increase and is
more efficient than the MC method while maintaining high preci-
sion [79]. However, the intrusiveness of IPC will bring a lot of
inconveniences. First, when modifying the CFD solver, a lot of
coding work is needed for complex engineering problems. Also,
numerical instability may occur if the new equation is not prop-
erly discretized [80]. These two barriers have limited the applica-
tion of IPC to complex problems.

In response to these limitations, the NIPC methods have gained
attention for the applicability of commercial CFD solvers. It can be
considered as a combination of the PC and sampling methods. The
basic idea is to estimate ai based on the deterministic solutions of
some samples, during which the CFD solver can be used as a black
box of uncertainty propagation [81]. The probability collocation
method [82] is an extensively used NIPC method, which uses the
collocation method instead of random sampling to improve the con-
vergence efficiency. In addition, it is applicable to any input distri-
bution and converges exponentially with the polynomial order [82].
What’s more, it is necessary to determine the probability distribution
for all the input uncertainty variables before PC research. This might
be very difficult in gas turbines because the collection of geometric
uncertainty data is usually difficult and expensive, and thus scarce
data are usually faced in UQ researches. In response, a new method
called the sparse approximation of moment-based arbitrary polyno-
mial chaos (SAMBA PC) has been proposed [83]. This method uses
statistical moments as a quantitative measure of a random sample
set or a PDF, which has been proved to be able to provide accurate
analysis results for scarce datasets.

The PC method has been proved to be superior for fast conver-
gence and high precision in low-dimensional uncertainty prob-
lems, but the method still has the limitation named “curse of
dimensionality”: the cost of solving the PC expansion coefficient
is at least proportional to the number of terms P in expansion
equation [84] and thereby usually increases exponentially with

respect to the number of dimensions d as P ¼ ðdþpÞ!
d!p! . In complex

problems, d may be hundreds or even thousands, making the PC
method completely infeasible [70].

4 Geometric Uncertainty Quantification Application

in Gas Turbine

As the performance and reliability requirements of gas turbines
increase continually, more and more researches have focused on
the UQ researches in the gas turbine. By conducting UQ study,
the distribution features of the gas turbine performance can be
obtained and reliability evaluation can be carried out [1,2], the
key geometric parameters that affect performance can be distin-
guished [1,3], and tolerance optimization [3] and blade robust
design optimization can be conducted [2].

The purpose of this section is to give a review of existing UQ
researches using different UQ methods, extract the characteristics

and applicable conditions of each method, and summarize the
research progress and challenges remaining currently.

4.1 Sampling-Based Method

4.1.1 Application in Fan/Compressor. Based on the sampling-
based method, the performance distribution under geometric
uncertainties can be obtained. Schnell et al. [1] conducted sam-
pling considering the first six eigenmodes of a rotor blade (which
are obtained by PCA and shown in Fig. 2). In this study, it is
assumed to be normally distributed for each eigenvector and about
1000 samples are generated. For each of the samples, the two-
dimensional (2D) coupled Euler/boundary layer solver MISES
[85] is applied to assess the aerodynamic performance of the
blade section, and the results are shown in Fig. 9. Under different
inflow angles, when the airfoil geometry deviates from the
nominal value, the outflow angle presents a different uncertainty
distribution [1].

Moreover, sensitivity analysis can be adopted based on the
sampling results to identify the key geometric uncertainty varia-
bles in gas turbines. Lange et al. [86] investigated the sensitivity
of 18 manufacturing geometric variables in a 1.5 stage HP com-
pressor blade by CFD simulations of 500 samples. The Spearman
rank correlation coefficient ~r is chosen to quantify the sensitivity
of performance to geometric variables. The results are shown in
Fig. 10, indicating that the leading-edge thickness has the largest
effect on efficiency, while the stagger angle is the most influential
to the blade turning.

4.1.2 Application in Turbine. To quantify the impact of the
blade manufacturing geometric uncertainties on performance,
Duffner [87] conducted MC sampling based on the PCA results of
a transonic turbine vane and each sample is simulated by 2D
solver MISES. Based on the samples, sensitivity analysis indicates
that the flow condition is almost insensitive to geometric uncer-
tainties at the upstream of the throat while it is more sensitive to
the throat and trailing edge geometry.

In addition, as for the geometric uncertainty of the turbine cool-
ing system which is also very important, Bunker [44] uses the MC
method combing with a one-dimensional (1D) blade cooling
model to analyze the effect of blade film cooling manufacturing
uncertainty on the distribution of blade metal temperature. The
result is shown in Fig. 11 and indicates that the manufacturing
uncertainty of the film cooling holes may cause the blade surface
metal temperature to fluctuate within the range of 620 �C. How-
ever, a 20 �C increase of metal temperature may result in a

Fig. 9 Outflow angle b2 distribution under geometric uncer-
tainties at different inflow angles b1 [1]
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reduction of approximately 33% in blade life. Therefore, the
potential impact of cooling hole uncertainties must be considered
when determining the manufacturing tolerances.

In conclusion, UQ analysis by sampling-based methods can be
used to predict the performance distribution under geometric
uncertainties or identify the critical variables, based on which tol-
erance optimization can be implemented [3]. However, due to the
slow convergence rate and the application of higher-fidelity com-
putational models, it is still very expensive with a large number of
samples to be simulated when applied in gas turbines [6].

4.2 Sensitivity-Based Method

4.2.1 Application in Fan/Compressor. The adjoint method is
capable of efficiently calculating the sensitivity of the

performance variable to a large number of geometric variables.
Tang et al. [88] use an adjoint solver to obtain performance sensi-
tivity to geometric uncertainty along the entire blade surface in
NASA Rotor 67 compressor. The result is shown in Fig. 12, which
indicates that the blade performance is most sensitive to the cen-
tral region of the blade suction surface.

It is worth noting that the applicable range of the method must be
considered. Giebmanns et al. [8] studied the applicable scope by
comparing the results of the adjoint method and nonlinear CFD sim-
ulation. It is indicated that the method can predict performance vari-
ation accurately under small-scale geometric variation. However, it
can only give the performance change trend but cannot be used for
quantitative prediction in larger variation range, as shown in Fig. 13,
wherein F is the sensitivity of the response variable, de is the geo-
metric variable deformation value and [-] represents unit of 1.

In conclusion, the sensitivity-based method is most efficient but
it is only suitable for problems with small uncertainty variation
ranges because it has difficulty in capturing nonlinear relation-
ships in larger variations.

4.3 Surrogate Model-Based Method

4.3.1 Application in Fan/Compressor. The surrogate model
can be used to predict the response variable value rapidly, which
can significantly reduce the CFD computational resources
required in UQ process. He and Zheng [74] adopted the artificial
neural network (ANN) as a surrogate model and the fast predic-
tion of the performance in a high pressure ratio centrifugal com-
pressor under ten geometric uncertainty variables. Based on the

Fig. 10 Sensitivity of HP compressor performance parameters to blade geometric variables [86] (a) sensitivities of isentropic
efficiency and (b) sensitivities of blade turning

Fig. 11 Blade metal temperature distribution [44]

Fig. 12 Adjoint sensitivities to blade surface geometric parameters [88]
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ANN model, on the one hand, the key parameters can be identi-
fied. In this study, the key parameters are the camber curve shape
in the blade tip section near the leading edge and the blade stack-
ing line shape close to the end-wall region. On the other hand, the
ANN model is combined with the genetic algorithm, which
greatly reduces the calculation amount required for the complex
three-dimensional geometry optimization of the compressor and
achieves performance improvement.

However, it is worth noting that the computational cost required
for building an exact surrogate model may increase exponentially
with the number of dimensions d of the geometric uncertain varia-
bles. This limits the application in high-dimensional UQ problems
to a large extent. Therefore, the sensitivity analysis can be used to
identify the least significant geometric variables and fix them to
the nominal values, thus reducing the number of dimensions d.
For example, the active subspace method is proposed [75]. Qin
et al. [49] adopt the active subspace method to simplify the origi-
nal eight-dimensional problem to a one-dimensional problem and
constructed a low-order SVR model. The model is verified by the
CFD calculation results of 48 samples and results show that it can
reflect the geometric-performance correspondence to some extent,
but there are still some deviations (Fig. 14).

4.3.2 Application in Turbine. The surrogate model-based
method can be applied to performance/reliability assessment or

probabilistic evaluation of blade failure or even serious accidents,
which traditional design might be unable to detect [12]. Monto-
moli and Massini [66] studied the geometric uncertainties of
interwheel cavities in a LP turbine using a surrogate model. Con-
sidering two geometric uncertainty variables: gaps 1 and 2
(Fig. 15), 25 CFD simulations are performed to build an RSM, as
in Fig. 16.

Based on the RSM, the probability of exceeding the critical
temperature has been investigated under different input distribu-
tions (as shown in Table 1) and indicates that when considering a
probability distribution with “fat-tail,” the probability of exceed-
ing the critical temperature could be improved by about four
orders of magnitude, which means a much higher occurrence
probability of the “black swan” event and the corresponding seri-
ous consequences. Therefore, it is important to select the distribu-
tions of input variables carefully during the reliability evaluation
based on UQ analysis.

In conclusion, the surrogate model-based method can decrease
the computational cost while maintaining the accuracy of
UQ result. The disadvantage is that the computational cost
required to build a precise surrogate model can be very high in
high-dimensional problems.

4.4 Polynomial Chaos Method

4.4.1 Application in Fan/Compressor. In recent years, with
the continuous increase of the number of dimension d in UQ

Fig. 13 Estimated applicable range of the adjoint solver [8]

Fig. 14 Comparison of low-order SVR surrogate model and
CFD simulation results [49]

Fig. 15 Schematic of the interwheel cavity in a LP turbine [66]

Fig. 16 Surrogate model for performing UQ analysis [66]
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studies of gas turbines, an advanced sampling algorithm: sparse
grid method has been combined with the PC method to reduce the
required simulations while maintaining the UQ analysis accuracy
by select appropriate samples. The required sample numbers of
sparse grid method with linear and exponential growth in the 1D-
level rules and the conventional full tensor grid method are com-
pared in Table 2 and show that the sparse grid method can dramat-
ically reduce samples needed.

Wunsch et al. [89] combine sparse grid method and PC method
to study the effects of coexistence of operational and geometric
uncertainties. This study is based on the NASA Rotor 37 transonic
compressor, with up to nine uncertain variables (inlet total pres-
sure, outlet static pressure, tip clearance, leading-edge shape and
trailing edge shape, etc.). Based on the simulation results, the
scaled sensitivity derivative can be used to identify the critical
variables and the result shows that the blade leading-edge angle
and tip clearance are the two geometric parameters that have the
greatest influence on performance (total pressure ratio, mass flow-
rate, and efficiency). In addition, the study has achieved full auto-
mation of the geometry modification and meshing process based
on the commercial software NUMECA. This combination of automa-
tion and the introduction of sparse grid quadrature represents a
breakthrough in the application of uncertainty management in
engineering practice.

4.4.2 Application in Turbine. When the number of dimension
d is less than 5, the PC method has been proved to be able to con-
vergence fast while maintaining an accurate statistical distribution
of output variables. Figure 17 presented the statistical result
(mean and standard deviation of adiabatic effectiveness) from
Monte Carlo multilevel sampling method, second-order and
fourth-order PC method, and it is indicated that fourth-order PC
method based on 25 samples can give a comparable result com-
pared with MC result based on 242 samples [90]. Moreover, a
similar conclusion has been obtained by Ghisu et al. [91] validated
under d¼ 3.

To overcome the limitations of sparse data, the SAMBA PC
method is applied to turbine UQ studies and verified by Ahlfeld
and Montomoli [83]. It is applied in the UQ study on manufactur-
ing geometric uncertainty in a LP turbine, and the selected eight
input variables along blade airfoil. Among the eight variables, the
geometric data of the six sections are given in the form of

frequency distribution histograms, while the geometric data of the
two points are given in the form of continuous PDFs. This study
demonstrated the SAMBA PC method’s flexibility in the applica-
tion in gas turbine UQ analysis with two kinds of input data forms.
Moreover, the Sobol sensitivity indexes of different variables can
be calculated based on PC expansion. The results show that
although the geometric variation in the suction surface is small, its
effect on pressure loss is greater than that in the pressure surface.
In particular, the uncertainty of the third section contributes 85%
of the total variance.

In conclusion, the PC method is most widely applied in UQ
analysis in the CFD field, it has significant advantages of fast con-
vergence and high accuracy in low-dimension UQ problems.
However, it also faces a serious “curse of dimensionality” in high-
dimensional problems.

5 Conclusions

In this paper, the geometric uncertainties along with UQ meth-
ods in gas turbines were comprehensively reviewed. First, the
main sources and features of gas turbine geometric uncertainty are
reviewed. Then, the basic principles, characteristics, and applica-
tion of different UQ methods are reviewed. Based on the reviews
above, the main conclusions are as follows:

The sources of geometric uncertainty in gas turbines mainly
include manufacturing and in-service geometric uncertainty,
which have different influence in different components:

(1) The performance of a fan is mainly affected by the in-
service uncertainty due to particle intake erosion.

(2) The performance of a LP compressor is affected by both
manufacturing and in-service uncertainty while the per-
formance of the HP compressor is mainly affected by the
manufacturing uncertainty due to the small size.

(3) HP turbine performance is mainly affected by the manufac-
turing uncertainties of both blade profile and cooling
system, while the LP turbine performance is virtually unaf-
fected by both manufacturing and in-service uncertainties.

There are mainly four UQ methods adopted in gas turbines with
different characteristics:

(1) The sampling-based method is the simplest and extensively
applicable. However, it might be very computationally

Table 1 Probability of the response variable exceeding a criti-
cal value under different input distributions [66]

P(T>Tcrit)

Gauss PDF 2.54� 10�4%
Cauchy PDF 2.33%
t-distribution, � ¼100 6.01� 10�4%
t-distribution, � ¼50 1.51� 10�3%
t-distribution, � ¼10 4.16� 10�2%
t-distribution, � ¼5 0.24%
t-distribution, � ¼3 0.74%
t-distribution, � ¼1 3.22%

Table 2 Comparison of sample numbers of a full tensor grid and a sparse grid [89]

Level 0 1 2

Dimension Tensor Sparse LG Sparse EG Tensor Sparse LG Sparse EG Tensor Sparse LG Sparse EG

1 2 1 1 3 3 3 4 5 7
2 4 1 1 9 5 5 16 17 21
3 8 1 1 27 7 7 64 31 37
4 16 1 1 81 9 9 256 49 57
5 32 1 1 243 11 11 1024 71 81
… … … … … … … … … …
10 1024 1 1 59049 21 21 1,048,576 241 261

Fig. 17 Statistics comparison for the MCMLS and PC second
and fourth-order [90]
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expensive when the result precision required is high due to
the slow convergence rate.

(2) The sensitivity-based method is the most efficient method
but it is only suitable for problems with small uncertainty
variation ranges while it can only give information about
the performance change trend in larger variations.

(3) The surrogate model-based method can significantly
decrease the computational cost while maintaining UQ pre-
cision. The disadvantage is that the computational cost
required to build a precise surrogate model can be very
high in high-dimensional problems.

(4) Polynomial chaos method has significant advantages of fast
convergence and high precision in low-dimension UQ
problems. However, it also faces a serious “curse of
dimensionality” in high-dimensional problems.

These methods can be selected to achieve a balance between
research precision and efficiency considering practical research
conditions or objectives.

The main challenges of geometric uncertainties quantification
study in gas turbines include:

(1) Challenges in simulation precision: As the geometric varia-
tion range in gas turbines is usually small, it is necessary to
ensure the high precision of geometric modeling and
numerical simulation to accurately reflect the geometric
uncertainty and its impact on performance. Therefore, the
simulation method adopted in UQ analysis gradually transi-
tioned from 1D and 2D simulations to 3D CFD simulation,
and in the future methods such as large eddy simulation or
direct numerical simulation may also be applied to UQ
analysis, which will continuously increase the computa-
tional cost.

(2) Curse of dimensionality: A large number of geometric
uncertainty variables often exist simultaneously in gas tur-
bines, which will not only affect performance separately
but also interact with each other, leading to combined
effect. Therefore, the number of variables investigated
simultaneously in UQ analysis gradually increases, leading
to the exponential increase in the simulations required,
which is the most important challenge in current UQ
researches.

6 Recommendations

Based on the relevant frontier research, the future prospects of
geometric uncertainty quantification research in gas turbines can
be summarized as follows:

(1) Geometric uncertainty study considering the operational
conditions: It has been observed in many cases that the
influence of geometric uncertainty on performance may be
fundamentally different under different operating condi-
tions (which can be represented by different Mach number,
Reynolds number, or flow coefficient). Therefore, to cate-
gorize the geometric uncertainty influence in terms of oper-
ating conditions will be potentially meaningful to help
understand the influence mechanism explicitly and instruc-
tive in the design and optimization of gas turbines.

(2) UQ method combined with the dimensionality reduction
method: To avoid the “curse of dimensionality,” it is impor-
tant to limit the number of dimensions in the UQ study.
Therefore, advanced dimensionality reduction methods can
be adopted, which means identifying and eliminating the
noncritical geometric variables, and thereby the random
space dimensionality can be reduced. The dimensionality
reduction methods can be mainly classified into two catego-
ries: dimensionality reduction based on physical mecha-
nisms or mathematical algorithms. The dimensionality
reduction based on physical mechanisms is to reasonably
exclude the geometric variables that have less impact on

performance based on rich experience in gas turbine design
and the influence rule and mechanism of geometric varia-
bles on performance. And as for the dimensionality reduc-
tion method based on mathematical algorithms, a typical
method is the active subspace dimensionality reduction
method, which uses sensitivity analysis to reduce the num-
ber of dimensions. In the future, advanced techniques such
as data mining may also be combined to reduce computa-
tion costs.

(3) UQ method combined with the Artificial Intelligence algo-
rithm: There are usually hundreds of CFD simulations in
UQ studies in gas turbines which cost a lot of computa-
tional resources and time. However, in the following UQ
study or design optimization, only several performance
indexes (such as mass flow rate, pressure ratio and effi-
ciency) are analyzed, while much more information about
the complex flow fields is ignored and wasted. Therefore, it
might be significantly useful to mine more information
from the flow fields which can be regarded as images and
analyzed using deep learning algorithms.
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Nomenclature

c ¼ undetermined coefficient
C ¼ undetermined coefficient vector
d ¼ number of random space dimensions
D ¼ film hole diameter
F ¼ sensitivity of the response variable
G ¼ tip clearance
G ¼ adjoint sensitivity
H ¼ heat loading at rotor tip

H0 ¼ heat loading at rotor tip of datum case
L ¼ film hole length

M ¼ leakage mass flow rate
M¼ correlation model
M0 ¼ leakage mass flow rate of datum case

N ¼ number of samples
p ¼ PC expansion order
P ¼ term number of PC expansion
r ¼ blade tip filet radius
~r ¼ Spearman rank correlation coefficient
R ¼ flow control equation

Rec ¼ Reynolds number based on chord and inlet
condition: Rec ¼ chord length� kinematic viscosity

freestream velocity
T ¼ temperature

Tcrit ¼ critical temperature
Tt1 ¼ inlet total temperature
Tt2 ¼ outlet total temperature

X ¼ uncertainty input variable
Y ¼ response variable

b1 ¼ inflow angle
b2 ¼ outflow angle
c ¼ isentropic exponent

de ¼ geometric variable deformation
@i ¼ relative weight of the i-th sample

gis ¼ isentropic efficiency: gis ¼
p

c�1
c

t �1

Tt2=Tt1�1

n ¼ independent random variables vector
� ¼ degree-of-freedom of Student’s t-distribution
pt ¼ total-to-total pressure ratio
r ¼ standard deviation
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U ¼ orthogonal polynomial
W ¼ adjoint operator
x ¼ flow field variable

Abbreviations

AM ¼ additive manufacturing
ANN ¼ artificial neural network
CFD ¼ computational fluid dynamics

EBPVD ¼ electron beam physical vapor deposition
HP ¼ high pressure

IPC ¼ intrusive polynomial chaos
LES ¼ large eddy simulation

LP ¼ low pressure
MC ¼ Monte Carlo

MCMLS ¼ Monte Carlo multilevel sampling
NIPC ¼ nonintrusive polynomial chaos

PC ¼ polynomial chaos
PCA ¼ principal component analysis
PDF ¼ probability density function

QMC ¼ quasi-Monte Carlo
RSM ¼ response surface model

SAMBA PC ¼ sparse approximation of moment-based arbitrary
polynomial chaos

SVR ¼ support vector regression
UQ ¼ uncertainty quantification
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