WO2015055554A1 - Wirkstoff für die saatgut- und bodenbehandlung - Google Patents

Wirkstoff für die saatgut- und bodenbehandlung Download PDF

Info

Publication number
WO2015055554A1
WO2015055554A1 PCT/EP2014/071840 EP2014071840W WO2015055554A1 WO 2015055554 A1 WO2015055554 A1 WO 2015055554A1 EP 2014071840 W EP2014071840 W EP 2014071840W WO 2015055554 A1 WO2015055554 A1 WO 2015055554A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
seed
compound
var
formula
Prior art date
Application number
PCT/EP2014/071840
Other languages
English (en)
French (fr)
Inventor
Peter Jeschke
Reiner Fischer
Peter Lösel
Elke Hellwege
Olga Malsam
Wolfram Andersch
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Publication of WO2015055554A1 publication Critical patent/WO2015055554A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests

Definitions

  • the present application relates to the use of a known active substance for the treatment of seeds.
  • EP 0 268 915 A2 See also WO 2012/029672 Al, WO 2013/031671 A1, EP 2 628 389 A1 and EP 2 631 235 A2.
  • seed treatment methods should also include the intrinsic insecticidal or nematicidal properties of pest-resistant transgenic plants in order to achieve optimum protection of the seed and of the germinating plant with a minimum of pesticide use. It is known that active substances which are useful for the treatment of seeds or for the control of animal plant pests by application to the soil around the plant have to fulfill special requirements which can not be deduced directly from the chemical structure of the active substances.
  • an active ingredient can protect the young plant against infestation by animal early pests on aboveground plant parts and later occurring shoot pests including virus vectors (R. Altmann, Maischutz- sympatheticen Bayer 44, 1991, 159-174).
  • the active ingredient should be sufficiently soluble in water.
  • the lipophilicity of the drug should be in a moderate range to allow for a longer time, a sufficient concentration and a uniform distribution in the root area of the young plant and to form a courtyard around the rhizosphere.
  • a certain mobility of the drug is required because primarily only the young part of the root system (root hair) is capable of recording.
  • microbial degradation should be within a moderate range for the drug to be available for the plant at the required dose over an extended period of time (PC Kearney, DR Shelton, WC Koskinen, Encyclopedia of Agrochemicals, JR Plimmer, DW Gammon, NN Ragsdale (Eds.), Wiley-Interscience, Vol. 3, 2003, 1421-1441).
  • the active ingredient For use as a seed treatment agent, the active ingredient must meet other special requirements such as detachment from the seed, moderate distribution in the soil and plant tolerance.
  • Plant compatibility must meet a particularly high standard for the use of an active substance as a seed treatment agent, since the plant embryo or the young seedling is exposed to relatively high local concentrations of the active substances. Any delay in seed germination or seedling proliferation increases the risk that the seed or seedling will be attacked by disease causing organisms or soil pests. Furthermore, delaying expulsion shortens the plant growth period and may result in reduced yield (A. Jonitz, N. Leist Crop Protection News, Bayer 56, 2003, 147-172). The peculiarity of some active ingredients, in addition to reduce the growth in length of the hypocotyl, can have a serious impact on the field population (F. Brendler Kurier Issue 2, 2006, 4-7).
  • the present invention also relates to a method of protecting seeds and germinating plants from attack by pests by treating the seed with the compound of formula (I).
  • the method according to the invention for the protection of seeds and germinating plants from infestation by pests comprises a method in which the seed is treated simultaneously in one operation or sequentially with the active ingredient of formula (I) and one or more mixing partners. It also includes a method in which the seed is treated at different times with the active ingredient of the formula (I) and one or more mixing partners.
  • the invention also relates to the use of the compound of formula (I) for the treatment of seed for the protection of the seed and the resulting plant from animal pests.
  • the invention relates to seed which has been treated for protection against animal pests with the compound of formula (I).
  • the invention also relates to seed treated at the same time with the active ingredient of formula (I) and one or more mixing partners.
  • the invention further relates to seed which has been treated at different times with the active ingredient of the formula (I) and one or more mixing partners.
  • the layers containing the active ingredient of the formula (I) and one or more mixing partners may optionally be separated by an intermediate layer.
  • the invention also relates to seed in which the active compound of the formula (I) and one or more mixing partners are applied as a constituent of a coating or as a further layer or further layers in addition to a coating.
  • the invention relates to seed, which after the treatment with the compound of the formula (I) is subjected to a film coating process in order to avoid dust abrasion on the seed.
  • One of the advantages of the present invention is that because of the particular systemic properties of the compositions of the invention, treatment of the seeds with these agents not only protects the seed itself but also the resulting plants after emergence from animal pests. In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
  • Another advantage is that by treating the seed with the compound of formula (I) germination and emergence of the treated seed can be promoted. It is likewise to be regarded as advantageous that the compound of the formula (I) can be used in particular also in the case of transgenic seed.
  • the compound of the formula (I) can be used in combination with signal technology agents, by way of example a better colonization with symbionts, such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi, takes place and / or it to an optimized nitrogen fixation comes.
  • symbionts such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi
  • compositions according to the invention are suitable for the protection of seeds of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture.
  • these are seeds of cereals (eg wheat, barley, rye, millet, triticale and oats), corn, cotton, soy, rice, potatoes, sunflower, coffee, tobacco, canola, rape, turnip (eg Sugar beet and fodder beet), peanut, vegetables (eg tomato, cucumber, bean, cabbage, onions and lettuce), fruit plants, turf and ornamental plants.
  • cereals eg wheat, barley, rye and oats
  • corn, soya, cotton, canola, oilseed rape and rice are examples of seeds of cereals (eg wheat, barley, rye and oats), corn, soya, cotton, canola, oilseed rape and rice.
  • transgenic seeds with the compound of the formula (I) is also of particular importance.
  • the heterologous genes in transgenic seed can be derived from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly suitable for the treatment of transgenic seed comprising at least one - contains heterologous gene derived from Bacillus sp. comes. Most preferably, this is a heterologous gene derived from Bacillus thuringiensis.
  • seed treatment methods should also incorporate the intrinsic insecticidal properties of pest-resistant transgenic plants in order to achieve optimum protection of the seed and germinating plant with a minimum of pesticide cost.
  • the preferred plants or plant varieties to be treated according to the invention to be treated include all plants which, as a result of the genetic engineering modification, obtained genetic material which gives these plants particularly advantageous valuable properties ("traits").
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms salt, increased flowering, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products , higher shelf life and / or workability of the harvested products.
  • Further and particularly emphasized examples of such properties are an increased Abwehr ability of the plants against animal and microbial pests, such as insects, arachnids, nematodes, mites, snails, causes, for example.
  • toxins produced in the plants in particular those produced by the genetic material from Bacillus thuringiensis (eg by the genes CrylA (a), CrylA (b), CrylA (c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF as well as their combinations) in the plants are produced, furthermore an increased from defensive ability of the plants against plant-pathogenic mushrooms, bacteria and / or viruses, causes eg systemically acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins, as well as increased tolerance of the plants to certain herbicidal agents, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (e.g., "PAT" gene).
  • SAR systemically acquired resistance
  • systemin phytoalexins
  • elicitors elicitors
  • transgenic plants are the important crops such as cereals (wheat, rice, triticale, barley, rye, oats), corn, soy, potato, sugar beets, sugarcane, tomatoes, peas and other vegetables, cotton, tobacco, oilseed rape, and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis on maize, soya, wheat, rice, potato, cotton, sugarcane, tobacco and oilseed rape, canola. Traits that are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and snails.
  • the compound of the formula (I) is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a state where it is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • seed may be used that has been harvested, cleaned and dried to a moisture content that is storable.
  • seed may also be used which, after drying, e.g. treated with water and then dried again, for example priming.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 AI, WO 2002/080675 AI, WO 2002/028186 A2.
  • the compound of the formula (I) which can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • These formulations are prepared in a known manner by mixing the compound of formula (I) with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, Gibberellins and also water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
  • Preferably used are alkylnaphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates.
  • dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention, all are used for the formulation of agrochemical active compounds - - Conventional nonionic, anionic and cationic dispersants into consideration.
  • nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds.
  • the concentrates or the preparations obtainable therefrom by dilution with water can be used for dressing the seeds of cereals such as wheat, barley, rye, oats and triticale, as well as the seeds of corn, rice, rape, canola, peas, beans, cotton , Sunflower, soy and beet or vegetable seed of various nature.
  • the seed dressing formulations which can be used according to the invention or their diluted preparations can also be used for pickling seeds of transgenic plants. It can in the - -
  • the pickling is done by placing the seed in a batch or continuous mixer, adding either desired amount of seed dressing formulations, either as such or after prior dilution with water, and until the formulation is evenly distributed mix the seed.
  • a drying process follows.
  • the application rate of the seed dressing formulations which can be used according to the invention can be varied within a relatively wide range. It depends on the particular content of the compound of the formula (I) in the formulations and on the seed.
  • the application rates for the compound of the formula (I) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed. mixtures
  • the compound of formula (I) may be used as such or in their formulations also in admixture with one or more suitable fungicides (see the list below), bactericides, acaricides, molluscicides, nematicides, insecticides (see list below), microbiologicals, Useful insects, herbicides, fertilizers, bird repellents, phytotonics, sterilants, synergists, safeners, semiochemicals and / or plant growth regulators to widen the spectrum of action, to extend the duration of action, to increase the speed of action, to prevent re-exposure or to prevent the development of resistance. Furthermore, such drug combinations plant growth and / or tolerance to abiotic factors such.
  • the compound of the formula (I) as such or in its (commercial) formulations and in the formulations prepared from these formulations in admixture with other active ingredients or semiochemicals, such as attractants and / or bird repellents and / or plant activators and / or growth regulators and / or fertilizers and / or synergists.
  • the compound of formula (I) and its compositions can be used in mixtures with agents for improving plant properties such as growth, yield and quality of the crop.
  • the compound of the formula (I) or its compositions is present in commercial formulations or in the formulations prepared from these formulations in admixture with synergists and are used as insecticides.
  • synergists is meant those compounds which enhance the activity of the compound of formula (I) without the synergist having an insecticidal / acaricidal / nematicidal action.
  • Suitable mixing partners are the following
  • Acetylcholinesterase (AChE) inhibitors such as carbamates, e.g. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxime, Butoxycarboxime, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC and Xylylcarb or organophosphates, eg Acephate, Azamethiphos, Azinophos-ethyl, Azinophos-methyl, Cadusafos, Chloroethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos,
  • GABA-controlled chloride channel antagonists such as cyclodiene organochlorines, e.g. Chlordanes and endosulfan or phenylpyrazoles (fiproles), e.g. Ethiprole and fipronil.
  • sodium channel modulators / voltage dependent sodium channel blockers such as pyrethroids, eg acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl isomer, bioresmethrin, cycloprothrin , Cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(lR) -trans isomers], deltamethrin, empenthrin [ (EZ) - (lR) isomers
  • nicotinergic acetylcholine receptor (nAChR) agonists such as neonicotinoids, e.g. Acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor.
  • nAChR nicotinergic acetylcholine receptor
  • nicotinergic acetylcholine receptor (nAChR) allosteric activators such as spinosines, e.g. Spinetoram and spinosad.
  • chloride channel activators such as avermectins / milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin and Milbemectin.
  • Juvenile hormone mimics such as juvenile hormone analogs, e.g. Hydroprene, Kinoprene and Methoprene or Fenoxycarb or Pyriproxyfen.
  • agents with unknown or non-specific mechanisms of action such as
  • Alkyl halides e.g. Methyl bromide and other alkyl halides; or chloropicrin or sulfuryl fluoride or borax or tartar emetic.
  • Selective feeding inhibitors e.g. Pymetrozine or flonicamide.
  • mite growth inhibitors e.g. Clofentezine, hexythiazox and diflovidazine or etoxazole.
  • Insect intestinal membrane microbial disruptors e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and Bacillus thuringiensis proteins: Cryl Ab, Cryl Ac, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34 / 35Abl.
  • Bacillus thuringiensis subspecies israelensis Bacillus sphaericus
  • Bacillus thuringiensis subspecies aizawai Bacillus thuringiensis subspecies kurstaki
  • Bacillus thuringiensis subspecies tenebrionis and Bacillus thuringiensis proteins Cryl Ab, Cryl Ac, CrylFa, C
  • oxidative phosphorylation inhibitors such as diafenthiuron or organotin compounds, e.g. Azocyclotin, Cyhexatin and Fenbutatin-oxide or Propargite or Tetradifon.
  • Nicotinergic acetylcholine receptor antagonists such as Bensultap, Cartap hydrochloride, Thiocyclam and Thiosultap sodium.
  • Type 0 inhibitors of chitin biosynthesis such as bistrifluron, chlorofluorazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • inhibitors of chitin biosynthesis type 1, such as buprofezin.
  • ecdysone receptor agonists such as chromafenozides, halofenozides, methoxyfenozides, and tebufenozides.
  • Octopaminergic agonists such as amitraz.
  • (21) complex I electron transport inhibitors for example, METI acaricides, e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
  • METI acaricides e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
  • voltage dependent sodium channel blockers e.g. Indoxacarb or metaflumizone.
  • (23) inhibitors of acetyl-CoA carboxylase such as tetronic and tetramic acid derivatives, e.g. Spirodiclofen, spiromesifen and spirotetramat.
  • complex IV electron transport inhibitors such as phosphines, e.g. Aluminum phosphide, calcium phosphide, phosphine and zinc phosphide or cyanide.
  • Complex II electron transport inhibitors such as cyenopyrafen and cyflumetofen.
  • ryanodine receptor effectors such as diamides, e.g. Chlorantraniliprole, Cyantraniliprole and Flubendiamide,
  • agents such as afidopyropene, azadirachtin, benclothiaz, benzoximate, bifenazate, bromopropylate, quinomethionate, cryolite, dicofol, diflovidazine, fluensulfone, flometoquine, flufenerim, flufenoxystrobin, flufiprole, fluopyram, flupyradifurone, fufenocide, heptafluthrin, imidaclothiz, iprodione, meperfluthrin, paichongding, Pyflubumide, pyrifluquinazone, pyriminostrobin, tetramethylfluthrin and iodomethane; furthermore preparations based on Bacillus firmus (1-1582, BioNeem, Votivo), and the following compounds: 3-bromo-N- ⁇ 2-bromo-4-chloro-6 - [
  • Fungicides The active ingredients specified here with their "common name” are known, for example, described in the "Pesticide Manual” or on the Internet (for example: http://www.alanwood.net pesticides). - -
  • inhibitors of ergosterol biosynthesis such as (1.1) aldimorph, (1.2) azaconazole, (1.3) bitertanol, (1.4) bromuconazole, (1.5) cyproconazole, (1.6) diclobutrazole, (1.7) difenoconazole, (1.8) diniconazole , (1.9) Diniconazole-M, (1.10) dodemorph, (1.11) dodemorph acetate, (1.12) epoxiconazole, (1.13) etaconazole, (1.14) fenarimol, (1.15) fenbuconazole, (1.16) fenhexamide, (1.17) fenpropidine, ( 1.18) fenpropimorph, (1.19) fluquinconazole, (1.20) flurprimidol, (1.21) flusilazole, (1.22) flutriafol, (1.23) furconazole, (1.24) furconazole cis, (1.21)
  • inhibitors of respiration such as (2.1) bixafen, (2.2) boscalid, (2.3) carboxin, (2.4) diflumetorim, (2.5) fenfuram, (2.6) fluopyram, (2.7) flutolanil, ( 2.8) Fluxapyroxad, (2.9) Furametpyr, (2.10) Furmecyclox, (2.11) Isopyrazam Mixture of the syn-epimeric racemate 1RS, 4SR, 9RS and the anti-empimidal racemate 1RS, 4SR, 9SR, (2.12) isopyrazam (anti- epimeric racemate ), (2.13) isopyrazam (anti-epimeric enantiomer 1R, 4S, 9S), (2.14) isopyrazam (anti- epimeric enantiomer 1S, 4R, 9R), (2.15) isopyrazam (syn-epimeric racemate 1RS, 4SR, 9RS)
  • inhibitors of respiration at the complex III of the respiratory chain, such as (3.1) ametoctradine, (3.2) amisulbrom, (3.3) azoxystrobin, (3.4) cyazofamide, (3.5) coumethoxystrobin, (3.6) coumoxystrobin, ( 3.5) dimoxystrobin, (3.8) enestroburine, (3.9) famoxadone, (3.10) fenamidone, (3.11) flufenoxystrobin, (3.12) fluoxastrobin, (3.13) kresoxim-methyl, (3.14) metominostrobin, (3.15) orysastrobin, (3.16) picoxystrobin , (3.17) Pyraclostrobin, (3.18) Pyrametostrobin, (3.19) Pyraoxystrobin, (3.20) Pyribencarb, (3.21) Triclopyricarb, (3.22) Trifloxystrobin, (3.23) (2E) -2
  • resistance inducers such as (6.1) acibenzolar-S-methyl, (6.2) isotianil, (6.3) probenazole, (6.4) tiadinil, and (6.5) laminarin.
  • inhibitors of amino acid and protein biosynthesis such as (7.1), (7.2) blasticidin-S, (7.3) cyprodinil, (7.4) kasugamycin, (7.5) kasugamycin hydrochloride hydrate, (7.6) mepanipyrim,
  • inhibitors of ATP production such as (8.1) fentin acetate, (8.2) fentin chloride, (8.3) fentin hydroxide and (8.4) silthiofam.
  • inhibitors of cell wall synthesis such as (9.1) benthia-valicarb, (9.2) dimethomorph, (9.3) flumorph, (9.4) iprovalicarb, (9.5) mandipropamide, (9.6) polyoxins, (9.7) polyoxorim, (9.8) validamycin A, (9.9) Valifenalate and (9.10) Polyoxin B.
  • inhibitors of lipid and membrane synthesis such as (10.1) biphenyl, (10.2) chloroben, (10.3) diclorane, (10.4) edifenphos, (10.5) etridiazole, (10.6) iodocarb, (10.7) Iprobenfos, ( 10.8) isoprothiolane, (10.9) propamocarb, (10.10) propamocarb hydrochloride, (10.11) prothiocarb , (10.12) pyrazophos, (10.13) quintoene, (10.14) tecnazene and (10.15) tolclofos-methyl.
  • inhibitors of melanin biosynthesis such as (11.1) carpropamide, (11.2) diclocymet, (11.3) fenoxanil, (11.4) fthalide, (11.5) pyroquilone, (11.6) tricyclazole, and (11.7) 2,2,2 Trifluoroethyl ⁇ 3-methyl-1 - [(4-methylbenzoyl) amino] butan-2-yl ⁇ carbamate.
  • inhibitors of nucleic acid synthesis such as (12.1) benalaxyl, (12.2) benalaxyl-M (kiralaxyl), (12.3) bupirimate, (12.4) clozylacon, (12.5) dimethirimol, (12.6) ethirimol, (12.7) furalaxyl, ( 12.8) Hymexazole, (12.9) Metalaxyl, (12.10) Metalaxyl-M (mefenoxam), (12.11) Ofurace, (12.12) Oxadixyl, (12.13) Oxolinic acid and (12.14) Octhilinone.
  • Signal transduction inhibitors such as (13.1) chlozolinate, (13.2) fenpiclonil, (13.3) fludioxonil, (13.4) iprodione, (13.5) procymidone, (13.6) quinoxyfen, (13.7) vinclozoline, and (13.8) proquinazide. - -
  • decouplers such as (14.1) binapacryl, (14.2) dinocap, (14.3) ferimzone, (14.4) fluazinam, and (14.5) meptyldinocap.
  • N-methylimidoformamide (15.152) ⁇ '- ⁇ 5-bromo-6- [1- (3,5-difluorophenyl) ethoxy] -2-methylpyridin-3-yl ⁇ -N-ethyl-N-methylimidoformamide, (15.153) N '- ⁇ 5-bromo-6 - [(1R) -1- (3,5-difluorophenyl) ethoxy] -2-methylpyridin-3-yl ⁇ -N-ethyl-N-methylimidoformamide, (15.154) N'- ⁇ 5-bromo-6 - [(1S) -1- (3,5-difluorophenyl) ethoxy] -2-methylpyridin-3-yl ⁇ -N-ethyl-N-methylimidoformamide, (15.155) N'- ⁇ 5-bromo-6 - [(cis-4-isopropylcyclohe
  • Classes (1) through (15), if capable of being functional groups, may optionally form salts with suitable bases or acids.
  • the combinations of the compound of formula (I) with said fungicides have very good fungicidal properties and can be used in the treatment of seeds, in particular for controlling phytopathogenic fungi, such as Ascomycetes and Basidiomycetes.
  • the active compounds according to the invention are particularly suitable in the treatment of seed for controlling Pyrenophora, Rhizoctonia, Tilletia and Ustilago species.
  • Pyrenophora species such as, for example, P. allosuri, P. alternarina, P. avenae, P. bartramiae, P. bondarzewii P. bromi, P. bryophila, P. buddleiae, P. bupleuri, P. calvertu, P. calvescens var. Moravica, P. carthami, P. centranthi, P. cerastü, P. chengü, P. chrysanthemi, P. convolvuli, P. coppeyana, P. cytisi,
  • P. dactylidis P. dictyoides, P. echinopis, P. ephemera, P. eryngicola, P. erythrospila, P. euphorbiae, P. freticola, P. graminea, P. heraclei, P. hordei, P. horrida, P. hyperici, P. japonica, P. kugitangi, P. lithophila, P. lolii, P. macrospora, P. metasequoiae, P. minuartiae-hirsutae, P. moravica, P. moroczkovskii,
  • Rhizoctonia species such as Rh. aerea, Rh. alba, Rh. Alpina, Rh. Anaticula, Rh. Anomala, Rh. Apocynacearum, Rh. Arachnion, Rh. Asclerotica, Rh. Bataticola, Rh. Borealis, Rh. Callae,
  • Rh. Candida Rh. Carotae, Rh. Cerealis, Rh. Choussii, Rh. Coniothecioides, Rh. Dichotoma, Rh. Dimorpha,
  • Rh. Endophytica var. Filicata, Rh. Endophytica, Rh. Ferruginea, Rh. Floccosa, Rh. Fragariae, Rh. Fraxini, Rh. Fuliginea, Rh. Fumigata, Rh. Globularis, Rh. Goodyerae-repentis, Rh. Gossypii var. anatolica, Rh. gossypii, Rh. gracilis, Rh. grisea, Rh. hiemalis, Rh. juniperi, Rh. lamellifera, Rh. leguminicola, Rh. lilacina, Rh. lupini, Rh. macrosclerotia, Rh. melongenae, Rh.
  • Rh. monilioides Rh. montseithiana, Rh. muneratii, Rh. nandorii, Rh. oryzae, Rh. oryzae-sativae, Rh. pallida, Rh. pini-insignis, Rh. praticola, Rh. quercus, Rh. ramicola, Rh. robusta, Rh. rubi, Rh. rubiginosa, Rh. sclerotica, Rh. solani, Rh. solani f. soloka forma specialis, Rh. solani var. cedri-deodarae, Rh. solani var. fuchsiae, Rh. solani var. hortensis, Rh. stahlii, Rh.
  • subtilis var. nigra subtilis var. nigra
  • Rh. subtilis Rh. tomato, Rh. Tuliparum, Rh. Versicolor, Rh. Zeae, Tilletia species, such as T. aegilopis, T. aegopogonis, T. ahmadiana, T. airina, T. ajrekari, T. alopecuri, T. anthoxanthi, T. apludae, T. arundinellae, T. asperifolia, T. asperitolioides, T. atacamensis, T. baldrati, T. bambusae, T. banarasae, T. bangalorensis, T. barclayana, T. biharica, T.
  • T. tritici [var.] Nanifica, T. tritici f. monococci, T. tritici var. controversa, T. tritici var. laevis, T. tritici-repentis, T. triticoides, T. tuberculata, T. vetiveriae, T. viennotii, T. vittata var. burmannii, T. vittata, T. Walkeri, T. youngii, T.
  • Ustilago species such as, for example, U. abstrusa, U. aegilopsidis, U. aeluropodis, U. affinis var. Hilariae, U. agrestis, U. agropyrina, U. agrostis palustris, U. ahmadiana, U. airae-caespitosae, U alismatis, U. alopecurivora,
  • U. asinea U. altilis, U. amadelpha var. Glabriuscula, U. amphilophidis, U. amplexa, U. andropogonis-tectorum, U. aneilemae, U. anhweiana, U. anomala [var.] Microspora, U. anomala var avicularis, U. anomala var. carnea, U. anomala var. cordai, U. anomala var. muricata, U. anomala var. tovarae, U. anthoxanthi, U. apscheronica, U. arabidia alpinae, U. arctagrostis, U. arctica, U.
  • bothriochloae U. bothriochloae intermediae, U. bouriqueti, U. braziliensis, U. brizae, U. bromi-arvensis, U. bromi-erecti,
  • Hyalino bipolaris U. hydropiperis, U. hyparrheniae, U. hypodytes f. congoensis, U. hypodytes f. sporoboli, U. hypodytes var. agrestis, U. idonea, U. imperatae, U. induta, U. inouyei, U. intercedens, U. iranica, U. isachnes, U. ischaemi-akoensis, U. ischaemi-anthephoroidis, U ixiolirii, U. ixophori, U. jacksonii var. ventanensis, U. jacksonii, U.
  • jaczevskyana var. sibirica U. jaczevskyana var. typica
  • U. jaczevskyana U. jagdishwari, U. jalalainenii, U. jududana, U. Johnstonu, U. kairamoi, U. kazachstanica, U. kenjiana, U. kweichowensis, U. kyllingae, U. lachrymae-jobi, U. lepyrodiclidis, U. lidii, U. Kunststoffbergii, U. linderi, U. linearis, U. liroae, U. loliicola, U. longiflora, U.
  • microthelis U. milli, U. modesta, U. moe hemmiae, U. moenchiae manticae, U. monmerae, U. Yeti var. minor, U. morinae, U. morobiana, U. muehlenbergiae var. tucumanensis, U. muricata, U. muscari-botryoidis, U. nagornyi, U. nannfeldtii, U. nelsoniana, U. nepalensis, U. neyraudiae, U. nigra, U. nivalis, U. nuda, U. nuda var.
  • paspalidiicola U. patagonica, U. penniseti var. Verruculosa, U. perrar a, U. persicariae, U. petrakii, U. phalaridis, U. phlei, U. phlei-pratensis, U. phragmites, U. picacea, U. pimprina, U. piperi [var.] rosulata, U. poae, U. poae-bulbosae, U. poae -nemoralis, U. polygoni-alati, U. polygoni-alpini, U. polygoni-punctati, U. polygoni-serrulati, U.
  • polytocae U. polytocae-barbatae, U. pospelovii, U. prostrata, U. pseudohieronymi, U. pueblaensis, U. puellaris, U. pulverulenta, U. raciborskiana, U. radians, U. ravida, U. rechingeri, U. reticulata, U. reticulispora, U. rhei, U. rhynchelytri, U. rwandensis, U. sabouriana, U. salviae, U. sanctae-catharinae, U. scaura, U.
  • sporoboli tremuli U. stellariae, U. sterilis, U. stewartli, U. stipae, U. striaeformis f. agrostidis, U. striaeformis f. phlei, U. striaeformis f. poaeannuae, U. striaeformis f. poae-pratensis, U. striiformis f. hierochloes-odoratae, U. striiformis var. agrostidis, U. striiformis var. dactylidis, U. striiformis var. hold, U. striiformis var.
  • the compound of formula (I) is also good for controlling insects by casting on the ground (known in the art as “drenching"), droplet application to the soil (known in the art as “drip application”) Immersion of root system, tubers or onions (known in the art as “dip application”), by hydroponic systems or soil injection (known in the art as “Soil injection”) is suitable.
  • the present invention accordingly relates to the use of the compound of formula (I) for controlling insects by casting on the ground, in irrigation systems, as a droplet application to the soil, as a dipping application of root system, tubers or onions or by soil injection. Furthermore, the present invention relates to these applications on natural (soil) or artificial substrates (eg rock wool, glass wool, quartz sand, pebbles, expanded clay, vermiculite) in the field or in closed systems (eg greenhouses or under foil cover) and in one-year (eg vegetables , Spices, ornamental plants) or perennial crops (eg citrus plants, fruits, tropical crops, spices, nuts, wine, conifers and ornamental plants).
  • natural soil
  • artificial substrates eg rock wool, glass wool, quartz sand, pebbles, expanded clay, vermiculite
  • closed systems eg greenhouses or under foil cover
  • one-year eg vegetables , Spices, ornamental plants
  • perennial crops eg citrus plants, fruits, tropical crops, spices, nuts, wine,
  • the compound of the formula (I) is particularly suitable for combating the following species of the family of the Stink bug (Pentatomidae):
  • Antestiopsis orbitalus in soy
  • Euschistus servus in soya, corn, cotton, and rice Nezara viridula in soy, corn, cotton, cereals and rice,
  • the compound of the formula (I) is particularly suitable for controlling the following species from the family of shield bugs (Plataspidae): Megacopta cribraria in soya.
  • the compound of the formula (I) is also particularly suitable for controlling the following species of the family Eulenfalter (Noctuidae):
  • Pseudoplusia includes in cotton, corn, beets and soy, Anticarsia gemmatalis in cotton, corn , Beets and soya, Rachiplusia nu in cotton, maize, beets and soya,
  • the compound of the formula (I) is also particularly suitable for controlling the following species from the family of Plutellidae:
  • the compound of the formula (I) is also particularly suitable for controlling the following species of the family of Gelechiidae
  • Pectinophora gossypiella in cotton.
  • the compound of the formula (I) is also particularly suitable for combating the following species from the Crambidae family: chilo suppressalis in maize and rice,
  • the compound of the formula (I) is particularly suitable for combating the following species from the family of the thorns (Pyralidae):
  • the compound of formula (I) is also particularly suitable for controlling the following species of the family of Tortricidae:
  • the compound of the formula (I) is particularly suitable for controlling the following species of the family of leaf beetles (Chrysomelidae):
  • Diabrotica vir gif er a in maize and soya Diabrotica viridula in maize and soya
  • the compound of the formula (I) is particularly suitable for controlling the following species from the family of glossy beetles (Nitidulidae):
  • the compound of the formula (I) is particularly suitable for controlling the following species from the family of glossy beetles (Cryptophagidae):
  • the compound of the formula (I) is particularly suitable for controlling the following species of the aphid family (Aphididae):
  • Macrosiphum miscanthi in cereals and potatoes Metopolophium dirhodum in cereals and corn
  • the compound of the formula (I) is particularly suitable for controlling the following species of the family of the lice (Pseudococcidae):
  • the compound of formula (I) is particularly suitable for controlling the following species of the family of flower flies (Anthomyiidae): Delia coarctata in cereals, rapeseed, beets and onions, Delia floralis in cereals, rapeseed, beets and onions,
  • the compound of the formula (I) is particularly suitable for combating the following species from the family of fast beetles (Elateridae):
  • the compound of the formula (I) is particularly suitable for combating the following species of the family of the spur cicadas (Delphacidae): Laodelphax striatellus in rice,
  • the compound of the formula (I) is particularly suitable for controlling the following species from the family of the dwarf cicadas (Cicadellidae): Nephotettix cincticeps in rice,
  • the compound of the formula (I) is particularly suitable for controlling the following species of the family of white flies (Alcyrodidae). Bemisia tabaci, Bemisia argentifolu and Trialeurodes vaporariorum
  • the compound of the formula (I) is particularly suitable for controlling the following species from the order of the fringed wing (Thysanoptera):
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with 9 parts by weight of empty formulation and the amount of solvent required, depending on the state of matter of the active substance. The preparation of active compound thus prepared is then dried. Depending on the desired application rate, the calculated amount of the preparation of active compound is weighed in accordance with the prepared, weighed seed quantity.
  • onion seed (Allium cepa) is pickled with the preparation of active compound and sown in sandy loam (50 grains / pot, at least 2 pots / variant). After about 3 weeks, the onion plants are infected with larvae of the onion fly ⁇ Hylemya antiqua). After 7-14 days the kill is determined in%. 100% means> that all fly larvae have been killed; 0% means that no fly larvae have been killed. - -
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with 9 parts by weight of empty formulation and the amount of solvent required, depending on the state of matter of the active substance. The preparation of active compound thus prepared is then dried. Depending on the desired application rate, the calculated amount of the preparation of active compound is weighed in accordance with the prepared, weighed seed quantity.
  • Test plant ZEAMI (Grain corn)
  • active compound 1 part by weight of active compound is mixed with 4 parts by weight of empty formulation and the amount of solvent required depending on the state of aggregation of the active substance.
  • the preparation of active compound thus prepared is then dried.
  • weighed seed the - - Weighed the calculated amount of the formulation. Adding water, the corn seed is pickled and dried back.
  • the corn is sown in sandy loam. After 3 days, about 40 Diabrotica larvae are placed per pot. In addition to an untreated control with test animals, a control without test animals is included in order to determine the germination capacity of the maize seed. 6-7 days after infection, the effect is determined in% Abbott. 100%> means that all plants have germinated and grown; 0% means that no plant has accumulated.
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with 9 parts by weight of empty formulation and the amount of solvent required, depending on the state of matter of the active substance. The preparation of active compound thus prepared is then dried. Depending on the desired application rate, the calculated amount of the preparation of active compound is weighed in accordance with the prepared, weighed seed quantity.
  • cotton seed ⁇ Gossypium hirsutum is pickled with the preparation of active compound and sown in sandy loam (1 grain / pot, at least 3 pots / variety). After about 2 weeks, the cotton plants are infected with the cotton aphid (Aphis gossypii). After 7 days the kill is determined in%. 100% means> that all aphids have been killed; 0% means that no aphids have been killed.
  • Solvent acetone as required To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with 9 parts by weight of empty formulation and the amount of solvent required depending on the physical state of the active substance. The preparation of active compound thus prepared is then dried. Depending on - - The desired application rate is weighed according to the prepared, weighed seed amount, the calculated amount of the preparation of active compound.
  • winter barley seed (Hordeum vulgare) is pickled with the active ingredient preparation and seeded in sandy loam (10 grains / pot, at least 2 pots / variant). After about 1 week, the barley plants are infected with a mixed population of large cereal aphid (Metopolophium dirhodum).
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • Cotton plants (Gossypium hirsutum) are grown in loamy sand and poured in the 1-2 leaf stage with an active compound preparation of the desired concentration. After one week, a mixed thrips population (Frankliniella occidentalis) is infected.
  • Nilaparvata lugens test, seed application (NILALU S)
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with 9 parts by weight of empty formulation and the amount of solvent required depending on the state of matter of the active substance.
  • the preparation of active compound thus prepared is dried.
  • the calculated amount of the preparation of active compound is weighed in accordance with the prepared, weighed seed quantity.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, whereby the volume of the earth is forced into the vessel. It must be ensured that a concentration of 40 ppm emulsifier is not exceeded in the soil. To prepare further test concentrations, it is diluted with water.
  • Savoy cabbage plants (Brassica oleraced) in soil pots infested with all stages of the Green Peach aphid (Myzus persicae) are infused with an active substance preparation of the desired concentration.
  • Diabrotica balteata - soil treatment (DIABBA B)
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active ingredient is dissolved with solvent and emulsifier in the ratio 4: 1 and diluted with water to the desired concentration.
  • This preparation of active compound is mixed with soil.
  • For each concentration fill two 250 ml pots with treated soil and sow 5 corn kernels (Zea mays). After 3 days approximately 40 L2 larvae of the corn rootworm ⁇ Diabrotica balteata) are placed on the surface of the earth.
  • the efficiency is calculated from the number of accrued maize plants. 100% means that all 5 plants have germinated and grown; 0% means that no plant has accumulated.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg a.i./ml) with water. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Cotton plants (Gossypium hirsutum) in the 1.-2. Leaf stage in Erdtmün be poured with an active compound preparation of the desired concentration. One week after drenching, the plants are infected with a mixed population of cotton aphid ⁇ Aphis gossypii). - -
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • HELIAR D Heliothis armigera - Drench Test
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% is first prepared with acetone + emulsifier (4 + 1) and then with water up to a concentration of 1000 ppm (1 mg ai / ml). refilled. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Soybean plants (Glycine max) in pots in the 1st-2nd Leaf stage are cast with an active compound preparation of the desired concentration. Two weeks after drenching, a staple with 3-5 L2 larvae of the cotton budworm ⁇ Heliothis armigera) is attached to the middle of the youngest, fully developed leaf.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg ai / ml) with water. By dilution of this stock solution with - -
  • Barley plants (Hordeum vulgare) in earth pots in the 1.-2.
  • Leaf stage are cast with an active compound preparation of the desired concentration. After 1 week, a mixed population infects the oat aphid ⁇ Rhopalosiphum padi).
  • a suitable preparation of active compound 1 part by weight of active compound is dissolved in an amount of solvent adapted to the physical state of the active substance. 4 parts by weight of blank formulation are added, mixed with the active substance solution and the resulting active ingredient preparation is dried. Depending on the desired application rate, the calculated amount of the preparation of active compound is weighed in accordance with the prepared, weighed seed quantity.
  • winter barley seed ⁇ Hordeum vulgare is stained with the preparation of active compound and sown in sandy loam (10 grains / pot, at least 2 pots / variant). After about 1 week - The barley plants (1st-2nd leaf stage) are infected with a mixed population of the oxtail louse (Rhopalosiphum padi).
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • Phaedon cochleariae - Drench test (PHAECO D)
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg a.i./ml) with water. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Cabbage plants (Brassica oleracea) in earth pots in the 1st-2nd cent. Leaf stage, are cast with an active compound preparation of the desired concentration. Two weeks after drenching, a staple with 3-5 L2 larvae of the horse radish beetle ⁇ Phaedon cochleariae) is attached to the middle of the youngest, fully developed leaf.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether - -
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg a.i./ml) with water. By diluting this stock solution with water, the desired test concentrations are obtained, taking into account the volume of the earth into which it is reduced.
  • Rice plants (Oryza sativa) in the 1.-2.
  • Leaf stage (about 14 days after sowing), are cast with an active compound preparation of the desired concentration.
  • 1 week after Drenchen the uppermost leaves (up to approach 1st leaf) of the rice plants are cut off. 8-10 equally sized rice leaves are placed in the middle of a Petri dish on wet filter paper and infected with 10 LI larvae of the striped rice borer (Chilo suppressalis).
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% is first prepared with acetone + emulsifier (4 + 1) and then with water up to a concentration of 1000 ppm (1 mg ai / ml). refilled. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Cotton plants (Gossypium hirsutum) in the 1.-2.
  • Leaf stage in Erdt mün be poured with an active compound preparation of the desired concentration. One week after drenching, the plants are infected with the green peach aphid ⁇ Myzus persicae).
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg a.i./ml) with water. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Cabbage plants (Brassica oleracea) in earth pots in the 1st-2nd cent. Leaf stage, are cast with an active compound preparation of the desired concentration.
  • a staple with 3-5 L2 larvae of the veil moth ⁇ Plutella xylostella) is attached to the middle of the youngest, fully developed leaf.
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg ai / ml) with water. By dilution of this stock solution with - -
  • Potato plants Solanum tuberosum
  • Plants in soil pots in the 1st-2nd Leaf stage are cast with an active compound preparation of the desired concentration.
  • the citrus louse Plantococcus citri
  • the citrus louse is infected with a mixed population.
  • Nilaparvata lusens - Drench test (NILALU D)
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg a.i./ml) with water. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Rice plants (Oryza sativa) are infused with the preparation of active ingredient (2 pots / variant) and after 3 days infected with a mixed population of brown-backed rice leafhopper (Nilaparvata lugens).
  • Neyhotettix cincticeys - Drench Test (NEPHCI D)
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% is first prepared with acetone + emulsifier (4 + 1) and then with water up to a concentration of 1000 ppm (1 mg ai / ml). refilled. By diluting this stock solution with water, the desired test concentrations are obtained, taking into account the volume of the earth into which it is reduced.
  • Rice plants (Oryza sativa) are infused with the active ingredient preparation (2 pots / variant) and after 3 days infected with a mixed population of green rice leafhopper (Nephotettix cincticeps).
  • Nephotettix cincticeps test seed application (NEPHCI S)
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with 9 parts by weight of empty formulation and the amount of solvent required depending on the state of matter of the active substance.
  • the preparation of active compound thus prepared is dried.
  • the calculated amount of the preparation of active compound is weighed in accordance with the prepared, weighed seed quantity.
  • rice seed (Oryza sativa) is stained with the preparation of active compound and seeded in sandy loam (10 grains / pot, at least 2 pots / variant). After 1 week, the rice plants are infected with a mixed population of green rice leafhopper (Nephotettix cincticeps).
  • Example 22 Aphis glycines - Test, Seed Application (APHIGY S)
  • soybean seed (Glycine max) is pickled with the preparation of active compound and sown in sandy loam (1 grain / pot, at least 3 pots / variant). After 1 week, the soybean plants are infected with a mixed population of the soybean aphid (Aphis glycines).
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a laboratory formulation in the range of 0.05-5% with acetone + emulsifier (4 + 1) is first prepared and then made up to a concentration of 100 ppm (1 mg a.i./ml) with water. By diluting this stock solution with water, the desired test concentrations are obtained, whereby the volume of the soil into which it is restricted must also be taken into account.
  • Corn plants (Zea mays) are infused with an active compound preparation of the desired concentration and after 3 days infected with larvae of the green rice bug (Nezara viridula). After 7 days, the phytoprotective effect against feeding in% is determined. 100% means that no damage can be seen; 0% means that the damage to the treated leaves is the same as the untreated control.
  • maize seed (Zea mays) is stained with the preparation of active compound and sown in sandy loam soil (1 grain / pot with 50 ml of soil volume, at least 2 pots / V variant).
  • the maize plants are infected with larvae of the green rice bug ⁇ Nezara viridula). After 5 days, the phytoprotective effect is determined in%. 100% means that no damage can be seen. 0% means that the damage to the treated plants corresponds to that of the untreated control.

Abstract

Die bekannte Verbindung der Formel (I) eignet sich hervorragend für die Behandlung von Saatgut bestimmter Kulturen zum Schutz vor speziellen Schädlingen und zur Bekämpfung tierischer Pflanzenschädlinge durch Aufbringen auf den Boden um die Pflanze.

Description

- -
Wirkstoff für die Saatgut- und Bodenbehandlung
Die vorliegende Anmeldung betrifft die Verwendung eines bekannten Wirkstoffs für die Behandlung von Saatgut.
Sie betrifft weiterhin die Bekämpfung von tierischen Pflanzenschädlingen durch das Aufbringen des bekannten Wirkstoffs auf den Boden.
Sie betrifft ferner die Verwendung des bekannten Wirkstoffs zur Bekämpfung bestimmter Pflanzenschädlinge.
Die Verbindung der Formel (I)
Figure imgf000002_0001
und seine Herstellung sind aus EP 0 268 915 A2 bekannt. Vergleiche auch WO 2012/029672 AI, WO 2013/031671 AI, EP 2 628 389 AI und EP 2 631 235 A2.
Strukturell ähnliche Verbindungen wurden bereits in EP 432 600 A2 als Herbizid wirksame Verbindungen beschrieben.
Jetzt wurde gefunden, dass die bekannte Verbindung der Formel (I) sich hervorragend für die Behandlung von Saatgut bestimmter Kulturen zum Schutz vor speziellen Schädlingen eignet.
Ein großer Teil des durch Schädlinge verursachten Schadens an Kulturpflanzen entsteht bereits durch den Befall des Saatguts während der Lagerung und nach dem Einbringen des Saatguts in den Boden sowie während und unmittelbar nach der Keimung der Pflanzen. Diese Phase ist besonders kritisch, da die Wurzeln und Sprosse der wachsenden Pflanze besonders empfindlich sind und bereits ein geringer Schaden zum Absterben der ganzen Pflanze führen kann. Es besteht daher ein insbesondere großes Interesse daran, das Saatgut und die keimende Pflanze durch den Einsatz geeigneter Mittel zu schützen.
Saatgutbehandlung
Die Bekämpfung von tierischen Schädlingen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufriedenstellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu - - entwickeln, die das zusätzliche Ausbringen von Pflanzenschutzmitteln bei der Lagerung, nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen oder zumindest deutlich verringern. Es ist weiterhin erstrebenswert, die Menge des eingesetzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch Tierische Schädlinge bestmöglich geschützt werden, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen Insektiziden bzw. nematiziden Eigenschaften schädlingsresistenter bzw. - toleranter transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und der keimenden Pflanze bei einem minimalen Aufwand an Pflanzenschutzmitteln zu erreichen. Bekanntlich müssen Wirkstoffe, die für die Behandlung von Saatgut oder zur Bekämpfung tierischer Pflanzenschädlinge durch Aufbringen auf den Boden um die Pflanze verwendbar sind, besondere Anforderungen erfüllen, die sich nicht unmittelbar aus der chemischen Struktur der Wirkstoffe ableiten lassen.
Ein Beispiel hierfür sind die besonderen Anforderungen an die physikalisch-chemischen Eigenschaften eines Wirkstoffes, damit es sowohl zu einer direkten Kontaktwirkung gegen Bodenschädlinge als auch zu einer Aufnahme in die Pflanze bzw. systemischen Translokation in der Pflanze kommt (indirekte Frasswirkung gegen Blattschädlinge). Systemische Insektizide Wirkstoffe können die junge Pflanze vorbeugend vor Befall durch tierische Frühschädlinge auch an oberirdischen Pflanzenteilen und später auftretenden Sprossschädlingen einschließlich der Virusvektoren schützen (R. Altmann, Pflanzenschutz- Nachrichten Bayer 44, 1991, 159-174). Der Wirkstoff sollte beispielsweise hinreichend wasserlöslich sein. Die Lipophilie des Wirkstoffs sollte in einem moderaten Bereich liegen, um auch über eine längere Zeit eine ausreichende Konzentration und eine gleichmäßige Verteilung im Wurzelbereich der Jungpflanze zu ermöglichen und um einen Hof um die Rhizosphäre zu bilden. Auch ist eine gewisse Mobilität des Wirkstoffes erforderlich, da primär nur der junge Teil des Wurzelsystems (Wurzelhaare) zur Aufnahme befähigt ist. Der mikrobielle Abbau (Metabolismus) sollte darüber hinaus in einem moderaten Bereich liegen, damit der Wirkstoff über einen verlängerten Zeitraum in der erforderlichen Dosis für die Pflanze verfügbar ist (P. C. Kearney, D. R. Shelton, W. C. Koskinen, in Encyclopedia of Agrochemicals, J. R. Plimmer, D. W. Gammon, N. N. Ragsdale (Eds.), Wiley-Interscience, Vol. 3, 2003, 1421-1441). Eine ausreichende Persistenz des Wirkstoffs im Boden wird u.a. durch Adsorption an organischen und anorganischen Bodenbestandteilen, durch bodenständige Bakterien, den pH Wert des Bodens und dort vorkommende Enzyme bestimmt (M. A. Tabatabi, in Encyclopedia of Agrochemicals, J. R. Plimmer, D. W. Gammon, N. N. Ragsdale (Eds.), Wiley-Interscience, Vol. 3, 2003, 1451-1462); R. Bromilow, in Encyclopedia of Agrochemicals, J. R. Plimmer, D. W. Gammon, N. N. Ragsdale (Eds.), Wiley-Interscience, Vol. 3, 2003, 1463-1480; D. J. Arnold, G. G. Briggs, in Progress in Pesticide Biochemistry and Toxicology, D. H. Hutson, T. R. Roberts (Eds.), Vol. 7, Environmental Fate of Pesticides, John Wiley and Sons, Chichester, U. K., 1990, 101-122; E. A. Pauzl, A. D. McLaren, in Soil Biochemistry, E. A. Paul, A. D. McLaren (Eds.), Vol. 3, Marcel Dekker, New York, 1975, 1-3). Diese - -
Parameter unterscheiden sich bei Böden verschiedener Herkunft. Auch sollte eine Grundwasserkontaminierung (Leaching) vermieden werden, d.h. eine Auswaschung des Wirkstoffs in tiefere Bodenschichten durch Regen oder Bewässerung. Schließlich darf der Wirkstoff für die Pflanze nicht toxisch sein, d.h. es dürfen keine phytotoxischen Konzentrationen in den Pflanzenzellen erreicht werden (W. Andersch, M. Schwarz, Pflanzenschutz-Nachrichten Bayer 56, 2003, 147-172). Nur dann ist eine pflanzenverträgliche Aufnahme in die Pflanzen möglich.
Zur Nutzung als Saatgutbehandlungsmittel muss der Wirkstoff weitere besondere Anforderungen wie Ablösung vom Saatgut, moderate Verteilung im Boden und Pflanzenverträglichkeit erfüllen.
Die Pflanzenverträglichkeit muss zur Nutzung eines Wirkstoffes als Saatgutbehandlungsmittel einen besonders hohen Standard erfüllen, da der Pflanzenembryo oder der junge Setzling relativ hohen lokalen Konzentrationen der Wirkstoffe ausgesetzt ist. Jede Verzögerung der Saatgutkeimung oder des Austreibens der Setzlinge erhöht das Risiko, dass das Saatgut oder der Setzling von Krankheitsauslösenden Organismen oder Bodenschädlingen angegriffen wird. Ferner verkürzt eine Verzögerung des Austreibens die Wachstumsperiode der Pflanze und kann zu reduziertem Ertrag führen (A. Jonitz, N. Leist Pflanzenschutz-Nachrichten Bayer 56, 2003, 147-172). Die Eigenart einiger Wirkstoffe, zusätzlich das Längenwachstum des Hypokotyls zu reduzieren, kann sich hierbei gravierend auf den Feldbestand auswirken (F. Brendler Kurier Heft 2, 2006, 4-7).
Die vorliegende Erfindung bezieht sich insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen, indem das Saatgut mit der Verbindung der Formel (I) behandelt wird. Das erfindungsgemäße Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen umfasst ein Verfahren, in dem das Saatgut gleichzeitig in einem Vorgang oder sequentiell mit dem Wirkstoff der Formel (I) und einem oder mehreren Mischungspartner behandelt wird. Es umfasst auch ein Verfahren, in dem das Saatgut zu unterschiedlichen Zeiten mit dem Wirkstoff der Formel (I) und einem oder mehreren Mischungspartner behandelt wird.
Die Erfindung bezieht sich ebenfalls auf die Verwendung der Verbindung der Formel (I) zur Behandlung von Saatgut zum Schutz des Saatguts und der daraus entstehenden Pflanze vor tierischen Schädlingen.
Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor tierischen Schädlingen mit der Verbindung der Formel (I) behandelt wurde. Die Erfindung bezieht sich auch auf Saatgut, welches zur gleichen Zeit mit dem Wirkstoff der Formel (I) und einem oder mehreren Mischungspartnern behandelt wurde. Die Erfindung bezieht sich weiterhin auf Saatgut, welches zu unterschiedlichen Zeiten mit dem Wirkstoff der Formel (I) und einem oder mehreren Mischungspartnern behandelt wurde. Bei Saatgut, welches zu unterschiedlichen Zeiten mit dem Wirkstoff der Formel (I) und einem oder mehreren Mischungspartnern behandelt wurde, können die einzelnen Wirkstoffe des erfindungsgemäßen - -
Mittels in unterschiedlichen Schichten auf dem Saatgut enthalten sein. Dabei können die Schichten, die den Wirkstoff der Formel (I) und einen oder mehrere Mischungspartner enthalten, gegebenenfalls durch eine Zwischenschicht getrennt sein. Die Erfindung bezieht sich auch auf Saatgut, bei dem der Wirkstoff der Formel (I) und ein oder mehrere Mischungspartner als Bestandteil einer Umhüllung oder als weitere Schicht oder weitere Schichten zusätzlich zu einer Umhüllung aufgebracht sind.
Ferner bezieht sich die Erfindung auf Saatgut, welches nach der Behandlung mit der Verbindung der Formel (I) einem Filmcoating - Verfahren unterzogen wird, um Staubabrieb am Saatgut zu vermeiden.
Einer der Vorteile der vorliegenden Erfindung ist es, dass aufgrund der besonderen systemischen Eigenschaften der erfindungsgemäßen Mittel die Behandlung des Saatguts mit diesen Mitteln nicht nur das Saatgut selbst, sondern auch die daraus hervorgehenden Pflanzen nach dem Auflaufen vor tierischen Schädlingen schützt. Auf diese Weise kann die unmittelbare Behandlung der Kultur zum Zeitpunkt der Aussaat oder kurz danach entfallen.
Ein weiterer Vorteil ist darin zu sehen, dass durch die Behandlung des Saatguts mit der Verbindung der Formel (I) Keimung und Auflauf des behandelten Saatguts gefördert werden können. Ebenso ist es als vorteilhaft anzusehen, dass die Verbindung der Formel (I) insbesondere auch bei transgenem Saatgut eingesetzt werden können.
Zu nennen ist auch, dass die Verbindung der Formel (I) in Kombination mit Mitteln der Signaltechnologie eingesetzt werden können, wodurch beispielhaft eine bessere Besiedlung mit Symbionten, wie zum Beispiel Rhizobien, Mycorrhiza und/oder endophytischen Bakterien oder Pilzen, stattfindet und/oder es zu einer optimierten Stickstofffixierung kommt.
Die erfindungsgemäßen Mittel eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Gartenbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Getreide (z. B. Weizen, Gerste, Roggen, Hirse, Triticale und Hafer), Mais, Baumwolle, Soja, Reis, Kartoffeln, Sonnenblume, Kaffee, Tabak, Canola, Raps, Rübe (z.B. Zuckerrübe und Futterrübe), Erdnuss, Gemüse (z. B. Tomate, Gurke, Bohne, Kohlgewächse, Zwiebeln und Salat), Obstpflanzen, Rasen und Zierpflanzen. Besondere Bedeutung kommt der Behandlung des Saatguts von Getreide (wie Weizen, Gerste, Roggen und Hafer), Mais, Soja, Baumwolle, Canola, Raps und Reis zu.
Wie vorstehend bereits erwähnt, kommt auch der Behandlung von transgenem Saatgut mit der Verbindung der Formel (I) eine besondere Bedeutung zu. Dabei handelt es sich um das Saatgut von Pflanzen, die in der Regel zumindest ein heterologes Gen enthalten, das die Expression eines Polypeptids mit insbesondere Insektiziden bzw. nematiziden Eigenschaften steuert. Die heterologen Gene in transgenem Saatgut können dabei aus Mikro- Organismen wie Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Die vorliegende Erfindung eignet sich besonders für die Behandlung von transgenem Saatgut, das zumindest ein - - heterologes Gen enthält, das aus Bacillus sp. stammt. Besonders bevorzugt handelt es sich dabei um ein heterologes Gen, das aus Bacillus thuringiensis stammt.
Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen Insektiziden bzw. nematiziden Eigenschaften schädlingsresistenter bzw. - toleranter transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und der keimenden Pflanze bei einem minimalen Aufwand an Schädlingsbekämpfungsmitteln zu erreichen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Ab Wehrfähigkeit der Pflanzen gegen tierische und mikrobielle Schädlinge, wie-Insekten, Spinnentiere, Nematoden, Milben, Schnecken, bewirkt z.B. durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden, ferner eine erhöhte Ab Wehrfähigkeit der Pflanzen gegen pflanzenpathogene Pilze, Bakterien und/oder Viren, bewirkt z.B. durch Systemisch Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine, sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis, Triticale, Gerste, Roggen, Hafer), Mais, Soja, Kartoffel, Zuckerrüben, Zuckerrohr, Tomaten, Erbsen und andere Gemüsesorten, Baumwolle, Tabak, Raps, sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Weizen, Reis, Kartoffel, Baumwolle, Zuckerrohr, Tabak und Raps, Canola, besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehrfähigkeit der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken.
Im Rahmen der vorliegenden Erfindung wird die Verbindung der Formel (I) allein oder in einer geeigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem es so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. - -
Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem lagerfähigen Feuchtigkeitsgehalt getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde, zum Beispiel Priming.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 AI, WO 2002/080675 AI, WO 2002/028186 A2.
Die erfindungsgemäß verwendbare Verbindung der Formel (I) kann in die üblichen Beizmittel- Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen. Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Verbindung der Formel (I) mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diisopropyl- oder Diisobutyl-naphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen - - üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphenol- polyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat- Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat.
Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäurederivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Als Gibberelline, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen vorzugsweise die Gibberelline AI, A3 (= Gibberellinsäure), A4 und A7 infrage, besonders bevorzugt verwendet man die Gibberellinsäure. Die Gibberelline sind bekannt (vgl. R. Wegler„Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", Bd. 2, Springer Verlag, 1970, S. 401-412).
Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art eingesetzt werden. So lassen sich die Konzentrate oder die daraus durch Verdünnen mit Wasser erhältlichen Zubereitungen einsetzen zur Beizung des Saatgutes von Getreide, wie Weizen, Gerste, Roggen, Hafer und Triticale, sowie des Saatgutes von Mais, Reis, Raps, Canola, Erbsen, Bohnen, Baumwolle, Sonnenblumen, Soja und Rüben oder auch von Gemüsesaatgut der verschiedensten Natur. Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder deren verdünnte Zubereitungen können auch zum Beizen von Saatgut transgener Pflanzen eingesetzt werden. Dabei können im - -
Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im Einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer im diskontinuierlichem oder kontinuierlichem Betrieb gibt, die jeweils gewünschte Menge an Beizmittel-Formulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an. Die Aufwandmenge an den erfindungsgemäß verwendbaren Beizmittel-Formulierungen kann innerhalb eines größeren Bereiches variiert werden. Sie richtet sich nach dem jeweiligen Gehalt der Verbindung der Formel (I) in den Formulierungen und nach dem Saatgut. Die Aufwandmengen für die Verbindung der Formel (I) liegen im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 15 g pro Kilogramm Saatgut. Mischungen
Die Verbindung der Formel (I) kann als solche oder in ihren Formulierungen auch in Mischung mit einem oder mehreren geeigneten Fungiziden (siehe die Aufzählung weiter unten), Bakteriziden, Akariziden, Molluskiziden, Nematiziden, Insektiziden (siehe die Aufzählung weiter unten), Mikrobiologika, Nützlingen, Herbizide, Düngemitteln, Vogelrepellentien, Phytotonics, Sterilantien, Synergisten, Safenern, Semiochemicals und/oder Pflanzenwachstumsregulatoren verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern, die Wirkdauer zu verlängern, die Wirkgeschwindigkeit zu steigern, Repellenz zu verhindern oder Resistenzentwicklungen vorzubeugen. Desweiteren können solche Wirkstoffkombinationen das Pflanzenwachstum und/oder die Toleranz gegenüber abiotischen Faktoren wie z. B. hohen oder niedrigen Temperaturen, gegen Trockenheit oder gegen erhöhten Wasser- bzw. Bodensalzgehalt verbessern. Auch lässt sich das Blüh- und Fruchtverhalten verbessern, die Keimfähigkeit und Bewurzelung optimieren, die Ernte erleichtern und Ernteerträge steigern, die Reife beeinflussen, die Qualität und/oder den Ernährungswert der Ernteprodukte steigern, die Lagerfähigkeit verlängern und/oder die Bearbeitbarkeit der Ernteprodukte verbessern.
Weiterhin kann die Verbindung der Formel (I) als solche oder in ihren (handelsüblichen) Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit weiteren Wirkstoffen oder Semiochemicals, wie Lockstoffen und/oder Vogelrepellentien und/oder Pflanzenaktivatoren und/oder Wachstumsregulatoren und/oder Düngemitteln und/oder Synergisten vorliegen. Gleichfalls können die Verbindung der Formel (I) und ihre Zusammensetzungen in Mischungen mit Mitteln zur Verbesserung der Pflanzeneigenschaften wie zum Beispiel Wuchs, Ertrag und Qualität des Erntegutes eingesetzt werden. - -
In einer besonderen erfindungsgemäßen Ausführungsform liegt die Verbindung der Formel (I) oder ihre Zusammensetzungen in handelsüblichen Formulierungen bzw. in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vor und werden als Insektizide eingesetzt. Unter Synergisten sind solche Verbindungen gemeint, die die Wirkung der Verbindung der Formel (I) steigern, ohne dass der Synergist eine insektizide/akarizide/nematizide Eigenwirkung aufweist.
Geeignete Mischpartner sind folgende
Insektizide / Akarizide / Nematizide
Die hier mit ihrem „common name" genannten Wirkstoffe sind bekannt und beispielsweise im Pestizidhandbuch („The Pesticide Manual" 16th Ed., British Crop Protection Council 2012) beschrieben oder im Internet recherchierbar (z.B. http://www.alanwood.net/pesticides).
(1) Acetylcholinesterase (AChE) Inhibitoren, wie beispielsweise Carbamate, z.B. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC und Xylylcarb oder organophosphate, z.B. Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Cadusafos, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Coumaphos, Cyanophos, Demeton-S-methyl, Diazinon, Dichlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazate, Heptenophos, Imicyafos, Isofenphos, Isopropyl 0-(methoxyaminothio- phosphoryl) salicylat, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimiphos-methyl, Profenofos, Propetamphos, Prothiofos, Pyraclofos, Pyridaphenthion, Quinalphos, Sulfotep, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Triclorfon und Vamidothion. (2) GABA-gesteuerte Chlorid-Kanal-Antagonisten, wie beispielsweise Cyclodien-organochlorine, z.B. Chlordane und Endosulfan oder Phenylpyrazole (Fiprole), z.B. Ethiprole und Fipronil.
(3) Natrium-Kanal-Modulatoren / Spannungsabhängige Natrium-Kanal-Blocker, wie beispielsweise Pyrethroide, z.B. Acrinathrin, Allethrin, d-cis-trans Allethrin, d-trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S-cyclopentenyl Isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta- Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(lR)-trans-Isomere], Deltamethrin, Empenthrin [(EZ)-(lR)-Isomere), Esfenvalerate, Etofenprox, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, tau-Fluvalinate, Halfenprox, Imiprothrin, Kadethrin, Permethrin, Phenothrin [(lR)-trans-Isomer), Prallethrin, Pyrethrine (pyrethrum), Resmethrin, Silafluofen, Tefluthrin, - -
Tetramethrin, Tetramethrin [(1 )- Isomere)], Tralomethrin und Transfluthrin oder DDT oder Methoxychlor.
(4) Nikotinerge Acetylcholin-Rezeptor (nAChR) Agonisten, wie beispielsweise Neonikotinoide, z.B. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid und Thiamethoxam oder Nikotin oder Sulfoxaflor.
(5) Nikotinerge Acetylcholin-Rezeptor (nAChR) allosterische Aktivatoren, wie beispielsweise Spinosine, z.B. Spinetoram und Spinosad.
(6) Chlorid-Kanal-Aktivatoren, wie beispielsweise Avermectine/Milbemycine, z.B. Abamectin, Emamectin-benzoat, Lepimectin und Milbemectin. (7) Juvenilhormon-Imitatoren, wie beispielsweise Juvenilhormon- Analoge, z.B. Hydroprene, Kinoprene und Methoprene oder Fenoxycarb oder Pyriproxyfen.
(8) Wirkstoffe mit unbekannten oder nicht spezifischen Wirkmechanismen, wie beispielsweise
Alkylhalide, z.B. Methylbromid und andere Alkylhalide; oderChloropicrin oder Sulfurylfluorid oder Borax oder Brechweinstein. (9) Selektive Fraßhemmer, z.B. Pymetrozine oder Flonicamid.
(10) Milbenwachstumsinhibitoren, z.B. Clofentezine, Hexythiazox und Diflovidazin oder Etoxazole.
(11) Mikrobielle Disruptoren der Insektendarmmembran, z.B. Bacillus thuringiensis Subspezies israelensis, Bacillus sphaericus, Bacillus thuringiensis Subspezies aizawai, Bacillus thuringiensis Subspezies kurstaki, Bacillus thuringiensis Subspezies tenebrionis und Bacillus thuringiensis Proteine: Cryl Ab, Cryl Ac, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl .
(12) Inhibitoren der oxidativen Phosphorylierung, ATP-Disruptoren, wie beispielsweise Diafenthiuron oder Organozinnverbindungen, z.B. Azocyclotin, Cyhexatin und Fenbutatin-oxid oder Propargite oder Tetradifon.
(13) Entkoppler der oxidativen Phoshorylierung durch Unterbrechung des H-Protongradienten, wie beispielsweise Chlorfenapyr, DNOC und Sulfluramid.
(14) Nikotinerge Acetylcholin-Rezeptor-Antagonisten, wie beispielsweise Bensultap, Cartap- hydrochlorid, Thiocyclam und Thiosultap-Natrium.
(15) Inhibitoren der Chitinbiosynthese, Typ 0, wie beispielsweise Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron und Triflumuron. - -
(16) Inhibitoren der Chitinbiosynthese, Typ 1, wie beispielsweise Buprofezin.
(17) Häutungsstörende Wirkstoffe, Dipteran, wie beispielsweise Cyromazine.
(18) Ecdyson-Rezeptor Agonisten, wie beispielsweise Chromafenozide, Halofenozide, Methoxyfenozide und Tebufenozide. (19) Oktopaminerge Agonisten, wie beispielsweise Amitraz.
(20) Komplex-III-Elektronentransportinhibitoren, wie beispielsweise Hydramethylnon oder Acequinocyl oder Fluacrypyrim.
(21) Komplex-I-Elektronentransportinhibitoren, beispielsweise METI-Akarizide, z.B. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad und Tolfenpyrad oder Rotenone (Derris). (22) Spannungsabhängige Natriumkanal-Blocker, z.B. Indoxacarb oder Metaflumizone.
(23) Inhibitoren der Acetyl-CoA-Carboxylase, wie beispielsweise Tetron- und Tetramsäurederivate, z.B. Spirodiclofen, Spiromesifen und Spirotetramat.
(24) Komplex-IV-Elektronentransportinhibitoren, wie beispielsweise Phosphine, z.B. Aluminiumphosphid, Calciumphosphid, Phosphin und Zinkphosphid oder Cyanid. (25) Komplex-II-Elektronentransportinhibitoren, wie beispielsweise Cyenopyrafen und Cyflumetofen.
(28) Ryanodinrezeptor-Effektoren, wie beispielsweise Diamide, z.B. Chlorantraniliprole, Cyantraniliprole und Flubendiamide,
Weitere Wirkstoffe wie beispielsweise Afidopyropen, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Bromopropylate, Chinomethionat, Cryolite, Dicofol, Diflovidazin, Fluensulfone, Flometoquin, Flufenerim, Flufenoxystrobin, Flufiprole, Fluopyram, Flupyradifurone, Fufenozide, Heptafluthrin, Imidaclothiz, Iprodione, Meperfluthrin, Paichongding, Pyflubumide, Pyrifluquinazon, Pyriminostrobin, Tetramethylfluthrin und lodmethan; desweiteren Präparate auf Basis von Bacillus firmus (1-1582, BioNeem, Votivo) , sowie folgende Verbindungen: 3 - Brom-N- {2-brom-4-chlor-6-[(l -cyclopropylethyl)carbamoyl]phenyl}-l -(3-chlorpyridin-2-yl)-lH- pyrazol-5-carboxamid (bekannt aus WO2005/077934) und l- {2-Fluor-4-methyl-5- [(2,2,2- trifluorethyl)sulfinyl]phenyl} -3-(trifluormethyl)- 1 H- 1 ,2,4-triazol-5-amin (bekannt aus
WO2006/043635), {l'-[(2E)-3-(4-Chlorphenyl)prop-2-en-l-yl]-5-fluorspiro[indol-3,4'-piperidin]-l(2H)- yl}(2-chlorpyridin-4-yl)methanon (bekannt aus WO2003/106457), 2-Chlor-N-[2- {l-[(2E)-3-(4- chlorphenyl)prop-2-en-l-yl]piperidin-4-yl}-4-(trifluormethyl)phenyl]isonicotinamid (bekannt aus WO2006/003494), 3-(2,5-Dimethylphenyl)-4-hydroxy-8-methoxy-l,8-diazaspiro[4.5]dec-3-en-2-on - -
(bekannt aus WO2009/049851), 3-(2,5-Dimethylphenyl)-8-methoxy-2-oxo-l,8-diazaspiro[4.5]dec-3-en-
4- yl-ethylcarbonat (bekannt aus WO2009/049851), 4-(But-2-in-l-yloxy)-6-(3,5-dimethylpiperidin-l-yl)-
5- fluorpyrimidin (bekannt aus WO2004/099160), 4-(But-2-in-l-yloxy)-6-(3-chlorphenyl)pyrimidin (bekannt aus WO2003/076415), PF1364 (CAS-Reg.No. 1204776-60-2), 4-[5-(3,5-Dichlorphenyl)-5- (trifluormethyl)-4,5-dihydro-l,2-oxazol-3-yl]-2-methyl-N- {2-oxo-2-[(2,2,2-trifluor-ethyl)amino] ethyljbenzamid (bekannt aus WO2005/085216), 4- {5-[3-Chlor-5-(trifluormethyl)phenyl]-5- (trifluormethyl)-4,5-dihydro- 1 ,2-oxazol-3-yl} -N- {2-oxo-2- [(2,2,2-trifluorethyl)amino]ethyl} - 1 - naphthamid (bekannt aus WO2009/002809), Methyl-2-[2-({[3-brom-l-(3-chlorpyridin-2-yl)-lH- pyrazol-5-yl]carbonyl} amino)-5-chlor-3-methylbenzoyl]-2-methylhydrazincarboxylat (bekannt aus WO2005/085216), Methyl-2-[2-( { [3-brom- 1 -(3-chlorpyridin-2-yl)- 1 H-pyrazol-5-yl]carbonyl} amino)-5- cyan-3-methylbenzoyl]-2-ethylhydrazincarboxylat (bekannt aus WO2005/085216), Methyl-2-[2-({[3- brom-l-(3-chlorpyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5-cyan-3-methylbenzoyl]-2- methylhydrazincarboxylat (bekannt aus WO2005/085216), Methyl-2-[3,5-dibrom-2-({[3-brom-l -(3- chlorpyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)benzoyl]-2-ethylhydrazincarboxylat (bekannt aus WO2005/085216), l-(3-Chlorpyridin-2-yl)-N-[4-cyan-2-methyl-6-(methylcarbamoyl)phenyl]-3- {[5- (trifluormethyl)-2H-tetrazol-2-yl]methyl}-lH-pyrazol-5-carboxamid (bekannt aus WO2010/069502), N- [2-(5-Amino-l,3,4-thiadiazol-2-yl)-4-chlor-6-methylphenyl]-3-brom-l-(3-chlo^yridin-2-yl)-lH- pyrazol-5-carboxamid (bekannt aus CN102057925), 3-Chlor-N-(2-cyanpropan-2-yl)-N-[4- (l,l,l,2,3,3,3-heptafluorpropan-2-yl)-2-methylphenyl]phthalamid (bekannt aus WO2012/034472), 8- Chlor-N-[(2-chlor-5-methoxyphenyl)sulfonyl]-6-(trifluormethyl)imidazo[l,2-a]pyridin-2-carboxamid
(bekannt aus WO2010/129500), 4-[5-(3,5-Dichlorphenyl)-5-(trifluormethyl)-4,5-dihydro-l,2-oxazol-3- yl]-2-methyl-N-(l -oxidothietan-3-yl)benzamid (bekannt aus WO2009/080250), 4-[5-(3,5-Dichlor- phenyl)-5-(trifluormethyl)-4,5-dihydro-l,2-oxazol-3-yl]-2-methyl-N-(l-oxidothietan-3-yl)benzamid (bekannt aus WO2012/029672), l-[(2-Chlor-l,3-thiazol-5-yl)methyl]-4-oxo-3-phenyl-4H-pyrido[l,2- a]pyrimidin-l-ium-2-olat (bekannt aus WO2009/099929), l-[(6-Chlorpyridin-3-yl)methyl]-4-oxo-3- phenyl-4H-pyrido[l,2-a]pyrimidin-l-ium-2-olat (bekannt aus WO2009/099929), (5S,8R)-l-[(6- Chlo^yridin-3-yl)methyl]-9-nitro-2,3,5,6,7,8-hexahydro-lH-5,8-epoxyimidazo[l,2-a]azepin (bekannt aus WO2010/069266), (2E)-l-[(6-Chlorpyridin-3-yl)methyl]-N'-nitro-2-pentylidenhydrazin- carboximidamid (bekannt aus WO2010/060231), 4-(3- {2,6-Dichlor-4-[(3,3-dichlorprop-2-en-l- yl)oxy]phenoxy}propoxy)-2-methoxy-6-(trifluormethyl)pyrimidin (bekannt aus CN101337940), N-[2- (tert-Butylcarbamoyl)-4-chlor-6-methylphenyl]-l-(3-chlo^yridin-2-yl)-3-(fluormethoxy)-lH-pyrazol-5- carboxamid (bekannt aus WO2008/134969).
Weiter geeignete Mischpartner sind folgende
Fungizide Die hier mit ihrem "common name" spezifizierten Wirkstoffe sind bekannt, beispielsweise beschrieben im "Pesticide Manual" oder im Internet (beispielsweise: http://www.alanwood.net pesticides). - -
Wenn eine Verbindung in verschiedenen tautomeren Formen vorkommen kann, sind auch diese Formen Gegenstand dieser Anmeldung, auch wenn sie sie nicht in jedem Fall explizit genannt wurden.
(1) Inhibitoren der Ergosterol-Biosynthese, wie beispielsweise (1.1) Aldimorph, (1.2) Azaconazol, (1.3) Bitertanol, (1.4) Bromuconazol, (1.5) Cyproconazol, (1.6) Diclobutrazol, (1.7) Difenoconazol, (1.8) Diniconazol, (1.9) Diniconazol-M, (1.10) Dodemorph, (1.11) Dodemorph Acetat, (1.12) Epoxiconazol, (1.13) Etaconazol, (1.14) Fenarimol, (1.15) Fenbuconazol, (1.16) Fenhexamid, (1.17) Fenpropidin, (1.18) Fenpropimorph, (1.19) Fluquinconazol, (1.20) Flurprimidol, (1.21) Flusilazol, (1.22) Flutriafol, (1.23) Furconazol, (1.24) Furconazol-Cis, (1.25) Hexaconazol, (1.26) Imazalil, (1.27) Imazalil Sulfat, (1.28) Imibenconazol, (1.29) Ipconazol, (1.30) Metconazol, (1.31) Myclobutanil, (1.32) Naftifm, (1.33) Nuarimol, (1.34) Oxpoconazol, (1.35) Paclobutrazol, (1.36) Pefurazoat, (1.37) Penconazol, (1.38) Piperalin, (1.39) Prochloraz, (1.40) Propiconazol, (1.41) Prothioconazol, (1.42) Pyributicarb, (1.43) Pyrifenox, (1.44) Quinconazol, (1.45) Simeconazol, (1.46) Spiroxamin, (1.47) Tebuconazol, (1.48) Terbinafin, (1.49) Tetraconazol, (1.50) Triadimefon, (1.51) Triadimenol, (1.52) Tridemorph, (1.53) Triflumizol, (1.54) Triforin, (1.55) Triticonazol, (1.56) Uniconazol, (1.57) Uniconazol-p, (1.58) Viniconazol, (1.59) Voriconazol, (1.60) l-(4-Chlorphenyl)-2-(lH-l,2,4-triazol-l -yl)cycloheptanol, (1.61) Methyl- 1 -(2,2-dimethyl-2,3-dihydro- 1 H-inden- 1 -yl)- 1 H-imidazol-5-carboxylat, (1.62) N'- {5- (Difluormethyl)-2-methyl-4-[3-(trimethylsilyl)propoxy]phenyl}-N-ethyl-N-methylimidoformamid, (1.63) N-Ethyl-N-methyl-N'- {2-methyl-5-(trifluormethyl)-4-[3-(trimethylsilyl)propoxy]phenyl}imido- formamid und (1.64) 0-[l-(4-Methoxyphenoxy)-3,3-dimethylbutan-2-yl]-lH-imidazol-l -carbothioat, (1.65) Pyrisoxazole.
(2) Inhibitoren der Respiration (Atmungsketten-Inhibitoren), wie beispielsweise (2.1) Bixafen, (2.2) Boscalid, (2.3) Carboxin, (2.4) Diflumetorim, (2.5) Fenfuram, (2.6) Fluopyram, (2.7) Flutolanil, (2.8) Fluxapyroxad, (2.9) Furametpyr, (2.10) Furmecyclox, (2.11) Isopyrazam Mischung des syn-epimeren Razemates 1RS,4SR,9RS und des anti-empimeren Razemates 1RS,4SR,9SR, (2.12) Isopyrazam (anti- epimeres Razemat ), (2.13) Isopyrazam (anti-epimeres Enantiomer 1R,4S,9S), (2.14) Isopyrazam (anti- epimeres Enantiomer 1 S,4R,9R), (2.15) Isopyrazam (syn-epimeres Razemat 1RS,4SR,9RS), (2.16) Isopyrazam (syn-epimeres Enantiomer 1R,4S,9R), (2.17) Isopyrazam (syn-epimeres Enantiomer 1 S,4R,9S), (2.18) Mepronil, (2.19) Oxycarboxin, (2.20) Penflufen, (2.21) Penthiopyrad, (2.22) Sedaxane, (2.23) Thifluzamid, (2.24) l-Methyl-N-[2-(l ,l,2,2-tetrafluorethoxy)phenyl]-3- (trifluormethyl)-lH-pyrazol-4-carboxamid, (2.25) 3-(Difluormethyl)-l -methyl-N-[2-(l,l,2,2- tetrafluorethoxy)phenyl]-lH-pyrazol-4-carboxamid, (2.26) 3-(Difluormethyl)-N-[4-fluor-2-(l , 1,2,3,3, 3- hexafluorpropoxy)phenyl]-l-methyl-lH-pyrazol-4-carboxamid, (2.27) N-[l-(2,4-Dichlorphenyl)-l - methoxypropan-2-yl]-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid, (2.28) 5,8-Difluor-N-[2- (2-fluor-4- {[4-(trifluormethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amin, (2.29) Benzo- vindiflupyr, (2.30) N- [( 1 S,4R)-9-(Dichlormethylen)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5-yl] -3 - (difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid und (2.31) N-[(lR,4S)-9-(Dichlormethylen)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5-yl] -3 -(difluormethyl)- 1 -methyl- 1 H-pyrazol-4-carboxamid, - -
(2.32) 3-(Difluormethyl)-l -methyl-N-(l ,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)-lH carboxamid, (2.33) l,3,5-Trimethyl-N-(l ,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)-lH-pyrazol-4- carboxamid, (2.34) l-Methyl-3-(trifluormethyl)-N-(l ,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)-lH pyrazol-4-carboxamid, (2.35) l-Methyl-3-(trifluormethyl)-N-[(3R)-l,l,3-trimethyl-2,3-dihydro-lH- inden-4-yl] - 1 H-pyrazol-4-carboxamid, (2.36) 1 -Methyl-3 -(trifluormethyl)-N- [(3 S)- 1 , 1 ,3 -trimethyl-2,3 - dihydro-lH-inden-4-yl]-lH-pyrazol-4-carboxamid, (2.37) 3-(Difluormethyl)-l-methyl-N-[(3S)-l,l,3- trimethyl-2,3 -dihydro- 1 H-inden-4-yl] - 1 H-pyrazol-4-carboxamid, (2.38) 3 -(Difluormethyl)- 1 -methyl-N- [(3R)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazol-4-carboxamid, (2.39) 1,3,5-Trimethyl-N- [(3R)- 1 , 1 ,3-trimethyl-2,3-dihydro- 1 H-inden-4-yl] - 1 H-pyrazol-4-carboxamid, (2.40) 1 ,3,5-Trimethyl-N- [(3S)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazol-4-carboxamid, (2.41) Benodanil, (2.42) 2- Chlor-N-(l ,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)pyridine-3-carboxamid, (2.43) Isofetamid
(3) Inhibitoren der Respiration (Atmungsketten-Inhibitoren) am Komplex III der Atmungskette, wie beispielsweise (3.1) Ametoctradin, (3.2) Amisulbrom, (3.3) Azoxystrobin, (3.4) Cyazofamid, (3.5) Coumethoxystrobin, (3.6) Coumoxystrobin, (3.5) Dimoxystrobin, (3.8) Enestroburin, (3.9) Famoxadon, (3.10) Fenamidon, (3.11) Flufenoxystrobin, (3.12) Fluoxastrobin, (3.13) Kresoxim-Methyl, (3.14) Metominostrobin, (3.15) Orysastrobin, (3.16) Picoxystrobin, (3.17) Pyraclostrobin, (3.18) Pyrametostrobin, (3.19) Pyraoxystrobin, (3.20) Pyribencarb, (3.21) Triclopyricarb, (3.22) Trifloxystrobin, (3.23) (2E)-2-(2- {[6-(3-Chlor-2-methylphenoxy)-5-fluorpyrimidin-4-yl]oxy}phenyl)-2- (methoxyimino)-N-methylethanamid, (3.24) (2E)-2-(Methoxyimino)-N-methyl-2-(2- { [( {(1 E)- 1 -[3 - (trifluormethyl)phenyl]ethyliden}amino)oxy]methyl}phenyl)ethanamid, (3.25) (2E)-2-(Methoxyimino)- N-methyl-2- {2- [(E)-( { 1 - [3 -(trifluormethyl)phenyl] ethoxy } imino)methyl]phenyl} ethanamid, (3.26) (2E)-2- {2-[( {[(lE)-l -(3- {[(E)-l-Fluor-2-phenylethenyl]oxy}phenyl)ethyliden]amino}oxy)me- thyl]phenyl} -2-(methoxyimino)-N-methylethanamid, (3.27) (2E)-2- {2-[({[(2E,3E)-4-(2,6-Dichlor- phenyl)but-3-en-2-yliden]amino}oxy)methyl]phenyl} -2-(methoxyimino)-N-methylethanamid, (3.28) 2- Chlor-N-(l ,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)pyridin-3-carboxamid, (3.29) 5-Methoxy-2- methyl-4-(2- {[( {(1E)-1 - [3 -(trifluormethyl)phenyl] ethyliden} amino)oxy]methyl} phenyl)-2,4-dihydro- 3H-l,2,4-triazol-3-on, (3.30) Methyl-(2E)-2- {2-[({cyclopropyl[(4-methoxyphenyl)imino]me- thyl}sulfanyl)methyl]phenyl} -3-methoxyprop-2-enoat, (3.31) N-(3-Ethyl-3,5,5-trimethylcyclohexyl)-3- (formylamino)-2-hydroxybenzamid, (3.32) 2- {2-[(2,5-Dimethylphenoxy)methyl]phenyl} -2-methoxy-N- methylacetamid, (4) Inhibitoren der Mitose und Zellteilung, wie beispielsweise (4.1) Benomyl, (4.2) Carbendazim, (4.3) Chlorfenazol, (4.4) Diethofencarb, (4.5) Ethaboxam, (4.6) Fluopicolid, (4.7) Fuberidazol, (4.8) Pencycuron, (4.9) Thiabendazol, (4.10) Thiophanat-Methyl, (4.11) Thiophanat, (4.12) Zoxamid, (4.13) 5-Chlor-7-(4-methylpiperidin-l-yl)-6-(2,4,6-trifluorphenyl)[l,2,4]triazolo[l,5- ajpyrimidin und (4.14) 3-Chlor-5-(6-chlorpyridin-3-yl)-6-methyl-4-(2,4,6-trifluorphenyl)pyridazin. (5) Verbindungen mit Multisite- Aktivität, wie beispielsweise (5.1) Bordeauxmischung, (5.2) Captafol, (5.3) Captan, (5.4) Chlorthalonil, (5.5) Kupferzubereitungen wie Kupferhydroxid, (5.6) Kupfernaphthenat, (5.7) Kupferoxid, (5.8) Kupferoxychlorid, (5.9) Kupfersulfat, (5.10) Diehlo fluanid, - -
(5.11) Dithianon, (5.12) Dodine, (5.13) Dodine freie Base, (5.14) Ferbam, (5.15) Fluorfolpet, (5.16) Folpet, (5.17) Guazatin, (5.18) Guazatinacetat, (5.19) Iminoctadin, (5.20) Iminoctadinalbesilat, (5.21) Iminoctadintriacetat, (5.22) Mankupfer, (5.23) Mancozeb, (5.24) Maneb, (5.25) Metiram, (5.26) Zinkmetiram, (5.27) Kupfer-Oxin, (5.28) Propamidin, (5.29) Propineb, (5.30) Schwefel und Schwefelzubereitungen wie beispielsweise Calciumpolysulfid, (5.31) Thiram, (5.32) Tolylfluanid, (5.33) Zineb, (5.34) Ziram und (5,35) Anilazin.
(6) Resistenzinduktoren, wie beispielsweise (6.1) Acibenzolar-S-Methyl, (6.2) Isotianil, (6.3) Probenazol, (6.4) Tiadinil und (6.5) Laminarin.
(7) Inhibitoren der Aminosäure- und Protein-Biosynthese, wie beispielsweise (7.1) , (7.2) Blasticidin-S, (7.3) Cyprodinil, (7.4) Kasugamycin, (7.5) Kasugamycin Hydrochlorid Hydrat, (7.6) Mepanipyrim,
(7.7) Pyrimethanil, (7.8) 3-(5-Fluor-3,3,4,4-tetramethyl-3,4-dihydroisochinolin-l-yl)chinolin und (7.9) Oxytetracyclin und (7.10) Streptomycin.
(8) Inhibitoren der ATP Produktion, wie beispielsweise (8.1) Fentin Acetat, (8.2) Fentin Chlorid, (8.3) Fentin Hydroxid und (8.4) Silthiofam. (9) Inhibitoren der Zellwandsynthese, wie beispielsweise (9.1) Benthiavalicarb, (9.2) Dimethomorph, (9.3) Flumorph, (9.4) Iprovalicarb, (9.5) Mandipropamid, (9.6) Polyoxins, (9.7) Polyoxorim, (9.8) Validamycin A, (9.9) Valifenalat und (9.10) Polyoxin B.
(10) Inhibitoren der Lipid- und Membran-Synthese, wie beispielsweise (10.1) Biphenyl, (10.2) Chlorneb, (10.3) Dicloran, (10.4) Edifenphos, (10.5) Etridiazol, (10.6) Iodocarb, (10.7) Iprobenfos, (10.8) Isoprothiolan, (10.9) Propamocarb, (10.10) Propamocarb Hydrochlorid, (10.11) Prothiocarb,, (10.12) Pyrazophos, (10.13) Quintozen, (10.14) Tecnazene und (10.15) Tolclofos-Methyl.
(11) Inhibitoren der Melanin-Biosynthese, wie beispielsweise (11.1) Carpropamid, (11.2) Diclocymet, (11.3) Fenoxanil, (11.4) Fthalid, (11.5) Pyroquilon, (11.6) Tricyclazol, und (11.7) 2,2,2-Trifluorethyl {3- methyl-l-[(4-methylbenzoyl)amino]butan-2-yl}carbamat. (12) Inhibitoren der Nukleinsäuresynthese, wie beispielsweise (12.1) Benalaxyl, (12.2) Benalaxyl-M (Kiralaxyl), (12.3) Bupirimat, (12.4) Clozylacon, (12.5) Dimethirimol, (12.6) Ethirimol, (12.7) Furalaxyl, (12.8) Hymexazol, (12.9) Metalaxyl, (12.10) Metalaxyl-M (Mefenoxam), (12.11) Ofurace, (12.12) Oxadixyl, (12.13) Oxolinsäure und (12.14) Octhilinon.
(13) Inhibitoren der Signaltransduktion, wie beispielsweise (13.1) Chlozolinat, (13.2) Fenpiclonil, (13.3) Fludioxonil, (13.4) Iprodion, (13.5) Procymidon, (13.6) Quinoxyfen, (13.7) Vinclozolin und (13.8) Proquinazid. - -
(14) Entkoppler, wie beispielsweise (14.1) Binapacryl, (14.2) Dinocap, (14.3) Ferimzon, (14.4) Fluazinam und (14.5) Meptyldinocap.
(15) Weitere Verbindungen, wie beispielsweise (15.1) Benthiazol, (15.2) Bethoxazin, (15.3) Capsimycin, (15.4) Carvon, (15.5) Chinomethionat, (15.6) Pyriofenon (Chlazafenon), (15.7) Cufraneb, (15.8) Cyflufenamid, (15.9) Cymoxanil, (15.10) Cyprosulfamid, (15.11) Dazomet, (15.12) Debacarb, (15.13) Dichlorphen, (15.14) Diclomezin, (15.15) Difenzoquat, (15.16) Difenzoquat Methylsulphat, (15.17) Diphenylamin, (15.18) Ecomat, (15.19) Fenpyrazamin, (15.20) Flumetover, (15.21) Fluorimid, (15.22) Flusulfamid, (15.23) Flutianil, (15.24) Fosetyl- Aluminium, (15.25) Fosetyl-Calcium, (15.26) Fosetyl-Natrium, (15.27) Hexachlorbenzol, (15.28) Irumamycin, (15.29) Methasulfocarb, (15.30) Methylisothiocyanat, (15.31) Metrafenon, (15.32) Mildiomycin, (15.33) Natamycin, (15.34) Nickel Dimethyldithiocarbamat, (15.35) Nitrothal-lsopropyl, (15.36) Octhilinone, (15.37) Oxamocarb, (15.38) Oxyfenthiin, (15.39) Pentachlorphenol und dessen Salze, (15.40) Phenothrin, (15.41) Phosphorsäure und deren Salze, (15.42) Propamocarb-Fosetylat, (15.43) Propanosin-Natrium, (15.44) Pyrimorph, (15.45) (2E)-3-(4-Tert-butylphenyl)-3-(2-chlorpyridin-4-yl)-l-(morpholin-4-yl)prop-2-en-l-on, (15.46) (2Z)-3- (4-Tert-butylphenyl)-3 -(2-chlorpyridin-4-yl)- 1 -(morpholin-4-yl)prop-2-en- 1 -on, (15.47) Pyrrolnitrin, (15.48) Tebufloquin, (15.49) Tecloftalam, (15.50) Tolnifanide, (15.51) Triazoxid, (15.52) Trichlamid, (15.53) Zarilamid, (15.54) (3S,6S,7R,8R)-8-Benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxy- pyridin-2-yl}carbonyl)amino]-6-methyl-4,9-dioxo-l,5-dioxonan-7-yl 2-methylpropanoat, (15.55) l-(4- {4-[(5R)-5-(2,6-Difluorphenyl)-4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2-yl}piperidin-l-yl)-2-[5- methyl-3-(trifluormethyl)-lH-pyrazol-l-yl]ethanon, (15.56) l-(4- {4-[(5S)-5-(2,6-Difluorphenyl)-4,5- dihydro- 1 ,2-oxazol-3 -yl] - 1 ,3 -thiazol-2-yl} piperidin- 1 -yl)-2- [5-methyl-3 -(trifluormethyl)- 1 H-pyrazol- 1 - yl]ethanon, (15.57) l-(4- {4-[5-(2,6-Difluorphenyl)-4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2- yl} piperidin- 1 -yl)-2- [5-methyl-3 -(trifluormethyl)- 1 H-pyrazol- 1 -yl] ethanon, (15.58) 1 -(4-Methoxy- phenoxy)-3,3-dimethylbutan-2-yl lH-imidazole-l-carboxylat, (15.59) 2,3,5,6-Tetrachlor-4- (methylsulfonyl)pyridin, (15.60) 2,3-Dibutyl-6-chlorthieno[2,3-d]pyrimidin-4(3H)-on, (15.61) 2,6- Dimethyl-lH,5H-[l,4]dithiino[2,3-c:5,6-c']dipyrrole-l,3,5,7(2H,6H)-tetron, (15.62) 2-[5-Methyl-3- (trifluormethyl)-lH-pyrazol-l-yl]-l-(4- {4-[(5R)-5-phenyl-4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2- yl}piperidin-l -yl)ethanon, (15.63) 2-[5-Methyl-3-(trifluormethyl)-lH-pyrazol-l-yl]-l-(4- {4-[(5S)-5- phenyl-4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2-yl}piperidin-l-yl)ethanon, (15.64) 2-[5-Methyl-3- (trifluormethyl)- 1 H-pyrazol- 1 -yl]- 1 - {4- [4-(5-phenyl-4,5-dihydro- 1 ,2-oxazol-3-yl)- 1 ,3-thiazol-2- yl]piperidin-l-yl} ethanon, (15.65) 2-Butoxy-6-iodo-3-propyl-4H-chromen-4-on, (15.66) 2-Chlor-5-[2- chlor-l-(2,6-difluor-4-methoxyphenyl)-4-methyl-lH-imidazol-5-yl]pyridin, (15.67) 2-Phenylphenol und Salze, (15.68) 3-(4,4,5-Trifluor-3,3-dimethyl-3,4-dihydroisochinolin-l-yl)chinolin, (15.69) 3,4,5- Trichlorpyridine-2,6-dicarbonitril, (15.70) 3-Chlor-5-(4-chlorphenyl)-4-(2,6-difluorphenyl)-6- methylpyridazin, (15.71) 4-(4-Chlorphenyl)-5-(2,6-difluorphenyl)-3,6-dimethylpyridazin, (15.72) 5- Amino-l,3,4-thiadiazole-2-thiol, (15.73) 5-Chlor-N'-phenyl-N'-(prop-2-yn-l-yl)thiophene-2- sulfonohydrazid, (15.74) 5-Fluor-2-[(4-fluorbenzyl)oxy]pyrimidin-4-amin, (15.75) 5-Fluor-2-[(4- - - methylbenzyl)oxy]pyrimidin-4-amin, (15.76) 5-Methyl-6-octyl[l ,2,4]triazolo[l ,5-a]pyrimidin-7-amin, (15.77) Ethyl (2Z)-3-amino-2-cyano-3-phenylacrylat, (15.78) N'-(4- {[3-(4-Chlorbenzyl)-l,2,4- thiadiazol-5-yl]oxy}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamid, (15.79) N-(4-Chlor- benzyl)-3-[3-methoxy-4-(prop-2-yn-l-yloxy)phenyl]propanamid, (15.80) N-[(4-Chlor- phenyl)(cyano)methyl] -3 - [3 -methoxy-4-(prop-2-yn- 1 -yloxy)phenyl]propanamid, ( 15.81 ) N- [(5-Brom-3 - chlorpyridin-2-yl)methyl]-2,4-dichlornicotmamid, (15.82) N-[l-(5-Brom-3-chlorpyridin-2-yl)ethyl]-2,4- dichlornicotinamid, (15.83) N-[l-(5-Brom-3-chlorpyridin-2-yl)ethyl]-2-fluor-4-iodonicotinamid, (15.84) N- {(E)-[(Cyclopropylmethoxy)imino] [6-(difluormethoxy)-2,3-difluorphenyl]methyl} -2-phenyl- acetamid, (15.85) N- {(Z)-[(Cyclopropylmethoxy)imino] [6-(difluormethoxy)-2,3-difluorphenyl]methyl} - 2-phenylacetamid, (15.86) N'- {4-[(3-Tert-butyl-4-cyano-l ,2-thiazol-5-yl)oxy]-2-chlor-5-methylphenyl} - N-ethyl-N-methylimidoformamid, (15.87) N-Methyl-2-(l- {[5-methyl-3-(trifluormethyl)-lH-pyrazol-l- yl]acetyl}piperidin-4-yl)-N-(l ,2,3,4-tetrahydronaphthalen-l-yl)-l,3-thiazole-4-carboxamid, (15.88) N- Methyl-2-( 1 - { [5-methyl-3 -(trifluormethyl)- 1 H-pyrazol- 1 -yl] acetyl} piperidin-4-yl)-N- [(1R)-1,2,3,4- tetrahydronaphthalen- 1 -yl] - 1 ,3 -thiazole-4-carboxamid, (15.89) N-Methyl-2-( 1 - { [5 -methyl-3 - (trifluormethyl)- 1 H-pyrazol- 1 -yl] acetyl} piperidm-4-yl)-N- [(1S)-1 ,2,3 ,4-tetrahydronaphthalen- 1 -yl] -1,3- thiazole-4-carboxamid, (15.90) Pentyl {6-[({[(l -methyl-lH-tetrazol-5-yl)(phenyl)me- thylene]amino}oxy)methyl]pyridin-2-yl}carbamat, (15.91) Phenazine-1 -carbonsäure, (15.92) Chinolin- 8-ol, (15.93) Chinolin-8-ol sulfate (2: 1), (15.94) Tert-butyl {6-[({[(l-methyl-lH-tetrazol-5- yl)(phenyl)methylene]amino} oxy)methyl]pyridin-2-yl}carbamat, (15.95) 1 -Methyl-3-(trifluormethyl)- N-[2'-(trifluormethyl)biphenyl-2-yl]-lH-pyrazol-4-carboxamid, (15.96) N-(4'-Chlorbiphenyl-2-yl)-3- (difluormethyl)-l -methyl- lH-pyrazol-4-carboxamid, (15.97) N-(2',4'-Dichlorbiphenyl-2-yl)-3- (difluormethyl)- 1 -methyl- 1 H-pyrazol-4-carboxamid, (15.98) 3 -(Difluormethyl)- 1 -methyl-N- [4'- (trifluormethyl)biphenyl-2-yl]-lH-pyrazol-4-carboxamid, (15.99) N-(2',5'-Difluorbiphenyl-2-yl)-l- methyl-3 -(trifluormethyl)- 1 H-pyrazol-4-carboxamid, (15.100) 3 -(Difluormethyl)- 1 -methyl-N- [4'-(prop- l-yn-l-yl)biphenyl-2-yl]-lH-pyrazol-4-carboxamid, (15.101) 5-Fluor-l,3-dimethyl-N-[4'-(prop-l-yn-l- yl)biphenyl-2-yl]-lH-pyrazol-4-carboxamid, (15.102) 2-Chlor-N-[4'-(prop-l-yn-l -yl)biphenyl-2- yl]nicotinamid, (15.103) 3 -(Difluormethyl)-N- [4'-(3 ,3 -dimethylbut- 1 -yn- 1 -yl)biphenyl-2-yl] - 1 -methyl- lH-pyrazol-4-carboxamid, (15.104) N-[4'-(3,3-dimethylbut-l-yn-l-yl)biphenyl-2-yl]-5-fluor-l,3- dimethyl-lH-pyrazol-4-carboxamid, (15.105) 3-(Difluormethyl)-N-(4'-ethynylbiphenyl-2-yl)-l -methyl- lH-pyrazol-4-carboxamid, (15.106) N-(4'-Ethynylbiphenyl-2-yl)-5-fluor-l,3-dimethyl-lH-pyrazol-4- carboxamid, (15.107) 2-Chlor-N-(4'-ethynylbiphenyl-2-yl)nicotinamid, (15.108) 2-Chlor-N-[4'-(3,3- dimethylbut- 1 -yn- 1 -yl)biphenyl-2-yl]nicotinamid, (15.109) 4-(Difluormethyl)-2-methyl-N- [4'- (trifluormethyl)biphenyl-2-yl]-l,3-thiazole-5-carboxamid, (15.110) 5-Fluor-N-[4'-(3-hydroxy-3- methylbut-l-yn-l -yl)biphenyl-2-yl]-l,3-dimethyl-lH-pyrazol-4-carboxamid, (15.111) 2-Chlor-N-[4'-(3- hydroxy-3 -methylbut- l-yn-l-yl)biphenyl-2-yl]nicotinamid, (15.112) 3-(Difluormethyl)-N-[4'-(3- methoxy-3 -methylbut- 1 -yn- 1 -yl)biphenyl-2-yl] - 1 -methyl- 1 H-pyrazol-4-carboxamid, (15.113) 5-Fluor- N- [4'-(3 -methoxy-3 -methylbut- 1 -yn- 1 -yl)biphenyl-2-yl] - 1 ,3 -dimethyl- 1 H-pyrazol-4-carboxamid, (15.114) 2-Chlor-N-[4'-(3 -methoxy-3 -methylbut- l-yn-l-yl)biphenyl-2-yl]nicotinamid, (15.115) (5- - -
Brom-2-methoxy-4-methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)methanon, (15.116) N-[2-(4- {[3-(4-Chlo^henyl)prop-2-yn-l-yl]oxy}-3-methoxyphenyl)ethyl]-N2-(methylsulfonyl)valinamid, (15.117) 4-Oxo-4-[(2-phenylethyl)amino]butansäure, (15.118) But-3-yn-l -yl {6-[({[(Z)-(l-methyl-lH- tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamat, (15.119) 4-Amino-5- fluorpyrimidin-2-ol (Tautomere Form: 4-Amino-5-fluorpyrimidin-2(lH)-on), (15.120) Propyl 3,4,5- trihydroxybenzoat, (15.121) 1 ,3 -Dimethyl-N-( 1 , 1 ,3 -trimethyl-2,3 -dihydro- 1 H-inden-4-yl)- 1 H-pyrazol- 4-carboxamid, (15.122) l,3-Dimethyl-N-[(3R)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazol- 4-carboxamid, (15.123) l,3-Dimethyl-N-[(3S)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazol- 4-carboxamid, (15.124) [3-(4-Chlor-2-fluorphenyl)-5-(2,4-difluorphenyl)-l,2-oxazol-4-yl](pyridin-3- yl)methanol, (15.125) (S)-[3-(4-Chlor-2-fluorphenyl)-5-(2,4-difluorphenyl)-l,2-oxazol-4-yl](pyridin-3- yl)methanol, (15.126) (R)-[3-(4-Chlor-2-fluorphenyl)-5-(2,4-difluorphenyl)-l,2-oxazol-4-yl](pyridin-3- yl)methanol, (15.127) 2- {[3-(2-Chlo^henyl)-2-(2,4-difluorphenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H- l,2,4-triazol-3-thion, (15.128) l- {[3-(2-Chlorphenyl)-2-(2,4-difluorphenyl)oxiran-2-yl]methyl}-lH- l,2,4-triazol-5-yl thiocyanat, (15.129) 5-(Allylsulfanyl)-l- {[3-(2-chlorphenyl)-2-(2,4- difluorphenyl)oxiran-2-yl]methyl} - 1 H- 1 ,2,4-triazol, (15.130) 2-[l -(2,4-Dichlorphenyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (15.131) 2- {[rel(2R,3S)-3-(2-Chlorphenyl)-
2- (2,4-difluo^henyl)oxiran-2-yl]methyl} -2,4-dihydro-3H-l,2,4-triazol-3-thion, (15.132) 2- {[rel(2R,3R)-3-(2-Chlo^henyl)-2-(2,4-difluo^henyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-l^
3- thion, (15.133) l- {[rel(2R,3S)-3-(2-Chlo^henyl)-2-(2,4-difluo^henyl)oxiran-2-yl]methyl}-lH-l,2,4- triazol-5-yl thiocyanat, (15.134) l- {[rel(2R,3R)-3-(2-Chlorphenyl)-2-(2,4-difluorphenyl)oxiran-2- yl]methyl}-lH-l,2,4-triazol-5-yl thiocyanat, (15.135) 5-(Allylsulfanyl)-l- {[rel(2R,3S)-3-(2- chlorphenyl)-2-(2,4-difluorphenyl)oxiran-2-yl]methyl} -lH-l,2,4-triazol, (15.136) 5-(Allylsulfanyl)-l- {[rel(2R,3R)-3-(2-chlorphenyl)-2-(2,4-difluorphenyl)oxiran-2-yl]methyl}-lH-l,2,4-triazol, (15.137) 2- [(2S,4S,5S)-l-(2,4-Dichlo^henyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol- 3-thion, (15.138) 2-[(2R,4S,5S)-l-(2,4-Dichlorphenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4- dihydro-3H-l,2,4-triazol-3-thion, (15.139) 2-[(2R,4R,5R)-l-(2,4-Dichlorphenyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (15.140) 2-[(2S,4R,5R)-l-(2,4-
Dichlorphenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (15.141) 2- [(2S,4S,5R)-l-(2,4-Dichlo^henyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol- 3-thion, (15.142) 2-[(2R,4S,5R)-l-(2,4-Dichlorphenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4- dihydro-3H-l,2,4-triazol-3-thion, (15.143) 2-[(2R,4R,5S)-l-(2,4-Dichlorphenyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (15.144) 2-[(2S,4R,5S)-l-(2,4-Dichlo- phenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (15.145) 2-Fluor- 6-(trifluormethyl)-N-(l ,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)benzamid, (15.146) 2-(6-Benzyl- pyridin-2-yl)quinazolin, (15.147) 2-[6-(3-Fluor-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazolin, (15.148) 3-(4,4-Difluor-3,3-dimethyl-3,4-dihydroisochinolin-l-yl)chinolin, (15.149) Abscisinsäure, (15.150) 3 -(Difluormethyl)-N-methoxy- 1 -methyl-N- [ 1 -(2,4,6-trichlorphenyl)propan-2-yl] - 1 H-pyrazol-
4- carboxamid, (15.151) N'-[5-Brom-6-(2,3-dihydro-lH-inden-2-yloxy)-2-methylpyridin-3-yl]-N-ethyl- - -
N-methylimidoformamid, (15.152) Ν'- {5-Brom-6-[l -(3,5-difluorphenyl)ethoxy]-2-methylpyridin-3-yl} - N-ethyl-N-methylimidoformamid, (15.153) N'- {5-Brom-6-[(lR)-l-(3,5-difluorphenyl)ethoxy]-2- methylpyridin-3-yl} -N-ethyl-N-methylimidoformamid, (15.154) N'- {5-Brom-6-[(l S)-l -(3,5-difluor- phenyl)ethoxy]-2-methylpyridin-3-yl} -N-ethyl-N-methylimidoformamid, (15.155) N'- {5-Brom-6-[(cis- 4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl} -N-ethyl-N-methylimidoformamid, (15.156) N'- {5- Brom-6-[(trans-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl} -N-ethyl-N-methylimidoformamid, (15.157) N-Cyclopropyl-3-(difluormethyl)-5-fluor-N-(2-isopropylbenzyl)-l-methyl-lH-pyrazol-4- carboxamid, (15.158) N-Cyclopropyl-N-(2-cyclopropylbenzyl)-3-(difluormethyl)-5-fluor-l-methyl-lH- pyrazol-4-carboxamid, (15.159) N-(2-Tert-butylbenzyl)-N-cyclopropyl-3-(difluormethyl)-5-fluor-l - methyl-lH-pyrazol-4-carboxamid, (15.160) N-(5-Chlor-2-ethylbenzyl)-N-cyclopropyl-3-(difluor- methyl)-5-fluor- 1 -methyl- 1 H-pyrazol-4-carboxamid, (15.161) N-(5-Chlor-2-isopropylbenzyl)-N- cyclopropyl-3-(difluormethyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (15.162) N-Cyclopropyl-3 - (difluormethyl)-N-(2-ethyl-5-fluorbenzyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (15.163) N- Cyclopropyl-3 -(difluormethyl)-5-fluor-N-(5-fluor-2-isopropylbenzyl)- 1 -methyl- 1 H-pyrazol-4- carboxamid, (15.164) N-Cyclopropyl-N-(2-cyclopropyl-5-fluorbenzyl)-3-(difluormethyl)-5-fluor-l- methyl-lH-pyrazol-4-carboxamid, (15.165) N-(2-Cyclopentyl-5-fluorbenzyl)-N-cyclopropyl-3- (difluormethyl)-5-fluor- 1 -methyl- 1 H-pyrazol-4-carboxamid, (15.166) N-Cyclopropyl-3 -(difluormethyl)- 5-fluor-N-(2-fluor-6-isopropylbenzyl)-l -methyl- lH-pyrazol-4-carboxamid, (15.167) N-Cyclopropyl-3 - (difluormethyl)-N-(2-ethyl-5-methylbenzyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (15.168) N- Cyclopropyl-3 -(difluormethyl)-5-fluor-N-(2-isopropyl-5-methylbenzyl)- 1 -methyl- 1 H-pyrazol-4- carboxamid, (15.169) N-Cyclopropyl-N-(2-cyclopropyl-5-methylbenzyl)-3-(difluormethyl)-5-fluor-l - methyl- lH-pyrazol-4-carboxamid, (15.170) N-(2-Tert-butyl-5-methylbenzyl)-N-cyclopropyl-3- (difluormethyl)-5-fluor- 1 -methyl- 1 H-pyrazol-4-carboxamid, (15.171) N- [5-Chlor-2-(trifluor- methyl)benzyl] -N-cyclopropyl-3 -(difluormethyl)-5-fluor- 1 -methyl- 1 H-pyrazol-4-carboxamid, (15.172) N-Cyclopropyl-3-(difluormethyl)-5-fluor-l-methyl-N-[5-methyl-2-(trifluormethyl)benzyl]-lH-pyrazol- 4-carboxamid, (15.173) N-[2-Chlor-6-(trifluormethyl)benzyl]-N-cyclopropyl-3-(difluormethyl)-5-fluor- 1 -methyl- lH-pyrazol-4-carboxamid, (15.174) N-[3-Chlor-2-fluor-6-(trifluormethyl)benzyl]-N- cyclopropyl-3-(difluormethyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (15.175) N-Cyclopropyl-3 - (difluormethyl)-N-(2-ethyl-4,5-dimethylbenzyl)-5-fluor-l -methyl- lH-pyrazol-4-carboxamid, (15.176) N-Cyclopropyl-3-(difluormethyl)-5-fluor-N-(2-isopropylbenzyl)-l-methyl-lH-pyrazol-4-carbothioamid, (15.177) 3 -(Difluormethyl)-N-(7-fluor- 1 , 1 ,3 -trimethyl-2,3 -dihydro- 1 H-inden-4-yl)- 1 -methyl- 1 H- pyrazol-4-carboxamid, (15.178) 3-(Difluormethyl)-N-[(3R)-7-fluor-l , 1 ,3-trimethyl-2,3-dihydro-lH- inden-4-yl]-l -methyl- lH-pyrazol-4-carboxamid, (15.179) 3-(Difluormethyl)-N-[(3S)-7-fluor-l,l,3- trimethyl-2,3-dihydro-lH-inden-4-yl]-l-methyl-lH-pyrazol-4-carboxamid, (15.180) N'-(2,5-Dimethyl- 4-phenoxyphenyl)-N-ethyl-N-methylimidoformamid, (15.181) N'- {4-[(4,5-Dichlor-l,3-thiazol-2- yl)oxy]-2,5-dimethylphenyl} -N-ethyl-N-methylimidoformamid, (15.182) N-(4-Chlor-2,6-difluor- phenyl)-4-(2-chlor-4-fluorphenyl)-l,3-dimethyl-lH-pyrazol-5-amin. Alle genannten Mischpartner der - -
Klassen (1) bis (15) können, wenn sie auf Grand ihrer funktionellen Gruppen dazu imstande sind, gegebenenfalls mit geeigneten Basen oder Säuren Salze bilden.
Die Kombinationen der Verbindung der Formel (I) mit genannten Fungiziden besitzen sehr gute fungizide Eigenschaften und lassen sich bei der Behandlung von Saatgut insbesondere zur Bekämpfung von phytopathogenen Pilzen, wie Ascomycetes und Basidiomycetes einsetzen. Die erfindungsgemäßen Wirkstoffe eignen sich bei der Behandlung von Saatgut besonders gut zur Bekämpfung von Pyrenophora-, Rhizoctonia-, Tilletia- und Ustilago-Arten.
Beispielhaft, aber nicht begrenzend, seien einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt: Pyrenophora- Arten, wie beispielsweise P. allosuri, P. alternarina, P. avenae, P. bartramiae, P. bondar- zewii, P. bromi, P. bryophila, P. buddleiae, P. bupleuri, P. calvertü, P. calvescens var. moravica, P. carthami, P. centranthi, P. cerastü, P. chengü, P. chrysanthemi, P. convolvuli, P. coppeyana, P. cytisi,
P. dactylidis, P. dictyoides, P. echinopis, P. ephemera, P. eryngicola, P. erythrospila, P. euphorbiae, P. freticola, P. graminea, P. heraclei, P. hordei, P. horrida, P. hyperici, P. japonica, P. kugitangi, P. litho- phila, P. lolii, P. macrospora, P. metasequoiae, P. minuartiae-hirsutae, P. moravica, P. moroczkovskii,
P. muscorum, P. osmanthi, P. phlei, P. pimpinellae, P. pittospori, P. polytricha, P. pontresinerisis, P. pulsatillae, P. raetica, P. rayssiae, P. rugosa, P. saviczii, P. schroeteri, P. scirpi, P. scirpicola, P. secalis, P. semeniperda, P. semiusta, P. seseli f. poterii, P. seseli, P. sobolevskii, P. subalpina, P. subantarctica, P. sudetica, P. syntrichiae, P. szaferiana, P. teres f. maculata, P. teres subsp. graminea, P. teres, P. tetrarrhenae, P. tranzschelii, P. trifolü, P. tritici-repentis, P. typhicola, P. ushuwaiensis, P. villosa, Rhizoctonia-Arten, wie beispielsweise Rh. aerea, Rh. alba, Rh. alpina, Rh. anaticula, Rh. anomala, Rh. apocynacearum, Rh. arachnion, Rh. asclerotica, Rh. bataticola, Rh. borealis, Rh. callae,
Rh. Candida, Rh. carotae, Rh. cerealis, Rh. choussii, Rh. coniothecioides, Rh. dichotoma, Rh. dimorpha,
Rh. endophytica var. filicata, Rh. endophytica, Rh. ferruginea, Rh. floccosa, Rh. fragariae, Rh. fraxini, Rh. füliginea, Rh. fumigata, Rh. globularis, Rh. goodyerae-repentis, Rh. gossypii var. anatolica, Rh. gossypii, Rh. gracilis, Rh. grisea, Rh. hiemalis, Rh. juniperi, Rh. lamellifera, Rh. leguminicola, Rh. lila- cina, Rh. lupini, Rh. macrosclerotia, Rh. melongenae, Rh. microsclerotia, Rh. monilioides, Rh. mon- teithiana, Rh. muneratii, Rh. nandorii, Rh. oryzae, Rh. oryzae-sativae, Rh. pallida, Rh. pini-insignis, Rh. praticola, Rh. quercus, Rh. ramicola, Rh. robusta, Rh. rubi, Rh. rubiginosa, Rh. sclerotica, Rh. solani, Rh. solani f. paroketea, Rh. solani forma specialis, Rh. solani var. cedri-deodarae, Rh. solani var. fuchsiae, Rh. solani var. hortensis, Rh. stahlii, Rh. subtilis var. nigra, Rh. subtilis, Rh. tomato, Rh. tuliparum, Rh. versicolor, Rh. zeae, Tilletia-Arten, wie beispielsweise T. aegilopis, T. aegopogonis, T. ahmadiana, T. airina, T. ajrekari, T. alopecuri, T. anthoxanthi, T. apludae, T. arundinellae, T. asperifolia, T. asperitolioides, T. atacamensis, T. baldrati, T. bambusae, T. banarasae, T. bangalorensis, T. barclayana, T. biharica, T. bolayi, T. boliviensis, T. boutelouae, T. brachypodii, T. brachypodii- ramosi, T. brevifäciens, T. bromi., T. bromina, T. bromi-tectorum, T. brunkii, T. buchloeana, T. caries, - -
T. cathcartae, T. cerebrina, T. chloridicola, T. controversa, T. controversa var. elymi, T. controversa var. prostrata, T. corona, T. cynosuri, T. dacamarae, T. deyeuxiae, T. digitariicola, T. durangensis, T. earlei, T. echinochloae f. folücola, T. echinochloae, T. echinosperma, T. ehrhartae, T. eleusines, T. elymandrae, T. elymi, T. elymicola, T. elytrophori, T. eragrostidis, T. euphorbiae, T. fahrendor ii, T. festuca-octoflorana, T. foetida, T. fusca, T. fusca var. bromi-tectorum, T. fusca var. guyotiana, T. fusca var. patagonica, T. georfischeri, T. gigaspora, T. goloskokovii, T. haynaldiae, T. heterospora, T. holci,
T. hordei var. spontanei, T. horrida, T. hyalospora var. cuzcoensis, T. hyparrheniae, T. indica, T. intermedia, T. iowensis, T. ixophori, T. koeleriae, T. kuznetzoviana, T. laevis, T. laguri, T. leptochloae,
T. lepturi, T. lycuroides, T. maclaganii, T. macrotuberculata, T. madeirensis, T. makutensis, T. milii- vernalis, T. milli, T. montana, T. montemartinii, T. nanifica, T. narasimhanii, T. narayanaraoana, T. narduri, T. nigrifäciens, T. obscura-reticulata, T. oklahomae, T. okudairae, T. oplismeni-cristati, T. pachyderma, T. pallida, T. panici, T. panici-humilis, T. paradoxa, T. paspali, T. pennisetina, T. perotidis, T. phalaridis, T. poae, T. polypogonis, T. poonensis, T. prostrata, T. pulcherrima var. brachiariae, T. redfieldiae, T. rhei, T. rugispora, T. sabaudiae, T. salzmannii, T. savilei, T. scrobiculata, T. setariae, T. setariae-palmiflorae, T. setariicola, T. sphaerococca, T. sphenopi, T. sphenopodis, T. sterilis, T. taiana, T. texana, T. themedae-anatherae, T. themedicola, T. togwateei, T. trachypogonis, T. transiliensis, T. transvaalensis, T. tritici [var.] nanifica, T. tritici f. monococci, T. tritici var. controversa, T. tritici var. laevis, T. tritici-repentis, T. triticoides, T. tuberculata, T. vetiveriae, T. viennotii, T. vittata var. burmannii, T. vittata, T. walkeri, T. youngii, T. zundelii. Ustilago-Arten, wie beispielsweise U. abstrusa, U. aegilopsidis, U. aeluropodis, U. affinis var. hilariae, U. agrestis, U. agropyrina, U. agrostis-palustris, U. ahmadiana, U. airae-caespitosae, U. alismatis, U. alopecurivora,
U. alsineae, U. altilis, U. amadelpha var. glabriuscula, U. amphilophidis, U. amplexa, U. andropogonis-tectorum, U. aneilemae, U. anhweiana, U. anomala [var.] microspora, U. anomala var. avicularis, U. anomala var. carnea, U. anomala var. cordai, U. anomala var. muricata, U. anomala var. tovarae, U. anthoxanthi, U. apscheronica, U. arabidia-alpinae, U. arctagrostis, U. arctica, U. arenariae-bryophyllae, U. argentina, U. aristidarius, U. arundinellae-hirtae, U. asparagi-pygmaei, U. asprellae, U. avenae f.sp. perennans, U. avenae subsp. alba, U. avicularis, U. bahuichivoensis, U. barberi, U. beckeropsis, U. belgiana, U. bethelii, U. bicolor, U. bistortarum var. marginalis, U. bistortarum var. pustulata, U. bistortarum var. ustilaginea, U. borealis, U. bothriochloae, U. bothriochloae-intermediae, U. bouriqueti, U. braziliensis, U. brizae, U. bromi-arvensis, U. bromi-erecti,
U. bromi-mollis, U. bromina, U. bromivora f. brachypodii, U. bromivora var. microspora, U. bullata f. brachypodii-distachyi, U. bullata var. bonariensis, U. bullata var. macrospora, U. bungeana, U. calamagrostidis var. scrobiculata, U. calamagrostidis var. typica, U. calamagrostidis, U. cardamines,
U. cariciphila, U. caricis-wallichianae, U. carnea, U. catherinae, U. caulicola, U. centrodomis, U. ceparum, U. cephalariae, U. chacoensis, U. chloridii, U. chloridionis, U. chrysopogonis, U. chubutensis, U. cichorii, U. cilinodis, U. clelandii, U. clintoniana, U. coloradensis, U. commelinae, U. compacta, U. concelata, U. condigna, U. consimilis, U. constantineanui, U. controversa, U. convertere- sexualis, U. cordai, U. coronariae, U. coronata, U. cortaderiae var. araucana, U. courtoisii, U. crus- - - galli var. minor, U. cryptica, U. curta, U. custanaica, U. cynodontis f. ovariicola, U. cynodontis, U. cyperi-lucidi, U. davisii, U. deccanü, U. decipiens, U. deformis, U. dehiscens, U. delicata, U. deyeuxiae,
U. dianthorum, U. distichlidis, U. dubiosa, U. dumosa, U. earlei, U. echinochloae, U. ehrhartana, U. eleocharidis, U. eleusines, U. elymicola, U. elytrigiae, U. enneapogonis, U. epicampida, U. eragrostidis-japonicana, U. eriocauli, U. eriochloae, U. euphorbiae, U. fagopyri, U. festucae, U. festucarum, U. filamenticola, U. fingerhuthiae, U. flectens, U. flowersii, U. foliorum, U. formosana, U. füeguina, U. gageae, U. garcesi, U. gardneri, U. gaussenii, U. gigantispora, U. glyceriae, U. goyazana,
U. gregaria, U. grossheimii, U. gunnerae, U. haesendocki var. chloraphorae, U. halophiloides var. vargasii, U. halophiloides, U. haynaldiae, U. heleochloae, U. helictotrichi, U. herteri var. bicolor, U. hierochloae-odoratae, U. hieronymi var. insularis, U. hieronymi var. minor, U. hilariicola, U. himalensis, U. hitchcockiana, U. holci-avenacei, U. holubii, U. hordei, U. hordeifsp. avenae, U. hsuii,
U. hyalino-bipolaris, U. hydropiperis, U. hyparrheniae, U. hypodytes f. congoensis, U. hypodytes f. sporoboli, U. hypodytes var. agrestis, U. idonea, U. imperatae, U. induta, U. inouyei, U. intercedens, U. iranica, U. isachnes, U. ischaemi-akoensis, U. ischaemi-anthephoroidis, U. ixiolirii, U. ixophori, U. jacksonii var. ventanensis, U. jacksonii, U. jaczevskyana var. sibirica, U. jaczevskyana var. typica, U. jaczevskyana, U. jagdishwari, U. jamalainenii, U. jehudana, U. johnstonü, U. kairamoi, U. kazachstanica, U. kenjiana, U. kweichowensis, U. kyllingae, U. lachrymae-jobi, U. lepyrodiclidis, U. lidii, U. liebenbergii, U. linderi, U. linearis, U. liroae, U. loliicola, U. longiflora, U. longiseti, U. longissima var. dubiosa, U. longissima var. paludificans, U. longissima var. typica, U. lupini, U. lychnidis-dioicae, U. lycoperdiformis, U. lyginiae, U. machili, U. magellanica, U. mariscana, U. maydis, U. megalospora, U. melicae, U. merxmuellerana, U. mesatlantica, U. michnoana, U. microspora var. paspalicola, U. microspora, U. microstegii, U. microthelis, U. milli, U. modesta, U. moehringiae, U. moenchiae-manticae, U. monermae, U. montagnei var. minor, U. morinae, U. morobiana, U. muehlenbergiae var. tucumanensis, U. muricata, U. muscari-botryoidis, U. nagornyi, U. nannfeldtii, U. nelsoniana, U. nepalensis, U. neyraudiae, U. nigra, U. nivalis, U. nuda, U. nuda var. hordei, U. nuda var. tritici, U. nyassae, U. okudairae, U. olida, U. olivacea var. macrospora, U. onopordi, U. onumae, U. opiziicola, U. oplismeni, U. orientalis, U. otophora, U. overeemii, U. pamirica, U. panici-geminati, U. panjabensis, U. pappophori var. magdalensis, U. pappophori, U. parasnathii, U. parodii, U. parvula, U. paspalidiicola, U. patagonica, U. penniseti var. verruculosa, U. perrar a, U. persicariae, U. petrakii, U. phalaridis, U. phlei, U. phlei-pratensis, U. phragmites, U. picacea, U. pimprina, U. piperi [var.] rosulata, U. poae, U. poae-bulbosae, U. poae-nemoralis, U. polygoni-alati, U. polygoni-alpini, U. polygoni-punctati, U. polygoni-serrulati, U. polytocae, U. polytocae-barbatae, U. pospelovii, U. prostrata, U. pseudohieronymi, U. pueblaensis, U. puellaris, U. pulverulenta, U. raciborskiana, U. radians, U. ravida, U. rechingeri, U. reticulata, U. reticulispora, U. rhei, U. rhynchelytri, U. rwandensis, U. sabouriana, U. salviae, U. sanctae-catharinae, U. scaura, U.
Scillae, U. scitaminea var. sacchari-barberi, U. scitaminea var. sacchari-officinarum, U. scitaminea, U. scleranthi, U. scrobiculata, U. scutulata, U. secalis var. elymi, U. semenoviana, U. Serena, U. serpens,
U. sesleriae, U. setariae-mombassanae, U. shastensis, U. shimadae, U. silenes-inflatae, U. silenes- - - nutantis, U. sinkiangensis, U. sitanii, U. sleumeri, U. sonoriana, U. sorghi-stipoidei, U. spadicea, U. sparti, U. speculariae, U. spegazzinii var. agrestis, U. spegazzinii, U. spermophora var. orientalis, U. spermophoroides, U. spinulosa, U. sporoboli-indici, U. sporoboli-tremuli, U. stellariae, U. sterilis, U. stewartli, U. stipae, U. striaeformis f. agrostidis, U. striaeformis f. phlei, U. striaeformis f. poaeannuae, U. striaeformis f. poae-pratensis, U. striiformis f. hierochloes-odoratae, U. striiformis var. agrostidis, U. striiformis var. dactylidis, U. striiformis var. hold, U. striiformis var. phlei, U. striiformis var. poae, U. stygia, U. sumnevicziana, U. superba, U. sydowiana, U. symbiotica, U. taenia, U. taiana, U. tanakae, U. tenuispora, U. thaxteri, U. tinantiae, U. togata, U. tourneuxii, U. tovarae, U. trachyniae, U. trachypogonis, U. tragana, U. tragi, U. tragica, U. tragi-racemosi, U. trichoneurana, U. trichophora var. crus-galli, U. trichophora var. panici-frumentacei, U. triseti, U. tritici forma specialis, U. trochophora var. pacifica, U. tuberculata, U. tucumanensis, U. tumeformis, U. turcomanica var. prostrata, U. turcomanica var. typica, U. turcomanica, U. ugamica, U. ugandensis var. macrospora, U. underwoodii, U. urginede, U. urochloana, U. ustilaginea, U. utriculosa var. cordai, U. utriculosa var. reticulata, U. valentula, U. vavilovi, U. verecunda, U. verruculosa, U. versatilis, U. vetiveriae, U. violacea var. stellariae, U. violaceo-irregularis, U. violaceoverrucosa, U. williamsii, U. wynaadensis,
U. zambettakisii, U. zernae.
Drip und Drench
Überraschenderweise wurde nun gefunden, dass die Verbindung der Formel (I) auch gut zur Bekämpfung von Insekten durch Angießen auf den Boden (in Fachkreisen als„Drenching" bekannt), Tröpfchenapplikation auf den Boden (in Fachkreisen als„Drip application" bekannt), nach Eintauchen von Wurzelwerk, Knollen oder Zwiebeln (in Fachkreisen als „Dip application" bekannt), durch hydroponische Systeme oder Bodeninjektion (in Fachkreisen als„Soil injection" bekannt) geeignet ist.
Die vorliegende Erfindung betrifft demnach die Verwendung der Verbindung der Formel (I) zur Bekämpfung von Insekten durch Angießen auf den Boden, in Bewässerungssystemen, als Tröpfchenapplikation auf den Boden, als Tauchapplikation von Wurzelwerk, Knollen oder Zwiebeln oder durch Bodeninjektion. Weiterhin betrifft die vorliegende Erfindung diese Anwendungsformen auf natürlichen (Erdreich) oder artifiziellen Substraten (z.B. Steinwolle, Glaswolle, Quarzsand, Kiesel, Blähton, Vermiculit) im Freiland oder in geschlossenen Systemen (z.B. Gewächshäuser oder unter Folien-Abdeckung) und in einjährigen (z.B. Gemüse, Gewürzen, Zierpflanzen) oder mehrjährigen Kulturen (z.B. Zitruspflanzen, Obst, tropische Kulturen, Gewürzen, Nüsse, Wein, Koniferen und Zierpflanzen).
Die Kulturen, deren Saatgut und keimende Pflanzen sich besonders vorteilhaft mit der Verbindung der Formel (I) schützen lassen und die wichtigsten tierischen Schädlinge sind im Folgenden differenziert und näher spezifiziert. Jede der folgenden Kombinationen aus Schädling und Kultur stellt eine besondere und bevorzugte Ausführungsform der Erfindung dar. Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Stinkwanzen (Pentatomidae):
Antestiopsis orbitalus in Soja,
Dichelops furcatus in Mais, Soja und Getreide, Dichelops melacanthus in Mais, Soja und Getreide,
Eurygaster intergriceps in Getreide,
Eurygaster maura in Getreide
Euschistus heros in Soja, Mais, Baumwolle, und Reis,
Euschistus servus in Soja, Mais, Baumwolle, und Reis, Nezara viridula in Soja, Mais, Baumwolle, Getreide und Reis,
Nezara hilare in Soja, Mais, Baumwolle, Getreide und Reis,
Oebalus mexicana, in Reis und Getreide,
Oebalus poecilus, in Reis und Getreide,
Oebalus purgnase, in Reis und Getreide, Piezodorus guildinii in Soja, Mais, Baumwolle und Reis,
Scotinophara lurida in Reis,
Scotinophara coaretata in Reis.
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgender Art aus der Familie der Schildwanzen (Plataspidae): Megacopta cribraria in Soja.
Die Verbindung der Formel (I) eignet sich auch besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Eulenfalter (Noctuidae):
Agrotis segetum in Baumwolle, Mais, Rüben, Soja und Getreide, Agrotis ypsilon in Baumwolle, Mais, Rüben, Soja und Getreide, Helicoverpa (Heliothis) armiger a in Baumwolle, Mais und Soja, Helicoverpa gelotopoeon in Baumwolle, Mais und Soja, Heliothis virescens in Baumwolle, Mais und Soja, Heliothis peltigera in Baumwolle, Mais und Soja, Heliothis assulta in Baumwolle, Mais und Soja, Helicoverpa zea in Baumwolle, Mais und Soja,
Spodoptera frugiperda in Baumwolle, Mais, Rüben und Soja, Spodoptera exigua in Baumwolle, Mais, Rüben und Soja, Spodoptera littoralis in Baumwolle, Mais, Rüben und Soja, Pseudoplusia includes in Baumwolle, Mais, Rüben und Soja, Anticarsia gemmatalis in Baumwolle, Mais, Rüben und Soja, Rachiplusia nu in Baumwolle, Mais, Rüben und Soja,
Die Verbindung der Formel (I) eignet sich auch besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Plutellidae:
Plutella xylostella in Brassicaceen
Die Verbindung der Formel (I) eignet sich auch besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Gelechiidae
Pectinophora gossypiella in Baumwolle.
Die Verbindung der Formel (I) eignet sich auch besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Crambidae: Chilo suppressalis in Mais und Reis,
Chilo partellus in Mais,
Cnaphalocrocis medinalis in Reis.
Diatraea grandiosella in Mais,
Scirpophaga incertulas in Reis. Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Zünsler (Pyralidae):
Elasmopalpus lignosellus in Getreide, Mais, Raps, Reis, Rüben und Soja,
Ostrinia nubilalis in Mais, Ostrinia fürnicalis in Mais.
Die Verbindung der Formel (I) eignet sich auch besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Tortricidae:
Epinotia aporema in Soja,
Leguminivora glycinivorella in Soja. Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Blattkäfer (Chrysomelidae):
Diabrotica balteata in Mais und Soja,
Diabrotica speciosa in Mais und Soja,
Diabrotica vir gif er a in Mais und Soja, Diabrotica viridula in Mais und Soja,
Lema oryzae, in Reis und Getreide,
Lema melanopa in Reis und Getreide,
Oulema melanopus in Getreide,
Phaedon cochleariae in Brassicaceen Phyllotreta cruciferae in Raps und Getreide,
Phyllotreta pusilla in Raps und Getreide,
Phyllotreta striolata in Raps und Getreide,
Phyllotreta undulate in Raps und Getreide,
Phyllotreta vitulla in Raps und Getreide, Leptinotarsa decemlineata in Kartoffeln - -
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgender Art aus der Familie der Glanzkäfer (Nitidulidae):
Meligethes aeneus in Raps.
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgender Art aus der Familie der Glanzkäfer (Cryptophagidae):
Atomaria inearis in Rüben
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Blattläuse (Aphididae):
Aphis gossypii in Baumwolle, Cucurbitaceen, Fruchtgemüse z.B. Auberginen, Tomaten, Aphis gly eines in Sojabohne
Macrosiphum avenae in Getreide und Kartoffeln,
Macrosyphum euphorbie in Getreide und Kartoffeln,
Macrosiphum granarium in Getreide und Kartoffeln,
Macrosiphum miscanthi in Getreide und Kartoffeln, Metopolophium dirhodum in Getreide und Mais
Myzus persicae in Baumwolle, Obst, Gemüse, Zuckerrübe, Kartoffeln, Mais,
Rhopalosiphum maidis in Getreide und Mais,
Rhopalosiphum padi in Getreide und Mais,
Sitobion avenae in Getreide, Sitobion fragariae in Getreide,
Sitobion miscanthi in Getreide.
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Schmierläuse (Pseudococcidae):
Planococcus citri in Obst, Gemüse, Bananen, Kaffee, Sojabohnen und Kartoffeln Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Blumenfliegen (Anthomyiidae): Delia coarctata in Getreide, Raps, Rüben und Zwiebeln, Delia floralis in Getreide, Raps, Rüben und Zwiebeln,
Delia antiqua (Synonym Hylemya antiqua) in Getreide, Raps, Rüben und Zwiebeln,
Delia radicum in Getreide, Raps, Rüben und Zwiebeln. Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Schnellkäfer (Elateridae):
Agriotes lineatus in Getreide, Kartoffeln, Mais, Raps, Rüben und Sonnenblumen, Agriotes mancus in Getreide, Kartoffeln, Mais, Raps, Rüben und Sonnenblumen, Agriotes obscurus in Getreide, Kartoffeln, Mais, Raps, Rüben und Sonnenblumen, Agriotes sordidus in Getreide, Kartoffeln, Mais, Raps, Rüben und Sonnenblumen, Agriotes ustulatus in Getreide, Kartoffeln, Mais, Raps, Rüben und Sonnenblumen, Limonius agonus in Getreide, Kartoffeln, Mais, Raps, Rüben und Sonnenblumen.
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Spornzikaden (Delphacidae): Laodelphax striatellus in Reis,
Nilapavarta lugens in Reis,
Sogatella furcifera in Reis.
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Familie der Zwergzikaden (Cicadellidae): Nephotettix cincticeps in Reis,
Empoasca biguttula in Baumwolle,
Empoasca sps in Weinreben, Gemüse.
Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgender Arten aus der Familie der Weißen Fliegen ( Alcyrodidae). Bemisia tabaci, Bemisia argentifolü und Trialeurodes vaporariorum Die Verbindung der Formel (I) eignet sich besonders gut zur Bekämpfung von folgenden Arten aus der Ordnung der Fransenflügler (Thysanoptera):
FrankUniella occidentalis in Baumwolle,
Frankliniella occidentalis in Obst,
Frankliniella occidentalis in Gemüse,
Frankliniella schultzei in Baumwolle,
Frankliniella schultzei in Obst,
Frankliniella schultzei in Gemüse,
Frankliniella intonsa in Obst,
Frankliniella intonsa in Baumwolle,
Frankliniella intonsa in Sojabohne,
Frankliniella intonsa in Reis,
Frankliniella intonsa in Gemüse
Frankliniella sps in Baumwolle,
Frankliniella sps in Sojabohne,
Frankliniella sps in Reis,
FrankUniella sps in Obst,
Frankliniella sps in Gemüse.
Die gute Wirkung der Verbindung der Formel (I) geht aus den nachfolgenden Beispielen hervor.
- -
Biologische Beispiele Beispiel 1
Hylemya antiqua -Test, Saatgutapplikation (HYLEAN S)
Leerformulierung: 2,0% Brilliantponceau 4 RC 70 2,0% Helioechtrubin 4B 10
5,0% Baykanol SL 4,0% Utrasil VN3 Pulver 1,5% Emulgator 1000 TR U gemahlen 0,8% Baysilone-Entschäumer E VM 30 84,7% Kaolin W
Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird anschließend getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Zwiebelsaatgut (Allium cepa) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (50 Körner/Topf, mind. 2 Töpfe/Variante). Nach ca. 3 Wochen werden die Zwiebelpflanzen mit Larven der Zwiebelfliege {Hylemya antiqua) infiziert. Nach 7-14 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Fliegenlarven abgetötet wurden; 0 % bedeutet, dass keine Fliegenlarven abgetötet wurden. - -
Beispiel 2
Phaedon cochleariae -Test, Saatgutapplikation (PHAECO S)
Leerformulierung 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10
5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird anschließend getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Wirsingkohlsaatgut {Brassica oleraced) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (8 Korn/Topf, mind. 2 Töpfe/Variante). Nach ca. 7-8 Tagen werden die Wirsingpflanzen mit ca. 8-10 Larven des Merrettich-Blattkäfers {Phaedon cochleariae) infiziert.
Nach 6-7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
In den Tests gemäß Beispiel 1 und Beispiel 2 erzielte die Verbindung der Formel (I) die in der Tabelle 1 angegebenen Wirkungen. - -
Tabelle 1
Figure imgf000033_0001
Beispiel 3
Grenzkonzentrationstest / Bodeninsekten Testinsekt: Diabrotica balteata (DIABBA S) - Larven im Boden
Testpflanze: ZEAMI (Körnermais)
Dosis: 8 g a.i./kg (20%ige WS/10g Saatgut)
Leerformulierung: 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10 5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 4 Gewichtsteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird anschließend getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die - - errechnete Menge der Formulierung eingewogen. Unter Zugabe von Wasser wird das Maissaatgut gebeizt und zurückgetrocknet.
Die Maisaussaat erfolgt in sandigem Lehm. Nach 3 Tagen werden pro Topf ca. 40 Diabrotica Larven aufgesetzt. Außer einer unbehandelten Kontrolle mit Testtieren läuft auch eine Kontrolle ohne Testtiere mit, um die Keimfähigkeit des Maissaatgutes zu ermitteln. 6-7 Tage nach Infektion wird die Wirkung in % Abbott bestimmt. Dabei bedeutet 100 %>, dass alle Pflanzen gekeimt und gewachsen sind; 0 % bedeutet, dass keine Pflanze aufgelaufen ist.
In diesem Test gemäß Beispiel 3 erzielte die Verbindung der Formel (I) die in der Tabelle 2 angegebene Wirkung. Tabelle 2
Figure imgf000034_0001
= Tage nach Infektion
Beispiel 4
Aphis gossypii -Test, Saatgutapplikation (APHIGO S) Leerformulierung: 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10 5,0% Baykanol SL 4,0% Utrasil VN3 Pulver 1,5% Emulgator 1000 TR U gemahlen 0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W - -
Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird anschließend getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Baumwollsaatgut {Gossypium hirsutum) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (1 Korn/Topf, mind. 3 Töpfe/V ariante). Nach ca. 2 Wochen werden die Baumwollpflanzen mit der Baumwollblattlaus (Aphis gossypii) infiziert. Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In diesem Test gemäß Beispiel 4 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 3 aufgeführte Wirkung.
Beispiel 5
Metopolophium dirhodum -Test, Saatgutapplikation (METODR S)
Leerformulierung: 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10
5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W
Lösungsmittel: Aceton nach Bedarf Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird anschließend getrocknet. Je nach - - gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Wintergerstensaatgut (Hordeum vulgare) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (10 Körner/Topf, mind. 2 Töpfe/Variante). Nach ca. 1 Woche werden die Gerstenpflanzen mit einer gemischten Population der großen Getreideblattlaus (Metopolophium dirhodum) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In diesem Test gemäß Beispiel 5 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 3 aufgeführte Wirkung.
Beispiel 6
Frankliniella occidentalis -Test; Drenchapplikation (FRANOC D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Baumwollpflanzen (Gossypium hirsutum) werden in lehmigem Sand angezogen und im 1-2- Blattstadium mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. Nach einer Woche wird mit einer gemischten Thrips- Population {Frankliniella occidentalis) infiziert.
14 Tage nach Infektion wird die pflanzenschützende Wirkung in % bestimmt. Dabei bedeutet 100 %, dass kein Schaden zu sehen ist; 0 % bedeutet, dass der Schaden an den behandelten Blättern dem der unbehandelten Kontrolle entspricht. In diesem Test gemäß Beispiel 6 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 3 aufgeführte Wirkung. - -
Beispiel 7
Nilaparvata lugens -Test, Saatgutapplikation (NILALU S)
Leerformulierung 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10
5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsanteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Reissaatgut (Oryza sativa) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (10 Körner/Topf, mind. 2 Töpfe/Variante). Nach ca. 2 Wochen werden die Reispflanzen mit einer gemischten Population der braunrückigen Reiszikade {Nilaparvata lugens) infiziert. Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Zikaden abgetötet wurden; 0 % bedeutet, dass keine Zikaden abgetötet wurden.
In diesem Test gemäß Beispiel 7 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 3 aufgeführte Wirkung. - -
Beispiel 8
Myzus versiege - Drenchtest (MYZUPE D)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss. Es ist darauf zu achten, dass in der Erde eine Konzentration von 40 ppm Emulgator nicht überschritten wird. Zur Herstellung weiterer Testkonzentrationen wird mit Wasser verdünnt.
Wirsingkohlpflanzen (Brassica oleraced) in Erdtöpfen, die von allen Stadien der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen.
Nach 10 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In den Tests gemäß Beispielen 4 bis 8 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 3 aufgeführte Wirkung.
Tabelle 3
Verbindung der Formel (I) Beispiel- Nr. Objekt Applikation Konzentration % Wirkung
4 APHIGO S 8 g/kg 75
5 METODR S 8 g/kg 100
6 FPvANOC D 8 mg/1 80
Figure imgf000038_0001
7 NILALU S 4 g/kg 100
8 MYZUPE D 20 ppm 98 - -
Beispiel 9
Diabrotica balteata - Bodenbehandlung (DIABBA B)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung, wird 1 Gewichtsteil Wirkstoff mit Lösungsmittel und Emulgator im Verhältnis 4 : 1 angelöst und mit Wasser auf die gewünschte Konzentration verdünnt.
Diese Wirkstoffzubereitung wird mit Erde vermischt. Die angegebene Konzentration bezieht sich auf die Wirkstoffmenge pro Volumeneinheit Boden (mg/1 = ppm). Pro Konzentration füllt man jeweils zwei 250ml Töpfe mit behandelter Erde und sät 5 Maiskörner (Zea mays) aus. Nach 3 Tagen werden etwa 40 L2-Larven des Maiswurzelbohrers {Diabrotica balteata) auf die Erdoberfläche gegeben.
Nach 7 Tagen wird der Wirkungsgrad aus der Anzahl der aufgelaufenen Maispflanzen ermittelt. Dabei bedeutet 100 %, dass alle 5 Pflanzen gekeimt und gewachsen sind; 0 % bedeutet, dass keine Pflanze aufgelaufen ist.
In diesem Test gemäß Beispiel 9 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 10
Aphis eossypii - Drenchtest (APHIGO D) Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Baumwollpflanzen (Gossypium hirsutum) im 1.-2. Blattstadium in Erdtöpfen, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. 1 Woche nach dem Drenchen werden die Pflanzen mit einer gemischten Population der Baumwollblattlaus {Aphis gossypii) infiziert. - -
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In diesem Test gemäß BeispiellO zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 11
Heliothis armigera - Drenchtest (HELIAR D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss. Sojabohnenpflanzen (Glycine max) in Erdtöpfen im 1.-2. Blattstadium, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. 2 Wochen nach dem Drenchen wird an dem jüngsten, vollentwickelten Blatt mittig eine Klammer mit 3-5 L2-Larven des Baumwollkapselwurms {Heliothis armigera) befestigt.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
In diesem Test gemäß Beispiel 11 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 12 Rhopalosiphum padi - Drenchtest (RHOPPA D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit - -
Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Gerstenpflanzen (Hordeum vulgare) in Erdtöpfen im 1.-2. Blattstadium werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. Nach 1 Woche wird mit einer gemischten Population der Haferblattlaus {Rhopalosiphum padi) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In diesem Test gemäß Beispiel 12 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 13
Rhopalosiphum padi -Test, Saatgutapplikation (RHOPPA S)
Leerformulierung: 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10 5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird 1 Gewichtsanteil Wirkstoff in einer an den Aggregatzustand des Wirkstoffes angepassten Menge Lösungsmittel gelöst. Es werden 4 Gewichtsanteile Leerformulierung hinzugegeben, mit der Wirkstofflösung vermischt und die entstandene Wirkstoffzubereitung wird getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Wintergerstensaatgut {Hordeum vulgare) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (10 Körner/Topf, mind. 2 Töpfe/Variante). Nach ca. 1 Woche - - werden die Gerstenpflanzen (1.-2. Blattstadium) mit einer gemischten Population der Haferblattlaus (Rhopalosiphum padi) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In diesem Test gemäß Beispiel 13 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 14
Phaedon cochleariae - Drenchtest (PHAECO D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Kohlpflanzen (Brassica oleracea) in Erdtöpfen im 1.-2. Blattstadium, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. 2 Wochen nach dem Drenchen wird an dem jüngsten, vollentwickelten Blatt mittig eine Klammer mit 3-5 L2-Larven des Meerrettichblattkäfers {Phaedon cochleariae) befestigt.
Nach 1 Woche wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Larven abgetötet wurden; 0 % bedeutet, dass keine Larven abgetötet wurden.
In diesem Test gemäß Beispiel 14 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 15
Chilo suppressalis - Drenchtest (CHILSU D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether - -
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen, in das gedrencht wird, mitberücksichtigt werden muss.
Reispflanzen (Oryza sativa) im 1.-2. Blattstadium (ca. 14 Tage nach Aussaat), werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. 1 Woche nach dem Drenchen werden die obersten Blätter (bis kurz vor Ansatz 1. Blatt) der Reispflanzen abgeschnitten. 8-10 gleich große Reisblätter werden mittig in eine Petrischale auf feuchtes Filterpapier gegeben und mit 10 LI -Larven des gestreiften Reisbohrers (Chilo suppressalis) infiziert.
Nach 5 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Reisbohrer abgetötet wurden; 0 % bedeutet, dass keine Reisbohrer abgetötet wurden.
In diesem Test gemäß Beispiel 15 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 16
Myzus persicae - Drenchtest (MYZUPE D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss. Baumwollpflanzen (Gossypium hirsutum) im 1.-2. Blattstadium in Erdtöpfen, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. 1 Woche nach dem Drenchen werden die Pflanzen mit der Grünen Pfirsichblattlaus {Myzus persicae) infiziert.
Nach 1 Woche wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden. - -
In diesem Test gemäß Beispiel 16 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 17 Plutella xylostella - Drenchtest (PLUTMA D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Kohlpflanzen (Brassica oleracea) in Erdtöpfen im 1.-2. Blattstadium, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. 1 Woche nach dem Drenchen wird an dem jüngsten, vollentwickelten Blatt mittig eine Klammer mit 3-5 L2-Larven der Schleiermotte {Plutella xylostella) befestigt.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
In diesem Test gemäß Beispiel 17 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 18
Planococcus citri - Drenchtest (PSECCI D)
Lösungsmittel: 4 Gewichtsteile Aceton Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit - -
Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Kartoffelpflanzen (Solanum tuberosum) in Erdtöpfen im 1.-2. Blattstadium werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen. Nach 1 Woche wird mit einer gemischten Population der Citrusschmierlaus (Planococcus citri) infiziert.
Nach 4 Wochen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Läuse abgetötet wurden; 0 % bedeutet, dass keine Läuse abgetötet wurden.
In diesem Test gemäß Beispiel 18 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 19
Nilaparvata lusens - Drenchtest (NILALU D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Reispflanzen (Oryza sativa) werden mit der Wirkstoffzubereitung angegossen (2 Töpfe/Variante) und nach 3 Tagen mit einer gemischten Population der braunrückigen Reiszikade (Nilaparvata lugens) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Zikaden abgetötet wurden; 0 % bedeutet, dass keine Zikaden abgetötet wurden.
In diesem Test gemäß Beispiel 19 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung. - -
Beispiel 20
Neyhotettix cincticeys - Drenchtest (NEPHCI D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen, in das gedrencht wird, mitberücksichtigt werden muss. Reispflanzen (Oryza sativa) werden mit der Wirkstoffzubereitung angegossen (2 Töpfe/Variante) und nach 3 Tagen mit einer gemischten Population der grünen Reiszikade (Nephotettix cincticeps) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Zikaden abgetötet wurden; 0 % bedeutet, dass keine Zikaden abgetötet wurden.
In diesem Test gemäß Beispiel 20 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 21
Nephotettix cincticeps -Test, Saatgutapplikation (NEPHCI S)
Leerformulierung: 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10
5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W
Lösungsmittel: Aceton nach Bedarf - -
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsanteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Reissaatgut (Oryza sativa) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (10 Körner/Topf, mind. 2 Töpfe/Variante). Nach 1 Woche werden die Reispflanzen mit einer gemischten Population der grünen Reiszikade (Nephotettix cincticeps) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %>, dass alle Zikaden abgetötet wurden; 0 % bedeutet, dass keine Zikaden abgetötet wurden.
In diesem Test gemäß Beispiel 21 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 22 Aphis glycines - Test, Saatgutapplikation (APHIGY S)
Leerformulierung: 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10
5,0% Baykanol SL
4,0% Utrasil VN3 Pulver 1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so herstellte Wirkstoffzubereitung wird anschließend getrocknet. Je nach gewünschter Aufwandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen. - -
Unter Wasserzugabe wird Sojabohnensaatgut (Glycine max) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehm ausgesät (1 Korn/Topf, mind. 3 Töpfe/Variante). Nach 1 Woche werden die Sojabohnenpflanzen mit einer gemischten Population der Sojabohnenblattlaus (Aphis glycines) infiziert.
Nach 7 Tagen wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
In diesem Test gemäß Beispiel 22 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
Beispiel 23 Nezara viridula - Drenchtest (NEZAVI D)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung wird zunächst eine Laborformulierung im Bereich von 0,05 -5% mit Aceton + Emulgator (4+1) hergestellt und dann mit Wasser bis zu einer Konzentration von lOOOppm (1 mg a.i./ml) aufgefüllt. Durch Verdünnung dieser Stammlösung mit Wasser erhält man die gewünschten Testkonzentrationen, wobei das Erdvolumen in das gedrencht wird, mitberücksichtigt werden muss.
Maispflanzen (Zea mays) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration angegossen und nach 3 Tagen mit Larven der Grünen Reiswanze (Nezara viridula) infiziert. Nach 7 Tagen wird die pflanzenschützende Wirkung gegen Fraß in % bestimmt. Dabei bedeutet 100 %, dass kein Schaden zu sehen ist; 0 % bedeutet, dass der Schaden an den behandelten Blättern dem der unbehandelten Kontrolle entspricht.
In diesem Test gemäß Beispiel 23 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung. - -
Beispiel 24
Nezara viridula -Test, Saatgutapplikation (NEZAVI S)
Leerformulierang : 2,0% Brilliantponceau 4 RC 70
2,0% Helioechtrubin 4B 10
5,0% Baykanol SL
4,0% Utrasil VN3 Pulver
1,5% Emulgator 1000 TR U gemahlen
0,8% Baysilone-Entschäumer E VM 30
84,7% Kaolin W Lösungsmittel: Aceton nach Bedarf
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 9 Gewichtsanteilen Leerformulierung und der je nach Aggregatzustand des Wirkstoffes nötigen Menge Lösungsmittel. Die so hergestellte Wirkstoffzubereitung wird getrocknet. Je nach gewünschter Auswandmenge wird entsprechend der vorbereiteten, abgewogenen Saatgutmenge die errechnete Menge der Wirkstoffzubereitung eingewogen.
Unter Wasserzugabe wird Maissaatgut (Zea mays) mit der Wirkstoffzubereitung gebeizt und in sandigem Lehmboden ausgesät (1 Korn/Topf mit 50 ml Erdvolumen, mind. 2 Töpfe /V ariante).
5 Tage nach Aussaat werden die Maispflanzen mit Larven der Grünen Reiswanze {Nezara viridula) infiziert. Nach 5 Tagen wird die pflanzenschützende Wirkung in % bestimmt. Dabei bedeutet 100 %>, dass kein Schaden zu sehen ist. 0 % bedeutet, dass der Schaden an den behandelten Pflanzen dem der unbehandelten Kontrolle entspricht.
In diesem Test gemäß Beispiel 24 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführte Wirkung.
In den Tests gemäß Beispielen 9 bis 24 zeigte die Verbindung der Formel (I) die in der unten stehenden Tabelle 4 aufgeführten Wirkungen. Tabelle 4
Verbindung der Formel (I) Beispiel-Nr. Objekt Applikation Konzentration % Wirkung
9 DIABBA B 4 ppm 100
10 APHIGO D 8 mg/1 100
11 HELIAR D 8 mg/1 70
12 RHOPPA D 8 mg/1 100
Figure imgf000050_0001
13 RHOPPA S 2 g/kg 100
14 PHAECO D 8 mg/1 90
15 CHILSU D 8 mg/1 100
16 MYZUPE D 8 mg/1 100
17 PLUTMA D 8 mg/1 100
18 PSECCI D 8 mg/1 100
19 NILALU D 4 mg/1 100
20 NEPHCI D 4 mg/1 100
21 NEPCHI S 1 g/kg 100
22 APHIGY S 8 g/kg 100
23 NEZAVI 8 mg ai/1 100
24 NEZAVI S 8 g ai/kg 93

Claims

Patentansprüche
1. Verwendung der Verbindung der Formel (I)
Figure imgf000051_0001
für die Behandlung von Saatgut und zur Bekämpfung tierischer Pflanzenschädling Aufbringen der Verbindung auf den Boden um die Pflanze.
PCT/EP2014/071840 2013-10-14 2014-10-13 Wirkstoff für die saatgut- und bodenbehandlung WO2015055554A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13188465.2 2013-10-14
EP13188465 2013-10-14
EP14150536.2 2014-01-09
EP14150536 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015055554A1 true WO2015055554A1 (de) 2015-04-23

Family

ID=51691044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071840 WO2015055554A1 (de) 2013-10-14 2014-10-13 Wirkstoff für die saatgut- und bodenbehandlung

Country Status (1)

Country Link
WO (1) WO2015055554A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098631A (ko) 2015-12-29 2018-09-04 메이지 세이카 파루마 가부시키가이샤 이미노피리딘 유도체를 함유하는 유해 생물 방제용 조성물

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
EP0268915A2 (de) 1986-11-21 1988-06-01 Bayer Ag Trifluormethylcarbonyl-Derivate
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0432600A2 (de) 1989-12-14 1991-06-19 Bayer Ag 2-Iminopyridin-Derivate
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2003076415A1 (en) 2002-03-12 2003-09-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and their use as pesticides
WO2003106457A1 (en) 2002-06-14 2003-12-24 Syngenta Limited Spiroindolinepiperidine derivatives
WO2004099160A1 (en) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and pests controlling composition containing the same
WO2005077934A1 (ja) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. アントラニルアミド系化合物、それらの製造方法及びそれらを含有する有害生物防除剤
WO2005085216A1 (ja) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. イソキサゾリン置換ベンズアミド化合物及び有害生物防除剤
WO2006003494A2 (en) 2004-06-28 2006-01-12 Syngenta Participations Ag Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
WO2006043635A1 (ja) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-トリアゾリルフェニルスルフィド誘導体及びそれを有効成分として含有する殺虫・殺ダニ・殺線虫剤
WO2008134969A1 (fr) 2007-04-30 2008-11-13 Sinochem Corporation Composés benzamides et leurs applications
WO2009002809A2 (en) 2007-06-26 2008-12-31 E. I. Du Pont De Nemours And Company Naphthalene isoxazoline invertebrate pest control agents
CN101337940A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
WO2009049851A1 (en) 2007-10-15 2009-04-23 Syngenta Participations Ag Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides
WO2009080250A2 (en) 2007-12-24 2009-07-02 Syngenta Participations Ag Insecticidal compounds
WO2009099929A1 (en) 2008-02-06 2009-08-13 E. I. Du Pont De Nemours And Company Mesoionic pesticides
WO2010060231A1 (zh) 2008-11-25 2010-06-03 Qin Zhaohai 硝基缩氨基胍类化合物及其制备方法与其作为杀虫剂的应用
WO2010069502A2 (de) 2008-12-18 2010-06-24 Bayer Cropscience Ag Tetrazolsubstituierte anthranilsäureamide als pestizide
WO2010069266A1 (zh) 2008-12-19 2010-06-24 华东理工大学 二醛构建的具有杀虫活性的含氮或氧杂环化合物及其制备方法
WO2010129500A2 (en) 2009-05-04 2010-11-11 E. I. Du Pont De Nemours And Company Nematocidal sulfonamides
CN102057925A (zh) 2011-01-21 2011-05-18 陕西上格之路生物科学有限公司 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物
WO2012029672A1 (ja) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 有害生物防除剤
WO2012034472A1 (zh) 2010-09-13 2012-03-22 中化蓝天集团有限公司 一种含氰基的邻苯二甲酰胺类化合物、制备方法和作为农用化学品杀虫剂的用途
WO2013031671A1 (ja) 2011-08-26 2013-03-07 Meiji Seikaファルマ株式会社 有害生物防除剤の製造法
EP2633756A1 (de) * 2012-02-29 2013-09-04 Meiji Seika Pharma Co., Ltd. Zusammensetzung zur Bekämpfung von Schädlingen enthaltend Iminopyridin Derivate
EP2634174A2 (de) * 2012-02-29 2013-09-04 Meiji Seika Pharma Co., Ltd. Stickstoffhaltiges heterocyclisches Derivat mit 2-Imino-Gruppe sowie Schädlingsbekämpfungsmittel damit

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
EP0268915A2 (de) 1986-11-21 1988-06-01 Bayer Ag Trifluormethylcarbonyl-Derivate
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0432600A2 (de) 1989-12-14 1991-06-19 Bayer Ag 2-Iminopyridin-Derivate
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
WO2003076415A1 (en) 2002-03-12 2003-09-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and their use as pesticides
WO2003106457A1 (en) 2002-06-14 2003-12-24 Syngenta Limited Spiroindolinepiperidine derivatives
WO2004099160A1 (en) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and pests controlling composition containing the same
WO2005077934A1 (ja) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. アントラニルアミド系化合物、それらの製造方法及びそれらを含有する有害生物防除剤
WO2005085216A1 (ja) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. イソキサゾリン置換ベンズアミド化合物及び有害生物防除剤
WO2006003494A2 (en) 2004-06-28 2006-01-12 Syngenta Participations Ag Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
WO2006043635A1 (ja) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-トリアゾリルフェニルスルフィド誘導体及びそれを有効成分として含有する殺虫・殺ダニ・殺線虫剤
WO2008134969A1 (fr) 2007-04-30 2008-11-13 Sinochem Corporation Composés benzamides et leurs applications
WO2009002809A2 (en) 2007-06-26 2008-12-31 E. I. Du Pont De Nemours And Company Naphthalene isoxazoline invertebrate pest control agents
WO2009049851A1 (en) 2007-10-15 2009-04-23 Syngenta Participations Ag Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides
WO2009080250A2 (en) 2007-12-24 2009-07-02 Syngenta Participations Ag Insecticidal compounds
WO2009099929A1 (en) 2008-02-06 2009-08-13 E. I. Du Pont De Nemours And Company Mesoionic pesticides
CN101337940A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
WO2010060231A1 (zh) 2008-11-25 2010-06-03 Qin Zhaohai 硝基缩氨基胍类化合物及其制备方法与其作为杀虫剂的应用
WO2010069502A2 (de) 2008-12-18 2010-06-24 Bayer Cropscience Ag Tetrazolsubstituierte anthranilsäureamide als pestizide
WO2010069266A1 (zh) 2008-12-19 2010-06-24 华东理工大学 二醛构建的具有杀虫活性的含氮或氧杂环化合物及其制备方法
WO2010129500A2 (en) 2009-05-04 2010-11-11 E. I. Du Pont De Nemours And Company Nematocidal sulfonamides
WO2012029672A1 (ja) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 有害生物防除剤
EP2628389A1 (de) 2010-08-31 2013-08-21 Meiji Seika Pharma Co., Ltd. Mittel zur bekämpfung schädlicher organismen
EP2631235A2 (de) 2010-08-31 2013-08-28 Meiji Seika Pharma Co., Ltd. Schädlingsbekämpfungsmittel
WO2012034472A1 (zh) 2010-09-13 2012-03-22 中化蓝天集团有限公司 一种含氰基的邻苯二甲酰胺类化合物、制备方法和作为农用化学品杀虫剂的用途
CN102057925A (zh) 2011-01-21 2011-05-18 陕西上格之路生物科学有限公司 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物
WO2013031671A1 (ja) 2011-08-26 2013-03-07 Meiji Seikaファルマ株式会社 有害生物防除剤の製造法
EP2633756A1 (de) * 2012-02-29 2013-09-04 Meiji Seika Pharma Co., Ltd. Zusammensetzung zur Bekämpfung von Schädlingen enthaltend Iminopyridin Derivate
EP2634174A2 (de) * 2012-02-29 2013-09-04 Meiji Seika Pharma Co., Ltd. Stickstoffhaltiges heterocyclisches Derivat mit 2-Imino-Gruppe sowie Schädlingsbekämpfungsmittel damit

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"The Pesticide Manual 16th Ed.,", 2012, BRITISH CROP PROTECTION COUNCIL
A. JONITZ, N. LEIST PFLANZENSCHUTZ-NACHRICHTEN BAYER, vol. 56, 2003, pages 147 - 172
D. J. ARNOLD; G. G. BRIGGS: "Progress in Pesticide Biochemistry and Toxicology", vol. 7, 1990, JOHN WILEY AND SONS, pages: 101 - 122
E. A. PAUZL; A. D. MCLAREN: "Biochemistry", vol. 3, 1975, MARCEL DEKKER, pages: 1 - 3
F. BRENDLER, KURIER HEFT, vol. 2, 2006, pages 4 - 7
M. A. TABATABI: "Encyclopedia of Agrochemicals", vol. 3, 2003, WILEY-INTERSCIENCE, pages: 1451 - 1462
P. C. KEARNEY; D. R. SHELTON; W. C. KOSKINEN: "Encyclopedia of Agrochemicals", vol. 3, 2003, WILEY-INTERSCIENCE, pages: 1421 - 1441
R. ALTMANN, PFLANZENSCHUTZ-NACHRICHTEN BAYER, vol. 44, 1991, pages 159 - 174
R. BROMILOW: "Encyclopedia of Agrochemicals", vol. 3, 2003, WILEY-INTERSCIENCE, pages: 1463 - 1480
R. WEGLER: "Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", vol. 2, 1970, SPRINGER VERLAG, pages: 401 - 412
W. ANDERSCH; M. SCHWARZ, PFLANZENSCHUTZ-NACHRICHTEN BAYER, vol. 56, 2003, pages 147 - 172

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098631A (ko) 2015-12-29 2018-09-04 메이지 세이카 파루마 가부시키가이샤 이미노피리딘 유도체를 함유하는 유해 생물 방제용 조성물

Similar Documents

Publication Publication Date Title
EP3019014B1 (de) Verwendung von kombinationen, umfassend induktoren der wirtsverteidigung und biologische wirkstoffe zur kontrolle von bakteriell schädlichen organismen bei nutzpflanzen
JP6743032B2 (ja) 硝化抑制剤としてのピラゾール化合物
US11021413B2 (en) Benzylpropargylether as nitrification inhibitors
TWI649032B (zh) 二元之殺真菌及殺細菌組合物
CA2975183A1 (en) Pesticidal mixture comprising a pyrazole compound, an insecticide and a fungicide
TWI612897B (zh) 宿主防禦誘導物用於控制有用植物中細菌有害生物的用途
KR20170066599A (ko) 노린재과 해충의 방제 방법 및 이를 위한 살충제 혼합물
US11053175B2 (en) Thioether compounds as nitrification inhibitors
CN104302179A (zh) 宿主防御诱导物用于防治有用植物中的细菌有害生物的用途
JP7233415B2 (ja) イネにおけるイネ有害生物を防除する方法
US20220232835A1 (en) Plant health effect of purpureocillium lilacinum
BR112021004526A2 (pt) uso do composto, métodos de proteção de plantas, de controle ou combate a pragas invertebradas e de tratamento de sementes e semente
CN115568473A (zh) 烷氧基吡唑作为硝化抑制剂的用途
BR122021026787B1 (pt) Uso de cepa qst 713 de bacillus subtilis, e método para controle de murcha de fusarium em plantas da família musaceae
WO2015055505A1 (de) Wirkstoff zur bekämpfung von stinkwanzen
WO2015055554A1 (de) Wirkstoff für die saatgut- und bodenbehandlung
EP3750888A1 (de) Kristalline form eines 1,4-dimethyl-2-[2-(pyridin-3-yl)-2h-indazol-5-yl]-1,2,4-triazolidin-3,5-dions
EP3628156A1 (de) Verfahren zur bekämpfung von schädlingen von zuckerrohr-, zitrus-, raps- und kartoffelpflanzen
EP4295683A1 (de) Agrochemische formulierungen, die die kristalline form a von 4-[(6-chlor-3-pyridylmethyl)(2,2-difluorethyl)amino]furan-2(5h)-on umfassen
RU2794262C2 (ru) Применение алкоксипиразолов в качестве ингибиторов нитрификации
RU2790292C2 (ru) Силилэтинил-гетарильные соединения в качестве ингибиторов нитрификации
WO2023237444A1 (en) Agrochemical formulations comprising crystalline form a of 4-[(6-chloro-3-pyridylmethyl)(2,2-difluoroethyl)amino]furan-2(5h)-one
EP3545764A1 (de) Kristalline form von 2-({2-fluor-4-methyl-5-[(r)-(2,2,2-trifluorethyl)sulfinyl]phenyl}imino)-3-(2,2,2-trifluorethyl)-1,3-thiazolidin-4-on
EP3564225A1 (de) Kristalline form von spiromesifen
TW202011813A (zh) 用於控制稻中的稻有害生物之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783836

Country of ref document: EP

Kind code of ref document: A1