WO2018193847A1 - Algae growth inhibitor and method for inhibiting algae growth - Google Patents

Algae growth inhibitor and method for inhibiting algae growth Download PDF

Info

Publication number
WO2018193847A1
WO2018193847A1 PCT/JP2018/014433 JP2018014433W WO2018193847A1 WO 2018193847 A1 WO2018193847 A1 WO 2018193847A1 JP 2018014433 W JP2018014433 W JP 2018014433W WO 2018193847 A1 WO2018193847 A1 WO 2018193847A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
nanoparticles
cyanoacrylate
microalgae
growth
Prior art date
Application number
PCT/JP2018/014433
Other languages
French (fr)
Japanese (ja)
Inventor
飯田大介
大濱武
ドゥイヤンタリウィディヤンニンルン
小松千景
Original Assignee
チカミミルテック株式会社
高知県公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チカミミルテック株式会社, 高知県公立大学法人 filed Critical チカミミルテック株式会社
Priority to JP2019513545A priority Critical patent/JP7134442B2/en
Publication of WO2018193847A1 publication Critical patent/WO2018193847A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/34Nitriles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action

Definitions

  • the present invention relates to an algal growth inhibitor that suppresses the growth of algae and a method for suppressing the growth of algae.
  • red tide is a term that refers to the occurrence of a specific type of plankton that occurs in the sea and its surface layer accumulation phenomenon.
  • the word freshwater red tide is officially used for those that are yellow and accumulate in surface water.
  • the red tide in the sea area has great social impact, not only worsening the landscape but also causing serious damage such as the massive death of cultured fish.
  • the influence of freshwater red tide on surrounding residents is pointed out as follows.
  • Patent Document 1 describes a red tide algae using silver thiosulfate ion as a component.
  • Patent Document 2 describes an antibacterial agent containing cyanoacrylate polymer particles conjugated with an antibiotic as an active ingredient as an antibacterial agent for vancomycin-resistant gram-positive bacteria.
  • the cyanoacrylate polymer particles are obtained by anionic polymerization of a cyanoacrylate monomer that is used, for example, as an adhesive for wound closure in the surgical field. Cyanoacrylate-based polymer particles are porous, and a desired substance can be conjugated inside.
  • VRE vancomycin-resistant enterococci
  • Patent Document 3 describes that a cyanoacrylate polymer particle conjugated with an amino acid is synthesized by anionic polymerization of a cyanoacrylate monomer in the presence of an amino acid to synthesize cyanoacrylate polymer particles having an average particle diameter of less than 1000 nm.
  • the amino acid-conjugated particles of Patent Document 3 are said to be useful for cancer treatment and prevention because they can induce apoptosis-like cell death in cancer cells and damage the cancer cells.
  • cyanoacrylate polymer particles are useful for antibacterial action and cancer treatment and prevention.
  • Patent Document 1 In order to suppress the abnormal occurrence of microalgae and the surface layer accumulation phenomenon, the use of metal ions as described in Patent Document 1 may cause concern about accumulation of metals in the environment. In view of the accumulation of metal in the environment as described above, it is desirable to suppress the growth of microalgae using a metal-free component.
  • an object of the present invention is to provide an algal growth inhibitor that suppresses the growth of algae and a method for suppressing the growth of algae using metal-free nanoparticles.
  • the present invention relates to an algae growth inhibitor having an action of inhibiting the growth of algae (microalgae) constituting, for example, red tides and the like and a method for inhibiting the growth of algae.
  • the object is to prevent or reduce the above-mentioned damage by suppressing the occurrence of abnormal algae and its surface accumulation phenomenon.
  • [1] to [16] are provided.
  • An algae growth inhibitor that suppresses the growth of algae containing organic compound nanoparticles having a hydrocarbon as a main component and affinity for the cell walls of algae.
  • the algal growth inhibitor according to [3], wherein the cyanoacrylate monomer is isobutyl cyanoacrylate.
  • the microalgae are at least selected from the group of dinoflagellates belonging to the dinoflagellate, diatoms belonging to the diatomaceous plant, raffido algae belonging to the irregular planta, golden algae, or true eyed algae.
  • the algal growth inhibitor according to [5] which is a kind.
  • the algae growth inhibitor according to any one of [5] to [9] which prevents or inhibits water pollution caused by the growth of the microalgae.
  • the algae growth inhibitor according to [10] wherein the water pollution is red tide or pollution in a closed water area.
  • the algae growth inhibitor according to any one of [5] to [9] wherein the growth of the microalgae on the solid surface is prevented or suppressed.
  • the algae growth inhibitor according to [12], wherein the solid is a member used in a plant factory or an outer wall for building materials.
  • the algal growth inhibitor uses nanoparticles of organic compounds mainly composed of hydrocarbons, for example, nanoparticles composed of organic compounds such as acrylic resins. be able to. Therefore, the algal growth inhibitor does not use metal oxide nanoparticles, is metal-free, has no accumulation in the environment, and is highly safe. In addition, metal oxide nanoparticles often form large agglomerates in aqueous solutions, but organic compound nanoparticles mainly composed of hydrocarbons have little cohesiveness between the nanoparticles, and in aqueous solutions. A dispersed state can be stably maintained.
  • cyanoacrylate nanoparticles may be used as the organic compound nanoparticles, and the cyanoacrylate nanoparticles may be polymerized in the presence of a cyanoacrylate monomer and a surfactant.
  • the cyanoacrylate monomer is preferably isobutyl cyanoacrylate.
  • the cell wall is composed of glycoprotein, chitin, cellulose, proteoglycan and the like in algae (microalgae).
  • the above-mentioned organic compound nanoparticles mainly composed of hydrocarbons have an affinity for the cell wall composed of the above components. Therefore, the organic compound nanoparticles can adhere to and cover the cell surface due to the affinity with the cell wall.
  • Microalgae includes, for example, green algae belonging to the green algal plant gate, dinoflagellate belonging to the dinoflagellate gate, diatoms belonging to the diatom plant gate, rafido algae belonging to the irregular plant gate, golden algae or true-eye algae It is.
  • examples of the green algae belonging to the green alga plant gate include algae belonging to the green algae class or the Trevoxia algae class.
  • examples of the green algae belonging to the green alga class include Chlamydomonas, and examples of the green algae belonging to the Trevoxia algae class include Chlorella.
  • the inventors unexpectedly found that the organic compound nanoparticles are acute cell death against the eukaryotic unicellular green alga Chlamydomonas (eg Chlamydomonas reinhardtii). It was found that can be induced. Furthermore, it has been found that protoplast-like cells are generated at a high frequency by inducing the secretion of cell wall lytic enzymes in the genus Chlorella (for example, Chlorella vulgaris).
  • the suffocation effect by covering the whole cell wall with nanoparticles promoted the growth inhibition of microalgae and the secretion of cell wall lytic enzyme. If the nanoparticles are sufficiently small and can pass through damaged cell walls, it is highly likely that the nanoparticles can enter the cytoplasm and induce cell death by phagocytosis.
  • nanoparticles of organic compounds can induce cell death against a wide range of algae or induce abnormal secretion of cell wall lytic enzymes that do not directly induce cell death but are partially degraded even if the cell wall is small.
  • the cells can be easily changed to a state in which the cells are lysed by mechanical stimulation.
  • chlorophyll degradation and ROS generation it causes damage to the photosynthetic system and various metabolic abnormalities.
  • the algal growth inhibitor of the present invention prevents or suppresses water pollution caused by the growth of the above-mentioned microalgae.
  • the algae growth inhibitor can suppress the growth of microalgae, or can kill and remove microalgae that have already occurred, thereby preventing water pollution caused by the growth of microalgae or Can be suppressed.
  • By preventing or suppressing water pollution damage to fish and shellfish that live in, for example, farms and aquariums can be reduced.
  • the water pollution is red tide or pollution in a closed water area.
  • the red tide is a phenomenon in which a large amount of microalgae is generated in open waters and semi-open waters such as oceans, lakes and dam lakes, and causes various problems as described above.
  • Examples of the closed water area include artificial closed water areas such as ponds, fountains, reservoirs, moats, drains, septic tanks, water-cooled cooling towers, bathtubs, and farms in parks.
  • the algal growth inhibitor of the present invention can suppress the occurrence of abnormalities of the above-mentioned specific types of microalgae and the surface layer accumulation phenomenon, thereby preventing or suppressing contamination in the red tide or closed water area.
  • the algal growth inhibitor of the present invention prevents or suppresses the growth of microalgae on the solid surface.
  • the solid may be, for example, a member used in a plant factory or an outer wall for building materials. That is, as a member to be used in a plant factory, a microalgae that inhibits the growth of plant seedlings by applying an algae growth inhibitor to the hole for inserting the seedlings formed in the member supporting the plant seedlings. Proliferation can be prevented or suppressed.
  • an algal growth inhibitor to the outer wall for building materials, the growth of microalgae that grow on the outer wall for building materials can be prevented or suppressed.
  • [14] A method for suppressing the growth of algae using nanoparticles of an organic compound mainly composed of hydrocarbons and having affinity for the cell walls of algae. [15] The method for suppressing the growth of algae according to [14], wherein the algae are microalgae. [16] The method for inhibiting the growth of algae according to [15], wherein microalgae insensitive to the nanoparticles can be grown.
  • the organic compound nanoparticles adhere to the cell surface due to the affinity with the cell wall and cover the cell surface, so that the cell is in contact with the external environment. It becomes difficult to introduce components essential for growth, such as oxygen, carbon dioxide, and nutrients (suffocation effect), and the suffocation effect causes physiological abnormal reactions such as ROS accumulation, chlorophyll degradation, and cell wall lytic enzyme secretion. Wake up. As a result, an event occurs in which the cell becomes a protoplast or the nanoparticle enters the cytoplasm through the damaged cell wall. As a result, the homeostasis of the cells is not maintained, and it is considered that cell death is caused.
  • the suffocation effect by covering the whole cell wall with nanoparticles promoted the growth inhibition of microalgae and the secretion of cell wall lytic enzyme. If the nanoparticles are sufficiently small and can pass through damaged cell walls, it is highly likely that the nanoparticles can enter the cytoplasm and induce cell death by phagocytosis.
  • nanoparticles of organic compounds can induce cell death against a wide range of algae or induce abnormal secretion of cell wall lytic enzymes that do not directly induce cell death but are partially degraded even if the cell wall is small.
  • the cells can be easily changed to a state in which the cells are lysed by mechanical stimulation.
  • chlorophyll degradation and ROS generation it causes damage to the photosynthetic system and various metabolic abnormalities.
  • the growth of algae can be suppressed using nanoparticles of organic compounds that have an affinity for the cell wall of algae (microalgae).
  • microalgae it is useful for the oil production industry utilizing microalgae, for example, to suppress the growth of microalgae that are insensitive to nanoparticles of organic compounds described above and to suppress the growth of microalgae that are insensitive to the nanoparticles.
  • unnecessary microalgae microalgae sensitive to nanoparticles
  • useful desired microalgae microalgae insensitive to nanoparticles
  • the nanoparticles can be added to the medium for the purpose. Harmful or unnecessary growth of microalgae can be prevented.
  • FIG. 3 is a photographic diagram showing the results of culturing Chlamydomonas (wild type CC-124) sensitive to cyanoacrylate nanoparticles on a TAP medium. It is the photograph figure which showed the result of having performed the microscope observation, after adding a cyanoacrylate nanoparticle to Euglena gracilis of a logarithmic growth phase, and culturing for 12 hours.
  • ROS reactive oxygen species
  • FIG. 5 is a photographic diagram showing the results of applying a Chlamydomonas (CC-124 strain) on a sample in which a dispersion of cyanoacrylate nanoparticles is uniformly attached on the surface of an agar medium and conducting a culture test (day 11 of culture). is there.
  • CC-124 strain Chlamydomonas
  • the algae growth inhibitor that suppresses the growth of algae according to the present invention contains nanoparticles of organic compounds mainly composed of hydrocarbons and having affinity for the cell walls of algae. Moreover, the method for suppressing the growth of algae according to the present invention suppresses the growth of algae by using nanoparticles of an organic compound mainly composed of hydrocarbons and having an affinity for the cell walls of algae.
  • the algal growth inhibitor is an organic compound nanoparticle mainly composed of hydrocarbons. That is, the algal growth inhibitor may be nanoparticles composed of an organic compound such as an acrylic resin. Therefore, the algal growth inhibitor does not use metal oxide nanoparticles, is metal-free, has no accumulation in the environment, and is highly safe. In addition, metal oxide nanoparticles often form large agglomerates in aqueous solutions, but organic compound nanoparticles mainly composed of hydrocarbons have little cohesiveness between the nanoparticles, and in aqueous solutions. A dispersed state can be stably maintained.
  • the cell wall is composed of glycoprotein, chitin, cellulose, proteoglycan and the like in algae (microalgae).
  • the above-mentioned organic compound nanoparticles mainly composed of hydrocarbons have an affinity for the cell wall composed of the above components.
  • the degree of affinity is not particularly limited.
  • the affinity is such that nanoparticles of an organic compound can adhere to and cover the cell surface due to affinity with the cell wall. If there is.
  • the algae in the present specification include, for example, seaweeds (red algae, brown algae, green algae) that are multicellular organisms, and microalgae that cause red tides. This embodiment demonstrates the case where algae is used as a micro algae.
  • the microalgae includes, for example, green algae belonging to the green algal plant gate, dinoflagellate belonging to the dinoflagellate gate, diatom belonging to the diatom plant gate, rafido algae belonging to the irregular plant gate, golden algae and true-eye algae It is.
  • Examples of the green algae belonging to the green algae plant gate include algae belonging to the green algae class or the Trevoxia algae class.
  • Examples of the green algae belonging to the green alga class include Chlamydomonas
  • examples of the green algae belonging to the Trevoxia algae class include Chlorella.
  • the genus Chlamydomonas has a shape of 10 to 30 ⁇ m in a spherical shape or a smooth ellipse shape, and has two flagellums of almost the same length as the insect antennae in front of the cell body.
  • the genus Chlorella is a nearly spherical shape with a diameter of about 2 to 10 ⁇ m and has no flagella.
  • Chlamydomonas applanata Chlamydomonas assymetrica, Chlamydomonas debaryana, Chlamydomonas lam lambomona monadina), Chlamydomonas noctigama, Chlamydomonas parkeae, Chlamydomonas perpusilla, Chlamydomonas reinhardtii, but not limited to them, such as Chlamydomonas reinhardtii.
  • Chlorella ellipsoidea Chlorella saccharophila
  • Chlorella sorokiniana Chlorella ⁇ vulgaris, and the like. is not.
  • Chlamydomonas and other microalgae (Chlorophyceae) other than Chlorella genus (Astrephomene gubernaculifera), Carteria radiosa, Dismorphococcus globosus, Eudoraina elegans (Eudo, elegans) Gonium multicocum, Labochlamys culleus, Pandorina morum, Phacotuslenticularis, Tetrabaena socialis, Volbox Carteri (Volvox carti, Volvox carti) (Volvulina steiniii) and the like, but are not limited thereto.
  • microalgae other than the above-mentioned green algae include Chattonella marina (Rafido algae), Heterocapsa triketra (Heterocapsatriquetra), Thalassioneama nitzschioides (Diatomae), Karenia mikimotoi (Dinoflagellate), Keetoceros debilis (Chadiato), Calyptophaphaphaera sphaeroidea (Golden algae), Gambierdiscus sp (Dinoflagellate) , Heterosigma akashiwo (Rafido algae), Odontella longicruris (Odontella longicruris) and the like, but are not limited thereto.
  • the nanoparticles are cyanoacrylate nanoparticles.
  • the cyanoacrylate nanoparticles are preferably polymerized in the presence of a cyanoacrylate monomer and a surfactant.
  • the algal growth inhibitor in the present invention contains cyanoacrylate nanoparticles having an average particle diameter of 10 to 500 nm, preferably 25 to 350 nm, a particle dispersion, a particulate form, a granular form, etc. Any aspect may be sufficient.
  • the dispersion may take a form such as a suspension or a colloidal liquid, but is not limited thereto.
  • the algal growth inhibitor may have a cyanoacrylate nanoparticle concentration of 30 mg / L to 1 g / L, preferably 250 to 1 g / L.
  • the cyanoacrylate polymer portion is obtained by anionic polymerization of a cyanoacrylate monomer.
  • the cyanoacrylate monomer used is preferably an alkyl cyanoacrylate monomer (the alkyl group preferably has 1 to 8 carbon atoms), and is particularly used as an adhesive for sutures in the surgical field. It is preferable to use butyl cyanoacrylate represented by the formula.
  • butyl cyanoacrylate such as isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, sec-butyl cyanoacrylate, tert-butyl cyanoacrylate, etc. can be used, and methyl cyanoacrylate, ethyl cyanoacrylate ( Other alkyl cyanoacrylates such as adhesive for false eyelashes) and propyl cyanoacrylate may be selected.
  • isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, and ethyl cyanoacrylate are excellent in safety.
  • a surfactant is used to stabilize the polymerization.
  • a nonionic surfactant or an ionic surfactant can be used, but the surfactant is not limited thereto.
  • the ionic surfactant is preferably an anionic surfactant, but is not limited thereto.
  • nonionic surfactants for example, polysorbates (Tween 20, 40, 60, 80, etc.) can be used, and as anionic surfactants, for example, alkylbenzenesulfonic acid or a salt thereof, sodium lauryl sulfate, sodium laureth sulfate, sodium dodecylbenzenesulfonate. , Sodium 1-pentanesulfonate, sodium 1-decanesulfonate and the like can be used, but are not limited thereto.
  • the nonionic surfactant and the anionic surfactant may be used at the same time.
  • a nonionic surfactant and an anionic surfactant in combination, the cyanoacrylate polymer particles hardly aggregate over time.
  • the above-mentioned surfactant can be used in combination with those having a function of stabilizing the polymerization of anionic polymerization such as polyethylene glycol and saccharide.
  • the saccharide is not particularly limited and may be any of a monosaccharide having a hydroxyl group, a disaccharide having a hydroxyl group, and a polysaccharide having a hydroxyl group, and is particularly preferably a polysaccharide.
  • monosaccharides include glucose, mannose, ribose and fructose.
  • disaccharide include maltose, trehalose, lactose and sucrose.
  • the polysaccharide dextran, mannan, or the like used for the polymerization of conventionally known cyanoacrylate polymer particles can be used.
  • the cyanoacrylate polymer particles are porous, and a desired substance can be conjugated inside.
  • the desired substance may be conjugated to the inside of the cyanoacrylate polymer particles by immersing the cyanoacrylate polymer particles in an aqueous solution of the desired substance or adding the desired substance.
  • the desired substance may be conjugated to the produced particles by performing the above-described anionic polymerization in the presence of the desired substance.
  • amino acids such as glycine and aspartic acid can be conjugated to cyanoacrylate polymer particles. Conjugation refers to a state in which a foreign substance is held in, for example, a hydrophilic molecule.
  • Water can be used as a solvent for the polymerization reaction.
  • Purified water, ion-exchanged water, distilled water, pure water, tap water, ground water, etc. may be appropriately selected as the water depending on the product application having different required purity.
  • the algal growth inhibitor of the present invention can be produced by performing anion polymerization of a cyanoacrylate monomer in the presence of a cyanoacrylate monomer and a surfactant.
  • the polymerization reaction can be performed, for example, by dissolving a surfactant as a polymerization stabilizer in water as a solvent, adding a cyanoacrylate monomer with stirring, and continuing stirring.
  • reaction temperature is not specifically limited, It is good to carry out at room temperature.
  • the reaction time is not particularly limited because the reaction rate varies depending on the pH of the reaction solution, the type of solvent and the concentration of the polymerization stabilizer, and may be appropriately selected depending on these factors, but is usually about 1 to 6 hours. It is.
  • the concentration of the cyanoacrylate monomer in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
  • the concentration of the surfactant in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
  • the concentration of the saccharide in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
  • the cyanoacrylate monomer is anionically polymerized to synthesize cyanoacrylate nanoparticles, whereby the algal growth inhibitor of the present invention can be produced.
  • the synthesized cyanoacrylate nanoparticles can be used as an algal growth inhibitor in the state of a particle dispersion dispersed in a solvent.
  • the obtained particle dispersion hardly changes over time in the particle size distribution during storage, and the particles do not aggregate or settle even when stored at rest, and is excellent in dispersion stability.
  • the synthesized cyanoacrylate nanoparticles can be collected by conventional filtration such as centrifugal ultrafiltration and used as an algal growth inhibitor in a particulate or granular state. Furthermore, the cyanoacrylate nanoparticles recovered by filtration can be used as an algal growth inhibitor in the state of a particle dispersion in which the particles are dispersed in a solvent such as water.
  • the particle size of the synthesized cyanoacrylate nanoparticles can be adjusted by adjusting the concentration of cyanoacrylate monomer in the reaction solution and the reaction time.
  • a surfactant is used as the polymerization stabilizer
  • the particle size can be adjusted by changing the concentration and type of the polymerization stabilizer.
  • the pH of the reaction solution affects the polymerization rate.
  • the pH of the reaction solution is high, the hydroxyl ion concentration is high, so that the polymerization is fast, and when the pH is low, the polymerization is slow. Therefore, the pH is preferably about 1 to 4.
  • the algal growth inhibitor of the present invention prevents or suppresses water pollution caused by the growth of the above-mentioned microalgae. That is, by spreading an appropriate amount of the algal growth inhibitor containing the above-mentioned cyanoacrylate nanoparticles to the ocean, lakes, or water tanks, it is possible to suppress the growth of microalgae, or to kill already generated microalgae. Therefore, it is possible to prevent or suppress water pollution caused by the growth of microalgae. By preventing or suppressing water pollution, damage to fish and shellfish that live in, for example, farms and aquariums can be reduced. In addition, by preventing or suppressing water pollution, it is possible to suppress odors and improve the landscape.
  • the algae growth inhibitor is not only sprayed directly on the ocean, lakes, or aquariums, but also solids containing the algae growth inhibitors may be introduced into the oceans, lakes, or aquariums.
  • the solid is solidified (filmed) by mixing cyanoacrylate nanoparticles with polyethylene glycol or gelled by mixing with polyethylene oxide, the mode is particularly limited. It is not a thing.
  • the water pollution is red tide or pollution in a closed water area.
  • the red tide is water pollution caused by the generation of a large amount of microalgae in open and semi-open water systems such as the ocean and lake water.
  • examples of the closed water area include artificial closed water areas such as ponds, fountains, reservoirs, moats, drains, septic tanks, water-cooled cooling towers, bathtubs, and farms in parks, but are not limited thereto. Absent. In these closed water areas, the production of a large amount of microalgae causes water pollution.
  • the above-mentioned algal growth inhibitor containing cyanoacrylate nanoparticles may be added to or sprayed on the surface of a ship where the red tide is generated or expected from the air, or a solid substance containing an algal growth inhibitor may be added. You may throw into the said area
  • the above-described algal growth inhibitor containing cyanoacrylate nanoparticles may be added to or sprayed on the water surface, and solid matter containing the algal growth inhibitor may be added to a pond, fountain, reservoir, moat in a park. , It may be put into artificial closed water areas such as drains, septic tanks, water-cooled cooling towers, bathtubs, and farms.
  • the algal growth inhibitor of the present invention prevents or inhibits the growth of microalgae on a solid surface.
  • the solid may be, for example, a member used in a plant factory or an outer wall for building materials. That is, as a member to be used in a plant factory, a microalgae that inhibits the growth of plant seedlings by applying an algal growth inhibitor to a hole for inserting the seedlings formed in a member that supports plant seedlings in advance. Can be prevented or suppressed.
  • an algae growth inhibitor to building material outer walls (for example, shaded areas with less sunlight), it is possible to prevent or suppress the growth of microalgae that grow on the outer wall of building materials in a wet state. Can do.
  • algae for example, it is possible to prevent or inhibit the growth of seaweeds, which are multicellular organisms, on solids such as ship bottoms by the algal growth inhibitor of the present invention.
  • an algal growth inhibitor to the ship bottom or the like in advance, it is possible to prevent or suppress the growth of seaweed on the ship bottom or the like.
  • Fig. 1 Chlamydomonas reinhardtii wild type
  • Fig. 2 Chlorella vulgaris
  • ROS reactive oxygen species
  • FIG. 9 an event occurs in which the cells become protoplasts or the nanoparticles pass through the damaged cell wall and enter the cytoplasm
  • the homeostasis of the cells is not maintained, and it is considered that cell death is caused.
  • the suffocation effect by covering the whole cell wall with nanoparticles promoted the growth inhibition of microalgae and the secretion of cell wall lytic enzyme.
  • the nanoparticles need only have an affinity to stably adhere to the outermost layer of cells (so-called cell walls), and high specificity such as binding to specific receptor proteins is necessary. There is no.
  • nanoparticle which has affinity with the outermost layer of a target cell, possibility that a metabolic disorder will be caused not only with a cyanoacrylate nanoparticle but with various species by the choking effect is high. If the nanoparticles are sufficiently small and can pass through damaged cell walls, it is highly likely that the nanoparticles can enter the cytoplasm and induce cell death by phagocytosis.
  • Cyanoacrylate nanoparticles have the ability to induce cell death against a wide range of algae, or induce abnormal secretion of cell wall lytic enzymes that do not directly induce cell death but are partially degraded even if the cell wall is at least small.
  • the cells can be easily changed to a state in which the cells are lysed by mechanical stimulation.
  • chlorophyll degradation and ROS generation it causes damage to the photosynthetic system and various metabolic abnormalities.
  • microalgae that are insensitive to nanoparticles can be grown. According to this method, for example, in the case of culturing in an open culture tank in the field, by adding nanoparticles to the medium, the growth of unnecessary microalgae (microalgae sensitive to nanoparticles) is eliminated.
  • the useful desired microalgae microalgae insensitive to nanoparticles can be selectively grown.
  • Examples of useful microalgae that are insensitive to nanoparticles include Euglena gracilis (Euglena algae), Haematococcus lacustris (Hematococcus algae), etc., but are not limited thereto. Absent.
  • Cyanoacrylate nanoparticles (isobutyl cyanoacrylate nanoparticles), which are nanoparticles of an organic compound contained in the algal growth inhibitor of the present invention, were prepared by the following method.
  • Example 2 The effect of cyanoacrylate nanoparticle exposure on Chlamydomonas reinhardtii (wild type CC-124) was investigated.
  • Wild-type CC-124 Chlamydomonas used in this example was provided by the Chlamydomonas Resource Center at the University of Minnesota (USA). Chloramonas of wild-type CC-124 is mixed nutritionally under constant fluorescence (84 mmol photon m ⁇ 2 s ⁇ 1 ) while gently shaking in Tris-Acetate-Phosphate (TAP) medium (pH 7.0). Cells that had been cultured and reached the middle logarithmic growth phase (OD750 ca. 0.8) were used for the assay.
  • TAP Tris-Acetate-Phosphate
  • the cyanoacrylate nanoparticles used various sizes (25 nm, 180 nm, 350 nm), and assayed at concentrations of 250 mg / L, 500 mg / L, and 1 g / L at each size.
  • the co-incubation of the Chlamydomonas and cyanoacrylate nanoparticles was performed with very gentle rotation (10 rpm).
  • As a negative control a culture solution containing only cells and a dispersing agent and subjected to simultaneous incubation was used.
  • Chlamydomonas By co-incubating with cyanoacrylate nanoparticles of various sizes, Chlamydomonas immediately showed an abnormal migration pattern with rapid and frequent orbital changes and eventually stopped migration. In addition, due to this co-incubation, the cyanoacrylate nanoparticles adhere to and cover the cell surface due to the affinity with the cell wall (FIG. 1), and the original elliptical shape of Chlamydomonas gradually changes to a spherical shape. Observed. Most of the cells that stopped migration swelled spherically, and some of them disintegrated, releasing the cytoplasmic contents. This was thought to mean that such swollen globular cells are protoplasts or have very thin cell walls (spheroplasts).
  • the dead cell rate when co-incubated with cyanoacrylate nanoparticles of 25 nm size (250 mg / L) for 2 hours was about 30% (FIG. 3), but cyanoacrylate nanoparticles of 25 nm size (500 mg / L)
  • the dead cell rate when co-incubated with 2 hours was about 65% (FIG. 4), and the dead cell rate when co-incubated with 25 nm size cyanoacrylate nanoparticles (1 g / L) for 2 hours was 100%. (FIG. 5). From this, it was recognized that many dead cells could be induced by increasing the concentration of cyanoacrylate nanoparticles even in the same incubation period.
  • the order in which cell death can be rapidly induced at a low concentration was confirmed to be 25 nm, 180 nm, and 350 nm in descending order of their action. It was also suggested that the cells stained with trypan blue were dead cells with severe damage to the plasma membrane.
  • cyanoacrylate nanoparticles having a particle size of 25 nm and 180 nm were not observed to aggregate even after 8 hours co-incubation with Chlamydomonas.
  • Cyanoacrylate nanoparticles with a particle size of 350 nm produced aggregates consisting of 20-30 nanoparticles with co-incubation for more than 4 hours. From this, it was recognized that the organic compound nanoparticles (cyanoacrylate nanoparticles) contained in the algal growth inhibitor of the present invention have almost no cohesiveness between the nanoparticles, and can stably maintain a dispersed state in an aqueous solution. .
  • the concentration at which dead cells could be induced against Chlamydomonas wild-type CC-124 was 30 mg / L (results not shown).
  • cyanoacrylate nanoparticles of different sizes if the same molar concentration (number of particles) is used and co-incubation with Chlamydomonas, cyanoacrylate nanoparticles with a larger particle size (180 nm, 350 nm) can be obtained (death)
  • the ratio at which cells can be induced tended to be large (FIG. 6).
  • Example 3 In Chlamydomonas reinhardtii, the dead cell rate in wild type CC-124, very thin cell wall mutant CC-503 and cell wall deletion mutant CC-400 was examined. The two variants were also provided by the Chlamydomonas Resource Center at the University of Minnesota (USA). As described in Example 2, the dead cell rate was determined by co-incubating with cyanoacrylate nanoparticles (250 mg / L) having a size of 25 nm and performing a trypan blue staining assay. The results are shown in FIG.
  • cell wall deletion mutant CC-400, thin cell wall mutant CC-503, and wild type CC-124 are in descending order of sensitivity to cyanoacrylate nanoparticles. This order of sensitivity suggested that the cell wall acts as a kind of mechanical barrier that inhibits dead cell induction by cyanoacrylate nanoparticles.
  • Example 4 Cellular ultrastructure of Chlamydomonas (wild-type CC-124) after co-incubation with cyanoacrylate nanoparticles (65 mg / L) of 25 nm size for 20 minutes was observed by TEM. The results are shown in FIG.
  • Example 5 The effect of cyanoacrylate nanoparticle exposure on Chlorella vulgaris was investigated. Chlorella vulgaris used in this example was provided by the National Institute for Environmental Studies (NIES).
  • the cyanoacrylate nanoparticles used various sizes (25 nm, 180 nm, 350 nm), and assayed at a concentration of 1 g / L at each size. Due to this co-incubation, the cyanoacrylate nanoparticles adhere to and cover the surface of the cell due to the affinity with the cell wall (FIG. 2). As a result, chlorella cells are not induced into dead cells, and protoplasts or spherospheres are not induced. Changed to plast (protoplast / spheroplast).
  • Chlorella vulgaris protoplasts were prepared using a commercially available lytic enzyme mixture.
  • Commercially available lytic enzyme mixtures are 0.5% cellulidine (produced by Calbio Chem), 2% maceroteam R-10 (produced by Yakult Pharmaceutical Co., Ltd.) and 1% chitosanase derived from Bacillus R-4 (Kei Kasei Co., Ltd.).
  • the color of the non-enzyme-treated cells was pinkish red as a result of the fusion of the pure red autofluorescence of chlorophyll and the blue fluorescence of fluorescent brightener 28 and was used as a reference standard for non-protoplasts.
  • Example 6 It was investigated whether cell wall lytic enzyme was secreted by exposure to cyanoacrylate nanoparticles against Chlorella vulgaris.
  • control in FIG. 11 is obtained by co-incubation with a culture solution containing only cells and a dispersing agent, and “NP (350 nm)” is produced by protoplast / spheroplast by co-incubation with cyanoacrylate nanoparticles. Indicates what was induced.
  • Example 7 The cellular ultrastructure of chlorella after co-incubation with 25 nm sized cyanoacrylate nanoparticles (1 g / L) for 3 hours was observed by TEM. The results are shown in FIG.
  • cyanoacrylate nanoparticles were not detected inside the cell wall and between the cell wall and the plasma membrane (periplasmic space).
  • Example 8 In the above-mentioned Examples, the effect of cyanoacrylate nanoparticle exposure was examined in Chlamydomonas reinhardtii belonging to the genus Chlamydomonas. In this example, the effects of exposure to cyanoacrylate nanoparticles (25 nm) were examined for other Chlamydomonas species and Green algae. The experimental conditions were the same as in the above-described example. For reference, the results are also shown for the four Chlamydomonas reinhardtii species used in the above-described Examples (Table 1-1, Table 1-2).
  • Chlamydomonas globosa Chlamydomonas applanata
  • Chlamydomonas assymetrica Chlamydomonas debaryana
  • Chlamydomonas clamosa Dead cell induction was observed in Chlamydomonas monadina, Chlamydomonas noctigama, Chlamydomonas parkeae, and Chlamydomonas perpusilla.
  • Example 9 The time course of reactive oxygen species (ROS) production by exposure to cyanoacrylate nanoparticles was examined in Chlamydomonas reinhardtii wild-type CC-124.
  • ROS reactive oxygen species
  • H2DCFDA 2 ', 7'-dichlorodihydrofluorescein diacetate (D668, manufactured by Sigma-Aldrich) was used.
  • Non-fluorescent H2DCFDA is converted to highly fluorescent 2 ', 7'-dichlorofluorescein (DCF) by reactive oxygen species in the cytoplasm.
  • a culture medium containing only cells and a dispersing agent was used, and as a comparative control, two types of metal oxide nanoparticles, that is, ZnO containing less than 100 nm (544906, Sigma-Aldrich). And TiO 2 (anatase form) (205-01715, manufactured by Wako Pure Chemical Industries, Ltd.) were used.
  • Example 10 In this example, the effects of exposure to cyanoacrylate nanoparticles (25 nm) were examined for other microalgae other than the green alga class described above.
  • the experimental conditions were the same as in the above-described example.
  • the microalgae used are dinoflagellates belonging to the dinoflagellate, diatoms belonging to the diatomaceous plant, rafidoalgae or golden algae belonging to the irregular planta, and specifically, Shutnera marina ( Chattonella marina (NIES-1), Heterocapsatriquetra (NIES-7), Thalassioneama nitzschioides (NIES-534), Karenia mikimotoi (NIES-2411), rosdece NIES-3710), Calyptrosphaera sphaeroidea (NIES-1308), Gambierdiscus sp (NIES-2766), Heterosigma akashiwo (NIES-5), Odontera Longicurlis (Odontella longicruris: NIES-590).
  • Shutnera marina Chattonella marina (NIES-1), Heterocapsatriquetra (NIES-7), Thalassioneama nitzschioides (NIES-534), Karenia mikimoto
  • the use of the algal growth inhibitor of the present invention can prevent or suppress water pollution (red tide or pollution in a closed water area) caused by the growth of the above-mentioned microalgae.
  • Example 11 Regarding microalgae insensitive to cyanoacrylate nanoparticles and microalgae sensitive to cyanoacrylate nanoparticles, whether or not each microalgae grew when the concentration of cyanoacrylate nanoparticles was changed in various ways was investigated.
  • Cyanoacrylate nanoparticles having a particle size of 180 nm are used, and microalgae insensitive to cyanoacrylate nanoparticles is Euglena gracilis (NIES-49), which is sensitive to cyanoacrylate nanoparticles.
  • NIES-49 Euglena gracilis
  • Chlamydomonas reinhardy wild type CC-124 was used.
  • 0.03%, 0.01%, 0.003%, and 0.001% cyanoacrylate nanoparticles were respectively placed at different positions on a TAP medium (pH 7.0) containing 1.5% agar. 20 ⁇ L was dropped and adsorbed on the TAP medium. Next, the culture solution of Chlamydomonas (CC-124 strain) that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a TAP medium, and cultured for 10 days.
  • cyanoacrylate nanoparticles were added to Chlamydomonas (CC-124 strain) in the logarithmic growth phase to a final concentration of 0.01% (100 mg / L) and cultured in a liquid medium for 12 hours. However, few cells were observed to swim (results not shown). Similar results were obtained when the final concentration of cyanoacrylate nanoparticles was 0.03% (results not shown).
  • cyanoacrylate nanoparticles are added to the culture medium (for example, final concentration is 0.01 to 0.03%), so that Eliminate the growth of microalgae sensitive to particles (eg Chlamydomonas reinhardi) and selectively select microalgae insensitive to cyanoacrylate nanoparticles (eg useful microalgae such as Euglena gracilis, Haematococcus laxtris) It was recognized that it could be grown.
  • microalgae sensitive to particles eg Chlamydomonas reinhardi
  • microalgae insensitive to cyanoacrylate nanoparticles eg useful microalgae such as Euglena gracilis, Haematococcus laxtris
  • Example 12 An experiment was conducted to determine the minimum number of cyanoacrylate nanoparticles necessary for an effect as an algae growth inhibitor on a solid surface and the area density (mass per square meter).
  • Chlamydomonas (CC-124 strain) that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a TAP medium, and cultured for 10 days.
  • Chlamydomonas cells were observed to be growing at the dropping position of 10, 30, 100 ppm (level 1 to 3) of cyanoacrylate nanoparticles, but at the dropping position of 300 ppm (level 4) cyanoacrylate nanoparticles. was found not to grow Chlamydomonas cells (results not shown).
  • Level 4 cyanoacrylate nanoparticles had a mass per square meter of 0.076 g / m 2 .
  • Example 13 Chlamydomonas (CC-124 strain) was applied to a sample in which a dispersion of cyanoacrylate nanoparticles (particle size 30 nm) was uniformly attached on the surface of an agar medium, and a culture test was performed. Table 3 shows the results of determining the addition amount of the cyanoacrylate nanoparticle liquid added to each sample A to D, the mass of the cyanoacrylate nanoparticles, and the number of cyanoacrylate nanoparticles. Sample E was a control to which no cyanoacrylate nanoparticles were added.
  • the cyanoacrylate nanoparticle liquid (concentration 1%) of each sample A to D was separately added to a TAP medium (surface area 64 cm 2 ) containing 1.5% agar, and the petri dish was placed in a thermostat set at 50 ° C. The cyanoacrylate nanoparticle liquid was dried.
  • a culture solution of Chlamydomonas (CC-124 strain) that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a TAP medium, and cultured at room temperature (25 ⁇ 2 ° C.) for 2 weeks. The results are shown in FIG. 19 (culture day 0), FIG. 20 (culture day 7), and FIG. 21 (culture day 11).
  • cyanoacrylate nanoparticles square meter per mass is equal 0.076 g / m 2, or 0.108 g / m 2 or more, preventing or inhibiting the growth of Chlamydomonas with solid surface It was recognized that it was possible. Similar results were obtained for microalgae other than Chlamydomonas (results not shown).
  • the outer wall of the building materials square meter per mass be previously coated with cyanoacrylate nanoparticles solution so that 0.076 g / m 2, or 0.108 g / m 2 or more, the outer wall of the building materials It can be expected to prevent or suppress the growth of microalgae on the surface.
  • the volume of 0.1 g of the cyanoacrylate nanoparticle dispersion is 10 cm 3 when the dispersion concentration is 1%.
  • the dispersion concentration is 1%.
  • a method in which the dispersion is sprayed and dried can be used.
  • the drying time it is advantageous that the amount of liquid to be diluted is small.
  • Example 14 In outdoor ponds, cyanoacrylate nanoparticles were added to investigate the effect on the growth of microalgae.
  • the isobutyl cyanoacrylate nanoparticles having a diameter of 25 nm were introduced into one of the 42-ton water ponds arranged in parallel on the Kochi University of Technology campus in a final concentration of 100 ppm. Isobutyl cyanoacrylate nanoparticles were not added to the other pond, which was the target experimental group. After the lapse of 24 days, 500 mL of water was collected from each of the pond to which the cyanoacrylate nanoparticles were added and the pond of the target experimental group, and filtered through a mesh having a mesh size of 1 ⁇ m to collect organisms such as microalgae.
  • the cells were disrupted by repeating freezing and thawing three times for the organism on the filter.
  • Total DNA extraction from the disrupted cells was performed using QIAamp DNA Mini Kit (Qiagen).
  • Qiagen QIAamp DNA Mini Kit
  • an amplicon amplified by the PCR method using the following primer set was analyzed for end-pair sequences under the conditions of 2 ⁇ 300 bp using a next-generation sequencer MiSeq (manufactured by Illumina).
  • a quality check was performed on the sequence data obtained using the DNA of the organism obtained from the pond into which the cyanoacrylate nanoparticles were introduced, and 49,376 reads (bp) were finally obtained. Moreover, the quality of the sequence data obtained using the DNA of the organism obtained from the pond of the target experimental section was checked, and finally 67,268 reads (bp) were obtained.
  • the present invention can be used for an algal growth inhibitor that suppresses the growth of algae and a method for suppressing the growth of algae.

Abstract

Provided are: an algae growth inhibitor that inhibits the growth of algae and contains nanoparticles of an organic compound that exhibits affinity for an algal cell wall and has hydrocarbon as a major component; and a method for inhibiting algae growth using nanoparticles of an organic compound that exhibits affinity for an algal cell wall and has hydrocarbon as a major component.

Description

藻類増殖抑制剤および藻類の増殖を抑制する方法Algae growth inhibitor and method for inhibiting algae growth
 本発明は、藻類の増殖を抑制する藻類増殖抑制剤および藻類の増殖を抑制する方法に関する。 The present invention relates to an algal growth inhibitor that suppresses the growth of algae and a method for suppressing the growth of algae.
 瀬戸内海や湾などの海域における赤潮は漁業被害や景観悪化などを引き起こす。また、湖沼やダム湖で発生する淡水赤潮も大きな社会問題となっている。非特許文献1によれば、赤潮とは海で起こる特定種のプランクトンの異常発生とその表層集積現象を指す言葉であるが、淡水域で起こるプランクトンの異常発生現象の中で、外観が褐色ないし黄色味を呈し表層水中に集積するものに対して淡水赤潮という語が公式に使われている。海域における赤潮は景観の悪化だけでなく、養殖魚の大量死など深刻な被害をもたらすなど社会的影響が大きい。また、非特許文献1によれば、淡水赤潮が周辺の住民に与える影響について、以下のように指摘している。(1)赤潮の発生時にはその水を利用している上下水道水に不快臭をつけること、(2)浄水場でろ過障害を起こさせること、(3)その水を取り入れている養魚場で養殖しているアユなどの魚類をへい死させることがあること、(4)赤潮の最盛期には周辺の住人に直接異臭を感じさせる場合もあること、(5)著しい場合には水域の景観を損なうことなどをあげている。また、実害のほかに(6)発生によるイメージ低下という社会的影響を指摘している。 The red tide in the waters such as the Seto Inland Sea and the bay causes fishery damage and landscape deterioration. Freshwater red tide generated in lakes and dam lakes is also a major social problem. According to Non-Patent Document 1, red tide is a term that refers to the occurrence of a specific type of plankton that occurs in the sea and its surface layer accumulation phenomenon. The word freshwater red tide is officially used for those that are yellow and accumulate in surface water. The red tide in the sea area has great social impact, not only worsening the landscape but also causing serious damage such as the massive death of cultured fish. In addition, according to Non-Patent Document 1, the influence of freshwater red tide on surrounding residents is pointed out as follows. (1) At the time of the occurrence of red tide, create an unpleasant odor in the water and sewerage water that uses the water, (2) cause filtration problems at the water purification plant, (3) aquaculture at the fish farm that incorporates the water Ayu and other fish may be killed, (4) In the peak red tide, there may be direct odors to neighboring residents, and (5) in severe cases, the water landscape is damaged. I have raised things. In addition to actual harm, (6) it points out the social impact of image degradation due to occurrence.
 特許文献1には、成分であるチオ硫酸銀イオンを用いた赤潮の除藻剤が記載してある。 Patent Document 1 describes a red tide algae using silver thiosulfate ion as a component.
 特許文献2には、バンコマイシン耐性グラム陽性細菌用抗菌剤として、抗生物質を抱合するシアノアクリレートポリマー粒子を有効成分として含有する抗菌剤が記載してある。シアノアクリレートポリマー粒子は、例えば外科領域において傷口の縫合のための接着剤として用いられているシアノアクリレート系モノマーをアニオン重合させたものである。シアノアクリレート系ポリマー粒子は多孔性であり、内部に所望の物質を抱合させることが可能である。特許文献1の抗菌剤では、シアノアクリレート系ポリマー粒子に抗生物質を抱合させることにより、種々の抗生物質に耐性を獲得し、当該抗生物質の投与では抗菌不可能となったバンコマイシン耐性腸球菌(VRE)に対しても、抗生物質の抗菌作用が発揮され、VREの増殖を抑制できるようになっている。 Patent Document 2 describes an antibacterial agent containing cyanoacrylate polymer particles conjugated with an antibiotic as an active ingredient as an antibacterial agent for vancomycin-resistant gram-positive bacteria. The cyanoacrylate polymer particles are obtained by anionic polymerization of a cyanoacrylate monomer that is used, for example, as an adhesive for wound closure in the surgical field. Cyanoacrylate-based polymer particles are porous, and a desired substance can be conjugated inside. In the antibacterial agent of Patent Document 1, vancomycin-resistant enterococci (VRE) that has acquired resistance to various antibiotics by conjugating antibiotics to cyanoacrylate polymer particles and has become impossible to antibacterial by administration of the antibiotics. ), The antibacterial action of antibiotics is exerted, and the growth of VRE can be suppressed.
 一方、シアノアクリレートポリマー粒子は抗菌剤以外にも使用されていることが公知である。例えば特許文献3には、シアノアクリレートモノマーをアミノ酸の共存下でアニオン重合させることにより、アミノ酸を抱合したナノサイズ(平均粒子径1000nm未満)のシアノアクリレートポリマー粒子を合成したことが記載してある。特許文献3のアミノ酸抱合粒子は、がん細胞に対してアポトーシス様の細胞死を誘導してがん細胞を障害できるため、がんの治療と予防に有用であるとされている。 On the other hand, it is known that cyanoacrylate polymer particles are used in addition to antibacterial agents. For example, Patent Document 3 describes that a cyanoacrylate polymer particle conjugated with an amino acid is synthesized by anionic polymerization of a cyanoacrylate monomer in the presence of an amino acid to synthesize cyanoacrylate polymer particles having an average particle diameter of less than 1000 nm. The amino acid-conjugated particles of Patent Document 3 are said to be useful for cancer treatment and prevention because they can induce apoptosis-like cell death in cancer cells and damage the cancer cells.
 このようにシアノアクリレートポリマー粒子は抗菌作用やがんの治療と予防に有用である。 Thus, cyanoacrylate polymer particles are useful for antibacterial action and cancer treatment and prevention.
特開2007-332039号公報JP 2007-332039 A 国際公開第2008/126846号International Publication No. 2008/126646 国際公開第2010/101178号International Publication No. 2010/101178
 上述した赤潮や淡水赤潮のように、藻類(微細藻類)を含むプランクトンの異常発生現象による被害は深刻であり、有効な対策は重要な課題である。尚、本明細書においては、海域や淡水域における「微細藻類の異常発生とその表層集積現象」、および、養殖場、冷却循環水、噴水等の「人工的閉鎖水域における微細藻類発生現象」のことを、海域、淡水域および人工的閉鎖水域を問わず「赤潮等」と称することとする。 Like the red tide and freshwater red tide mentioned above, the damage caused by the abnormal phenomenon of plankton including algae (microalgae) is serious, and effective countermeasures are an important issue. In this specification, “abnormal generation of microalgae and its surface accumulation phenomenon” in sea areas and freshwater areas, and “microalgae generation phenomenon in artificial closed water areas” such as farms, cooling circulation water, fountains, etc. This is referred to as “red tide etc.” regardless of the sea area, fresh water area and artificial closed water area.
 微細藻類の異常発生とその表層集積現象を抑制するために、特許文献1で記載されたように金属イオンを使用することで、環境中への金属の蓄積が懸念される虞がある。このように環境中への金属の蓄積を鑑みた場合、金属フリーの成分を使用して微細藻類の増殖を抑制することが望ましい。 In order to suppress the abnormal occurrence of microalgae and the surface layer accumulation phenomenon, the use of metal ions as described in Patent Document 1 may cause concern about accumulation of metals in the environment. In view of the accumulation of metal in the environment as described above, it is desirable to suppress the growth of microalgae using a metal-free component.
 また、特許文献2,3で記載してあるナノサイズのシアノアクリレートポリマー粒子を用いて赤潮等を予防あるいは抑制することは知られていない。 In addition, it is not known to prevent or suppress red tide or the like by using nano-sized cyanoacrylate polymer particles described in Patent Documents 2 and 3.
 従って、本発明の目的は、金属フリーのナノ粒子を使用して、藻類の増殖を抑制する藻類増殖抑制剤および藻類の増殖を抑制する方法を提供することにある。 Therefore, an object of the present invention is to provide an algal growth inhibitor that suppresses the growth of algae and a method for suppressing the growth of algae using metal-free nanoparticles.
 本発明は、例えば赤潮等を構成する藻類(微細藻類)の増殖を抑制する作用を有する藻類増殖抑制剤および藻類の増殖を抑制する方法に関する発明である。藻類の異常発生とその表層集積現象を抑制することにより、上述した被害を防止あるいは低減することを目的とする。 The present invention relates to an algae growth inhibitor having an action of inhibiting the growth of algae (microalgae) constituting, for example, red tides and the like and a method for inhibiting the growth of algae. The object is to prevent or reduce the above-mentioned damage by suppressing the occurrence of abnormal algae and its surface accumulation phenomenon.
 即ち、上記目的を達成するため、以下の[1]~[16]に示す発明を提供する。
[1]炭化水素を主成分とし、藻類の細胞壁に親和性を示す有機化合物のナノ粒子を含有する藻類の増殖を抑制する藻類増殖抑制剤。
[2]前記ナノ粒子が、シアノアクリレートナノ粒子である[1]に記載の藻類増殖抑制剤。
[3]前記シアノアクリレートナノ粒子が、シアノアクリレートモノマーおよび界面活性剤の共存下で重合させたものである[2]に記載の藻類増殖抑制剤。
[4]前記シアノアクリレートモノマーがイソブチルシアノアクリレートである[3]に記載の藻類増殖抑制剤。
[5]前記藻類が微細藻類である[1]~[4]の何れか一項に記載の藻類増殖抑制剤。
[6]前記微細藻類が、緑藻植物門に属する藻類である請求項[5]に記載の藻類増殖抑制剤。
[7]前記緑藻植物門が緑藻綱またはトレボウクシア藻綱に属する藻類である[6]に記載の藻類増殖抑制剤。
[8]前記微細藻類がクラミドモナス属またはクロレラ属に属する藻類である[5]~[7]の何れか一項に記載の藻類増殖抑制剤。
[9]前記微細藻類が、渦鞭毛虫門に属する渦鞭毛藻類、珪藻植物門に属する珪藻類、不等毛植物門に属するラフィド藻類、黄金藻類または真正眼点藻の群から選択される少なくとも一種である[5]に記載の藻類増殖抑制剤。
[10]前記微細藻類の増殖を原因とする水質の汚濁を予防あるいは抑制する[5]~[9]の何れか一項に記載の藻類増殖抑制剤。
[11]前記水質の汚濁が、赤潮または閉鎖水域における汚濁である[10]に記載の藻類増殖抑制剤。
[12]固体の表面の前記微細藻類の増殖を予防あるいは抑制する[5]~[9]の何れか一項に記載の藻類増殖抑制剤。
[13]前記固体が、植物工場で使用する部材、或いは、建材用の外壁である[12]に記載の藻類増殖抑制剤。
That is, in order to achieve the above object, the following inventions [1] to [16] are provided.
[1] An algae growth inhibitor that suppresses the growth of algae containing organic compound nanoparticles having a hydrocarbon as a main component and affinity for the cell walls of algae.
[2] The algal growth inhibitor according to [1], wherein the nanoparticles are cyanoacrylate nanoparticles.
[3] The algal growth inhibitor according to [2], wherein the cyanoacrylate nanoparticles are polymerized in the presence of a cyanoacrylate monomer and a surfactant.
[4] The algal growth inhibitor according to [3], wherein the cyanoacrylate monomer is isobutyl cyanoacrylate.
[5] The algae growth inhibitor according to any one of [1] to [4], wherein the algae are microalgae.
[6] The algae growth inhibitor according to [5], wherein the microalgae are algae belonging to the green algal plant gate.
[7] The algae growth inhibitor according to [6], wherein the green alga plant gate is an algae belonging to the class of green algae or trevoxia algae.
[8] The algae growth inhibitor according to any one of [5] to [7], wherein the microalgae are algae belonging to the genus Chlamydomonas or Chlorella.
[9] The microalgae are at least selected from the group of dinoflagellates belonging to the dinoflagellate, diatoms belonging to the diatomaceous plant, raffido algae belonging to the irregular planta, golden algae, or true eyed algae. The algal growth inhibitor according to [5], which is a kind.
[10] The algae growth inhibitor according to any one of [5] to [9], which prevents or inhibits water pollution caused by the growth of the microalgae.
[11] The algae growth inhibitor according to [10], wherein the water pollution is red tide or pollution in a closed water area.
[12] The algae growth inhibitor according to any one of [5] to [9], wherein the growth of the microalgae on the solid surface is prevented or suppressed.
[13] The algae growth inhibitor according to [12], wherein the solid is a member used in a plant factory or an outer wall for building materials.
 上記[1]~[13]の構成によれば、藻類増殖抑制剤は、炭化水素を主成分とする有機化合物のナノ粒子、例えば、アクリル樹脂等の有機化合物から構成されるナノ粒子を使用することができる。そのため、当該藻類増殖抑制剤は金属酸化物のナノ粒子を使用しないため金属フリーであり、環境中への蓄積性がなく安全性が高い。また、金属酸化物のナノ粒子は水溶液中でしばしば大きな凝集塊を形成するが、炭化水素を主成分とする有機化合物のナノ粒子であれば当該ナノ粒子相互の凝集性がほとんどなく、水溶液中で安定に分散状態を維持できる。有機化合物のナノ粒子は、具体的にはシアノアクリレートナノ粒子を使用するのがよく、シアノアクリレートナノ粒子は、シアノアクリレートモノマーおよび界面活性剤の共存下で重合させたものとするのがよい。特にシアノアクリレートモノマーをイソブチルシアノアクリレートとするのがよい。 According to the configurations of [1] to [13] above, the algal growth inhibitor uses nanoparticles of organic compounds mainly composed of hydrocarbons, for example, nanoparticles composed of organic compounds such as acrylic resins. be able to. Therefore, the algal growth inhibitor does not use metal oxide nanoparticles, is metal-free, has no accumulation in the environment, and is highly safe. In addition, metal oxide nanoparticles often form large agglomerates in aqueous solutions, but organic compound nanoparticles mainly composed of hydrocarbons have little cohesiveness between the nanoparticles, and in aqueous solutions. A dispersed state can be stably maintained. Specifically, cyanoacrylate nanoparticles may be used as the organic compound nanoparticles, and the cyanoacrylate nanoparticles may be polymerized in the presence of a cyanoacrylate monomer and a surfactant. In particular, the cyanoacrylate monomer is preferably isobutyl cyanoacrylate.
 細胞壁は、藻類(微細藻類)においては糖タンパク質、キチン、セルロースおよびプロテオグリカン等によって構成される。上述した炭化水素を主成分とする有機化合物のナノ粒子は、前記成分からなる細胞壁に対して親和性を示す。そのため、有機化合物のナノ粒子が細胞壁との親和性により、細胞表面に付着してその表面を覆いつくすことができる。 The cell wall is composed of glycoprotein, chitin, cellulose, proteoglycan and the like in algae (microalgae). The above-mentioned organic compound nanoparticles mainly composed of hydrocarbons have an affinity for the cell wall composed of the above components. Therefore, the organic compound nanoparticles can adhere to and cover the cell surface due to the affinity with the cell wall.
 微細藻類は、例えば緑藻植物門に属する緑藻類、渦鞭毛虫門に属する渦鞭毛藻類、珪藻植物門に属する珪藻類、不等毛植物門に属するラフィド藻類、黄金藻類または真正眼点藻等が含まれる。緑藻植物門に属する緑藻類としては、例えば緑藻綱またはトレボウクシア藻綱に属する藻類が挙げられる。緑藻綱に属する緑藻類としては例えばクラミドモナス属が挙げられ、トレボウクシア藻綱に属する緑藻類としては例えばクロレラ属が挙げられる。 Microalgae includes, for example, green algae belonging to the green algal plant gate, dinoflagellate belonging to the dinoflagellate gate, diatoms belonging to the diatom plant gate, rafido algae belonging to the irregular plant gate, golden algae or true-eye algae It is. Examples of the green algae belonging to the green alga plant gate include algae belonging to the green algae class or the Trevoxia algae class. Examples of the green algae belonging to the green alga class include Chlamydomonas, and examples of the green algae belonging to the Trevoxia algae class include Chlorella.
 後述の実施例で示すように、本発明者らは、予想外に、有機化合物のナノ粒子が真核生物の単細胞緑藻クラミドモナス属(例えばクラミドモナス・レインハーディ(Chlamydomonas reinhardtii))に対して急性細胞死を誘導し得ることを見出した。さらに、クロレラ属(例えばクロレラ・ブルガリス(Chlorella vulgaris))における細胞壁溶解酵素の分泌を誘導し、プロトプラスト様細胞を高頻度で生成することを見出した。 As shown in the Examples below, the inventors unexpectedly found that the organic compound nanoparticles are acute cell death against the eukaryotic unicellular green alga Chlamydomonas (eg Chlamydomonas reinhardtii). It was found that can be induced. Furthermore, it has been found that protoplast-like cells are generated at a high frequency by inducing the secretion of cell wall lytic enzymes in the genus Chlorella (for example, Chlorella vulgaris).
 上述したように、有機化合物のナノ粒子は、細胞壁との親和性により細胞表面に多数付着してその表面を覆いつくす。これにより、細胞は外部環境との間で、酸素や二酸化炭素、栄養素などの生育に必須な成分の導入が困難となる(窒息作用)。当該窒息作用により、ROS(reactive oxygen species:活性酸素種)の蓄積、葉緑素の分解、細胞壁溶解酵素の分泌などの生理的な異常反応を起こす。それによって、細胞がプロトプラスト化したり、損傷を受けた細胞壁をナノ粒子が通過して細胞質内にまでナノ粒子が侵入するような事象が起こる。これにより、いっそう細胞のホメオスタシスは保たれなくなり、細胞死が引き起こされると考えられる。この考え方によれば、細胞壁全体をナノ粒子が覆いつくした事による窒息効果が、微細藻類の増殖阻害や細胞壁溶解酵素の分泌を促したと解釈できる。またナノ粒子が十分に小さく、損傷を受けた細胞壁を通過できれば、貪食作用などにより、ナノ粒子は細胞質内に侵入して細胞死を誘導できる可能性が高いと考えられる。 As described above, a large number of organic compound nanoparticles adhere to and cover the cell surface due to affinity with the cell wall. This makes it difficult for cells to introduce components essential for growth, such as oxygen, carbon dioxide, and nutrients, with the external environment (choking action). The choking action causes physiological abnormal reactions such as accumulation of ROS (reactive oxygen species), chlorophyll degradation, and cell wall lytic enzyme secretion. As a result, an event occurs in which the cell becomes a protoplast or the nanoparticle enters the cytoplasm through the damaged cell wall. As a result, the homeostasis of the cells is not maintained, and it is considered that cell death is caused. According to this concept, it can be interpreted that the suffocation effect by covering the whole cell wall with nanoparticles promoted the growth inhibition of microalgae and the secretion of cell wall lytic enzyme. If the nanoparticles are sufficiently small and can pass through damaged cell walls, it is highly likely that the nanoparticles can enter the cytoplasm and induce cell death by phagocytosis.
 また、有機化合物のナノ粒子は、広範な藻類に対して細胞死を誘導する能力または、細胞死を直接は誘導しないが細胞壁溶解酵素の異常な分泌を誘導し、細胞壁が少なくても部分分解されることで、機械的な刺激により容易に細胞が溶解する状態に細胞を変化させることができる。また、この他にも葉緑素の分解促進やROSの発生が示すように、光合成システムの損傷や、様々な代謝異常を引き起こす。 In addition, nanoparticles of organic compounds can induce cell death against a wide range of algae or induce abnormal secretion of cell wall lytic enzymes that do not directly induce cell death but are partially degraded even if the cell wall is small. Thus, the cells can be easily changed to a state in which the cells are lysed by mechanical stimulation. In addition, as shown by accelerated chlorophyll degradation and ROS generation, it causes damage to the photosynthetic system and various metabolic abnormalities.
 本発明の藻類増殖抑制剤は、上述した微細藻類の増殖を原因とする水質の汚濁を予防あるいは抑制する。当該藻類増殖抑制剤により、微細藻類の増殖を抑制することができる、或いは、既に発生した微細藻類を死滅させて除去することができるため、微細藻類の増殖を原因とする水質の汚濁を予防あるいは抑制することができる。水質の汚濁を予防あるいは抑制することで、例えば養殖場や水槽等に生息している魚介類に対する被害を軽減させることができる。また、水質の汚濁を予防あるいは抑制することで、臭気を抑えたり景観を改善することができる。 The algal growth inhibitor of the present invention prevents or suppresses water pollution caused by the growth of the above-mentioned microalgae. The algae growth inhibitor can suppress the growth of microalgae, or can kill and remove microalgae that have already occurred, thereby preventing water pollution caused by the growth of microalgae or Can be suppressed. By preventing or suppressing water pollution, damage to fish and shellfish that live in, for example, farms and aquariums can be reduced. In addition, by preventing or suppressing water pollution, it is possible to suppress odors and improve the landscape.
 前記水質の汚濁は、赤潮または閉鎖水域における汚濁である。赤潮は、海洋、湖沼やダム湖等の開放水域や半開放水域において微細藻類が大量に発生する現象であり、上述したように多様な問題を引き起こす。また、閉鎖水域は、例えば公園内の池、噴水、溜池、堀、排水溝、浄化槽、水冷式冷却塔、浴槽、養殖場等の人工的閉鎖水域が挙げられる。本発明の藻類増殖抑制剤であれば、上述した特定種の微細藻類の異常発生とその表層集積現象を抑制することができるため、赤潮または閉鎖水域における汚濁を予防あるいは抑制することができる。 The water pollution is red tide or pollution in a closed water area. The red tide is a phenomenon in which a large amount of microalgae is generated in open waters and semi-open waters such as oceans, lakes and dam lakes, and causes various problems as described above. Examples of the closed water area include artificial closed water areas such as ponds, fountains, reservoirs, moats, drains, septic tanks, water-cooled cooling towers, bathtubs, and farms in parks. The algal growth inhibitor of the present invention can suppress the occurrence of abnormalities of the above-mentioned specific types of microalgae and the surface layer accumulation phenomenon, thereby preventing or suppressing contamination in the red tide or closed water area.
 また、本発明の藻類増殖抑制剤は、固体の表面の微細藻類の増殖を予防あるいは抑制する。前記固体は、例えば植物工場で使用する部材、或いは、建材用の外壁とすることができる。即ち、植物工場で使用する部材として、植物の苗を支持する部材に形成した当該苗を挿入する孔に藻類増殖抑制剤を塗布しておくことで、植物の苗の生育を阻害する微細藻類の増殖を予防あるいは抑制することができる。また、建材用の外壁に藻類増殖抑制剤を塗布しておくことで、建材用の外壁上で増殖する微細藻類の増殖を予防あるいは抑制することができる。 Moreover, the algal growth inhibitor of the present invention prevents or suppresses the growth of microalgae on the solid surface. The solid may be, for example, a member used in a plant factory or an outer wall for building materials. That is, as a member to be used in a plant factory, a microalgae that inhibits the growth of plant seedlings by applying an algae growth inhibitor to the hole for inserting the seedlings formed in the member supporting the plant seedlings. Proliferation can be prevented or suppressed. In addition, by applying an algal growth inhibitor to the outer wall for building materials, the growth of microalgae that grow on the outer wall for building materials can be prevented or suppressed.
[14]炭化水素を主成分とし、藻類の細胞壁に親和性を示す有機化合物のナノ粒子を使用して、藻類の増殖を抑制する方法。
[15]前記藻類が微細藻類である[14]に記載の藻類の増殖を抑制する方法。
[16]前記ナノ粒子に非感受性の微細藻類を増殖させることができる[15]に記載の藻類の増殖を抑制する方法。
[14] A method for suppressing the growth of algae using nanoparticles of an organic compound mainly composed of hydrocarbons and having affinity for the cell walls of algae.
[15] The method for suppressing the growth of algae according to [14], wherein the algae are microalgae.
[16] The method for inhibiting the growth of algae according to [15], wherein microalgae insensitive to the nanoparticles can be grown.
 上記[14]~[16]の構成によれば、有機化合物のナノ粒子は、細胞壁との親和性により細胞表面に多数付着してその表面を覆いつくすことにより、細胞は外部環境との間で、酸素や二酸化炭素、栄養素などの生育に必須な成分の導入が困難となり(窒息作用)、当該窒息作用により、ROSの蓄積、葉緑素の分解、細胞壁溶解酵素の分泌などの生理的な異常反応を起こす。それによって、細胞がプロトプラスト化したり、損傷を受けた細胞壁をナノ粒子が通過して細胞質内にまでナノ粒子が侵入するような事象が起こる。これにより、いっそう細胞のホメオスタシスは保たれなくなり、細胞死が引き起こされると考えられる。この考え方によれば、細胞壁全体をナノ粒子が覆いつくした事による窒息効果が、微細藻類の増殖阻害や細胞壁溶解酵素の分泌を促したと解釈できる。またナノ粒子が十分に小さく、損傷を受けた細胞壁を通過できれば、貪食作用などにより、ナノ粒子は細胞質内に侵入して細胞死を誘導できる可能性が高いと考えられる。 According to the configurations of [14] to [16] above, the organic compound nanoparticles adhere to the cell surface due to the affinity with the cell wall and cover the cell surface, so that the cell is in contact with the external environment. It becomes difficult to introduce components essential for growth, such as oxygen, carbon dioxide, and nutrients (suffocation effect), and the suffocation effect causes physiological abnormal reactions such as ROS accumulation, chlorophyll degradation, and cell wall lytic enzyme secretion. Wake up. As a result, an event occurs in which the cell becomes a protoplast or the nanoparticle enters the cytoplasm through the damaged cell wall. As a result, the homeostasis of the cells is not maintained, and it is considered that cell death is caused. According to this concept, it can be interpreted that the suffocation effect by covering the whole cell wall with nanoparticles promoted the growth inhibition of microalgae and the secretion of cell wall lytic enzyme. If the nanoparticles are sufficiently small and can pass through damaged cell walls, it is highly likely that the nanoparticles can enter the cytoplasm and induce cell death by phagocytosis.
 また、有機化合物のナノ粒子は、広範な藻類に対して細胞死を誘導する能力または、細胞死を直接は誘導しないが細胞壁溶解酵素の異常な分泌を誘導し、細胞壁が少なくても部分分解されることで、機械的な刺激により容易に細胞が溶解する状態に細胞を変化させることができる。また、この他にも葉緑素の分解促進やROSの発生が示すように、光合成システムの損傷や、様々な代謝異常を引き起こす。 In addition, nanoparticles of organic compounds can induce cell death against a wide range of algae or induce abnormal secretion of cell wall lytic enzymes that do not directly induce cell death but are partially degraded even if the cell wall is small. Thus, the cells can be easily changed to a state in which the cells are lysed by mechanical stimulation. In addition, as shown by accelerated chlorophyll degradation and ROS generation, it causes damage to the photosynthetic system and various metabolic abnormalities.
 以上のメカニズムにより、藻類(微細藻類)の細胞壁に親和性を示す有機化合物のナノ粒子を使用して、藻類の増殖を抑制することができる。 Through the above mechanism, the growth of algae can be suppressed using nanoparticles of organic compounds that have an affinity for the cell wall of algae (microalgae).
 一方、上述した有機化合物のナノ粒子に感受性の微細藻類の増殖を抑えつつ、当該ナノ粒子に非感受性の微細藻類を増殖することは、例えば微細藻類を利用するオイル産生産業に有用である。しかし、これまで、不要な微細藻類の増殖を排除し、有用な微細藻類を選択的に増殖させる技術的手段はなかった。本発明の方法では、不要な微細藻類(ナノ粒子に感受性の微細藻類)の増殖を排除し、有用な所望の微細藻類(ナノ粒子に非感受性の微細藻類)を選択的に増殖させることができる。例えば、ユーグレナ・グラシリス(Euglena gracilis)等のナノ粒子に非感受性の微細藻類を、例えば野外の開放系の培養槽等で培養しようとする場合、ナノ粒子を培地に添加することにより、目的に対し有害または不要な微細藻類の増殖を防ぐことができる。 On the other hand, it is useful for the oil production industry utilizing microalgae, for example, to suppress the growth of microalgae that are insensitive to nanoparticles of organic compounds described above and to suppress the growth of microalgae that are insensitive to the nanoparticles. However, until now, there has been no technical means for eliminating unnecessary microalgae growth and selectively growing useful microalgae. In the method of the present invention, unnecessary microalgae (microalgae sensitive to nanoparticles) are eliminated, and useful desired microalgae (microalgae insensitive to nanoparticles) can be selectively grown. . For example, when trying to cultivate microalgae that are not sensitive to nanoparticles such as Euglena gracilis, for example, in an open culture tank in the field, the nanoparticles can be added to the medium for the purpose. Harmful or unnecessary growth of microalgae can be prevented.
クラミドモナス・レインハーディの細胞表面にシアノアクリレートナノ粒子が多数付着した様子を示す写真図である。It is a photograph figure which shows a mode that many cyanoacrylate nanoparticles adhered to the cell surface of Chlamydomonas rain hardy. クロレラ・ブルガリスの細胞表面にシアノアクリレートナノ粒子が多数付着した様子を示す写真図である。It is a photograph figure which shows a mode that many cyanoacrylate nanoparticles adhered to the cell surface of Chlorella vulgaris. 250mg/Lのシアノアクリレートナノ粒子と同時インキュベーションしたクラミドモナス(野生型CC-124)のトリパンブルー染色アッセイの結果を示したグラフである。It is the graph which showed the result of the trypan blue dyeing | staining assay of Chlamydomonas (wild type CC-124) co-incubated with 250 mg / L cyanoacrylate nanoparticle. 500mg/Lのシアノアクリレートナノ粒子と同時インキュベーションしたクラミドモナス(野生型CC-124)のトリパンブルー染色アッセイの結果を示したグラフである。It is the graph which showed the result of the trypan blue dyeing | staining assay of Chlamydomonas (wild type CC-124) co-incubated with 500 mg / L cyanoacrylate nanoparticle. 1g/Lのシアノアクリレートナノ粒子と同時インキュベーションしたクラミドモナス(野生型CC-124)のトリパンブルー染色アッセイの結果を示したグラフである。It is the graph which showed the result of the trypan blue dyeing | staining assay of Chlamydomonas (wild type CC-124) co-incubated with 1 g / L cyanoacrylate nanoparticle. サイズが異なるシアノアクリレートナノ粒子において、モル濃度を同じにしてクラミドモナスと同時インキュベーションした結果を示したグラフである。It is the graph which showed the result of co-incubating with Chlamydomonas with the same molar concentration in cyanoacrylate nanoparticles having different sizes. サイズが異なるシアノアクリレートナノ粒子において、表面積を同じにしてクラミドモナスと同時インキュベーションした結果を示したグラフである。It is the graph which showed the result of co-incubation with Chlamydomonas with the same surface area in the cyanoacrylate nanoparticle from which size differs. シアノアクリレートナノ粒子と同時インキュベーションしたクラミドモナスにおいて、野生型CC-124、非常に薄い細胞壁突然変異体CC-503および細胞壁欠損突然変異体CC-400における死細胞率を調べた結果を示したグラフである。It is the graph which showed the result of having investigated the dead cell rate in wild type CC-124, the very thin cell wall mutant CC-503, and the cell wall deletion mutant CC-400 in Chlamydomonas co-incubated with the cyanoacrylate nanoparticle. . 25nmのサイズのシアノアクリレートナノ粒子と同時インキュベートした後のクラミドモナスの細胞超微細構造をTEMにより観察した結果を示した写真図である。It is the photograph figure which showed the result of having observed the cell ultrastructure of Chlamydomonas after co-incubating with the cyanoacrylate nanoparticle of a size of 25 nm by TEM. クロレラに対するシアノアクリレートナノ粒子曝露の後にクロレラ細胞がプロトプラストまたはスフェロプラストに変化した割合の結果を示したグラフである。It is the graph which showed the result of the ratio which the chlorella cell changed into the protoplast or the spheroplast after the cyanoacrylate nanoparticle exposure with respect to a chlorella. クロレラに対するシアノアクリレートナノ粒子曝露の後に得られた濾液によってプロトプラストまたはスフェロプラストが得られるかを調べた結果を示したグラフである。It is the graph which showed the result of having investigated whether protoplast or spheroplast was obtained with the filtrate obtained after the cyanoacrylate nanoparticle exposure with respect to chlorella. 25nmのサイズのシアノアクリレートナノ粒子と同時インキュベートした後のクロレラの細胞超微細構造をTEMにより観察した結果を示した写真図である。It is the photograph figure which showed the result of having observed the cell ultrastructure of the chlorella after co-incubating with the cyanoacrylate nanoparticle of a size of 25 nm by TEM. 活性酸素種(ROS)生成の経時変化について調べた結果(蛍光陽性細胞率)を示したグラフである。It is the graph which showed the result (fluorescence positive cell rate) investigated about the time-dependent change of reactive oxygen species (ROS) production | generation. 活性酸素種(ROS)生成の経時変化について調べた結果(死細胞率)を示したグラフである。It is the graph which showed the result (dead cell rate) which investigated about the time-dependent change of reactive oxygen species (ROS) production | generation. 活性酸素種(ROS)生成の経時変化について調べた結果を示した写真図(光学顕微鏡および蛍光顕微鏡)である。It is the photograph figure (optical microscope and fluorescence microscope) which showed the result investigated about the time-dependent change of reactive oxygen species (ROS) production | generation. シアノアクリレートナノ粒子に非感受性のユーグレナ・グラシリスをHUT培地上で培養した結果を示した写真図である。It is the photograph figure which showed the result of having culture | cultivated Euglena gracilis insensitive to a cyanoacrylate nanoparticle on a HUT culture medium. シアノアクリレートナノ粒子に感受性のクラミドモナス(野生型CC-124)をTAP培地上で培養した結果を示した写真図である。FIG. 3 is a photographic diagram showing the results of culturing Chlamydomonas (wild type CC-124) sensitive to cyanoacrylate nanoparticles on a TAP medium. 対数増殖期のユーグレナ・グラシリスにシアノアクリレートナノ粒子を添加して12時間培養した後に顕微鏡観察を行った結果を示した写真図である。It is the photograph figure which showed the result of having performed the microscope observation, after adding a cyanoacrylate nanoparticle to Euglena gracilis of a logarithmic growth phase, and culturing for 12 hours. シアノアクリレートナノ粒子の分散液を寒天培地表面上に均一に付着させた試料上にクラミドモナス(CC-124株)を塗布し、培養試験を行った結果(培養0日目)を示した写真図である。A photograph showing the results of applying a Chlamydomonas (CC-124 strain) on a sample in which a dispersion of cyanoacrylate nanoparticles is uniformly attached on the surface of an agar medium and conducting a culture test (day 0 of culture). is there. シアノアクリレートナノ粒子の分散液を寒天培地表面上に均一に付着させた試料上にクラミドモナス(CC-124株)を塗布し、培養試験を行った結果(培養7日目)を示した写真図である。A photographic diagram showing the results of applying a Chlamydomonas (CC-124 strain) on a sample in which a dispersion of cyanoacrylate nanoparticles was uniformly attached on the surface of an agar medium and conducting a culture test (7 days of culture). is there. シアノアクリレートナノ粒子の分散液を寒天培地表面上に均一に付着させた試料上にクラミドモナス(CC-124株)を塗布し、培養試験を行った結果(培養11日目)を示した写真図である。FIG. 5 is a photographic diagram showing the results of applying a Chlamydomonas (CC-124 strain) on a sample in which a dispersion of cyanoacrylate nanoparticles is uniformly attached on the surface of an agar medium and conducting a culture test (day 11 of culture). is there.
 以下、本発明の実施形態を図面に基づいて説明する。
 本発明の藻類の増殖を抑制する藻類増殖抑制剤は、炭化水素を主成分とし、藻類の細胞壁に親和性を示す有機化合物のナノ粒子を含有する。
 また、本発明の藻類の増殖を抑制する方法は、炭化水素を主成分とし、藻類の細胞壁に親和性を示す有機化合物のナノ粒子を使用して、藻類の増殖を抑制する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The algae growth inhibitor that suppresses the growth of algae according to the present invention contains nanoparticles of organic compounds mainly composed of hydrocarbons and having affinity for the cell walls of algae.
Moreover, the method for suppressing the growth of algae according to the present invention suppresses the growth of algae by using nanoparticles of an organic compound mainly composed of hydrocarbons and having an affinity for the cell walls of algae.
 藻類増殖抑制剤は、炭化水素を主成分とする有機化合物のナノ粒子である。即ち、当該藻類増殖抑制剤は、アクリル樹脂等の有機化合物から構成されるナノ粒子であればよい。そのため、当該藻類増殖抑制剤は金属酸化物のナノ粒子を使用しないため金属フリーであり、環境中への蓄積性がなく安全性が高い。また、金属酸化物のナノ粒子は水溶液中でしばしば大きな凝集塊を形成するが、炭化水素を主成分とする有機化合物のナノ粒子であれば当該ナノ粒子相互の凝集性がほとんどなく、水溶液中で安定に分散状態を維持できる。 The algal growth inhibitor is an organic compound nanoparticle mainly composed of hydrocarbons. That is, the algal growth inhibitor may be nanoparticles composed of an organic compound such as an acrylic resin. Therefore, the algal growth inhibitor does not use metal oxide nanoparticles, is metal-free, has no accumulation in the environment, and is highly safe. In addition, metal oxide nanoparticles often form large agglomerates in aqueous solutions, but organic compound nanoparticles mainly composed of hydrocarbons have little cohesiveness between the nanoparticles, and in aqueous solutions. A dispersed state can be stably maintained.
 細胞壁は、藻類(微細藻類)においては糖タンパク質、キチン、セルロースおよびプロテオグリカン等によって構成される。上述した炭化水素を主成分とする有機化合物のナノ粒子は、前記成分からなる細胞壁に対して親和性を示す。親和性の強さの程度は特に限定されるものではなく、例えば、有機化合物のナノ粒子が細胞壁との親和性により、細胞表面に付着してその表面を覆いつくせる程度の親和性の強さがあればよい。 The cell wall is composed of glycoprotein, chitin, cellulose, proteoglycan and the like in algae (microalgae). The above-mentioned organic compound nanoparticles mainly composed of hydrocarbons have an affinity for the cell wall composed of the above components. The degree of affinity is not particularly limited. For example, the affinity is such that nanoparticles of an organic compound can adhere to and cover the cell surface due to affinity with the cell wall. If there is.
 本明細書における藻類は、例えば多細胞生物である海藻類(紅藻、褐藻、緑藻)や、赤潮等の原因となる微細藻類を含む。本実施形態では、藻類を微細藻類とした場合について説明する。 The algae in the present specification include, for example, seaweeds (red algae, brown algae, green algae) that are multicellular organisms, and microalgae that cause red tides. This embodiment demonstrates the case where algae is used as a micro algae.
 微細藻類は、例えば緑藻植物門に属する緑藻類、渦鞭毛虫門に属する渦鞭毛藻類、珪藻植物門に属する珪藻類、不等毛植物門に属するラフィド藻類、黄金藻類や真正眼点藻等が含まれる。 The microalgae includes, for example, green algae belonging to the green algal plant gate, dinoflagellate belonging to the dinoflagellate gate, diatom belonging to the diatom plant gate, rafido algae belonging to the irregular plant gate, golden algae and true-eye algae It is.
 緑藻植物門に属する緑藻類としては、例えば緑藻綱またはトレボウクシア藻綱に属する藻類が挙げられる。緑藻綱に属する緑藻類としては例えばクラミドモナス属が挙げられ、トレボウクシア藻綱に属する緑藻類としては例えばクロレラ属が挙げられる。クラミドモナス属は10~30μmの球形或いはなめらかな楕円形を呈した形状であり、細胞体の前方に昆虫の触角のようなほぼ同じ長さの2つの鞭毛を持つ。クロレラ属は直径約2~10μmのほぼ球形を呈した形状であり、鞭毛を持たない。 Examples of the green algae belonging to the green algae plant gate include algae belonging to the green algae class or the Trevoxia algae class. Examples of the green algae belonging to the green alga class include Chlamydomonas, and examples of the green algae belonging to the Trevoxia algae class include Chlorella. The genus Chlamydomonas has a shape of 10 to 30 μm in a spherical shape or a smooth ellipse shape, and has two flagellums of almost the same length as the insect antennae in front of the cell body. The genus Chlorella is a nearly spherical shape with a diameter of about 2 to 10 μm and has no flagella.
 クラミドモナス属は、例えばクラミドモナス・アプラナタ(Chlamydomonas applanata)、クラミドモナス・アシメトリカ(Chlamydomonas assymetrica)、クラミドモナス・デバリアナ(Chlamydomonas debaryana)、クラミドモナス・グロボサ(Chlamydomonas globosa)、クラミドモナス・モブシー(Chlamydomonas moewusii)、クラミドモナス・モナディナ(Chlamydomonas monadina)、クラミドモナス・ノクティガマ(Chlamydomonas noctigama)、クラミドモナス・パルカエ(Chlamydomonas parkeae)、クラミドモナス・ペルプシラ(Chlamydomonas perpusilla)、クラミドモナス・レインハーディ(Chlamydomonas reinhardtii)等が挙げられるが、これらに限定されるものではない。 The genus Chlamydomonas applanata, Chlamydomonas assymetrica, Chlamydomonas debaryana, Chlamydomonas lam lambomona monadina), Chlamydomonas noctigama, Chlamydomonas parkeae, Chlamydomonas perpusilla, Chlamydomonas reinhardtii, but not limited to them, such as Chlamydomonas reinhardtii.
 クロレラ属は、例えばクロレラ・エリプソイデア(Chlorella  ellipsoidea)、クロレラ・エサッカロフィラ(Chlorella saccharophila)、クロレラ・ソロキニアナ(Chlorella sorokiniana)、クロレラ・ブルガリス(Chlorella vulgaris)等が挙げられるが、これらに限定されるものではない。 Examples of the genus Chlorella include, but are not limited to, Chlorella ellipsoidea, Chlorella saccharophila, Chlorella sorokiniana, Chlorella 等 vulgaris, and the like. is not.
 また、クラミドモナス属、クロレラ属以外の微細藻類(緑藻綱)としては、ニセヒゲマワリ(Astrephomene gubernaculifera)、カルテリア・ラディオサ(Carteria radiosa)、ディスモルフォコッカス・グロボサス(Dysmorphococcus globosus)、ユードリナ・エレガンス(Eudorina elegans)、ゴニウム・ムルチコカム(Gonium multicocum)、ラボクラミス・クレウス(Labochlamys culleus)、パンドリナ モルム(Pandorina morum)、ファコタス・レンチクラリス(Phacotuslenticularis)、テトラバエナ・ソシアリス(Tetrabaena socialis)、ボルボックス・カルテリ(Volvox carteri)、ボルブリナ・ステイニー(Volvulina steiniii)等が挙げられるが、これらに限定されるものではない。 In addition, Chlamydomonas and other microalgae (Chlorophyceae) other than Chlorella genus (Astrephomene gubernaculifera), Carteria radiosa, Dismorphococcus globosus, Eudoraina elegans (Eudo, elegans) Gonium multicocum, Labochlamys culleus, Pandorina morum, Phacotuslenticularis, Tetrabaena socialis, Volbox Carteri (Volvox carti, Volvox carti) (Volvulina steiniii) and the like, but are not limited thereto.
 さらに、上述した緑藻綱以外の他の微細藻類としては、シャットネラ・マリ-ナ(Chattonella marina:ラフィド藻類)、ヘテロカプサ・トリケトラ(Heterocapsatriquetra:渦鞭毛藻類)、タラシオネマ・ニツシオイデス(Thalassioneama nitzschioides:珪藻類)、カレニア・ミキモトイ(Karenia mikimotoi:渦鞭毛藻類)、キートセロス・デビリス(Chaetoceros debilis:珪藻類)、カリプトロスファエラ・スフェロイデア(Calyptrosphaera sphaeroidea:黄金藻類)、ガンビエルディスクス(Gambierdiscus sp:渦鞭毛藻類)、ヘテロシグマ・アカシオ(Heterosigma akashiwo:ラフィド藻類)、オドンテラ・ロンギクルリス(Odontella longicruris:珪藻類)等が挙げられるが、これらに限定されるものではない。 Further, other microalgae other than the above-mentioned green algae include Chattonella marina (Rafido algae), Heterocapsa triketra (Heterocapsatriquetra), Thalassioneama nitzschioides (Diatomae), Karenia mikimotoi (Dinoflagellate), Keetoceros debilis (Chadiato), Calyptophaphaphaera sphaeroidea (Golden algae), Gambierdiscus sp (Dinoflagellate) , Heterosigma akashiwo (Rafido algae), Odontella longicruris (Odontella longicruris) and the like, but are not limited thereto.
 本実施形態では、ナノ粒子が、シアノアクリレートナノ粒子である場合について説明する。当該シアノアクリレートナノ粒子は、シアノアクリレートモノマーおよび界面活性剤の共存下で重合させたものとするのがよい。 In this embodiment, the case where the nanoparticles are cyanoacrylate nanoparticles will be described. The cyanoacrylate nanoparticles are preferably polymerized in the presence of a cyanoacrylate monomer and a surfactant.
 本発明における藻類増殖抑制剤は、平均粒子径が10~500nm、好ましくは25~350nmの平均粒子径を有するシアノアクリレートナノ粒子を含有するものであれば、粒子分散液、粒子状、粒状等、どのような態様であってもよい。分散液は、懸濁液やコロイド液等の態様を取り得るが、これらに限定されるものではない。また、当該藻類増殖抑制剤は、シアノアクリレートナノ粒子の濃度が30mg/L~1g/L、好ましくは250~1g/Lとなるようにすればよい。 As long as the algal growth inhibitor in the present invention contains cyanoacrylate nanoparticles having an average particle diameter of 10 to 500 nm, preferably 25 to 350 nm, a particle dispersion, a particulate form, a granular form, etc. Any aspect may be sufficient. The dispersion may take a form such as a suspension or a colloidal liquid, but is not limited thereto. In addition, the algal growth inhibitor may have a cyanoacrylate nanoparticle concentration of 30 mg / L to 1 g / L, preferably 250 to 1 g / L.
 シアノアクリレートポリマー部分は、シアノアクリレートモノマーをアニオン重合して得られる。用いられるシアノアクリレートモノマーは、アルキルシアノアクリレートモノマー(アルキル基の炭素数は好ましくは1~8)が好ましく、特に外科領域において傷口の縫合のための接着剤として用いられており、下記の化1の式で表されるブチルシアノアクリレートとするのがよい。 The cyanoacrylate polymer portion is obtained by anionic polymerization of a cyanoacrylate monomer. The cyanoacrylate monomer used is preferably an alkyl cyanoacrylate monomer (the alkyl group preferably has 1 to 8 carbon atoms), and is particularly used as an adhesive for sutures in the surgical field. It is preferable to use butyl cyanoacrylate represented by the formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 シアノアクリレートモノマーは、イソブチルシアノアクリレート、n-ブチル-2-シアノアクリレート、sec-ブチルシアノアクリレート、tert-ブチルシアノアクリレート等のブチルシアノアクリレートを使用することができ、さらにメチルシアノアクリレート、エチルシアノアクリレート(つけまつげ用接着剤)、プロピルシアノアクリレート等、他のアルキルシアノアクリレートを選択しても良い。特に、イソブチルシアノアクリレート、n-ブチル-2-シアノアクリレート、エチルシアノアクリレートであれば、安全性に優れている。 As the cyanoacrylate monomer, butyl cyanoacrylate such as isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, sec-butyl cyanoacrylate, tert-butyl cyanoacrylate, etc. can be used, and methyl cyanoacrylate, ethyl cyanoacrylate ( Other alkyl cyanoacrylates such as adhesive for false eyelashes) and propyl cyanoacrylate may be selected. In particular, isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, and ethyl cyanoacrylate are excellent in safety.
 アニオン重合では、重合安定化のために界面活性剤を使用する。界面活性剤としてはノニオン界面活性剤やイオン性界面活性剤を使用することができるが、これらに限定されるものではない。当該イオン性界面活性剤はアニオン界面活性剤を使用するのが好ましいが、これらに限定されるものではない。 In anionic polymerization, a surfactant is used to stabilize the polymerization. As the surfactant, a nonionic surfactant or an ionic surfactant can be used, but the surfactant is not limited thereto. The ionic surfactant is preferably an anionic surfactant, but is not limited thereto.
 ノニオン界面活性剤として、例えばポリソルベート類(Tween20、40、60、80等)が使用でき、アニオン界面活性剤として、例えばアルキルベンゼンスルホン酸或いはその塩、ラウリル硫酸ナトリウム、ラウレス硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、1-ペンタンスルホン酸ナトリウム、1-デカンスルホン酸ナトリウム等が使用できるが、これらに限定されるものではない。 As nonionic surfactants, for example, polysorbates ( Tween 20, 40, 60, 80, etc.) can be used, and as anionic surfactants, for example, alkylbenzenesulfonic acid or a salt thereof, sodium lauryl sulfate, sodium laureth sulfate, sodium dodecylbenzenesulfonate. , Sodium 1-pentanesulfonate, sodium 1-decanesulfonate and the like can be used, but are not limited thereto.
 ノニオン界面活性剤およびアニオン界面活性剤は同時に使用してもよい。ノニオン界面活性剤およびアニオン界面活性剤を併用することにより、シアノアクリレートポリマー粒子の経時的な凝集が起こり難くなる。 The nonionic surfactant and the anionic surfactant may be used at the same time. By using a nonionic surfactant and an anionic surfactant in combination, the cyanoacrylate polymer particles hardly aggregate over time.
 また、上述した界面活性剤に、ポリエチレングリコールや糖類等、アニオン重合の重合安定化の機能を有するものを組み合わせて用いることもできる。 Also, the above-mentioned surfactant can be used in combination with those having a function of stabilizing the polymerization of anionic polymerization such as polyethylene glycol and saccharide.
 糖類は特に限定されず、水酸基を有する単糖類、水酸基を有する二糖類及び水酸基を有する多糖類のいずれであってもよいが、特に多糖類とするのがよい。単糖類としては、例えばグルコース、マンノース、リボース及びフルクトース等が挙げられる。二糖類としては、例えばマルトース、トレハロース、ラクトース及びスクロース等が挙げられる。多糖類としては、従来公知のシアノアクリレートポリマー粒子の重合に用いられているデキストランや、マンナン等を用いることができる。 The saccharide is not particularly limited and may be any of a monosaccharide having a hydroxyl group, a disaccharide having a hydroxyl group, and a polysaccharide having a hydroxyl group, and is particularly preferably a polysaccharide. Examples of monosaccharides include glucose, mannose, ribose and fructose. Examples of the disaccharide include maltose, trehalose, lactose and sucrose. As the polysaccharide, dextran, mannan, or the like used for the polymerization of conventionally known cyanoacrylate polymer particles can be used.
 シアノアクリレートポリマー粒子は多孔性であり、内部に所望の物質を抱合させることが可能である。シアノアクリレートポリマー粒子を形成した後、シアノアクリレートポリマー粒子を所望の物質の水溶液中に浸漬する或いは所望の物質を添加する等によりシアノアクリレートポリマー粒子の内部に所望の物質を抱合させてもよいし、所望の物質の共存下において、上記したアニオン重合を行なうことにより、生成される粒子中に所望の物質を抱合させてもよい。例えばシアノアクリレートポリマー粒子に、グリシンやアスパラギン酸等のアミノ酸を抱合させることが可能である。抱合とは、例えば親水性の分子に外来の物質が保持される状態のことをいう。
 また、このようにシアノアクリレートポリマー粒子にアミノ酸を抱合させる態様に限定されず、シアノアクリレートポリマー粒子およびアミノ酸が混合している態様とするものであってもよい。当該混合とは、シアノアクリレートポリマー粒子およびアミノ酸が共存し混じりあっている態様であればよい。
The cyanoacrylate polymer particles are porous, and a desired substance can be conjugated inside. After forming the cyanoacrylate polymer particles, the desired substance may be conjugated to the inside of the cyanoacrylate polymer particles by immersing the cyanoacrylate polymer particles in an aqueous solution of the desired substance or adding the desired substance. The desired substance may be conjugated to the produced particles by performing the above-described anionic polymerization in the presence of the desired substance. For example, amino acids such as glycine and aspartic acid can be conjugated to cyanoacrylate polymer particles. Conjugation refers to a state in which a foreign substance is held in, for example, a hydrophilic molecule.
Moreover, it is not limited to the aspect which conjugated an amino acid to a cyanoacrylate polymer particle in this way, You may set it as the aspect which the cyanoacrylate polymer particle and the amino acid are mixing. The said mixture should just be an aspect with which the cyanoacrylate polymer particle and the amino acid coexist and are mixed.
 重合反応の溶媒としては、水を使用することができる。水は、要求される純度が異なる製品用途に応じて精製水、イオン交換水、蒸留水、純水、水道水、地下水等を適宜選択すればよい。 Water can be used as a solvent for the polymerization reaction. Purified water, ion-exchanged water, distilled water, pure water, tap water, ground water, etc. may be appropriately selected as the water depending on the product application having different required purity.
 本発明の藻類増殖抑制剤は、シアノアクリレートモノマーおよび界面活性剤の共存下において、シアノアクリレートモノマーをアニオン重合させる工程を行うことにより製造することができる。具体的には、重合反応は、例えば、溶媒である水に重合安定剤である界面活性剤を溶解させた後、撹拌下にてシアノアクリレートモノマーを加え、撹拌を続けることにより行なうことができる。反応温度は、特に限定されないが、室温で行なうのがよい。反応時間は、反応液のpH、溶媒の種類及び重合安定剤の濃度に応じて反応速度が異なり、これらの要素に応じて適宜選択すればよいため特に限定されないが、通常、1~6時間程度である。 The algal growth inhibitor of the present invention can be produced by performing anion polymerization of a cyanoacrylate monomer in the presence of a cyanoacrylate monomer and a surfactant. Specifically, the polymerization reaction can be performed, for example, by dissolving a surfactant as a polymerization stabilizer in water as a solvent, adding a cyanoacrylate monomer with stirring, and continuing stirring. Although reaction temperature is not specifically limited, It is good to carry out at room temperature. The reaction time is not particularly limited because the reaction rate varies depending on the pH of the reaction solution, the type of solvent and the concentration of the polymerization stabilizer, and may be appropriately selected depending on these factors, but is usually about 1 to 6 hours. It is.
 反応開始時の重合反応液中のシアノアクリレートモノマーの濃度は特に限定されないが、通常、0.01~5%程度、好ましくは0.1~3%程度である。反応開始時の重合反応液中の界面活性剤の濃度は、特に限定されないが、通常、0.01~5%程度、好ましくは0.1~3%程度である。反応開始時の重合反応液中の糖類の濃度は、特に限定されないが、通常、0.01~5%程度、好ましくは0.1~3%程度である。 The concentration of the cyanoacrylate monomer in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%. The concentration of the surfactant in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%. The concentration of the saccharide in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
 上述した重合反応により、シアノアクリレートモノマーがアニオン重合し、シアノアクリレートナノ粒子を合成して、本発明の藻類増殖抑制剤を製造することができる。 By the polymerization reaction described above, the cyanoacrylate monomer is anionically polymerized to synthesize cyanoacrylate nanoparticles, whereby the algal growth inhibitor of the present invention can be produced.
 重合反応の結果、合成されたシアノアクリレートナノ粒子は、溶媒中に分散した粒子分散液の状態で藻類増殖抑制剤として供することができる。得られた粒子分散液は、保存時に粒子径分布の経時的変化がほとんどなく、静置保存しても粒子が凝集・沈降することがなく、分散安定性に優れる。 As a result of the polymerization reaction, the synthesized cyanoacrylate nanoparticles can be used as an algal growth inhibitor in the state of a particle dispersion dispersed in a solvent. The obtained particle dispersion hardly changes over time in the particle size distribution during storage, and the particles do not aggregate or settle even when stored at rest, and is excellent in dispersion stability.
 また、合成されたシアノアクリレートナノ粒子は、遠心式限外濾過等の常法の濾過により回収して、粒子状或いは粒状の状態で藻類増殖抑制剤として供することができる。さらに、濾過によって回収したシアノアクリレートナノ粒子を、水などの溶媒に分散させた粒子分散液の状態で藻類増殖抑制剤として供することができる。 Further, the synthesized cyanoacrylate nanoparticles can be collected by conventional filtration such as centrifugal ultrafiltration and used as an algal growth inhibitor in a particulate or granular state. Furthermore, the cyanoacrylate nanoparticles recovered by filtration can be used as an algal growth inhibitor in the state of a particle dispersion in which the particles are dispersed in a solvent such as water.
 合成されたシアノアクリレートナノ粒子の粒径は、反応液中のシアノアクリレートモノマーの濃度や反応時間を調節することにより調節することが可能である。また、重合安定剤として界面活性剤を用いると、当該重合安定剤の濃度や種類を変えることによっても、粒子サイズを調節することができる。 The particle size of the synthesized cyanoacrylate nanoparticles can be adjusted by adjusting the concentration of cyanoacrylate monomer in the reaction solution and the reaction time. When a surfactant is used as the polymerization stabilizer, the particle size can be adjusted by changing the concentration and type of the polymerization stabilizer.
 アニオン重合は水酸化物イオンにより開始されるので、反応液のpHは、重合速度に影響する。反応液のpHが高い場合には、水酸イオンの濃度が高くなるので重合が速く、pHが低い場合には重合が遅くなる。そのため、pHを1~4程度とするのがよい。 Since anionic polymerization is initiated by hydroxide ions, the pH of the reaction solution affects the polymerization rate. When the pH of the reaction solution is high, the hydroxyl ion concentration is high, so that the polymerization is fast, and when the pH is low, the polymerization is slow. Therefore, the pH is preferably about 1 to 4.
 本発明の藻類増殖抑制剤は、上述した微細藻類の増殖を原因とする水質の汚濁を予防あるいは抑制する。即ち、海洋、湖沼あるいは水槽等に適量の上述したシアノアクリレートナノ粒子を含む藻類増殖抑制剤を散布することで、微細藻類の増殖を抑制することができる、或いは、既に発生した微細藻類を死滅させて除去することができるため、微細藻類の増殖を原因とする水質の汚濁を予防あるいは抑制することができる。水質の汚濁を予防あるいは抑制することで、例えば養殖場や水槽等に生息している魚介類に対する被害を軽減させることができる。また、水質の汚濁を予防あるいは抑制することで、臭気を抑えたり景観を改善することができる。 The algal growth inhibitor of the present invention prevents or suppresses water pollution caused by the growth of the above-mentioned microalgae. That is, by spreading an appropriate amount of the algal growth inhibitor containing the above-mentioned cyanoacrylate nanoparticles to the ocean, lakes, or water tanks, it is possible to suppress the growth of microalgae, or to kill already generated microalgae. Therefore, it is possible to prevent or suppress water pollution caused by the growth of microalgae. By preventing or suppressing water pollution, damage to fish and shellfish that live in, for example, farms and aquariums can be reduced. In addition, by preventing or suppressing water pollution, it is possible to suppress odors and improve the landscape.
 藻類増殖抑制剤は、海洋、湖沼あるいは水槽等に直接散布するだけでなく、当該藻類増殖抑制剤を含む固形物を海洋、湖沼あるいは水槽等に投入してもよい。当該固形物は、例えば、シアノアクリレートナノ粒子をポリエチレングリコールと混合して固化(フィルム化)させたものや、ポリエチレンオキサイドと混合してゲル化させたものであれば、その態様は特に限定されるものではない。 The algae growth inhibitor is not only sprayed directly on the ocean, lakes, or aquariums, but also solids containing the algae growth inhibitors may be introduced into the oceans, lakes, or aquariums. For example, if the solid is solidified (filmed) by mixing cyanoacrylate nanoparticles with polyethylene glycol or gelled by mixing with polyethylene oxide, the mode is particularly limited. It is not a thing.
 前記水質の汚濁は、赤潮または閉鎖水域における汚濁である。
 赤潮は、海洋や湖水等の解放水系や半解放水系において微細藻類が大量に発生することによって引き起こされる水質の汚濁である。また、閉鎖水域は、例えば公園内の池、噴水、溜池、堀、排水溝、浄化槽、水冷式冷却塔、浴槽、養殖場等の人工的閉鎖水域が挙げられるが、これらに限定されるものではない。これらの閉鎖水域において、微細藻類が大量に発生することによって水質の汚濁が引き起こされる。
The water pollution is red tide or pollution in a closed water area.
The red tide is water pollution caused by the generation of a large amount of microalgae in open and semi-open water systems such as the ocean and lake water. In addition, examples of the closed water area include artificial closed water areas such as ponds, fountains, reservoirs, moats, drains, septic tanks, water-cooled cooling towers, bathtubs, and farms in parks, but are not limited thereto. Absent. In these closed water areas, the production of a large amount of microalgae causes water pollution.
 赤潮の場合、船上または空中から赤潮発生または発生予想の領域の水面に、上述したシアノアクリレートナノ粒子を含む藻類増殖抑制剤を添加または散布してもよいし、藻類増殖抑制剤を含む固形物を前記領域に投入してもよい。 In the case of red tide, the above-mentioned algal growth inhibitor containing cyanoacrylate nanoparticles may be added to or sprayed on the surface of a ship where the red tide is generated or expected from the air, or a solid substance containing an algal growth inhibitor may be added. You may throw into the said area | region.
 また、閉鎖水域では、水面に、上述したシアノアクリレートナノ粒子を含む藻類増殖抑制剤を添加または散布してもよいし、藻類増殖抑制剤を含む固形物を公園内の池、噴水、溜池、堀、排水溝、浄化槽、水冷式冷却塔、浴槽、養殖場等の人工的閉鎖水域に投入してもよい。 In a closed water area, the above-described algal growth inhibitor containing cyanoacrylate nanoparticles may be added to or sprayed on the water surface, and solid matter containing the algal growth inhibitor may be added to a pond, fountain, reservoir, moat in a park. , It may be put into artificial closed water areas such as drains, septic tanks, water-cooled cooling towers, bathtubs, and farms.
 本発明の藻類増殖抑制剤は、固体の表面の微細藻類の増殖を予防あるいは抑制する。前記固体は、例えば植物工場で使用する部材、或いは、建材用の外壁とすることができる。即ち、植物工場で使用する部材として、植物の苗を支持する部材に形成した当該苗を挿入する孔に予め藻類増殖抑制剤を塗布しておくことで、植物の苗の生育を阻害する微細藻類の増殖を予防あるいは抑制することができる。また、建材用の外壁(例えば日照の少ない日陰部分)に予め藻類増殖抑制剤を塗布しておくことで、湿った状態の建材用の外壁上で増殖する微細藻類の増殖を予防あるいは抑制することができる。 The algal growth inhibitor of the present invention prevents or inhibits the growth of microalgae on a solid surface. The solid may be, for example, a member used in a plant factory or an outer wall for building materials. That is, as a member to be used in a plant factory, a microalgae that inhibits the growth of plant seedlings by applying an algal growth inhibitor to a hole for inserting the seedlings formed in a member that supports plant seedlings in advance. Can be prevented or suppressed. In addition, by applying an algae growth inhibitor to building material outer walls (for example, shaded areas with less sunlight), it is possible to prevent or suppress the growth of microalgae that grow on the outer wall of building materials in a wet state. Can do.
 尚、藻類として、例えば多細胞生物である海藻類が船底等の固体上で増殖するのを、本発明の藻類増殖抑制剤によって予防あるいは抑制することも可能である。この場合、藻類増殖抑制剤を、予め船底等に塗布しておくことで、海藻類が船底等で増殖するのを予防あるいは抑制することができる。 In addition, as algae, for example, it is possible to prevent or inhibit the growth of seaweeds, which are multicellular organisms, on solids such as ship bottoms by the algal growth inhibitor of the present invention. In this case, by applying an algal growth inhibitor to the ship bottom or the like in advance, it is possible to prevent or suppress the growth of seaweed on the ship bottom or the like.
 シアノアクリレートナノ粒子は、細胞壁との親和性により細胞表面に多数付着してその表面を覆いつくす(図1:クラミドモナス・レインハーディ(Chlamydomonas reinhardtii)の野生型,図2:クロレラ・ブルガリス(Chlorella vulgaris))。これにより、細胞は外部環境との間で、酸素や二酸化炭素、栄養素などの生育に必須な成分の導入が困難となる(窒息作用)。当該窒息作用により、ROS(reactive oxygen species:活性酸素種)の蓄積、葉緑素の分解、細胞壁溶解酵素の分泌などの生理的な異常反応を起こす。それによって、細胞がプロトプラスト化したり、損傷を受けた細胞壁をナノ粒子が通過して細胞質内にまでナノ粒子が侵入するような事象が起こる(図9)。これにより、いっそう細胞のホメオスタシスは保たれなくなり、細胞死が引き起こされると考えられる。この考え方によれば、細胞壁全体をナノ粒子が覆いつくした事による窒息効果が、微細藻類の増殖阻害や細胞壁溶解酵素の分泌を促したと解釈できる。窒息作用を実現するためには、ナノ粒子は細胞の最外層(いわゆる細胞壁)に安定的に付着できる親和性があれば十分で、特定のリセプタータンパクとの結合のような高い特異性は必要性がない。従って、標的細胞の最外層に親和性を持つナノ粒子であれば、シアノアクリレートナノ粒子に限らず、多様な生物種に対して、窒息効果により代謝異常を引き起こせる可能性が高い。またナノ粒子が十分に小さく、損傷を受けた細胞壁を通過できれば、貪食作用などにより、ナノ粒子は細胞質内に侵入して細胞死を誘導できる可能性が高いと考えられる。 Many cyanoacrylate nanoparticles adhere to and cover the cell surface due to affinity with the cell wall (Fig. 1: Chlamydomonas reinhardtii wild type, Fig. 2: Chlorella vulgaris) )). This makes it difficult for cells to introduce components essential for growth, such as oxygen, carbon dioxide, and nutrients, with the external environment (choking action). The choking action causes physiological abnormal reactions such as accumulation of ROS (reactive oxygen species), chlorophyll degradation, and cell wall lytic enzyme secretion. As a result, an event occurs in which the cells become protoplasts or the nanoparticles pass through the damaged cell wall and enter the cytoplasm (FIG. 9). As a result, the homeostasis of the cells is not maintained, and it is considered that cell death is caused. According to this concept, it can be interpreted that the suffocation effect by covering the whole cell wall with nanoparticles promoted the growth inhibition of microalgae and the secretion of cell wall lytic enzyme. In order to achieve asphyxiation, the nanoparticles need only have an affinity to stably adhere to the outermost layer of cells (so-called cell walls), and high specificity such as binding to specific receptor proteins is necessary. There is no. Therefore, if it is a nanoparticle which has affinity with the outermost layer of a target cell, possibility that a metabolic disorder will be caused not only with a cyanoacrylate nanoparticle but with various species by the choking effect is high. If the nanoparticles are sufficiently small and can pass through damaged cell walls, it is highly likely that the nanoparticles can enter the cytoplasm and induce cell death by phagocytosis.
 シアノアクリレートナノ粒子は、広範な藻類に対して細胞死を誘導する能力または、細胞死を直接は誘導しないが細胞壁溶解酵素の異常な分泌を誘導し、細胞壁が少なくても部分分解されることで、機械的な刺激により容易に細胞が溶解する状態に細胞を変化させることができる。また、この他にも葉緑素の分解促進やROSの発生が示すように、光合成システムの損傷や、様々な代謝異常を引き起こす。 Cyanoacrylate nanoparticles have the ability to induce cell death against a wide range of algae, or induce abnormal secretion of cell wall lytic enzymes that do not directly induce cell death but are partially degraded even if the cell wall is at least small. The cells can be easily changed to a state in which the cells are lysed by mechanical stimulation. In addition, as shown by accelerated chlorophyll degradation and ROS generation, it causes damage to the photosynthetic system and various metabolic abnormalities.
 また、本発明の藻類の増殖を抑制する方法では、ナノ粒子に非感受性の微細藻類を増殖させることができる。本方法によれば、例えば野外の開放系の培養槽等で培養しようとする場合、ナノ粒子を培地に添加することにより、不要な微細藻類(ナノ粒子に感受性の微細藻類)の増殖を排除し、有用な所望の微細藻類(ナノ粒子に非感受性の微細藻類)を選択的に増殖させることができる。 Moreover, in the method for inhibiting the growth of algae according to the present invention, microalgae that are insensitive to nanoparticles can be grown. According to this method, for example, in the case of culturing in an open culture tank in the field, by adding nanoparticles to the medium, the growth of unnecessary microalgae (microalgae sensitive to nanoparticles) is eliminated. The useful desired microalgae (microalgae insensitive to nanoparticles) can be selectively grown.
 ナノ粒子に非感受性の有用な微細藻類としては、例えばユーグレナ・グラシリス(Euglena gracilis:ユーグレナ藻)、ヘマトコッカス・ラクストリス(Haematococcus lacustris:ヘマトコッカス藻)等が挙げられるが、これらに限定されるものではない。 Examples of useful microalgae that are insensitive to nanoparticles include Euglena gracilis (Euglena algae), Haematococcus lacustris (Hematococcus algae), etc., but are not limited thereto. Absent.
〔実施例1〕
 本発明の藻類増殖抑制剤に含まれる有機化合物のナノ粒子であるシアノアクリレートナノ粒子(イソブチルシアノアクリレートナノ粒子)を以下の手法により調製した。
[Example 1]
Cyanoacrylate nanoparticles (isobutyl cyanoacrylate nanoparticles), which are nanoparticles of an organic compound contained in the algal growth inhibitor of the present invention, were prepared by the following method.
 0.01N塩酸溶液200mLに、分散剤・安定剤としてノニオン界面活性剤であるレオドールTW-L120 2.5mL(花王株式会社製)、アニオン界面活性剤であるネオペレックスG-15 2.0mL(花王株式会社製)を溶解させ、さらにイソブチルシアノアクリレート2.0mL(東亞合成株式会社製:♯501)を滴下しマグネチックスターラー(AS ONE社製 RS-1DN)を使用して、室温下で600rpm、2時間の条件により重合反応を行った。2時間後、0.5規定塩酸4.0mL(和光純薬工業株式会社製)を滴下して1時間中和反応を行った。反応液は5.0μmサイズのメンブレンフィルター(ザルトリウス社製:ミニザルト)にて濾過し、1.0wt%のシアノアクリレートナノ粒子とした。このとき得られたシアノアクリレートナノ粒子の粒子径(平均粒子径)は、ゼータサイザー(Malvern社製 Nano-ZS90)を用いて常法により測定したところ25nmであった。 To 200 mL of 0.01 N hydrochloric acid solution, 2.5 mL of Rheodor TW-L 120 2.5 mL (manufactured by Kao Corporation) as a nonionic surfactant as a dispersant / stabilizer and 2.0 mL of Neoperex G-15 as an anionic surfactant (Kao) In addition, 2.0 mL of isobutyl cyanoacrylate (manufactured by Toagosei Co., Ltd .: # 501) was added dropwise, and a magnetic stirrer (RS-1DN manufactured by AS ONE Co., Ltd.) was used. The polymerization reaction was carried out under conditions of 2 hours. Two hours later, 4.0 N of 0.5 N hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to carry out a neutralization reaction for 1 hour. The reaction solution was filtered through a 5.0 μm size membrane filter (manufactured by Sartorius Co., Ltd .: Minisalt) to obtain 1.0 wt% cyanoacrylate nanoparticles. The particle size (average particle size) of the cyanoacrylate nanoparticles obtained at this time was 25 nm as measured by a conventional method using a Zetasizer (Malvern Nano-ZS90).
 また、上述した塩酸溶液に分散剤・安定剤として2.0gのデキストラン(分子量6万:和光純薬工業株式会社製)を添加して重合反応を行うことで、180nmの粒径を有するシアノアクリレートナノ粒子を作製した。さらに、上述した塩酸溶液に分散剤・安定剤として6.0gのポリエチレングリコール(分子量2万:和光純薬工業株式会社製)を添加して重合反応を行うことで、350nmの粒径を有するシアノアクリレートナノ粒子を作製した。これら3種類の粒径を有するシアノアクリレートナノ粒子を以下の実施例に供した。 In addition, by adding 2.0 g of dextran (molecular weight 60,000: manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant / stabilizer to the hydrochloric acid solution described above and performing a polymerization reaction, cyanoacrylate having a particle size of 180 nm Nanoparticles were made. Furthermore, by adding 6.0 g of polyethylene glycol (molecular weight 20,000: manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant / stabilizer to the hydrochloric acid solution described above, and performing a polymerization reaction, cyano having a particle size of 350 nm. Acrylate nanoparticles were prepared. The cyanoacrylate nanoparticles having these three particle sizes were used in the following examples.
〔実施例2〕
 クラミドモナス(Chlamydomonas reinhardtii:野生型CC-124)に対するシアノアクリレートナノ粒子曝露の影響について調べた。本実施例で使用した野生型CC-124のクラミドモナスは、ミネソタ大学(米国)のクラミドモナス資源センターから提供された。野生型CC-124のクラミドモナスをTris-Acetate-Phosphate(以下、TAP)培地(pH7.0)中で穏やかに振とうしながら定蛍光(84mmol光子m-2-1)下で混合栄養的に培養し、中期対数増殖期(OD750約0.8)に到達した細胞を、アッセイに使用した。
[Example 2]
The effect of cyanoacrylate nanoparticle exposure on Chlamydomonas reinhardtii (wild type CC-124) was investigated. Wild-type CC-124 Chlamydomonas used in this example was provided by the Chlamydomonas Resource Center at the University of Minnesota (USA). Chloramonas of wild-type CC-124 is mixed nutritionally under constant fluorescence (84 mmol photon m −2 s −1 ) while gently shaking in Tris-Acetate-Phosphate (TAP) medium (pH 7.0). Cells that had been cultured and reached the middle logarithmic growth phase (OD750 ca. 0.8) were used for the assay.
 シアノアクリレートナノ粒子は、種々のサイズ(25nm,180nm,350nm)を使用し、それぞれのサイズにおいて、250mg/L,500mg/L,1g/Lの濃度でアッセイを行った。前記クラミドモナスおよびシアノアクリレートナノ粒子の同時インキュベーション(co-incubation)は、非常に穏やかな回転(10rpm)で行った。ネガティブコントロールとして、細胞と分散剤のみを含む培養液で同時インキュベーションを行ったものを使用した。 The cyanoacrylate nanoparticles used various sizes (25 nm, 180 nm, 350 nm), and assayed at concentrations of 250 mg / L, 500 mg / L, and 1 g / L at each size. The co-incubation of the Chlamydomonas and cyanoacrylate nanoparticles was performed with very gentle rotation (10 rpm). As a negative control, a culture solution containing only cells and a dispersing agent and subjected to simultaneous incubation was used.
 種々のサイズのシアノアクリレートナノ粒子と同時インキュベーションすることにより、クラミドモナスは急速かつ頻繁な軌道変化を伴う異常な泳動パターンを直ちに示し、やがて泳動を止めた。また、この同時インキュベーションによってシアノアクリレートナノ粒子は細胞壁との親和性により、細胞表面に多数付着してその表面を覆いつくし(図1)、クラミドモナスの元の楕円形が徐々に球状に変化することが観察された。泳動を止めた細胞の大部分は球状に膨潤し、それらのいくつかは細胞質内容物を放出して崩壊した。これは、そのような膨張した球状細胞がプロトプラストであるか、または非常に薄い細胞壁(スフェロプラスト)を有することを意味すると考えられた。このような急性反応は、シアノアクリレートナノ粒子のサイズの差にかかわらず誘発されたが、シアノアクリレートナノ粒子を調製するために使用された分散剤のみを含むネガティブコントロールでは、このような変化は全く認められなかった。 By co-incubating with cyanoacrylate nanoparticles of various sizes, Chlamydomonas immediately showed an abnormal migration pattern with rapid and frequent orbital changes and eventually stopped migration. In addition, due to this co-incubation, the cyanoacrylate nanoparticles adhere to and cover the cell surface due to the affinity with the cell wall (FIG. 1), and the original elliptical shape of Chlamydomonas gradually changes to a spherical shape. Observed. Most of the cells that stopped migration swelled spherically, and some of them disintegrated, releasing the cytoplasmic contents. This was thought to mean that such swollen globular cells are protoplasts or have very thin cell walls (spheroplasts). Such an acute response was elicited regardless of the size difference of the cyanoacrylate nanoparticles, but in a negative control containing only the dispersant used to prepare the cyanoacrylate nanoparticles, such changes were not at all. I was not able to admit.
 ここで、同時インキュベーションにおいてシアノアクリレートナノ粒子に暴露されたクラミドモナスの生存率を調べるために、死細胞を青色で染色するトリパンブルー染色アッセイを行った。0.3mLの培養試料を取り出し、トリパンブルー(0.4%w/v、和光純薬工業株式会社製)溶液を直接添加した(最終濃度0.2%(w/v))。洗浄ステップを伴わずに5分後に顕微鏡(IX71:オリンパス株式会社製)によって細胞質の色が観察された。このアッセイでは、破壊された細胞および染色された細胞は濃い青色を呈し、死細胞と判断された。結果を図3(250mg/L)、図4(500mg/L)、図5(1g/L)に示した。尚、図における「NP」との表記はシアノアクリレートナノ粒子のことである。 Here, in order to examine the survival rate of Chlamydomonas exposed to cyanoacrylate nanoparticles in the simultaneous incubation, a trypan blue staining assay for staining dead cells in blue was performed. A 0.3 mL culture sample was taken out and a trypan blue (0.4% w / v, manufactured by Wako Pure Chemical Industries, Ltd.) solution was directly added (final concentration 0.2% (w / v)). The cytoplasm color was observed with a microscope (IX71: Olympus Corporation) after 5 minutes without a washing step. In this assay, the destroyed and stained cells were dark blue and were considered dead cells. The results are shown in FIG. 3 (250 mg / L), FIG. 4 (500 mg / L), and FIG. 5 (1 g / L). In the figure, “NP” represents cyanoacrylate nanoparticles.
 図3より、シアノアクリレートナノ粒子の濃度が250mg/Lの場合、25nmのサイズのシアノアクリレートナノ粒子と2時間同時インキュベートすることにより、全て(100%)の細胞を染色した(死細胞率100%)。また、180nmのサイズのシアノアクリレートナノ粒子と2時間同時インキュベートすることにより、約75%の細胞を染色し、350nmのサイズのシアノアクリレートナノ粒子と2時間同時インキュベートすることにより、20%に満たない細胞を染色した。180nmのサイズのシアノアクリレートナノ粒子と3時間同時インキュベートすることにより、全て(100%)の細胞を染色したが、350nmのサイズのシアノアクリレートナノ粒子と4時間同時インキュベートした場合であっても、60%に満たない細胞を染色した。
 これより、死細胞率は、シアノアクリレートナノ粒子の粒径に依存し、粒径が小さいほど多くの死細胞を誘導できると認められた(25nm,180nm,350nmの順)。また、粒径の異なるシアノアクリレートナノ粒子の何れにおいても死細胞を誘導できると認められた。
From FIG. 3, when the concentration of cyanoacrylate nanoparticles was 250 mg / L, all (100%) cells were stained by co-incubation with cyanoacrylate nanoparticles having a size of 25 nm for 2 hours (100% dead cell rate). ). Also, about 75% of cells were stained by co-incubation with 180 nm size cyanoacrylate nanoparticles for 2 hours, and less than 20% by co-incubation with 350 nm size cyanoacrylate nanoparticles for 2 hours. Cells were stained. All (100%) cells were stained by co-incubation with 180 nm size cyanoacrylate nanoparticles for 3 hours, but even when co-incubated with 350 nm size cyanoacrylate nanoparticles for 4 hours, 60% Less than% cells were stained.
From this, it was recognized that the dead cell rate depends on the particle size of the cyanoacrylate nanoparticles, and that the smaller the particle size, the more dead cells can be induced (in the order of 25 nm, 180 nm, and 350 nm). Moreover, it was recognized that dead cells can be induced in any of the cyanoacrylate nanoparticles having different particle sizes.
 25nmのサイズのシアノアクリレートナノ粒子(250mg/L)と2時間同時インキュベートしたときの死細胞率は約30%であったが(図3)、25nmのサイズのシアノアクリレートナノ粒子(500mg/L)と2時間同時インキュベートしたときの死細胞率は約65%であり(図4)、25nmのサイズのシアノアクリレートナノ粒子(1g/L)と2時間同時インキュベートしたときの死細胞率は100%であった(図5)。
 これより、同じ時間の同時インキュベートであっても、シアノアクリレートナノ粒子の濃度を上げることにより、多くの死細胞を誘導できると認められた。
The dead cell rate when co-incubated with cyanoacrylate nanoparticles of 25 nm size (250 mg / L) for 2 hours was about 30% (FIG. 3), but cyanoacrylate nanoparticles of 25 nm size (500 mg / L) The dead cell rate when co-incubated with 2 hours was about 65% (FIG. 4), and the dead cell rate when co-incubated with 25 nm size cyanoacrylate nanoparticles (1 g / L) for 2 hours was 100%. (FIG. 5).
From this, it was recognized that many dead cells could be induced by increasing the concentration of cyanoacrylate nanoparticles even in the same incubation period.
 図4より、シアノアクリレートナノ粒子の濃度が500mg/Lの場合、25nmのサイズのシアノアクリレートナノ粒子と2時間同時インキュベートすることにより、全て(100%)の細胞を染色した(死細胞率100%)。また、180nmのサイズのシアノアクリレートナノ粒子と3時間同時インキュベートすることにより、略100%の細胞を染色し、350nmのサイズのシアノアクリレートナノ粒子と4時間同時インキュベートすることにより、略100%の細胞を染色した。
 図5より、シアノアクリレートナノ粒子の濃度が1g/Lの場合、25nmのサイズのシアノアクリレートナノ粒子と1時間同時インキュベートすることにより、全て(100%)の細胞を染色した(死細胞率100%)。また、180nmのサイズのシアノアクリレートナノ粒子と2時間同時インキュベートすることにより、略100%の細胞を染色し、350nmのサイズのシアノアクリレートナノ粒子と3時間同時インキュベートすることにより、略100%の細胞を染色した。
 これより、シアノアクリレートナノ粒子の濃度を高くすることにより、短時間で死細胞を誘導できると認められた。
From FIG. 4, when the concentration of cyanoacrylate nanoparticles was 500 mg / L, all (100%) cells were stained by co-incubation with cyanoacrylate nanoparticles having a size of 25 nm for 2 hours (dead cell rate of 100%). ). Also, approximately 100% of cells were stained by co-incubation with 180 nm size cyanoacrylate nanoparticles for 3 hours, and approximately 100% cells were co-incubated with 350 nm size cyanoacrylate nanoparticles for 4 hours. Was stained.
FIG. 5 shows that when the concentration of cyanoacrylate nanoparticles was 1 g / L, all (100%) cells were stained by co-incubation with cyanoacrylate nanoparticles having a size of 25 nm for 1 hour (dead cell rate of 100%). ). In addition, approximately 100% of cells were stained by co-incubation with cyanoacrylate nanoparticles of 180 nm size for 2 hours, and approximately 100% of cells were co-incubated with cyanoacrylate nanoparticles of 350 nm size for 3 hours. Was stained.
From this, it was recognized that dead cells could be induced in a short time by increasing the concentration of cyanoacrylate nanoparticles.
 以上より、粒径の異なる3種のシアノアクリレートナノ粒子において、低濃度で迅速に細胞死を誘導できる順番は、その作用が高い順に25nm,180nm,350nmであると認められた。また、トリパンブルーによって染色された細胞は、原形質膜に重度の損傷を有する死細胞であることが示唆された。 From the above, in the three kinds of cyanoacrylate nanoparticles with different particle sizes, the order in which cell death can be rapidly induced at a low concentration was confirmed to be 25 nm, 180 nm, and 350 nm in descending order of their action. It was also suggested that the cells stained with trypan blue were dead cells with severe damage to the plasma membrane.
 尚、25nm,180nmの粒径のシアノアクリレートナノ粒子は、クラミドモナスとの8時間の同時インキュベーション後でさえ、凝集体は観察されなかった。350nmの粒径のシアノアクリレートナノ粒子は、4時間以上の同時インキュベーションで20~30個のナノ粒子からなる凝集体を生成した。これより、本発明の藻類増殖抑制剤に含まれる有機化合物のナノ粒子(シアノアクリレートナノ粒子)は、ナノ粒子相互の凝集性がほとんどなく、水溶液中で安定に分散状態を維持できると認められた。 It should be noted that cyanoacrylate nanoparticles having a particle size of 25 nm and 180 nm were not observed to aggregate even after 8 hours co-incubation with Chlamydomonas. Cyanoacrylate nanoparticles with a particle size of 350 nm produced aggregates consisting of 20-30 nanoparticles with co-incubation for more than 4 hours. From this, it was recognized that the organic compound nanoparticles (cyanoacrylate nanoparticles) contained in the algal growth inhibitor of the present invention have almost no cohesiveness between the nanoparticles, and can stably maintain a dispersed state in an aqueous solution. .
 また、25nmのサイズのシアノアクリレートナノ粒子の場合、野生型CC-124のクラミドモナスに対して死細胞を誘導できる濃度は30mg/Lであった(結果は示さない)。 In the case of cyanoacrylate nanoparticles having a size of 25 nm, the concentration at which dead cells could be induced against Chlamydomonas wild-type CC-124 was 30 mg / L (results not shown).
 また、サイズが異なるシアノアクリレートナノ粒子において、モル濃度(粒子の個数)を同じにしてクラミドモナスと同時インキュベーションすれば、粒径の大きいシアノアクリレートナノ粒子(180nm,350nm)の方が得られる効果(死細胞を誘導できる比率)は大きい傾向があった(図6)。 Moreover, in the case of cyanoacrylate nanoparticles of different sizes, if the same molar concentration (number of particles) is used and co-incubation with Chlamydomonas, cyanoacrylate nanoparticles with a larger particle size (180 nm, 350 nm) can be obtained (death) The ratio at which cells can be induced tended to be large (FIG. 6).
 さらに、サイズが異なるシアノアクリレートナノ粒子において、培養液中に投入された表面積を同じにしてクラミドモナスと同時インキュベーションすれば、得られる効果(死細胞を誘導できる比率)は、同様の傾向を示した(図7)。 Furthermore, in the case of cyanoacrylate nanoparticles of different sizes, the effect obtained (the ratio at which dead cells can be induced) showed the same tendency when co-incubated with Chlamydomonas with the same surface area introduced into the culture solution ( FIG. 7).
〔実施例3〕
 クラミドモナス(Chlamydomonas reinhardtii)において、野生型CC-124、非常に薄い細胞壁突然変異体CC-503および細胞壁欠損突然変異体CC-400における死細胞率を調べた。上記2種の変異体においても、ミネソタ大学(米国)のクラミドモナス資源センターから提供された。当該死細胞率は実施例2で説明したように、25nmのサイズのシアノアクリレートナノ粒子(250mg/L)と同時インキュベートし、トリパンブルー染色アッセイを行うことにより求めた。結果を図8に示した。
Example 3
In Chlamydomonas reinhardtii, the dead cell rate in wild type CC-124, very thin cell wall mutant CC-503 and cell wall deletion mutant CC-400 was examined. The two variants were also provided by the Chlamydomonas Resource Center at the University of Minnesota (USA). As described in Example 2, the dead cell rate was determined by co-incubating with cyanoacrylate nanoparticles (250 mg / L) having a size of 25 nm and performing a trypan blue staining assay. The results are shown in FIG.
 この結果、シアノアクリレートナノ粒子との1時間の同時インキュベートによって、細胞壁欠損突然変異体CC-400では約95%の死細胞が誘導され、薄い細胞壁突然変異体CC-503では、約40%の死細胞が誘導され、野生型CC-124では、約28%の死細胞が誘導された。 As a result, co-incubation with cyanoacrylate nanoparticles for 1 hour induced about 95% dead cells in cell wall defective mutant CC-400 and about 40% dead cells in thin cell wall mutant CC-503. Cells were induced and about 28% dead cells were induced in wild type CC-124.
 これより、シアノアクリレートナノ粒子に対する感受性は高い順に、細胞壁欠損突然変異体CC-400、薄い細胞壁突然変異体CC-503、野生型CC-124であることが示された。このような感受性の順序は、細胞壁がシアノアクリレートナノ粒子による死細胞誘導を阻害する一種の機械的障壁として働いていることを示唆した。 From this, it was shown that cell wall deletion mutant CC-400, thin cell wall mutant CC-503, and wild type CC-124 are in descending order of sensitivity to cyanoacrylate nanoparticles. This order of sensitivity suggested that the cell wall acts as a kind of mechanical barrier that inhibits dead cell induction by cyanoacrylate nanoparticles.
〔実施例4〕
 25nmのサイズのシアノアクリレートナノ粒子(65mg/L)と20分間の同時インキュベートした後のクラミドモナス(野生型CC-124)の細胞超微細構造をTEMにより観察した。結果を図9に示した。
Example 4
Cellular ultrastructure of Chlamydomonas (wild-type CC-124) after co-incubation with cyanoacrylate nanoparticles (65 mg / L) of 25 nm size for 20 minutes was observed by TEM. The results are shown in FIG.
 この結果、野生型CC-124の細胞壁内部および細胞壁と原形質膜との間(ペリプラズム空間)に多数のシアノアクリレートナノ粒子が観察された。即ち、TEMによって観察された細胞超微細構造は、細胞壁が強い損傷を有し、シアノアクリレートナノ粒子が細胞壁内部および細胞壁と原形質膜との間(ペリプラズム空間)に蓄積して細胞質に侵入していることを実証した。 As a result, a large number of cyanoacrylate nanoparticles were observed inside the cell wall of wild type CC-124 and between the cell wall and the plasma membrane (periplasmic space). That is, in the cell ultrastructure observed by TEM, the cell wall has strong damage, and cyanoacrylate nanoparticles accumulate inside the cell wall and between the cell wall and the plasma membrane (periplasmic space) and enter the cytoplasm. Proved that
〔実施例5〕
 クロレラ(Chlorella vulgaris)に対するシアノアクリレートナノ粒子曝露の影響について調べた。本実施例で使用したクロレラ・ブルガリス(Chlorella vulgaris)は国立環境研究所(NIES)から提供された。
Example 5
The effect of cyanoacrylate nanoparticle exposure on Chlorella vulgaris was investigated. Chlorella vulgaris used in this example was provided by the National Institute for Environmental Studies (NIES).
 シアノアクリレートナノ粒子は、種々のサイズ(25nm,180nm,350nm)を使用し、それぞれのサイズにおいて1g/Lの濃度でアッセイを行った。この同時インキュベーションによってシアノアクリレートナノ粒子は細胞壁との親和性により、細胞表面に多数付着してその表面を覆いつくし(図2)、その結果、クロレラ細胞は死細胞へ誘導されず、プロトプラストまたはスフェロプラスト(プロトプラスト/スフェロプラスト)に変化した。 The cyanoacrylate nanoparticles used various sizes (25 nm, 180 nm, 350 nm), and assayed at a concentration of 1 g / L at each size. Due to this co-incubation, the cyanoacrylate nanoparticles adhere to and cover the surface of the cell due to the affinity with the cell wall (FIG. 2). As a result, chlorella cells are not induced into dead cells, and protoplasts or spherospheres are not induced. Changed to plast (protoplast / spheroplast).
 プロトプラスト/スフェロプラストの出現は、キチンおよびセルロースに特異的に結合する蛍光色素であるフルオレセントブライトナー28(F3543、シグマアルドリッチ社製)を用いた細胞壁染色試験によって確認した。 The appearance of protoplasts / spheroplasts was confirmed by a cell wall staining test using Fluorescent Brightener 28 (F3543, manufactured by Sigma-Aldrich), which is a fluorescent dye that specifically binds to chitin and cellulose.
 フルオレセントブライトナー28のストック溶液(HO中1mg/mL)を細胞培養物に加えた(最終濃度0.04mg/mL)。試料を光学顕微鏡観察の前に暗所で10分間保持した。染色された細胞は、U-MWU2フィルターユニットまたはBZ-X700(キーエンス社製)を有する顕微鏡(IX71:オリンパス株式会社製)を使用して洗浄ステップなしで観察した。 A stock solution of Fluorescent Brightener 28 (1 mg / mL in H 2 O) was added to the cell culture (final concentration 0.04 mg / mL). Samples were kept in the dark for 10 minutes prior to optical microscopy. Stained cells were observed without a washing step using a microscope (IX71: manufactured by Olympus Corporation) having a U-MWU2 filter unit or BZ-X700 (manufactured by Keyence Corporation).
 この試験では、純赤色蛍光を有する細胞をプロトプラスト/スフェロプラストと判定し、ピンク-赤を有する細胞を非プロトプラスト/スフェロプラストとして評価した。この判断基準を確立するために、市販の溶菌酵素混合物を用いてクロレラ(Chlorella vulgaris)のプロトプラストを調製した。市販の溶菌酵素混合物は、0.5%セルリジン(カルバイオ・ケム社製)、2%マセロチームR-10(ヤクルト薬品工業株式会社製)およびバチルスR-4由来の1%キトサナーゼ(ケイ・アイ化成株式会社製)を0.5Mマンニトールを含む25mMのリン酸緩衝液(pH7.0)に溶解したものを使用した。遠心分離(1000×g、10分)により対数期中期(OD750=0.8-1.0)で細胞を収穫し、次いで細胞ペレットを酵素混合物(2×10細胞/mL)に懸濁し、薄暗い場所で非常に穏やかに振盪しながら25℃で4~8時間インキュベートした。
 酵素処理した細胞では、近傍の細胞壁を取り除いた純赤色蛍光細胞をプロトプラストの参照標準として使用した。一方、非酵素処理細胞の色は、クロロフィルの純赤色自己蛍光とフルオレセントブライトナー28の青色蛍光の融合の結果としてピンクがかった赤色であり、非プロトプラストの参照標準として使用した。
In this test, cells with pure red fluorescence were determined as protoplasts / spheroplasts, and cells with pink-red were evaluated as non-protoplasts / spheroplasts. To establish this criterion, Chlorella vulgaris protoplasts were prepared using a commercially available lytic enzyme mixture. Commercially available lytic enzyme mixtures are 0.5% cellulidine (produced by Calbio Chem), 2% maceroteam R-10 (produced by Yakult Pharmaceutical Co., Ltd.) and 1% chitosanase derived from Bacillus R-4 (Kei Kasei Co., Ltd.). (Manufactured by the company) dissolved in a 25 mM phosphate buffer (pH 7.0) containing 0.5 M mannitol was used. Harvest cells at mid-log phase (OD750 = 0.8-1.0) by centrifugation (1000 × g, 10 min), then suspend cell pellet in enzyme mixture (2 × 10 8 cells / mL) Incubated for 4-8 hours at 25 ° C. with very gentle shaking in a dim place.
In the cells treated with the enzyme, pure red fluorescent cells from which the cell walls in the vicinity were removed were used as a reference standard for protoplasts. On the other hand, the color of the non-enzyme-treated cells was pinkish red as a result of the fusion of the pure red autofluorescence of chlorophyll and the blue fluorescence of fluorescent brightener 28 and was used as a reference standard for non-protoplasts.
 シアノアクリレートナノ粒子との同時インキュベーションにより、定期的に試料を取り出し、観察された100細胞中のプロトプラスト/スフェロプラストの数を数えた(図10)。プロトプラスト/スフェロプラストのピーク頻度は、25nmのシアノアクリレートナノ粒子と4時間の同時インキュベーション後に約60%に達した。25nmのシアノアクリレートナノ粒子は、180nmおよび350nmのシアノアクリレートナノ粒子より効率よくプロトプラスト/スフェロプラスト誘導した。 Samples were periodically removed by simultaneous incubation with cyanoacrylate nanoparticles and the number of protoplasts / spheroplasts in 100 cells observed was counted (FIG. 10). The peak frequency of protoplast / spheroplast reached about 60% after 4 hours of co-incubation with 25 nm cyanoacrylate nanoparticles. The 25 nm cyanoacrylate nanoparticles induced protoplasts / spheroplasts more efficiently than the 180 nm and 350 nm cyanoacrylate nanoparticles.
 シアノアクリレートナノ粒子の濃度を250mg/L、500mg/Lに変更した場合でも、プロトプラスト/スフェロプラストが誘導された(結果は示さない)。プロトプラスト/スフェロプラストはまた、トリパンブルーによって染色されなかった。 Even when the concentration of cyanoacrylate nanoparticles was changed to 250 mg / L and 500 mg / L, protoplasts / spheroplasts were induced (results not shown). Protoplast / spheroplast was also not stained with trypan blue.
 尚、クロレラ(Chlorella vulgaris)以外の他の3つのクロレラ属、即ち、クロレラ・エリプソイデア(Chlorella ellipsoidea)、クロレラ・エサッカロフィラ(Chlorella saccharophila)、クロレラ・ソロキニアナ(Chlorella sorokiniana)についても同様の実験を行った。これらは国立環境研究所(NIES)から提供された。この結果、これら3つのクロレラ属についても25nmのシアノアクリレートナノ粒子との同時インキュベーションによってプロトプラスト/スフェロプラストが誘導された。特に、クロレラ・エリプソイデアについては、クロレラ・ブルガリスと同レベルでプロトプラスト/スフェロプラストが誘導された(結果は示さない)。 The same experiment was carried out for three genus Chlorella other than Chlorella vulgaris, namely Chlorella ellipsoidea, Chlorella saccharophila, and Chlorella sorokiniana. . These were provided by the National Institute for Environmental Studies (NIES). As a result, protoplasts / spheroplasts were also induced for these three genus Chlorella by simultaneous incubation with 25 nm cyanoacrylate nanoparticles. In particular, for chlorella ellipsoides, protoplasts / spheroplasts were induced at the same level as Chlorella vulgaris (results not shown).
〔実施例6〕
 クロレラ(Chlorella vulgaris)に対するシアノアクリレートナノ粒子曝露により細胞壁溶解酵素が分泌されているかを調べた。
Example 6
It was investigated whether cell wall lytic enzyme was secreted by exposure to cyanoacrylate nanoparticles against Chlorella vulgaris.
 クロレラと350nmのシアノアクリレートナノ粒子(1g/L)とを8時間同時インキュベーションした後に細胞を回収し、100nmサイズの孔を有するメンブランフィルターユニットを用いて上清を濾過してシアノアクリレートナノ粒子を除去した。濾液を指数関数的に増殖するクロレラ・ブルガリスから調製した細胞ペレットに加え、8時間インキュベートすることにより、細胞の約15%がプロトプラスト/スフェロプラストに変化した(図11)。プロトプラスト/スフェロプラストの判定は実施例5に準じて行った。 Cells were recovered after co-incubation of chlorella and 350 nm cyanoacrylate nanoparticles (1 g / L) for 8 hours, and the supernatant was filtered using a membrane filter unit having 100 nm size pores to remove cyanoacrylate nanoparticles. did. The filtrate was added to a cell pellet prepared from exponentially growing Chlorella vulgaris and incubated for 8 hours, which turned about 15% of the cells into protoplasts / spheroplasts (FIG. 11). The determination of protoplast / spheroplast was performed according to Example 5.
 これにより、増殖の異常な細胞周期で分泌されたクロレラの細胞壁溶解酵素を濾液が含むことを明らかに示した。尚、図11における「コントロール」は、細胞と分散剤のみを含む培養液で同時インキュベーションを行ったもの、「NP(350nm)」は、シアノアクリレートナノ粒子との同時インキュベーションによりプロトプラスト/スフェロプラストが誘導されたもの、を示す。 This clearly showed that the filtrate contained chlorella cell wall lytic enzyme secreted in the abnormally proliferating cell cycle. Note that “control” in FIG. 11 is obtained by co-incubation with a culture solution containing only cells and a dispersing agent, and “NP (350 nm)” is produced by protoplast / spheroplast by co-incubation with cyanoacrylate nanoparticles. Indicates what was induced.
〔実施例7〕
 25nmのサイズのシアノアクリレートナノ粒子(1g/L)と3時間の同時インキュベートした後のクロレラの細胞超微細構造をTEMにより観察した。結果を図12に示した。
Example 7
The cellular ultrastructure of chlorella after co-incubation with 25 nm sized cyanoacrylate nanoparticles (1 g / L) for 3 hours was observed by TEM. The results are shown in FIG.
 この結果、細胞壁内部および細胞壁と原形質膜との間(ペリプラズム空間)にはシアノアクリレートナノ粒子は検出されなかった。 As a result, cyanoacrylate nanoparticles were not detected inside the cell wall and between the cell wall and the plasma membrane (periplasmic space).
〔実施例8〕
 上述した実施例では、クラミドモナス属のChlamydomonas reinhardtiiにおいてシアノアクリレートナノ粒子曝露の影響について調べた。本実施例では、他のクラミドモナス属や緑藻綱について、シアノアクリレートナノ粒子(25nm)曝露の影響について調べた。実験条件は、上述した実施例と同様とした。尚、参考のため、上述した実施例で使用したChlamydomonas reinhardtii、4種のクロレラ属についても結果を表記した(表1-1,表1-2)。
Example 8
In the above-mentioned Examples, the effect of cyanoacrylate nanoparticle exposure was examined in Chlamydomonas reinhardtii belonging to the genus Chlamydomonas. In this example, the effects of exposure to cyanoacrylate nanoparticles (25 nm) were examined for other Chlamydomonas species and Green algae. The experimental conditions were the same as in the above-described example. For reference, the results are also shown for the four Chlamydomonas reinhardtii species used in the above-described Examples (Table 1-1, Table 1-2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この結果、クラミドモナス属は、例えばクラミドモナス・アプラナタ(Chlamydomonas applanata)、クラミドモナス・アシメトリカ(Chlamydomonas assymetrica)、クラミドモナス・デバリアナ(Chlamydomonas debaryana)、クラミドモナス・グロボサ(Chlamydomonas globosa)、クラミドモナス・モブシー(Chlamydomonas moewusii)、クラミドモナス・モナディナ(Chlamydomonas monadina)、クラミドモナス・ノクティガマ(Chlamydomonas noctigama)、クラミドモナス・パルカエ(Chlamydomonas parkeae)、クラミドモナス・ペルプシラ(Chlamydomonas perpusilla)において死細胞誘導が認められた。 As a result, Chlamydomonas globosa (Chlamydomonas applanata), Chlamydomonas assymetrica, Chlamydomonas debaryana, Chlamydomonas clamosa, Dead cell induction was observed in Chlamydomonas monadina, Chlamydomonas noctigama, Chlamydomonas parkeae, and Chlamydomonas perpusilla.
 また、クラミドモナス属以外にも、ニセヒゲマワリ(Astrephomene gubernaculifera)、カルテリア・ラディオサ(Carteria radiosa)、ディスモルフォコッカス・グロボサス(Dysmorphococcus globosus)、ユードリナ・エレガンス(Eudorina elegans)、ゴニウム・ムルチコカム(Gonium multicocum)、ラボクラミス・クレウス(Labochlamys culleus)、パンドリナ モルム(Pandorina morum)、ファコタス・レンチクラリス(Phacotus
 lenticularis)、テトラバエナ・ソシアリス(Tetrabaena socialis)、ボルボックス・カルテリ(Volvox carteri)、ボルブリナ・ステイニー(Volvulina steiniii)において死細胞誘導が認められた。
In addition to the genus Chlamydomonas, Asprephomene gubernaculifera, Carteria radiosa, Dysmorphococcus globosus, Eudorina elegans, Gonium multicocum, Gonium multicocum Creochs (Labochlamys culleus), Pandorina morum, Phacotus
Induction of dead cells was observed in lenticularis, Tetrabaena socialis, Volvox carteri, and Volvulina steiniii.
 従って、本発明の藻類増殖抑制剤を使用することにより、上記の微細藻類の増殖を原因とする水質の汚濁(赤潮または閉鎖水域における汚濁)を予防あるいは抑制することができると認められた。 Therefore, it was recognized that by using the algal growth inhibitor of the present invention, water pollution (red tide or pollution in a closed water area) caused by the growth of the above-mentioned microalgae can be prevented or suppressed.
〔実施例9〕
 クラミドモナス(Chlamydomonas reinhardtii)の野生型CC-124においてシアノアクリレートナノ粒子曝露による活性酸素種(ROS)生成の経時変化について調べた。
Example 9
The time course of reactive oxygen species (ROS) production by exposure to cyanoacrylate nanoparticles was examined in Chlamydomonas reinhardtii wild-type CC-124.
 活性酸素種を検出するために、2’,7’-ジクロロジヒドロフルオレセインジアセテート(H2DCFDA)(D668、シグマアルドリッチ社製)を使用した。非蛍光H2DCFDAは、細胞質内の活性酸素種によって高蛍光2’,7’-ジクロロフルオレセイン(DCF)に変換される。 In order to detect reactive oxygen species, 2 ', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA) (D668, manufactured by Sigma-Aldrich) was used. Non-fluorescent H2DCFDA is converted to highly fluorescent 2 ', 7'-dichlorofluorescein (DCF) by reactive oxygen species in the cytoplasm.
 クラミドモナスおよび25nmのシアノアクリレートナノ粒子(100mg/L)の同時インキュベーションにより、細胞質中に蓄積されたROSによるH2DCFDAの酸化型としてDCFから放出された時間依存的に増加した蛍光陽性細胞の検出を試みた。蛍光顕微鏡観察の15分前に、DMSOに溶解したH2DCFDAを細胞培養物に添加した(最終濃度10μM)。DCFの蛍光は顕微鏡(IX71:オリンパス株式会社製)によって観察された。 Co-incubation of Chlamydomonas and 25 nm cyanoacrylate nanoparticles (100 mg / L) attempted to detect time-dependent increased fluorescence-positive cells released from DCF as oxidized forms of H2DCFDA by ROS accumulated in the cytoplasm . Fifteen minutes prior to fluorescence microscopy, H2DCFDA dissolved in DMSO was added to the cell culture (final concentration 10 μM). The fluorescence of DCF was observed with a microscope (IX71: manufactured by Olympus Corporation).
 コントロールとして、細胞と分散剤のみを含む培養液で同時インキュベーションを行ったものを使用し、比較対照として、2種類の金属酸化物ナノ粒子、即ち、100nm未満の粒子を含むZnO(544906、シグマアルドリッチ社製)およびTiO(アナターゼ形態)(205-01715、和光純薬工業株式会社製)を使用した。 As a control, a culture medium containing only cells and a dispersing agent was used, and as a comparative control, two types of metal oxide nanoparticles, that is, ZnO containing less than 100 nm (544906, Sigma-Aldrich). And TiO 2 (anatase form) (205-01715, manufactured by Wako Pure Chemical Industries, Ltd.) were used.
 その結果、蛍光陽性細胞率は、同時インキュベーション開始後60~90分にピークに達した(図13,図14)。また、蛍光顕微鏡の観察結果により、クラミドモナスおよび25nmのシアノアクリレートナノ粒子の同時インキュベーションによる試料のみ、DCFの蛍光が検出された(図15)が、2種類の金属酸化物ナノ粒子を使用した試料については蛍光は検出されなかった。これより、シアノアクリレートナノ粒子が、同じ濃度のこれらの金属酸化物ナノ粒子より生理学的障害を誘発する能力が高いことを明確に示した。 As a result, the fluorescence positive cell rate reached a peak at 60 to 90 minutes after the start of the simultaneous incubation (FIGS. 13 and 14). In addition, as a result of observation with a fluorescence microscope, only the sample obtained by simultaneous incubation of Chlamydomonas and 25 nm cyanoacrylate nanoparticles detected the fluorescence of DCF (FIG. 15), but the sample using two types of metal oxide nanoparticles. No fluorescence was detected. This clearly showed that cyanoacrylate nanoparticles were more capable of inducing physiological disturbances than the same concentration of these metal oxide nanoparticles.
〔実施例10〕
 本実施例では、上述した緑藻綱以外の他の微細藻類について、シアノアクリレートナノ粒子(25nm)曝露の影響について調べた。実験条件は、上述した実施例と同様とした。
Example 10
In this example, the effects of exposure to cyanoacrylate nanoparticles (25 nm) were examined for other microalgae other than the green alga class described above. The experimental conditions were the same as in the above-described example.
 使用した微細藻類は、渦鞭毛虫門に属する渦鞭毛藻類、珪藻植物門に属する珪藻類、不等毛植物門に属するラフィド藻類または黄金藻類であり、具体的には、シャットネラ・マリ-ナ(Chattonella marina:NIES-1)、ヘテロカプサ・トリケトラ(Heterocapsatriquetra:NIES-7)、タラシオネマ・ニツシオイデス(Thalassioneama nitzschioides:NIES-534)、カレニア・ミキモトイ(Karenia mikimotoi:NIES-2411)、キートセロス・デビリス(Chaetoceros debilis:NIES-3710)、カリプトロスファエラ・スフェロイデア(Calyptrosphaera sphaeroidea:NIES-1308)、ガンビエルディスクス(Gambierdiscus sp:NIES-2764)、ヘテロシグマ・アカシオ(Heterosigma akashiwo:NIES-5)、オドンテラ・ロンギクルリス(Odontella longicruris:NIES-590)とした。 The microalgae used are dinoflagellates belonging to the dinoflagellate, diatoms belonging to the diatomaceous plant, rafidoalgae or golden algae belonging to the irregular planta, and specifically, Shutnera marina ( Chattonella marina (NIES-1), Heterocapsatriquetra (NIES-7), Thalassioneama nitzschioides (NIES-534), Karenia mikimotoi (NIES-2411), rosdece NIES-3710), Calyptrosphaera sphaeroidea (NIES-1308), Gambierdiscus sp (NIES-2766), Heterosigma akashiwo (NIES-5), Odontera Longicurlis (Odontella longicruris: NIES-590).
 この結果、これら全ての微細藻類について死細胞誘導が認められた。従って、本発明の藻類増殖抑制剤を使用することにより、上記の微細藻類の増殖を原因とする水質の汚濁(赤潮または閉鎖水域における汚濁)を予防あるいは抑制することができると認められた。 As a result, dead cell induction was observed for all these microalgae. Therefore, it was recognized that the use of the algal growth inhibitor of the present invention can prevent or suppress water pollution (red tide or pollution in a closed water area) caused by the growth of the above-mentioned microalgae.
〔実施例11〕
 シアノアクリレートナノ粒子に非感受性の微細藻類、および、シアノアクリレートナノ粒子に感受性の微細藻類について、シアノアクリレートナノ粒子の濃度を種々変更した場合にそれぞれの微細藻類が増殖するかを調べた。
Example 11
Regarding microalgae insensitive to cyanoacrylate nanoparticles and microalgae sensitive to cyanoacrylate nanoparticles, whether or not each microalgae grew when the concentration of cyanoacrylate nanoparticles was changed in various ways was investigated.
 シアノアクリレートナノ粒子は180nmの粒径を有するものを使用し、シアノアクリレートナノ粒子に非感受性の微細藻類はユーグレナ・グラシリス(Euglena gracilis:NIES-49)を使用し、シアノアクリレートナノ粒子に感受性の微細藻類はクラミドモナス・レインハーディ(野生型CC-124)を使用した。 Cyanoacrylate nanoparticles having a particle size of 180 nm are used, and microalgae insensitive to cyanoacrylate nanoparticles is Euglena gracilis (NIES-49), which is sensitive to cyanoacrylate nanoparticles. As the algae, Chlamydomonas reinhardy (wild type CC-124) was used.
 1.5%の寒天を含むHUT培地(pH6.4)上の異なる位置に、1%(10g/L(w/v))、0.3%、0.1%、0.03%、0.01%、0.003%のシアノアクリレートナノ粒子をそれぞれ20μL滴下してHUT培地に吸着させた。次に対数増殖期に達したユーグレナ・グラシリスの培養液を綿棒に吸着させて、HUT培地上に塗り広げ、10日間培養した。その結果、全てのシアノアクリレートナノ粒子滴下位置においてユーグレナ・グラシリスの細胞が増殖していると認められた(図16)。これより、ユーグレナ・グラシリスは極めて高濃度(~1%)のシアノアクリレートナノ粒子に対しても耐性を有する(シアノアクリレートナノ粒子に非感受性である)ことが判明した。 1% (10 g / L (w / v)), 0.3%, 0.1%, 0.03%, 0 at different locations on HUT medium (pH 6.4) containing 1.5% agar 20 μL each of 0.01% and 0.003% cyanoacrylate nanoparticles were dropped and adsorbed on the HUT medium. Next, the Euglena gracilis culture solution that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a HUT medium, and cultured for 10 days. As a result, it was recognized that Euglena gracilis cells were proliferating at all cyanoacrylate nanoparticle dropping positions (FIG. 16). From this, it was found that Euglena gracilis is resistant to extremely high concentrations (˜1%) of cyanoacrylate nanoparticles (insensitive to cyanoacrylate nanoparticles).
 一方、1.5%の寒天を含むTAP培地(pH7.0)上の異なる位置に、0.03%の、0.01%、0.003%、0.001%のシアノアクリレートナノ粒子をそれぞれ20μL滴下してTAP培地に吸着させた。次に対数増殖期に達したクラミドモナス(CC-124株)の培養液を綿棒に吸着させてTAP培地上に塗り広げ、10日間培養した。その結果、0.003%及び0.001%のシアノアクリレートナノ粒子滴下位置においてはクラミドモナスの細胞が増殖していると認められたが、0.03%及び0.01%のシアノアクリレートナノ粒子滴下位置においてはクラミドモナスの細胞が増殖していないと認められた(図17:破線部内)。 On the other hand, 0.03%, 0.01%, 0.003%, and 0.001% cyanoacrylate nanoparticles were respectively placed at different positions on a TAP medium (pH 7.0) containing 1.5% agar. 20 μL was dropped and adsorbed on the TAP medium. Next, the culture solution of Chlamydomonas (CC-124 strain) that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a TAP medium, and cultured for 10 days. As a result, it was confirmed that cells of Chlamydomonas were proliferating at the dropping positions of 0.003% and 0.001% of cyanoacrylate nanoparticles, but 0.03% and 0.01% of cyanoacrylate nanoparticles were dropped. It was recognized that Chlamydomonas cells did not proliferate in the position (FIG. 17: in the broken line part).
 対数増殖期のユーグレナ・グラシリスにシアノアクリレートナノ粒子を最終濃度0.01%(100mg/L)となるように添加して、液体培地にて12時間培養した後に光学顕微鏡にて観察を行ったが、遊泳を停止している細胞は認められなかった(図18)。これより、この条件でのユーグレナ・グラシリスの細胞死率はゼロであると推定された。シアノアクリレートナノ粒子の最終濃度が0.03%の場合も同様の結果が得られた(結果は示さない)。 Although cyanoacrylate nanoparticles were added to Euglena gracilis in the logarithmic growth phase to a final concentration of 0.01% (100 mg / L) and cultured in a liquid medium for 12 hours, observation was performed with an optical microscope. No cells that stopped swimming were observed (FIG. 18). From this, it was estimated that the cell death rate of Euglena gracilis under this condition was zero. Similar results were obtained when the final concentration of cyanoacrylate nanoparticles was 0.03% (results not shown).
 一方、対数増殖期のクラミドモナス(CC-124株)にシアノアクリレートナノ粒子を最終濃度0.01%(100mg/L)となるように添加して、液体培地にて12時間培養した後に光学顕微鏡にて観察を行ったが、遊泳をしている細胞は殆ど認められなかった(結果は示さない)。シアノアクリレートナノ粒子の最終濃度が0.03%の場合も同様の結果が得られた(結果は示さない)。 On the other hand, cyanoacrylate nanoparticles were added to Chlamydomonas (CC-124 strain) in the logarithmic growth phase to a final concentration of 0.01% (100 mg / L) and cultured in a liquid medium for 12 hours. However, few cells were observed to swim (results not shown). Similar results were obtained when the final concentration of cyanoacrylate nanoparticles was 0.03% (results not shown).
 また、シアノアクリレートナノ粒子に非感受性の微細藻類としてヘマトコッカス・ラクストリス(Haematococcus lacustris:NIES-144)を使用し、上記と同様の実験を行ったところ、ユーグレナ・グラシリスの場合と同様の結果が得られた。 In addition, an experiment similar to the above was performed using Haematococcus lacustris (NIES-144) as a microalgae insensitive to cyanoacrylate nanoparticles, and the same results as in Euglena gracilis were obtained. It was.
 本実施例により、例えば野外の開放系の培養槽等で培養しようとする場合、シアノアクリレートナノ粒子を培地に添加(例えば最終濃度が0.01~0.03%)することにより、シアノアクリレートナノ粒子に感受性の微細藻類(例えばクラミドモナス・レインハーディ)の増殖を排除し、シアノアクリレートナノ粒子に非感受性の微細藻類(例えばユーグレナ・グラシリス、ヘマトコッカス・ラクストリス等の有用な微細藻類)を選択的に増殖させることができるものと認められた。 According to this example, for example, when culturing in an open culture tank in the field, cyanoacrylate nanoparticles are added to the culture medium (for example, final concentration is 0.01 to 0.03%), so that Eliminate the growth of microalgae sensitive to particles (eg Chlamydomonas reinhardi) and selectively select microalgae insensitive to cyanoacrylate nanoparticles (eg useful microalgae such as Euglena gracilis, Haematococcus laxtris) It was recognized that it could be grown.
 また、この実験では、シアノアクリレートナノ粒子が固形物である寒天表面上に付着していれば、寒天上にあるクラミドモナス・レインハーディの生育が阻害されることを示している。従って、シアノアクリレートナノ粒子を固形物(植物工場で使用する部材、或いは、建材用の外壁)の表面に付着させることにより、その表面に微細藻類が生育することを阻害することが期待される。 Also, in this experiment, it is shown that the growth of Chlamydomonas reinhardi on the agar is inhibited if the cyanoacrylate nanoparticles are attached to the solid agar surface. Therefore, by attaching cyanoacrylate nanoparticles to the surface of a solid material (member used in a plant factory or an outer wall for building materials), it is expected to inhibit the growth of microalgae on the surface.
〔実施例12〕
 固体表面で藻類増殖抑制剤として効果が発現するために必要な最小限のシアノアクリレートナノ粒子の粒子数はどの程度か、その面積密度(平米当り質量)を求める実験を行った。
Example 12
An experiment was conducted to determine the minimum number of cyanoacrylate nanoparticles necessary for an effect as an algae growth inhibitor on a solid surface and the area density (mass per square meter).
 1.5%の寒天を含むTAP培地(pH7.0)上の異なる位置に、所定の濃度(10,30,100,300ppm)に希釈したシアノアクリレートナノ粒子(粒径30nm)の分散液を20μL滴下してTAP培地に吸着させた。分散液を20μL滴下したときにTAP培地上で広がる面積は約0.785cmであった。
 各濃度において、シアノアクリレートナノ粒子の質量、個数、平米当り質量g/m等を求めた結果を表2に示した。
20 μL of a dispersion of cyanoacrylate nanoparticles (particle size 30 nm) diluted to a predetermined concentration (10, 30, 100, 300 ppm) at different positions on TAP medium (pH 7.0) containing 1.5% agar It was dripped and made to adsorb | suck to a TAP culture medium. When 20 μL of the dispersion was dropped, the area spread on the TAP medium was about 0.785 cm 2 .
Table 2 shows the results of determining the mass and number of cyanoacrylate nanoparticles, mass g / m 2 per square meter, and the like at each concentration.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 対数増殖期に達したクラミドモナス(CC-124株)の培養液を綿棒に吸着させてTAP培地上に塗り広げ、10日間培養した。その結果、10,30,100ppm(水準1~3)のシアノアクリレートナノ粒子滴下位置においてはクラミドモナスの細胞が増殖していると認められたが、300ppm(水準4)のシアノアクリレートナノ粒子滴下位置においてはクラミドモナスの細胞が増殖していないと認められた(結果は示さない)。 The culture solution of Chlamydomonas (CC-124 strain) that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a TAP medium, and cultured for 10 days. As a result, Chlamydomonas cells were observed to be growing at the dropping position of 10, 30, 100 ppm (level 1 to 3) of cyanoacrylate nanoparticles, but at the dropping position of 300 ppm (level 4) cyanoacrylate nanoparticles. Was found not to grow Chlamydomonas cells (results not shown).
 水準4のシアノアクリレートナノ粒子は、平米当り質量が0.076g/mであった。 Level 4 cyanoacrylate nanoparticles had a mass per square meter of 0.076 g / m 2 .
〔実施例13〕
 シアノアクリレートナノ粒子(粒径30nm)の分散液を寒天培地表面上に均一に付着させた試料上にクラミドモナス(CC-124株)を塗布し、培養試験を行った。各試料A~Dに添加したシアノアクリレートナノ粒子液の添加量、シアノアクリレートナノ粒子の質量、シアノアクリレートナノ粒子の粒子数を求めた結果を表3に示した。試料Eはシアノアクリレートナノ粒子を添加しないコントロールとした。
Example 13
Chlamydomonas (CC-124 strain) was applied to a sample in which a dispersion of cyanoacrylate nanoparticles (particle size 30 nm) was uniformly attached on the surface of an agar medium, and a culture test was performed. Table 3 shows the results of determining the addition amount of the cyanoacrylate nanoparticle liquid added to each sample A to D, the mass of the cyanoacrylate nanoparticles, and the number of cyanoacrylate nanoparticles. Sample E was a control to which no cyanoacrylate nanoparticles were added.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1.5%の寒天を含むTAP培地(表面積64cm)に各試料A~Dのシアノアクリレートナノ粒子液(濃度1%)をそれぞれ別々に添加し、50℃に設定した恒温器の中にシャーレを入れ、シアノアクリレートナノ粒子液を乾燥させた。対数増殖期に達したクラミドモナス(CC-124株)の培養液を綿棒に吸着させてTAP培地上に塗り広げ、室温(25±2℃)にて2週間培養した。結果を図19(培養0日目)、図20(培養7日目)、図21(培養11日目)に示した。 The cyanoacrylate nanoparticle liquid (concentration 1%) of each sample A to D was separately added to a TAP medium (surface area 64 cm 2 ) containing 1.5% agar, and the petri dish was placed in a thermostat set at 50 ° C. The cyanoacrylate nanoparticle liquid was dried. A culture solution of Chlamydomonas (CC-124 strain) that reached the logarithmic growth phase was adsorbed onto a cotton swab, spread on a TAP medium, and cultured at room temperature (25 ± 2 ° C.) for 2 weeks. The results are shown in FIG. 19 (culture day 0), FIG. 20 (culture day 7), and FIG. 21 (culture day 11).
 この結果、試料Aについては培養11日目でクラミドモナスの増殖が目視で明確に確認された。一方、試料B~Dについては培養11日目でもクラミドモナスの増殖が目視で確認されなかった。即ち、試料B~Dのシアノアクリレートナノ粒子は、平米当り質量が0.108~1.078g/mであった。 As a result, regarding sample A, the growth of Chlamydomonas was clearly confirmed visually on the 11th day of culture. On the other hand, for Samples B to D, the growth of Chlamydomonas was not visually confirmed even on the 11th day of culture. That is, the cyanoacrylate nanoparticles of Samples B to D had a mass per square meter of 0.108 to 1.078 g / m 2 .
 実施例12の結果と合せて、シアノアクリレートナノ粒子は、平米当り質量が0.076g/m、或いは0.108g/m以上であれば、固体表面でのクラミドモナスの増殖を予防あるいは抑制することができるものと認められた。尚、クラミドモナス以外の微細藻類についても同様の結果が得られた(結果は示さない)。 Together with the results of Example 12, cyanoacrylate nanoparticles square meter per mass is equal 0.076 g / m 2, or 0.108 g / m 2 or more, preventing or inhibiting the growth of Chlamydomonas with solid surface It was recognized that it was possible. Similar results were obtained for microalgae other than Chlamydomonas (results not shown).
 従って、例えば建材用の外壁に、平米当り質量が0.076g/m、或いは0.108g/m以上となるようにシアノアクリレートナノ粒子液を予め塗布しておけば、建材用の外壁の表面で微細藻類の増殖を予防あるいは抑制することが期待できる。 Thus, for example, the outer wall of the building materials, square meter per mass be previously coated with cyanoacrylate nanoparticles solution so that 0.076 g / m 2, or 0.108 g / m 2 or more, the outer wall of the building materials It can be expected to prevent or suppress the growth of microalgae on the surface.
 尚、実際に建材用の外壁の表面にシアノアクリレートナノ粒子液を塗布するには、以下のようにしておこなうとよい。即ち、0.1gのシアノアクリレートナノ粒子分散液の体積は分散濃度が1%の場合10cmである。10cmの場合には分散液をスプレーで吹き付けて、乾燥させる方法が可能である。塗布する場合には、これを10倍希釈し、100cmの液にすると均一に作業しやすい。乾燥する時間を考えると、希釈する液量は少ない方が有利である。 In order to actually apply the cyanoacrylate nanoparticle liquid to the surface of the outer wall for building materials, it is preferable to carry out as follows. That is, the volume of 0.1 g of the cyanoacrylate nanoparticle dispersion is 10 cm 3 when the dispersion concentration is 1%. In the case of 10 cm 3, a method in which the dispersion is sprayed and dried can be used. In the case of application, it is easy to work uniformly if it is diluted 10 times and made into a liquid of 100 cm 3 . Considering the drying time, it is advantageous that the amount of liquid to be diluted is small.
〔実施例14〕
 屋外の池において、シアノアクリレートナノ粒子を添加し、微細藻類の増殖にどのような影響を与えるかを調べた。
Example 14
In outdoor ponds, cyanoacrylate nanoparticles were added to investigate the effect on the growth of microalgae.
 高知工科大キャンパス内に並列して配置された水容量42トンの池の一方に、直径25nmのイソブチルシアノアクリレートナノ粒子を、最終濃度を100ppmとなるように投入した。対象実験区となるもう一方の池には、イソブチルシアノアクリレートナノ粒子は投入しなかった。24日経過後に、シアノアクリレートナノ粒子を添加した池と、対象実験区の池から、それぞれ500mLの水を採取して網目1μmのメッシュで濾過をし、微細藻類等の生物を採集した。 The isobutyl cyanoacrylate nanoparticles having a diameter of 25 nm were introduced into one of the 42-ton water ponds arranged in parallel on the Kochi University of Technology campus in a final concentration of 100 ppm. Isobutyl cyanoacrylate nanoparticles were not added to the other pond, which was the target experimental group. After the lapse of 24 days, 500 mL of water was collected from each of the pond to which the cyanoacrylate nanoparticles were added and the pond of the target experimental group, and filtered through a mesh having a mesh size of 1 μm to collect organisms such as microalgae.
 フィルター上の生物に対して凍結および溶解を3回繰り返すことにより、細胞を破砕した。破砕された細胞からの全DNA抽出は、QIAamp DNA Mini Kit (キアゲン社製)を用いて行った。抽出されたDNAを用いて、下記のプライマーセットを用いたPCR法により増幅したアンプリコンを次世代シークエンサーMiSeq(イルミナ社製)を用いて、2×300bpの条件でエンドペア配列の解析を行った。 The cells were disrupted by repeating freezing and thawing three times for the organism on the filter. Total DNA extraction from the disrupted cells was performed using QIAamp DNA Mini Kit (Qiagen). Using the extracted DNA, an amplicon amplified by the PCR method using the following primer set was analyzed for end-pair sequences under the conditions of 2 × 300 bp using a next-generation sequencer MiSeq (manufactured by Illumina).
1st-1422f
5’ACACTCTTTCCCTACACGACGCTCTTCCGATCTATAACAGGTCTGTGATGCC3’
1st-1422f
5'ACACTCTTTCCCTACACGACGCTCTTCCGATCTATAACAGGTCTGTGATGCC3 '
1st-1642r
5’GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGGGCGGTGTGTACAAAGG3’
1st-1642r
5'GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGGGCGGTGTGTACAAAGG3 '
 シアノアクリレートナノ粒子を投入した池から得られた生物のDNAを用いて得られたシークエンスデータの品質チェックを行い、最終的に49,376リード(bp)が得られた。また、対象実験区の池から得られた生物のDNAを用いて得られたシークエンスデータの品質チェックを行い、最終的に67,268リード(bp)が得られた。これらの配列データを米国生物工学情報センターが管理運営するGenBankの塩基配列データと比較することで、解析された18SrDNA配列に最も近い生物種を推定した。 A quality check was performed on the sequence data obtained using the DNA of the organism obtained from the pond into which the cyanoacrylate nanoparticles were introduced, and 49,376 reads (bp) were finally obtained. Moreover, the quality of the sequence data obtained using the DNA of the organism obtained from the pond of the target experimental section was checked, and finally 67,268 reads (bp) were obtained. By comparing these sequence data with GenBank base sequence data managed and managed by the US Biotechnology Information Center, the species closest to the analyzed 18S rDNA sequence was estimated.
 解析されたDNA配列のうち、7種類は渦鞭毛藻に最も高い相同性を持つことが判明した(表4)。これらのDNA配列はいずれも、シアノアクリレートナノ粒子液を投入した池からは、ごく限られた回数、あるいは全く検出されなかった。一方、対象実験区の池からは、いずれも60回以上検出されている。このことから、これらの渦鞭毛藻は、シアノアクリレートナノ粒子液の暴露で、生育していた個体のほとんどが死滅する種であると認められた。 Among the analyzed DNA sequences, 7 types were found to have the highest homology to dinoflagellates (Table 4). None of these DNA sequences were detected for a limited number of times or at all from the pond into which the cyanoacrylate nanoparticle solution was introduced. On the other hand, all were detected 60 times or more from the pond of the target experimental section. From these results, it was recognized that these dinoflagellates were species that were killed by most of the growing individuals upon exposure to the cyanoacrylate nanoparticle solution.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 解析されたDNA配列のうち、3種類は黄金色藻に最も高い相同性を持つことが判明した(表5)。これらのDNA配列はいずれも、シアノアクリレートナノ粒子液を投入した池からは、ごく限られた回数、あるいは全く検出されなかった。一方、対象実験区の池からは、いずれも88回以上検出されている。このことから、これらの黄金色藻は、シアノアクリレートナノ粒子液の暴露で、生育していた個体のほとんどが死滅する種であると言える。 Of the analyzed DNA sequences, three types were found to have the highest homology to golden algae (Table 5). None of these DNA sequences were detected for a limited number of times or at all from the pond into which the cyanoacrylate nanoparticle solution was introduced. On the other hand, all were detected 88 times or more from the pond of the target experimental section. From this, it can be said that these golden algae are the species that most of the growing individuals die upon exposure to the cyanoacrylate nanoparticle solution.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 解析されたDNA配列のうち、3種類は真正眼点藻に最も高い相同性を持つことが判明した(表6)。これらのDNA配列はいずれも、シアノアクリレートナノ粒子液を投入した池からは、ごく限られた回数しか検出されなかった。一方、対象実験区の池からは、いずれも243回以上検出されている。このことから、これらの真正眼点藻は、シアノアクリレートナノ粒子液の暴露で、生育していた個体のほとんどが死滅する種であると言える。 Of the analyzed DNA sequences, three types were found to have the highest homology to true-eyed point algae (Table 6). All of these DNA sequences were detected only a limited number of times from the pond into which the cyanoacrylate nanoparticle solution was introduced. On the other hand, all were detected 243 times or more from the pond of the target experimental section. From this, it can be said that these true eyed point algae are species in which most of the grown individuals die upon exposure to the cyanoacrylate nanoparticle liquid.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 解析されたDNA配列のうち、5種類は緑藻に最も高い相同性を持つことが判明した(表7)。これらのDNA配列において、シアノアクリレートナノ粒子液を投入した池から検出されたリード数は、対象実験区の池から検出されたリード数の約3分の1以下しか検出されなかった。このことから、これらの緑藻は、シアノアクリレートナノ粒子液の暴露で、生育していた個体が死滅し易い種であると言える。 Among the analyzed DNA sequences, 5 types were found to have the highest homology to green algae (Table 7). In these DNA sequences, the number of reads detected from the pond into which the cyanoacrylate nanoparticle solution was introduced was only about one-third or less of the number of reads detected from the pond of the target experimental group. From these facts, it can be said that these green algae are species that can easily be killed by individuals exposed to the cyanoacrylate nanoparticle solution.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明は、藻類の増殖を抑制する藻類増殖抑制剤および藻類の増殖を抑制する方法に利用できる。 The present invention can be used for an algal growth inhibitor that suppresses the growth of algae and a method for suppressing the growth of algae.

Claims (16)

  1.  炭化水素を主成分とし、藻類の細胞壁に親和性を示す有機化合物のナノ粒子を含有する藻類の増殖を抑制する藻類増殖抑制剤。 An algae growth inhibitor that suppresses the growth of algae containing organic compound nanoparticles that are mainly composed of hydrocarbons and have affinity for the cell walls of algae.
  2.  前記ナノ粒子が、シアノアクリレートナノ粒子である請求項1に記載の藻類増殖抑制剤。 The algal growth inhibitor according to claim 1, wherein the nanoparticles are cyanoacrylate nanoparticles.
  3.  前記シアノアクリレートナノ粒子が、シアノアクリレートモノマーおよび界面活性剤の共存下で重合させたものである請求項2に記載の藻類増殖抑制剤。 The algal growth inhibitor according to claim 2, wherein the cyanoacrylate nanoparticles are polymerized in the presence of a cyanoacrylate monomer and a surfactant.
  4.  前記シアノアクリレートモノマーがイソブチルシアノアクリレートである請求項3に記載の藻類増殖抑制剤。 The algal growth inhibitor according to claim 3, wherein the cyanoacrylate monomer is isobutyl cyanoacrylate.
  5.  前記藻類が微細藻類である請求項1~4の何れか一項に記載の藻類増殖抑制剤。 The algae growth inhibitor according to any one of claims 1 to 4, wherein the algae are microalgae.
  6.  前記微細藻類が、緑藻植物門に属する藻類である請求項5に記載の藻類増殖抑制剤。 The algae growth inhibitor according to claim 5, wherein the microalgae are algae belonging to the green algal plant gate.
  7.  前記緑藻植物門が緑藻綱またはトレボウクシア藻綱に属する藻類である請求項6に記載の藻類増殖抑制剤。 The algal growth inhibitor according to claim 6, wherein the green algae plant gate is an algae belonging to the green algae or the Trevoxia algae.
  8.  前記微細藻類がクラミドモナス属またはクロレラ属に属する藻類である請求項5~7の何れか一項に記載の藻類増殖抑制剤。 The algal growth inhibitor according to any one of claims 5 to 7, wherein the microalga is an algae belonging to the genus Chlamydomonas or Chlorella.
  9.  前記微細藻類が、渦鞭毛虫門に属する渦鞭毛藻類、珪藻植物門に属する珪藻類、不等毛植物門に属するラフィド藻類、黄金藻類または真正眼点藻の群から選択される少なくとも一種である請求項5に記載の藻類増殖抑制剤。 The microalgae is at least one selected from the group of dinoflagellates belonging to the dinoflagellate, diatoms belonging to the diatom plant, rafido algae belonging to the unequal phytophyte, golden algae, or true-eyed algae The algae growth inhibitor according to claim 5.
  10.  前記微細藻類の増殖を原因とする水質の汚濁を予防あるいは抑制する請求項5~9の何れか一項に記載の藻類増殖抑制剤。 The algae growth inhibitor according to any one of claims 5 to 9, wherein water pollution caused by the growth of the microalgae is prevented or suppressed.
  11.  前記水質の汚濁が、赤潮または閉鎖水域における汚濁である請求項10に記載の藻類増殖抑制剤。 The algal growth inhibitor according to claim 10, wherein the water pollution is red tide or pollution in a closed water area.
  12.  固体の表面の前記微細藻類の増殖を予防あるいは抑制する請求項5~9の何れか一項に記載の藻類増殖抑制剤。 The algae growth inhibitor according to any one of claims 5 to 9, wherein the growth of the microalgae on the solid surface is prevented or suppressed.
  13.  前記固体が、植物工場で使用する部材、或いは、建材用の外壁である請求項12に記載の藻類増殖抑制剤。 The algae growth inhibitor according to claim 12, wherein the solid is a member used in a plant factory or an outer wall for building materials.
  14.  炭化水素を主成分とし、藻類の細胞壁に親和性を示す有機化合物のナノ粒子を使用して、藻類の増殖を抑制する方法。 A method of suppressing the growth of algae using nanoparticles of organic compounds mainly composed of hydrocarbons and having affinity for the cell walls of algae.
  15.  前記藻類が微細藻類である請求項14に記載の藻類の増殖を抑制する方法。 The method of suppressing the growth of algae according to claim 14, wherein the algae are microalgae.
  16.  前記ナノ粒子に非感受性の微細藻類を増殖させることができる請求項15に記載の藻類の増殖を抑制する方法。
     
    The method for inhibiting the growth of algae according to claim 15, wherein microalgae insensitive to the nanoparticles can be grown.
PCT/JP2018/014433 2017-04-18 2018-04-04 Algae growth inhibitor and method for inhibiting algae growth WO2018193847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513545A JP7134442B2 (en) 2017-04-18 2018-04-04 Algae growth inhibitor and method for inhibiting algae growth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082277 2017-04-18
JP2017-082277 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018193847A1 true WO2018193847A1 (en) 2018-10-25

Family

ID=63856700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014433 WO2018193847A1 (en) 2017-04-18 2018-04-04 Algae growth inhibitor and method for inhibiting algae growth

Country Status (2)

Country Link
JP (1) JP7134442B2 (en)
WO (1) WO2018193847A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113533786A (en) * 2021-01-24 2021-10-22 大理大学 Method for researching anti-pollution action mechanism of diindole alkaloid on Nitzschia closterium based on electron microscopic imaging technology
JP2023000739A (en) * 2021-06-18 2023-01-04 三菱鉛筆株式会社 antimicrobial particle dispersion
JP7454387B2 (en) 2020-01-27 2024-03-22 三菱鉛筆株式会社 Anti-termite particle water dispersion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073627A (en) * 2001-06-18 2003-03-12 Osaka Gas Co Ltd Antifouling coating material
JP2005060273A (en) * 2003-08-08 2005-03-10 Daiichi Seimou Co Ltd Organic acid preparation
JP2007332039A (en) * 2006-06-12 2007-12-27 Sumiya Yoji Algicide for red tide and method of killing algae for red tide
WO2008126846A1 (en) * 2007-04-09 2008-10-23 Yokohama City University Antibacterial agent for vancomycin-resistant gram-positive bacterium
WO2010101178A1 (en) * 2009-03-03 2010-09-10 公立大学法人横浜市立大学 Amino acid-conjugated cyanoacrylate polymer particles
WO2016039412A1 (en) * 2014-09-11 2016-03-17 チカミミルテック株式会社 Antibacterial agent and method for producing antibacterial agent
JP2017081852A (en) * 2015-10-28 2017-05-18 チカミミルテック株式会社 Antibacterial agent, and method for producing the antibacterial agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073627A (en) * 2001-06-18 2003-03-12 Osaka Gas Co Ltd Antifouling coating material
JP2005060273A (en) * 2003-08-08 2005-03-10 Daiichi Seimou Co Ltd Organic acid preparation
JP2007332039A (en) * 2006-06-12 2007-12-27 Sumiya Yoji Algicide for red tide and method of killing algae for red tide
WO2008126846A1 (en) * 2007-04-09 2008-10-23 Yokohama City University Antibacterial agent for vancomycin-resistant gram-positive bacterium
WO2010101178A1 (en) * 2009-03-03 2010-09-10 公立大学法人横浜市立大学 Amino acid-conjugated cyanoacrylate polymer particles
WO2016039412A1 (en) * 2014-09-11 2016-03-17 チカミミルテック株式会社 Antibacterial agent and method for producing antibacterial agent
JP2017081852A (en) * 2015-10-28 2017-05-18 チカミミルテック株式会社 Antibacterial agent, and method for producing the antibacterial agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454387B2 (en) 2020-01-27 2024-03-22 三菱鉛筆株式会社 Anti-termite particle water dispersion
CN113533786A (en) * 2021-01-24 2021-10-22 大理大学 Method for researching anti-pollution action mechanism of diindole alkaloid on Nitzschia closterium based on electron microscopic imaging technology
JP2023000739A (en) * 2021-06-18 2023-01-04 三菱鉛筆株式会社 antimicrobial particle dispersion

Also Published As

Publication number Publication date
JPWO2018193847A1 (en) 2020-03-05
JP7134442B2 (en) 2022-09-12

Similar Documents

Publication Publication Date Title
Moreno-Garrido et al. Toxicity of silver and gold nanoparticles on marine microalgae
US8425945B2 (en) Methods and compositions for regulating biofilm development
WO2018193847A1 (en) Algae growth inhibitor and method for inhibiting algae growth
Sharma et al. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract ofSpirulina platensis
Avelelas et al. Efficacy and ecotoxicity of novel anti-fouling nanomaterials in target and non-target marine species
Schiavo et al. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae
WO2016062836A1 (en) Gel capsule comprising a plant cell
Dharmaraj et al. Protein leakage induced marine antibiofouling activity of biosynthesized zinc oxide nanoparticles
KR101718514B1 (en) Amphiphilic hydrogel particle for anti-fouling paint and method for manufacturing the same
Toh et al. Toxicity of bare and surfaced functionalized iron oxide nanoparticles towards microalgae
US9808005B2 (en) Anti-algal bloom composition containing water-soluble free amine chitosan as active ingredient, and method for removing algal-bloom using same
Sakhon et al. Phytoplankton exopolymers enhance adhesion of microplastic particles to submersed surfaces
Gumbo et al. Light and electron microscope assessment of the lytic activity of Bacillus on Microcystis aeruginosa
KR101971250B1 (en) Olleya sp. M5A2M strain having algicidal activity against Alexandrium tamarense and Cochlodinium polykrikoides and uses thereof
Li et al. Flocculation of Ulva microscopic propagules using modified clay: a mesocosm experiment
Sam et al. Antifouling effects of silver nano particles synthesized from tropical seaweeds
KR100960227B1 (en) Method and agents of the algae growth inhibition using nano-silver
JP2955657B2 (en) Virus which can specifically infect red tide plankton and proliferate and lyse alga, red tide control method and red tide control agent using the virus, and storage method of the virus
CN106635898B (en) One plant of red tide algae cracking bacterium YWL1 and its application
JP2023083718A (en) Nano polymer particle
JP3654522B2 (en) A small virus that can specifically propagate to red tide plankton, and can proliferate and dissolve, a red tide control method and a red tide control agent using the virus, and an isolation method, extraction method, subculture method, storage method of the virus, And concentration method
JP3925656B2 (en) Virus that can specifically propagate and lysate by infecting the red tide diatom Keatokeros genus, the Ketokeros red tide control method and the Kitokeros red tide control agent using the virus, and the virus isolation method, subculture method, and storage Method
Thiagarajan et al. The toxicological effects of titanium dioxide nanoparticles on marine microalgae
JP3809951B2 (en) Virus that can specifically propagate and lyse by infection with diatom Rhizosolenia causing red tide, lysosolenia red tide control method and lysosolenia red tide control agent using the virus, isolation method, subculture method, and storage of the virus Method
Trepos Innovative Approaches for the Development of New Non-Toxic Antifouling Solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787438

Country of ref document: EP

Kind code of ref document: A1