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† Background and Aims Studies of evolutionary diversification in the basal eudicot family Papaveraceae, such as
the transition from actinomorphy to zygomorphy, are hampered by the lack of comparative functional studies. So
far, gene silencing methods are only available in the actinomorphic species Eschscholzia californica and Papaver
somniferum. This study addresses the amenability of Cysticapnos vesicaria, a derived fumitory with zygomorphic
flowers, to virus-induced gene silencing (VIGS), and describes vegetative and reproductive traits in this species.
† Methods VIGS-mediated downregulation of the C. vesicaria PHYTOENE DESATURASE gene (CvPDS) and of
the FLORICAULA gene CvFLO was carried out using Agrobacterium tumefaciens transfer of Tobacco rattle virus
(TRV)-based vectors. Wild-type and vector-treated plants were characterized using reverse transcription–PCR
(RT–PCR), in situ hybridization, and macroscopic and scanning electron microscopic imaging.
† Key Results Cysticapnos vesicaria germinates rapidly, can be grown at high density, has a short life cycle and is
self-compatible. Inoculation of C. vesicaria with a CvPDS-VIGS vector resulted in strong photobleaching of
green parts and reduction of endogenous CvPDS transcript levels. Gene silencing persisted during inflorescence
development until fruit set. Inoculation of plants with CvFLO-VIGS affected floral phyllotaxis, symmetry and
floral organ identities.
† Conclusions The high penetrance, severity and stability of pTRV-mediated silencing, including the induction
of meristem-related phenotypes, make C. vesicaria a very promising new focus species for evolutionary–
developmental (evo–devo) studies in the Papaveraceae. This now enables comparative studies of flower
symmetry, inflorescence determinacy and other traits that diversified in the Papaveraceae.

Key words: Agrobacterium tumefaciens, basal eudicots, Cysticapnos vesicaria, FLORICAULA, Papaveraceae,
PHYTOENE DESATURASE, Ranunculales, Tobacco rattle virus, VIGS, zygomorphy.

INTRODUCTION

Investigations in the Ranunculales (the earliest-branched
eudicot order; APG III, 2009) are important for understanding
core eudicot floral diversification, as early diverging eudicots
precede the extensive canalization of floral bauplans observed
in core eudicots (Soltis et al., 2002). The Ranunculales are also
considered a ‘playground for floral diversification’, with, for
example, more diverse perianth forms than in core eudicots
(Litt and Kramer, 2010; Ronse de Craene, 2010). Within the
order, Papaveraceae are especially notable for their range of
flower and inflorescence morphologies (Hidalgo and
Gleissberg, 2010, and references therein). The Papaveraceae
(sensu lato) are a monophyletic lineage that consists of two
subfamilies, Papaveroideae (the poppies) and Fumarioideae
(the fumitories and bleeding hearts), together comprising
about 770 species in 40 genera (Judd et al., 2007; APG III,
2009). The phylogenetic position and taxonomic status of a
putative third subfamily, the monotypic Pteridophylloideae,
are currently questioned (Wang et al., 2009). All poppies are
united in having a dimerous perianth, which is actinomorphic
(polysymmetric) in the subfamily Papaveroideae, and either
disymmetric or zygomorphic (monosymmetric) in the subfam-
ily Fumarioideae. Interestingly, the stepwise shifts in floral

symmetry are paralleled by changes in inflorescence architec-
ture. Actinomorphic or disymmetric flowers occur usually
singly or clustered in determinate inflorescences, whereas
zygomorphic flowers form in indeterminate inflorescences
without a terminal flower. Further, unusual character combina-
tions suggest incomplete coupling and/or reversals of the two
traits (Hidalgo and Gleissberg, 2010). Other diversity patterns
that qualify poppies for evolutionary–developmental (evo–
devo) studies include a shift from oligandry to polyandry
(Damerval and Nadot, 2007), diverse modes of leaf dissection
(Gleissberg and Kadereit, 1999; Gleissberg, 2004) and alkal-
oid biosynthesis (Ziegler et al., 2006).

The California poppy, Eschscholzia californica, is an emer-
ging model plant for basal eudicots (Carlson et al., 2006;
Kramer, 2009; Zahn et al., 2010). Eschscholzia californica
and Papaver somniferum are amenable to virus-induced gene
silencing (VIGS) (Hileman et al., 2005; Wege et al., 2007),
permitting the investigation of gene function in these species
(Drea et al., 2007; Orashakova et al., 2009; Yellina et al.,
2010; Bartholmes, 2011; Hands et al., 2011). VIGS is now a
widely used experimental procedure that allows the transient
interruption of gene function through a process similar to
RNA interference (for a recent review, see Becker and
Lange, 2010). The technique takes advantage of an inherent
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defence mechanism of plants against viruses (Baulcombe,
1999; Paroo et al., 2007). Engineered viruses carrying one or
more target genes are introduced into the plant, and double-
stranded RNA produced during virus replication triggers the
degradation of any RNA with sequence similarity, including
the endogenous transcripts of the target gene(s). The
Tobacco rattle virus (TRV)-based binary vector system
(Liu et al., 2002) is most commonly employed for VIGS in
core eudicots, and it has also provided successful gene down-
regulation in some basal eudicots and monocots (Becker and
Lange, 2010). This system is also the one used thus far in
VIGS studies applied to the early-branched eudicot genera
Aquilegia, Eschscholzia, Papaver and Thalictrum (Drea
et al., 2007; Hileman et al., 2005; Gould and Kramer, 2007;
Wege et al., 2007; Orashakova et al., 2009; Di Stilio et al.,
2010; Yellina et al., 2010).

VIGS-based evo–devo studies in Papaveraceae would
greatly benefit from a zygomorphic-flowered model species,
to contrast with the actinomorphic-flowered E. californica
and P. somniferum. Gene expression data provided evidence
that CYCLOIDEA homologues may be implicated in the estab-
lishment of flower symmetry in Papaveraceae (Kölsch and
Gleissberg, 2006; Damerval et al., 2007). However, these can-
didate genes still remain to be validated through functional
studies. VIGS has been used to address the genetic control
of floral zygomorphy in the core eudicot Pisum sativum
(Wang et al., 2008), and the technique is currently being
developed in other zygomorphic-flowered species, e.g. in the
monocot lineages Orchidaceae (Lu et al., 2007) as well as in
Zingiber officinale (Renner et al., 2009), and in Fedia
cornucopiae, a species in the core eudicot order Dipsacales
(Boyden et al., 2010). Here we report the application of
VIGS in Cysticapnos vesicaria, a Papaveraceae with mono-
symmetric flowers. Cysticapnos belongs to a clade of derived
fumarioid poppies that are characterized by monosymmetric
flowers and open inflorescences (Hidalgo and Gleissberg,
2010, and references therein). Within this clade, molecular
phylogenetic analysis placed Cysticapnos as sister to
Discocapnos and Trigonocarpos, in the sub-tribe
Discocapninae (Manning et al., 2009). Cysticapnos vesicaria
is part of a small genus of three species endemic to South
Africa (revised by Manning et al., 2009) of semi-succulent
climbing plants with compound, apically tendrillate leaves.
Stems end with terminal racemes of monosymmeric flowers
presenting a dorsal nectary pouch. Cysticapnos vesicaria is
polyploid, like most derived fumarioid poppies (Lidén,
1986); however, the species can be distinguished from its
congeneric relatives by a chromosome number of 2n ¼ 4x ¼
28 (2n ¼ 4x ¼ 32 for C. cracca and C. pruinosa) based
on x ¼ 7, whereas almost all Fumarioideae have x ¼ 8
(Lidén, 1986).

Cysticapnos vesicaria was selected because it is easy to
grow in a laboratory setting from readily germinating seeds
produced in abundance from self-fertile plants. Our
assessment of this potential fumarioid poppy model species
includes: (1) demonstrating the feasibility of cultivating
Cysticapnos under laboratory conditions. Some aspects of
vegetative and reproductive morphology are characterized
that can be used as a reference for future evo–devo studies
of the species. (2) We show the applicability of standard

molecular techniques such as reverse transcription–PCR
(RT–PCR) and in situ hybridization to Cysticapnos. (3)
Finally, we evaluate the amenability of Cysticapnos to func-
tional studies through TRV-based VIGS, using the marker
gene PHYTOENE DESATURASE (CvPDS). Further, we use
the FLORICAULA/LEAFY gene CvFLO to test whether silen-
cing of a floral regulator that is known to be expressed in meri-
stematic tissues results in morphological defects.

MATERIALS AND METHODS

Plant cultivation

Cysticapnos vesicaria seeds were provided by the Botanical
Garden of Göttingen, Germany (index seminum 2007-981)
and were grown for several generations to generate a seed
pool. Seeds were sown in trays of 48 pots (4 × 6 × 5.5 cm
L × W × H) covered with a transparent lid and cold stratified
at 4 8C. After 4 d, trays were transferred to a growth chamber
at 22 8C in permanent light at 60–100 mmol of light m2 s21.
The first signs of germination were visible 6 d later. When
the cotyledons were fully expanded or the first leaf had
formed, seedlings were transplanted so as to have only one
plant per pot, and the lid was removed. Two weeks after inocu-
lating the plants with Agrobacterium tumefaciens, tap water
was supplemented with 0.025 % liquid grow 7-9-5
(Dyna-Gro Co., San Pablo, CA, USA) as fertilizer.

Scanning electron microscopy

Flowers and inflorescences at different developmental stages
were dissected under a stereomicroscope and fixed in 70 %
ethanol. After dehydration through an ethanol series, samples
were critical-point dried with CO2 using a Balzers
(CPD030), mounted on aluminium stubs on carbon conductive
adhesive tabs and gold-coated with a Balzers sputter coater
(SCD050). Micrographs were taken with a Cambridge
Instruments Stereoscan 240 scanning electron microscope
(SEM) equipped with digital image capture and the Orion32
6.53 software.

Expression pattern of a Histone H4 gene by in situ hybridization

A 215 bp fragment of a Histone H4 gene, CvH4, was amp-
lified with the primers H4F035 and H4R259 (Groot et al.
2005; GenBank accession no. JQ239046), and served as tem-
plate to synthesize a DIG-11-UTP- (Roche, Indianapolis, IN,
USA) labelled antisense RNA probe using T3 polymerase.
In situ hybridization was carried out on seedling shoots, fol-
lowing the protocol described in Zachgo (2002).
Development of signals with BCIP (5-bromo-4-chloro-3-
indolyl phosphate) in 10 % polyvinyl alcohol was stopped
after 2 d.

Isolation and sequencing of CvPDS and CvFLO

Total RNA from a tissue blend of C. vesicaria was isolated
using the TRI Reagent (Sigma Aldrich, St Louis, MO, USA)
according to the manufacturer’s instructions. RNA was subse-
quently reverse transcribed to cDNA using the standard
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oligo(dT) primer AB05-R (5’-GACTCGAGTCGACATC
TG(T)18-3’) and the enzyme M-MLV (Promega, Madison,
WI, USA). CvPDS (GenBank accession no. JQ239047) was
amplified by semi-nested PCR with the forward primers
PDS-4F (5’-GATGGAGATTGGTATGAGACTGG-3’) and
PDS-5F (5’-CGAGTAACTGATGAGGTGTTTATTGC-3’)
and the reverse primer PDS-7R (5’-AAGAGGGGACTTC
TGCTGA-3’). These primers were designed for use through-
out Papaveraceae and possibly other Ranunculales. CvFLO
(GenBank accession no. JQ239044) was isolated using the
forward primers FLO-41F (5’-GCTGAGTTAGGGTTTA
CTGTKAGCAC-3’) and FLO-42F (5’-ACCCTATTGAC
GCMCTCTCTC-3’) and the reverse primers FLO-43R (5’-
GCCCWACCAAGGTGACRAAYC-3’) and FLO-44R (5’-C
GCATTTTCGGCTTGTTTATGTAACTAGC-3’). Sequencing
was done in the Ohio University Genomics Facility. The
CvFLO sequence was aligned with other angiosperm
FLORICAULA/LEAFY homologues, and a Neighbor–Joining
tree was constructed using SplitsTree (Huson and Bryant,
2006) based on a 267 bp data set (Supplementary Data
Fig. S1).

Vector construction, preparation of the inoculation medium and
infection

A 485 bp fragment of CvPDS was amplified using PDS-8F
(5’-AATCTAGACGAGTAACTGATGAGGTGTTTATTGC-
3’) and PDS-9R (5’-CCCGGGAAGAGGGGACTTCTG
CTGA-3’) and cloned into the XbaI and SmaI sites of
pTRV2 (Liu et al., 2002), resulting in the plasmid
pTRV2-CvPDS. To test silencing of a meristematic gene, a
462 bp fragment of CvFLO was amplified with the primers
FLO-42F and FLO-43R containing XbaI and XhoI restriction
enzyme sites, respectively, and ligated at the corresponding
sites of pTRV2, resulting in the plasmid pTRV2-CvFLO.
The plasmids were sequenced to verify correct insertion
of the fragment, and transformed into A. tumefaciens
GV3101. Agrobacterium tumefaciens containing the appropri-
ate plasmid (pTRV1, pTRV2-CvPDS, pTRV2-CvFLO,
pTRV2-empty) were grown in standard LB medium for 24 h
at 28 8C before harvesting them in a ratio of 1:1,
pTRV1:pTRV2. Cells were resuspended in 1 mL of 5 %
sucrose solution (i.e. half the volume of harvested cells), and
the resulting inoculation media were left at room temperature
for 30 min before infection.

Inoculation was carried out 25 d after sowing on seedlings at
different developmental stages, with foliage leaf number
between one and five. Leaves were considered when they
reached an approximate petiole to blade length ratio of 1:1
and/or when the lamina was expanded flat. A 2 mL droplet
of inoculation medium was applied onto needle scratches on
the hypocotyl and leaf petiole base, allowing the
Agrobacterium to enter the plant. Plants were left on the lab
bench overnight and then returned to the growth chamber.

Expression analysis of CvPDS by RT–PCR

RNA of various tissues (vegetative shoot tips, whole inflor-
escences, floral buds and fruits) of PDS-VIGS and
pTRV2-empty plants was extracted using an RNeasy Plant

Mini Kit (Qiagen, Hilden, Germany). cDNA synthesis was
conducted as described above with 250 ng of total RNA. In
the subsequent PCRs, 5 mL of the 1:50 diluted cDNA was
used in a 25 mL reaction. CvPDS expression profiling was
carried out with PDS4F and PDS7R primers, as they target a
portion of the gene not included in the VIGS construct and
permit avoidance of the amplification of virus-derived
sequences. Furthermore, those primers were chosen because
they span introns and could be used to discriminate endogen-
ous CvPDS transcripts from any genomic DNA amplification.
CvPDS was amplified for 40 cycles of 30 s at 94 8C, 30 s at
55 8C and 60 s at 72 8C. The housekeeping gene
GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE
(GAPDH) was used as reference control and for calculating
relative expression intensities (Czechowski et al., 2005). The
amplification of a 377 bp region near the 3’ end of
CvGAPDH (GenBank accession no. JQ239045), carried out
with the primers GAPDH-1F (5’-AAGGACTGGAGAGGTG
G-3’) and GAPDH-2R (5’-CCCCATTCGTTGTCGTACCA-
3’), was done as described for CvPDS. Determination of pre-
saturation cycles was assessed prior to quantification for the
individual tissues and genes. A minimum of three technical
replicates were run. ImageJ (Rasband 1997–2011) was used
to convert gel images into relative intensities.

RESULTS

Cultivation of Cysticapnos vesicaria plants

Following a brief cold stratification, seeds germinated rather
synchronously after 6 d, and could be readily transplanted to
individual pots for further cultivation. Plants could be grown
at high density in Conviron E8 growth chambers, and started
to flower in permanent light conditions only a few weeks
after germination. Plants started to die upon completion of
fruit set around 3 months after germination. The dead capsules
remain closed under our conditions, allowing easy and safe re-
trieval of seeds. A single plant produces several capsules, and
each capsule contained 7–54 seeds (mean 24, n ¼ 28). Seeds
retained germination capability after storage at 4 8C for several
months.

Morphological characterization of Cysticapnos vesicaria

The morphology of wild C. vesicaria (Harvey and Sonder,
1894; Manning et al., 2009) is similar to that of plants culti-
vated in permanent light in growth chambers. Cysticapnos
vesicaria is a small annual herb that uses tendriliform terminal
leaflets, rachis and leaflet stalks for climbing (Fig. 1).
Heteroblastic leaf series showed a characteristic pattern of in-
creasing complexity also seen in other species (e.g. DeMason
and Villani, 2001; Becker et al., 2005). First-order leaflet pair
numbers reached a stable maximum at node 7, while total
segment number, including second-order leaflets, serrations
and tendrils, peaked together with leaf length around node
11, and declined afterwards. Interestingly, the maximum leaf
area was already reached within the six early-formed tendril-
less leaves which had larger leaflet blades. Petiole length
declines steadily along the shoot, and the leaves preceding
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the first inflorescence are sessile. A sharp transition divides the
last foliage leaf and the minute inflorescence bracts.

After formation of the primary terminal inflorescence
(Fig. 2A), sympodial branching from the axils of the preceding
one or two foliage leaves gives rise to higher order inflores-
cences (Fig. 2A). The inflorescence is sessile, with a short
internode below the first bract and flower (Fig. 2B,C).
Inflorescence bracts are small, scarious and lanceolate.
Flowers cluster in a raceme of 1–3 light-pink, zygomorphic
flowers. The small number of flowers identifies our accession
as Cysticapnos vesicaria subspecies vesicaria (Manning
et al., 2009). A pin-like structure forms the end of the inflor-
escence axis, and is sometimes preceded by an empty bract
(Fig. 2D). Flowers initiate in a rapid sequence (Fig. 2G), and
the sequence of maturation (Fig. 2E, F) and effloration
(Fig. 2B) is acropetal. The calyx consists of two scale-like
sepals that resemble bracts and are, like bracts, persistent
(Fig. 3A). The corolla is composed of four petals in two
whorls. Sepals are initiated in a medial position, in one
plane with the subtending bract (Fig. 2E, F). Upon anthesis,
pedicel torsion reorients the flower so that sepals assume a
lateral position and the spurred outer petal is positioned
upward (Figs 2B and 3A). Outer petals are identical at
earlier developmental stages while in the lateral position
(Fig. 2E), and epidermal cell shape remains similar even
after zygomorphy establishment (data not shown). Inner
petals are free at the base and partly connate at their tips,
and have a translucent abaxial ridge (Fig. 3A). The androe-
cium consists of six stamens in two bundles, and the bicarpel-
late gynoecium consists of a many-ovuled ovary, a linear style

and a capitate stigma (Fig. 3A). Self-pollination occurs very
effectively under our growth conditions, and plants produce
many fruits and seeds. The fruit is an ovoid, membranous, ves-
icular and thin-walled capsule, that appears balloon-like
inflated and grows up to about 30 mm in length. The numerous
seeds are small lenticular, with a black shiny testa.

In situ hybridization of a Histone H4 gene

We tested whether Cysticapnos is amenable to gene expres-
sion characterization via in situ hybridization, an important
component of evo–devo studies, including Ranunculales
(e.g. Di Stilio et al., 2005, 2009; Shan et al., 2006; Liu
et al., 2010; Ballerini and Kramer, 2011) and Papaveraceae
(e.g. Busch and Gleissberg, 2003; Groot et al., 2005;
Carlson et al., 2006; Damerval et al., 2007; Drea et al.,
2007; Orashakova et al., 2009; Yellina et al., 2010; Hands
et al., 2011). Vegetative shoot apices hybridized with an anti-
sense CvH4 RNA probe strongly labelled CvH4 transcripts in
individual cells in the shoot apical meristem and developing
leaves (Supplementary Data Fig. S2), as expected (Groot
et al., 2005). Neighbouring cells remained unstained, demon-
strating a good signal-to-background ratio.

Fast, strong and long-lasting CvPDS silencing phenotype in
infected Cysticapnos vesicaria plants

PDS-VIGS-mediated photobleaching was detected in the
young plants 9 d after infection in the second or third leaf
formed after inoculation (87 % of 68 plants in three
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experiments), more rarely in the first or fourth (Figs 4A and
5A). In one experiment in which detailed phenotypic scoring
was undertaken, the proportion of individuals showing
bleached parts was 100 % (n ¼ 38; Fig. 5A), demonstrating
a maximal penetrance capacity of the VIGS system in
C. vesicaria. The transition from completely green to com-
pletely white leaves generally involved two intermediary
leaves that were mostly green and mostly white, respectively
(Fig. 5B). Not all individuals showed complete photobleach-
ing, with some green leaflet and petiole parts occasionally
formed. The PDS-VIGS phenotype remained remarkably
strong and stable throughout further shoot development and
included the stem, leaves and inflorescences (Figs 4B, C and
5A). Photobleached stem parts often appeared pinkish, prob-
ably due to exposed anthocyanin. Developing capsules were
also photobleached, suggesting that silencing persisted
throughout flower development (Fig. 4D). The photobleaching
phenotype corresponded to effective downregulation of
CvPDS transcripts, as shown by RT–PCR profiling
(Fig. 4E). No difference between wild-type and negative

control plants (pTRV2-empty) was noticeable for vegetative
or reproductive parts, suggesting that TRV itself has minimal
or no effects on development.

Phenotypic effects of CvFLO silencing

To test whether VIGS of a developmental gene results in
morphological alterations, we conducted a separate experiment
in which we inoculated seedlings with a pTRV2-CvFLO con-
struct aimed to silence the CvFLO gene. Of the plants inocu-
lated with pTRV2-CvFLO (n ¼ 48) 12 abnormal flowers
were analysed that suggested successful silencing during meri-
stematic stages of flower development (Fig. 3). No abnormal
flowers were found in control plants inoculated with
pTRV2-E (n ¼ 40) grown side by side with pTRV2-CvFLO
plants. The morphological defects indicated that CvFLO func-
tion was affected during initiation and differentiation of all
floral organs, consistent with the strong silencing effects
seen in pTRV2-CvPDS inflorescences (Fig. 3B).
pTRV2-CvFLO flowers exhibited perturbed floral phyllotaxis
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and symmetry, altered organ numbers and mosaic organ iden-
tities, reflecting partial defects in flower meristem identity also
known from FLORICAULA/LEAFY mutants in rosid core eudi-
cots. Mutants in Arabidopsis and Lotus develop mosaic flower/
shoots with sepals and carpels (Schultz and Haughn, 1991;
Huala and Sussex, 1992; Dong et al., 2005), while equivalent
mutations in the asterid core eudicots Antirrhinum and
Solanum show a full conversions of flowers into shoots
(Coen et al., 1990; Allen and Sussex, 1996). A more detailed
characterization of the CvFLO-VIGS phenotype is currently
underway that will allow a better understanding of the role
of this developmental regulator in this zygomorphic-flowered
basal eudicot.

DISCUSSION

Research in basal eudicots is crucial to help decipher major
evolutionary transitions and associated histories of develop-
mental genes between distant angiosperm lineages, such as
basal angiosperms, monocots and core eudicots (Kramer,
2009; Zahn et al., 2010). In this sense the Papaveraceae are
of special interest as this family occupies a basal position
within Ranunculales (the sister clade to all other eudicots) to-
gether with the earliest-diverging monogeneric Eupteleaceae
(Worberg, 2007; Wang et al., 2009). The Ranunculaceae, on
the other hand, are considered a derived core Ranunculales
family (Wang et al., 2009). Furthermore, Papaveraceae
flowers exhibit a separate morphological canalization within
Ranunculales, with whorled flowers, a clear differentiation of
calyx and corolla, and well-defined expression domains of
floral organ identity genes, potentially providing a model for
core eudicot flower evolution (Chanderbali et al., 2009;
Voelckel et al., 2010; Zahn et al., 2010). Finally, unique diver-
sification patterns regarding floral symmetry and inflorescence
(see Introduction) well qualify Papaveraceae for the study of
correlated traits in a defined phylogenetic framework.

We have identified C. vesicaria as a new model system in
the zygomorphic-flowered subfamily Fumarioideae that will
enable comparative evolutionary developmental studies of re-
productive traits in the poppy family to be conducted. The
combination of relative phylogenetic proximity and contrasting
morphology makes C. vesicaria and E. californica a very
promising pair of species for comparative evo–devo studies.
Recent VIGS-based studies in papaveroid poppies
(Orashakova et al., 2009; Yellina et al., 2010; Bartholmes,
2011; Hands et al., 2011; S. Wreath et al., Ohio University,
unpubl. res.) provide interesting starting points for comparative
studies using C. vesicaria.

Extending developmental genetic studies from isolated
model systems to morphologically divergent relatives mini-
mizes phylogenetic noise in comparative studies (Baum
et al., 2002; Kramer, 2009). For example, the Arabidopsis
thaliana and Cardamine hirsuta models have been useful in
the study of leaf dissection (Hay and Tsiantis, 2006; Canales
et al., 2010). Within Ranunculales, VIGS technology has
been recently developed for related species of the genera
Aquilegia (Gould and Kramer, 2007) and Thalictum (Di
Stilio, 2010). Our study provides proof of the value of a
VIGS-based approach to comparative functional studies in
basal eudicots.

The application of VIGS in Cysticapnos requires no
vacuum infiltration, and results in maximal post-treatment
survival and maximal phenotypic penetrance. In these
respects, VIGS in Cysticapnos is more effective than in
other Ranunculales systems such as P. somniferum
(Hileman et al., 2005) or Aquilegia vulgaris (Gould and
Kramer, 2007). The ability of TRV to trigger silencing in
whole shoots and inflorescences, and the persistence of silen-
cing until the fruit set will allow the study of a broad range
of reproductive and vegetative developmental traits, with the
only exclusion being pre-treatment stages of germination and
early seedling establishment. In addition, the apparent
absence of seed dormancy, easy cultivation under laboratory

pTRV2-E
s ab

op
ad ip st gy
op

pTRV2-CvFLO

A

B

FI G. 3. CvFLO-VIGS phenotypes (A) Control plants inoculated with pTRV2-E showed, from left to right, wild-type flowers that were zygomorphic and had two
sepals, an abaxial and a spurred adaxial outer petal, two inner petals, two stamen bundles (adaxial faces shown) and a gynoecium. (B) A pTRV2-CvFLO flower
with altered floral phyllotaxis and symmetry. Dissection of this flower revealed four sepals, one sepaloid organ, three organs with mixed outer and inner petal
identities and a composite organ with carpel, stamen and inner petal characteristics. Abbreviations: ad op, adaxial outer petal; ab op, abaxial outer petal; gy,

gynoecium; ip, inner petals; s, sepals; st, stamen bundles.
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conditions at high density, a short life cycle and self-
fertilization facilitate experimentation with Cysticapnos. The
fact that Cysticapnos is tetraploid could potentially make
knock-down studies more difficult in the presence of paralo-
gues. In this study, we have identified only one copy of PDS
and FLO, and silencing constructs based on these showed
strong phenotypic consequences. This could be due to the
absence of duplicated gene copies, or to co-silencing of para-
logues. VIGS, in comparison with mutant-based studies, can
be particularly suitable for studying polyploids (Scofield and
Nelson, 2009) as it permits the simultaneous silencing of a
set of paralogues, either directly when they share high se-
quence similarity, or by using a specific construct design
that incorporates multiple genes. The copy number of target
genes can be better assessed when genomic information
become available for this and other fumarioid poppies.

Conclusions

We have demonstrated that Cysticapnos is amenable to la-
boratory culture and poses no challenge for gene isolation
and expression studies. The emerging availability of transcrip-
tomics data for Eschscholzia as well as other Papaveraceae and
Ranunculales species (Chanderbali et al., 2009; Voelckel
et al., 2010; Zahn et al., 2010) will greatly facilitate the iden-
tification of genes and their orthology in Cysticapnos. More
importantly, Cysticapnos is the first species with zygomorphic
flower symmetry in the Papaveraceae and in basal eudicots for
which gene function studies are now available. We developed
this system primarily to enable comparative functional studies
of inflorescence determinacy and flower symmetry in basal
eudicots. However, Cysticapnos is also a promising system
with which to investigate other traits, including its climbing
habit and compound, tendril-bearing leaves. Tendrilled
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FI G. 4. CvPDS silencing symptoms in vegetative and reproductive parts of Cysticapnos vesicaria. (A) Young plant showing beginning of photobleaching.
(B) Young inflorescence of a CvPDS-VIGS plant with complete photobleaching. (C) Mature reproductive shoots of a control (pTRV2-empty; left) and a
CvPDS-VIGS plant (right). (D) Capsules of a control (left) and a CvPDS-VIGS plant (right). (E) RT–PCR showing the strong reduction of CvPDS transcripts
in C. vesicaria plants infected with pTRV2-CvPDS (n ¼ 6), compared with a pTRV2-empty control (n ¼ 2). Expression levels are shown relative to GAPDH.

Asterisks indicate a significant difference compared with the control group at 99 % confidence intervals after ANOVA. Scale bars ¼ 1 cm.
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compound leaves have thus far only been studied in P. sativum
(garden pea) and to some extent in Lathyrus odoratus (sweet
pea) (Gould et al., 1994; Hofer et al., 2009), and it is
unknown whether any underlying genetic networks are
shared between these rosid core eudicots and Cysticapnos.
The addition of a first fumarioid poppy to the VIGS toolbox
in poppies makes it likely that other Fumarioideae are amen-
able to this TRV-based silencing method as well. As compara-
tive insights into the role of genetic networks in morphological
evolution of poppies become available, future studies may
extend to more basal fumitory species with disymmetric
flowers.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.
oxfordjournals.org and consist of the following. Figure S1:
Neighbor–Joining tree of FLORICAULA/LEAFY-like genes
including CvFLO. Figure S2: in situ hybridization of the
Histone H4 gene.
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