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•  Background  Flowers which imitate insect oviposition sites probably represent the most widespread form of 
floral mimicry, exhibit the most diverse floral signals and are visited by two of the most speciose and advanced 
taxa of insect – beetles and flies. Detailed comparative studies on brood-site mimics pollinated exclusively by each 
of these insect orders are lacking, limiting our understanding of floral trait adaptation to different pollinator groups 
in these deceptive systems.
•  Methods  Two closely related and apparent brood-site mimics, Typhonium angustilobum and T.  wilbertii 
(Araceae) observed to trap these distinct beetle and fly pollinator groups were used to investigate potential di-
vergence in floral signals and traits most likely to occur under pollinator-mediated selection. Trapped pollinators 
were identified and their relative abundances enumerated, and thermogenic, visual and chemical signals and mor-
phological traits were examined using thermocouples and quantitative reverse transcription–PCR, reflectance, gas 
chromatography–mass spectrometry, floral measurements and microscopy.
•  Key Results  Typhonium angustilobum and T.  wilbertii were functionally specialized to trap saprophagous 
Coleoptera and Diptera, respectively. Both species shared similar colour and thermogenic traits, and contained two 
highly homologous AOX genes (AOX1a and AOX1b) most expressed in the thermogenic tissue and stage (unlike 
pUCP). Scent during the pistillate stage differed markedly – T. angustilobum emitted a complex blend of sesqui-
terpenes, and T. wilbertii, a dung mimic, emitted high relative amounts of skatole, p-cresol and irregular terpenes. 
The species differed significantly in floral morphology related to trapping mechanisms.
•  Conclusions  Functional specialization and pollinator divergence were not associated with differences in an-
thesis rhythm and floral thermogenic or visual signals between species, but with significant differences in floral 
scent and morphological features, suggesting that these floral traits are critical for the attraction and filtering of 
beetle or fly pollinators in these two brood-site mimics.
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INTRODUCTION

Plant–pollinator interactions typically involve a process of 
co-evolution involving the reciprocal adaptation of pollinators 
to the most rewarding floral traits (Thompson, 1994). Of the 
approx. 300  000 animal-pollinated angiosperms, however, at 
least 7500 plant species have evolved the ability to advertise 
the presence of a reward without providing it (Dafni, 1984; 
Renner, 2006; Ollerton et  al., 2011; Schaefer and Ruxton, 
2011; Johnson and Schiestl, 2016). In the absence of a reward, 
deceptive signals and/or cues (i.e. olfactory, visual, tactile, gus-
tatory and thermal) play a more prominent role in pollinator 
attraction. Deceptive flowers are hypothesized to emit sig-
nals evolved to exploit the pre-existing receiver bias in the re-
sponse pathways of the pollinator’s sensory systems acquired 
outside the context of plant–pollinator interactions or flower 

visitation (Schiestl and Dötterl, 2012; Schiestl and Johnson, 
2013). Several types of floral mimics have been identified, 
including species which mimic food sources, sexual partners 
and oviposition sites (Dafni, 1984). Oviposition or brood-site 
mimics, which model diverse decomposing substrates (e.g. 
dung, carrion, fermenting fruit and fungi), are considered the 
most widespread form of floral mimicry, occurring in at least 23 
plant families (Urru et al., 2011; Jürgens et al., 2013; Johnson 
and Schiestl, 2016). They are also the most diverse in terms 
of floral signalling (Johnson and Schiestl, 2016), making them 
good systems in which to investigate pollinator and floral trait 
diversification.

To attract pollinators, brood-site mimics have developed 
complex and varied floral volatile organic compounds (VOCs) 
and dull floral pigmentations and patterns (e.g. brown, purple 
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and spotted) which may both resemble a model substrate and 
be vital for multisensory pollinator attraction (Kite et al., 1998; 
Jürgens et al., 2013; Chen et al., 2015; Johnson et al., 2020). 
Brood-site mimics often also exhibit inflorescences or flowers 
with a floral chamber which trap and force insects close to the 
floral reproductive organs during anthesis (Bröderbauer et al., 
2012; Johnson and Schiestl, 2016). Another common trait 
of brood-site mimics and most prevalent in early diverging 
seed plants (e.g. Cycadales, magnoliids, monocots and some 
eudicots) is floral thermogenesis, the timing, intensity, duration 
and location of which can vary markedly between thermo-
genic plant species, including congeneric species (Meeuse and 
Raskin, 1988; Seymour and Schultze-Motel, 1997; Seymour 
et al., 2009a; Sayers et al., 2020). The prevalence of thermo-
genesis in early seed plants raises questions about the role of 
thermogenesis in the origin of pollination, yet research tends 
to focus on the evolution and role of visual and olfactory sig-
nals (van der Kooi and Ollerton, 2020). The main hypothesized 
functions of floral heat are that it is an energy reward (Seymour 
and Matthews, 2006), a deceptive signal for pollinators to as-
sociate with a rewarding substrate (e.g. carrion and dung) 
(Angioy et  al., 2004; Schiestl, 2017), that it enhances scent 
volatilization (Marotz-Clausen et al., 2018) and that it plays a 
role in floral development (Li and Huang, 2009). In brood-site 
mimetic systems, it is most likely that heat production acts as a 
direct signal for pollinators in conjunction with scent volatiliza-
tion and other signals, as shown in the araceous carrion mimic 
Helicodiceros muscivorus (Angioy et al., 2004; Schiestl, 2017). 
The function(s) of thermogenesis in other brood-site mimetic 
systems and its significance to different pollinator groups re-
mains poorly understood.

Just as the pattern and function of thermogenesis may vary 
between species, so can the mechanism of thermogenesis. Both 
the alternative oxidase (AOX) and plant uncoupling proteins 
(pUCPs) have been shown to be involved in thermogenic spe-
cies of Araceae, each bypassing or uncoupling ATP synthesis 
from electron transport during respiration, with energy released 
as heat (Borecký and Vercesi, 2005; Watling et al., 2008). In 
the limited number of species studied to date (including sev-
eral Araceae), heat production is primarily via the alternative 
respiratory (AOX) pathway (Watling et al., 2006; Grant et al., 
2008; Wagner et al., 2008; Ito et al., 2011; Miller et al., 2011; 
Ito-Inaba et al., 2019), whilst evidence for a role for pUCPs in 
thermogenesis is limited to the skunk cabbage (Symplocarpus 
renifolius) in which both AOX and pUCP may contribute to 
thermogenesis (Ito-Inaba et al., 2008; Onda et al., 2008). Little 
is known about the molecular basis of many floral traits relevant 
to pollinator attraction, including thermogenesis (Onda et al., 
2015), and the relevance of variation in thermal traits for dif-
ferent pollinators in mimetic systems.

The early diverging monocotyledon family Araceae is 
second to only Orchidaceae in the number of deceptive spe-
cies (Renner, 2006; Chartier et  al., 2014). Within Araceae 
(approx. 140 genera and >3700 species), brood-site mimics 
are common, and most prevalent in the subfamily Aroideae 
and tribe Areae (Mayo et  al., 1997; Gibernau, 2011; 
Bröderbauer et  al., 2012; Nauheimer et  al., 2012; Chartier 
et al., 2014; Boyce and Croat, 2018). Floral signals and traits 
within araceous and unrelated brood-site mimics have largely 
evolved to attract and retain two insect orders – Coleoptera 

and Diptera (Chartier et al., 2014; Jürgens and Shuttleworth, 
2015; Johnson and Schiestl, 2016). It is unclear if certain 
floral traits of brood-site mimics are associated with beetle 
or fly pollination in these systems. This may be due in part 
to a lack of information on effective pollinators in the ma-
jority of brood-site mimics, the tendency of studies to focus 
on specific floral traits in isolation (particularly floral scent) 
(Kite and Hetterscheid, 2017), floral trait complexity and the 
fact that some species are visited and/or pollinated by both 
orders (e.g. Quilichini et  al., 2010). Floral traits have been 
found to overlap between beetle- and fly-pollinated Araceae 
species across mixed pollination system types (Gibernau 
et al., 2010); however, there is a lack of detailed comparative 
studies examining differences in brood-site mimics pollin-
ated exclusively by these different insect orders, particularly 
at the intraspecific or congeneric level which can offer useful 
insight into evolutionary processes (Sayers et  al., 2020). 
Previous work has found that Typhonium (tribe Areae) are 
typically brood-site mimics, characterized by floral traps, the 
emission of strong fetid odours, floral thermogenesis, brief 
female and male phases of anthesis in protogynous inflor-
escences and visitation by both/either saprophagous beetles 
and flies (e.g. Cleghorn, 1914; Banerji, 1947; Sayers, 2019). 
There can, however, be significant variation in floral traits 
between Typhonium species which may reflect selection by 
different pollinator assemblages (Sayers et al., 2020). In this 
study, we focus on two closely related Typhonium species, 
T. angustilobum and T wilbertii, which form a single mono-
phyletic group and have similar geographical distributions in 
tropical Far North Queensland (FNQ) (Cusimano et al., 2010; 
Hay, 2011), and were observed to be pollinated by different in-
sect orders (Coleoptera and Diptera). We set out to (1) identify 
their pollinators; (2) compare the mechanism of thermogen-
esis and the genes involved; and (3) examine the floral traits, 
both sensory (i.e. thermogenic, olfactory and visual signals) 
and morphological, associated with pollinator divergence.

MATERIALS AND METHODS

Study sites and study species

Typhonium angustilobum F.Muell and T.  wilbertii A.Hay 
share similar but allopatric distributions in FNQ, Australia 
(Fig. 1). Typhonium wilbertii is endemic to Australia whilst 
T.  angustilobum also occurs in Southern New Guinea (Hay, 
2011). Typhonium angustilobum was studied in a natural popu-
lation at Shiptons Flat south of Cooktown (–15.79°, 145.24°) 
(on private land with open tropical woodland and cattle pas-
ture), and in cultivation on private property on the Atherton 
Tablelands (plants sourced from Shiptons Flat) during February 
2015–2017 (Fig. 1A). Two cultivated T. angustilobum sourced 
from populations in the Laura and Chillagoe regions in FNQ 
were also measured for anthesis and thermogenic patterns and 
floral morphology in 2018. Typhonium wilbertii was studied 
in a natural population at Macalister Range National Park at 
two adjacent sites (–16.6678°, 145.5668° and –16.6676°, 
145.5662°) in the Wangetti coastal region (characterized by 
transitional wet sclerophyll forest, notophyll rainforest and 
open grassland), and in cultivation on the Atherton Tablelands 
(plants sourced from Turtle Cove, Macalister Range National 
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Park –16.629°, 145.548°) during February 2016–2018 (Fig. 
1B). Cultivated plants of both species were also studied at the 
University of Melbourne Burnley Campus from 2017 to 2019 
(sourced from Shiptons Flat and Wangetti field populations). 
Voucher specimens from Shiptons Flat and Wangetti popula-
tions were lodged at the University of Melbourne Herbarium 
(T. angustilobum MELU M113406-7a, and T. wilbertii MELU 
M113409-10a).

Insect visitors and pollinators

Floral chambers from separate plants were sampled for 
trapped insects in the field during the late pistillate or early 
staminate stages of anthesis. Forty T.  angustilobum inflores-
cences were sampled from a natural population at Shiptons Flat 
(n = 38) and in cultivation on the Atherton Tablelands (n = 2) 
in February 2015–2017, and 21 T. wilbertii inflorescences were 
sampled from natural populations at Wangetti (n = 17) and the 
same location in cultivation on the Atherton Tablelands (n = 4) 
in February 2016–2018. Two of the cultivated T. wilbertii in-
florescences and one of the cultivated T. angustilobum inflor-
escences flowered within a 72  h window in February 2017 
adjacent to one another. These inflorescences were sampled in 
the morning on Day 2 of anthesis and used to compare the trap-
ping of insect taxa under spatially and temporally controlled 
common garden conditions. Assessments of the effectiveness 

of visiting insect families and species as pollinators were based 
on their relative abundance in floral chambers, observations 
of their morphological fit and behaviour in relation to repro-
ductive organs and anthesis rhythms, and the presence of pollen 
attached to their bodies. Isolated inflorescences in cultivation at 
Burnley (T. angustilobum n = 3, T. wilbertii n = 7) were moni-
tored for self-fertilization and compared with one hand-crossed 
inflorescence of each species to indicate their dependency on 
outcrossing for seed set.

Anthesis and thermogenic patterns

As for the majority of Aroideae, both species are per-
ennial geophytes with short periods of plant growth and 
flowering during the tropical wet season (January–March). 
Multiple inflorescences were observed during anthesis (n = 28 
T. angustilobum, n = 36 T. wilbertii) to identify the sequence 
of inflorescence development and the pattern of thermo-
genic activity. Floral temperature was measured by Extech 
SDL200 4-channel datalogging thermometers (TRIO Test 
and Measurement, Norwood, South Australia) using K-type 
thermocouple probes, placed 5  mm into the widest part of 
the appendix, the middle of the staminate zone and inside 
the floral chamber into the pistillate zone (n = 8 for both spe-
cies). Ambient air temperature was measured and compared 
with that of the pistillate zone, which was determined to be 

A

A

B

B

AUSTRALIA

200 kmN

Fig. 1.  Distribution of (A) T. angustilobum (grey) and (B) T. wilbertii (black) in Cape York Australia (Atlas of Living Australia). The location of the main source 
populations and study sites (A) Shiptons Flat and (B) Wangetti are labelled. Images show the reproductive organs of hermaphrodite inflorescences with the spathe 
partially removed (scale bar = 1 cm). Features shown are the spadix (surrounded by the spathe), comprised (from top to bottom) of the appendix, staminate zone 
above the spathe constriction, a sterile interstice with basal filiform organs and the pistillate zone at the base of the floral chamber (note the stigmatic fluid on the 

female florets of T. wilbertii).
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non-thermogenic. This non-thermogenic tissue was used as 
a baseline to quantify temperature increases in thermogenic 
tissues. Temperature recordings were taken at 10  min inter-
vals and plants were shaded to negate the effect of inter-
mittent direct solar radiation. A  Fluke Ti95 thermal imager 
(Fluke Corp., Everett, WA, USA) monitored all floral organs 
during anthesis and provided infrared imagery during peak 
thermogenesis.

Molecular analyses of potential thermogenic pathways

Tissue sampling and RNA extraction.   To investigate the 
pathway involved in heat generation, RNA was extracted from 
snap-frozen T.  angustilobum and T.  wilbertii inflorescences 
collected in the field and in cultivation (from Shiptons Flat 
and Wangetti, respectively), using the RNeasy kit (Qiagen, 
Germany). RNA was extracted from the thermogenic ap-
pendix and non-thermogenic female florets of inflorescences 
sampled during pre-thermogenic (1–2 d prior to the pistillate 
phase), thermogenic (during peak thermogenesis in the pistil-
late phase) and post-thermogenic (following pollen shed on 
Day 2) phases of anthesis. For each species, RNA was extracted 
from three independent biological replicates (inflorescences) 
collected during each stage of anthesis. cDNA was synthesized 
from (1  µg) RNA using SuperScript Iv VILO master mix 
(ThermoFischer).

Sequencing of Typhonium AOX cDNAs and AOX protein se-
quence analysis.   To identify genes potentially involved in 
thermogenesis in Typhonium, BLAST searches of the onekp 
database (onekp.com) were undertaken using Arum maculatum 
AOX1e (AB565469.1) (Ito et  al., 2011), Thaumatophyllum 
bipinnatifidum (syn. Philodendron bipinnatifidum) PbUCPa 
(AB189674.1) and Acorus americanus ACTIN (Supplementary 
data Table S1). Typhonium blumei transcript sequences iden-
tified by BLAST searches were used to design primers 
(Supplementary data Table S1), tested for amplification of 
T.  angustilobum and T.  wilbertii cDNA, and validated by 
sequencing. As only a single, partial transcript sequence from 
T. blumei was identified in the onekp database for AOX, primers 
for amplification of the 5′ region of AOX were based on the 
A. maculatum AOX1e sequence.

Polymerase chain reactions using cDNA generated from 
the appendix and female florets of inflorescences during the 
thermogenic stage were used to amplify AOX and UCP DNA. 
The PCR products were cloned into pGEMT vectors (Promega), 
sequenced and used to assemble the Typhonium AOX sequences. 
Additional primers were designed to distinguish and extend 
AOX1a and AOX1b sequences (Supplementary data Table S1) 
(GenBank AOX accession numbers: TaAOX1a MN848524, 
TaAOX1b MN848525, TwAOX1a MN848526 and TwAOX1b 
MN848527). Multiple sequence alignments of the Typhonium 
AOX protein sequences and AOXs identified from thermogenic 
tissues of other species were performed using Clustal Omega 
via the European Bioinformatics Institute (EMBL-EBI) web 
interface, which also determined percentage identity.

Quantitative reverse transcription–PCR (RT–qPCR).  
Primers for RT–qPCR were designed based on the T. blumei, 

T.  angustilobum and T.  wilbertii AOX and UCP sequences 
(Supplementary data Table S1). Transcript levels of target 
genes were assessed using an absolute quantitative method with 
standard curves (Burton et  al., 2004, 2008), and normalized 
against the housekeeping gene ACTIN (Bustin, 2000). RT–
qPCR was performed on three independent biological replicates 
for each of the three phases of anthesis (i.e. n = 3 inflorescences 
comprising the appendix and female florets) and samples were 
assayed in triplicate. Initial AOX primers were found to be spe-
cific for AOX1b, and a repeat experiment was performed to in-
clude AOX1a (resulting in six technical replicates for AOX1b 
and UCP). RT–qPCR was performed in a Quantstudio 5 Real-
time PCR system (Applied Biosystems) using PowerUp SYBR 
green qPCR Master Mix (2X) in 10 μL reactions. The reaction 
was performed for 10 min at 95 °C followed by 40 cycles of 
15 s at 95 °C and 1 min at 60 °C. Analysis was performed using 
QuantStudio Design and Analysis software v1.4.2.

Floral morphology and trapping mechanisms

Floral morphology and reflectance.   Floral morphology was 
measured using a caliper and measuring tape to record the length 
and width (from the widest part) of reproductive zones, including 
the terminal appendix, staminate zone, pistillate zone and the 
spathe (Fig. 1). The angle of the spathe blade was measured from 
the vertical using a protractor during peak pistillate and staminate 
stages of anthesis (n = 4–25 for particular floral traits across spe-
cies). An Ocean Optics Jaz fibre optic spectrophotometer, with 
PX lamp and fibre optic probe held at 45° to the spathe surface 
quantitated the central inner spathe colour of each species.

Scanning electron microscopy (SEM).   A  Leica M80 stereo-
microscope with Leica IC80 HD camera (Leica Camera AG, 
Wetzlar, Germany) photographed epidermal features on the 
inner spathe of both species (n = 3) during the pistillate phase 
to confirm consistency in features across inflorescences of 
different plants. For SEM preparation, fresh tissue of one in-
florescence of each species was dissected from (1) the lower 
spathe chamber; (2) the upper spathe chamber; (3) 1 cm above 
the spathe constriction; (4) the central spathe blade; and (5) the 
central part of the appendix (as described in Bröderbauer et al., 
2013; Sayers et al., 2020). Male and female florets were also 
sampled for SEM, in addition to pollen grains and an individual 
Philonthus (Staphylinidae) (the most abundant visitor trapped 
by T. angustilobum) which were air-dried (SEM sample prepar-
ation and analysis details as in Sayers et al., 2020).

Floral scent compounds

VOC sampling.  Floral VOCs were sampled from intact 
inflorescences on separate plants – 12 T.  angustilobum 
inflorescences from Shiptons flat, and nine T.  wilbertii in-
florescences from Wangetti and one from Turtle Cove. Floral 
VOCs were sampled between 17.00 and 19.30 h during the 
middle of the pistillate phase, signalled by a fully open in-
florescence and enhanced insect attraction and scent emis-
sion. Supelco solid-phase microextraction (SPME) fibres 
(100 µm polydimethylsiloxane) were used to sample VOCs 
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as detailed in Sayers et al. (2020), due primarily to ease of 
use for remote fieldwork and reduced interference with the 
study system (Tholl et al., 2006).

VOC analysis and identification.   SPME fibres were thermally 
desorbed by gas chromatography (GC) and mass spectrom-
etry (MS) using an Agilent technologies 7820A gas chromato-
gram with a Supelcowax10 polar column (30 m × 0.25 mm × 
0.25 µm) coupled to an Agilent 5975 series single quadrupole 
mass spectrometer following methods described in Sayers et al. 
(2020). Peaks were integrated using Agilent Chemstation data 
analysis software. Relative amounts were calculated for each 
integrated VOC by dividing the absolute peak area by the sum 
of all VOC peak areas in the sample. The methods used to iden-
tify and shortlist VOCs are provided in Sayers et  al. (2020). 
VOCs were classified according to structural groups following 
Knudsen et al. (2006).

Statistical analyses

Data analyses of floral traits and pollinators focused on 
comparing species, and the sampling of multiple popula-
tions was undertaken to ensure robust characterization. To 
compare insects trapped between species, insect count data 
were converted to mean (± s.e.) relative abundance of insect 
families. Independent sample t-tests tested for significant 
differences in floral traits between species (i.e. thermogenic 
and morphological data) in Minitab® Statistical Software 
(version 18; Minitab, Inc.). A two-way analysis of variance 
(ANOVA) tested for differences in AOX and UCP transcript 
expression with tissue type and anthesis stage in each species 
using JMP14 (SPSS software). Where there were significant 
tissue × stage interactions, one-way ANOVA tested for sig-
nificant developmental differences in transcript expression in 
each floral tissue. Data were log or square root transformed 
when they did not meet assumptions of normal distribution 
and variance homogeneity, tested using Shapiro–Wilk and 
Levene tests, respectively. Tukey HSD post-hoc tests were 
applied to identify differences between stages and tissues at 
P  <  0.05. Scent analysis was undertaken using VOC pres-
ence/absence and square root transformed relative amount 
data (i.e. percentage composition), based on the Sørensen 
and Bray–Curtis similarity indices, respectively (excluding 
minor pooled unknowns). Percentage composition data 
were square root transformed to lessen the impact of the 
most abundant VOCs. A  one-way analysis of similarity 
(ANOSIM) using 10 000 permutations was applied to VOC 
presence/absence data to test for a significant difference in 
scent composition between species (in PRIMER 7.0.13). An 
R value of 1 indicates complete separation between groups, 
whilst a value of zero indicates no separation (Clarke and 
Gorley, 2015). When ANOSIM indicated a significant dif-
ference, similarity percentage analysis (SIMPER) was con-
ducted to assess the average dissimilarity of samples within 
and between species and to identify the average contribu-
tion of individual compounds (Clarke and Gorley, 2015). 
SIMPER was applied to square root-transformed percentage 
composition data.

RESULTS

Insect pollinators

Floral chambers of T.  angustilobum inflorescences accumu-
lated and trapped a total of 1832 Coleoptera and five Diptera 
(Table 1) across 40 inflorescences (at natural and culti-
vated sites combined) during the pistillate phase of anthesis. 
Within the Coleoptera, Staphylinidae belonging to four sub-
families accounted on average for 57.3 % of insects caught 
per inflorescence (Fig. 2); other abundant Coleoptera trapped 
were Hydrophilidae, Scarabaeidae and Ptiliidae. Conversely, 
T. wilbertii trapped a total of 570 Diptera and 80 Coleoptera 
(Table 1) across 21 inflorescences (natural and cultivated). 
Diptera accounted for 81 % of trapped insects per inflores-
cence, with families in the late diverging section Schizophora 
(e.g. Sphaeroceridae and Sepsidae) accounting for 88.2 % of 
flies trapped (Table 1; Fig. 2). The average catch rates were 
46.9 (± s.e. 7.8) and 31.0 (± s.e. 7.3) insects per inflorescence 
for T. angustilobum and T. wilbertii, respectively. Insect taxa 
trapped were consistent between natural and cultivated popu-
lations for each species and, similarly, in the common garden 
setting, T. angustilobum (163 Coleoptera) and T. wilbertii (131 
Diptera and 13 Coleoptera) trapped divergent insect assem-
blages (Table 1; Fig. 2).

Staphylinidae were frequently observed slipping into the 
floral chamber of T.  angustilobum during the pistillate stage 
of anthesis (Fig. 3). The steep floral chamber walls and small 
confines of the chamber made it difficult for Staphylinidae to 
escape. Numerous flies (e.g. Sphaeroceridae, Sepsidae and 
Calliphoridae) congregated on T. angustilobum inflorescences, 
but were rarely observed entering the floral chamber (Fig. 3B, C).  
Staphylinidae, in addition to trapped Hydrophilidae and the 
introduced Aphodius lividus (Scarabaeidae), left the floral 
chamber during pollen shed using the spadix as a ladder to exit 
the chamber and accumulating large pollen loads (Fig. 3E, F, H).  
Sphaeroceridae and Sepsidae were observed entering the floral 
chamber of T. wilbertii during the pistillate stage (Fig. 4). Large 
flies were attracted, including Calliphoridae (Fig. 4C), but were 
generally too large to enter the T.  wilbertii floral chamber, 
and Coleoptera were rarely observed visiting inflorescences. 
Unlike Coleoptera, Diptera landed on the spathe or appendix 
in a controlled manner and were drawn towards the chamber 
entrance where they slipped into the T.  wilbertii chamber 
(Fig. 4E, F). During pollen shed, trapped Diptera (particularly 
Sphaeroceridae) used the spadix to exit the chamber through 
the narrow spathe constriction (Fig. 4G), contacting pollen (Fig. 
4H, I). Combined, our observations and the relative abundance 
of insects trapped in close proximity to female florets during 
anthesis (Table 1; Fig. 2) strongly indicated that Staphylinidae 
(particularly Philonthus sp.), and Hydrophilidae (Megasternini) 
and A.  lividus were primary and secondary pollinators of 
T. angustilobum, respectively. In contrast, Sphaeroceridae, and 
other fly families such as Sepsidae (and potentially staphylinid 
beetles), trapped in lower abundances, were considered primary 
and secondary pollinators of T. wilbertii, respectively.

There was no evidence of oviposition and egg or larvae de-
velopment in the inflorescences of either species. The Shiptons 
Flat population comprised >30 fertilized T.  angustilobum 
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inflorescences in February 2016. Some plants retained three 
or more fertilized inflorescences, and seed aggregates were 
still housed inside the floral chamber (Fig. 3I, J). Seed set at 
the T.  wilbertii Wangetti population was observed between 
April and July 2017 (D. Baume, pers. comm. 18 July 2017); 
fruit similarly developed inside the floral chamber, with some 
plants retaining multiple fertilized inflorescences (Fig. 4J, K). 
No unmanipulated inflorescences in cultivation at Burnley 
self-pollinated, whilst one hand-crossed inflorescence of each 
species set fruit.

Anthesis rhythms and thermogenic patterns

Anthesis rhythms were very similar for both protogynous 
species and lasted approx. 36 h over two consecutive days, Day 
1 and Day 2 marking the pistillate and staminate phases, respect-
ively (Fig. 5). On Day 1 of anthesis, inflorescences gradually 

opened throughout the afternoon and were fully open by the 
evening (approx. 12.00–18.00 h, Fig. 5). Transient thermogen-
esis was detected in the appendices and to a lesser extent in the 
staminate zones, but not in female florets or sterile zones. Major 
thermogenic activity was recorded in the appendices of both 
species at dusk, coinciding with enhanced scent release and in-
sect attraction (Fig. 5). There was no significant difference in 
peak temperature increase (11.3 ± 3.3 °C   and 11.4 ± 2.0 °C 
for T. angustilobum and T. wilbertii appendices, respectively), 
absolute peak temperature above non-thermogenic tissue or the 
timing and duration of elevated appendix temperatures between 
species (Table 2). Inflorescences continued to attract pollinators 
after dusk as the spathe gradually constricted around the base 
of the staminate zone, arresting insects overnight in perfect 
traps (i.e. insects are denied egress until pollen shed) (Fig. 5). 
Staminate zone temperatures of both species were modestly ele-
vated through the night (Fig. 5). The T. angustilobum staminate 
zone maintained a temperature of approx. 2 °C above that of 

Table 1.  Total number of insect taxa trapped in T. angustilobum and T. wilbertii inflorescences identified to the lowest taxonomic level 
possible showing numbers trapped in inflorescences at natural and cultivated (in parentheses) sites

 T. angustilobum T. wilbertii

  Sub-order Insect family n = 38 (n = 2) Total n = 17 (n = 4) Total

Coleoptera  1541 (291) 1832 66 (14) 80
  Polyphaga      
 Staphylinidae     
   Staphylininae     
     Staphylinini     
   Philonthus sp. 467 (90)64 557 11 (1)1 12
     Xantholinini     
       sp. 1 34 (15)1 49 1 (0) 1
       sp. 2 0 (6)1 6   
     Aleocharinae 231 (3)1 234 25 (0) 25
   Oxytelinae     
     Oxytelini   2 (0) 2
       Anotylus sp. 54 (17)5 71 1 (0) 1
       Oxytelus sp. 5 (3)3 8 7 (0) 7
     Paederinae     
       Lithocharis sp. 60 (3)3 63 4 (0) 4
 Hydrophilidae   2 (0) 2
   Megasternini 410 (80)76 490 3 (8)8 11
 Scarabaeoidea     
   Aphodiinae     
     Aphodius lividus 231 (68)3 299 2 (4)4 6
   Trogidae   2 (0) 2
   Scarabaeinae   1 (0) 1
 Ptiliidae 47 (6)6 53 5 (1) 6
 Leiodidae 1 (0) 1   
 Chrysomelidae 1 (0) 1   
Diptera  5 (0) 5 244 (326) 570
  Brachycera      
 Hybotidae     
   Tachydromiinae   26 (0) 26
  Schizophora      
    Acalytratae      
 Sphaeroceridae 5 (0) 5 118 (306)125 424
 Sepsidae   55 (5)3 60
 Drosophilidae   0 (13)2 13
    Calyptratae     
 Calliphoridae   5 (1)1 6
  Nematocera      
 Psychodidae   40 (1) 41
Total   1837  650

Superscripts show the number of each taxa trapped in a sub-set of inflorescences in cultivation which were sampled under common garden conditions.
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non-thermogenic tissue until a distinct peak at around 18.00 h 
(5.9 ± 2.5 °C above non-thermogenic tissue) in the evening on 
Day 2 which initiated during the onset of pollen shed in the mid 
to late afternoon (Fig. 5A). The temperature of the staminate 
zone of T. wilbertii was approx. 1  °C above that of the non-
thermogenic tissue through the night until pollen shed in the 
mid to late late afternoon on Day 2 (Fig. 5B).

Heating pathways: tissue- and stage-specific AOX and UCP 
expression

To investigate the pathways leading to heating in T. angustilobum 
and T. wilbertii, transcripts of AOX and pUCP genes were inves-
tigated in the appendices and non-thermogenic female florets at 
pre-thermogenic, thermogenic and post-thermogenic stages of 
anthesis. Two different AOX sequences were identified from both 
species, indicating the presence of at least two AOX isoforms, 
designated TaAOX1a and TaAOX1b from T.  angustilobum and 
TwAOX1a and TwAOX1b from T. wilbertii. In both species, ex-
pression of both AOX transcripts was significantly higher in 
thermogenic appendices than in non-thermogenic female florets 
(significant main effect tissue, two-way ANOVA P < 0.05), and 
remained low in female florets during anthesis, with no signifi-
cant stage-specific variation (Fig. 6). In both species, AOX1a and 
AOX1b transcript expression was highest in the thermogenic ap-
pendices and decreased significantly post-thermogenesis (Fig. 
6). The increase in AOX1b expression in the appendix between 
pre-thermogenic and thermogenic stages was also significant for 
T. wilbertii (Fig. 6B). AOX1b expression was 7.3- and 2.6-fold 
higher than AOX1a expression in thermogenic appendices of 
T. angustilobum and T. wilbertii, respectively. In contrast, pUCP 
transcript expression was relatively low and similar in the ap-
pendix and female florets of both species, and no significant in-
crease at the thermogenic stage was detected (Fig. 6A, B).

Alignment of the partial deduced amino acid sequences of 
Typhonium AOXs revealed that the two AOX1a proteins shared 
98.40 % identity, and the AOX1b proteins shared 97.06 % iden-
tity, both higher than the shared identity of AOX1 sequences 
within species (Supplementary data Fig. S1). AOX1a and 
AOX1b proteins shared the highest identity with different AOX 
proteins from other thermogenic taxa (Supplementary data Fig. 
S1B). Both T. wilbertii AOX proteins and TaAOX1b contained 
structural features of typical plant AOXs (Berthold et al., 2000), 
including two regulatory cysteine residues (CysI and CysII), 
four α-helical bundles and six ligands for iron atoms at the cata-
lytic centre (Fig. 6C; Supplementary data Fig. S2). The least 
complete TaAOX1a sequence also contained CysI and CysII, but 
did not cover the fourth α-helix or two ligands (Supplementary 
data Fig. S2). Three of four potential regulatory regions within 
AOX proteins (Crichton et al., 2005) were sequenced in all ex-
cept TaAOX1a (Fig. 6C). Typhonium AOXs were similar and 
relatively well conserved in regions 1 and 2, but differed in re-
gion 3, which has been shown to relate to the responsiveness 
to α-keto acids (e.g. pyruvate) (Crichton et al., 2005; Ito et al., 
2011). Both TaAOX1b and TwAOX1b contained an ENV motif 
in region 3, typical of AOXs activated by pyruvate (Onda et al., 
2007; Ito et  al., 2011), whereas TwAOX1a contained QDT, 
similar to AOXs known to be insensitive to activation by pyru-
vate (Crichton et al., 2005; Ito et al., 2011).

Floral morphology and trapping mechanisms

All inflorescence dimensions, apart from the length of the 
pistillate zone, were significantly larger in T.  angustilobum 
than in T. wilbertii (Table 3). The average spathe blade angle 
from the vertical increased from the pistillate to staminate 
stage of anthesis in both species; however, the spathe angle 
during both phases was significantly steeper in fly-pollinated 
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T. wilbertii than in beetle-pollinated T. angustilobum (Table 3).  
The spathe constriction around T. wilbertii spadices was tighter 
compared with T. angustilobum, particularly during the stam-
inate stage, and the more constricted morphology extended 
up the T. wilbertii spathe (Fig. 5B). Spathe colour was com-
parable between species (percentage reflectance increased 
at similar rates above 600 nm, Supplementary data Fig. S3), 
each characterized by a burgundy spathe and appendix. The 
burgundy coloration transitioned sharply to green at the floral 
chamber entrance (more prominent in T. wilbertii), making the 
entrance to the floral chamber brighter than the surrounding 
spathe (Fig. 5). Spadices of both species have sterile filiform 
organs directly above the pistillate zone in the floral chamber 
(Fig. 1), with the sterile interstice above these hairs naked in 

T. angustilobum but comprised of some smaller papillate sterile 
organs in T. wilbertii (Fig. 1).

The morphology and basal area of raised cells on the inner 
spathe epidermis differed between species. In T. angustilobum, 
the central spathe epidermis comprised densely packed and 
raised tabular cells from approx. 1  cm above the spathe 
constriction (Fig. 7A, B). In contrast, the central spathe of 
T.  wilbertii featured less densely packed and more prom-
inent downward pointing papillae, approximately half the 
basal area of the T.  angustilobum tabular cells (Table 3),  
and these papillae continued down the lower spathe epi-
dermis to the spathe constriction in T.  wilbertii (Fig. 7C). 
Curved or raised cells were absent in the floral chamber in 
both species (Fig. 7D), and the appendix epidermis in both 

A B

C D

F G
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E

Fig. 3.  Typhonium angustilobum–insect interactions: (A) Philonthus sp. at the floral chamber entrance during the pistillate phase of anthesis; (B, C) Sphaeroceridae 
and Sepsidae congregating on the spathe; (D) Staphylinidae trapped in the floral chamber amongst sterile filiform organs on the morning of Day 2 visible after 
removing the chamber wall; (E) Xantholinini sp.1 leaving the inflorescence with pollen adhered; (F) Philonthus sp. brushing past the male florets with pollen ad-
hered; (G) SEM image of Philonthus sp. showing the microscopic hairs covering the thorax, legs and head (scale bar = 500 μm); (H) Megasternini and Aphodius 

lividus (above) leaving the floral chamber with pollen adhered; (I, J) fertilized inflorescences with seed aggregates still housed inside the floral chamber.

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/128/3/261/6184575 by guest on 25 April 2024

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcab044#supplementary-data


Sayers et al. — Floral traits associated with pollinator shift in two brood-site mimics 269

species comprised flat tabular cells interspersed with sto-
mata. Some differences in pollen grain morphology, and 
male and female floret morphology between species, were 
observed, including the presence of stigmatic fluid extruded 
from T. wilbertii stigmas following the peak pistillate phase 
of anthesis which was not discernible on the stigmas of 
T. angustilobum during anthesis (Fig. 7E–H).

Floral scent compounds

Typhonium angustilobum emitted a pungent acrid odour, 
whilst T. wilbertii emitted a dung-like odour, with sweet and 

floral components. This was reflected in differences in the 
total of 57 VOCs identified across both species (Table 4). 
Typhonium angustilobum and T. wilbertii contained a total of 
37 and 35 VOCs, respectively, of which 15 were recorded in 
both species. The majority of shared compounds, however, 
occurred in less than half of T.  wilbertii samples and were 
mainly sesquiterpenes. In addition, the relative amounts of 
VOCs common to both species differed. For example, whereas 
p-cresol and skatole made up 3 and 24 % of total VOC peak 
area in T. wilbertii, respectively, they were either detected at 
low levels or not detected at all in T.  angustilobum inflores-
cences. ANOSIM confirmed significant differences in the 
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Fig. 4.  Typhonium wilbertii–insect interactions: (A, B) Sphaeroceridae and Sepsidae attracted to T.  wilbertii during the pistillate phase of anthesis; (C) 
Calliphoridae congregating on the spathe; (D) Sepsidae copulating on the inflorescence; (E, F) Diptera (Sepsidae and Sphaeroceridae) slipping down the steep 
waxy spathe towards the floral chamber entrance; (G, H) Sphaeroceridae leaving the floral chamber during the staminate phase of anthesis with pollen adhered; (I) 
Tachydromiinae leaving with pollen adhered; (J, K) fertilized inflorescences with seed aggregates still housed inside the floral chamber until maturation (images 

J and K by D. Baume).
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presence and absence of VOCs between species (ANOSIM 
species R = 1, P ≤ 0.0001), and SIMPER analysis showed an 
average similarity of 11.7 % between species, with the com-
pounds bicyclogermacrene and skatole contributing most to the 

dissimilarity. The average similarity amongst inflorescences of 
each species was 86.9 % for T. angustilobum and 72.6 % for 
T. wilbertii. Typhonium angustilobum samples were character-
ized by high relative amounts of bicyclogermacrene, elemene 
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Fig. 5.  Anthesis and thermogenic patterns of (A) T. angustilobum and (B) T. wilbertii. Temperature traces (mean ± s.d.) of T. angustilobum and T. wilbertii show 
temperature increases in the appendix (solid black line) and staminate zone (solid grey line) relative to non-thermogenic tissue (dashed lines show the standard 
deviation from the mean). The period between last and first light is shaded light grey, and the female and male symbols signal the timing of peak thermogenesis 
and onset of pollen shed, respectively. Infrared images correspond to peak temperature increases in the appendix and staminate zone during the pistillate and 
staminate phases of anthesis, respectively, and images of floral development and spathe behaviour correspond approximately to the time of day on the x-axis 

(AEDT = Australian Eastern Daylight Saving Time).
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isomer, β-gurjunene, β-elemene, pentadecane, aristolene, 
viridiflorene and δ-elemene, explaining 66.3 % of the simi-
larity among samples. Typhonium wilbertii samples were char-
acterized by skatole, pentadecane, capparatriene, β-ionone, 
(2Z,4E)-3,7,11-trimethyl-2,4-dodecadiene, dihydro-β-ionone, 
p-cresol and 2-pentadecanone, explaining 66.9 % of the simi-
larity among samples (Fig. 8, Table 4).

DISCUSSION

We confirm that T.  angustilobum and T.  wilbertii are brood-
site mimics, functionally specialized (Fenster et al., 2004) to 
deceive saprophagous beetle and fly pollinator assemblages, 
respectively. Both species were very similar in spathe colour, 
the pattern of anthesis, and the timing, intensity, duration and 
mechanism of floral thermogenesis, and shared highly homolo-
gous AOX proteins. In contrast, there were marked differences 
in scent between T. angustilobum and T. wilbertii, suggesting 
that scent is the most important signal to attract divergent in-
sect pollinators in these brood-site mimetic systems. Significant 
variation in their spathe morphology suggests that once insects 
are attracted to an inflorescence, floral morphology and trap-
ping mechanisms are also critical for the filtering of the two 
insect orders.

Functional specialization to different pollinator groups

Typhonium angustilobum almost exclusively trapped more 
ancestral Coleoptera, namely the families Staphylinidae, 
Hydrophilidae and Scarabaeidae, which form part of a clade that 
diversified from the mid Mesozoic (McKenna et al., 2019). These 
families are known to visit and pollinate other araceous species 
including brood-site mimics, and mutualistic systems including 
many thermogenic species (Pellmyr and Patt, 1986; Sivadasan 
and Kavalan, 2005; Hoe et  al., 2018; Moretto et  al., 2019; 
Sayers et al., 2019, 2020). All abundant beetle families trapped 
were considered effective pollinators, although Staphylinidae 
and particularly Philonthus sp. were considered most effective 
due to their abundance, moderate size and hairiness (Fig. 3F, G)  

(Stavert et  al., 2016). Staphylinidae are known for their pre-
dacious and saprophagous habits (Davis, 1994; Thayer, 2016), 
and Philonthus are known to visit decomposing substrates 
to prey on insects and their eggs and larvae (Hu and Frank, 
1997; Walsh and Posse, 2003). Hydrophilidae (Sphaeridiinae: 
Megasternini), also known for their saprophagous or copropha-
gous habit, are commonly found in decaying plant material, 
dung and carrion (Campbell, 1976; Davis, 1994; Lawrence and 
Ślipiński, 2013; Arriaga-Varela et  al., 2018). The introduced 
Aphodius lividus (Stebnicka and Howden, 1995) was the only 
Scarabaeidae trapped in T. angustilobum and, though it may act 
as an effective pollinator of T. angustilobum (Fig. 3H), floral 
traits would not have evolved in association with this species.

Typhonium wilbertii trapped an array of Diptera and 
Coleoptera, though only Diptera, particularly higher 
Acalytratae fly families Sphaeroceridae and Sepsidae (which 
diversified during the Paleogene; Wiegmann et al., 2011) and 
to a lesser extent Psychodidae, were considered effective pol-
linators due to their relative high abundance in T. wilbertii floral 
chambers (Figs 2 and 4G, H). We suggest that floral traits of 
T. angustilobum are more ancestral since pollination by higher 
flies is a more recent insect–plant association than pollination 
by beetles. Saprophagous or coprophagous Sphaeroceridae and 
Psychodidae, common dung-inhabiting families (Campbell, 
1976; Bishop et  al., 1998), are known pollinators of other 
araceous brood-site mimics, particularly thermogenic Arum 
species (e.g. Kite et  al., 1998; Albre et  al., 2003; Quilichini 
et al., 2010; Urru et al., 2010). The insects trapped were not 
typically anthophilous and, also unlike mutualistic brood-site 
pollination (Chartier et  al., 2014), there was no evidence of 
insect egg or larvae development in inflorescences. Further, 
stigmatic fluid secreted by T. wilbertii was not an obvious nu-
tritional reward involved in the attraction of pollinators since it 
was not present until after the peak pistillate phase of anthesis. 
We therefore hypothesize that T. angustilobum and T. wilbertii 
have evolved to exploit the pre-existing sensory biases of di-
verse suites of insects (Schiestl and Dötterl, 2012; Schiestl, 
2017) through a form of deceptive floral mimicry of cues used 
by insects to find decomposing substrates that provide sites for 
oviposition, mating, feeding and/or host/prey location. Whether 

Table 2.  Anthesis and thermogenic patterns (mean ± s.d.) of the appendices in T. angustilobum and T. wilbertii

T. angustilobum T. wilbertii (d.f.) t-value P-value 

Anthesis n = 28 (3) n = 36 (2)   

Peak pistillate (Day 1) Evening Evening   
Staminate onset (Day 2) 14.00–17.00 h 14.00–17.00 h   
Thermogenesis (pistillate stage) n = 8 (3) n = 8 (2)   
Peak temperature increase range above ntt (°C) 7.3–15.3 8.1–14.5   
Peak temperature increase above ntt (°C) 11.3 ± 3.3 11.4 ± 2.0 (14) –0.14 0.893
Absolute peak temperature (°C) 36.4 ± 2.0 38.7 ± 2.5 (14) –2.07 0.057
Time of peak temperature increase (h:min) 19:15 ± 1:05 19:00 ± 1:05 (14) 0.42 0.681
Time temperature increase starts (h:min) 15:55 ± 1:25 15:10 ± 1:45† (12) 0.84 0.418
Time elevated temperature ends (h:min) 0:20 ± 1:55 1:25 ± 1:05† (12) –1.27 0.227
Duration of elevated temperature (min) 507 ± 134 617 ± 127† (12) –1.56 0.146

The peak pistillate stage and staminate onset are defined as the period of enhanced insect attraction and thermogenic activity, and the onset of pollen shed, re-
spectively (n = number of inflorescences observed/measured, number of populations within parentheses; ntt = non-thermogenic tissue).

Results of independent samples t-tests.
†Data derived from sample size of n = 6, due to sampling of incomplete temperature traces for some inflorescences.
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Fig. 6.  Expression levels (mean ± s.e., n = 3) of AOX and pUCP transcripts in (A) T. angustilobum and (B) T. wilbertii non-thermogenic female florets (FF) and 
thermogenic appendices (App), across three phases of anthesis. Different letters indicate significant differences in transcript expression levels between the phases 
of anthesis (within each tissue) at P < 0.05. The appendices of the three inflorescences sampled during the thermogenic stage were on average 10.7 °C (± s.d. 
3.1) and 15.6 °C (± s.d. 2.3) above ambient for T. angustilobum and T. wilbertii, respectively. (C) Comparison of deduced amino acid sequences of T. wilbertii 
and T. angustilobum AOX proteins with previously reported AOXs from thermogenic tissues. Sequence alignment of three of four possible regions proposed to 
influence AOX regulation by Crichton et al. (2005) (NB: TaAOX1a partial sequence did not capture region 3; region 4 was not captured in any partial Typhonium 
sequences). Amino acids shaded in grey have potential involvement in AOX regulation, with those highlighted in yellow likely to be related to activation by α-keto 
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the stigmatic secretions of T. wilbertii are consumed by dipteran 
pollinators once trapped in the chamber is unknown – stigmatic 
secretions are not necessarily consumed by fly pollinators in 
other brood-site-mimicking arums (e.g. A.  maculatum; Lack 
and Diaz 1991). Such secretions may assist with extending 
pollinator survival in the floral chamber, pollen adherence to 
insects upon egress and pollen germination (Koach, 1985 in 
Gibernau et al., 2004; Lack and Diaz 1991).

Conserved floral traits in beetle- and fly-pollinated 
brood-site mimics

Floral trait diversification is largely thought to reflect vari-
ation in pollinator-mediated selection pressures (i.e. variation 
in their behaviour, learned preferences and innate pre-existing 
receiver biases) as predicted by the Grant–Stebbins model of 
pollinator-driven floral divergence (Grant and Grant, 1965; 
Stebbins, 1970; Fenster et al., 2004; Johnson, 2010). Multiple 
traits likely to be involved in pollinator signalling were con-
served between these Typhonium species, indicating that these 
traits are either similarly important for the attraction of both 
pollinator groups or are under diffuse selection. The colour 
of the inner spathe (the most prominent feature of the floral 
display) of T.  angustilobum and T.  wilbertii was comparable 
(Supplementary data Fig. S3), which indicated that colour was 
likely to be negligible in mediating differences in the pollin-
ator attraction and capture, and that each pollinator group (as-
sociated with similar habits, i.e. decomposing substrates) may 
utilize similar visual stimuli, namely dark colours, to locate 
rewarding substrates (Chen et al., 2015). A shift in pollinator 
assemblage was also not associated with a change in anthesis 

rhythms and the timing, extent and pattern of floral thermo-
genesis, which can vary markedly between thermogenic plant 
species including congeneric species (Gibernau and Barabe, 
2000; Urru et  al., 2010; Sayers, 2019). As found in most 
thermogenic species (Seymour et  al., 2003a), appendix tem-
perature increases in both species were transient and associated 
with enhanced insect attraction and scent emission related to a 
circadian rhythm.

The molecular basis of many floral traits important for pol-
linator attraction is largely unknown, including thermogenesis 
(Onda et al., 2015). In this study, the appendices of both spe-
cies contained two highly homologous AOX genes (AOX1a and 
AOX1b), and in both species significantly higher AOX tran-
script expression in the thermogenic appendices and thermo-
genic stage (unlike pUCP) indicated that the AOX pathway 
is the likely mechanism of heating, extending the range of 
thermogenic species in which the AOX has been identified 
as the major heating mechanism, including all Areae investi-
gated to date (Arum concinnatum, A. maculatum, Dracunculus 
vulgaris and Sauromatum guttatum), and thermoregulatory 
species Thaumatophyllum bipinnatifidum (syn. Philodendron 
bipinnatifidum) and Symplocarpus renifolius (combined 
with UCP), both Araceae, and the eudicot Nelumbo nucifera 
(Rhoads and McIntosh, 1992; Ito and Seymour, 2005; Grant 
et al., 2008; Onda et al., 2008, 2015; Wagner et al., 2008; Ito 
et  al., 2011; Miller et  al., 2011). Multiple AOX genes have 
similarly been identified in other thermogenic species (e.g. 
A. maculatum, Cycas revoluta and N. nucifera), in which only 
one AOX gene is likely to be the primary mediator of plant 
thermogenesis (Grant et al., 2009; Ito et al., 2011; Ito-Inaba 
et  al., 2019). Here, AOX1b transcripts were more highly ex-
pressed in the thermogenic appendix for both Typhonium 

Table 3.  Floral organ measurements – spathe and spadix dimensions, spathe angle relative to vertical and basal area of spathe papil-
late cells – of T. angustilobum and T. wilbertii inflorescences (mean ± s.d. of n replicates)

T. angustilobum T. wilbertii (d.f.) t-value P-value

 n  n   

Spadix length (cm) 13.1 ± 2.5 15 8.6 ± 0.9 25 (38) 8.66 0.001***
Appendix length (cm) 7.4 ± 1.5 15 3.2 ± 0.7 25 (38) 12.58 0.001***
Appendix width (cm) 1.7 ± 0.3 15 1.0 ± 0.3 25 (38) 7.53 0.001***
Staminate zone length (cm) 2.5 ± 0.4 15 1.9 ± 0.2 25 (38) 6.33 0.001***
Staminate zone width (cm) 1.1 ± 0.2 15 0.7 ± 0.2 25 (38) 7.32 0.001***
Pistillate zone length (cm) 1.0 ± 0.1 15 0.9 ± 0.1 25 (38) 1.31 0.198
Pistillate zone width (cm) 1.2 ± 0.1 15 0.9 ± 0.1 25 (38) 6.17 0.001***
Spathe length (cm) 17.4 ± 3.6 14 9.7 ± 2.0 12 (24) 6.56 0.001***
Spathe width (cm) 12.7 ± 1.8 14 7.2 ± 1.4 12 (24) 8.54 0.001***
Spathe angle PA (°) 38.0 ± 4.1 4 19.0 ± 7.3 5 (7) 4.62 0.002 **
Spathe angle SA (°) 71.1 ± 6.3 4 42.7 ± 8.0 6 (8) 5.95 0.001***
Papilla basal area MS (μm2) 1286 ± 378  687 ± 230    
Papilla basal area LS (μm2) ab  764 ± 251    

Results of independent samples t-test.
PA = pistillate anthesis, SA = staminate anthesis, MS = mid spathe, LS = lower spathe, ab = absent.

acids. Inverted triangles indicate two conserved cysteine residues (CysI and CysII). Sequences are in four groups – ENV/KNV-type, those with Ser in place of 
CysI (green highlight), QD/NT/S-type, and QDC-type.(*AOXs known to be activated by pyruvate; #AOXs known to be insensitive to pyruvate; ^AOXs activated 
by succinate). Data sources and abbreviations: AmAOX1a, 1b, 1e, 1g (Arum maculatum AOX1a, 1b, 1e, 1g; AB565465, BAJ22109, BAJ22112, BAJ78238); 
AcoAOX1a, 1b (A. concinnatum AOX1a, 1b; AB485993, AB485994); SrAOX1 (Symplocarpus renifolius; BAD83866); TaAOX1a, 1b (T. angustilobum AOX1a, 
1b); TwAOX1a, 1b (T. wilbertii AOX1a, 1b), PbAOX (Thaumatophyllum bipinnatifidum (syn. Philodendron bipinnatifidum) AOX; BAD51467); NnAOX1a, 1b 
(Nelumbo nucifera AOX1a & AOX1b; AB491175 & AB491176); CrAOX1 (Cycas revoluta; LC081345); DvAOX (Dracunculus vulgaris AOX; BAD51465); 

SvAOX1 (Sauromatum venosum AOX1; P22185).
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species (Fig. 6). AOX1a and AOX1b transcript expression pat-
terns in Typhonium species were not consistent with the hy-
pothesis that pyruvate-sensitive ENV-type AOX1bs may play a 
role in thermoregulatory species, but not in species which show 
transient and less controlled increases in temperature, such as 
Typhonium (Ito et al., 2011).

Thermogenesis, requiring the expression of higher levels of 
the ubiquitous AOX (or pUCPs), has evolved independently 
several times in oviposition, mimicking Araceae in association 
with beetle and/or fly pollination (Schiestl, 2017). Increased 
temperature can indicate an appropriate oviposition substrate 
since decomposing substrates (dung, carrion or plant material) 
heat up due to the activity of micro-organisms (Angioy et al., 
2004). For example, temperature increases in the blowfly-
pollinated carrion mimic Helicodiceros muscivorus (approx. 
12 °C above ambient) are similar to those of the model substrate 
(gull carcass) for that species (Angioy et al., 2004). However, 
the relationship between floral temperature increases, model 
substrates and specificity of thermal cues for dung-seeking pol-
linators remains unclear. That T.  wilbertii thermogenic traits 
(heats up on average 11.4 °C to a mean peak of 38.7 °C) are 
more similar to those of beetle-pollinated T. angustilobum and 
T. brownii taxa than T. eliosurum (heats up on average 3.6 °C 

to a mean peak of 22  °C; Sayers et  al., 2020), which shares 
similar fly pollinators, raises questions about the adaptive sig-
nificance of the extent of thermogenic activity and the relative 
importance of different sensory signals (e.g. heat and scent) for 
particular insect pollinators. Thermogeny alone failed to illicit 
a significant attractive response in dipteran pollinators of an 
Arum brood-site mimic (Kite et  al., 1998), and plant species 
visited or pollinated by Staphylinidae, for example, are not al-
ways thermogenic (Willson and Hennon, 1997; Sayers et al., 
2019). In addition, not all oviposition-site mimics (i.e. dung 
and carrion) are thermogenic (Jürgens et al., 2006; Jürgens and 
Shuttleworth, 2015; Johnson et al., 2020), although to date few 
non-thermogenic oviposition mimics have been reported in the 
Araceae (e.g. Sayers et al., 2019).

Limited study of the innate responses of the saprophagous 
beetles and flies to thermal signals and cues, particularly in 
the context of oviposition sites, makes it difficult to explain 
the function and selection of floral thermogenic traits in 
pollination systems (Schiestl, 2017). From an evolutionary 
standpoint, two hypothesized functions for thermogenesis 
are proposed to account for its association with specific 
pollinating taxa (Schiestl, 2017). These are heating as a re-
ward and stimuli for insects (Seymour et al., 2003b), and/or 

T. angustilobum T. angustilobumT. wilbertii T. wilbertii

A

B

C

D

F

G

H

E

Fig. 7.  SEM images: papillae on the (A, B) central and (C) lower inner spathe epidermis (1 cm above the constriction); (D) cells of the upper floral chamber epi-
dermis; (E) pollen grains; (F) swollen pollen sacks during pistillate anthesis; (G) receptive non-thermogenic female florets. (H) Macro images of the female florets 
during the staminate phase of anthesis; note the stigmatic fluid produced by T. wilbertii (scale bars: A = 20 μm; B, C, D = 100 μm; E = 10 μm; F, G = 500 μm).
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Table 4.  Mean percentage of tentative volatile compounds emitted by T. angustilobum and T. wilbertii during the pistillate phase of 
anthesis 

T. angustilobum T. wilbertii 

Tentative VOC identification   n = 12 n = 10  

 RI Mean ± s.e. O Mean ± s.e. O

Aliphatics        
Tetradecane‡ 1400 1.09 0.2 12 − − −
Pentadecane‡ 1500 6.92 1.5 12 15.61 2.1 10
2-undecanone† 1606 − − − 0.81 0.1 10
Methyl 4-decenoate† 1631 − − − 0.67 0.1 9
8-Heptadecene† 1721 − − − 1.42 0.4 10
2-Tridecanone† 1817 − − − 0.96 0.1 10
2-Tetradecanone† 1888 − − − 0.70 0.2 7
2-Pentadecanone† 2028 0.04 0.0 7 2.49 0.4 10
Benzenoids and phenyl propanoids        
p-Cresol‡ 2087 0.07 0.0 9 2.80 0.4 10
Nitrogen containing compounds        
Indole‡ 2445 − − − 0.19 0.2 2
Skatole‡ 2493 0.06 0.0 6 23.52 2.6 10
Irregular terpenes        
Neryl acetone† 1836 − − − 0.64 0.2 6
Dihydro-β-ionone‡ 1842 − − − 5.29 1.6 10
α-Ionone† 1862 − − − 1.68 0.3 10
β-Ionone‡ 1950 − − − 6.42 0.9 10
Sesquiterpenes        
δ-Elemene† 1465 1.12 0.0 12 − − −
Elemene isomer† 1493 12.35 0.5 12 − − −
α-Copaene‡ 1495 0.13 0.0 12 0.67 0.5 2
β-Maaliene† 1548 0.46 0.1 11 − − −
Aristolene† 1573 1.65 0.2 12 − − −
(2Z,4E)-3,7,11-trimethyl-2,4-dodecadiene* 1590 − − − 5.44 1.4 10
β-Elemene† 1597 4.85 0.4 12 − − −
β-Gurjunene† 1600 7.05 0.9 12 − − −
β-Caryophyllene‡ 1603 0.97 0.3 11 1.39 0.9 2
α-Maaliene† 1607 0.97 0.1 12 − − −
Aromadendrene† 1613 0.73 0.1 12 − − −
Selina-5,11-diene† 1620 0.46 0.0 12 − − −
Allo-aromadendrene† 1651 0.39 0.0 12 0.32 0.2 2
α-Humulene‡ 1677 0.66 0.1 12 2.09 1.4 2
γ-Muurolene† 1694 0.32 0.0 12 0.29 0.2 2
Capparatriene† 1700 − − − 11.37 1.7 10
Viridiflorene† 1705 1.18 0.1 12 − − −
Germacrene D† 1716 − − − 0.29 0.2 2
β-Selinene† 1727 0.17 0.1 3¶ 0.43 0.2 4
α-Selinene† 1731 0.16 0.1 3¶ 0.65 0.3 4
Bicyclogermacrene† 1741 53.18 1.9 12 0.30 0.1 4
δ-Cadinene† 1763 0.41 0.1 12 1.14 0.8 2
Selina-3,7(11)-diene† 1786 0.52 0.1 12 1.35 0.7 3
Spathulenol† 2130 0.55 0.1 12 − − −
Isospathulenol† 2230 0.09 0.0 12 − − −
Major unknowns        
Unknown m/z 69, 81, 41, 95, 67, 55 1534 1.37 0.3 12 − − −
Unknown m/z 204, 189, 105, 161, 91, 147 1630 0.98 0.1 12 − − −
Unknown m/z 58, 43, 71, 41, 59, 55 1677 − − − 4.03 1.2 8
Unknown m/z 70, 55, 69, 83, 97, 57 2236 − − − 2.29 0.5 9
Unknown m/z 83, 55, 69, 97,43, 57 2371 0.06 0.0 7 1.87 0.6 10
Minor pooled unknowns (peak area < 1.0 %)§  1.07 7   2.87 5   

VOCs with mean peak areas >1 % that occurred in the majority of samples are highlighted in bold, n = number of replicates.
RI = retention index, O = number of chromatograms where VOC was recorded.
− Indicates absence of the compound in sample chromatograms, or compound below the threshold of integration or detection.
*>95 % compound match with NIST14.
†Identification supported by RI.
‡Identification confirmed by authentic standard.
§Minor unknowns were pooled, with the superscript digit providing the number of pooled compounds.
¶Compound peaks could not be resolved in some chromatograms due to interference with neighbouring compounds.
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heating as a deceptive signal for pollinators to associate with 
a rewarding substrate (i.e. decomposing material) in brood-
site mimics through exploiting the pre-existing bias of pol-
linators (Schiestl, 2017). Only Angioy et al. (2004) provide 
evidence for thermogenesis as a direct pollinator (blowfly) 
lure, in combination with scent, in H.  muscivorus. Based 
on our results, we similarly suggest that heating as a direct 
signal for saprophagous beetles and flies explains the occur-
rence of thermogenesis (an energetically expensive process) 
in these two rewardless brood-site mimics which may also 
act synergistically with scent for enhanced pollinator at-
traction (Angioy et al., 2004; Marotz-Clausen et al., 2018), 
particularly since, in contrast to some thermogenic Araceae 
(e.g. Seymour et al., 2003a; Ito et al., 2011), no thermogenic 
organs were present inside the floral chamber where trapped 
insects reside (i.e. the appendix and staminate zone are above 
the spathe constriction in Typhonium). Heating in staminate 
tissues throughout the night and prior to pollen shed may 
also assist with pollen development (Seymour et al., 2009b). 
Neither the genetics, expression or profile of thermogenesis, 
nor the colour was associated with pollinator divergence, 
indicating that morphology and floral scent are likely to be 
more important for pollinator differentiation.

Floral trait divergence: pollinators as selective agents?

The scent profiles of T.  angustilobum and T.  wilbertii dif-
fered significantly. High relative amounts of the common dung 

constituents skatole and p-cresol (Dormont et al., 2010; Stavert 
et  al., 2014; Frank et  al., 2018) in combination with sesqui-
terpenes and irregular terpenes emitted by T. wilbertii indicate 
that this species is a dung mimic which exploits the pre-existing 
sensory (olfactory) bias of diverse fly pollinators (Urru et al., 
2011; Jürgens and Shuttleworth, 2015). A sub-set of scent com-
pounds may be sufficient for the attraction of dung-seeking flies 
to thermogenic and non-thermogenic species (Leguet et  al., 
2014; Delle-Vedove et  al., 2017). For example, the emission 
of p-cresol and/or skatole is commonly associated with dung 
and dung mimics (e.g. Quilichini et al., 2010; Urru et al., 2011; 
Johnson et al., 2020), and these are likely to be important for 
the attraction of saprophagous flies (e.g. Sphaeroceridae) to 
T.  wilbertii as shown for fly-pollinated T.  eliosurum (Sayers 
et al., 2020). The VOC p-cresol alone, emitted by thermogenic 
Arum maculatum, was highly attractive to Psychodidae pol-
linators (Kite et al., 1998), and in non-thermogenic Wurmbea 
the addition of skatole (and indole) to the non-faecal mimic 
W. kraussii shifted the attracted insect assemblage to one dom-
inated by coprophagous flies (Johnson et al., 2020).

Typhonium angustilobum was dominated by a complex 
array of sesquiterpenes, and p-cresol and skatole were only 
emitted at very low levels or were not detected at all in some 
inflorescences. This contrasts with the staphylinid- and scarab-
pollinated T.  brownii which consistently emitted high rela-
tive amounts of skatole and p-cresol, in addition to minor 
amounts of indole (Sayers et al., 2020), the latter not detected 
in T.  angustilobum. Another staphylinid pollination system 
showed that the emission of indole by the non-thermogenic 
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Fig. 8.  Typical gas chromatograms of (A) T.  angustilobum and (B) T.  wilbertii, the major floral compounds identified (which account most for high levels 
of similarity within species according to SIMPER analyses) include: (1) tetradecane, (2) δ-elemene, (3) elemene isomer, (4) pentadecane, (5) aristolene, (6) 
(2Z,4E)-3,7,11-trimethyl-2,4-dodecadiene, (7) β-elemene, (8) β-gurjunene, (9) β-caryophyllene, (10) α-maaliene, (11) capparatriene, (12) viridiflorene, (13) 
8-heptadecene, (14) bicyclogermacrene, (15) dihydro-β-ionone, (16) α-ionone, (17) β-ionone, (18) 2-pentadecanone, (19) p-cresol and (20) skatole (*major un-

known compounds).
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Lysichiton americanus (Araceae) is the primary attractant of 
Pelecomalium testaceum (Willson and Hennon, 1997; Brodie 
et al., 2018). The lack of known staphylinid attractants in the 
scent profile of T. angustilobum and the highly varied function 
of terpenes in plants means that it is unclear which VOCs are im-
portant for pollinator attraction in this system (Theis and Lerdau, 
2003). The role of sesquiterpenes (e.g. bicyclogermacrene) and 
other terpenes in the attraction of saprophagous beetles (i.e. 
Staphylinidae) and flies is poorly understood, despite sesqui-
terpenes being a common odour component of dung and floral 
dung mimics (Kite et al., 1998; Dormont et al., 2010; Chartier 
et al., 2013). Despite these limitations, the scent profile, pres-
ence of saprophagous or predacious insects and absence of re-
wards suggest that T. angustilobum is a brood-site mimic which 
may mimic a substrate of a different trophic level or stage of 
decomposition (e.g. decomposing plant material; Jürgens and 
Shuttleworth, 2015).

Studies of convergent evolution of oviposition mimicry 
among plant taxa suggest that brood-site deception relies on 
olfactory stimuli as the main modality for pollinator attraction 
(Jürgens et  al., 2013). Indeed, the floral scent of brood-site 
mimics has been shown to be sufficient to attract pollinators in 
the absence of other stimuli (e.g. Kite et al., 1998; Angioy et al., 
2004; Johnson et al., 2020; Sayers et al., 2020). Although sev-
eral studies in Araceae show that single VOCs or simple VOC 
combinations can selectively attract pollinators, particularly 
Cyclocephaline scarab beetles (e.g. Maia et  al., 2012, 2013; 
Pereira et al., 2014), overall little is known about the behav-
ioural responses of beetles and flies to specific olfactory cues 
or signals (Francke and Dettner, 2005), and the extent to which 
these divergent Typhonium scents reflect adaptation to the dif-
ferent receiver biases of beetle and fly pollinators warrants fur-
ther investigation (using bioassays and electroantennography). 
Although scent differentiation between T.  angustilobum and 
T. wilbertii may reflect adaptation to divergent pollinators, we 
reiterate that flies (e.g. Sphaeroceridae and Sepsidae) were ob-
served in large numbers on the spathe of T. angustilobum (Fig. 
3B, C), and beetles (e.g. Staphylinidae) were attracted and 
trapped by T. wilbertii (albeit in lower numbers; Fig. 2), ques-
tioning the relative importance of scent in selectively attracting 
and (more importantly) trapping divergent pollinator assem-
blages in brood-site mimics (Armbruster, 2017).

Changes in morphological traits are often associated with 
shifts to fly pollination among phylogenetically related plant 
taxa in general (Fenster et al., 2004), and, among fly pollinated 
brood-site mimics, both chemical and morphological filters have 
been identified to play a role in greater pollinator specialization 
(Shuttleworth et al., 2017; Raguso, 2020). Floral traps are preva-
lent in the Aroideae (particularly fly-pollinated systems) in mu-
tualistic and deceptive plant–pollinator interactions, and in some 
genera the spathe plays a critical role in the trapping of insect pol-
linators (Bröderbauer et al., 2012). Spadices and spathes of beetle-
pollinated T. angustilobum were significantly larger compared with 
T. wilbertii in which the smaller spathe was more tightly wrapped 
around the spadix during both reproductive phases (Fig. 5), more 
similar to spathe orientation in fly-pollinated T. eliosurum (Sayers 
et al., 2020). Flies are typically more agile fliers than beetles, and 
this spathe morphology probably assists in trapping flies and en-
suring contact with staminate florets as they exit the floral chamber 

(Fig. 4G, H). Further, while the inner spathe epidermis of both 
species comprised curved cells as found in other floral trap sys-
tems (Poppinga et al., 2010), the cells of T. wilbertii were smaller, 
less densely packed and more refined downward pointing papillae 
(similar to the fly-pollinated T. eliosurum), distributed down the 
spathe blade to the floral chamber entrance, which may reduce 
the attachment of flies (see Sayers et  al., 2020). Bröderbauer 
et al. (2013) similarly identified that midge-pollinated (primarily 
Psychodidae) Arum species were characterized by smaller inner 
spathe papillae compared with species pollinated by both flies and 
beetles, or bees. They also identified differences in the number of 
sterile filiform organs of Arum species pollinated by midges or 
both flies and beetles (Bröderbauer et al., 2013). These organs are 
assumed to help retain insects inside the floral chamber close to 
the female florets (Fig. 3D). Spadices of both T. angustilobum and 
T. wilbertii comprised filiform organs directly above the female 
florets (Fig. 1), similar to the beetle-pollinated T. brownii complex 
(Sayers et al., 2020). The portion of interstice above the sterile fili-
form organs was naked in beetle-pollinated T. angustilobum and 
the T. brownii complex, but comprised some sparse, smaller pap-
illate organs in fly-pollinated T. wilbertii, which were more exten-
sive in the fly-pollinated T. eliosurum (Sayers et al., 2020). More 
detailed comparison of trapping features across the genus and po-
tential adaptation to different pollinators is merited.

Conclusions

Typhonium angustilobum and T. wilbertii are two closely re-
lated brood-site mimics characterized by similar dull, dark floral 
colours, anthesis rhythms and transient heat generation (via the 
AOX pathway) which probably acts synergistically with en-
hanced scent volatilization to attract diverse saprophagous insect 
pollinators. Divergent scents, apparently resembling different 
decomposing substrates, and differences in floral morphology 
and trapping mechanisms (not involved in mimicry), indicate 
that both chemical and morphological filters contribute to taxo-
nomic and functional specialization to different groups of pollin-
ating Coleoptera and Diptera by T. angustilobum and T. wilbertii, 
respectively. This study demonstrates the importance of compre-
hensive trait characterization of multisensory signals and floral 
morphology in understanding floral trait adaptation to different 
pollinator groups in brood-site mimetic systems. These pollin-
ation systems provide an interesting avenue for further research 
into the evolution of certain floral traits for pollinator attraction 
possibly associated with the receiver bias hypothesis. In par-
ticular, additional research is required to clarify if thermogenesis 
in brood-site mimics has developed as the result of pre-existing 
insect responses to the temperature cues of decomposing sub-
strates. Overall, we suggest that the maintenance of complex 
beetle- or fly-attracting floral odours, and unique floral morph-
ologies, reflects the diffuse selection imposed by the diverse and 
dynamic insect communities by which each species is visited 
across their respective geographic ranges.

SUPPLEMENTARY DATA

Supplementary data are available online at https://aca-
demic.oup.com/aob and consist of the following. Table 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/128/3/261/6184575 by guest on 25 April 2024

https://academic.oup.com/aob
https://academic.oup.com/aob


Sayers et al. — Floral traits associated with pollinator shift in two brood-site mimics278

S1: primer information for RT–qPCR and sequencing of 
T. angustilobum and T. wilbertii AOX genes. Figure S1: par-
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T. angustilobum and T. wilbertii during the pistillate phase 
of anthesis.
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