Phylogenetic relationships in the Marcetia alliance (Melastomeae, Melastomataceae) and implications for generic circumscription

MARIA JOSÉ R. ROCHA ${ }^{1 *}$, JOÃO A. N. BATISTA ${ }^{1}$, PAULO J. F. GUIMARÃES ${ }^{2}$ and FABIÁN A. MICHELANGELI ${ }^{3}$
${ }^{1}$ Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
${ }^{2}$ Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
${ }^{3}$ The New York Botanical Garden, Bronx, NY 10458, USA

Received 25 September 2015; revised 13 January 2016; accepted for publication 24 March 2016

Abstract

The Marcetia alliance of Melastomataceae is an exclusively Neotropical group that includes at least 12 genera of mostly herbs and subshrubs, occurring in the cerrado of central Brazil and savannas of the Amazon region and Guayana highlands. This study aimed to test the monophyly of genera in the Marcetia alliance, evaluate their phylogenetic relationships and generic boundaries, and investigate morphological characters as potential synapomorphies for delimiting clades or genera. We used nuclear (ITS, ETS) and plastid (accD-psaI, atpH-atpF, $\operatorname{trnS}-\operatorname{trn} G)$ DNA sequences of 107 terminals in 12 genera from the alliance. Aciotis, Fritzschia, Marcetia and Siphanthera were shown to be monophyletic and supported by molecular and morphological characters. Other genera with variable morphology and wider distributions, such as Acisanthera, Comolia, Ernestia and Macairea, were recovered as paraphyletic or polyphyletic. Most morphological characters analysed were found to be homoplastic, but when combined they are potentially useful for the diagnosis of genera and infrageneric groups. This study represents a major step in understanding internal relationships and provides the basis for a revision of the generic classification in the Marcetia alliance. © 2016 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 181, 585-609

ADDITIONAL KEYWORDS: cerrado - character reconstruction - molecular markers - Neotropics taxonomy.

INTRODUCTION

Melastomataceae comprise 150-166 genera and c. 4570 species (Renner, 1993) and although they have a worldwide distribution, most species are concentrated in the Neotropics. They are usually recognized by their leaves with acrodomous venation, bisexual, diplostemonous flowers and poricidal anthers (Clausing \& Renner, 2001).

Previous studies have shown that Melastomaceae are monophyletic, as supported by morphological and molecular data (Clausing \& Renner, 2001). However, many questions remain regarding the

[^0]limits and relationships of tribes and genera (Fritsch et al., 2004; Penneys et al., 2010; Penneys \& Judd, 2011; Goldenberg et al., 2012; Michelangeli et al., 2013), due to the high degree of morphological variability and the lack of evolutionary studies in some tribes. The most recent worldwide classification of the family is that of Renner (1993), based on morphological data; this replaced the tribal classification proposed by Triana (1871), Cogniaux (1891) and van Vliet, Koek-Noorman \& Ter Welle (1981). However, morphological (Almeda \& Martins, 2001; Stone, 2006; Ionta et al., 2007; Bécquer-Granados, 2008 Goldenberg et al., 2008, 2012; Kriebel, 2008, 2008; Martin et al., 2008; Amorim, Goldenberg \& Michelangeli, 2009; Reginato, Michelangeli \& Goldenberg, 2010; Almeda \& Robinson, 2011;

Penneys \& Judd, 2011; Mendoza-Cifuentes \& Fernández-Alonso, 2012) and molecular phylogenetic studies have shown that even this revised classification is inadequate (Clausing \& Renner, 2001; Michelangeli et al., 2004, 2011, 2013; Penneys et al., 2010; Goldenberg et al., 2013).

Melastomeae are one of largest tribes in Melastomataceae in generic, and hence morphological, diversity (Michelangeli et al., 2013). They have a pantropical distribution with about 870 species in 47 genera (Michelangeli et al., 2013). The majority of species occur in South America (c. 570 species, 30 genera) (Renner, 1993), mainly in the Brazilian cerrado. This tribe is characterized by the presence of a pedoconnective at the base of the anthers, capsular fruits and cochleate seeds with curved embryos (Michelangeli et al., 2013). However, the pedoconnective can be highly reduced or secondarily lost and many taxa have ventral connective appendages. One clade of Melastomeae, Monochaetum (DC.) Naudin, also seems to have gained dorsal appendages independently (Michelangeli et al., 2013).

Changes in the taxonomic circumscription of Melastomeae have been common over time. De Candolle (1828) was the first to establish tribes, and he included some current genera of Melastomeae in Lavosiereae, Rhexieae and Osbeckieae. Naudin (1849-1853) recognized four tribes, with the current Melastomeae corresponding more or less to Lasiandrae (Triana, 1865).

Triana (1865) placed most genera of Lasiandreae in Pleromeae and, contrary to previous authors, included continental location as a criterion for organizing genera in tribes. Cogniaux (1891), with an almost identical delimitation, named the tribe Tibouchineae. Just over a century later, Renner (1993) proposed Melastomeae based on morphological and anatomical data. In her concept (Renner, 1993), Melastomeae included tribes Tibouchineae (Cogniaux, 1891) and Osbeckieae (Triana, 1871), disregarding geographical criteria. Renner (1993) also included the genera Acanthella Hook.f., Poteranthera Bong., Siphanthera Pohl. ex DC. and Monochaetum in her expanded Melastomeae.

Given the issues surrounding the circumscription of Melastomeae, Michelangeli et al. (2013) expanded sampling and investigated the limits of the tribe. The results of this analysis showed that Melastomeae as currently defined are biphyletic, consisting of two non-sister clades, the 'Marcetia alliance' and 'core Melastomeae', supported by molecular characters and differentiated mainly by seed coat, floral merosity, ovary apical appendages and habit (Michelangeli et al., 2013). Core Melastomeae were characterized by cochleate seeds with a tuberculate surface (Renner, 1993), ovary apex with a crown of hairs or
appendages and staminal pedoconnectives with bifurcated dorsal vascular bundles (Wilson, 1950; K. Sosa , P.J.F. Guimaraes \& F.A. Michelangeli, unpubl. data). On the other hand, the Marcetia alliance was characterized by cochleate, oval or lacrimiform seeds with foveolate cells (except Siphanthera; Whiffin \& Tomb, 1972; Almeda \& Robinson, 2011), ovaries that are either glabrous or with scattered trichomes, flowers often tetramerous, hypanthium glabrous or with glandular trichomes, and two to four ovary locules. In general, species of the Marcetia alliance are predominantly herbs or subshrubs, some annual, mainly distributed in Neotropical savannas. Brazil, with $>41 \%$ endemic species, is probably the major centre of diversity (Baumgratz et al., 2015). A similar distribution is also found in Microlicieae (Fritsch et al., 2004) and some clades of Melastomeae s.l. (Michelangeli et al., 2013). The Marcetia alliance putatively comprises c. 137 species in 12 genera: Acanthella Hook.f. (two species); Aciotis D.Don. (13 species); Acisanthera P.Browne (14 species); Appendicularia DC. (one species); Comolia DC. (19 species); Ernestia DC. (16 species); Fritzschia Cham. (three species); Macairea DC. (22 species); Marcetia DC. (31 species); Nepsera Naudin (one species); Sandemania Gleason (one species); and Siphanthera Pohl ex DC. (15 species) (Fig. 1). Additionally, based on morphological characters, Michelangeli et al. (2013) suggested that Comoliopsis Wurdack, Loricalepis Brade, Mallophyton Wurdack and Poteranthera Bong. could potentially be included in the Marcetia alliance. However, none of these genera has been included in a molecular phylogenetic analysis.

The Marcetia alliance was first recovered by Fritsch et al. (2004), but the taxonomic sampling for Melastomeae (ten terminals) and the Marcetia alliance (four terminals) in that study was insufficient to recognize these groups. Michelangeli et al. (2013), with a broader sampling, confirmed the existence of this group, calling it the Marcetia alliance, and suggested that it could be segregated from Melastomeae. These results also hinted that some of the genera in the alliance are polyphyletic. Nevertheless, despite the significant increase in sampling of the Marcetia alliance by Michelangeli et al. (2013), many questions remain about the monophyly of the genera, their relationships and limits. Additionally, thorough evaluation of different morphological characters is needed to better define genera in the alliance and to produce a workable taxonomy. In view of these questions and the taxonomic problems found in some genera of the Marcetia alliance, the main objectives of this study were: (1) to test the monophyly of the genera with an increased sampling of taxa and molecular markers; (2) to assess the generic limits and infrageneric relationships; and (3) to investigate

Figure 1. Representatives of major clades of the Marcetia alliance. A, Nepsera aquatica. B, Appendicularia thymifolia. C, Ernestia glandulosa. D, Comolia microphylla. E, Comolia stenodon. F, Fritzschia erecta. G, Marcetia macrophylla. H, Siphanthera arenaria. I, Acisanthera tetraptera. J, Acisanthera genliseoides. K, Aciotis rubricaulis. L, Acisanthera bivalvis. M, Macairea multinervia. N, Acisanthera vaiabilis. O, Macairea radula. P, Acanthella sprucei. Photographs: A-C, Olivier Gaubert; P, Francisco Fajardo-Gutiérrez; D-O, M. J. Rocha.
selected morphological characters as potential synapomorphies for delimiting clades or genera in the alliance.

MATERIAL AND METHODS

Taxon sampling

We sampled 107 taxa of 27 genera. Of these, 89 accepted species and 12 genera correspond to taxa putatively in the Marcetia alliance, representing 64\% of the 137 species thought to belong to this group. The numbers of species sampled per genus were as follows: Acanthella (1/50\% of the accepted species); Aciotis (8/61\%); Acisanthera (12/85\%); Appendicularia (1/ 100\%); Comolia (17/89\%); Ernestia (10/62\%); Fritzschia (2/40\%); Macairea (5/22\%); Marcetia (18/ 51%); Nepsera (1/100\%); Sandemania (1/100\%); and Siphanthera (10/66\%). Whenever possible, we tried to cover the greatest morphological variation and geographical distribution for each genus. Most samples were field collected and identified by M. J. Rocha, P. J. Guimarães, F. A. Michelangeli and other specialists in Melastomataceae. We included the type species for most genera of the Marcetia alliance, except for Comolia, the type of which is C. berberifolia (Bonpl.) DC., known only from the type material. Nevertheless, this species is morphologically similar and possibly conspecific with C. villosa (Aubl.) Triana (Wurdack, 1973), which was sampled. As outgroups we included 13 representatives of core Melastomeae, Microlicieae and Rhexieae. Trees were rooted with Cambessedesia hilariana DC., following the results of Goldenberg et al. (2012), Michelangeli et al. (2013) and Michelangeli, Ulloa \& Sosa (2014).

DNA Extraction and markers

Total genomic DNA was extracted from silica-dried leaves collected in the field or from herbarium
specimens. Samples were extracted using NucleoSpin 96 Plant II extraction kit (Macherey-Nagel), following the manufacturer's instructions or DNeasy plant mini kit (Qiagen), with the modifications suggested by Alexander et al. (2007). Phylogenetic analyses were based on five molecular markers: two nuclear (nrITS, nrETS) and three plastid intergenic spacers ($a c c D-p s a I$, atpH-atpF, trnS-trnG). The ITS region consisted of the ribosomal internal transcribed spacers (ITS1 and ITS2) and the intervening 5.8S ribosomal gene. The ETS consisted of a section of about 241 bp at the 3^{\prime} end of the ribosomal external transcribed spacer (ETS) and 5^{\prime} end of the 18 S ribosomal gene. Primers used for amplification are listed in Table 1. The ITS region has been used in several studies to elucidate phylogenetic relationships of tribes and genera in Melastomataceae (Fritsch et al., 2004; Michelangeli et al., 2004, 2008, 2013; Ionta et al., 2007; Bécquer-Granados, 2008; Goldenberg et al., 2008; Martin et al., 2008; Reginato et al., 2010; Kriebel, Michelangeli \& Kelly, 2015), whereas the ETS region is still little used in Melastomataceae, but has proved to be useful in understanding infrageneric relationships (Stone \& Andreasen, 2010; Kriebel et al., 2015) and to be easily amplified. The $a c c D-p s a I$, atpH-atpF and trnS-trnG plastid intergenic spacers have also been informative for Melastomataceae and have been employed in several studies (Reginato et al., 2010; Michelangeli et al., 2013; Penneys \& Judd, 2013).

Amplification, editing and alignment

DNA amplification was performed by polymerase chain reaction (PCR) in a final volume of $15 \mu \mathrm{~L}$ with the following reaction components: $0.5-0.7 \mu \mathrm{~L}$ genomic DNA (c. $30 \mathrm{ng} \mu \mathrm{L}^{-1}$), $7.5 \mu \mathrm{~L} 2 \times$ EconoTaq Plus Green (Lucigen Technologies), $2 \mu \mathrm{~L}$ of each primer ($3 \mu \mathrm{M}$), $0.75 \mu \mathrm{~L}$ spermidine (4 mm) and $2.5 \mu \mathrm{~L}$ purified water. The PCR conditions were similar for all

Locus	Primer	Sequence ($5^{\prime}-3^{\prime}$)	Reference
nrITS	NY 183	CCTTATCATTTAGAGGAAGGAG	Michelangeli et al. (2004)
	NY 887	ATTGATGGTTCGCGGGATTCTGC	
nrETS	NY320	AGACAAGCATATGACTACTGGCAGG	Kriebel et al. (2015)
	NY1428	ACGTGTCGCGTCTAGCAGGCT	
accD-psa1	NY826	AATYGTACCACGTAATCYTTTAAA	Shaw et al. (2005)
	NY827	AGAAGCCATTGCAATTGCCGGAAA	
atpH-atpF	NY822	ACTCGCACACACTCCCTTTCC	Reginato et al. (2010)
	NY 823	GCTTTTATGGAAGCTTTAACAAT	
trnS-trnG	NY368	GCCGCTTTAGTCCACTCAGC	Hamilton (1999)
	NY369	GAACGAATCACACTTTTACCAC	

markers, with small adjustments in the annealing temperature and extension time, as follows: initial denaturation at $94{ }^{\circ} \mathrm{C}$ for 3 min ; 40 cycles of denaturation at $94{ }^{\circ} \mathrm{C}$ for 45 s ; annealing at $58^{\circ} \mathrm{C}$ (ETS), $50^{\circ} \mathrm{C}$ (ITS), $57^{\circ} \mathrm{C}(a c c D-p s a I)$ or $55^{\circ} \mathrm{C}$ (trnS-trnG, atpH-atpF) for 45 s ; extension at $72^{\circ} \mathrm{C}$ for 1 min (except for $\operatorname{trnS}-\operatorname{trn} G$ and atpH-atpF which was 1 min 30 s); and a final extension at $72^{\circ} \mathrm{C}$ for 3 min for all markers. All reactions were performed in Eppendorf thermocyclers. Cycle sequencing reactions were carried out with the same amplification primers using the sequencing service at the University of Washington, USA (High Throughput Genomics Center htSEQ).

Consensus sequences obtained for each marker from bidirectional reads were generated in Sequencher 4.10.1 (GeneCodes Corp.). Sequences of low quality were discarded. Sequence alignments were preliminarily performed using Muscle (http:// www.ebi.ac.uk/Tools/msa/muscle/) and manually adjusted in Mega 6 software (Tamura et al., 2013) to maximize homology hypotheses between the sequences (Simmons, 2004). The 5^{\prime} and 3^{\prime} ends of each matrix were trimmed and internal regions with ambiguous or problematic alignment were excluded. Individual gap positions were treated as missing data.

DNA substitution models for Bayesian inference (BI) and maximum-likelihood (ML) analyses were selected for each marker using jModeltest v.2.1.3 (Darriba et al., 2012), using the five-model scheme with or without four discrete rate categories approximating a gamma distribution (+G) and including models with equal/unequal base frequencies (+F) and a proportion of invariable sites (+I). The likelihoods were calculated using an ML optimized base tree with NNI topology search using phyml (Guindon \& Gascuel, 2003) and the models were evaluated using the corrected Akaike's information criterion (AICc).

In total, 273 sequences were generated for this study, and another 96 were obtained from GenBank, mostly from Michelangeli et al. (2013). Voucher information and GenBank accession numbers are listed in the Appendix.

Phylogenetic analyses

All data sets were analysed using maximum parsimony (MP), ML and BI. First, phylogenetic analyses were performed individually for each marker and the congruence between the topologies was visibly evaluated. The matrices for each marker were then concatenated and analysed as described below.

Parsimony analyses were performed in PAUP v. 4 (Swofford, 2002) using Fitch parsimony as the optimality criterion (Fitch, 1971). Heuristic searches
consisted of 10000 replicates of random taxa addition, using the tree bisection-reconnection algorithm (TBR) and saving up to 15 MP trees per replicate. The strict consensus was then built from all the most-parsimonious trees obtained. All characters were treated as unordered and of equal weight. Internal support was evaluated by non-parametric bootstrapping (Felsenstein, 1985) with 10000 replicates, random addition and TBR branch swapping, saving up to 15 trees per replicate. For bootstrap support levels, we considered bootstrap percentages (BPs) of $50-70 \%$ as weak, $71-85 \%$ as moderate and $>85 \%$ as strong (Kress, Prince \& Williams, 2002).

ML analyses were performed with RAxML using default parameters (Stamatakis, 2006; Stamatakis, Hoover \& Rougemont, 2008) and run through the CIPRES Science Gateway (http://www.phylo.org/; Miller, Pfeiffer \& Schwartz, 2010). Bootstrap values were estimated on the ML tree also using RAxML based on 1000 searches run through the CIPRES Science Gateway (results not shown).

Bayesian analyses were performed using MrBayes 3.1.2 run through the CIPRESS Science Gateway (http://www.phylo.org/; Miller et al., 2010). Analyses were performed with mixed models and independent parameters. The analysis consisted of two independent runs, each with four Markov chains for ten million generations, sampling one tree every 1000 generations. To achieve convergence the temperature parameter for heating the chains was lowered to 0.05 . Convergence between the chains was assessed by the average standard deviation of split frequencies (<0.01) and the stationarity of the chains with the generated graphical outputs. Convergence was achieved after 1941000 generations and the first 25% of the resulting trees were discarded as burn-in. The remaining trees were used to assess topology and posterior probabilities (PPs) in a majority-rule consensus. Because PPs in Bayesian analysis are not equivalent to BP , but are generally much higher (Erixon et al., 2003), we used criteria similar to a standard statistical test, considering groups with PP $>95 \%$ as strongly supported, PP 90-95\% as moderately supported and PP $<90 \%$ as weakly supported.

Morphology: evolution of characters

We selected characters that were used for circumscription of sections and genera of the Marcetia alliance, including those traditionally cited by Triana (1871), Naudin (1849-1853) and Cogniaux (1885) and characters used in identification keys. The goal was to investigate the evolution of these characters within the clade and to identify putative synapomorphies that might distinguish well-supported groups
in the Marcetia alliance. The characters were coded from herbarium collections (ALCB, BHCB, CEPEC, HUEFES, HUFU, INPA, IAN, MG, MIRR, NY, RB, SP, SPF, US) and/or obtained from descriptions and monographs (Renner, 1987, 1989, 1993; Clausing \& Renner, 2001; Freire-Fierro, 2002; Seco, 2006; Kriebel, 2008; Almeda \& Robinson, 2011; Michelangeli et al., 2013).

The morphological matrix was edited using Xper2 v.2.0 (Ung et al., 2010) and Mesquite v.2.74 (Maddison \& Maddison, 2001). Characters were optimized using parsimony in Winclada 1.00.008 (Nixon, 1999). All characters were treated as unordered and assigned equal weight. Multistate characters were coded as non-additive. Both algorithms for optimization [ACCTRAN (accelerated transformation) and DELTRAN (delayed transformation)] were considered. The matrix with all characters and their respective character states coded for the terminals used in the molecular phylogenetic analysis is shown in Appendix.

Characters and coding

Twenty-four discrete characters from life cycle, perianth, androecium, gynoecium, fruit and seed were coded (Table S1). Other characters were not included in the analysis because it was difficult to establish primary homology hypotheses, they were shown to be continuous or would need field data to be coded, and therefore were not available for all species. Examples of these excluded characters include habitat, leaf and hypanthium indumentum, petal and anther colour, inflorescence type, stamen size, shape of the stamen appendages, anther shape, ovary shape and seed testa. The following six characters were recovered as the most useful to diagnose clades in the Marcetia alliance.

Floral merosity: tetramerous (0); pentamerous (1). Merosity varies across the family, but the most common numbers are four, five or six (Michelangeli, 2000). The Marcetia alliance is commonly tetramerous, although pentamerous flowers are present in a few species (Michelangeli et al., 2013). The combination of floral merosity and the number of ovary locules was used to establish the sections in Acisanthera (Triana, 1871) and Ernestia (Triana, 1871; Cogniaux, 1885). Although intraspecific variation in petal number was observed in other groups of Melastomataceae, we did not observe it in the species included in this study.

Ovay pubescence: absent (0); glandular (1); eglandular (2). Cogniaux (1885) used this character, associated with other reproductive structures, to delimit genera in Melastomeae and to characterize the sections of Ernestia. Ernestia section Ernestia was characterized by tetramerous flowers and a pubescent,
tetralocular ovary, whereas Ernestia section Pseudoernestia Cogn. comprises species with pentamerous flowers and a glabrous, trilocular ovary. Kriebel (2008) observed that the character state (0) was constant for the three sections of Acisanthera proposed by Triana (1871), except for Acisanthera tetraptera (Cogn.) Gleason which has glandular pubescence on the ovary apex.

Ovary locule number: 2 (0); 3 (1); 4 (2); 5 (3). Since the 1800 s this character has been used in taxonomic studies of Melastomataceae. Based on the number of locules in the ovary, Triana (1871) proposed two sections in Comolia. Comolia section Comolia has bilocular ovaries, whereas Comolia section Tricentrum (DC.) Triana has tetralocular ovaries. In Acisanthera, A. section Dicrananthera (C. Presl.) Triana has tetramerous flowers and a bilocular ovary; A. section Acisanthera has tetra- or pentamerous flowers and a trilocular ovary; A. section Dichaetandra (Naudin) Triana has tetramerous flowers and a tetralocular ovary and A. section Noterophila (Mart.) Triana has pentamerous flowers and a bilocular ovary.

Filament/anther angle at anthesis: straight or lightly curved (0); curved or arched (1). State 0 includes species with an angle $>90^{\circ}$ between the anther base and filament, whereas in species scored as 1 the angle between the pedoconnective and filament is $\leq 90^{\circ}$. In most species coded as 0 the style is surrounded by the stamens; when the anther is curved or arched the filament tends to bend to one side of the flower, opposite the style.

Pedoconnective in antesepalous stamens: absent (0); present (1). Stamens of Melastomataceae vary widely and therefore provide many morphological characters, including shape, colour and size and the presence or absence of associated structures, among others. The pedoconnective is the extension of the connective between the thecae base and filament insertion. This character was scored as present when the prolongation is visible, regardless of size. In the Marcetia alliance this structure can have different modifications, such as appendages, or can sometimes be dorsally thickened and basally enlarged below the thecae. Although the stamens provide many other characters, it is difficult to compare them among different taxa and to establish hypotheses of homology.
Anther fertility: both cycles fertile (0); only the antesepalous cycle fertile (1). Most species of Melastomataceae are diplostemonous and both cycles of stamens are fertile, but in some cases the number of fertile stamens can be equal to the number of petals. The number of stamens was used by Triana (1871) to segregate the sections of Siphanthera: S. section Eumeisneria (DC.) Triana was characterized by having eight stamens, four of them reduced, whereas S. section Siphanthera was characterized by four
stamens, alternating with rudimentary or reduced ones. In Acisanthera genliseoides (Hoehne) Wurdack and many Siphanthera spp., only the antesepalous cycle is fertile (character 11, state 0). The antepetalous cycle, if sterile, may be completely absent or staminodial.

RESULTS

Phylogenetic analyses
The aligned matrix with all regions consisted of 5264 characters, 1502 (28%) of which were potentially informative. Consistency index (CI) and retention index (RI) were 0.54 and 0.78 , respectively. Other information from the parsimony analyses is shown in Table 2. The models selected for the BI and ML analyses were $G T R+I+G$ for both nuclear markers and GTR + G for all three plastid markers. In general the nuclear markers produced better resolved trees, probably because of the higher polymorphism between the sequences and the greater number of informative characters. However, lower CI and RI values for the nuclear markers indicate a greater proportion of homoplasy.

In all analyses, the Marcetia alliance was recovered as monophyletic with high support ($\mathrm{PP}=1.00$, $\mathrm{BP}=100 \%$) (Fig. 2). The same major clades are present in the combined datasets of the BI, MP and ML analyses and the topology is completely congruent, considering the clades with $\mathrm{PP} \geq 0.95$ and BP $\geq 85 \%$.

There were no significant conflicts between wellsupported clades from the BI and parsimony analyses of individual and combined matrices. The main difference was the position of the possible firstbranching lineage of the Marcetia alliance. In the BI analysis the Comolia montana Gleason clade was resolved as sister to the rest of the group, whereas in the MP and ML analyses the Comolia s.s. + Ernestia s.s. clade was sister to the rest of the group. However, in all three cases support for these sister clades was low ($\mathrm{PP}=0.53, \mathrm{BP}=61 \%$), indicating that relationships at the base of the Marcetia alliance clade are not well supported. We have chosen the BI analyses for presentation and all further comments on relationships and characters. The majority-rule consensus trees from a Bayesian analyses of the combined nuclear (ETS, ITS) and plastid (accD-psaI, $\operatorname{trnS}-\operatorname{trn} G$, atpH-atpF) data sets are shown in Figs. S1 and S2, respectively.

Aciotis, Fritzschia, Marcetia and Siphanthera, as currently defined, were recovered as monophyletic and had strong support in all analyses. Additionally, Acisanthera could easily become monophyletic with the inclusion of Comolia ayangannae Wurdack. On
Table 2. Dataset and statistical results from phylogenetic analyses

Figure 2. The majority-rule consensus tree from a Bayesian analysis of the combined nuclear (ETS, ITS) and plastid (accD-psaI, trnS-trnG, atpH-atpF) DNA sequences. Numbers above and below the nodes are posterior probabilities and bootstrap percentages from the Bayesian and parsimony analyses, respectively (only for clades with $\mathrm{BS} \geq 60 \%$). Wellsupported clades discussed in the text are named.

Figure 2. Continued
the other hand, Comolia and Ernestia are polyphyletic and were recovered in four and three unrelated clades, respectively. Macairea is resolved as paraphyletic due to Ernestia s.s. being nested in it.

In the Bayesian analysis the Comolia montana clade (clade A: $\mathrm{PP}=0.99 ; \mathrm{BP}=100 \%$) is sister to the remaining clades of the Marcetia alliance. Ernestia section Pseudoernestia (clade $\mathrm{B}: \quad \mathrm{PP}=0.99$;
$\mathrm{BP}=95 \%$) is resolved as sister to Comolia s.s. (clade C: $\quad \mathrm{PP}=1.00 ; \mathrm{BP}=100 \%$) with strong support ($\mathrm{PP}=1.00 ; \mathrm{BP}=96 \%$). In Acisanthera s.l. (clade D: $\mathrm{PP}=0.99 ; \mathrm{BP}=87 \%)$, A. tetraptera was recovered as the first divergent branch ($\mathrm{PP}=0.99 ; \mathrm{BP}=87 \%$), sister to a clade with three consistent groups, as follows. The A. hedyotidea (C.Presl.) Triana subclade ($\mathrm{PP}=0.99 ; \mathrm{BP}=97 \%)$ is constituted by members of Acisanthera section Dicrananthera. The A. bivalvis (Aubl.) Cogn. subclade ($\mathrm{PP}=1.00 ; \quad \mathrm{BP}=100 \%$) includes species currently placed in Acisanthera section Noterophila. The Acisanthera s.s. subclade ($\mathrm{PP}=1.00 ; \mathrm{BP}=75 \%$) is represented by the type species and other species allied to Acisanthera section Acisanthera.

Sandemania and Comolia vernicosa (Benth.) Triana form a strongly supported group (clade E : $\mathrm{PP}=1.00 ; \mathrm{BP}=100 \%$), termed Sandemania and allies, that is sister ($\mathrm{PP}=0.99 ; \mathrm{BP}=79 \%$) to a strongly supported Siphanthera (clade F: PP = 1.00; $\mathrm{BP}=100 \%$). In the Bayesian analysis Clade $\mathrm{E}+\mathrm{F}$ is sister to the remaining clades $\mathrm{G}-\mathrm{K}(\mathrm{PP}=0.95)$, whereas in the parsimony analysis this relationship is unresolved.

Macairea and some Ernestia spp. form a strongly supported clade (clade G: $\mathrm{PP}=1.00 ; \mathrm{BP}=100 \%$), comprising the subclades Macairea s.s. $(\mathrm{PP}=1.00$; BP $=100 \%$) and Ernestia s.s. $(\mathrm{PP}=0.61 ; \mathrm{BP}<50 \%)$. Relationships in Macairea are not well resolved, and Macairea lasiophylla (Benth.) Wurdack and M. multinervia Benth. are successively recovered as sisters to Ernestia s.s. Clade H (Nepsera and allies) ($\mathrm{PP}=0.98$; BP $=85 \%$) is composed of two major subclades with intermingled genera. The monotypic genus Nepsera is sister to ($\mathrm{PP}=0.92 ; \mathrm{BP}=92 \%$) the Ernestia pullei Gleason + Appendicularia thymifolia (Bonpl.) DC. subclade ($\mathrm{PP}=1.00 ; \mathrm{BP}=100 \%$). The other subclade is formed by Acanthella and the Ernestia maguirei Wurdack subclade ($\mathrm{PP}=0.99$; $\mathrm{BP}=88 \%$), but support is low ($\mathrm{PP}=0.79 ; \mathrm{BP}<50 \%$).

Marcetia was recovered as monophyletic with strong support in all analyses (clade I: PP = 1.00; $\mathrm{BP}=99 \%)$. Although the relationships of this clade to other genera is not strongly supported in all analyses, our results suggest that Marcetia is related to the Fritzschia and Comolia section Tricentrum clade and Aciotis. The Fritzschia and Comolia section Tricentrum clade (clade J: PP = 1.00; $\mathrm{BP}=100 \%$) is composed of two geographically related subgroups: the weakly supported and/or paraphyletic Comolia sertularia (DC.) Triana subclade, but which is morphologically well defined, and the Fritzschia subclade ($\mathrm{PP}=1.00 ; \mathrm{BP}=95 \%$), which is strongly supported in all analyses. Lastly, Aciotis (clade K: PP $=1.00$; BP $=99 \%$) is resolved as sister to the Fritzschia and Comolia section Tricentrum clade.

Morphological inference

Six morphological characters traditionally used in taxonomy of the genera of the Marcetia alliance were reconstructed onto the combined phylogenetic tree (Fig. 3). Although most of them revealed some degree of homoplasy, when combined they can be useful in diagnosing some of the clades recovered in the molecular analyses. In the optimization of floral merosity, the presence of pentamerous flowers was informative for characterizing the Acisanthera bivalvis and Acisanthera s.s. subclades, except for Comolia ayangannae which is tetramerous, and this may be why Wurdack (1964) described it in Comolia. The number of ovary locules was highly homoplastic. However, in association with floral merosity it was useful to circumscribe the Acisanthera bivalvis (pentamerous; bilocular) and Acisanthera s.s. subclades (pentamerous; trilocular). Although Macairea and Ernestia have not been adequately sampled, our analyses showed that ovary pubescence is an important character to diagnose the Ernestia s.s. subclade, which is the only clade of Ernestia with trichomes on the ovary. Most species of the alliance have arched or curved anthers; however, straight anthers are common in the monophyletic Aciotis, Marcetia and Siphanthera. Almost all genera have well-developed pedoconnectives on the antesepalous stamens, with the exception of Marcetia, in which the connective is not prolonged below the anther. Lastly, in only one species of the Acisanthera bivalvis subclade and most Siphanthera spp. the antesepalous stamens are fertile.

DISCUSSION

Phylogenetic relationships in the Marcetia alliance

 Our results confirm the monophyly of the Marcetia alliance as previously shown by Michelangeli et al. (2013). In that work the Marcetia alliance was characterized by the tetramerous flowers, number of ovary locules equal to the number of petals (tetralocular) or reduced to two or three locules, absence of crown hairs on the ovary apex, and the seeds cochleate, ovate or lacrimiform (Michelangeli et al., 2013). Furthermore, in the Marcetia alliance the pubescence of the ovary is glandular, whereas in most of members of Melastomeae s.s. it is eglandular. A recent study suggested the presence of three layers in the outer integument of the ovule as a possible synapomorphy for the Marcetia alliance (Caetano, 2014).In this study, with a more comprehensive sampling, we tested for the first time the monophyly of all genera of the Marcetia alliance and their

Figure 3. Reconstruction of morphological characters onto a 50% majority-rule Bayesian tree showing the evolution of: A, floral merosity; B, ovary pubescence; C, ovary locule number; D, filament/anther angle at anthesis; E, pedoconnective in antesepalous stamens; and F, anther fertility. CI, consistency index; RI, retention index.
boundaries and relationships. Among the genera with more than two species, Aciotis, Fritzschia, Siphanthera and Marcetia were recovered as monophyletic. Also, the monotypic genera Appendicularia, Nepsera and Sandemania are morphologically well characterized. The traditionally problematic genera Comolia, Ernestia and Macairea were shown to be polyphyletic or paraphyletic and Acisanthera was recovered as paraphyletic, because it included Comolia ayangannae. Comolia and Ernestia are distributed in four and three distantly related clades, respectively, whereas Comolia vernicosa emerged as an isolated lineage. However, the Comolia clades are morphologically well defined and/or geographically structured. Few of the morphological characters analysed constituted strict synapomorphies; nonetheless, it is possible to circumscribe most clades morphologically with a specific combination of features. With the aim of supporting and informing a future generic revision of groups in the Marcetia alliance, we discuss and characterize each of the clades recovered in our phylogenetic analyses in the following paragraphs.

Comolia montana clade

This lineage includes two species endemic to tepuis in the Guayana highlands. Gleason (1939a; 1952) recognized and distinguished C. coriacea Gleason and C. montana from other Comolia spp. mainly by the coriaceous leaves with ciliate trichomes. Additionally, the leaves are thick, with visible stomatal crypts, a hypanthium with indument in the torus region and almost pyramidal seeds that are larger than in other Comolia spp. The monotypic Comoliopsis was not sampled in this study, but based on morphology of the leaves, anthers, seeds and geographical distribution it may belong in this clade. However, this needs to be further evaluated because C. montana and C. coriacea have flowers that are tetramerous and have a glabrous ovary apex and a bilocular ovary, whereas in Comoliopsis the flowers are pentamerous, the ovary has glandular trichomes and it is (tri-) tetramerous (Wurdack, 1984). If indeed Comoliopsis forms part of this clade, then these Comolia spp. may be combined into Comoliopsis.

ERnestia section Pseudoernestia clade

This clade is composed of E. cordifolia O.Berg ex Triana and E. glandulosa Gleason. Cogniaux (1885) placed E. cordifolia in Ernestia section Pseudoernestia Cogn. Later, Krasser (1893) elevated this section to generic rank, whereas Wurdack, Renner \& Morley (1993) synonymized it in Ernestia. These two species differ from other Ernestia spp. by their glabrous,
trilocular ovary, almost rounded calyx tube with narrowly oblong lobes and tuberculate dorso-basal connective with ventral, simple aristae, but differ from each other in the inflorescence and floral merosity. Commonly, E. cordifolia has a terminal inflorescence with pentamerous flowers and E. glandulosa an axillary inflorescence and tetramerous flowers. A relationship between these species was suggested by Gleason (1925), based on their trilocular ovary. Despite the differences between these two species, our results revealed they are not closely related to the Ernestia s.s. clade and should be segregated as a resurrected Pseudoernestia Krasser.

Comolia s.s. clade

The Comolia s.s. clade includes almost all species of Comolia section Comolia, as suggested by Cogniaux (1885). They are mainly characterized by bilocular ovaries and seeds with a tuberculate and costate surface. Except for C. ovalifolia Triana, which is tetralocular and occurs in restinga vegetation in northern and north-eastern Brazil, all other species in this clade are found in lowland savannas of northern South America, Trinidad and northern Brazil. Although Comolia berberifolia, the type of the genus, was not sampled, we are confident that this clade indeed represents Comolia s.s. Comolia berberifolia is known only from the type collection. However, it is clear that C. berberifolia is part of the same species complex as C. villosa (Wurdack, 1973, cited as C. veronicaefolia Benth.) and may be the same taxon as C. lythrarioides Naudin if the complex is treated as a group of small segregated species.

Acisanthera s.l. Clade

Acisanthera was included in previous molecular phylogenetic analyses (Fritsch et al., 2004; Michelangeli et al., 2013), but the limited sampling so far has been insufficient to understand relationships in this morphologically complex group. Kriebel (2008) performed a morphological phylogenetic analysis for this genus, suggesting that Acisanthera was not monophyletic because Acisanthera tetraptera was more closely related to Siphanthera, based on the rostrate anther apex and bilobed ovary apex. However, in our study, A. tetraptera was recovered as sister to the remaining Acisanthera spp. and not closely related to Siphanthera. Acisanthera tetraptera is characterized by axillary or terminal inflorescences, the capitate cymes subtended by foliaceous bracts, anthers with a rostrate apex, glandular style, tetralocular ovary with glandular trichomes and seed surface ridged with minute tubercles. The A. hedyotidea subclade comprises species currently grouped in

Acisanthera section Dicrananthera, characterized by tetramerous flowers. These species resemble A. tetraptera in the tetramerous flowers and bilocular ovary, but differ in the morphology of leaves, stamens and seeds: the leaves are fleshy, the thecae are small with broad pores and the connective is prolonged into two upturned, subulate-aristate appendages. Additionally, the seed surface is not covered with tubercles. The A. bivalvis subclade is composed of six species of annual herbs, commonly found in swampy areas. It is easily diagnosed by the commonly inflated stems, sessile leaves that can be heterophyllous, pentamerous flowers and bilocular ovary. Lastly, the Acisanthera s.s. subclade is the only group in the Marcetia alliance with pentamerous flowers and trilocular ovaries. Seco (2006) suggested that Acisanthera and Comolia could be related based on their seed morphology, ovary locules and stamens. Also, only the Acisanthera s.s. clade has anthers that are similar to Comolia s.s., but the floral merosity and the number of ovary locules are different. Acisanthera s.l. could become monophyletic with the inclusion of Comolia ayangannae in Acisanthera. Although the morphological relationship of C. ayangannae with this clade is not obvious, this possibility should be studied further, as in the original description of this species, Wurdack (1964) compared its stamens to Acisanthera alsinaefolia (DC.) Triana. Although Acisanthera could easily become monophyletic with the inclusion of C. ayangannae, perhaps it is more appropriate to recognize each of the four clades as separate genera because they are morphologically distinct and well characterized, whereas Acisanthera as a whole is morphologically heterogeneous and difficult to characterize. Note that sections Dicrananthera and Noterophila were previously treated as genera by Presl (1832) and Martius (1831), respectively. Additionally, the four groups of Acisanthera are also ecologically distinct.

Sandemania and allies clade

Sandemania has long been a nomenclaturally and taxonomically confusing entity. Its sole species was first described in Leandra Raddi (Miconieae) by Cogniaux (1909), using an illegitimate name, and later based on a different type in Comolia (Tibouchinae). Later, Gleason (1939b) described the monotypic Sandemania (based on S. lilacina Gleason), also in tribe Tibouchineae. However, Wurdack (1970) later realized that Comolia hoehnei Cogn. and Sandemania lilacina were indeed the same species and made the appropriate transfer. Renner (1987) reviewed this genus and argued that it was closely related to Macairea, Comolia and Tibouchina Aubl. However, the phylogenetic studies of Michelangeli et al. (2013)
revealed that Sandemania is not related to Tibouchina and does not belong in Melastomeae s.s. Our results confirmed that the sole species in the genus, S. hoehnei (Cogn.) Wurdack, belongs to the Marcetia alliance and is related to Comolia vernicosa. These two species share some characters, such as tetramerous flowers, a glabrous ovary, and rostrate and corrugated anthers. Also, both occur in open savannas from the Amazon Basin. Despite these similarities, we agree with Renner (1987) that S. hoehnei cannot be accommodated in any other genus, because of its unique combination of characters: paniculate inflorescence with many small flowers, stamens with ventrally bilobed pedoconnectives at filament insertion, corrugated anthers, glabrous ovary and seeds with a shallowly tuberculate surface. Likewise, C. vernicosa was first described in Leiostegia Benth. (Bentham, 1840) and later synonymized in Comolia by Triana (1871). However, it is easily distinguished from all the groups of Comolia and from S. hoehnei by its glabrous, uninerved leaves with a revolute margin, fasciculate and axillary flowers, and tetralocular ovary.

Siphanthera clade

Siphanthera was long assigned to Microlicieae in traditional morphological studies by Naudin (18491853), Triana (1871), Cogniaux $(1883,1891)$ and Krasser (1893), probably based on its staminal ventral appendages and seeds (Almeda \& Robinson, 2011). Later, Renner (1993) transferred the genus to a broadly circumscribed Melastomeae and this was corroborated by morphological and molecular analyses (Almeda \& Martins, 2001; Clausing \& Renner, 2001; Fritsch et al., 2004) and more recently in the Marcetia alliance (Michelangeli et al., 2013). The monophyly of Siphanthera was previously recovered in morphological analyses (Almeda \& Robinson, 2011) and is corroborated in this study. The ellipsoid to lacrimiform seed with elongated cells can be considered an autapomorphy for Siphanthera. Beyond the unique seed morphology, Siphanthera is also characterized by the herbaceous habit (annual or perennials), usually $<100 \mathrm{~cm}$ tall, mostly four fertile stamens, sometimes with one to four staminodes, anthers straight, commonly rostrate or occasionally truncate, connective dorsally thickened, rarely prolonged below the thecae, modified into well-developed ventral appendages and style occasionally enlarged below the stigma. Kriebel (2008) suggested that Siphanthera is morphologically related to Acisanthera tetraptera. However, Almeda \& Robinson (2011) suggested that the similarity of the anther between the two taxa could be due to convergence or parallelism, as it occurs between the seeds of

Siphanthera and Microlicieae. In our study, Siphanthera is phylogenetically related to the Sandemania and allies clade. However, the two species in this clade are differentiated from Siphanthera mainly by the stamens, in which both cycles are fertile, the anthers are larger and the pedoconnective is clearly prolonged below the thecae. Also, the leaves are completely coriaceous, and they are mostly shrubs up to 2 m tall.

Macairea s.s. + Ernestia S.s. clade

According to Renner (1989), Macairea is characterized by the presence of a dorso-basal connective anther appendage and glandular trichomes in the vegetative and reproductive structures. In our analysis, Macairea was not resolved as monophyletic because Ernestia s.s. is resolved in Macairea. In Macairea, M. lasiophylla and M. multinervia are resolved as a grade basal to subtending Ernestia s.s. (Fig. 2). Although only five Macairea spp. were sampled, from a total of 22 , making it difficult to infer internal relationships, the characters used by Cogniaux (1891), Gleason (1934) and Renner (1989) as diagnostic are clearly not appropriate for recognizing the genus or its sections, because they also occur in unrelated genera. Macairea was divided by Renner (1989) into two groups based on trichome types. Even though our sampling does not allow a clear test of these groups, some trends are apparent. Macairea thyrsiflora DC. treated in 'group A' by Renner (1989) was recovered with M. pachyphylla Benth. and M. radula (Bonpl.) DC. from 'group B', indicating that hair type alone is not an informative character for recognizing species groups in this genus. The Macairea s.s. subclade is phylogenetically well resolved and supported by staminal filaments with short-stalked glands, a prolonged and dorso-basally expanded connective, without well-developed appendages, and a glandular style and ovary. On the other hand, M. lasiophylla has a set of characters that are not clearly related to any other genera, including straight anthers, with the connective briefly prolonged and modified into two bilobed appendages and a glabrous filament and style, besides other differences in vegetative structure and habit. In general, the flowers of M. multinervia are similar to those of the Macairea s.s. subclade, except for the presence of glands on the filament and style. Also, its leaves are thinner, basally cordate and seven- to nine-nerved; differing from all other Macairea spp. (Renner, 1989). Wurdack (1966) argued that the pubescence and floral features of M. lasiophylla indicate that it represents a reduced evolutionary offshoot related to M. multinervia, with stamens really quite conformable to other species in the genus. Renner
(1989) suggested that the ventral appendages of M. lasiophylla could be similar to those of Acisanthera and Ernestia. However, the ventral appendages of the Ernestia s.s. subclade are long with two bifurcated aristae. The Ernestia s.s. subclade is constituted by the species of Ernestia section Ernestia. Although support for this subclade is weak, this group is morphologically well characterized by tetramerous flowers and a tetralocular ovary with a glandular-setose apex (Cogniaux, 1885). Also, this is the only clade of Ernestia where the large stamens have aristate and bifurcated ventral appendages and a dorsal spur at the median part of the antesepalous pedoconnective.

Nepsera and alues clade

This strongly supported clade includes two easily recognized monotypic genera: Nepsera and Appendicularia. It also includes the only species sampled of Acanthella, a genus composed of two species, and some Ernestia spp. Nepsera aquatica (Aubl.) Naudin is a herb or small shrub, commonly found in swampy areas and it differs from Appendicularia by its paniculate lax inflorescences, terminal and nearly isomorphic stamens with a briefly prolonged connective and bilobed ventral appendages. In the Appendicularia + Ernestia pullei subclade the inflorescences are paniculate and terminal, but not lax and slender as in Nepsera. Also, the hypanthium is clearly eight-ridged, tubulose-campanulate with semicircular calyx lobes and the connective is prolonged with ventral appendages basally enlarged with long terminal aristae. Acanthella was placed in Merianeae by Bentham \& Hooker (1867). Although Acanthella shares some features with members of this tribe, they are differentiated by seed morphology. All genera of Marianeae have elongate, wingless or narrowly winged seeds, whereas in Acanthella they are large, broad and strongly winged (Gleason, 1952). Renner (1993) transferred Acanthella to Melastomeae and more recently it was recovered in the Marcetia alliance (Michelangeli et al., 2013). Our results did not determine accurately the relationships of Acanthella sprucei Benth. \& Hook.f. However, this genus is supported by morphological synapomorphies including yellow to orange petals and winged seeds. Although the Ernestia maguirei subclade is phylogenetically well supported, this clade consists of three morphologically distinct species. Ernestia confertiflora Wurdack + E. rubra Pulle have basally inflated ventral appendages with two terminal aristae. In E. maguirei, the stamens are not enlarged at the base, the aristae are smaller and the appendages are dorsally auriculate, similar to those of E. rubra but different from E. confertiflora.

In addition, E. maguirei has a glandular style and tetralocular, glabrous ovary. Morphologically, this subclade is particularly difficult to characterize due to the absence of synapomorphies or even a set of exclusive morphological characters. The incomplete sampling of Ernestia associated with its morphological diversity precluded a morphological characterization of the E. maguirei subclade, as well as resolving generic relationships. Currently, this is the most complex clade in the Marcetia alliance, with great diversity of habit, inflorescence, stamen and seed morphology, and the one most in need of further studies.

Marcetia clade

The monophyly of Marcetia is well supported and the genus was previously recovered as monophyletic by Santos (2009) using nrITS sequence data. Accordingly, its floral morphology is quite homogeneous, despite being the largest genus in the alliance. Putative morphological synapomorphies for Marcetia include usually isomorphic, straight anthers surrounding the style at anthesis and a connective without appendages, not prolonged and thickened at the base of the thecae. Aciotis, Comolia, Fritzschia and Nepsera were traditionally associated with Marcetia in molecular and/or morphological studies (Martins, 1989; Santos, 2009; Almeda \& Robinson, 2011; Michelangeli et al., 2013). In our analysis, Marcetia is resoved as sister to the clade formed by Fritzschia and Comolia section Tricentrum clade + Aciotis. In terms of morphological relationships, Aciotis lacks a pedoconnective and appendages or they are occasionally poorly developed, as in Marcetia, but the connective of Aciotis is never thickened at the base of thecae. In addition, fruit, leaf morphology and habitat of Aciotis spp. are different from Marcetia. In Comolia, species of Comolia section Tricentrum (the Comolia spp. in clade J) are those phylogenetically more closely related to Marcetia. In terms of distribution, Fritzschia and Marcetia occur predominantly in the campos rupestres (rocky fields) vegetation of the Espinhaço Range in Brazil. However, Marcetia is concentrated in the northern part of the Espinhaço, whereas the Fritzschia + Comolia section Tricentrum clade is found in the southern part. This group of Comolia is distinguished from Marcetia mainly by the well-developed pedoconnective, modified into bilobed ventral appendages. In Fritzschia, the pedoconnective can be briefly prolonged and modified at the filament insertion, into conspicuous lobes or auricules, as in F. erecta Cham., or have well-developed pedoconnective and ventral appendages. Also, Fritzschia has anthers that are purple/dark pink, whereas in Marcetia they are always yellow. Lastly,
the phylogenetically distantly related genus Nepsera has a shortly developed pedoconnective, ventral appendages and a unique inflorescence pattern.

Fritzschia and Comolia section Tricentrum clade

This clade is strongly supported by molecular data and recognized mainly by its stems and leaves with glandular trichomes, and tetralocular ovary. Additionally, this clade is mostly endemic to the Espinhaço Range in Minas Gerais state, except for Comolia lanceiflora (DC.) Triana, which also occurs in Goiás and Distrito Federal. The six Comolia spp. recovered here were treated in Comolia section Tricentrum by Cogniaux (1885). Comolia vernicosa, which was also placed in section Tricentrum, is actually more closely related to Sandemania (see above). Comolia section Tricentrum is recognized by the curved anthers, pedoconnective well developed below the thecae, normally purple, with two small tuberculate ventral appendages and dorsal appendages not developed. Fritzschia consists of three species that also have a well-prolonged pedoconnective modified into auriculate ventral appendages, except for F. erecta, in which the pedoconnective is absent or shortly developed with small auriculate appendages. In addition, these species have a prostrate and decumbent habitat, leaf lamina with translucent glands and hypanthium and ovary with secretory structures. Martins (1989) suggested that Fritzschia is morphologically related to Marcetia, differing by the presence of glands in the leaves and by becoming black when dried. However, these genera also differ in stamen features: in Fritzschia they are similar to those of the Comolia section Tricentrum, except in F. erecta. As the species of Comolia section Tricentrum are paraphyletic, share several morphological characters and geographical distribution with Fritzschia, and clade J has strong support in all phylogenetic analyses, the best option to circumscribe a monophyletic genus would be to include everything in this clade in Fritzschia.

Aciotis Clade

Aciotis is morphologically easily recognized by the presence of tetramerous flowers, $<1.5 \mathrm{~cm}$ long, absence of connective appendages, straight anthers and bilocular ovary (rarely trilocular), among other features (Freire-Fierro, 2002). Ecologically, the genus is often found in flooded areas or in waterlogged soils, in open and forested areas. Some studies have suggested that Aciotis has affinities with Nepsera (Clausing \& Renner, 2001; Fritsch et al., 2004; Kriebel, 2008) and/or Marcetia (Almeda \& Robinson, 2011). However, in our analysis Aciotis is moderately
to strongly supported as sister to the Fritzschia and Comolia section Tricentrum clade. In the Marcetia alliance, Aciotis and Nepsera are the only genera that occur mainly in moist areas in forest edges. According to Freire-Fierro (2002), it is possible to recognize two main groups in Aciotis based on inflorescence patterns, fruits and presence of sclereids. In our study we recovered these two groups with some intermediate species, as suggested by Freire-Fierro (2002). The first group, which includes Aciotis annua (Mart. ex DC.) Triana and A. polystachya (Bonpl.) Triana, has filiform sclereids, biparous to double biparous cymose inflorescences and dry capsular fruits. The second group includes A. circaeifolia (Bonpl.) Triana, A. indecora (Bonpl.) Triana, A. purpurascens (Aubl.) Triana and A. rubricaulis (Mart. ex DC.) Triana and has thyrsoid to paniculate inflorescences and baccate fruits. Aciotis paludosa (Mart. ex DC.) Triana and A. acuminifolia (Mart. ex DC.) Triana have characteristics of both groups.

Morphological optimizations

Some morphological characters traditionally used in the taxonomy of the Marcetia alliance were reconstructed in light of the molecular phylogenetic analysis, emphasizing their evolution inside the alliance (Fig. 3). Levels of homoplasy for each character were measured by CI and RI (Fig. 3). Individually, none of the studied characters supported the groups recovered in the molecular analyses, but when combined were useful for the diagnosis of clades and genera.

Floral merosity (Fig. 3A)

Pentamerous flowers are the plesiomorphic state and the presence of tetramerous flowers is synapomorphic for the Marcetia alliance. This state is widely distributed in almost all genera, but it is not an uncontested synapomorphy as the character is optimized to have two reversals to pentamerous flowers, once in Acisanthera s.l. and once in Ernestia section Pseudoernestia. There was also a secondary shift to tetramerous flowers in Acisanthera. In fact, in this genus floral merosity is optimized as changing twice. In the Marcetia alliance, pentamerous flowers are diagnostic for the Acisanthera bivalvis subclade and the Acisanthera s.s. subclade, except for Comolia ayangannae.

Ovary pubescence (Fig. 3B)

A glabrous ovary is the ancestral state in the Marcetia alliance. Optimization of this character indicated that the plesiomorphic state was retained in almost all branches of the Marcetia alliance and that the presence of a glandular ovary in a few members of the alliance arose probably by convergence. Although glandular ovaries have evolved independently in four
different lineages, this character state proved to be useful to recognize the Ernestia s.s. subclade, which is the only clade of Ernestia with a glandular ovary. Also, in Acisanthera s.l., the glandular ovary is an autapomorphy for A. tetraptera.

Ovary locule number (Fig. 3C)

The number of ovary locules is reduced to two to four in the Marcetia alliance from five in the outgroups. This character has played an important role in the circumscription of genera and sections in the Marcetia alliance, but it is highly homoplastic with multiple character state transitions inferred by our reconstructions. In the Marcetia alliance and related tribes such as Microlicieae and Rhexieae, the number of ovary locules is commonly equal to or smaller than the number of petals, except in Melatomeae s.s. which has a pentalocular ovary and tetra- or pentamerous flowers (Michelangeli et al., 2013). Although homoplastic, the ancestral state (two locules) was retained in the Comolia montana clade, Acisanthera tetraptera, the Acisanthera hedyotidea subclade, the Acisanthera bivalvis subclade, Sandemania hoehnei, Siphanthera and, by reversal, in Aciotis. Although the same number of ovary locules evolved independently in unrelated groups, this character is more conserved in monophyletic genera and can be potentially useful as diagnostic when associated with other characters.

Filament/anther angle at anthesis (Fig. 3D)

Straight anthers are uncommon in capsular-fruited Melastomataceae, which are usually characterized by the strongly curved anthers. Among the outgroups, straight anthers appeared only in Chaetostoma armatum (Spreng.) Cogn., which is one of the most distinctive members of Microlicieae (Fritsch et al., 2004). The reconstruction of this character in the Marcetia alliance suggests that arched or curved anthers were the ancestral condition in the group. However, straight anthers evolved, independently, at least four or five times in unrelated clades of the group. Despite the high level of homoplasy, this character can be useful to characterize some clades of non-monophyletic genera. In Comolia, for example, only the C. montana clade has slightly straight anthers, whereas the other clades retained the ancestral state. The monophyletic Siphanthera, Marcetia and Aciotis (clades F, I and K, respectively) also have straight anthers. In these genera the pedoconnective is absent or, when present, it is not articulated at the filament insertion.

Pedoconnective in antesepalous stamens (Fig. 3E) The presence of a pedoconnective was treated by Clausing \& Renner (2001) as a possible
synapomorphy for an expanded concept of Melastomeae, Microlicieae and Rhexieae. In the Marcetia alliance the pedoconnective varies widely; it may be well developed or reduced. The reconstruction analysis showed that this structure was lost in a few members of the Marcetia alliance; it is also absent in Rhexieae, and in some species of Melastomeae s.s. Our results suggest that the ancestor of Marcetia had pedoconnectives and that it was lost in more derived lineages of Marcetia, except in M. candolleana A.K.A.Santos \& A.B.Martins and M. grandiflora Markgr., where it is present and probably represents a reversal. Marcetia is mainly characterized by a connective that is not prolonged, but is thickened at the base of the thecae. In future research, the evolution of the androecium should be investigated using morphometric tools to characterize this variation. In Aciotis, Nepsera and Siphanthera, the pedoconnective is poorly developed and briefly prolonged below the thecae.

Anther fertility (Fig. 3F)

Most genera of Melastomataceae are diplostemonous, having two cycles of stamens. The plesiomorphic state in the Marcetia alliance is for both cycles to be fertile and this character state was conserved in most genera. A single fertile cycle is an important character to characterize Siphanthera, in which only two species (S. cowanii Wurdack and S. paludosa Cogn.) have diplostemonous flowers. The remaining species can have an antepetalous cycle with one to four staminodia, or it may be absent altogether. According to Almeda \& Robinson (2011), the loss of fertile stamens among the species of Siphanthera does not seem to have any consistent evolutionary pattern. Heteranthery has occurred to varying degrees in all major clades of the alliance. Our analyses also did not recover any apparent pattern and we agree with Almeda \& Robinson (2011) that knowledge about the pollinator spectrum for each species may help in understanding the forces that are driving these losses.

Other characters

Other morphological characters with potential for characterization of clades were also investigated, but were not included in the results because it was difficult to code them and establish homology hypotheses or they were continuous. Nevertheless, some are useful for characterization of genera or groups of species. The stamens of the Marcetia alliance, for example, although highly variable, can be used to recognize some genera by the shape of the ventral connective appendages. In Ernestia s.s., the stamens have a long pedoconnective and two aristate ventral appendages. This type of appendage, with developed long caudate projections, is common only in Ernestia
and related groups, such as Appendicularia. In most other genera, the ventral appendages tend to be bilobed or bituberculate, rarely auriculate, with broad variation in size between genera.

CONCLUSIONS AND PERSPECTIVES

This study represents a major step towards understanding generic relationships in the Marcetia alliance. Sampling was significantly expanded and now includes 64% of all species putatively assigned to the group. New sequences for five markers was generated in this study. With this expanded data set, we confirmed the monophyly of the Marcetia alliance and the genera Aciotis, Fritzschia, Marcetia and Siphanthera. The paraphyletic or polyphyletic Comolia, Ernestia and Macairea have been traditionally diagnosed on the basis of a few, broadly distributed, homoplastic characters, and should be re-circumscribed based on well-supported clades and diagnostic morphological characters.

A potential difficulty for taxonomic re-circumscriptions in Melastomataceae is the lack of synapomorphies or even of a set of morphological characters of diagnostic value for well-supported clades identified in molecular phylogenetic analyses. Many characters treated as diagnostic in the past appear to have evolved independently, a problem also seen in Miconieae (Michelangeli et al., 2004; Goldenberg et al., 2008; Martin et al., 2008; Kriebel et al., 2015), Blakeeae (Penneys \& Judd, 2013) and Henrietteeae (Penneys et al., 2010). Due to this pervasive presence of homoplasy, character combinations could be more useful to diagnose well-supported clades associated with distributional and ecological data. This approach will be essential to understand and characterize different groups. In our study, we found few uncontested synapomorphies for larger clades. However, our results reveal a strong geographical and ecological structure for several well-supported clades, in which the species tend to occur in the same environment and, hence, biogeographical region.

With these criteria in mind, our results suggest that several taxonomic realignments are necessary in the Marcetia alliance. However, additional sampling of taxa and markers could potentially improve resolution and enable a more meaningful interpretation of the morphological and biogeographical patterns for the recovered clades. For example, Ernestia and Comolia should be segregated into two or more genera. Generic recircumscriptions are also necessary for Macairea and Acisanthera. All four clades of Comolia are morphologically well characterized or geographically structured and our results support the recircumscription of this genus based on the
recognition of monophyletic units. As currently understood, Macairea is paraphyletic. However, more taxa and probably also markers are needed to clarify relationships in this genus and with Ernestia.

Another approach with potential to be investigated in the Marcetia alliance is the evolution of morphological characters, such as androecium and seeds. Understanding the evolution of these structures may provide some clues to the colonization of disjunct habitats such as the campos rupestres of the Espinhaço Range, cerrado of central Brazil, Amazonian savannas, restingas of northern and north-eastern Brazil and the Guayana highlands by the genera of this alliance.

Lastly, three genera that may potentially be part of the Marcetia alliance remain unsampled: Comoliopsis, Loricalepis and Poteranthera. Comoliopsis is without doubt a member of this clade, and perhaps even closely related to Comolia montana (see above). Loricalepis is a poorly collected genus from northern Brazil characterized by tetramerous flowers and anthers without appendages or pedoconnectives, which would suggest a relationship with the Marcetia alliance (Brade, 1938; Pereira, 1959). Moreover, its leaves are similar to some Macairea spp. However, the seeds of Loricalepis are typically 'tibouchinoid' and the apex of the ovary is pubescent (Brade, 1938; Pereira, 1959; Whiffin \& Tomb, 1972), characters typically associated with core Melastomeae (Michelangeli et al., 2013). Poteranthera is a genus of uncertain affinities, with three species of tiny, tetramerous herbs from savannas of Brazil and Venezuela that at times has been suggested to be near Acisanthera or Siphanthera (Kriebel, 2012).

ACKNOWLEDGEMENTS

We thank the curators and staff of ALCB, BHCB, CEPEC, HUEFES, HUFU, INPA, IAN, MG, MIRR, RB, SP, SPF, NY and US for specimen loans or assistance during visits and the Brazilian conservation bodies ICMBio and IEF Minas Gerais for scientific collection permits. Financial support was provided by Fundação de Amparo a Pesquisa do Estado de Minas Gerais - FAPEMIG (PPM-00226-12), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (PNADB/UFMG-922/2010), Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (REFLORA 563541/2010-5) and National Science Foundation - NSF (DEB-1343612 and DEB-1140409). This research was supported by scholarships from CAPES, FAPEMIG and CNPq (sandwich doctorate, 210299/2013-4) to M.J.R.R. J.A.N.B. also acknowledges a scholarship received from CNPq (Pq-2). The first author thanks K. Sosa and M. Sewell for their assistance in the laboratory
of the Cullman Program for Molecular Systematics at NYBG and Olivier Gaubert and F. FajardoGutiérrez for the photographs.

REFERENCES

Alexander PJ, Rajanikanth G, Bacon CD, Bailey CD. 2007. Recovery of plant DNA using a reciprocating saw and silica-based columns. Molecular Ecology Notes 7: 5-9.
Almeda F, Martins AB. 2001. New combinations and new names in some Brazilian Microlicieae (Melastomataceae), with notes on the delimitation of Lavoisiera, Microlicia, and Trembleya. Novon 11: 1-7.
Almeda F, Robinson OR. 2011. Systematics and phylogeny of Siphanthera (Melastomataceae). Systematic Botany Monographs 93: 1-101.
Amorim AM, Goldenberg R, Michelangeli FA. 2009. A new species of Physeterostemon (Melastomataceae) from Bahia, Brazil, with notes on the phylogeny of the genus. Systematic Botany 34: 324-329.
Baumgratz JFA, Caddah MK, Chiavegatto B, Goldenberg R, Guimarães PJF, Koschnitzke C, Kriebel R, Lima LFG, Martins AB, Michelangeli FA, Reginato M, Rocha MJR, Rodrigues KF, Romero R, Rosa P, SilvaGonçalves KC, Souza MLDR, Woodgyer E. 2015. Melastomataceae. In: Forzza, R. C. et al., eds. Lista de espécies da Flora do Brasil. Rio de Janeiro: Jardim Botânico do Rio de Janeiro, Available at http://floradobrasil.jbrj.gov.br/jabot/ floradobrasil/FB161. (acessed 2 July 2015).
Bécquer-Granados ER. 2008. Taxonomía y filogenia del género Pachyanthus (Melastomataceae: Miconieae). Ciudad de La Haban: Universidad de la Habana.
Bentham G. 1840. Enumeration of plants collected by Mr. Schomburgk in British Guiana. Melastomaceae. Journal of Botany (Hooker) 2: 286-315.
Bentham G, Hooker JD. 1867. Melastomataceae. Genera Plantarum 1: 748.
Brade AC. 1938. Melastomataceae Novae II. Archivos do Instituto de Biologia Vegetal 4: 71-84.
Caetano AP. 2014. Contribuição da embriologia na sistemática e na elucidação da apomixia em Melastomataceae Juss. Campinas, SP: Universidade Estadual de Campinas.
Candolle APD. 1828. Mémoires sur la famille des Mélastomacées. Prodromus Systematis Naturalis Regny Vegetabilis 3: 99-102.
Clausing G, Renner SS. 2001. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. American Journal of Botany 88: 486-498.
Cogniaux CA. 1883. Melastomataceae. Flora Brasiliensis 14: 5-205.
Cogniaux CA. 1885. Melastomataceae. Flora Brasiliensis 14: 1-510.
Cogniaux CA. 1891. Melastomaceae. Monographiae Phanerogamarum 7: 1-1256.
Cogniaux CA. 1909. Melastomataceae peruvianae. Botanische Jahrbücherfür Systematik. 42: 131-148.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.
Erixon P, Svennblad B, Britton T, Oxelman B. 2003. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52: 665673.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20: 406-416.
Freire-Fierro A. 2002. Monograph of Aciotis (Melastomataceae). Systematic Botany Monographs 62: 1-129.
Fritsch PW, Almeda F, Renner SS, Martins AB, Cruz BC. 2004. Phylogeny and circumscription of the near-endemic Brazilian tribe Microlicieae (Melastomataceae). American Journal of Botany 91: 1105-1114.
Gleason HA. 1925. Studies on the flora of northern South America-VI. Bulletin of the Torrey Botanical Club 52: 325340.

Gleason HA. 1934. The genus Macairea DC. in northern South America. Bulletin of the Torrey Botanical Club 61: 35-40.
Gleason HA. 1939a. The flora of Mount Auyan-Tepui, Venezuela. Brittonia 3: 141-204.
Gleason HA. 1939b. A new genus of Melastomataceae from Peru. Kew Bulletin 8: 480-481.
Gleason HA. 1952. Contributions to the flora of Venezuela: from Droseraceae through Umbelliferae/Julian A. Steyermark and collaborators. Fieldiana 28: 430-431.
Goldenberg R, Almeda F, Caddah MK, Martins AB, Meirelles J, Michelangeli FA, Weiss M. 2013. Nomenclator botanicus for the Neotropical genus Miconia (Melastomataceae: Miconieae). Phytotaxa 106(1): 1-171.
Goldenberg R, Fraga CN, Fontana AP, Nicolas NA, Michelangeli FA. 2012. Taxonomy and phylogeny of Merianthera (Melastomataceae). Taxon 61: 1040-1056.
Goldenberg R, Penneys DS, Almeda F, Judd WS, Michelangeli FA. 2008. Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse neotropical genus. International Journal of Plant Sciences 24: 315-327.
Guindon S, Gascuel O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696-704.
Hamilton MB. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8: 521-523.
Ionta GM, Judd WS, Williams NH, Whitten WM. 2007. Phylogenetic relationships in Rhexia (Melastomataceae): evidence from DNA sequence data and morphology. International Journal of Plant Sciences 168: 1055-1066.
Krasser F. 1893. Melastomataceae. In: Engler A, Prantl K, eds. Die natiirlichen Pflanzenfamilien. Vol. 3. Leipzig: Verlag von Wilhelm Engelmann, 149.
Kress WJ, Prince LM, Williams KJ. 2002. The phylogeny and a new classification of the gingers (Zingiberaceae):
evidence from molecular data. American Journal of Botany 89: 1682-1696.
Kriebel R. 2008. Systematics and biogeography of the Neotropical genus Acisanthera (Melastomataceae). San Francisco: San Francisco State University.
Kriebel R. 2012. A synopsis of the genus Poteranthera (Melastomeae: Melastomataceae) with the description of a new, apparently pollinator deceiving species. Brittonia 62: 6-14.
Kriebel R, Michelangeli FA, Kelly LM. 2015. Discovery of unusual anatomical and continuous characters in the evolutionary history of Conostegia (Miconieae: Melastomataceae). Molecular Phylogenetics and Evolution 82: 289-313.
Maddison WP, Maddison DR. 2001. MESQUITE: a modular system for evolutionary analysis, Version 2.75. Available at: http://mesquiteproject.org
Martin CV, Little DP, Goldenberg R, Michelangeli FA. 2008. A phylogenetic evaluation of Leandra (Miconieae, Melastomataceae): a polyphyletic genus where the seeds tell the story, not the petals. Cladistics 24: 315-327.
Martins AB. 1989. Revisão taxonômica do gênero Marcetia DC. (Melastomataceae). Tese (doutorado), Universidade Estadual de Campinas, Intituto de Biologia, 1-288.
Martius CFP. 1831. Novae genera et species plantarum 3. Munich: Caroli Wolf, 189.
Mendoza-Cifuentes H, Fernández-Alonso JL. 2012. Novedades em Centronia y Meriania (Merianieae, Melastomataceae) y revisión taxonômica de Meriania grupo brachycera. Anales del Jardín Botánico de Madrid 69: 259294.

Michelangeli FA. 2000. A cladistic analysis of the genus Tococa (Melastomataceae) based on morphological data. Systematic Botany 25: 211-234.
Michelangeli FA, Guimaraes PJF, Penneys DS, Almeda F, Kriebel R. 2013. Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae). Botanical Journal of the Linnean Society 171: 38-60.
Michelangeli FA, Judd WS, Penneys DS, Skean JD, Bécquer-Granados ER, Goldenberg R, Martin CV. 2008. Multiple events of dispersal and radiation of the tribe Miconieae (Melastomataceae) in the Caribbean. Botanical Review 74: 53-77.
Michelangeli FA, Nicolas A, Morales-P MA, David H. 2011. Phylogenetic relationships of Allomaieta, Alloneuron, Cyphostyla, and Wurdastom (Melastomataceae) and the resurrection of the tribe Cyphostyleae. International Journal of Plant Sciences 172: 1165-1178.
Michelangeli FA, Penneys DS, Giza J, Soltis D, Hils MH, Skean JD. 2004. A preliminary phylogeny of the tribe Miconieae (Melastomataceae) based on nrITS sequence data and its implications on inflorescence position. Taxon 53: 279-290.
Michelangeli FA, Ulloa CA, Sosa K. 2014. Quipuanthus, a new genus of Melastomataceae from the foothills of the Andes in Ecuador and Peru. Systematic Botany 39: 533540.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large
phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE) New Orleans, LA. pp 1-8. Available at: http://www.phylo.org/
Naudin CV. 1849-1853. Melastomacearum monographicae descriptiones. Annales des Sciences Naturelles; Botanique. Series III. Consolidated reprint, 1-719.
Nixon KC. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407-414.
Penneys DS, Judd WS. 2011. Phylogenetics and morphology in the Blakeeae (Melastomataceae). International Journal of Plant Sciences 172: 78-106.
Penneys DS, Judd WS. 2013. Combined molecular and morphological phylogenetic analyses of the Blakeeae (Melastomataceae). International Journal of Plant Sciences 174: 802-817.
Penneys DS, Michelangeli FA, Judd WS, Almeda F. 2010. Henrietteeae (Melastomataceae): a new Neotropical berry-fruited tribe. Systematic Botany 35: 783-800.
Pereira E. 1959. Contribuição ao conhecimento das Melastomataceae brasileiras. Arquivos Jardim Botânico Rio Janeiro 17: 125-160.
Presl CB. 1832. Descriptiones et icones plantarum novarum aut minus cognitarum. Symbolae Botanicae 1: 75.
Reginato M, Michelangeli FA, Goldenberg R. 2010. Phylogeny of Pleiochiton (Melastomataceae, Miconieae): total evidence. Botanical Journal of the Linnean Society 162: 423-434.
Renner SS. 1987. Sandemania hoehnei (Melastomataceae: Tibouchineae): taxonomy, distribution, and biology. Brittonia 39: 441-446.
Renner SS. 1989. Systematic studies in the Melastomataceae Bellucia, Loreya and Macairea. Memoirs of the New York Botanical Garden 50: 1-112.
Renner SS. 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13: 519-540.
Santos AK. 2009. Estudos filogenéticos e biossistemáticos no gênero Marcetia DC. (Melastomataceae). Feira de Santana: Universidade Estadual de Feira de Santana.
Seco RS. 2006. Estudos taxonômicos no gênero Comolia DC (Melastomataceae-Melastomeae) no Brasil. Campinas: Universidade Estadual de Campinas.
Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166.
Simmons MP. 2004. Independence of alignment and tree search. Molecular Phylogenetics and Evolution 31: 874-879.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758-771.
Stone RD. 2006. Phylogeny of major lineages in Melastomataceae, subfamily Olisbeoideae: utility of nuclear glyceraldehyde 3-phosphate dehydrogenase (GapC) gene sequences. Systematic Botany 31: 107-121.
Stone RD, Andreasen K. 2010. The Afro-Madagascan genus Warneckea (Melastomataceae): molecular systematics and revised infrageneric classification. Taxon 59: 83-92.
Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA: Sinauer Associates.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
Thiers B. 2015. Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Avaliable at: http://sweetgum.nybg.org/ih/. (accessed 6 June 2015).
Triana J. 1865. Dispositio Melastomacearum. Bulletin du Congres International de Botanique et d'Horticulture reuni à Amsterdam, 457-461.
Triana J. 1871. Les Melastomacées. Transactions of the Linnean Society of London 28: 1-188.
Ung V, Dubus G, Zaragüeta-Bagils R, Vignes-Lebbe R. 2010. Xper2: introducing e-taxonomy. Bioinformatics Applications Note 26: 703-704.
van Vliet G, Koek-Noorman J, Ter Welle BJH. 1981. Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463-473.
Whiffin T, Tomb AS. 1972. The systematic significance of seed morphology in the neotropical capsular-fruited Melastomataceae. American Journal of Botany 59: 411-422.
Wilson CL. 1950. Vasculation of the stamen in the Melastomaceae, with some phyletic implications. American Journal of Botany 37: 431-444.
Wurdack JJ. 1964. Melastomataceae. Botany of the Guayana Highlands-part V. Memoirs of the New York Botanical Garden, 10: 135-186.
Wurdack JJ. 1966. Certamen Melastomataceis X. Phytologia 13: 65.
Wurdack JJ. 1970. Certamen Melastomataceis XV. Phytologia 20: 369-389.
Wurdack JJ. 1973. Melastomataceae. In: Lasser T, (ed.). Flora de Venezuela, Vol. 8. Caracas: Instituto Botanico, 1-819.
Wurdack JJ. 1984. Certamen Melastomataceis XXXVII. Phytologia 55: 131-147.
Wurdack JJ, Renner SS, Morley T. 1993. Melastomataceae. In: Górts-Van Rijn ARA, ed. Flora of the Guianas Series A: phanerogams 13. Königstein: Koeltz Scientific Books, 83-84.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:
Figure S1. Majority-rule consensus tree from a Bayesian analysis of the combined nuclear (ETS, ITS) data sets.

Figure S2. Majority-rule consensus tree from a Bayesian analysis of the combined plastid (accD-psaI, trnStrnG, atpH-atpF) data sets.

Table S1. Morphological characters and character states scored in this study as primary homology hypotheses.
Appendix: Voucher information and GenBank accession numbers for taxa used in this study. A dash (-) indicates that the DNA region was not sequenced. Herbarium acronyms according to Thiers (2015).

Species	Voucher (herbarium)	Provenance	nrITS	nrETS	accD-psaI	atpH-atpF	trnS-trnG
Acanthella sprucei Benth. \& Hook.f.	Diaz, W., 4538 (NY)	Brazil	-	-	JQ730247	-	-
Aciotis acuminifolia (Mart. ex DC.) Triana	Rocha, M. J. R., 801 (BHCB)	Brazil	-	-	KU501160	-	KU500922
Aciotis annua (Mart. ex DC.) Triana	Rocha, M. J. R., 304 (BH)	Brazil	KU501052	KU500989	KU501161	KU501106	KU500923
Aciotis circaeifolia (Bonpl.) Triana	Caddah, M. K., 621 (NY)	Brazil	JQ730038	KF462812	JQ730249	KU501108	KU500926
Aciotis indecora (Bonpl.) Triana	Martin, C. V., 411 (NY)	French Guyana	JQ730039	KF462813	JQ730250	KU501109	KU500927
Aciotis paludosa (Mart. ex DC.) Triana	Guimarães, P., 317 (RB)	Brazil	JQ730040	KF462814	JQ730251	-	KU500925
Aciotis polystachya (Bonpl.) Triana	Rocha, M. J. R., 858 (BHCB)	Brazil	KU501053	KU500990	KU501162	KU501107	KU500924
Aciotis purpurascens (Aubl.) Triana	Martin, C. V., 422 (NY)	French Guiana	JQ730041	KF462815	JQ730252	KU501110	KU500928
Aciotis rubricaulis (Mart. ex DC.) Triana	Goldenberg, R., 850 (NY)	Brazil	JQ730042	KF462816	JQ730253	KU501111	KU500929
Aciotis rubricaulis (Mart. ex DC.) Triana	Michelangeli, F. A., 2452 (NY)	Guyana	KU501057	KU500993	KU501165	-	-
Aciotis purpurascens (Aubl.) Triana	Michelangeli, F. A., 2454 (NY)	Guyana	KU501055	KU500992	KU501164	-	-
Aciotis indecora (Bonpl.) Triana	Michelangeli, F. A., 2456 (NY)	Guyana	KU501056	KU500991	KU501163	-	-
Acisanthera alsinaefolia var. glazioviana Cogn.	Macedo, A., 5539 (NY)	Brazil	KU501059	KU500995	KU501166	KU501114	KU500932
Acisanthera alsinaefolia (DC.) Triana	Goldenberg, R., 826 (NY)	Brazil	JQ730043	KF462817	JQ730254	KU501112	KU500930
Acisanthera bivalvis (Aubl.) Cogn.	Rocha, M. J. R., 871 (BHCB)	Brazil	KU501064	KU501003	KU501172	KU501117	KU500936
Acisanthera boissieriana Cogn. (synonym)	Maguire, B., 35919 (NY)	Venezuela	-	KU501002	-	-	-
Acisanthera crassipes (Naudin) Wurdack	Rocha, M. J. R., 833 (BHCB)	Brazil	KU501065	KU501004	-	KU501118	KU500937
Acisanthera genliseoides (Hoehne) Wurdack	Rocha, M. J. R., 942 (BHCB)	Brazil	KU501066	KU501005	KU501173	KU501119	KU500938
Acisanthera hedyotidea (C.Presl.) Triana	Popovick, A., s.n. (BHCB)	Brazil	-	KU501001	-	-	-
Acisanthera limnobios (Schrank \& Mart. ex DC.) Triana	Moreira, S. N., 312 (BHCB)	Brazil	-	KU501006	KU501174	-	-
Acisanthera paraguayensis (Hook.f.) Cogn	Krapovickas, A., 45640 (NY)	Paraguay	KU501058	KU500994	-	KU501113	KU500931
Acisanthera quadrata Pers.	Rocha, M. J. R., 729 (BHCB)	Brazil	KU501060	KU500996	KU501167	-	-
Acisanthera sp.	Rocha, M. J. R., 830 (BHCB)	Brazil	KU501061	KU500997	KU501168	-	-
Acisanthera tetraptera (Cogn.) Gleason	Rocha, M. J. R., 757 (BHCB)	Brazil	KU501067	KU501007	KU501175	KU501120	KU500939
Acisanthera uniflora (Vahl) Gleason	Pedraza, P., 2281 (NY)	Colombia	KU501062	-	KU501169	-	KU500933
Acisanthera vaiabilis var. gabriuscula Cogn.	Irwin, H. S., 19593 (NY)	Brazil	-	KU500999	-	-	-
Acisanthera vaiabilis (DC.) Triana	Rocha, M. J. R., 611 (BHCB)	Brazil	-	KU500998	KU501170	KU501115	KU500934
Appendicularia thymifolia (Bonpl.) DC.	Martin, C. V., 441	French Guyana	JQ730049	KF462820	JQ730260	KU501130	KU500951
Brachyotum microdon (Naudin) Triana	Nee, M., 55327 (NY)	Bolivia	JQ730059	KF462828	JQ730270	-	KU500984
Cambessedesia hilariana (A.St.Hil. ex Bonpl.) DC.	Guimarães, P., 405 (RB)	Brazil	JQ730063	KF462835	JQ730274	-	KU500987

Appendix. Continued

Species	Voucher (herbarium)	Provenance	nrITS	nrETS	accD-psaI	atpH-atpF	trnS-trnG
Centradenia grandiflora (Schltdl.) Endl. ex Walp.	Penneys, D. S., 1544 (FLAS)	Costa Rica	JQ730065	KF462837	-	-	-
Chaetostoma armatum (Spreng.) Cogn.	Guimarães, P., 396 (RB)	Brazil	JQ730069	KF462840	-	-	-
Comolia ayangannae Wurdack	Hoffman, B., 2943 (US)	Guyana	KU501063	KU501000	KU501171	KU501116	KU500935
Comolia coriacea Gleason	Steyermark, J.A., 129919 (US)	Venezuela	-	KU501022	-	-	-
Comolia edmundoi Brade	Rocha, M. J. R., 975 (BHCB)	Brazil	-	-	KU501176	KU501121	KU500940
Comolia lanceiflora (DC.) Triana	Rocha, M. J. R., 905 (BHCB)	Brazil	KU501068	KU501009	KU501177	KU501123	KU500941
Comolia leptophylla (Bonpl.) Naudin	Wurdack, J. J., 39943 (US)	Venezuela	KU501072	KU501015	-	-	-
Comolia lythrarioides Naudin (synonym)	Maguire, B., 27351 (NY)	Venezuela	-	KU501013	-	-	-
Comolia lythrarioides Naudin (synonym)	Michelangeli, F. M., 2201 (NY)	Suriname	KU501071	KU501014	KU501180	KU501124	KU500944
Comolia microphylla Benth.	Redden, K. M., 1454 (NY)	Guyana	JQ730070	KF462841	JQ730281	KU501125	KU500945
Comolia montana Wurdack	Huber, O., 8851 (US)	Venezuela	KU501078	KU501023	-	-	-
Comolia ovalifolia Triana	Rocha, M. J. R., 719 (BHCB)	Brazil	KU501077	KU501020	-	-	-
Comolia sertularia (DC.) Triana	Almeda, F., 7724 (CAS)	Brazil	JQ730071	KF462842	-	KU501122	KU500988
Comolia sessilis (Spreng.) Triana	Rocha, M. J. R. 531 (BHCB)	Brazil	-	KU501011	KU501178	-	-
Comolia smithii Wurdack	Jasen-Jacobs, M. J., 4461 (US)	Guyana	KU501075	KU501018	-	-	-
Comolia sp. nov.	Rocha, M. J. R., 984 (BHCB)	Brazil	KU501069	KU501010	-	-	-
Comolia stenodon (Naudin) Triana	Rocha, M. J. R., 696 (BHCB)	Brazil	-	KU501008	-	-	-
Comolia vernicosa (Benth.) Triana	Wurdack, K. J., 4181 (NY)	Guyana	JQ730072	KF462843	JQ730283	KU501149	KU500971
Comolia villosa (Aubl.) Triana var. villosa	Harley, R. M., 29779 (US)	French Guyana	KU501074	KU501017	-	-	-
Comolia villosa (Aubl.)Triana	Rocha, M. J. R., 739 (BHCB)	Brazil	KU501073	KU501019	-	KU501126	KU500946
Comolia villosa (Aubl.)Triana	Michelangeli, F. A., 2200 (NY)	Suriname	KU501076	KU501016	KU501181	-	KU500943
Desmoscelis villosa (Aubl.) Naudin	Zenteno, F., 8902 (NY)	Bolivia	JQ730073	KF462844	-	-	-
Ernestia adenotricha L.Uribe	Uribe, L., 3662 (NY)	Colombia	KU501083	KU501026	KU501186	KU501136	-
Ernestia confertiflora Wurdack	Penneys, D. S., 1913 (FLAS)	French Guyana	-	-	JQ730292	-	-
Ernestia cordifolia O.Berg ex Triana	Groger, A., 975 (US)	Venezuela	-	KU501021	-	KU501127	KU500947
Ernestia ovata Cogn.	Garcia-Barriga, H., 18006 (US)	Colombia	-	KU501028	-	KU501137	KU500958
Ernestia glandulosa Gleason	Martin, C. V., 471 (NY)	French Guyana	JQ730080	KF462847	JQ730293	KU501128	KU500948
Ernestia pullei Gleason	Martin, C. V., 460 (NY)	French Guyana	JQ730081	KF462848	JQ730294	KU501129	KU500950
Ernestia quadriseta O.Berg ex Triana	Rimachi, M., 11642 (NY)	Peru	-	KU501029	KU501187	-	-
Ernestia maguirei Wurdack	Michelangeli, F. A., 707 (NY)	Venezuela	KU501079	-	KU501182	-	-
Ernestia rubra Pulle	Granville, J. J. de, 9722 (US)	French Guyana	KU501080	-	KU501183	-	KU500949
Ernestia tenella (Bonpl.) DC.	Michelangeli, F. A., 386 (BH)	Venezuela	JQ730082	KU501027	JQ730295	-	KU500957
Fritzschia erecta Cham.	Guimarães, P., 406 (RB)	Brazil	JQ730083	KF462849	JQ730296	-	-

Appendix . Continued

Species	Voucher (herbarium)	Provenance	nrITS	nrETS	accD-psaI	atpH-atpF	trnS-trnG
Fritzschia anisostemon Cham.	Mota, N., 2694 (BHCB)	Brazil	KU501070	KU501012	KU501179	-	KU500942
Heterotis decumbens (P.Beauv.) Triana	Smith, S., 1705 (US)	Brazil	JQ730088	KF462853	JQ730302	-	KU500985
Lavoisiera bicolor Naudin	Guimaraes, P. J., 345 (RB)	Brazil	KF463033	KF462855	KF407958	KU501157	KU500981
Macairea lasiophylla (Benth.) Wurdack	Rocha, M. J. R., 873 (BHCB)	Brazil	KU501081	KU501024	-	KU501134	KU500955
Macairea multinervia Benth.	Rocha, M. J. R., 876 (BHCB)	Brazil	KU501082	KU501025	KU501185	KU501135	KU500956
Macairea pachyphylla Benth.	Redden, K. M., 3869 (NY)	Guyana	JQ730094	KF462858	-	-	-
Macairea radula (Bonpl.) DC.	Lima, J., 715 (UPCB)	Brazil	JQ730095	KF462859	JQ730307	KU501133	KU500954
Macairea thyrsiflora DC.	Wurdack, J. J., 4153 (NY)	Guyana	JQ730096	KF462860	KU501184	KU501132	KU500953
Marcetia acerosa DC.	Santos, A. K. A., 681 (UFB)	Brazil	JQ730097	-	-	-	-
Marcetia alba Ule.	Goldenberg, R. 2085 (UPCB)	Brazil	KU501095	KU501040	KU501200	-	-
Marcetia bahiensis (Brade \& Markgr.) Wurdack	Rocha, M. J. R., 308 (BHCB)	Brazil	KU501086	-	KU501190	KU501140	KU500961
Marcetia candolleana A.K.A.Santos \& A.B.Martins	Bunger, M. O., 615 (BHCB)	Brazil	KU501085	KU501031	KU501189	KU501139	KU500960
Marcetia canescens Naudin	Rocha, M. J. R., 295 (BHCB)	Brazil	KU501089	KU501034	KU501193	KU501143	KU500964
Marcetia eimeariana A.B.Martins \& Woodgyer	Santos, A. K. A., 832 (UFB)	Brazil	JQ730098	-	KU501194	-	-
Marcetia ericoides (Spreng.) O.Berg ex Cogn.	Santos, A. K. A., 532 (UFB)	Brazil	JQ730099	-	-	-	-
Marcetia formosa Wurdack	Rocha, M. J. R., 345 (BHCB)	Brazil	KU501090	KU501035	KU501195	KU501144	KU500965
Marcetia grandiflora Markgr.	Rocha, M. J. R., 319 (BHCB)	Brazil	KU501091	KU501036	KU501196	KU501145	KU500966
Marcetia harleyi Wurdack	Santos, A. K. A., 558 (UFB)	Brazil	JQ730100	-	-	-	-
Marcetia latifolia Naudin	Santos, A.K.A., 336 (UFB)	Brazil	JQ730101	-	-	-	-
Marcetia macrophylla Wurdack	Rocha, M. J. R., 297 (BHCB)	Brazil	KU501084	KU501030	KU501188	KU501138	KU500959
Marcetia mucugensis Wurdack	Rocha, M. J. R., 285 (BHCB)	Brazil	KU501088	KU501033	KU501192	KU501142	KU500963
Marcetia sp1	Rocha, M. J. R., 318 (BHCB)	Brazil	KU501093	KU501038	KU501198	KU501146	KU500967
Marcetia sp2	Rocha, M. J. R., 335 (BHCB)	Brazil	KU501092	KU501037	KU501197	-	KU500968
Marcetia taxifolia (A.St.Hil.) DC.	Michelangeli, F. A., 680 (BH)	Venezuela	JQ730102	KU501041	JQ730311	KU501148	KU500970
Marcetia viscida Wurdack	Rocha, M. J. R., 334 (BHCB)	Brazil	KU501094	KU501039	KU501199	KU501147	KU500969
Marcetia velutina Markgr.	Rocha, M. J. R., 293 (BHCB)	Brazil	KU501087	KU501032	KU501191	KU501141	KU500962
Microlicia fulva (Spreng.) Cham.	Michelangeli, F. A., 1576 (UPCB)	Brazil	KU501105	KU501051	KU501205	KU501156	KU500980
Nepsera aquatica (Aubl.) Naudin	Struwe, L., 1158 (NY)	Porto Rico	JQ730115	-	JQ730327	KU501131	KU500952
Pterogastra divaicata (Bonpl.) Naudin	Michelangeli, F. A., 540 (BH)	Venezuela	JQ730126	KF462875	JQ730337	KU501159	-
Pterolepis glomerata (Rottb.) Miq.	Martin, C. V., 419 (NY)	French Guyana	JQ730129	KF462876	JQ730340	KU501158	KU500982
Rhexia aristosa Britton	Naczi, R. F. C., 12065 (NY)	USA	JQ730134	KF462878	-	-	KU500986
Sandemania hoehnei (Cogn.) Wurdack	Goldenberg, R., 1007 (NY)	Brazil	JQ730141	KF462882	JQ730352	KU501150	KU500972
Siphanthera arenaria (DC.) Cogn.	Mota, N., 2656 (BHCB)	Brazil	KU501099	KU501045	KU501203	-	KU500974

Appendix . Continued

Species	Voucher (herbarium)	Provenance	nrITS	nrETS	accD-psaI	atpH-atpF	trnS-trnG
Siphanthera cordata Pohl ex DC.	Rocha, M. J. R., 964 (BHCB)	Brazil	KU501102	KU501048	$\begin{gathered} \text { KU501208 } \\ \text { KU501212 } \end{gathered}$	-	KU500977
Siphanthera cordifolia (Benth.) Gleason	Rocha, M. J. R., 882 (BHCB)	Brazil	KU501096	KU501042	KU501201	KU501151	KU500973
Siphanthera dawsonii Wurdack	Versiane, A. F., 641 (HUFU)	Brazil	KU501103	KU501049	$\begin{gathered} \text { KU501207 } \\ \text { KU501211 } \end{gathered}$	-	-
Siphanthera fasciculata (Gleason) Almeda \& O.R.Rob.	Wurdack, J. J., 1959 (NY)	Venezuela	KU501097	KU501043	-	-	-
Siphanthera foliosa (Naudin) Wurdack	Rocha, M. J. R., 728 (BHCB)	Brazil	KU501098	KU501044	KU501202	KU501152	-
Siphanthera gracillima (Naudin) Wurdack	Rocha, M. J. R., 941 (BHCB)	Brazil	KU501101	KU501047	$\begin{gathered} \text { KU501206 } \\ \text { KU501210 } \end{gathered}$	KU501154	KU500976
Siphanthera hostmannii Cogn.	Wurdack, K. J., 4142 (NY)	Guyana	JQ730142	KF462883	JQ730353	KU501155	KU500978
Siphanthera paludosa Cogn.	Rocha, M. J. R., 621 (BHCB)	Brazil	KU501100	KU501046	KU501204	KU501153	KU500975
Siphanthera subtilis Pohl ex DC.	Moreira, S. N., 878 (BHCB)	Brazil	KU501104	KU501050	$\begin{gathered} \text { KU501209 } \\ \text { KU501213 } \end{gathered}$	-	KU500979
Tibouchina heteromalla (D.Don) Cogn.	Guimarães, P., 339 (RB)	Brazil	JQ730193	KF462936	JQ730401	-	KU500983
Trembleya parviflora Cogn.	Goldenberg, R., 824 (NY)	Brazil	JQ730242	KF462987	JQ730451	-	-

[^0]: *Corresponding author.
 E-mail: mariajosereisdarocha@gmail.com

