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3Institut d’Astrophysique de Paris, UMR CNRS 7095, Université Pierre et Marie Curie, 98bis boulevard Arago, F-75014 Paris, France
4Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
5Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK

Accepted 2015 October 26. Received 2015 September 29; in original form 2015 May 28

ABSTRACT
We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum
inference, jointly sampling from the posterior distribution of the cosmic shear field and its
(tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate
product for a cosmic shear analysis, since it requires very few model assumptions and can be
used to perform inference on a wide range of cosmological models a posteriori without loss
of information. We show that joint posterior for the shear map and power spectrum can be
sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power
spectrum, each conditional on the other. This approach neatly circumvents difficulties asso-
ciated with complicated survey geometry and masks that plague frequentist power spectrum
estimators, since the power spectrum inference provides prior information about the field in
masked regions at every sampling step. We demonstrate this approach for inference of tomo-
graphic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear
catalogue with a number of important features; galaxies distributed on the sky and in redshift
with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy
and a complicated survey mask. The obtained posterior distributions for the tomographic
power spectrum coefficients recover the underlying simulated power spectra for both E- and
B-modes.
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1 IN T RO D U C T I O N

As light from distant galaxies propagates through the Universe,
it is continuously deflected by the gravitational potential of the
large-scale matter distribution, resulting in a coherent distortion of
observed galaxy images on the sky. This weak gravitational lensing
provides a powerful probe of the growth rate of potential perturba-
tions and the geometry of the Universe through the distance–redshift
relation. Weak lensing has unique appeal in its sensitivity to the full
matter distribution in the Universe, allowing us to probe the 3D
matter power spectrum over a range of scales and redshifts. Since
weak lensing is a function of both the geometry of the Universe and
the growth of structure, it is a particularly sensitive probe of dark
energy and gravity on large scales (see e.g. Weinberg et al. 2013
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and references therein). Cosmic shear analyses in particular aim to
extract cosmological information from weak lensing by measuring
correlations of galaxy ellipticities, modified by the lensing field,
across the sky (see Munshi et al. 2008 for a comprehensive review).
The natural starting point for such an analysis is to look at the two-
point statistics of the shear field, although a substantial amount of
information may also be available in the higher order shear statis-
tics (Bernardeau, van Waerbeke & Mellier 1997; van Waerbeke,
Bernardeau & Mellier 1999; Schneider & Lombardi 2003; Takada
& Jain 2003; Vafaei et al. 2010; Kayo, Takada & Jain 2013). This
paper is concerned with extracting cosmological inferences from
the two-point statistics of the cosmic shear field.

When analysing the two-point statistics of a random field, we
are free to choose the most convenient basis to work in. For exam-
ple, working in the pixel basis the two-point function of the shear
field is the real-space correlation function, whilst if we choose to
work in harmonic space the two-point function is the angular power

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/455/4/4452/1262243 by guest on 25 April 2024

mailto:j.alsing12@imperial.ac.uk


Hierarchical shear power spectrum inference 4453

spectrum. The power spectrum has a clear advantage over the cor-
relation function; due to the statistical isotropy of the shear field,
its spherical harmonic coefficients are uncorrelated and hence the
covariance matrix of the field in this basis is sparse. The covariance
of the real-space shear field on the other hand is not sparse, since
the correlation function is non-zero over all scales. This is a major
advantage of using the power spectrum over the correlation function
in cosmic shear analyses and will become increasingly important
for larger-area weak lensing surveys.

Inference of the shear power spectrum is an incredibly power-
ful intermediate product for a cosmic shear analysis, since it can
be used to perform inference on a wide range of cosmological
models a posteriori without loss of information. Power spectrum
inference is almost model independent, assuming only that the field
under inspection is statistically isotropic. In this study, we fur-
ther assume that the field is well described by Gaussian statistics,
but also note that the Gaussian distribution constitutes the max-
imum entropy prior once the mean and covariance are specified,
so from a Bayesian perspective assuming a Gaussian distribution
for the field may be a well-justified (although suboptimal) approx-
imation even on small scales where the shear field is non-linear.
Since a wide range of cosmological models provide a determin-
istic relationship between the cosmological model parameters and
the power spectrum, cosmological parameter inference can be per-
formed a posteriori from the posterior distribution of the power
spectrum given the data, without loss of information. This is clearly
preferable to performing inference for each model independently
from the full data set and allows for efficient analysis of future cos-
mological models without having to re-analyse the full data set from
scratch.

In this paper, we develop a Bayesian method for inferring the
cosmic shear power spectrum by jointly sampling from the posterior
distribution of the shear map and power spectrum given the data,
in a hierarchical fashion. A similar approach has been developed
for analysing cosmic microwave background (CMB) temperature
maps (Eriksen et al. 2004; O’Dwyer et al. 2004; Wandelt, Larson
& Lakshminarayanan 2004; Chu et al. 2005; Komatsu et al. 2011;
Ade et al. 2014), CMB polarization (Eriksen et al. 2007; Larson
et al. 2007; Komatsu et al. 2011; Karakci et al. 2013) and large-
scale structure (LSS; Jasche et al. 2010; Jasche & Wandelt 2012,
2013). Cosmic shear bears some similarities and some important
differences to the CMB and LSS inference problems. The shear field
is a 3D random field with spin-weight-2 on the angular sky. Shear
is generally assumed to be a statistically isotropic field, but since
lensing is an integrated effect it is not statistically homogeneous, in
the sense that its statistical properties evolve strongly with redshift.
On large scales, the shear field is Gaussian to a good approximation,
whilst on small scales it becomes significantly non-Gaussian. As
such, weak lensing combines together many of the key features
seen in the context of CMB temperature, polarization and LSS
power spectrum inference problems, whilst the inhomogeneity of
the shear field adds an additional new feature; in this sense weak
lensing power spectrum inference is a particularly rich statistical
problem.

One of the main challenges in estimating the power spectrum
from weak lensing survey data is accounting for complicated sur-
vey geometry due to both incomplete sky coverage and masked
regions within the survey area. The problem stems from the fact
that Fourier and spherical harmonic basis functions are not orthog-
onal on the cut sky, which can result in masks moving power from
the angular scale of the masks to other parts of the power spectrum
and leakage between E- and B-mode power. These problems are a

major inconvenience for approximate power spectrum estimation
methods such as the pseudo-C� (see e.g. Chon et al. 2004; Brown,
Castro & Taylor 2005, and also Smith 2006 for an estimator ap-
proach that avoids some of these issues). Fortunately, the approach
presented here bypasses these difficulties completely. By estimat-
ing the map and power spectrum simultaneously in a block-MCMC
or Gibbs sampling framework, we iteratively sample from the map
conditional on the power spectrum and the power spectrum condi-
tional on the map. When sampling from the conditional distribution
of the map with a fixed power spectrum, even though the data pro-
vides no information about the masked regions the power spectrum
still provides (probabilistic) information about the field in those
regions. Masked regions are treated as pixels with infinite noise,
but the inferred power spectrum (combined with inference of pixels
surrounding the masked region) none the less informs us about the
field in the masked regions, circumventing the need to treat masked
regions as being cut from the analysis and simplifying the survey
geometry.

Drawing inferences about cosmology from weak lensing survey
data is a challenging task, involving a number of complex modelling
elements. Measuring galaxy shapes and redshifts from pixelized
images and photometric data requires detailed models for the tele-
scope point spread function (PSF), seeing effects, pixel noise and
other instrumental effects, as well as models for the intrinsic dis-
tributions of galaxy properties which determine their physical and
photometric appearance. Cosmological parameter inference from
observed galaxy shapes and redshifts requires a model relating the
cosmology (statistically) to the cosmic shear field and in turn its
impact on observed galaxies. Formulating the weak lensing infer-
ence task as a global hierarchical model is an attractive approach
for a number of reasons. Hierarchical models account for the full
statistical interdependency structure of all model components and
allow information to flow freely from raw pixel and photometric
data through to cosmological inferences; this is optimal in the sense
that no information is lost, and principled in the sense that parameter
uncertainties are propagated correctly and completely throughout
the analysis (see Schneider et al. 2015 for a discussion). However,
whilst it is the optimal approach in principle, in practice performing
a global analysis on a data set as large and complex as a weak lensing
survey is a formidable challenge and a global analysis may not be
computationally feasible. The alternative approach is to break the
global problem up into a number of subproblems which are anal-
ysed in a series of steps, where the output of each step is used as
input for the next. Whilst this has the advantage that subproblems
are computationally easier to solve, it is suboptimal in the sense
that full parameter interdependences are not accounted for and it is
challenging to propagate uncertainties consistently throughout the
pipeline, introducing biases which must be carefully corrected for.
The hierarchical modelling approach to map-power spectrum infer-
ence developed here will form a central part of any larger global
hierarchical model for weak lensing, or alternatively Bayesian map-
power spectrum inference can be performed in isolation from e.g.
a catalogue of measured galaxy shapes and redshifts, once instru-
mental effects, ellipticity distributions etc. have been modelled and
accounted for a priori.

The structure of this paper is as follows: in Section 2, we dis-
cuss the global hierarchical modelling approach to cosmic shear
inference and isolate the map-power spectrum inference problem
in Section 2.1. In Section 2.2, we specialize to tomographic cosmic
shear and in Section 3 we develop the Gibbs sampling approach
for joint shear map-power spectrum inference. In Section 4, we
describe the shear simulations and we demonstrate the method by
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recovering tomographic E- and B-mode shear power spectra from a
simulated shear catalogue in Section 5. We conclude in Section 6.

2 W E A K L E N S I N G A S A H I E R A R C H I C A L
M O D E L L I N G P RO B L E M

The statistical task in weak lensing can be summarized as follows:
given noisy, PSF convolved, pixelized images and photometric data
for a large number of galaxies, how do we make inferences about
cosmological models and parameters? The full inference problem
involves modelling a number of processes, which can be broadly
split into three groups: (1) how is the shear field (statistically) related
to the cosmological model/parameters? (2) What are the distribu-
tions of galaxy properties that characterize their appearance, both
those which change under lensing (e.g. shape, size, apparent mag-
nitude etc) and those which do not (e.g. Sérsic index, colour, etc.),
and what is the distribution of galaxy redshifts? (3) What are the
telescope PSF, noise properties and other instrumental effects that
generate noisy, pixelized, PSF convolved images and photometric
data from galaxies with given physical characteristics and redshifts?
In principle, we can write down a hierarchical model combining all
of these processes and solve the global inference problem. In this
section, we outline the global hierarchical modelling approach for
weak lensing and highlight the key advantages and challenges. This
work complements that of Schneider et al. (2015), who investigated
in some detail the sections of the hierarchy concerned with pixel
data and galaxy properties. Here, we focus on a different part of the
hierarchy, starting with point estimates of shear, and ending with
the shear power spectra. A global statistical model would include
both.

In order to write down a global hierarchical model for weak
lensing let us first define a set of parameters that the model could
include. A basic but comprehensive set of model parameters could
be defined as follows: cosmological parameters θ , the shear field s,
a set of physical galaxy properties (size, shape, magnitude etc) {g}
and redshifts z for each galaxy, a set of parameters {ξ} characteriz-
ing the distributions of intrinsic galaxy properties and redshifts, a
set of parameters {χ} characterizing the distribution of PSF param-
eters and pixel noise and a set of parameters {�} characterizing the
effective PSF and noise for different photometric bands, epochs, po-
sitions on the sky etc. The data are pixelized images for each galaxy
dpix, photometric data for each source (on which the photometric
redshift inference is based) zph and some auxiliary data providing
additional information specifically about the PSF and pixel noise
properties daux. Note that the discussion in this section is quite gen-
eral and the field s refers to the full 3D shear field; in Section 2.2
we specialise to tomographic shear where s will thereafter refer to
the set of 2D tomographic shear fields.

A particularly elegant and useful way of visualizing forward hi-
erarchical models is as a directed, acyclic bipartite graph, where
model parameters and data (nodes, represented by white circles)
are connected via conditional probability distributions (represented
by orange boxes), for example Fig. 1 (described in detail below).
This representation clearly elicits the conditional structure of the in-
ference problem; parameters and data which are directly connected
(via a single conditional density) are dependent, whereas param-
eters and data which are not directly connected are conditionally
independent. The posterior distribution for the full set of model pa-
rameters is straightforwardly obtained in a readily factorized form,
accounting for the full conditional structure of the problem, by tak-
ing the product of all distributions appearing in the graph (up to a
normalization constant). Furthermore, the distribution of a single

Figure 1. A generative forward model for weak lensing pixel and photomet-
ric data: cosmological parameters θ , a set of parameters {ξ} characterizing
the distributions of physical galaxy characteristics and redshifts and pa-
rameters {χ} characterizing the distribution of PSF and instrumental noise
properties are realized from their respective prior distributions. The cos-
mology then generates a realization of the shear field s, a set of physical
galaxy properties {g} and redshifts z are generated for each galaxy from
their specified distributions, and a set of effective PSFs and instrumental
noise properties (for each band, epoch etc) {�} are realized given their in-
trinsic distributions characterized by {χ}. Pixelized images for each galaxy
dpix are then realized given the galaxy characteristics, redshifts, instrumen-
tal PSF and noise properties, photometric data zph (on which photometric
redshift inference is based) are generated given the true redshifts, and some
auxiliary data daux providing additional information about the instrumental
properties is realized given the PSF and noise properties. Note that this is by
no means the most general model and might straightforwardly be extended
to include additional parameter and data interdependences, additional model
parameters, hyperpriors and additional data products.

parameter node conditional on all others is given by the product
of the conditional densities on all incoming and outgoing edges
for that parameter (again up to a normalization constant). Each
conditional probability distribution can be thought of as a separate
modelling step; the hierarchical model thus breaks up the global
problem into a number of submodels, where one only needs to be
able to write down conditional distributions for the various subsets
of model parameters with all other parameters held fixed. Whilst
the hierarchical model describes the global inference problem, it is
still modular in the sense that the model neatly factorizes into a set
of subproblems that can be attacked in turn.

A generative forward model for the data and model assumptions
described in the previous paragraphs is given in Fig. 1 and can be
understood as follows: In the top level, θ , {ξ} and {χ} are drawn
from their respective priors. In the second level, the cosmology gen-
erates a shear field s, a set of intrinsic galaxy properties {g} and
redshifts is generated from P (z, {g}|{ξ}), and the PSFs and pixel
noise characteristics are generated from P ({�}|{χ}). Finally, the
pixel values are generated given the galaxy positions and physical
properties, the shear field, PSFs and pixel noise characteristics, the
auxiliary data is generated from {�}, and the photometric redshift
data is generated from the true redshifts. This model is by no means
the most general and can easily be extended to include further levels
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of sophistication, such as additional parameter and data interdepen-
dences, additional model parameters, parametrized hyperpriors and
additional data products.

The hierarchical model in Fig. 1 clearly shows the statistical in-
terdependences between the various parts of the model. Ideally, we
would like to solve the global inference problem, simultaneously
inferring all of the model parameters given the data and marginal-
izing over all latent parameters that are not of direct interest. This
approach correctly accounts for the complicated web of interde-
pendences and allows information to flow unimpeded from the data
through to the cosmological parameter inference; it is optimal in the
sense that no information is lost, and principled in the sense that the
uncertainties in all parameters are correctly and completely propa-
gated throughout the analysis. In contrast, the frequentist approach
typically analyses each part of the model in a series of consecutive
steps, where the results of each step are used as inputs for the next.
This makes it challenging to both correctly account for the full
statistical interdependency and to propagate uncertainties consis-
tently, leading to biases that must be carefully (and painstakingly)
corrected for. In spite of being a global analysis, the hierarchical
approach is in fact naturally modular; the Gibbs or block-MCMC
sampling scheme separates the various steps in the inference pro-
cess, iteratively dealing with each component in turn. Whilst the
typical frequentist approach estimates fixed values for parameters
at each step and feeds them into the next, the hierarchical approach
feeds the full probabilistic inference about each parameter through-
out the analysis.

In principle, it is possible to perform an (asymptotically) op-
timal frequentist analysis, writing down the global multiparame-
ter likelihood and performing a joint maximum-likelihood analysis
for all model parameters from the global likelihood. However, es-
timating parameter uncertainties accurately in a high-dimensional
multiparameter maximum-likelihood analysis is expected to be con-
siderably more computationally challenging than implementing a
Markov chain for the equivalent Bayesian inference problem, given
a fixed data set. The Bayesian hierarchical modelling approach to
weak lensing has clear advantages over both the suboptimal fre-
quentist approach, analysing each part of the model in series (as
described above), and the more careful global maximum-likelihood
analysis.

Given the scale and complexity of the weak lensing inference
problem described in Fig. 1, a sensible approach to developing a
global analysis pipeline is to temporarily break up the global model
into a number of submodels (for example, the three columns in
Fig. 1), allowing us to tackle the technical challenges associated
with different parts of the hierarchy in isolation. These can later be
re-united to build as global an analysis pipeline as possible.

2.1 Isolating the map-power spectrum inference problem

In this paper, we are interested in isolating the central column of
the hierarchy in Fig. 1 (highlighted in blue), i.e. extracting cosmo-
logical parameter inferences from weak lensing data via the cosmic
shear field. Rather than attempt to infer cosmological parameters
directly, we would rather like to infer the shear power spectrum
given the data. Cosmological models provide a deterministic re-
lationship between cosmological parameters and the shear power
spectrum. This means that cosmological parameter inference can be
performed a posteriori for a wide range of models directly from the
posterior distribution for the shear power spectrum given the data,
without loss of information (see Section 3.3 for details). As such,
inference of the shear power spectrum is a very useful intermediate

Figure 2. Hierarchical forward model for noisy pixelized shear maps d
from the tomograhic shear power spectra C: the shear power spectrum C
is drawn from some prior distribution, a realization of the tomographic
shear fields s are then generated given the power spectra, and finally noisy
tomographic shear maps d are realized by adding noise with covariance N.

product and is preferable to doing cosmological parameter inference
directly from the data for the various models of interest separately.
With this in mind, we isolate and tackle the following subproblem:
given some (pre-processed) weak lensing data products, we want to
jointly infer the shear field and its power spectrum. Furthermore, we
will assume the shear field is Gaussian and fully characterized by its
two-point statistics, i.e. its power spectrum (covariance matrix) C.
This reduced problem is summarized by the forward model in Fig. 2
and can be understood as follows. We begin by specifying a prior
for the power spectrum P (C) which generates a power spectrum C.
This power spectrum then generates a shear field s via the density
P (s|C), which we take to be a zero mean Gaussian with covari-
ance C. We then fix the noise covariance matrix N and add noise
to the realized shear map to give a realization of the data, a noisy
estimate of the shear field, via the conditional density P (d|s,N). In
Section 2.2, we specialize to tomography, and C and s will be un-
derstood to denote the tomographic power spectra and tomographic
fields, respectively.

Since the left- and right-hand sides of the hierarchy from Fig. 1
have been removed in the reduced problem, we are forced to use as
our data vector some processed version of the raw pixel data dpix

for which the instrumental effects, distributions of galaxy prop-
erties and photometric redshifts have already been modelled and
accounted for a priori. We take our pre-processed data to be a
catalogue of measured galaxy shapes, angular positions and photo-
metric redshifts, where the effects of {χ}, {�}, {ξ}, {g} and z have
been accounted for in the shape and photometric redshift inference
process. In the next section, we specialize the problem further to a
tomographic cosmic shear analysis; we will see that this requires the
data to be compressed further by grouping sources into a number of
redshift bins and angular pixels on the sky. The resulting data vector
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will be a set of noisy pixelized shear maps for multiple tomographic
redshift bins.

2.2 Tomographic cosmic shear

Ideally, we would like to analyse the full 3D shear field, and for-
malism for performing 3D cosmic shear analysis is now well devel-
oped (Heavens 2003; Castro, Heavens & Kitching 2005; Heavens,
Kitching & Taylor 2006; Kitching et al. 2007; Kitching, Taylor &
Heavens 2008; Kitching, Heavens & Miller 2011; Kitching et al.
2014). However, a significant reduction in technical difficulty can be
achieved whilst retaining a large fraction of the cosmological infor-
mation by performing a tomographic rather than fully 3D analysis
(e.g. Hu 1999). Here sources are separated into a number of tomo-
graphic redshift bins and we analyse the shear field averaged over
these slices in redshift, i.e. we reduce the 3D shear field γ (r) to a
set of 2D fields {γ (α)(θ , φ)}, where α denotes the redshift bin. This
collection of 2D fields will form a field vector s with covariance C
(i.e. the tomographic shear power spectra).

A forward model for the shapes of galaxies at points in 3D space
necessarily requires some reference to the full 3D shear field; by
restricting ourselves to a tomographic analysis without modelling
the fluctuation of the field within the redshift bins, we cannot for-
ward model a catalogue of individual galaxy shapes, angular posi-
tions and redshifts. It is possible, however, to write down a forward
model for the average ellipticities of sources binned in redshift at
angular positions on the sky with reference only to the tomographic
shear fields. Therefore, we are forced to process the catalogue of
galaxy shapes and positions further into pixelized 2D maps of the
average shapes in each pixel for sources in each redshift bin. This
demonstrates clearly that a tomographic analysis is suboptimal on
two counts: information is lost in compressing the data from a full
3D catalogue of galaxy shapes to a collection of averages (since the
detailed redshift dependence of the power spectrum contains cos-
mological information), and secondly in a tomographic analysis it
is not possible to include the full interdependence of the shear field
and galaxy redshifts shown in Fig. 1. The formalism developed in
this work can be straightforwardly extended to perform a fully 3D
shear analysis (albeit at additional computational cost) and we will
investigate this in future work.

The technical details of the processed data vector d, field s, noise
and signal covariances N and C for a tomographic shear analysis
are described in detail in Sections 2.2.1 and 2.2.2 below.

2.2.1 The data vector

Lensing can be observed through a change in observed galaxy el-
lipticities. In the weak lensing limit, observed (complex) galaxy
shapes ε are modified from their intrinsic unlensed values ε0 by the
complex shear field γ = γ 1 + iγ 2, according to,

ε = ε0 + γ. (1)

Under the assumption that 〈ε0〉 = 0, the observed ellipticities pro-
vide a simple unbiased point estimator for the shear. We would like
to build estimated (noisy) pixelized maps of the shear field in a
number of tomographic redshift bins from a catalogue of galaxy
shapes, angular positions and redshifts; we can estimate the shear
in a pixel p averaged over redshift bin α by averaging the galaxy
ellipticities in that pixel,

γ̂ (α)
p = 1

N
(α)
p

∑
g in pixel p, bin α

εg, (2)

where N (α)
p is the number of sources in pixel p and redshift bin α.

This provides an unbiased estimator for the tomographic shear field,
i.e. the 3D shear γ (θ , φ, z) averaged over the pixel p and the galaxy
redshift distribution for galaxies in redshift bin α,

γ (α)
p = 1

	
p

∫
pix p

d


∫
γ (θ, φ, z)p(α)(z)dz, (3)

where 
 denotes solid angle, 	
p is the solid angle of pixel p,
γ (θ , φ, z) is the full 3D shear field and p(α)(z)dz is the redshift
distribution for sources in redshift bin α (normalized to one over
the bin). We hence assume a linear model for γ̂ (α)

p ,

γ̂ (α)
p = γ (α)

p + ε(α)
p , ε(α)

p ∼ N
⎛
⎝0,

√
2σε√
N

(α)
p

⎞
⎠ , (4)

where σ 2
ε is the variance of intrinsic galaxy ellipticities (per com-

ponent), N (μ, σ ) denotes the Gaussian distribution with mean μ

and variance σ 2 and we are assuming that ε(α)
p are uncorrelated

between pixels (although this assumption can be straightforwardly
lifted). Note that even if the ellipticity distribution is not Gaussian,
provided many sources contribute to each pixel average the noise
will become Gaussian according to the central limit theorem.

The tomographic shear fields are complex with two real compo-
nents, γ (α)

p = γ
(α)
1,p + iγ

(α)
2,p ; we take our data vector d to be com-

posed of the two components of the complex shear for every pixel
and redshift bin:

d = (γ̂ (1)
1,p=1, γ̂

(1)
2,p=1, γ̂

(2)
1,p=1, γ̂

(2)
2,p=1, . . . ,

. . . , γ̂
(1)
1,p=2, γ̂

(1)
2,p=2, γ̂

(2)
1,p=2, γ̂

(2)
2,p=2, . . .). (5)

Under the assumptions described above, the data vector is described
by a linear model d = s + n where the field s is the collection of
tomographic shear maps (whose statistics are described in Sec-
tion 2.2.2) and the noise n has covariance,

〈nnT〉 = N = diag

⎛
⎝ σ 2

ε

N
(1)
p=1

,
σ 2

ε

N
(1)
p=1

,
σ 2

ε

N
(2)
p=1

,
σ 2

ε

N
(2)
p=1

, . . . ,

. . . ,
σ 2

ε

N
(1)
p=2

,
σ 2

ε

N
(1)
p=2

,
σ 2

ε

N
(2)
p=2

,
σ 2

ε

N
(2)
p=2

, . . .

⎞
⎠. (6)

For masked pixels there are no observed sources contributing to
γ̂ (α)

p , so the noise covariance for these pixels is taken to be infinite.

2.2.2 The signal: tomographic shear fields and their covariance

The tomographic shear fields described in equation (3) are two-
dimensional isotropic random fields with spin-weight-2 on the an-
gular sky. Since the fields are isotropic, their (spin-2) spherical
harmonic coefficients are uncorrelated, making harmonic space a
particularly convenient basis. The expansion coefficients and two-
point statistics of the complex shear (split into E- and B-mode
components) are given by

γ
E(α)
�m = 1

2

∫ [
γ (α)(φ)2Y

∗
�m(φ) + γ ∗(α)(φ)−2Y

∗
�m(φ)

]
d
,

γ
B(α)
�m = − i

2

∫ [
γ (α)(φ)2Y

∗
�m(φ) − γ ∗(α)(φ)−2Y

∗
�m(φ)

]
d
,

〈γ E(α)∗
�m γ

E(β)
�′m′ 〉 = CEE

�,αβδmm′δ��′ ,
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〈γ E(α)∗
�m γ

B(β)
�′m′ 〉 = CEB

�,αβδmm′δ��′ ,

〈γ B(α)∗
�m γ

B(β)
�′m′ 〉 = CBB

�,αβδmm′ , δ��′ , (7)

where ±2Y�m are the spin-weight ±2 spherical harmonics, CEE
�,αβ ,

CEB
�,αβ and CEE

�,αβ are the E-mode, B-mode and cross EB angular
power spectra between tomographic bins α and β and δnm is the
Kronecker-delta. Typically, cosmological models predict negligible
B-mode, so CBB

�,αβ 	 0, and parity considerations require CEB
�,αβ 	 0.

However, systematic effects could give rise to non-zero B-modes,
so in a weak lensing analysis the estimation of the B-mode power
is none the less useful as it provides a test for systematic effects.

In the Limber approximation (Limber 1954), the E-mode tomo-
graphic shear power spectra are given by (Kaiser 1992, 1998; Hu
1999, 2002; Takada & Jain 2004)

CEE
�,αβ =

∫
dχ

χ2
m(χ )

w(α)(χ )w(β)(χ )(1 + z)2Pδ

(
�

χm(χ )
; χ

)
, (8)

where χ is comoving distance, P(k; χ ) is the 3D matter power spec-
trum and χm(χ ) is the transverse comoving distance corresponding
to comoving distance χ . The lensing weight functions w(α)(χ ) are
given by

w(α)(χ ) = 3
mH 2
0

2
χm(χ )

∫ χH

χ

dχ ′ n(α)(χ
′)

χm(χ ′ − χ )

χm(χ ′)
, (9)

where n(α)(χ )dχ = p(α)(z)dz is the redshift distribution for galaxies
in redshift bin α (normalized to one over the bin).

The fields under consideration are the collection of tomographic
shear maps {γ (α)(θ , φ)}. In the context of the hierarchical model in
Fig. 2, the field s represented in harmonic space contains the set of
harmonic coefficients {γ E(α)

�m , γ
B(α)
�m } arranged into a vector:

s = (s00, s1−1, s10, s11 . . . s�m . . .) ,

s�m =
(
γ

E(1)
�m , γ

E(2)
�m , . . . , γ

E(nbins)
�m , γ

B(1)
�m , γ

B(2)
�m , . . . γ

B(nbins)
�m

)
. (10)

The full covariance matrix C of the field s will then be block-
diagonal, where each �m-mode contributes one block C�m,

〈ss†〉 = C = diag (C00,C1−1,C10,C11 . . .C�m . . .) ,

= diag (C0,C1,C2 . . .C� . . .) , (11)

where C� = C�m ⊗ I2�+1 is the block diagonal contribution for a
given � mode, with 2� + 1 diagonal subblocks for each m mode at
the given �,

C�m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CEE
�,11 CEE

�,12 . . . CEB
�,11 CEB

�,12 . . .

CEE
�,21 CEE

�,22 . . . CEB
�,21 CEB

�,22 . . .

...
...

. . .
...

...
. . .

CBE
�,11 CBE

�,12 . . . CEB
�,11 CBB

�,12 . . .

CBE
�,21 CBE

�,22 . . . CBB
�,21 CBB

�,22 . . .

...
...

. . .
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

In is the n × n identity matrix, ⊗ is the Kronecker product and again
C�,αβ are the tomographic angular power spectra between redshift
bins α and β. Note that, in principle, the shear covariance could
contain contributions from both cosmic shear (as described above)
and also intrinsic alignments; see Section 3.4 for a discussion of
including intrinsic alignments into this framework.

2.2.3 Flat sky approximation

In the limit where we have a small survey area, we can make the
flat sky approximation and replace spherical harmonic transforms
with Fourier transforms. In this limit, the E- and B-mode shear
coefficients and power spectra are given by

γ
E(α)
� = 1

2

1

2π

∫ [
γ (α)(φ)ϕ∗

� e−i�·φ + γ ∗(α)(φ)ϕ�e−i�·φ]
d
,

γ
B(α)
� = − i

2

1

2π

∫ [
γ (α)(φ)ϕ∗

� e−i�·φ − γ ∗(α)(φ)ϕ�e−i�·φ]
d
,

〈γ E(α)∗
� γ

E(β)
�′ 〉 = CEE

�,αβδ��′ ,

〈γ E(α)∗
� γ

B(β)
�′ 〉 = CEB

�,αβδ��′ ,

〈γ B(α)∗
� γ

B(β)
�′ 〉 = CBB

�,αβδ��′ , (13)

where � = (�x, �y), the phase factor ϕ� = −(�2
x − �2

y + 2i�x�y)/�2

and the angular power spectra are as previously. The field vector for
the flat-sky approximation shear coefficients is then given by

s = (
s�1 , s�2 , s�3 , . . . s�i

. . .
)
,

s� =
(
γ

E(1)
� , γ

E(2)
� , . . . , γ

E(nbins)
� , γ

B(1)
� , γ

B(2)
� , . . . γ

B(nbins)
�

)
. (14)

The full covariance matrix C of the field s will again be block-
diagonal, with each �-mode contributing one block,

〈ss†〉 = C = diag
(
C�1 ,C�2 ,C�3 ,C�4 . . .C�i

. . .
)
,

= diag (C0,C1,C2 . . .C� . . .) , (15)

where here C� = C�x�y ⊗ In is the block diagonal contribution from
each � mode, and C�x�y are the n subblocks for each of the � =
(�x, �y) modes with |�| = �,

C�x�y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CEE
�,11 CEE

�,12 . . . CEB
�,11 CEB

�,12 . . .

CEE
�,21 CEE

�,22 . . . CEB
�,21 CEB

�,22 . . .

...
...

. . .
...

...
. . .

CBE
�,11 CBE

�,12 . . . CEB
�,11 CBB

�,12 . . .

CBE
�,21 CBE

�,22 . . . CBB
�,21 CBB

�,22 . . .

...
...

. . .
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

3 H I E R A R C H I C A L TO M O G R A P H I C SH E A R
MAP-POWER SPECTRU M INFERENCE

In the following section, we develop the machinery for jointly infer-
ring the tomographic shear fields s and covariance (power spectra)
C as described in Section 2.2.2, from observed noisy tomographic
shear maps d described in Section 2.2.1. However, the formalism
developed here applies to the more general problem of jointly infer-
ring any Gaussian field and its covariance given a noisy estimate of
the field and the data is described by a Gaussian linear model, i.e.
d = s + n, where n is Gaussian noise of known covariance N. The
methods described in this section are similar to approaches taken
to power spectrum inference for CMB temperature (Eriksen et al.
2004; O’Dwyer et al. 2004; Wandelt et al. 2004; Chu et al. 2005;
Komatsu et al. 2011; Ade et al. 2014), CMB polarization (Erik-
sen et al. 2007; Larson et al. 2007; Komatsu et al. 2011; Karakci
et al. 2013) and large-scale structure (Jasche et al. 2010; Jasche &
Wandelt 2012, 2013), but here specialized for application to weak
lensing.
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3.1 Vanilla map-power spectrum inference and
the Wiener filter

The basic forward model for the tomographic shear maps is de-
scribed in Fig. 2 and is understood as follows. We begin by fixing
a power spectrum (chosen from some prior). This power spectrum
generates a shear field via the density P (s|C) (which is Gaussian
under the current assumptions). We then specify a noise covariance
matrix N and add noise to the realized shear map to give a realiza-
tion of the data, via the conditional density P (d|s,N). The graph
in Fig. 2 shows us explicitly the conditional structure of the full
posterior P (C, s|d), since we can simply write the posterior as the
product of the conditional densities (and priors) appearing on the
edges of the graph:

P (C, s|d,N) = P (d|s,N)P (s|C)P (C)

P (d)
, (17)

where the conditional densities are given by

P (d|s,N) = 1√
(2π)N |N| e−1/2(d−s)†N−1(d−s),

P (s|C) = 1√
(2π)N |C|e−1/2s†C−1s, (18)

and N = 2 × nbins × npix is the length of the vectors d and s for nbins

tomographic shear maps each containing npix pixels (and the factor
of 2 is due to including both E- and B-mode degrees of freedom;
† denotes hermitian conjugate). For the prior on the covariance
matrix, we take a Jeffreys prior (Jeffreys 1961) on each subblock of
the covariance,

P (C) ∝
∏

�

|C�|−(p+1)/2, (19)

where the subblocks C� are p × p matrices with p = 2 × nbins.
For a discussion of non-informative priors for covariance matrix
inference, see Daniels & Kass (1999) and references therein.

Hierarchical models lend themselves naturally to Gibbs or block-
MCMC sampling, where at each step we draw a sample of each pa-
rameter in turn conditional on all others. For the current model, this
means iteratively drawing samples of the shear field and covariance
matrix:

Ci+1 ← P (C|si)

si+1 ← P (s|Ci , d,N). (20)

In order to build a Gibbs or block-MCMC sampler, then, we must
know the conditional densities for each parameter given all others.
The graphical model makes writing down these conditionals par-
ticularly straightforward; the conditional density for any parameter
is given by the product of the conditional densities on all incoming
and outgoing edges in the graph (up to a normalization constant).
The conditional density of the shear map is hence:

P (s|C,N, d) ∝ P (d|s,N)P (s|C)

= 1√
(2π)N |CWF|

−1/2(s−dWF)†C−1
WF(s−dWF), (21)

where dWF = (C−1 + N−1)−1N−1d is the Wiener filter of the data
and the covariance CWF = (C−1 + N−1)−1. Similarly the condi-
tional density of the signal covariance is given by

P (C|s) = P (s|C)P (C)

P (s)
. (22)

Since the covariance matrix is block diagonal, with each �m-mode
contributing one block, and due to isotropy every m-mode for a

given � has the same power, we can factorize the conditional on
the covariance C into conditional distributions on each �-mode
covariance C�,

P (C|s) =
∏

�

P (C�|s),

P (C�|s) = |��|(2�+1)/2|C�|−(2�+2+p)/2

2(2�+1)p/2�p(� + 1
2 )

exp

[
−1

2
tr(C−1

� ��)

]

= W−1(��, ν�), (23)

where �� = ∑
m s�ms†�m and �p( · ) is the multivariate gamma func-

tion. In the second line of equation (23), we recognize the con-
ditional density of the C� to be the inverse-Wishart distribution
with support �� and ν� = 2� + 1 degrees of freedom, denoted by
W−1(��, ν�).

Map sampling

Sampling from the map conditional on the signal covariance in-
volves generating a Gaussian random vector whose mean is the
Wiener filter of the data dWF = (C−1 + N−1)−1N−1d and with
covariance CWF = (C−1 + N−1)−1. Whilst this is simple in prin-
ciple, computing the Wiener filter involves inverting the matrix
(C−1 + N−1) which has size N × N where N = 2 × nbins × npix for
nbins tomographic shear maps containing npix pixels (and the factor
of 2 is due to including both E- and B-mode degrees of freedom).
Since in applications the number of pixels is typically npix ∼ 104–
106 depending on the survey size and the angular scales of interest,
this numerical matrix inversion is not computationally feasible by
brute force methods. Progress can be made if there exists a basis
where both C and N are sparse. For cosmic shear, the signal co-
variance is sparse in harmonic space whilst the noise covariance
is sparse in pixel-space (for weakly or uncorrelated pixel noise).
In the idealized case where the pixel noise is both homogeneous
and isotropic, N will be proportional to the identity matrix and is
hence sparse (proportional to the identity) in any basis. The matrix
inversion can then be performed in harmonic space where both the
signal covariance and noise are now sparse. However, in practice
the pixel noise will not be homogeneous and isotropic and it will
not in general be possible to find a single basis where both C and
N are sparse. For example, if the pixel noise is uncorrelated but the
number of sources contributing to each pixel varies (as is inevitable
in practice), N is no longer isotropic; it is diagonal in pixel space
but will not be sparse in harmonic space. Pixel–pixel noise corre-
lations would also result in N and C not being sparse in the same
basis. In these cases, numerical implementations of the Wiener filter
have traditionally relied on Krylov space methods, such as conju-
gate gradients, to solve the high-dimensional systems of equations
(see e.g. Kitaura & Enßlin 2008 and references therein). Recently,
a particularly elegant approach to solving the Wiener filter equation
was proposed, where an additional messenger field is introduced
to mediate between two different bases in which the signal and
noise covariances are, respectively, sparse, bypassing the issue of
directly inverting the high-dimensional matrices (Elsner & Wandelt
2012, 2013; Jasche & Lavaux 2015). We adopt this approach in
Section 3.2 and apply it to simulated data in Section 5.

Power spectrum sampling

In order to draw samples of the signal covariance for fixed shear
field we simply need to generate inverse-Wishart distributed random
matrices with ν = 2� + 1 degrees of freedom and support ��.
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Drawing samples from the inverse-Wishart distribution W−1(�, ν)
can be straightforwardly performed as follows.

(i) Generate ν Gaussian random vectors xi ∼ N (0,�−1).
(ii) Construct the sum of outer products of the vectors {xi}, i.e.

X = ∑ν
i=1 xi xT

i .
(iii) Take the inverse of X , then X−1 ∼ W−1(�, ν) as required.

Survey mask

One of the major benefits of jointly inferring the shear map and
power spectrum in a hierarchical setting is the ease with which
masked regions can be accounted for. Masked pixels are treated
as regions where the data provides no information, i.e. the noise
covariance for masked pixels is taken to be infinite. However, this
does not mean that we are totally ignorant about the field in those
pixels. When generating samples of the field for a fixed covariance,
si+1 ← P (s|Ci , d,N) ∝ P (d|s,N)P (s|Ci), there are two contribu-
tions to the density P (s|Ci , d,N); the data provides information
about the field through the likelihood P (d|s,N) and the covariance
provides additional information via P (s|Ci). For pixels in which
the noise covariance is infinite, all of the information comes from
the prior on the field P (s|Ci) at that sampling step, but none the
less since the covariance is also being explored we are able to make
inferences about the field inside the masked regions (albeit at lower
signal to noise).

3.2 Messenger field

Sampling from the posterior distribution of the shear map and co-
variance described in Section 3.1 is conceptually simple and can
be reduced to drawing (multivariate) Gaussian and inverse-Wishart
random variates. However, drawing samples of the map conditional
on the signal covariance involves computing the Wiener filter of
the data and inverting the matrix (C−1 + N−1), which has size
∼npix × npix. If it is not possible to find a basis in which C and
N are both sparse simultaneously (such as in the realistic case of
anisotropic noise as discussed in Section 3.1), this matrix inversion
results in a formidable computational bottleneck. Fortunately, di-
rect inversion of (C−1 + N−1) can be avoided by introducing an
auxiliary Gaussian distributed messenger field t that mediates be-
tween the bases in which C and N are, respectively, sparse. This
elegant idea was introduced by Elsner & Wandelt (2012, 2013) and
further developed by Jasche & Lavaux (2015); the approach taken
here is close to Jasche & Lavaux (2015) but generalized to deal with
non-diagonal signal covariance matrices.

The inclusion of the messenger field effectively allows us to
split the noise N into two parts that are dealt with separately: an
isotropic part T = τ I where τ ≤ min

[
diag(N)

]
, and the remaining

anisotropic noise N̄ = N − T. The generative model for the data
via the signal covariance C, shear field s and messenger field t
is summarized in Fig. 3 and is understood as follows: the signal
covariance C generates a shear map, the shear map plus isotropic
noise drawn from N (0, T) generates a realization of the messenger
field t, and finally the messenger field plus an additional anisotropic
noise component drawn from N (0, N̄) generates a realization of
the data d. Importantly, note that the introduction of an additional
level in the hierarchy separates the signal covariance C from the
anisotropic noise covariance N̄, connecting them only via T ∝ I
which is diagonal in any basis; this is the essential function of the
messenger field.

Figure 3. Hierarchical forward model for shear map-power spectrum in-
ference with the addition of a messenger field: the shear power spectrum is
drawn from some prior distribution, a realization of the shear field is then
generated given the power spectrum, isotropic noise with covariance T is
added to give a realization of the messenger field t and finally an anisotropic
noise component is added with covariance N̄ to realize a noisy shear map d.

The posterior and conditional distributions are

P (C, s, t|d, T, N̄) = P (d|t, N̄)P (t|s, T)P (s|C)P (C)

P (d)
,

P (d|t, N̄) = 1√
(2π)N |N̄|

e−1/2(d−t)†N̄−1(d−t),

P (s|C) = 1√
(2π)N |C| e−1/2s†C−1s,

P (t|s, T) = 1√
(2π)N |T|e−1/2(t−s)†T−1(t−s). (24)

Note that marginalizing the posterior P (C, s, t|d) over the mes-
senger field t recovers the joint posterior distribution for the shear
field and signal covariance P (C, s|d) of equation (17), so sampling
from the posterior P (C, s, t|d) and marginalizing over s and t is
completely equivalent to sampling from P (C, s|d) and marginaliz-
ing over s; both methods will generate samples from the marginal
posterior P (C|d) as desired.

In order to block-MCMC or Gibbs sample from the posterior
P (C, s, t|d), we need to iteratively draw samples from C, s and t
conditional on all other parameters,

Ci+1 ← P (C|si),

si+1 ← P (s|ti ,Ci , T),

ti+1 ← P (t|si , d, N̄), (25)
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where the conditional densities (from the graph in Fig. 3) are given
by

P (s|C, T, t) ∝ P (t|s, T)P (s|C)

= 1√
(2π)N |Qs|

e−1/2(s−μs)†Q−1
s (s−μs),

P (t|s, T, N̄, d) ∝ P (d|t, N̄)P (t|T, s)

= 1√
(2π)N |Qt|

e−1/2(t−μt)†Q−1
t (t−μt),

P (C�|s) = W−1(��, ν�), (26)

and the (conditional) shear field and messenger field means and
covariances are given by

μs = (C−1 + T−1)−1T−1t,

Qs = (C−1 + T−1)−1,

μt = (T−1 + N̄−1)−1T−1s + (T−1 + N̄−1)−1N̄−1d,

Qt = (T−1 + N̄−1)−1. (27)

Crucially, note that the introduction of the messenger field has
isolated the signal covariance C from the anisotropic noise N̄, where
C and N̄ now only appear in combination with the isotropic noise
component T which is diagonal in any basis, since T = τ I. Thus all
of the necessary matrix inversions can now be performed in bases
where the matrices are sparse, eliminating the need to solve the
Wiener filter equation for high-dimensional dense matrices.

Map sampling

Sampling from the map conditional on the signal covariance and
messenger field involves generating a Gaussian random vector
with mean and covariance μs = (C−1 + T−1)−1T−1t and Qs =
(C−1 + T−1)−1. The noise component appearing here is purely
isotropic, T ∝ I, and hence T is diagonal in any orthogonal ba-
sis; the matrix Qs = (C−1 + T−1)−1 is block-diagonal in harmonic
space, with subblocks of size p = 2 × nbins, hence the largest matrix
that has to be inverted during the map-sampling step is p × p.

Messenger field sampling

Sampling from the messenger field conditional on the shear field and
the data involves generating a Gaussian random vector with mean
and covariance μt = (T−1 + N̄−1)−1T−1s + (T−1 + N̄−1)−1N̄−1d
and Qt = (T−1 + N̄−1)−1. If the pixel noise is weakly correlated,
the anisotropic noise covariance N̄ will be sparse in pixel-space, and
in the limit where the noise can be assumed to be completely uncor-
related N̄ will be diagonal in the pixel-basis. Since T is diagonal in
any basis by construction, inverting the matrix (T−1 + N̄−1) is now
trivial in the pixel-basis. Miraculously, by splitting the noise into an
isotropic and anisotropic component and introducing a messenger
field to mediate between the data and the shear field, we have cre-
ated an environment where C and N̄ can be represented in bases in
which they are, respectively, sparse simultaneously, eliminating the
need to numerically invert ∼npix × npix matrices at each sampling
step.

Power spectrum sampling

The conditional distribution for the signal covariance is unaffected
by the introduction of the messenger field into the hierarchy, so
the power spectrum sampling step is again achieved by drawing

inverse-Wishart random variates Ci+1
� ∼ W−1(�i

�, ν�) as described
in Section 3.1.

Algorithm 1 Joint shear field-messenger field-power spectrum
Gibbs sampling. Here we make harmonic space and real space
explicit, with harmonic space variables being denoted with a tilde.
F[·] represents the orthogonal transformation from real space to
harmonic E- and B-mode coefficients, N (μ, �) represents draw-
ing from a multivariate Gaussian with mean μ and covariance �,
and W−1 (�, ν) represents drawing from an Inverse-Wishart dis-
tribution with support � and ν degrees-of-freedom as described in
Section 3. The organization of the vectors s�m and s are described
by Eq. (10).

Initialize parameter values:
Draw C from some prior and initialize s:
C ∼ P (C)
s̃ ∼ N (0, C)
s = F−1 [s̃]

N Gibbs iterations:
for i = 0 ← N do

Sample messenger field:
Mean and Covariance:
μt = (T−1 + N̄−1)−1T−1s + (T−1 + N̄−1)−1N̄−1d
Qt = (T−1 + N̄−1)−1

Draw Gaussian random variate:
t ∼ N (μt, Qt)

Transform to harmonic space:
t̃ = F [t]

Sample shear field:
for all �, m modes do

Mean and Covariance:
μs,�m = (C−1

� + T−1
� )−1T−1

� t̃�m
Qs,� = (C−1

� + T−1
� )−1

Draw Gaussian random variate:
s̃�m ∼ N (μs,�m, Qs,�)

Transform to real space:
s = F−1 [s̃]

Sample covariance matrix:
for all � modes do

Compute ��:
�� = ∑�

m=−� s̃�ms̃†�m
Draw Inverse-Wishart random variate:
C� ∼ W−1 (��, ν�)

3.3 Cosmological parameter inference from the power
spectrum and the Blackwell–Rao estimator

The approach described in Section 3.2 allows us to jointly sample
from the posterior P (C, s, t|d). Marginalizing over s and t , we
obtain samples from the marginal posterior distribution of the power
spectrum (signal covariance) C given the data, i.e.

P (C|d) =
∫

P (C, s, t|d)ds dt. (28)

MNRAS 455, 4452–4466 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/455/4/4452/1262243 by guest on 25 April 2024



Hierarchical shear power spectrum inference 4461

Ultimately, we are not interested in the power spectrum itself, but
rather what it can tell us about cosmological models and parameters.
Cosmological models provide a deterministic mapping between
cosmological parameters and the shear power spectrum, i.e. for
a given set of cosmological parameters θ and model M we can
compute C(θ ,M). This means that if we have access to the posterior
P (C|d), we can straightforwardly sample the posterior distribution
for θ in a given model M by drawing samples from

θ ∼ P (C(θ , M)|d)
P (θ )

P (C(θ , M))
, (29)

where the prior on the covariance C is effectively replaced by a prior
on θ at this stage, through the ratio P (θ )/P (C(θ, M). In order to
sample θ , we would like access to the full smooth posterior P (C|d),
rather than just a set of samples of the map and covariance {si ,Ci}.
The Blackwell–Rao estimator (Gelfand & Smith 1990) provides an
efficient and very accurate way of estimating the smooth density
P (C|d) from a set of samples of the field {s} = {s1, . . . , sn}.

The Blackwell–Rao estimator can be understood as follows.
When block-MCMC or Gibbs sampling the field and signal co-
variance, it is perfectly allowed to draw many samples of C for
each field sample. In the limit where we take a large number of
covariance samples at every step, the covariance histogram will be-
come sufficiently smooth to allow us to estimate P (C|d) very well.
The Blackwell–Rao estimator is the continuum limit of this idea;
since we know the functional form of P (C|s) analytically, we can
replace the covariance sampling step by the full analytical distribu-
tion. The density P (C�|{s�}) is then estimated by

P (C�|{s�}) ∝
∑

i

|�i
�|(2�+1)/2

|C�|(2�+2+p)/2
exp

[
−1

2
tr(C−1

� �i
�)

]
. (30)

This smooth density can then be used effectively for sampling
θ ∼ P (C(θ , M)|d)P (θ )/P (C(θ , M)). In this work, we draw sam-
ples from the posterior distribution of the tomographic shear maps
and power spectra as a proof-of-concept for hierarchical map-power
spectrum inference for weak lensing, but note that application of
the Blackwell–Rao estimator for extracting cosmological inferences
(given samples from the map-power spectrum posterior) is techni-
cally straightforward. For discussion of the Blackwell–Rao esti-
mator in the context of CMB power spectrum inference see e.g.
Wandelt et al. (2004), and for application to CMB data see e.g. Chu
et al. (2005).

3.4 Intrinsic alignments

The IA of nearby galaxies, arising from their evolution in a shared
tidal gravitational environment, is known to be an important sys-
tematic effect when extracting cosmological inferences from cos-
mic shear, i.e. from correlations of observed galaxy ellipticities
across the sky (see e.g. Joachimi et al. 2015; Kiessling et al. 2015;
Kirk et al. 2015, for detailed reviews). A careful analysis might
include a parametrized model for IA, jointly inferring cosmolog-
ical and IA model parameters simultaneously and marginalizing
over the latter. It is straightforward to incorporate a model for
IA into the framework presented in this paper. In the presence
of IA, the angular power spectrum inferred from observed galaxy
shapes will have contributions from both gravitational lensing and
IA, i.e. C = CGG(θ , M) + CIA(θ, αIA, M), where we now distin-
guish between the cosmic shear power spectra CGG(θ , M) (de-
scribed in preceding sections) and the intrinsic alignment power
spectra CIA(θ , αIA, M) (containing all IA terms), which are func-
tions of both the cosmology and an additional set of parameters αIA

characterizing the intrinsic alignment model. The inference process
described in Section 3.1–3.2 achieves inference on the power spec-
trum C without reference to any cosmological or intrinsic alignment
model; the obtained posterior density P (C|d) describes the infer-
ence on the full angular power spectrum, containing (in principle)
both lensing and IA contributions. The joint posterior for the cos-
mological and intrinsic alignment model parameters can then be
straightforwardly sampled, via P (C|d), by drawing samples from

{θ , αIA} ∼ P (C(θ , αIA, M)|d)
P (θ , αIA)

P (C(θ , αIA, M))
, (31)

analogously to equation (29) and the description in Section 3.3.
Having sampled the joint posterior P (θ , αIA|d), the intrinsic align-
ment nuisance parameters αIA can be easily marginalized over as
desired. Performing power spectrum inference independent of any
cosmological or intrinsic alignment model allows us to do param-
eter inference for different cosmological and IA models quickly
and easily a posteriori, directly from the posterior distribution of
C, without the need to re-analyse the full data set. This is a major
advantage for the method presented here.

4 SI M U L AT I O N S

To demonstrate the joint map-power spectrum inference described
in Section 3 (including the messenger field sophistication), we ap-
ply the technique to simulated data. We generated a simulated shear
catalogue using the SUNGLASS weak lensing simulation pipeline
(Kiessling et al. 2011). SUNGLASS generates cosmological N-body
simulations with 5123 particles and a box of size length 512 h−1 Mpc
(with a mass resolution of around 7.5 · 1010 M�) given a fixed �

cold dark matter (CDM) cosmology using the GADGET2 N-body
code (Springel 2005). It then computes weak lensing effects along
a lightcone by performing line-of-sight integrations in the Born
approximation (with no radial binning). The computed weak lens-
ing fields are then interpolated back on to the particles in the
lightcone, generating a mock 3D shear catalogue (see Kiessling
et al. 2011 for more details). We take a Wilkinson Microwave
Anisotropy Probe 7 �CDM cosmology (Jarosik et al. 2011; Larson
et al. 2011) with 
� = 0.73, 
m = 0.27, 
b = 0.045, ns = 0.96,
σ 8 = 0.8 and h = 0.71. The galaxy redshift distribution is given
by p(z) ∝ z2e−(z/z0)1.5

, with z0 = 0.7 corresponding to a median
redshift of around 1, the lightcone extends to a redshift of 2 and
covers an area of 10 × 10 deg2. Gaussian photometric redshift er-
rors are added to each galaxy redshift, with zero mean and dispersion
σ z = 0.05(1 + z). Each galaxy is also given an intrinsic random
ellipticity, where the two ellipticity components are independently
drawn from a Gaussian with zero mean and dispersion σ ε = 0.27.
Note that realistic ellipticity distributions are not expected to be
Gaussian. However, since many galaxies are averaged together to
give the estimated shear in each pixel, our results will be insensitive
to the shape of the assumed intrinsic ellipticity distribution, depend-
ing only on the variance of the random ellipticity components due to
the central limit theorem (in this study, ∼330 galaxies contribute to
the estimated shear in each pixel and tomographic bin). The result
is a 3D catalogue of galaxies with angular positions, photometric
redshifts and observed ellipticities (given by the sum of the ran-
dom intrinsic ellipticity and the shear for each source), covering
10 × 10 deg2, a redshift range from z = 0 to 2, with an average of
30 galaxies per square arcminute on the sky.

In order to perform a tomographic shear analysis, the catalogue
is divided into two photometric redshift bins, with 0 < zph ≤ 1 and
1 < zph ≤ 2, respectively. The sources in each redshift bin are then
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4462 J. Alsing et al.

Figure 4. Recovered E-mode tomographic shear power spectra: the inner orange bands indicate the 68 per cent credible region, the outer grey bands indicate
the 95 per cent credible region, the black lines show the mean of the posterior distributions of the band powers, the red lines show the estimated band powers
from the noiseless, mask-less simulated shear catalogue and the horizontal blue lines indicate the mean ellipticity-noise level.

grouped into 128 × 128 angular pixels and the estimated shear in
each pixel is computed as the mean of the galaxy ellipticities in each
of the pixels. A survey mask is added by masking out five circular
patches positioned randomly over the survey area, each with radius
∼0.◦8. The result is two 2D tomographic 10 × 10 deg2 noisy shear
maps with a non-trivial survey mask, as described in Section 2.2.1.

5 R ESULTS

We applied the algorithm described in Section 3.2 and Algorithm
1 to the simulated noisy tomographic shear maps generated using
the SUNGLASS simulation pipeline described in Section 4. Since the
simulated patch of sky is small we employ the flat-sky approxi-
mations described in Section 2.2.3. It is highly desirable for the
Gibbs sampler to bin several power spectrum coefficients together
(Eriksen et al. 2006; Larson et al. 2007). This improves the sam-
pling efficiency in two ways: first, the number of model parameters
is reduced bringing down the computational cost of each Gibbs
sampling step. Secondly, in the implementation described in Sec-
tion 3 the typical step size between two consecutive Gibbs samples
is determined by the cosmic variance, whereas the full posterior has
both cosmic variance and noise. As such, in the low signal-to-noise
regime the sampler must make a large number of steps to obtain
two independent samples of the power spectrum coefficients. By
binning � modes together into a set of band-power coefficients, we
are effectively increasing the signal-to-noise of the now reduced set
of power spectrum coefficients, improving the sampling efficiency.
To this end, � modes were binned together so that each bin con-
tains ≥80 modes, giving a total of 194 band-power coefficients.
Since there are two tomographic bins and two degrees-of-freedom
for shear, this results in a total of 1940 model parameters for the
power spectrum coefficients. The two tomographic shear maps con-
tain 128 × 128 pixels, each with two degrees of freedom, so the
pixels constitute a further 65 536 model parameters, bringing the
total number of parameters in the inference task to 67 476.

We ran three Gibbs chains with independent starting points,
each with 1.2 million steps. Convergence was determined using
the Gelman–Rubin statistic r (Gelman & Rubin 1992); the chains
were deemed to have converged to the marginal distributions for all
parameters, with r < 1.1 in all cases. Each sampling step required
a clock-time of ∼0.5 s on a high-end 2015 desktop CPU. The ob-
tained samples from the posterior distribution for the tomographic
shear maps and power spectra are summarized in Figs 4–6; the inner
orange bands show the 68 per cent credible regions, the outer grey
bands show the 95 per cent credible regions, the black lines show
the mean posterior band powers, the red lines show the estimated
band powers from the noiseless (mask-less) simulated shear cata-
logue and the horizontal blue lines show the (average) pixel noise
level due to random galaxy ellipticities. The mean and variance of
the posterior distribution of the shear maps are shown alongside the
simulated maps in Fig. 7. Obtained (smoothed) posterior distribu-
tions for the power spectrum coefficients for selected �-modes are
shown in Fig. 8.

Fig. 4 shows the recovered E-mode tomographic (cross) power
spectra for the two tomographic bins; the posterior distributions for
the power spectra summarized by the orange (68 per cent) and grey
(95 per cent) credible regions and black line (posterior mean) are
clearly recovering the underlying power spectra in the simulation
(red line). The posterior mean follows the underlying simulated
power (albeit with some scatter). Since the number of modes in
each �-bin are chosen to be roughly the same, the cosmic variance is
roughly the same for all of the band power coefficients. The increase
in the posterior width with increasing � is hence due entirely to
the decreasing signal-to-noise, since the amplitude of the E-mode
power spectra decreases as a function of � whilst the noise remains
constant (i.e. independent of scale).

Fig. 5 shows the recovered B-mode tomographic power spectra.
The posterior distributions for the B-mode power (for the auto-
bins) are consistent with the small signal in the simulated data.
Due to the small amplitude of the B-mode power (a factor of
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Hierarchical shear power spectrum inference 4463

Figure 5. Recovered B-mode tomographic shear power spectra: the inner orange bands indicate the 68% credible region, the outer grey bands indicate the
95% credible region, the red lines show the estimated band powers from the noiseless, mask-less simulated shear catalogue and the horizontal blue lines
show indicate the average ellipticity-noise level. The recovered B mode power spectra are consistent with the small B-mode signal in the simulated data. For
the small amplitude of B-modes in the simulation (1–2 orders of magnitude below the ellipticity noise level), the posteriors are also consistent with zero,
effectively providing upper limits only. In order to make stronger statements about the B-mode power at this low signal-to-noise, one must either motivate a
more informative prior or a more informative model for the B-modes.

Figure 6. Recovered EB-cross tomographic shear power spectra: the inner orange bands indicate the 68 per cent credible region, the outer grey bands indicate
the 95 per cent credible region, the black lines show the mean of the posterior distribution of the band powers and the red lines show the estimated band powers
from the noiseless, mask-less simulated shear catalogue. All recovered EB cross powers are consistent with zero, as expected.

10–100 below the ellipticity noise level) the B-mode posteriors
are also consistent with zero, eectively providing upper limits only.
In order to make stronger statements about the B-modes (at this low
signal-to-noise), one must either motivate a more informative prior
or choose a more informative model for the B-mode power. In the
absence of prior information or understanding of the B-mode signal,

inference with an (uninformative) Jeffrey’s prior, as chosen here,
is appropriate. When zero B-modes are expected from cosmology
and the B-mode power is used purely as a test of systematics, one
could perform Bayesian model selection on a model with both E-
and B-modes versus a model with E-modes only, in order to make
stronger statements about the presence of residual B-modes in the
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Figure 7. Tomographic maps of the γ 1 component of the shear for the noiseless simulated shear maps (far left), noisy masked simulated maps (second from
left), mean posterior maps (third from left) and the posterior variance (far right). The mean posterior maps recover most of the structure from the simulated
shear maps. Note that inference is made about the field in masked regions, but the posterior variance in those regions is significantly higher than in unmasked
regions as expected.

data. The Bayesian hierarchical modelling approach provides a nat-
ural framework for such model selection. The recovered posterior
inference on the B-mode cross power between the two tomographic
bins is also consistent with the data (and consistent with zero).

Fig. 6 shows the recovered EB cross tomographic power spectra
for the two tomographic bins. We expect zero correlation between
E- and B-modes due to parity, and indeed all of the recovered EB
power spectra are consistent with zero as expected.

Fig. 7 shows the mean and variance of the posterior distribu-
tions for the maps for the γ 1 component of the complex shear,
alongside the noiseless (mask-less) simulated shear maps and the
simulated maps with noise and mask added. The mean posterior
maps are clearly recovering the structure in the underlying simu-
lated shear maps. Importantly, note that inference of the shear field
in the masked regions is obtained as described in Section 3, but the
posterior variance in these regions is significantly higher than in
the unmasked regions as one would expect, since the data provides
no direct information about the field in those pixels; information
is only obtained through the power spectrum inference (which pro-
vides prior information on the field at each sampling step) combined
with the inferred field in pixels surrounding the masked regions.

Fig. 8 shows the obtained posterior distributions for the C� co-
efficients for selected �-modes for E-mode, B-mode and EB-cross
power (for the first tomographic bin only). For both the E- and B-
modes, the posterior distributions are clearly non-Gaussian showing
significant negative skewness (note the logarithmic axes in Fig. 8);
the method has captured the full non-Gaussian shape of the posterior
distributions of the power spectrum coefficients. For the E-modes in
particular, the asymmetry increases with increasing � as the signal
to noise decreases. For the B-modes, where the signal-to-noise is

very low across the full range of �, the posteriors are peaked at
(or close to) zero with positive tails; these will be somewhat prior
dependent, although we note that at very low signal-to-noise this
behaviour may be expected for a range of (weakly informative) pri-
ors. We reiterate that in order to make stronger statements about the
B-modes at this low signal-to-noise, one must provide a (motivated)
more informative prior or more informative model.

6 C O N C L U S I O N S

We have developed a Bayesian hierarchical approach to cosmic
shear power spectrum inference, whereby we sample from the joint
posterior distribution of the shear map and power spectrum in a
Gibbs sampling framework. Similar methods have been developed
and applied for power spectrum inference in the context of CMB
temperature, polarization and LSS problems. The joint map-power
spectrum inference approach has a number of highly desirable fea-
tures. Complicated survey geometry and masks are trivially ac-
counted for in contrast to approximate power spectrum estimation
methods such as the pseudo-C� approach, since the inference of the
power spectrum and unmasked pixels provides prior constraints on
the field in the masked regions where the data provides no informa-
tion directly. The posterior distribution on the shear power spectrum
is a powerful intermediate product for a cosmic shear analysis, since
it allows cosmological parameter inference and model selection to
be performed without loss of information for a wide range of mod-
els a posteriori; this is clearly preferable to analysing the full data
set for each model independently. The method is exact and opti-
mal under the assumption of Gaussian fields, in the sense that no
information is lost from the data once it has been pre-processed
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Figure 8. Selected obtained posterior probability distributions for power
spectrum coefficients for the (E1, E1) (left column), (B1, B1) (middle col-
umn) and (E1, B1) (right column) powers at � ∼ 1800 (top row), � ∼ 1000
(middle row) and � ∼ 200 (bottom row). The displayed posterior distri-
butions are obtained from the smoothed histograms of posterior samples.
The E-mode posterior densities are clearly negatively skewed, becoming
increasingly asymmetric with increasing � as the signal-to-noise per mode
decreases.

into estimated noisy shear maps. Loss of information and biases in
this pre-processing step (from raw pixel data to estimated galaxy
shapes and redshifts) can be avoided by embedding the hierarchical
map-power spectrum model into a larger global hierarchical model
for cosmic shear accounting for instrumental effects, modelling dis-
tributions of intrinsic galaxy properties and cosmology together in
a single global analysis.

We demonstrate the method by performing tomographic map-
power spectrum inference on a simulated shear catalogue of galaxies
with random intrinsic ellipticities, distributed across the sky and
in redshift (with photo-z errors), processed into two tomographic,
pixelized, noisy shear maps, with a complicated survey mask. The
simulation covers 10 × 10 deg2, extends to redshift z = 2 and
contains on average 30 galaxies per square arcmin. The map-power
spectrum inference approach produces posterior distributions for the
shear map and tomographic power spectra, successfully recovering
the simulated E-mode, B-mode and EB-cross tomographic power
spectra from the simulation.

The Bayesian map-power spectrum inference approach can be
straightforwardly extended to 3D shear power spectrum infer-
ence, joint shear-magnification analysis (Heavens, Alsing & Jaffe
2013; Alsing et al. 2015) or joint analysis of weak lensing with
other probes (galaxy clustering, CMB etc). Non-Gaussianity of the
shear field on small angular scales means the Gaussian distribu-
tion for the shear field taken in this work will be suboptimal when
extracting inferences on these scales. The framework developed
here can in principle be extended to jointly estimate the power
spectrum and higher order statistics for the shear field, capturing

more of the available information on non-linear scales. This would
require specifying a model for the non-Gaussian shear probability
density; the appearance of this non-Gaussian probability density in
the hierarchical model will likely make the conditional distributions
too complicated to permit Gibbs sampling. In this case an alterna-
tive sampling scheme, such as Hamiltonian Monte Carlo (HMC),
should be developed (see e.g. Jasche & Kitaura 2010 for a success-
ful application of non-Gaussian field inference using HMC in the
context of LSS). We will investigate these issues in future work.
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