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ABSTRACT The industrial field faces the problem of process optimization by finding the factors affecting
the yield of the process and controlling them appropriately. However, due to limited resources such as time
and money, optimization is performed using a low evaluation budget. In addition, for process stability, the
lower limit of the yield is set so that the yield must be maintained above this limit during optimization.
Bayesian Optimization (BO) can be an effective solution in acquiring optimal samples that satisfy a safety
constraint given a low evaluation budget. However, many existing BO algorithms have some limitations such
as significant performance degradation due to model misspecification, and high computational load.Thus,
we propose a practical safe BO algorithm, A-SafeBO, that effectively reduces performance degradation
due to model misspecification using only a limited evaluation budget. Additionally, our algorithm performs
computations for a large number of observations and high-dimensional input spaces by using Ensemble
Gaussian Processes and Safe Particle SwarmOptimization. Here, we also propose a new acquisition function
that leads to a wider exploration even under the constraint of safety. This will help deviate from the local
optimum and achieve a better recommendation. Our algorithm empirically guarantees convergence and
performance through evaluations on several synthetic benchmarks and a real-world optimization problem.

INDEX TERMS Bayesian optimization, Gaussian processes, safe exploration, hyperparameter scaling,
industrial application, low evaluation budget environment.

I. INTRODUCTION
Over the past few decades, the accumulation of high-quality
data and the development of computing power have contin-
ually been developed. More recently, machine learning has
been used to extract meaningful information from a large
amount of high-quality data that is difficult for humans to
directly perform, leading to countless advances in various
fields.

A typical example is the industrial sector. Industrial sites
aim to produce high-quality products with high yield through
the production process. To this end, accumulated produc-
tion data can now be analyzed using machine learning to
understand the relationship between the control parameters
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affecting the production process and the resulting product
quality and yield. It can then adjust the control parameters
appropriately to derive high productivity.

However, this approach is not always available because the
accumulated production data sometimes loses its meaning.
The yield of the product is affected not only by the control
parameters of the machine, but also by external environmen-
tal factors such as temperature and humidity. Although many
efforts have been made to control these external environmen-
tal factors in the production line, sometimes these factors
affect the production line and change the correlation between
the previously identified control parameters of the machine
and changes in production yield; the previously collected data
then loses meaning. In addition, if the type of product to be
produced on the production line is suddenly changed, the
previously collected data also loses meaning.
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FIGURE 1. In the optimization process during the production process in
the industrial field, there are cases in which exploration is restricted to
lower the yield below a specific value in order to prevent large financial
losses.

In this situation, the accumulated production data is very
small; therefore, data collection should be prioritized to ana-
lyze the relationship between the control parameters of the
production machine and the production yield. However, it is
difficult to have a data collection process that requires pro-
duction to stop due to the nature of the industrial environment
in which stopping production itself causes a huge financial
loss. In addition, since the process of manufacturing a product
for data collection itself consumesmany resources (materials,
time, manpower, etc.), it is necessary to effectively analyze
this relationship using a relatively small amount of data.

Moreover, a single wrong choice of control parameters
in the industrial sector can lead to damage to production
machinery and result in significant financial losses. There-
fore, data collection that could cause such harm must be
avoided. To address this issue, a safe exploration technique
is necessary that can gather the most information while accu-
rately predicting the risk associated with each evaluation
based on the collected data. As depicted in Figure 1, this
technique should enable evaluations that are not risky.

Although model-based deep neural network (DNN)
approaches have recently shown great success in many fields,
the use of DNNs is unsuitable in settings where limited data
and safety is critical. This is because DNNs consume a lot of
time and data to train the model. DNNs also require careful
tuning of model hyperparameters (e.g. batch size, learning
rate, number of nodes in hidden layer, etc); otherwise, random
evaluation may incur high physical and financial opportunity
costs [1], [2].

Bayesian optimization (BO) is an effective method to solve
this problem. BO is a well-principled, sample-based approach
that acquires data sequentially and optimizes black box objec-
tives. It operates by building a surrogate model for optimizing
the objective by sampling the point that optimizes the acqui-
sition function [3], [4]. This approach has recently gained
popularity for its effectiveness in tuning the hyperparameters
of various machine learning models, especially DNNs [1],
[2]. It has also been employed in practical safety-critical sce-
narios such as automated manufacturing systems [5], [6] and
medical product development [7], [8]. In these applications,
the goal is to sequentially draw an optimal sample, satisfying
some given safety constraints, from the design space repre-
senting the relationship between the control parameters and
the reward.

While BO has long stood as a standard optimization
method in multi-armed bandit problems [9], it inherently
bears limitations in the computation time and number
of samples required to reach the global optimum in a
high-dimensional search space. In the case of BO, which
creates a surrogate model based on GP [9], [10], the use
of appropriate kernel hyperparameters greatly affects perfor-
mance. However, the process of selecting appropriate kernel
hyperparameters usually consumes a significant amount of
resources (e.g. training data samples, time). This process
does not fit the concept of BO, which is used to efficiently
perform optimization using a relatively small number of
samples. In addition, when such a large number of sam-
ples are randomly collected for this process, the possibility
of damaging the environment increases in situations where
safety constraints are important. Another concern is the nec-
essary sample size growing in proportion to the search space
dimension for global convergence, i.e., more observations are
required to arrive at the global optimum in a high dimensional
space [11]. In addition, the BO approach is characterized by
exponentially increasing computational complexity for the
number of samples of n [12]. These characteristics make BO
unsuitable for use in industrial sites where it is necessary
to obtain optimal sample points on a low evaluation bud-
get and reduce the risk of sampling candidates with unsafe
yields.

In this paper, we propose a practical safe BO algo-
rithm called A-SafeBO that overcomes these limitations and
achieves competitive performance in safety-critical and data-
sparse environments.

Our contributions are summarized as follows:
• We introduce a safe BO algorithm that is practically
useful in low evaluation budget and safety-critical
environments by reducing computations using Ensem-
ble Gaussian Processes and Safe Particle Swarm
Optimization.

• Our algorithm proposes a new acquisition function that
induces safer and wider exploration than existing meth-
ods in situations where exploration is limited due to
safety constraints. Through this, it is possible to give a
recommendation closer to the global optimum.

• Our algorithm saves resources used for hyperparam-
eter tuning by effectively performing optimization by
scheduling the hyperparameter scaling process within
a limited number of samples using the scaling function
without a tuning process, even if information on kernel
hyperparameters is not given in advance.

• We evaluated our algorithm on several benchmarks and
a real-world optimization problem and empirically show
that it achieves competitive results in the proportion of
safe samples, computation time, and estimated reward
compared with the baseline methods [13], [14].

II. PRELIMINARIES
In this section, we describe the underlying principles and
assumptions necessary for BO-based approaches.
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A. BAYESIAN OPTIMIZATION
BO has gained popularity as an optimization technique for
solving expensive objective functions in practical applica-
tions [10]. This optimization method is effective in arriving
at the global optimum of an expensive objective f :X 7→R
for a compact domain X⊂Rd . This framework is used to
iteratively update the statistical surrogatemodel and select the
next informative sample location by optimizing the acquisi-
tion function. Themaximizer x∗ on the black box function f is
often determined in a one-step optimal manner by balancing
the exploration-exploitation trade-off in a greedy fashion.
Formally, the goal is to optimize the following problem:

x∗ = argmax
x∈X

f (x), (1)

where X and f (·) denote a d-dimensional design space and
the objective function to be evaluated, respectively. Key to
global convergence in BO is to appropriately adjust the degree
of exploration and exploitation trade-off [15].

B. REGULARITY ASSUMPTIONS
The surrogate function in the BO setting is modeled with
a stochastic process on a probability space defining a prior
distribution over functions [10]. A typical choice for the
nonparametric regression function f is a GP [16] which
is a smooth yet flexible model fully parameterized by a
prior mean function and a covariance (kernel) function, i.e.,
f ∼ GP(µ(x), kl(x, x′)). With GP , we can assume that
X is provided with a positive definite kernel function, and
the objective f has a bounded norm B in the associated
Reproducing Kernel Hilbert Space (RKHS)Hkl (X ), which is
completely determined by the corresponding kernel function
kl(·, ·) : X × X 7→ R determining the roughness and size of
the function space [17]. The induced bounded RKHS norm
||f ||kl=

√
⟨f , f ⟩≤B is a measure of the function complexity

with respect to the kernel, assuming we have well-behaved
functions of the form f (x)=

∑
i≥0

(
αi × kl(x, xi)

)
for points

xi∈Rd and weight decay coefficients αi∈R. These assump-
tions allow us to estimate f as a sample from GP .
At each iteration t = {1, · · · ,T }, the GP prior is updated

from the cumulative set of the past training samples Dt =
{(xi, yi)}ti=1 using the Bayes’ rule. For a design vector x
at iteration t , the posterior mean µT and variance σT are
obtained in closed-form as follows:

µT (x) = kT (x)⊺(KT + ITρ2)−1yT ,

kT (x, x′) = kl(x, x′)− kT (x)⊺(KT + ITρ2)−1kT (x′),

σ 2
T (x) = kT (x, x), (2)

where KT∈R
T×T is the covariance matrix with i-th and

j-th entries kl(xi, xj) for xi, xj∈XT and i, j∈{1, . . . ,T }, and
the vector kT (x)=[kl(x, x1), . . . , kl(x, xT )]⊺ holds the covari-
ances between the input x and the observed samples in DT .
We denote the identity matrix as IT∈RT×T . Without loss
of generality, we assume µ(x)=0 and our observations are
perturbed by ρ-sub-Gaussian noise.

We also assume that f is L-Lipschitz continuous with
respect to some metric d on X . The design choice x and the
optimal point x ′ are to satisfy (3) by using a commonly used
isotropic kernel on X , e.g., the Gaussian kernel [9], [18].

|f (x)− f (x ′)| ≤ L · d(x, x ′) ∀x, (3)

where d(·, ·) is some distance metric with which the objective
f is L-Lipschitz continuous. The estimated function value
at any x is assumed not to change at an arbitrary rate, but
bounded by the L-Lipschitz constant.

C. ACQUISITION FUNCTION
The next evaluation point xt+1 is then selected by maximiz-
ing the utility function Ut such that xt+1=argmaxx∈XUt (x)
assuming that optimizing Ut is a maximization problem.
We avoid expensive evaluation of the objective f bymaximiz-
ing this auxiliary function, thus obtaining the posterior quan-
tities of the GP at a cheaper cost [19]. Under the smoothness
assumptions via a GP , the acquisition function (e.g., Upper
Confidence Bound (UCB) [20], Probability of Improvement
(PI) [21], Expected Improvement (EI) [22], and GP-UCB [9])
serves to balance the exploration-exploitation trade-off. For
instance, GP-UCB balances the trade-off with βt in greedily
maximizing Ut = µt−1(x)+ β

1/2
t−1σt−1(x)

D. KERNEL HYPERPARAMETERS
The performance of BO based on GP is greatly affected by
the kernel hyperparameters of GP . These kernel hyperparam-
eters are determined by the characteristics of the data used to
build the GP , and it is practically impossible to know these
hyperparameters before collecting the data. Therefore, before
use, it must be set appropriately according to the charac-
teristics of the data to be used. This process is often called
hyperparameter tuning; however, this process consumes a
lot of resources. These problems have made the practical
use of BO difficult. Therefore, studies have been conducted
to eliminate the hyperparamter tuning process and to adjust
the hyperparameters online [23], [24], [25], [26]. In these
studies, length scale(l), norm bound(B), and beta(β) are cited
as common parameters that have a great influence on per-
formance. To model the objective function f using GP , the
regularity assumption that the function space of f must be
bounded by the RHKS norm boundBmust be satisfied. Since
this is a number that limits the complexity of the function
by limiting the function space of the objective function f
as in ||f ||kl=

√
⟨f , f ⟩≤B, norm bound B has an important

meaning. Therefore, the greater the value of B, the higher the
complexity of f .

The kernel mainly usedmeasures its similarity based on the
distance between two inputs.The length scale l is a scaling
factor for measuring similarity by scaling the scale of each
dimension of the input domain when it is varied as (4). In this
case, the kernel calculates that it has a large similarity when
the distance is close; therefore, having a large similarity when
the length scale l is large means that the similarity between
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FIGURE 2. Estimate safe regions (Rϵ (S)) based on the current safe set(S)
under the L-Lipschitz continuity assumption.

two points is high even if the distance between them is
far. This means that the complexity of this function is low.
Conversely, when the length scale l is small, the distance
between points with high similarity is small, indicating that
the complexity of the function is high.

kl(x, x′) = k
(
[x]1 − [x′]1

[l]1
, · · · ,

[x]d − [x′]d
[l]d

)
(4)

Finally, β is mainly used to define the confidence bound
CB(·), the boundary where the observation exists with high
probability using the mean function and standard deviation
function, which is defined as (5).

β
1/2
t = Bt + 4ρ

√
I (yt ; f )+ 1+ ln(1/δ)

CBt (x) = µt (x)± β
1/2
t σt (x), (5)

where ρ-sub-Gaussian noise is added to the measurements
and I (yt ; f ) is the mutual information between the GP prior
on f and the t-th observation yt . The confidence boundCB(x)
is an interval in which samples, x, can exist with a probability
of 1−δ (see Appendix A, Lemma 1).

E. SAFE OPTIMIZATION GOAL
Under the Lipschitz continuity assumption (3), we can define
a one-step ε-reachability operator [13] based on the safe set
S as follows.

Rϵ(S) := S ∪
{
x ∈ D|∃x′ ∈ S, f (x′)−ϵ−L · d(x, x′) ≥ τs

}
,

(6)

where S, ϵ, L, and τs denote the set of safe observa-
tions, the tolerance for noise, L-Lipschitz constant, and the
pre-specified safety threshold, respectively.

This is because, under the Lipschitz continuity, the change
in observation with distance is limited. Therefore, as shown
in Fig. 2, the observation value of each point can be predicted
according to the distance away from the observation of the
current safe set. If these predicted observations are confirmed
to be safe, they can be included in the safe set, thereby
expanding it.

By repeating this process T step, a set of samples predicted
to be safe after the T step based on the current safe set S. This
is called the T -step ϵ-reachability operator [13] and can be

defined as follows:

RTϵ (S) := Rϵ(Rϵ(. . . (Rϵ(S)) . . .))︸ ︷︷ ︸
T times

. (7)

Safe optimization refers to the process of finding the
optimal point in the increased safe set after performing the
process of gradually increasing the safe sets by repeating
the sampling based on the safety prediction.

As with other safe BO methods [13], [14], we modify our
optimization goal as (8)

x∗ = argmax
x∈RTϵ (S0)

f (x), (8)

where S0 is an initial safe seed.

F. REGRET
Instantaneous regret(rt ) is the difference between the global
optimum and the actual observation. This is expressed in (9).

rt = f (x∗)− f (xt ), (9)

where x∗ is the global optimum
In addition, the accumulated value up to the T step is called

cumulative regret and is expressed as (10).

RT =
T∑
t=1

( rt︷ ︸︸ ︷
f (x∗)− f (xt )

)
. (10)

As the optimization process proceeds, the global optimum
is reached, and the observation is close to f (x∗) and rt
is close to zero. Accordingly, the increased amount of RT
gradually approaches 0 and has a sublinear form. Therefore,
we assess the convergence of the algorithm by the sublinearity
in the cumulative regret over T iterations. RT is sublinear as
limt→∞RT /t=0 if the algorithm converges to optimal values
given sufficient time. We denote this desirable asymptotic
property as no-regret, where rt is strictly positive for t > 0
and f (xt ) is sufficiently close to optimal [9]. Note that rt
or RT are not revealed to the algorithm. We accumulate the
instantaneous regret rt or the loss from evaluating the function
at xt instead of at the a priori unknown optimal inputs.

III. RELATED WORK
Many Bayesian optimization methods model the underlying
expensive black box function with GP as they effectively pro-
vide prior knowledge and model variance under the outlined
regularity assumptions. In this section, we review the limi-
tations of such approaches widely used in many successful
applications [1], [2], [5], [6], [7], [8].

The curse of dimensionality [27] is a well-known problem
in BO applications where the learned function prior requires
an exponentially larger amount of data with each increased
input dimension. Many BO methods have been proposed
to mitigate this problem by making structural assumptions
on the objective [28], [29] and decomposing the problem
into low dimensional active subspaces using the divide-
and-conquer approach [30], [31]. The simplified functional
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spaces resulting from linear dimensionality reduction are
often restricted to linear subspaces of the original domain. In a
nonlinear feature space, higher compression rates are achiev-
able [30], and methods such as generative model [32], [33],
[34] have been successful in learning the appropriate latent
codes and embeddings for low dimensional data representa-
tions. However, these methods require a large amount of prior
data in offline environments, despite having a relaxed com-
putational cost, even in high dimensional spaces [35], [36].
Other approaches include random forests [37], a heuristic
method [38], and an evolutionary algorithm [39] inwhich par-
ticle swarm optimization (PSO) [40] helps realize a compu-
tationally efficient optimization process. PSO stochastically
approaches the best evaluation point for both each individual
particle and the entire population.

Increasing the input dimension causes the number of
required data points for effective global convergence to
grow, as well as the resulting computations. For GP-based
BO methods, growing computations due to the inverse
(K+ Iσ 2)−1 and determinant in the log likelihood |K+ Iσ 2

|

allow for up to a few thousand evaluations in practice [41].
In dealing with this computational bottleneck, methods that
leverage parallelism, e.g., using an ensemble of additive GP
models in a randomized divide-and-conquer fashion [11],
have shown to effectively address these scalability issues for
large-scale observations.

In addition to the growing dimensionality, prior knowledge
of optimal kernel hyperparameters also contributes to the
increase in computational cost of the optimization problem,
which reduces practicality. For GP , it is crucial to set appro-
priate hyperparameters in advance so as not to fall into a poor
local optimum; otherwise, it requires a significant number
of data to find the optimal values prior to execution. Since
it is difficult to pre-specificy optimal hyperparameters in
advance, it is useful to estimate these hyperparameter values
in an online manner [23], [25]. These methods guarantee that
even if they are not known in advance, they are adjusted
at each iteration in the direction of expanding the function
space, and finally converge to the global optimum. In safety-
critical scenarios, hyperparameter values must be estimated
so that the evaluation stays above the safety threshold and
safe exploration and exploitation is well-balanced in a global
scope.

Safe exploration in muti-armed bandit problems have
recently been considered in practical applications in the clin-
ical domain [14], [42], where the problem is constrained
by some pre-specified safety threshold. These approaches
restrict the optimization goal by defining a ϵ-reachable max-
imum given a safe seed. While they theoretically guarantee
global convergence and yield sufficiently safe performance,
their exploration and exploitation strategies by maintaining
respective sample sets often yield a poor local optimum as
they overlook global exploration in considering safety. In this
light, we seek to have a heuristic criterion by which we adjust
the kernel hyperparameters in an online manner to safely
search globally and escape the local optimum.

Algorithm 1 A-SafeBO
Input: Search space X ,

Initial n safe observations
O = {(o(x)i , o(y)i )}n−1i=0 ,
Noise ρ,
Safety threshold τs,
User-defined constants τd , τw

Result: Recommended optimal point, x∗

Initialize: X , O(x), MB0, S0, rs, D0
GP hyperparameters (l0, β

1/2
0 ,B0)

x0 = x| ∃x ∈ O(x)

for t = 1, 2, . . . , T do
if t > 300 then

Calculate PMBt−1 (14)
f̂ ← Ensemble GP(MBt−1,PMBt−1 )

else
f̂ ← GP(MBt−1)

end
x t ← SafePSO(MBt−1, St−1,Dt−1, rs)
xt ← Denormalize x t
yt ← Sample xt from the real environment
MBt ← MBt−1 ∪ {(x t , yt )}
Analyze the state of the process (12) and (13)
Hyperparameters scaling (28)

end
(x∗, y)← argmax(x,y)∈MBy

IV. METHODOLOGY
Given a high evaluation cost and a safety constraint, finding
a safe maximizer at a minimal cost is advantageous. In a low
budget setting, however, optimization can only be performed
in a limited search range due to insufficient sample points
for uncertainty estimation, leading to performance degra-
dation [19]. Moreover, hyperparameter misspecification and
safety constraints often induce a higher probability of being
trapped in a local optimum due to limited exploration.

To remedy these problems, A-SafeBO provides an
approach to widen the exploration and computational cost
reduction with a new acquisition function, a method for
scheduling the hyperparameter scaling process with a limited
number of samples, an Ensemble Gaussian Process and a Safe
Particle Swarm Optimization. Our method seeks to estimate
the objective f based on ρ-sub-Gaussian noise perturbed eval-
uations using the predictive uncertainty from the GP , similar
to [13] and [14]. In addition, it promotes safe exploration in
the design space X∈Rd so that the acquired samples exceed
some pre-specified threshold. Safe exploration is guaranteed
by maintaining an increasing sequence of subset S⊆X con-
taining safe samples. The pipeline that shows the operation
of our proposed A-SafeBO is shown in Fig. 3.
A-SafeBO finds the optimal point in the safe set by gradu-

ally expanding the safe set similar to the algorithm consider-
ing safety based on BO. For this, a set of safe observations
(O={(o(x)i , o(y)i )}n−1i=0 , where o

(x)
i is the position information
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FIGURE 3. The pipeline of the proposed A-SafeBO algorithm.

and o(y)i is the evaluation result) containing n(n ≥ 1) safe
samples must be given at the start of the algorithm. At this
time, safe means that the evaluation of the sample is higher
than the safety threshold τs. For notations, we use a super-
script in parentheses to represent the set of stored values in O
for the respective variable, i.e., O(x)

={o(x)i }
n−1
i=0 .

A-SafeBO stores the samples collected during the opti-
mization process in the memory bank (MB) together with the
samples stored in this initial safe set O. It then uses them to
check the state of the optimization process (Density score and
Safety statistics).

Before explaining how A-SafeBO works, some important
concepts must first be explained.

1) THE SEARCH SPACE IS NORMALIZED
A-SafeBO performs an algorithm by normalizing the search
space to a unit hypercube (X ) having a size of 1 in all
dimensions to perform optimization regardless of the size of
the search space (X ). Therefore, the algorithm is performed
in a normalized form of all the position information of all
samples (O(x)={o(x)i}

n−1
i=0 and x t , where x t is the normalized

position information obtained in the t-th iteration of the
optimization process). When the recommended point x t is
actually sampled in each optimization step, it is denormalized
and sampled in the form of xt .

2) MEMORY BANK MB
The (MB) stores the normalized positions of the acquired
samples and the corresponding evaluations from the real
environment, denoted as x and y, respectively, for t iterations.

FIGURE 4. Example of calculating Density score in 2-dimensional search
space.

We update this memory bank at each iteration as (11).

MBt ={(oxi , o
y
i )|o

x
i ∈ O(x), oyi ∈ O

(y), 0 ≤ i ≤ n− 1}⋃
{(x i, yi)|0 ≤ i ≤ t − 1}. (11)

The notation representing each variable stored in
MB is expressed similarly to that used in O, i.e.,
MB(x)t =O(x)

⋃
{x i}

t−1
i=0 .

3) DENSITY SCORE D(·)
Density score (D(·)) is a sample statistic introduced to cal-
culate how densely certain data samples in A={ai∈Rd

}
n
i=1
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are positioned in the design space with respect to all oth-
ers belonging to a different set B={bi∈Rd

}
m
i=1. The den-

sity score, D(·), allows the assesment of how populated the
acquired samples are in a given window, and becomes useful
in iteratively adjusting the safety threshold and choosing the
acquisition function. A highD(·) value for an input data point
means that the algorithm is likely to fall into a local optimum
with the addition of a new sample point. In (12), the number
of samples are counted in the input set A whose absolute
distance is τw apart from all the elements in the other set B,
and the obtained values are summed and verctorized to find
the D(A;B)∈Rn.

D(A;B) =
1
T
[w1 . . . ,wn]⊺, (12)

with wi=
∑m

j=1
∏d

k=1 1(|ai,k − bj,k |≤ τw) ∀i ≤ n, where
1(·) is the indicator function and τw denotes a windowing
constant to control the window size over which we select
the samples for comparison. In calculating D(·), ai∈A is
compared against all the elements of B in every dimension
in X . For notation purposes, ai,k indicates the value at the
k-th dimension of the i-th element in A, and the same applies
to bj,k . In particular, the density around the t-th sampled point
(xt ) is denoted as Dt = D(xt ;MB

(x)
t−1).

4) SAFETY STATISTICS
Using the samples stored in MB and the safety thresholds τs,
we define the safe set, St , as a set of samples judged to be
safe, and the safety violation rates, rs, as the proportions
of safety-violating samples to the total observations in (13).
These statistics are updated on an iteration-basis and allow
for a straightforward assessment of which samples in theMB
meet the desirable safety requirement.

St =
⋃

(x,y)∈MBt

{x|y ≥ τs},

rs =
1

T + n

∣∣∣{y ∈ MB(y)t |y < τs}

∣∣∣ (13)

where n is the number of samples in the set of initial safe
observations and O and T are the maximum iteration of
A-SafeBO.

Using the concepts introduced so far, we can explain how
A-SafeBO works in the order of Fig. 3.

A. A SURROGATE MODEL IS BUILT
For safety-constrained BO, we construct a surrogate model
based on GP to precisely estimate the safe sub-region of the
search space. Since kernel operation is essential for optimiza-
tion using GP , the computation time increases exponentially
as the number of samples constituting the GP increases.

However, for a Neural network, as shown in Fig. 1 of [43],
the computation time is shown to increase linearly as the
number of samples increases. And also, as shown in Fig. 1
of [43], the computational time changes insignificantly with
the number of samples when using GP compared to using a
neural network, up to approximately 300 samples. We utilize

this insight to set the number of samples in each GP to
300 (i.e.,Nsamples=300). Through experiments comparing the
changes in computation time for various sample sizes in the
Section V-B4, it can be confirmed that setting Nsamples to
300 is appropriate. Accordingly, we use µt and σ 2

t obtained
from the single-model GP surrogate for a sample size less
than or equal to Nsamples. Beyond this sample size, an Ensem-
ble GP is built to reduce the increase in computation time
and make our surrogate more robust, as motivated by the
BayesBag algorithm [44]. Our Ensemble GP consists of
M=⌊(n+t)/Nsamples⌋ (where n is the number of samples inO)
GP models, each of which is constructed from 300 randomly
sampled points from the MB without replacement, using the
probability vector PMBt−1 for x i∈MB

(x)
t−1 (0 ≤ i ≤ n+ t − 1)

obtained as follows:

PMBt−1
= [P(X = o(x)0), . . . ,P(X = o(x)t−1),

P(X = x0), . . . ,P(X = x t−1)]⊺

=


1⊺
n+t

(n+ T )
, DMB =

1⊺
n+t

(n+ T )
,

1
n+ t

[
1⊺
n+t −

(DMB −
1⊺
n+t

(n+T ) )

∥DMB −
1⊺
n+t

(n+T )∥1

]
, else

(14)

where X denotes a random variable and 1n+t=[1, . . . , 1]∈
R
n+t . DMB implies D(MB(x)t−1;MB

(x)
t−1) and ∥·∥1 denotes the

L1-norm. Accordingly, samples with high density scores are
assigned smaller probabilities of being sampled. We then
repeatedly sample Nsamples number of samples from MBt−1
with PMBt−1 to obtainM GP sub-models at t-th iteration.

To construct an Ensemble GP using theM GP sub-models
obtained in this way, we aggregate the results from each GP
sub-model. At this time, rather than aggregate each GP sub-
model with the same weight, if the reliability of the built GP
sub-model is higher, a higher weight is given and aggregated.
These weights are given based on the reliability calculated
by cross-validating each GP sub-model. Cross validation is
performed by calculating the difference between the samples
used to build the i + 1-th sub-model and the prediction
obtained using the i-th sub-model as the mean square error
(MSE) to check the reliability of the i-th sub-model, where
i = 1, · · · ,M − 1. At this time, to check the reliability of
the M -th sub-model, the samples used to build the 1-st sub-
model are used. Using the values representing the reliability
of each sub-model calculated in this way, the weight to be
used to construct the Ensemble GP is calculated as in (15).

wi =

√
(Yi+1 − µi(Xi+1))2

Nsamples
, (For i = 1, · · · ,M − 1)

wM =

√
(Y1 − µM (X1))2

Nsamples
,

wi =
1− wi/

∑M
j=1 wj

m− 1
, (For i = 1, · · · ,M ). (15)
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Using each GP sub-model, we estimate the mean and stan-
dard deviation by weighted aggregating the expected values
over all GP sub-models in (16):

µt (x) ≈
M∑
i=1

wi · µi(x)

σ 2
t (x) ≈

M∑
i=1

wi · σ 2
i (x)+ wi · (µi(x)− µt (x)), (16)

whereµi(·) and σ 2
i (·) are the mean and variance, respectively,

from the i-th GP sub-model, GP i (i=1, . . . ,M ). Xi and Yi are
the set of x and y used to construct GP i

B. THE NEXT POINT IS SAMPLED
The next step is to determine the next point to be sampled by
appropriately determining the trade-off between exploration
and exploitation with the safety constraint during the search
process. At this time, the criteria should be provided to prop-
erly adjust the trade-off between exploration and exploitation
according to the situation. The BO uses the acquisition func-
tion to provide these criteria to determine the next point to be
sampled. As discussed in Section III, BO-based GP methods
often face the problem of exponentially increased computing
time in the acquisition step particular in an environment with
high dimensional data. This problem is mainly due to the
use of greed search to optimize the acquisition function to
select the next point. To solve this problem, A-SafeBO uses
modified Particle SwarmOptimization(PSO) [40] to optimize
the acquisition function in a similar way to [39]. This reduces
the increase in computation time as the input dimension
increases. In this paper, we define the PSO process used to
optimize the acquisition function as SafePSO.

1) SAFE PARTICLE SWARM OPTIMIZATION SafePSO
The next point is selected by optimizing acquisition function
Ut (·) using SafePSO in each iteration. SafePSO is similar
to the existing PSO [40] except that safety is considered in
the process of updating particles. This is similar to SafeOPT
using PSO [39], except that [39] has three independent swarm
optimizers for each of its three acquisition types (maximizer,
expander and greed) and A-SafeBO requires only one swarm
optimizer. Therefore, it can effectively reduce the compu-
tation time compared to [39] in optimizing the acquisition
function.

In SafePSO, X s is the position set of particles that make up
the swarm, and V s is a set of values defining each particle’s
position change at every iteration. Z s is a set that stores
the position that maximized the acquisition function while
satisfying safety until each particle is updated t times and zt
is the position that maximizes the acquisition function among
the positions stored in Z s.
SafePSO begins exploration from an initial set of

particles(X s) selected according to the situation. And at each
iteration of SafePSO, only the particles that maximize U
while satisfying the safety prediction in (27) are updated. The

Algorithm 2 SafePSO
Input: Particle Positions X s, Memory BankMB,

Safe set S, Density score D, Unsafe rate rs
Surrogate GP f̂ , Acquisition Function U ,
User-defined constants τs, c1, c2

Result: Recommended next point, x∗

Initialize: Velocities V s,
Local best positions Z s,
Global best position z0

Set Acquisition function Ut (17), (18), (24)
Select initial set of particles xs

for t = 1, . . . ,Tswarm do
Sample (b1)t ∈ [0, c1], (b2)t ∈ [0, c2],
αt ∼ U(0.5, 1)
for i = 1, . . . ,Nswarm do

vi← αtvi + (b1)t (zi − x i)+ (b2)t (zt−1 − x i)
x i← x i + vi

V s
← {v1, . . . , vNswarm}

X s← {x1, . . . , xNswarm}
Update (Sε)X s
for i = 1, . . . ,Nswarm do

if x i ∈ (Sε)X s and U (x i) > U (zi) then
zi← x i

else
zi← zi

Z s← {z1, . . . , zNswarm}
zt ← argmaxx∈Z sU (x)

Update (Sε)Z s
z∗← argmaxx∈Z s∩x∈(Sε)ZsU (x)
if z∗ = ∅ then

x∗← argminx∈SD(x;MB
(x))

else
x∗← z∗

SafePSO algorithm returns a recommended point if the final
selected particle satisfies Sε; otherwise, it returns an empty
set when there is no sample that satisfies the safety constraint.
If an empty set is recommended as the next point by SafePSO,
D(·) for the elements in the safe set against those stored in
the MB are calculated, among which the element with the
lowest density score is recommended as the next point. This
density score-based criterion for acquisition allows for amore
reliable surrogate model since it induces further exploration
in regions of high uncertainty and a high likelihood of safe
yet unexplored samples. The final recommended xt is then
iteratively stacked in theMB.

For SafePSO to work properly, an initial set of parti-
cles selected(X s) according to the situation, an acquisition
function(U ), and safety prediction((Sε)X s ) must be given.
Therefore, how these are selected in SafePSO according
to the circumstances (safety considerations(rs) and whether
they fall into the local optimum(D)) will be explained as
follows.
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FIGURE 5. Limited explorable area due to safety constraints S1, S2,
and S3.

2) ACQUISITION FUNCTION U
The acquisition function is a function that provides a criterion
for determining the next point to be sampled as described
in Section II. The next point is determined as a point to
optimize this acquisition function, so that exploration and
exploitation are properly traded off during the optimization
process according to the situation.

A-SafeBO performs optimization within a limited number
of samples(the maximum iteration, T ). A-SafeBO, similar
to StageOPT [14], divides T into two phases: Phase 1 and
Phase 2. In Phase 1, A-SafeBO only focus on expanding
the safe set, and in Phase 2, A-SafeBO focus on finding
the optimal point in the safe set expanded through Phase 1.
As the goal of the optimization process is different in the two
phases, the acquisition function U , which is the criterion for
determining the next point in each phase, also has a different
form. When the form of the Ut in each phase is defined as
Up1 for Phase 1 andUp2 for Phase 2,Ut is expressed as (17).

Ut =

{
Up1, t < T · (1− γ ),
Up2, else,

(17)

where T is the maximum iteration of A-SafeBO, and γ is the
ratio of the number of samples to be used for Phase 2 among
the total number of samples used for optimization.

Most of the optimization is focused on widening the safe
set and then using a small number of samples to find the
optimal point inside of it; therefore, γ is mainly a small
number.

Phase 1. aims to broaden the safe set. Optimizations
with safety constraints have a common goal of expanding
the current safe set and finding an optimal point therein.
However, since exploration is heavily constrained by safety
constraints, the possibility of reaching the global optimum
greatly depends on where the initial point is selected.

Fig. 5 shows explorable areas S1, S2, and S3 that satisfy the
safe constraint. In this figure, the safety constraints indicate
that the evaluation of observations must be higher than the
safety threshold τs. If the initial point where safe optimization
starts is located in S2 or S3, no matter how much the opti-
mization process proceeds due to safety constraints, it does
not reach the S1 region where the global optimum exists.
Therefore, the global optimum cannot be reached, resulting
in poor performance due to the location of the initial point.
A-SafeBO proposes FNS, which is a form of Up2,

to recognize the limit due to the influence of the initial point
position and reduce the limit of exploration due to safety
constraint.

For this, it is first necessary to determine whether the
exploration of the optimization process is limited. When
exploration is limited, the previously collected samples are
gathered around the last sampled point. These features are
used to determine whether the exploration of the optimization
process is in a limited state.

Dt−1 is the value calculated by using (13) to find the
density of the sample stored in MBt−2 around xt−1. A large
Dt−1 means that there are many previously collected samples
around xt−1, which is the most recently acquired sample.
In A-SafeBO using Dt−1, if this value is greater than the
predefined value density threshold (τd ), the exploration of the
optimization process is judged to be limited.

In Phase 1, the acquisition function Up1 is determined
as (18).

Up1 =


FNS(X s), rs ≤ δ and τd ≤ Dt−1,

FNS(X s)︸ ︷︷ ︸
Dt−1

or EXP(X s)︸ ︷︷ ︸
1−Dt−1

, else

(18)

where X s={xi∈Rd
}
Nswarm
i=1 is a set of Nswarm particle positions,

rs is the safety violation rate, δ is the probability of a sample
located outside the confidence bound [45], [46], τd is the
density threshold, and Dt−1 is the density score calculated
as D(xt−1;MB

(x)
t−2)

FNS is an abbreviation of ‘‘Find the New Safe seed’’,
meaning an expression configured to induce broader explo-
ration when exploration is judged to be limited, and EXP is
an abbreviation of ‘‘Expand’’, meaning an expression con-
figured to expand the safe set. Both play a role in expanding
the safe set, but FNS minimizes safety considerations for a
wider exploration, and EXP prioritizes safety constraints and
considers exploration and exploitation together.
Up1 basically has the form of EXP. When Dt−1 is greater

than τd , it is judged that exploration is limited, so that Up1
has the form of FNS. However, since safety considerations
should be given the highest priority, even if it is judged that
exploration is limited, if rs is greater than δ, it is judged
that safety considerations are not performed well, and FNS,
which lacks safety considerations, is selected as U with low
probability. Using Dt−1 as this probability, the higher the
Dt−1, the higher the probability of being selected. However,
since Dt−1 usually has a small value, FNS is less likely to be
selected when the safety violation rate rs is high. The reason
for using δ as a criterion for safety considerations is as fol-
lows. If the prediction for the sample is lower than the lower
confidence bound (LCB), it is predicted as unsafe. Therefore,
unsafe indicates that the sample exists outside the confidence
bound. When modeling based on GP , the probability that
the sample exists outside the confidence bound is defined as
δ(Appendix A, Lemma 1).When rs exceeds δ, the assumption

VOLUME 11, 2023 42957



G. Han et al.: Adaptive Bayesian Optimization for Fast Exploration Under Safety Constraints

for modeling is broken; therefore, this is used as a criterion
that the unsafe rate should not exceed.

To define FNS and EXP, three functions should be defined
first: a margin function(m(X s)), Penalty function(P(α,X s)),
and trade-off function(TEE (X s)).
m(X s) is an expression representing a numerical value

indicating how much margin the prediction for the sample
has from the safety constraint standard.

m(X s) = LCBt (X s)− τs · 1
⊺
Nswarm , (19)

where LCBt (X s) = µt (X s) − β
1/2
t · σt (X s) is the lower

confidence bound computed using Ensemble GP for X s.
If the m(X s) shows a value greater than 0, this indicates

that the prediction for the sample is more likely to satisfy the
safety constraint. Conversely, if this value is less than 0, the
prediction is highly likely to be unsafe.

We can use this m(X s) to configure the penalty function
P(α,X s), which gives a penalty when the samples is predicted
to be unsafe, as in (20).

P(α,X s) = sig(α · m(X s)), (20)

where sig(α · x) = 1
1+e−α·x is a sigmoid function that acts as a

smooth step function. The sig(x) becomes closer to the shape
of the step function as the α value increases. Therefore, as the
value of α increases, when the value of x is smaller than 0,
it represents a value closer to 0, and when x is larger than 0,
it represents a value closer to 1.

If the margin function is less than 0, the P(α,X s) gives
weights close to 0 to the corresponding particles, thereby
giving penalties that lower the possibility of being selected
as the next point.

And finally, TEE (X s) is a function that adjusts the trade-off
between exploration and exploitation. As described in
Section II, the BO performs optimization by newly sam-
pling the next point by appropriately adjusting the trade-off
between exploration and exploitation based on the informa-
tion obtained from the collected samples. Then, the informa-
tion obtained from the collected samples is expressed through
the mean function(µ) and standard deviation function(σ )
obtained from the GP . The µ is mainly used to induce
exploitation and the σ is used to induce exploration. Similarly
in TEE , the µt obtained from the Ensemble GP is used to
induce exploitation, and the σt obtained from the Ensemble
GP is used to induce exploration as (21).

W (Dt−1, rs) = sig(T · (δ−rs))·sig(T ·(Dt−1−τd )), (21)

where T is the maximum iteration of A-SafeBO.
In (21), the density score Dt−1 and safety violation rate

rs are used to generate weights W (Dt−1, rs) that adjust the
trade-off between exploration and exploitation. If Dt−1 is
higher than the density threshold τd and it is judged that the
exploration of the optimization process is limited, a larger
weight is given. However, since the safety constraint has
the highest priority, we use δ and rs to determine if the

safety consideration is performing adequately. If it is not, it is
suppressed from giving a large weight to exploration.

Using this W (Dt−1, rs), TEE (X s) is constructed as (22).
When safety is considered adequate, if it is judged that
exploration of the optimization process is limited, a large
weight is given to σt (exploration), otherwise a large weight
is given to µt (exploitation). However, if it is judged that
safety is not adequately considered, W (Dt−1, rs) is given to
induce exploitation. Then, since there are often cases where
the scales of µt and σt are different, µ and σ , which are
normalized forms, are used.

TEE (X s) = (1−W (Dt−1, rs)) · µt (X s)

+ W (Dt−1, rs) · σt (X s). (22)

Based on these functions, FNS(X s) and EXP(X s) are
defined as (23).

FNS(X s) := P(1,X s) · σt (X s)

EXP(X s) := P(T · rs,X s) · TEE (X s), (23)

FNS minimizes safety considerations to induce the explo-
ration and uses only the density of surrounding samples using
σt as a criterion for selecting the next point. Conversely, EXP
gives a stronger penalty to the point judged to be unsafe as
the safety violation rate rs is higher, and it induces the safe
set to be widened by appropriately adjusting exploration and
exploitation according to the situation information obtained
using W (Dt−1, rs).

Phase 2. aims to find the optimal point in the safe set
expanded in Phase 1. In Phase 2, the acquisition function
Up2 is defined as (24)

Up2 = MAX (X s) (24)

MAX is an abbreviation of ‘‘Maximize’’, and plays a role
in finding the optimal point in the safe set.

Similar to FNS and EXP,MAX is defined as (25) using the
functions defined above.

MAX (X s) :=P(T · rs,X s)

· (µt (X s)−min(µt (X s))) (25)

As with EXP, the higher the safety violation rate rs through
P(·), the stronger the penalty is given to the point predicted to
be unsafe. The optimal point in the safe set is simultaneously
found by determining the point with the maximum µt (·)
inducing exploitation as the next point.

So far, we have examined the acquisition function U used
to determine the next point to be sampled in A-SafeBO.
Conventional methodologies have limited exploration due
to safety constraints; therefore, their performance is greatly
affected by the location of the initial point. However,
A-SafeBO can reduce the impact of performance depending
on the location of the initial point throughFNS. This increases
the average performance of the algorithm. At the same time,
considering the safety violation rate rs, when the rate of
unsafe attempts increases, a stronger penalty for safety is
given to induce safer exploration.
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3) SAFETY PREDICTION (Sε)X s

In addition to the previously definedU , SafePSO has another
criterion for determining the next point: safety prediction
(Sε)X s . Safety prediction provides a standard for predicting
the safety of particles that can become the next point based
on previously collected samples. This safety prediction is
determined according to the Lipschitz continuity assumption.
According to the Lipschitz continuity assumption defined
by (3), the maximum change in the function is bound through
the Lipschitz constant L. Using the Lipschitz constant L and
the safe set St−1, safety can be predicted by calculating the
one-step ε-reachability operator as (6)

A-SafeBO proposes a standard SUCBt (x) for predicting
the safety of samples using the upper confidence bound of
the safe set(UCBt (x) where x ∈ St−1) based on (3).

SUCBt (x)

=



UCBt (x)+ |UCBt (x)|
· (sig(Dt−1−τd )−0.5), rs<δ and Dt−1>τd ,

UCBt (x)− |UCBt (x)|
· (sig(rs − δ)− 0.5), rs > δ,

UCBt (x), else,

(26)

where x ∈ St−1, UCBt (x) = µt (x) + β
1/2
t ∗ σt (x), sig(·)

is a sigmoid function sig(x) = 1
1+e−x , Dt−1 is the density

function D(xt−1;MB
(x)
t−2), τd is the density threshold, δ is

the probability of a sample located outside the confidence
bound [45], [46], and rs is the safety violation rate

When predicting safety based (6), SUCBt (x) (26) is used
as a criterion to optimistically predict the safety of samples.
SUCBt (x) basically has the value of UCBt (x) of samples
belonging to the safe set x ∈ St−1. If it is judged that the safety
constraint is well satisfied (rs < δ) and that the exploration
of the optimization process is limited (Dt−1 > τd ), to lower
the safety constraint and induce a wider exploration, the
SUCBt (x) is decided by increasing the UCBt (x) value by a
certain part in consideration of Dt−1. However, if it is not
judged that the safety constraint is well observed (rs > δ),
safety is considered first, regardless of whether exploration is
limited. In this case, to prevent unsafe exploration, SUCBt (x)
is configured by lowering the value of UCBt (x) considering
rs to strengthen the safety constraint.
Based on the SUCBt (x) determined in this way, safety

prediction proceeds as (27).

(Sε)X s

=



{
x ′ ∈ X s

∣∣∣UCBt (x ′) ≥ τs

}
,

Ut = FNS in Phase 1,⋃
x∈St−1

{
x ′ ∈ X s

∣∣∣SUCBt (x)− L̂ · d(x, x ′) ≥ τs

}
,

Ut = EXP in Phase 1,{
x ′ ∈ X s

∣∣∣LCBt (x ′) ≥ τs

}
, else,

(27)

with L̂ = max(i,j),i̸=j
(
|f̂ (xi)−f̂ (xj)|
d(xi,xj)

)
∀xi, xj ∈ St−1 where

d(·, ·) is an Euclidean distance between two inputs.
The method for safety prediction is classified according to

Ut as (27). When Ut is FNS, we minimize safety considera-
tions and aim only to induce a wider exploration; therefore,
we optimistically predict safety using UCBt so that more
particles can become the next point. Next, when Ut is EXP,
the next sample is determined by adjusting the trade-off
between exploration and exploitation according to the situ-
ation at every iteration. For safety prediction, SUCBt (x) is
set according to the situation of every iteration, and safety
prediction is appropriately adjusted based on this. If the safety
constraint is not adequate, a stronger safety constraint is given
to reduce attempts on unsafe samples. If it is judged that the
exploration of the optimization process is limited when the
safety constraint is adequate, the safety constraint is weak-
ened to induce wider exploration. It simultaneously enables
more robust safety prediction by estimating the Lipschitz
constant L̂ using the safe samples accumulated in the safe
set St−1. Finally, when Ut is MAX , it is necessary to find the
optimal point only within the safe set; thus, the probability of
attempting an unsafe sample is minimized by pessimistically
predicting safety based on the LCBt .

4) AN INITIAL SET OF PARTICLES X s IS SELECTED
In A-SafeBO, the next point is selected by optimizing U
selected according to the situation. Therefore, depending on
the purpose of the chosen U , the initial particle set X s must
also be properly selected. When U has the form of FNS and
EXP, the purpose of U is to expand the current safe set or
to find the seed of a new safe set for a wider exploration.
Therefore, samples outside the current safe set should also
be considered as initial particles. Therefore, the initial set of
particles consists of Nswarm number of random samples in a
uniform distribution over the entire search space. However,
ifU isMAX , the purpose ofU is no longer to expand the safe
set, but to find the optimal point in the safe set. Therefore,
X s must be selected from St−1. To select X s, D(St−1;MB

(x)
t−2)

is calculated for the elements of St−1 and Nswarm number of
swarm positions are selected, starting with the element with
the smallest value. If there are fewer than Nswarm elements of
St−1, random samplingwith replacement is performedNswarm
times from a uniform distribution for all elements of St−1.

C. THE STATE OF THE PROCESS IS ANALYZED
In A-SafeBO, the next step with the sample is determined by
selecting the appropriate acquisition function U , safety pre-
diction (Sε)X s , and initial set of particles X s according to the
status of the current optimization process. As a result, it can
induce wider exploration without significantly compromising
safety considerations.

To understand the current state of the optimization process,
A-SafeBO updates the safe set S, density score D, and safety
violation rate rs at every iteration in the same way as in (12)
and (13) using the sample information stored in theMB.
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Using this updated information, if rs is less than δ, it is
judged that safety consideration is adequate during the opti-
mization process. In addition, if the density score indicating
the density of the samples stored in the memory bank near
the last sampled point Dt−1 = D(xt−1;MB

(x)
t−2) is smaller

than the density threshold τd set by the user, it is judged that
exploration is not restricted.

When it is judged that safety considerations are inadequate,
U , (Sε)X s , and X s are selected to reduce unsafe attempts
by limiting exploration as safety considerations are the top
priority during the optimization process.

If it is judged that safety considerations are adequate and
that exploration is limited, U , (Sε)X s , and X s are selected to
induce exploration.When it is determined that the exploration
is not limited, the current Dt−1 and rs are used to appropri-
ately trade off exploration and exploitation to select the next
point.

D. HYPERPARAMETER SCALING ARE SCHEDULED
A key component of A-SafeBO is the hyperparameter scaling
step over successive iterations, where the kernel hyperpa-
rameters are adaptively tuned based on the sampling out-
come. Specifically, the algorithm adjusts the lengthscale l,
the bounded RKHS norm B, and the exploration-exploitation
trade-off factor β1/2. While common BO-based optimization
methods require a hyperparameter tuning step prior to deploy-
ment in real scenarios, online hyperparameter scaling in
A-SafeBO is more practical with reduced computational cost
and time.

The idea of online hyperparameter scaling has been suc-
cessful and in practical use for its general applicability
across various working environments [23], [25]. For instance,
A-GP-UCB [25] gradually increases the function space by
decreasing l and increasing B over iterations to escape being
trapped in a local optimum and more effectively reach the
global optimum, grounded in its theoretical convergence
proof. It also ensures global convergence empirically from
its regret converging to zero and the cumulative regret having
a sublinear form. While A-SafeBO also follows a similar
approach, It is differentiated by the following characteristics.

• It can be effectively applied in situations where the
number of samples used in the optimization process is
limited to a small number.

• it proposes a scaling function h with the form of a half
life function.

As with A-GP-UCB, A-SafeBO can better widen explo-
ration by inducing regions of high uncertainty to be explored
more frequently. However, A-SafeBO induces exploration
by effectively scheduling the hyperparameter scaling process
using h in a situation where the number of samples that can
be used is limited, unlike A-GP-UCB, where the number of
samples is unlimited. Since an infinite number of samples
cannot be used in an actual application, these differences
increase the practicality of A-SafeBO. We scale l, B, β1/2

at t-th iteration with a half-life scaling function h as follows:

lt = l0 · h
1/d
t

Bt = B0/ht

β
1/2
t = max

(
β
1/2
t−1,Bt + 4ρ

√
I (yt ; f̂ )+1+ln(1/δ)

)
, (28)

with

ht = exp
(
−5t ln 2

T

)
,

I (yt ; f̂ ) =


0.5 log|I+ ρ−2K|, t ≤ 300,
M∑
m=1

0.5 log|I+ ρ−2Km|, else,

where I, ρ, K, Km and |·| are the identity matrix, noise,
the kernel matrix [k(x, x ′)]x,x ′∈MB(x)t−1

, the kernel matrix

[k(x, x ′)]x,x ′∈GP (x)
m
and the determinant operator, respectively.

For t > 300, I (yt ; f̂ ) is computed as a sum over all mutual
information of all GP sub-models. To apply hyperparameter
scaling irrespective of the size of the input space, A-SafeBO
initially scales the input space to a unit hypercube with a
size of 1 over all dimensions. Since space is normalized
to 1, we initialize l0=1, B0=1, and h0=1. The theoretical
proofs for the extension of function space and the conver-
gence of A-SafeBO are shown in Appendix A Lemma 2 and
Theorem 1.
For evaluating an expensive objective function in practice,

the scaling function h ensures that the bounded RKHS norm
B monotonically grows and the lengthscale l monotonically
decreases at adequate rates such that the function space is
widened during the search, yet the sublinear regret form is
visible given a finite number of iterations.

Here, we have introduced the process of finding the
optimal point in the safe set by conducting safe explo-
ration through A-SafeBO. Through the introduced methods,
A-SafeBO does not significantly impair stability when com-
pared to existing safe exploration methods based on BO, but
is more likely to find a better optimal point by inducing wider
exploration and reduces computational cost to proceed with a
more efficient optimization process. In addition, it efficiently
induces exploration by scheduling hyperparameter scaling
within a given number of samples without prior knowledge
of the kernel hyperparameters. Through this, the resources
required to tune the kernel hyperparameters can be saved
considerably. These advantages further increase the practical-
ity of A-SafeBO in industrial environments where available
resources (e.g. time and number of samples used for opti-
mization) are limited.

V. EXPERIMENTS
In this section, we validate our algorithm on several synthetic
benchmark functions and apply it to a real-world optimization
problem under a safety threshold constraint to demonstrate
performance improvements relative to previous approaches
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FIGURE 6. Ensemble bagging decision tree regressor test predictions with
80-20 train-test split (RMSE=2.752). This decision tree is used as the
ground truth objective function for the CCPP dataset.

GP-UCB [9], SafeOpt [13] and StageOpt [14]. The com-
parison with GP-UCB is conducted to compare the opti-
mization results with and without considering safety, while
the comparison with SafeOpt and StageOpt is conducted to
evaluate the performance of our algorithm against previous
safe BO methods. The code for the experiments is available
at https://github.com/KK-Han/A-SafeBO.git.

A. EVALUATION ENVIRONMENT
1) SYNTHETIC BENCHMARK FUNCTIONS
Synthetic benchmark functions from the Virtual library of
simulation experiments and an open-source repository [47],
[48] were used to evaluate the performance of A-SafeBO.
Specifically, we chose Griewank 2-D, Adjiman 2-D, Hart-
mann 6-D and Periodic 10-D functions, as detailed in Table 1.
The functions were negated to formulate as maximization
problems and the search space was constrained with the
bound B in each dimension.

2) REAL-WORLD APPLICATION
We demonstrate the practical effectiveness of A-SafeBO by
using a publicly available industrial dataset: the combined
cycle power plant (CCPP) from the UCI repository [49].
In each cycle of CCPP, gas and steam turbines generate
electricity, which is then transferred to heat recovery steam
generators. Under a fully-loaded functional plant condition,
the ambient variables (AT, V, AP, RH) measured from various
sensors located around the plant yield the net hourly electrical
energy (PE) every second. The CCPP dataset contains five
folds of data, each containing 9,568 data instances acquired
from a fully-functional plant for 674 days over the span of
six years from 2006 to 2011. The dataset was randomly
shuffled and an ensemble of bagging regression trees was
constructed with 10 base estimators from scikit learn [50].
The data statistics are described in Table 2 and the prediction
performance of the ensemble regressor is described in Fig. 6.

This regressor trained on all four ambient variables was
taken as the ground truth function for this real-world environ-
ment for the following insights: (1) the ground truth function
for the power plant can neither be defined or measured in
practice with sufficient samples, (2) the prediction accuracy
of tree-based learning algorithms have shown to reduce errors
compared to other regression methods [51], and (3) averaging
in ensemble methods reduces variance. In addition, we note
that the number of available samples for the number of given
features is sufficient to adequately learn a regression model,
as the data are collected over a long period and are thus highly
representative of the population [51], [52].

3) EVALUATION METRICS
To compare the performance of algorithms, the following
four evaluation metrics were used in the environment for the
benchmark function and real world problem.

Reward represents the evaluation value of the point that
is finally recommended as the optimal point through each
algorithm. Since problems in all environments are unified as a
maximization problem, the larger the reward value, the better
the performance.

Computation time refers to the time consumed to
obtain a recommendation through the algorithm. Since the
recommendation was obtained using the same number of
samples in all three algorithms, the shorter the computation
time, the faster the algorithm.

Safety rate represents the proportion of samples that are
actually confirmed to be safe with an evaluation higher than
the safety threshold among the total number of samples used
for optimization. It can be said that the higher the safety rate,
the better the algorithm with safety considerations.

Minimum regret indicates the difference between the
global optimum and the evaluation as (9). Among them, the
minimum regret means the difference between the recom-
mendation obtained through the optimization algorithm and
the global optimum as (29).

rmin = f (x∗)− f (x′), (29)

where x∗ is the global optimum and x′ is the optimum esti-
mated through the algorithm.

The closer this value is to 0, the better this algorithm
converges to the global optimum.

B. IMPLEMENTATION DETAILS
Our algorithm was experimentally compared with one of the
most used BOmethod, GP-UCB [9] and twowidely-used safe
BO methods: SafeOpt [13], [53] and StageOpt [14], a com-
plementary version of SafeOpt, on an Ubuntu 18.04, Intel
i7-6700k machine with 64 GB RAM. For fair comparison,
we used these baselines modified with swarm optimization.
In the comparison with GP-UCB, we just replaced the acqui-
sition function in A-SafeBO with the GP-UCB method to
solely examine the effect of considering safety (GP-UCB∗).
The parameter settings for the environments, thresholds and
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TABLE 1. Synthetic Benchmark Functions.

TABLE 2. CCPP dataset features statistics.

TABLE 3. Parameter settings for experiments on (a) Griewank 2-D,
(b) Adjiman 2-D, (c) Hartmann 6-D, (d) Periodic 10-D and (e) CCPP
(GP-UCB∗: GP-UCB with Ensemble GP and hyperparameter scaling).

kernels are outlined in Table 3. When using swarm opti-
mization, a higher dimensional search space uses more par-
ticles for efficient optimization. Prior to the algorithm, the
environment-specific function space is normalized to a value
between 0 and 1 in every dimension. For the CCPP data,

the ensemble bagging decision tree regressor was taken as
the ground truth objective function as it is difficult to test in
practice.

1) NUMBER OF SAMPLES USED FOR OPTIMIZATION T
To check the performance and practicality of the algorithm,
we assumed two situations and conducted an experiment.

Sufficient number of samples (T = 1000) The per-
formance of the algorithm was evaluated when a sufficient
number of samples were available for optimization in each
environment. In these experiments, we can evaluate the per-
formance of the algorithm based on the evaluation metrics of
the algorithm.

Small number of samples (T = 100) The performance
of the algorithm was evaluated when using only a small num-
ber of samples in a situation where the number of samples
that can be used for optimization is limited, as in the actual
industrial field.

Through these experiments, the performance of the algo-
rithm as well as its practicality can be confirmed.

2) SAFETY THRESHOLD τs AND INITIAL SAFE
OBSERVATIONS O
Since the exploration in safe BO-based approaches is limited
by safety constraints, the optimization performance is greatly
affected by the location of the initial point. Through these
experiments, our goals was to confirm that A-SafeBO shows
superior performance over existing methods by inducing
wider exploration in a situation where exploration is limited
due to a safety constraint without significantly harming the
safety constraint.

To this end, in the 2D environment(Griewank 2D and
Adjiman-2D) where the local optimum and the global opti-
mum can be easily distinguished visually, the safety threshold
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τs is set so that a space that cannot be crossed is created
between the local optimum and the global optimum due to
safety constraints. To reduce the influence of optimization
performance due to the location of the initial point, 10 points
with observations higher than the safety threshold were ran-
domly selected where the local optimum is located. These
10 points became the initial safe observation O in common
in each of the three algorithms, and the experiment, with
each of the 10 points as the starting point, was repeated
10 times. Thus, 100 experimental results were obtained for
each algorithm in each environment.

Since the location of the local optimum cannot be visu-
ally confirmed in the 4D environment or higher, the safety
threshold τs cannot be determined in the same way as in
the 2D environment. Therefore, in the 4D or higher environ-
ment, the safety threshold τs was randomly selected between
the min and max values of evaluation in each environment.
Additionally, to reduce the effect of the initial point on the
performance of the optimization, the ten initial points were
randomly selected from the search space as points with an
evaluation greater than the selected safety threshold τs. As in
the 2D case, 10 points were set as the initial safe observation
O and the optimization process was repeated 10 times using
each point selected in each environment as the initial point
of the 4 algorithms. Thus, in each environment, all three
algorithms obtained 100 experimental results.

The safety threshold τs selected in each environment is
shown in Table 3. Table 4 and Table 5 summarize the results
of the 100 experiments in each environment when the sample
used for optimization is sufficient and limited using the mean
and standard error.

3) HYPERPARAMETER TUNING
GP-UCB∗ and A-SafeBO do not require setting kernel
hyperparameters prior to the optimization process due to
online hyperparameter scaling, whereas SafeOpt and Sta-
geOpt require the setting of kernel hyperparameters before
the search process for practical deployment. After function
space normalization, we set the initial lengthscale, l, to 1
(max), which is successively adjusted in 0.1 increments, and
set the initial β to 2, which is then greedily searched from 2 to
3 in 0.1 increments. Note that a β value between 2 and 3 is
common by convention. This search process for each environ-
ment is repeated ten times, totalling 1,100 times (ten times for
each of l, β and environment) in search of the optimal kernel
hyperparameters. As for StageOpt, 90% and 10% of the total
iterations are used for the safe region expansion phase and the
utility optimization phase, respectively. Similarly, A-SafeBO
also used a gamma of 0.1, using 90% of the samples in
Phase 1 and 10% of the samples in Phase 2.

4) NUMBER OF SAMPLES(Nsamples) COMPOSING THE
ENSEMBLE GP
A-SafeBO constructs a surrogate model using an Ensemble
GP to address the problem of exponentially increasing com-
putation time of GP-based BO methods as the number of

FIGURE 7. The graph represents the change in computation time
according to the variation in the number of samples used to construct the
GP sub-models (Nsamples) that make up the Ensemble GP .

samples increases. In the case of using a neural network to
construct the surrogatemodel, the computation time increases
linearly with the number of samples as it increases. As shown
in Fig. 1 of [43], up to approximately 300 samples, the
increase in computation time is not significantly different
between using neural network and GP , so A-SafeBO limits
the number of samples in a GP sub-model (Nsamples) that
make up the Ensemble GP to 300. We investigate the effect
of changing Nsamples on the computation time of A-SafeBO
by varying Nsamples in two environments (Griewank 2-D,
Adjiman 2-D) to see if definingNsamples as 300 is appropriate.
As shown in the Fig. 7, it is confirmed that the computation

time is the smallest whenNsamples is set to 300.WhenNsamples
is less than 300, the computation time for constructing and
operating a single GP sub-model is low, but since there
are many GP sub-models to be ensemble, it takes a lot of
time to estimate the surrogate model, resulting in an increase
in computation time. On the other hand, when the number
of Nsamples exceeds 300, it takes a long time to construct
and operate a single GP sub-model, resulting in a longer
computation time to estimate the entire surrogate model.
Therefore, considering this trade-off, it was confirmed that
setting Nsamples to 300 was appropriate. The current version
of A-SafeBO does not parallelize the GP sub-models, but if
all GP sub-models are fully parallelized, it may be possible
to improve computation speed.

C. EXPERIMENT RESULTS AND ANALYSIS
The experimental results are summarized in Table 4 and
Table 5. Table 4 shows the experimental result when a suf-
ficiently large number of samples are used for optimization,
and Table 5 shows the experimental result when only a small
number of samples are used because those available for use
are limited.

1) SUFFICIENT NUMBER OF SAMPLES (T = 1000)
a: REWARD AND rmin
As mentioned earlier when introducing evaluation metrics
in Section V-A3, it is possible to check how close the
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TABLE 4. Experimental Results on (a) Griewank 2-D (b) Adjiman 2-D (c) Hartmann 6-D (d) Periodic 10-D functions, and (e) CCPP. The results of using the
three algorithms were compared through the mean and standard deviation of the results of 100 experiments for the optimization process conducted
using sufficient samples (T = 1000) in each environment.

TABLE 5. Experimental Results on (a) Griewank 2-D (b) Adjiman 2-D (c) Hartmann 6-D (d) Periodic 10-D functions, and (e) CCPP. The results of using the
three algorithms were compared through the mean and standard deviation of the results of 100 experiments for the optimization process conducted
using sufficient samples (T = 100) in each environment.

recommendation obtained through the algorithm is to the
global optimum through Reward and rmin.
Table 4 confirms that the A-SafeBO proposed in this paper,

except for GP-UCB∗, shows the highest reward and the
closest rmin to 0 in all five environments. This is because
GP-UCB∗ does not consider safety and allows for
unrestricted exploration, resulting in a higher probability of
reaching the global optimum. These results indicate that the
recommendation obtained through A-SafeBO is closest to the
global optimum among the three safe BO algorithms.

This is because if A-SafeBO falls into the local optimum,
it can be identified using the density score D. If it is judged
that the exploration of the optimization process is limited, the
next point is determined by effectively adjusting the acquisi-
tion function U , safety prediction (Sε)X s , and initial set of
particles X s to induce wider exploration. For these reasons,
A-SafeBO shows superior performance than conventional
methodologies.

Fig 8 shows the results of optimization using each
algorithm in a 2D environment. In these results, all three
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FIGURE 8. Experimental results on the benchmarks (only 2-D functions for visualization). From top to bottom rows: Griewank
(τs = −0.9), Adjiman (τs = −0.1). Points in blue, black, purple, red and green indicate the global optimum, estimated optimum,
initial point, unsafe samples, and safe samples, respectively.

algorithms start optimization at the same position near the
local optimum. Although it is difficult to reach the global
optimum due to the safety constraint limiting exploration,
it can be confirmed that A-SafeBO leaves the local optimum
and reaches the global optimum. However, SafeOpt and Sta-
geOpt do not deviate from the local optimum due to safety
constraints.

Fig. 10 and Fig. 9 are graphs showing the changes in
rmin and cumulative regret obtained through 100 experiments
using three algorithms in each environment as optimization
proceeds through the mean and standard error.

The graphs in Fig. 10 show that the rmin of A-SafeBO
is closest to 0 in all environments as the optimization pro-
gresses. These results imply that the evaluations of A-SafeBO
in all environments are closest to the global optimum among
the three safe BO algorithms.

The graphs in Fig. 9 confirm that the cumulative regret
of A-SafeBO has the smallest value in all environments and
the graph most similar to the sublinear form. This is because
the instantaneous regret rt obtained during the optimization
process is closest to 0 among the three safe BO algorithms.
This means that the A-SafeBO converges closest to the global
optimum.

b: SAFETY RATE (%)
Table 4 demonstrates that the safety rate of A-SafeBO is
similar or greater than that of other safe BO algorithms.
These results confirm that A-SafeBO induces more explo-
ration compared to other safe BO algorithms without signifi-
cantly compromising safety considerations. This is achieved

through the use of the safety violation rate rs to identify
cases where the safety constraint is not well satisfied. In such
instances, a stronger safety constraint is imposed via safety
prediction (Sε)X s to limit unsafe attempts through exploration
reduction using U .
On the other hand, GP-UCB∗ exhibits lower safety when

compared to methods that consider safety. This is due to the
fact that GP-UCB∗ does not incorporate safety considera-
tions, leading to exploration in regions predicted to be unsafe.
Although this can increase the probability of reaching the
global optimum, it may result in significant losses.

c: COMPUTING TIME (SEC)
Table 4 shows that A-SafeBO, except for GP-UCB∗, is the
fastest in all environments as it consumes the least time. GP-
UCB∗ is based on ensemble GP and does not consider safety,
so it does not require calculations for the safe set, which
makes it faster compared to other safe BO algorithms. A-
SafeBO reduces the increase in computation time by using an
Ensemble GP in constructing the surrogate model. All four
algorithms used PSO to optimize the acquisition function,
so this does not affect the difference in computation time.
However, compared to SafeOPT, which requires three swarm
optimizers to optimize the acquisition function, A-SafeBO
and StageOPT use only one swarm optimizer, thereby having
a shorter computation time.

d: RESOURCES USED FOR HYPERPARAMETER TUNING
For SafeOPT and StageOPT, 1100 pre-experiments were
performed for hyperparameter tuning in each environment.
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FIGURE 9. Cumulative regrets in each environment (a) Griewank 2-D,
(b) Adjiman 2-D, (c) Hartmann 6-D, (d) Periodic 10-D and (e) CCPP when
3 optimization algorithms(SafeOpt, StageOpt and A-SafeBO) are
performed using a sufficient number of samples (T = 1000).

When using SafeOPT and StageOPT, 1,100 times the average
of the time consumed in each environment and 550,000 sam-
ples were used for hyperparameter tuning. This does not

FIGURE 10. Minimum regrets in each environment (a) Griewank 2-D,
(b) Adjiman 2-D, (c) Hartmann 6-D, (d) Periodic 10-D and (e) CCPP when
3 optimization algorithms(SafeOpt, StageOpt and A-SafeBO) are
performed using a sufficient number of samples (T = 1000).

match the initial goal of performing optimization using rel-
atively few samples in a situation where evaluation is expen-
sive, especially in industrial fields.
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A-SafeBO can be said to be much more practical in indus-
trial fields where evaluation is expensive because it schedules
the hyperparameter scaling process appropriately within a
limited number of samples without such prior work.

Taking the experimental results into account, it can be
observed that safe BO algorithms exhibit lower performance
in terms of speed and the probability of reaching the global
optimum, compared to GP-UCB∗, due to the consideration
of safety. However, it is important to note that these safe BO
approaches are crucial in situations where unsafe exploration
can lead to significant losses. Additionally, it was confirmed
that A-SafeBO outperformed conventional safe BO algo-
rithms in all performance evaluations when a sufficient num-
ber of samples were available for the optimization process.
A-SafeBO is not only safer and faster than conventional safe
BO approaches, but it also explores a wider range, provid-
ing a recommendation closer to the global optimum. Fur-
thermore, by eliminating the hyperparameter tuning process,
A-SafeBO can save many resources, making it a more
practical approach.

2) SMALL NUMBER OF SAMPLES (T = 100)
A-SafeBO is a process of obtaining a recommendation with
better evaluation through safe exploration in a low evalu-
ation budget environment. To check whether A-SafeBO is
an algorithm suitable for these concepts, the performance of
A-SafeBO was compared with that of SafeOpt and StageOpt.
For comparison, optimization was performed with each algo-
rithm using only a small number of samples (T = 100) in
each environment. The results of this experiment are shown
in Table 5.

a: OVERALL PERFORMANCE COMPARISON
Performance is lower than when optimization is performed
using sufficient samples (T = 1000) in all environments.
This is a natural result since there is not enough informa-
tion to model the environment. However, when performance
is compared based on evaluation metrics under the same
conditions, it can be confirmed that A-SafeBO provides a
better recommendation quickly without significantly com-
promising safety considerations, even with a small number
of samples in all environments. This is because optimiza-
tion was performed by effectively controlling exploration
and exploitation through the information obtained from the
samples without significantly compromising safety through
safety prediction (Sε)X s and acquisition function U proposed
by A-SafeBO.

b: PRACTICALITY
As mentioned above, when looking at the experiments
using sufficient samples, SafeOpt and StageOpt used many
resources (time and samples) to set kernel hyperparame-
ters (length scale l and the bounded RKHS norm B) in
each environment in advance for comparison. However, since
A-SafeBO does not require this process, many resources
consumed for hyperparameter tuning can be saved. These

features further increase the practicality of A-SafeBO. This
is more meaningful because it is aimed at application in situ-
ations where many samples cannot be used.

Through experiments using a small number of samples,
it was confirmed that A-SafeBO provides a recommendation
with higher evaluation faster than the existing methodologies,
even in environments where it is difficult to use a large num-
ber of samples for optimization. In addition, it was confirmed
that A-SafeBO increases the practicality of the algorithm
by saving many resources consumed in tuning the kernel
hyperparameters by scheduling the scaling process of kernel
hyperparameters appropriately while performing optimiza-
tion with limited samples through the scaling function h.

VI. CONCLUSION
In this paper, we proposed a practical and safe BO algorithm
called A-SafeBO. Our algorithm can be effectively used in
real environments that incur high costs in physical resources
due to unsafe sampling and are limited by a finite evaluation
budget. A-SafeBO proposes new approaches to overcoming
the limitations in many conventional approaches.

A-SafeBO uses the Ensemble GP method to build the
surrogate model and uses SafePSO to optimize the acquisi-
tion function; therefore, it performs optimization faster than
the conventional BO-based methods. In SafePSO, we pro-
pose a new acquisition function U , safety prediction method
(Sε)X s and the way to choose the initial set of particles X s

to safely explore a wider range compared to methods that
consider existing safety constraints. Through this, A-SafeBO
can explore a wider range without significantly compromis-
ing the consideration of safety constraints and make recom-
mendations with better performance on average by reducing
the influence of the initial point on optimization. Finally,
by scheduling the scaling process of kernel hyperparameters
using scaling function h within a limited number of samples,
the optimization process is performed effectively without the
hyperparameter tuning process, saving resources consumed
for hyperparameter tuning and presenting a much more prac-
tical solution than the conventional methods.

A-SafeBO can be a good solution in fields that require
safety considerations (e.g., industrial fields, medical fields,
etc.) because evaluation is expensive and unsafe evaluation
can cause great losses. In particular, data is collected when
there is insufficient data, and optimization can be performed
effectively using a relatively small amount of data.

APPENDIX A
THEORETICAL PROOF
We assume that the target function f that is corrupted by
σ -sub-Gaussian noise is f : D → R, D → Rd . The
complexity of f is measured by the norm in Reproducing
Kernel Hilbert space(RKHS, [17]). RKHS Hθ contain f (x)
having the same form f (x)=

∑
i≥0 αikθ (x, xi), αi∈R. αi is

weight that decays sufficiently fast enough and kθ (x, xi) is
a kernel that is parameterized by length scale θ .
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Lemma 1: We assume that the target function f has the
RKHS norm bound like ∥f ∥Hθ≤B. In this case, if β

1/2
t =B +

4σ
√
I (yt ; f )+ 1+ ln (1/δ), |f (x)−µt (x)|≤β

1/2
t σt (x) is sat-

isfied with at least 1− δ probability.
I (yt ; f ) is the mutual information between the GP prior on

f and the observation yt at time t. The definition is the same
as I (yA; f )=0.5 log |I + σ−2KA| for x∈A. KA is the kernel
matrix([k(x, x ′)]x,x ′∈A) and | · | is the determenet.

Proof: As shown in Lemma 4 of [25], the proof is the
same except that a time-dependent kernel is used in the proofs
of [45] and [46]. □

Lemma 1 indicates that when an appropriate β
1/2
t value is

set, the probability that the target function f exists within the
confidence bound inferred by the posterior GP is high.
Lemma 2: Let f ∈Hθt0

and ∥f ∥2Hθt0
≤Bt0 . And if Bt and θt

are determined as Bt=
B0
h(t) and θt=h(t)

1
d θ0 using monoton-

ically decreasing 0<h(t)≤1, then for all t≥t0, f ∈Hθt and
∥f ∥2Hθt

≤Bt , ∥f ∥2Hθt
≤ (5d

i=1
[θt0 ]i
[θt ]i

)∥f ∥2Hθt0
.

Therefore, monotonically decreasing h yields Hθt⊃Hθt0
Proof: Similar to Lemma 3 of [25],

∥f ∥2Hθt
≤ (5d

i=1
[θt0 ]i
[θt ]i

)∥f ∥2Hθt0

≤
(h(t0)

1
d θ0)d

(h(t)
1
d θ0)d

Bt0 =
h(t0)
h(t)

B0
h(t0)

=
B0
h(t)
≤ Bt .

□
By Lemma 2, it can be confirmed that the function deter-

mined by gradually decreasing θt and gradually increasing Bt
based on the monotonically decreasing h(t) includes the pre-
vious one. That is, we consider a larger RKHS as a candidate
space for f while simultaneously considering a larger norm
ball to determine a more complex function as an estimated
function.
Theorem 1: Assume that f parameterized by a stationary

kernel kθ (x, x ′) with length scale θ has a bounded RKHS
norm as ∥f ∥2Hθ

≤B.
If the hyperparameters at time t are calculated like

θt=(h(t))
1
d θ0 and Bt=

B0
h(t) based on the initial hyperpa-

rameters θ0 and B0 and monotonically decreasing func-
tion 0<h(t)≤1, and β1/2 is calculated as β

1/2
t =

B0
h(t) +

4σ
√
Iθt (yt ; f )+ 1+ ln ( 1

δ
), then the cumulative regret(Rt )

has the bounded form as follows with at least (1 − δ)
probability.

Rt ≤2Bmax(h−1(max
i

[θ0]i
[θ ]i

), h−1(
B
B0

))

+

√
C1tβ

1/2
t Iθt (yt ; f )(C1 =

8
log(1+ σ−2)

)

Proof: The proof is the same except that a decreasing
scaling function h(x) is used in the proofs of [25]. □

With the hyperparameter scaling in A-SafeBO following
Theorem 1, convergence is proven because the cumulative
regret (Rt ) has a bounded form and Rt is sublinear over
iterations.

Lemma 3: Using the Lipschitz constant L, the safety
threshold τ∈R, and the lower confidence bound lt (x)=
µt (x)− β

1/2
t σt (x), the safe set is defined as follows.

St =
⋃

x∈St−1

{x ′ ∈ D|lt (x)− L · d(x, x ′) ≥ τ }

(d(x, x ′): distance between x and x’)
Then, if it is ∅⊆S0⊆D, the Reachable safe set(Rε(S):=S ∪
{x ∈ D|∃x ′ ∈ S, f (x ′)− ε − L · d(x, x ′) ≥ τ }, 0 < ε) has the
following properties.
For any t ≥ 1
(i) S0 ⊆ St ⊆ St+1
(ii) St0 ⊆ St0+T ⇒ Rε(St0 ) ⊆ Rε(St0+T ), (0 ≤T)
(iii) St0 ⊆ St0+T ⇒ R̄ε(St0 ) ⊆ R̄ε(St0+T ), (0 ≤T)
Proof: The proof is the same in the proofs of Lemma 2

in [13]. □
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