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Thesis outline and research objectives 

Introduction to organisms involved in current study 

 

When pathogens and herbivores inhabit the same niche on a plant they can interact. These 

interactions are called tripartite as they involve three parties. This thesis will focus on cereal 

aphids Sitobion avenae and the toxigenic phytopathogen Fusarium graminearum, who both 

live on the ears of wheat Triticum aestivum. The interactions of the three organisms are 

represented in Fig. 1. This interaction triangle is expanded with the mycotoxin 

deoxynivalenol (DON) and the parasitic wasp Aphidius ervi. It is imperative to investigate 

every interaction of the fungus or aphid with other organisms inhabiting the same plant 

tissue (in this case the wheat ears), in order to learn more about the infection process of F. 

graminearum and to learn more about grain aphid epidemiology. These interactions are 

continuously changing throughout the developmental stages of wheat.  

 

Fig. 1 Tripartite interactions between the grain aphid Sitobion avenae (and its parasitoid 

Aphidius ervi) and the pathogen Fusarium graminearum (with main focus on 

mycotoxin deoxynivalenol (DON)) both colonizing the ears of wheat. 
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Cereal crops are a very important food source in the world. With the human population 

increasing rapidly, a higher demand for cereals arises to satisfy the human nutritional needs. 

One of the world’s most important food grains is wheat Triticum aestivum L. (Poales: 

Poaceae). This crop is especially desired because of its nutritional value and its adaptation to 

different growing conditions (Bushuk, 1998, Cassman et al., 2003). Looking at data from 

2010-2014 (FAOSTAT, 2016, consulted 14-03-2016) Europe produces yearly approximately 

219,492,952.40 tonnes which represents 31.8 % of the production worldwide (Asia: 44.6% 

and America: 16.3 %). With an average yield of 8.8 tonnes/Ha Belgium is number two in the 

top five European countries delivering the highest yields.  

Wheat is prone to many diseases ranging from root rot (e.g. Pythium and 

Rhizoctonia) and leaf diseases (e.g. powdery mildew and Puccinia rusts) to ear diseases like 

head blight (Fusarium and Microdochium). Fusarium Head Blight (FHB) is an economically 

important fungal disease that affects several cereal crops. This disease is characterized by 

typical symptoms like bleached spikelets, white to pink mycelium colonizing the ears and 

shriveled grain kernels (Goswami & Kistler, 2004). FHB is caused by a complex of fungi 

belonging to the Fusarium and Microdochium genus. This complex is not fixed but depends 

on climatic conditions, geography, fungicide application, etc. In Europe, F. avenaceum, F. 

culmorum, F. graminearum, F. poae and Microdochium nivale (former name F. nivale) are 

the most prevalent species (Parry et al., 1995, Brennan et al., 2007). The most studied and 

prevalent Fusarium species in Europe is F. graminearum Schwabe (teleomorph: Gibberella 

zeae (Schwein.) Petch.) (Hypocreales: Nectriaceae). Wheat is most susceptible for FHB 

during anthesis. The primary inoculum of FHB in the soil or on crop residues can affect an 

entire ear due to splashing rain drops (Trail, 2009). Infection of only a few spikelets can 

result in necrosis of the whole ear (Wang et al., 2005) causing yield losses up to 40 percent 

(Bai & Shaner, 1994, Parry et al., 1995). In addition, quality losses leads to difficulties during 

downstream processing such as brewing or baking (McMullen et al., 1997).  

FHB is not only a serious concern for the farmer but also for authorities and the end-

consumer. On top of yield losses induced by all plant pathogens, toxigenic plant pathogenic 

fungi like Fusarium species produce a highly specific blend of mycotoxins which might cause 

acute or chronic health problems for animals and humans (Table 1) (Bottalico & Perrone, 

2002, Goswami & Kistler, 2004).  

 

(a) (b) 
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Table 1 Several mycotoxins produced by Fusarium species (Bottalico & Perrone, 2002). 

 

 

 Deoxynivalenol (DON) is one of the most prevalent mycotoxins encountered in grain 

fields and is mainly produced by F. graminearum and F. culmorum. DON causes vomiting and 

food refusal in non-ruminants when exposed to high concentrations, but also in other 

animals and humans DON can pose a serious health threat (McMullen et al., 1997). In 

animals, the toxic effects of DON range from diarrhea, vomiting, gastro-intestinal 

inflammation, necrosis of the intestinal tract, the bone marrow and the lymphoid tissues. In 

eukaryotic cells, it causes inhibition of mitochondrial function and has effects on cell division 

and membrane integrity and induces apoptosis (Pestka, 2010). Finally, it also inhibits 

protein, DNA- and RNA synthesis (Rocha et al., 2005). Trichothecenes inhibit protein 

synthesis by binding to the 60S subunit of eukaryotic ribosomes. They impair 

peptidyltransferase by either inhibiting initiation of the peptide chain or, as DON does, 

inhibiting elongation (Goyarts et al., 2006).  

To tackle problem of toxic DON in grains, the European Commission introduced a 

legislation in 2006 (EG 1881/2006) (European Commission, 2006) regarding maximum 

threshold concentrations of mycotoxins allowed in grains and grain products with food 

purposes. While the maximum concentration of DON allowed in unprocessed grains is 1.25 
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mg kg-1, grains for human consumption, like flour, can only reach 0.75 mg kg-1. For bread a 

limit of 0.5 mg kg-1 is set. DON contamination in animal feed is regulated through directives 

imposed by the EU (2006/576/EC). For example, while pig feed can only contain 0.9 mg kg-1, 

the directive applied for ruminants is 5 mg kg-1. In comparison, concentrations found in 

wheat samples from fields all over Flanders (Belgium) fluctuate around 0.1-10 mg kg-1 DON 

(Audenaert et al., 2009, Isebaert et al., 2009, Landschoot et al., 2013). 

In order to tackle the mycotoxin issue, insights into the physiological function of 

these metabolites for the fungus can be a first important step. Nevertheless, the role of 

these mycotoxins in the pathogens life- and infection cycle remains largely unknown. One 

exception is the mycotoxin DON. DON is an important metabolite throughout the life cycle of 

the pathogen. It is an important metabolite involved in saprophytic survival in soil and crop 

residues and in the formation of spores. More importantly, DON is a virulence factor which 

interferes with the production of reactive oxygen species and with the plant’s primary N-

metabolism (Audenaert et al., 2014).  

As wheat is a crop grown in an agro-ecosystem, anthropogenic influences such as the 

use of agrochemicals also influences the behavior of Fusarium spp. Although crop pesticides 

are available to fight the Fusarium pathogens, chemical control remains difficult. Treatment 

of the fungus is only efficient around the short flowering period of the crop. Furthermore, 

not all species are equally sensitive to fungicides, and it was demonstrated that suboptimal 

fungicides application may lead to increased mycotoxin production. For example, treatments 

of wheat infected with F. graminearum with sublethal azole (e.g. propiconazole) 

concentrations led to an inducing effect of several mycotoxins (DON, 3-acetyl deoxynivalenol 

and nivalenol (NIV)) (Kulik et al., 2012). Also higher levels of NIV were retrieved in wheat 

heads sprayed with sublethal tebuconazole (Becher et al., 2010). Audenaert et al. (2010) 

suggested that hydrogen peroxide (H2O2) is induced by a sublethal dose of triazole 

prothioconazole and that this could trigger DON biosynthesis by F. graminearum. Changes in 

agricultural practices may drive the Fusarium pathogen populations to shift to those with 

greater aggressiveness and DON production (Al-Taweel et al., 2014). 

Finally, it is important to highlight that in wheat ears, Fusarium spp. also encounter 

other pests and diseases. Whereas the information on the role of insects in spread of viral 

plant diseases is present, the role of vectors in spread of FHB pathogens remains enigmatic 

due to a lack of research into the role of vectors, such as insects, transporting spores within 
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and between plants. Therefore, research on interaction between these pathogens and 

insects is particularly interesting. One of the major insects residing on wheat ears are aphids, 

more specifically the grain aphid (Sitobion avenae). 

English grain aphids S. avenae Fabricius (Hemiptera: Aphididae) are an important pest 

in wheat fields of western Europe. It is known to migrate from leaves to the emerging ears 

and feed like many piercing-sucking insects on the phloem sap stream. Due to their high 

reproductive capacities on ears, they rapidly become a problem, leading to considerable 

yield losses (Wratten, 1975, Watt, 1979, Larsson, 2005, Kehr, 2006). Aphid populations vary 

greatly between years and population peaks occur at different crop stages. The economic 

threshold for high yielding wheat is one aphid/tiller at crop stage 59 (ear completely 

emerged), four at crop stage 69 (flowering completed) and seven at crop stage 75 (medium 

milk development) (Larsson, 2005). In the past, George and Gair (1979) demonstrated that 

one treatment with pirimicarb applied at the beginning of flowering when there were five or 

more S. avenae aphids per ear gave an increase in grain yield of 12.5%. 

Aphids who are feeding from cereal ears cause direct damage and thus also yield 

losses. Large populations can remove nutrients from the plant, leading to reductions of dry 

mass and seed weight (Niehoff & Stablein, 1998), reductions in the number of spikelets per 

head when infestation occurs during boot stage (Voss et al., 1997) and reductions of average 

seed weight during the later stages of plant growth (Havlickova, 1997, Voss et al., 1997). 

Aphids occurring in ears can not only reduce grain yields but can possibly also diminish 

baking quality of grains due to changes in the protein composition (Basky & Fonagy, 2003, 

Basky et al., 2006, Basky & Fonagy, 2007). Indirect damage includes the transmission of 

viruses like barley yellow dwarf virus, within and between different grain species (Blackman 

& Eastop, 2007). 

 

Starting the research: the initial preference and vectoring hypothesis 

 

In a first attempt to elucidate the vectoring capacities of the S. avenae grain aphids the 

question arose whether or not the aphids occur on Fusarium–infected ears and if they 

consider these ears as suitable hosts? The initial hypothesis implied that if aphids are 

inhabiting infected ears or are even attracked by those ears, they have a greater chance to 



   

xii 
 

act as a vector of the fungus. In order to find a suitable host, aphids depend on visual 

stimulation (e.g. colors) or olfactory cues (“smell of the plant”) among others. They detect 

biogenic volatile organic compounds (BVOC) emitted by plants with their antennae. These 

BVOCs give the aphids a perception of the host’s quality. The blend of volatiles emitted by a 

plant depends on plant species, age, welfare, etc. Plants under attack by pathogens or 

insects will emit different blends of volatiles compared to healthy plants. Based on these 

cues aphids choose a suitable plant. After landing on the plant, the aphids have several 

probings (“tastings”). S. avenae are well known piercing-sucking insects that suck up 

nutrients from the plant’s phloem sap with their long flexible mouthparts, their stylets. After 

several probings, they will accept or reject a plant as host. This mode of feeding causes 

minimal damage to the plant in order to inhabit the ear and feed from its phloem sap for a 

long period of time. Several studies corroborate a role of plant volatiles in the attraction of 

aphids to plants. For example, Quiroz and Niemeyer (1998) noticed an elicited attraction of 

the cereal aphid Rhopalosiphum padi L. to volatiles produced by wheat and oat seedlings. 

Although plants produce volatiles during their physiological development, volatile 

biosynthesis is especially triggered when fungal or bacterial plant pathogens infect plants 

(Cardoza et al., 2002, Obara et al., 2002, Huang et al., 2003, Vuorinen et al., 2007, Toome et 

al., 2010). 

To delve into the preferential link between aphids and FHB-infected plants we 

conducted binary choice assays to elucidate the effect of F. graminearum on S. avenae 

aphids. In a first experiment, we investigated whether S. avenae preferred certain varieties 

of wheat and whether these varieties were also more susceptible to Fusarium infection (Fig. 

2). However, no real parallelisms were uncovered (De Zutter et al., 2012).  

In a second approach, we investigated whether there was preference of aphids for 

FHB infected plants. Choice experiments in fields and in the laboratory revealed no 

preference for wheat ears inoculated with F. graminearum or treated with DON compared 

to healthy ears (Fig. 3) (De Zutter, unpublished data).  
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Fig. 2  Response in binary choice experiment at seedling level with different winter wheat 

varieties (Lexus, Homeros, Tulsa, Sahara) for S. avenae. Choice behavior at seedling 

level over time (a). Different letters above the bars indicate a significant difference in 

preference between the wheat varieties using multinomial logistic regression. Table 

with P values over all variety combinations; (-) and (+) indicate tolerance and 

susceptibility for FHB, respectively (b) (De Zutter et al., 2012). 

 

 

Fig. 3  The scheme represents aphid choice combinations in the laboratory (A) (N=6) and 

the field (B) (2014 as representative of two years, N=6). Percentages of aphids (± SE) 

on F. graminearum, deoxynivalenol (DON) or water treated ears 24 h after aphid 

introduction are shown. No significant differences were found among combinations 

of treatments (P > 0.05) using multinomial logistic regression. 

 

Finally, in a third experiment, we verified whether aphids could serve as vectors to 

disperse conidia of Fusarium internally or externally. Aphids feeding on a parafilm sachet 

containing artificial diet and fungal spores (macroconidia) were put on petridishes with 

potato dextrose agar (whether or not crushed aphids to detect the fungus inside their body 

or in their honeydew). As we used a green fluorescent protein transformant of F. 
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graminearum, we could not detect any fluorescence on the plates. Macroconidia of F. 

graminearum are 41-60 x 4-5.5 μm (Samson et al., 2004) while the stylet’s food canal has a 

diameter of approximately 0.7 μm (Katis et al., 2007). Internal uptake of fungal spores 

(conidia) by aphids is therefore impossible. Aphids were also externally examined, under the 

microscope after exposure to F. graminearum conidia in petridishes. As the majority of the 

aphids did not carry fungal particles, few of them were carrying spores on their legs or 

antennae. It seemed that their body was too smooth to carry fungal particles and even 

though some of them were carrying a single spore and theoretically this can cause ear 

disease, in reality this would not be enough to infect an ear as environmental conditions 

such as temperature and relative humidity must be optimal to ensure infection and one 

single spore cannot compete with the thousands or even millions of spores infecting a wheat 

field through natural processes. Moreover, even if S. avenae were vectors, which we think 

they are not, the conidia produced on infected tissue must be transferred to healthy ears 

within the crucial period of flowering, which is often short period of time and simultaneous 

with neighboring plants. Also Drakulic et al. (2015) demonstrated the failure of S. avenae 

aphids fed on symptomatic ears to produce disease in subsequent hosts. 

In contrast, vectoring capacities of the orange wheat blossom midge (Sitodiplosis 

mosellana (Géhin)) are tentatively described. Mongrain et al. (2000) recovered F. 

graminearum from the spikes of wheat plants that had been exposed to artificially 

inoculated midges. Also on other plants, interactions between insects and fungal plant 

pathogens are already hypothesized. For example, pea aphids Acyrthosiphon pisum are a 

vector of Verticillium albo-atrum (Reinke & Berthold) on alfalfa (Medicago sativa L.) (Huang 

et al., 1981). Adult shore flies, fungus gnats and moth flies are vectors of F. avenaceum that 

causes Fusarium crown and stem rot on lisianthus (Eustoma grandiflorum) (El-Hamalawi & 

Stanghellini, 2005).  

Because the aphids were no vectors of F. graminearum, we had to delve into other 

interactions that are possible between fungi and insects inhabiting the same plant. 
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Thesis outline and research objectives 

  

The doctoral thesis starts with chapter 1 that gives a definition of tripartite interactions 

plant-pathogen-insect and screens all direct and indirect interactions playing between 

herbivores and fungal phytopathogens in plants. Influencing factors concerning the 

mediating role of the plant and the associated release of volatiles are highlighted. This is 

followed by a discussion of the human interferences on tripartite interactions in cereals.  

 

In chapter 2, we investigated the influence of an earlier aphid infestation on the wheat 

expression profile of specific molecular markers associated with a F. graminearum infection. 

Using quantitative real time polymerase chain reaction (RT-qPCR) analysis, the expression of 

wheat key defense genes after F. graminearum infection and S. avenae infestation was 

tested at several time points. Aphids induced defense genes that are typically induced upon 

a F. graminearum infection. Moreover, we also assessed disease symptoms, fungal biomass, 

mycotoxin production and number of aphids at several time points during disease progress. 

Wheat ears infected with F. graminearum showed more disease symptoms and higher DON 

levels when ears were pre-exposed to aphids compared to a sole inoculation with F. 

graminearum.  

DON, which is in Europe the most profound mycotoxin (Desjardins et al., 2004), is 

one of the few mycotoxins of which the function is partially unraveled (Kazan et al., 2012, 

Audenaert et al., 2014) and is known to contribute to the virulence of the pathogen (Proctor 

et al., 1995, Desjardins et al., 1996, Bai et al., 2002, Mesterhazy, 2002). TRI5-knock-out 

mutants of F. graminearum that possess an inactive TRI5 gene are not able to produce 

DON. These mutants were less virulent and less able to colonize the rachis of ears, 

implying that DON is crucial for ear colonization (Desjardins et al., 1996, Langevin et al., 

2004, Jansen et al., 2005, Maier et al., 2006). We hypothesized that, even though the 

aphids induce similar defense responses as against F. graminearum, the ears are still faster 

colonized by the fungus because of its higher DON production. 

 

In chapter 2 we noticed that the grain aphids could survive on ears containing high 

concentrations of the toxin DON and its acetylated forms. Therefore, in chapter 3 we 

investigated the (sub)lethal effects of DON on S. avenae aphids. These grain aphids are 
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under natural conditions exposed to several kinds of natural enemies like ladybugs, green 

lacewings and parasitoids. In this thesis we will thus also focus on the parasitic wasp 

Aphidius ervi Haliday (Hymenoptera: Braconidae), one of the most important parasitic wasps 

of S. avenae aphids in European cereal fields (Al Dobai et al., 1999, Tomanovic et al., 2008, 

Barczak et al., 2014). A. ervi is included in the thesis because in a well functioning ecosystem 

they are indispensable and can also be affected by the tripartite interactions in which their 

host (S. avenae) plays a major role: we also tested the parasitism rate of the DON-

contaminated aphids in presence of their endoparasitoid A. ervi. Here we wanted to learn 

more about food chain contamination with DON to higher trophic levels.  

 

In a final research part of this doctoral thesis (chapter 4) we wanted to investigate whether 

S. avenae aphids can tolerate DON because of their exposure to the toxin during infestation 

of the wheat ear. Therefore we initiated a comparative study on the toxicity of DON for S. 

avenae and A. pisum. S. avenae inhabits cereals (monocots), whereas for example the pea 

aphids (A. pisum) has several species of legumes (dicots) as host. We demonstrated that S. 

avenae was more tolerant to DON than A. pisum. To elucidate the aphid’s tolerance 

mechanisms for DON, several experiments were set up including amino acid sequence 

analysis of the DON target molecule 60S ribosomal protein L3 (RPL3) and experiments using 

targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) and non-targeted 

high resolution mass spectrometry (HR-MSE) to detect DON and elucidate possible DON-

derivatives in both aphid species. Using these approaches we detected several glucosylated 

forms of DON inside the aphids: DON-3-glucoside and DON-diglucosides. These data are 

indicatives of an adaptation by S. avenae, having stimulated DON detoxification processes 

whereas these detoxification mechanisms are not as efficient in other aphid species such as 

A. pisum.  

 

Finally, in Chapter 5, the results throughout the chapters are linked together and the future 

perspectives of the research are given. 
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Abstract 

 

In the past, research tended to focus on the plant-pathogen or plant-herbivore interaction. It 

is only recently that the tripartite interaction plant-pathogen-insect receives its needed 

attention. This chapter focuses on pests and fungal plant pathogens influencing each other 

directly and indirectly while inhabiting the same plant. Moreover, the mediating role of the 

plant and the associated release of volatiles are highlighted. Finally, a discussion on the 

direct and indirect anthropogenic impact on tripartite interactions through crop protection 

measures is given. 

 

Keywords  

 

Anthropogenic impact ∙ Crop protection ∙ Herbivorous insects ∙ Fungal phytopathogen ∙ 
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1.1 Introduction 
 

Plants in nature and in agricultural fields are prone to many enemies, including herbivores 

(i.e. insects feeding on plants) and pathogens (i.e. organisms that can provoke disease). Both 

attackers can elicit phenotypical as well as molecular changes in plants. While in the past, 

research tended to focus on the plant-pathogen or plant-herbivore interaction, the 

interactions between pathogens and herbivores receives relative little attention. But in fact 

plants are often simultaneously attacked by pathogens and herbivores. 

This chapter is a literature review that will focus on insect herbivores and fungal 

phytopathogens (i.e. fungi that are parasitic on a host plant) invading the plant on the same 

time. An attack of a plant by plant pathogens and plant pests is often a multi-phase event 

comprising first line attackers and secondary invaders which at a given time point co-occur 

on the plant and consequently impact each other directly or indirectly. More specifically, this 

PhD delves into the interactions present between grain aphids Sitobion avenae and the 

pathogen F. graminearum, who both inhabit wheat ears at the moment of anthesis.  

 

Interactions between herbivores and pathogens can be direct, indirect (plant-mediated) or a 

combination of both. Direct interactions cover insect vectoring (i.e. dispersing fungal 

particles), fungivory or pathogens utilizing herbivorous feeding wounds to enter the plant. 

Indirect interplay implies the effect of the plant’s defense towards one insect or fungal 

invader with respect to a second invader being a fungal or insect invader respectively. Plant 

changes and phytotoxic chemicals produced by pathogens and insects can influence the 

other parties with an altered performance as a result (Moran, 1998, Johnson et al., 2003, 

Rostas et al., 2003b, Stout et al., 2006, Rohlfs & Churchill, 2011, Ponzio et al., 2013, Tack & 

Dicke, 2013a, Lazebnik et al., 2014). Both direct and indirect interactions (plant response, 

volatile emission and human interference) are schematically represented in Fig. 1.1. 
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Fig. 1.1 Triangular scheme of three major organism classes (pathogen – herbivore – 

plant) occurring in plants to highlight the potential direct (blue) and indirect 

(green) interaction mechanisms. 

 

 1.2 Harmful organisms  
 

1.2.1 Mode of feeding 

 
Phytopathogens and herbivores are divided in groups according to their mode of feeding. 

Microbial pathogens are classified as biotrophs, necrotrophs and hemibiotrophs. 

Necrotrophs provoke cell death in order to obtain nutrients from dead tissue. In contrast, 

biotrophs can only maintain themselves on living plant tissue. Some fungi switch during 

development from a biotrophic to a necrothrophic mode of nutrition (e.g. the hemibiotroph 

F. graminearum causing Fusarium head blight (FHB) disease). 
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Herbivorous arthropods are divided into piercing-sucking and biting-chewing insects. Both 

groups are dependent in plant tissue throughout their life. This very close relationship with 

the plants makes them vulnerable to metabolic and physiological changes in their host plant. 

Piercing-sucking insects (e.g. aphids) use their stylet-formed mouth part to explore the host, 

penetrate a suitable plant and suck up the nutrients by ingesting large amounts of phloem 

sap (Will et al., 2013). They inflict slight physical damage. Many piercing-sucking insects form 

intimate and long-lasting associations with their hosts, whereas chewing arthropods are 

usually more mobile. The latter removes large pieces of plant tissue. The feeding style of an 

attacker affects how the host will recognize the attack and respond to it.  

 

1.2.2 Recognition of an attack by fungal phytopathogen or piercing 
sucking insects 

 

A response against an attacker can only be effective when the enemy is recognized rapidly 

by the plant and when the switched-on defense responses are suitable to fight the intruder. 

Elicitors play a crucial role in recognition. An elicitor is any molecule that can activate plant 

defense reactions. Elicitors can be associated with the attacker itself or with components 

from the plant that are modified by the attacker (Ferreira et al., 2006, Howe & Jander, 2008).  

 

When a plant is attacked by a phytopathogen, it is important for the plant to rapidly 

recognize the attacker. In the past, literature reported on the production of elicitors (coded 

by avirulence genes (Avr) of the pathogen) and the subsequent recognition of these elicitors 

by the plants receptors (products of the resistance (R) genes). This is called the gene-for-

gene complex (Avr-R). This interaction is expanded with the zigzag model of Jones and Dangl 

(2006) (Fig. 1.2): plants detect the PAMPS (pathogen-associated molecular patterns, red 

crystals) of the pathogen and trigger PTI (PAMP-triggered immunity). This is followed by ETS 

(effector-triggered susceptibility): a successful pathogen delivers effectors that interfere 

with PTI, enabling it to disperse in and feed from the plant. In a third step, the red effector is 

recognized by the plant, activating ETI (effector-triggered immunity). This immunity passes 

the threshold for hypersensitive cell death response (HR). In a fourth step, pathogen isolates 
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are selected that have lost the red effector and perhaps gained new effectors through 

horizontal gene flow (blue dots). These can suppress ETI and the zigzag model continues.  

 

 

Fig. 1.2  Zigzag model illustrates plant-pathogen recognition (Jones & Dangl, 2006). 

 

One of the best studied piercing-sucking insects are aphids. Aphids are especially feared 

because of their fast reproduction and population build-up under favorable circumstances, 

leading to yield reduction of grain crops. At higher temperatures, the development and 

reproduction of the aphids are faster. For example, the bird cherry-oat aphid Rhopalosiphum 

padi (a typical grain aphid in Europe) had high fecundity rates between 16 °C and 24 °C, with 

up to 4 nymphs produced per female per day. At even higher temperatures (24 °C - 28 °C) 

the time interval between each generation became shorter (Auad et al., 2009). 

 

The host selection behavior of aphids is dependent on a series of stages. First, aphids use 

visual stimuli like color and shape as well as olfactory stimuli like aphid pheromones and 

plant volatiles to find a suitable plant. After landing on that plant and assessing surface cues 

(e.g. are there trichomes present?) (second stage) aphids start probing the epidermis and 

underlying mesophyll- and parenchyma tissues and eventually phloem sieve elements (Fig. 

1.3) to ingest small quantities of plant sap for gustatory discrimination. This is the third stage 
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in selecting a host. After accepting a plant as their host, aphids start feeding with their 

piercing-sucking mouthparts from the phloem sap of the plant during a long time. This 

mouthpart is called a stylet. These needle-like stylets can penetrate between plant cells and 

puncture individual cells to suck up nutrients. This stylet contains a salivary and a food canal. 

With the salivary canal aphids secrete sheath/gelling saliva to form canals in the plant’s 

apoplast that can remain after stylet retraction (Tjallingii & Esch, 1993).  

After penetrating the cell, plants react with some early events like callose depositions 

and protein plugging, both mechanisms are activated by a sudden Ca2+-influx in order to 

prevent cell contents of leaking (Will et al., 2013). Aphids must avoid or sabotage plant 

defenses and keep the phloem sieve tubes alive if they want to keep the phloem sap 

available for feeding (Giordanengo et al., 2010). In this regard, plant defenses are 

counteracted by the aphids by excreting gelling and watery saliva, prior to ingestion, using 

the food canal in the stylet. The stylet’s food canal of Myzus persicae for example had a 

diameter of approximately 0.7 μm (Katis et al., 2007). The saliva contains a mixture of 

enzymes such as pectinases, peroxidases and polyphenol oxidases (Baumann & Baumann, 

1995, Urbanska et al., 1998, Will et al., 2009). Such enzymes like e.g. pectinases and phenol 

oxidases in the saliva of S. avenae can be recognized and activate defense mechanisms in 

wheat (Liu et al., 2009, Ma et al., 2010). Effector-proteins in the aphid’s saliva can modulate 

plant-insect interactions (Hogenhout & Bos, 2011). Another early event is the production of 

reactive oxygen species (ROS), rapidly induced upon injury, that are toxic for insects (Kehr, 

2006) but counteracted by salivary secretions containing e.g. NADH-dehydrogenases 

(Harmel et al., 2008). These are all examples of defense mechanisms by plants to counteract 

herbivore attack and subsequently, defense mechanisms of aphids who on their turn must 

offset these plant defenses in order to maintain interactions with their host during several 

hours or even days. 

While passively feeding from the phloem sap by means of high pressure within the 

sieve elements, aphids are provided with high concentrations of sugars and unbalanced, low 

concentrations of amino acids (Guerrieri & Digilio, 2008). The phloem structure transports a 

wide range of compounds like water, minerals, amino acids, organic acids, sugars and sugar 

alcohols (Kehr, 2006). The excess amount of sugars is secreted in the form of honeydew, 

consisting of an aqueous mixture of sugars (90-95%) and amino acids (Auclair, 1984). The 

sugar composition of honeydew reflects the composition of phloem sap; however, a number 
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of other mono-, di-, and oligo-saccharides are also synthesized by the sap feeder (through 

the action of gut enzymes on plant derived sucrose) (Hendrix et al., 1992, Wackers, 2000, 

Sabri et al., 2013). High quantities of honeydew on leaf surfaces can lead to a black layer of 

saprophytic fungi that block stomata and impair photosynthesis (Morkunas et al., 2011). 

 

 

Fig. 1.3  Aphids penetrate the plant with their stylet (red: salivary canal, green: food 

canal) and puncture phloem sieve tubes (adjusted from Hogenhout (consulted 

05-10-2015)). 

 

Plants have developed different mechanisms to reduce aphid attack. It has been suggested 

that two different processes are involved in the elicitation of plant defense (Smith & Boyko, 

2007). Whether a plant is susceptible or resistant to aphids, depends on how fast and 

efficient the plant can recognize an attack (Fig. 1.4). During incompatible interactions 

between aphids and plants, the plant with a resistance (R) gene rapidly recognizes aphid 

attack and infestation is counteracted (Kaloshian & Walling, 2005). This implies a gene-for-

gene recognition of aphid-derived elicitors, followed by activation of aphid-specific 

resistance and defense responses (Smith & Boyko, 2007). It is also possible that the plant 

recognizes tissue damage without knowing that this damage is caused by aphids. This leads 

to a more general stress response that can, but not always, lead to the resistance of the 

plant against the aphids. 
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Fig. 1.4 Model of recognition of aphid feeding (Smith & Boyko, 2007). 
 

1.2.3 Plant response induced after recognition: different attackers lead 
to different defense responses  

 

Plants have evolved multiple layers of passive (constitutive) and active (induced) defense 

mechanisms to combat attackers in order to maintain their growth. Constitutive defenses, 

which are constantly activated, exists of physical barriers like cuticula and trichomes, 

preformed secondary metabolites and proteins that have antixenotic and antimicrobial 

effects. Induced defenses are changes in resistance-related traits that occur following attack. 

Both herbivore and pathogen attack can lead to such induced changes in the metabolism of 

the host plant. On plant cellular level, ion fluxes are induced and ROS are produced. Induced 

defense against pathogens involves the hypersensitive response. This is a programmed cell 

death at the site of infection in order to restrict the pathogen. This defense is only effective 

against biotrophs who cannot utilize dead tissue (Govrin & Levine, 2000, Heath, 2000, Wang 

et al., 2013, Rojas et al., 2014, Zhou et al., 2014, Choi & Hwang, 2015). When plants survive 

an initial attack, this often renders them more resistant to a second attacker by responding 

more rapidly (the “priming” effect). This is called systemic acquired resistance (SAR) and is 

effective against both bio- and necrotrophs and some aphid species (Walling, 2000, Conrath 

et al., 2002, Durrant & Dong, 2004, Pusztahelyi et al., 2015). Also other defense related 

genes and metabolites are induced upon herbivore or pathogen attack (e.g. feeding 
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deterrents and pathogenesis-related (PR) proteins) (Dangl & Jones, 2001, Gatehouse, 2002). 

Also the fortification of cell walls is an example of direct induced defense (Kang & 

Buchenauer, 2000). Moreover, other changes can occur upon attack that are more indirect. 

Such a change is the production of volatile compounds (see 1.4.2) that can attract natural 

enemies of the attacker (Kessler & Baldwin, 2001, Ponzio et al., 2013). 

These direct and indirect induced responses are regulated by a signal transduction 

network in which jasmonic acid (JA) and salicylic acid (SA) play the most important role 

(Pieterse et al., 2012). Although many studies have explored the antagonistic relationship 

between JA and SA pathways, exceptions have been noted depending in how particular 

enemies are perceived (Beckers & Spoel, 2006, Smith et al., 2009, Pieterse et al., 2012). 

According to the attacker (insect or pathogen) encountered, different pathways are 

activated. In general, SA is predominantly associated with resistance against biotrophic 

pathogens and JA with necrotrophs, though cross talk between SA and JA depends on the 

pathogen’s nature (Rojo et al., 2003, Glazebrook, 2005, Beckers & Spoel, 2006, Smith et al., 

2009, Morkunas et al., 2011). For induced defenses against herbivores it is assumed that the 

JA-dependent pathway is effective but phloem feeding insects are also associated with SA-

responsive genes (Gatehouse, 2002, Kessler & Baldwin, 2002, Howe & Jander, 2008). The 

timing of defense reaction activation and the strength of the defense response is crucial for 

resistance. 

1.2.4  Attackers can hijack the plant defense responses to their benefit 
 

Pathogens are able to activate a phytohormone signaling pathway that promotes disease by 

suppressing another phytohormone pathway that confers resistance. To enable such a 

successful colonization pathogens secrete effectors in an effective and timely way. Both 

effector-mediated manipulation of SA and JA pathways are known (Kazan & Lyons, 2014, 

Asai & Shirasu, 2015). Pathogens (especially biotrophic ones) need to attenuate SA signals to 

promote their fitness. Therefore, many pathogen effectors target the SA biosynthesis. For 

example, Phytophthora sojae and Verticillium dahliae secrete isochorismatase effectors that 

disrupt the plant SA pathway by suppressing its precursor (Liu, TL et al., 2014). There are also 

effectors known that target components of JA signaling. The JA pathway provides resistance 

to various necrotrophic fungal pathogens, some of which have evolved abilities to suppress 
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this pathway. For example, Sclerotinia sclerotiorum produced a protein effector (SSITL) that 

played a significant role in the suppression of JA/ethylene(ET) signal pathway mediated 

resistance at early infection stages (Zhu et al., 2013). Moreover, some effectors also alter the 

antagonistic relationship between SA and JA. The oomycete downy mildew pathogen of 

Arabidopsis, Hyaloperonospora arabidopsidis, was able to shift the balance of defense 

transcription from SA-responsive defense to JA/ET-signaling, and enhancing susceptibility to 

biotrophs by attenuating SA-dependent gene expression (Caillaud et al., 2013). Effector-

mediated manipulation of the gibberellic acid, auxin, abscisic acid, ET, cytokinin, and 

brassinosteroid pathways is also possible (Kazan & Lyons, 2014). 

 

Also insects can deceive plants in order to trigger non-effective defense strategies. Evidence 

arises from the following examples: the silver leaf whitefly Bemisia tabaci can manipulate 

plant signaling (Arabidopsis thaliana) to suppress effective defenses. Under normal 

circumstances, the SA-based defense is upregulated upon whitefly feeding, while the JA-

based defense is unchanged. Experiments show that the JA-regulated defenses are 

important to deter whitefly development. But when using a plant mutant, with impaired SA-

regulated defenses and uncoupled SA-JA cross talk, that is treated with methyl jasmonate, 

the whitefly development is severely delayed. This demonstrates that JA controls defenses 

that actively impede the insects’ development. Whiteflies are able to trigger a non-effective 

defense based on SA in order to suppress the effective JA defenses (Kempema et al., 2007, 

Zarate et al., 2007).  

Similarly, sorghum (Sorghum bicolor) seedling plants that were attacked by Schizaphis 

graminum aphids displayed SA-dependent PR genes and only a weak induction of methyl-JA-

regulated defense genes. However, infestation tests confirmed that the JA-regulated 

pathways were effective in plant defense against the aphids (Zhu-Salzman et al., 2004). The 

authors of this study declare that these results indicate that aphids are able to avoid 

triggering of potentially effective plant defense machinery (probably through their particular 

mode of feeding). Phloem feeding insects can be perceived as pathogens (Walling, 2000) due 

to similarities in the manner of penetration of plant tissues (stylet vs. fungal hyphae) 

(Fidantsef et al., 1999). In our experiment, genes that are typically upregulated upon 

Fusarium attack were also shortly upregulated during aphid infestation (deception of the 

plant) (see chapter 2) (De Zutter et al., 2016a).  
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1.3 Direct interactions between herbivores and fungal 
pathogens  

 

1.3.1 Herbivores can vector fungal particles 
 

When an insect can transport another organism (e.g. fungal particles) within or between 

plants, it is called a vector. Insects can carry particles internally and/or externally and help 

spreading disease resulting in higher yield losses and disease pressure. Often several insects 

are vectors of a certain fungus on a certain plant species. These findings arise from several 

examples on different plant species.  

The first example is F. avenaceum that causes Fusarium crown and stem rot on 

lisianthus (Eustoma grandiflorum). Adult shore flies (Scatella spp.), fungus gnats (Bradysia 

spp.) and moth flies (Psychoda spp.) serve as vectors of the aboveground life stage of this 

soilborne plant pathogen, namely macroconidia produced on stem lesions. They acquire and 

transport these fungal particles through the air to healthy plants which on their turn 

developed disease symptoms. Using microscopy, it was found that all three insect species 

had macroconidia externally on the body but only Scatella spp. deposited macroconidia in 

their frass (El-Hamalawi & Stanghellini, 2005). Scatella spp. can also transmit Verticillium 

dahlia, Fusarium oxysporum f.sp. basilici and Thielaviopsis basicola (El-Hamalawi, 2008). 

On alfalfa (Medicago sativa) several insects serve as vectors for the effective 

transmission of Verticillium albo-atrum causing Verticillium wilt. One example are the pea 

aphids (Acyrthosiphon pisum). Their host-seeking and feeding behaviors help contribute to 

the spread of the pathogen. Piercing-sucking insects acquire spores of V. albo-atrum from 

diseased plants, transport them, and release inoculum onto the probing and feeding 

wounds, which are ideal sites for infection and development of the pathogen. In contrast to 

these insects, chewing insects (e.g. alfalfa weevil (Hypera postica) and grasshoppers 

(Melanoplus sanguinipes and M. bivittatus)), that feed on infected leaf tissue, acquire the 

pathogen internally and deposit fungal particles in their feces. The pathogen is able to 

survive in the gut system. In case of planthoppers, feces become free of contamination when 

the diet changed from diseased to healthy leaf tissue. This means that the pathogen survived 

in a non-persistent manner (Huang et al., 1981, Huang & Harper, 1985, Huang, 2003). 
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In case of cereal insects, authors can only hypothesize the capacities of the picnic beetle 

Glischrochilus quadrisignatus, the western corn rootworm Diabrotica virgifera, the European 

corn borer Ostrinia nubilalis, the orange wheat blossom midge (OWBM) Sitodiplosis 

mosellana and the western flower trips Frankliniella occidentalis to vector several Fusarium 

spp. (Windels et al., 1976, Gilbertson et al., 1986, Farrar & Davis, 1991, Sobek & Munkvold, 

1999, Mongrain et al., 2000). Mongrain et al. (1997) could not directly link the correlation 

between OWBM and Fusarium spp. to transmission of the pathogen by the insect. It could 

also be that host disease increased because of larval feeding damage (see 1.3.2), recruitment 

of the insects to infected hosts (preference because several members of the Cecidomyiidae 

family feed from fungal material, see 1.3.3), the adult may lay their eggs preferentially on 

Fusarium-infected ears or the involvement of plant response (see 1.4.1). In many studies, the 

acquisition of fungal inoculum was not satisfactorily demonstrated and there was no careful 

distinction between direct and indirect (plant-mediated) effects.  

Another example of Fusarium transmission in cereals arises from the study of Kemp 

et al. (1996). Mites Siteroptes avenae that were fed with F. poae growing on agar plates 

were placed in open petridishes between rows of wheat plants at ear emergence. These ears 

became symptomatic because of the transmitting capacities of the mites. Similarly, in this 

PhD we tried to reveal the ways of vectoring of Fusarium by insects, more in particular F. 

graminearum dissemination by grain aphids S. avenae. As mentioned in the research 

objectives of this thesis, the aphids were not able to get internally contaminated with the 

fungus (their stylet is too narrow) but also not externally contaminated due to their smooth 

body. The latter was examined by putting aphids in petridishes containing potato dextrose 

agar medium with the sporulating fungus and examining the aphids under the microcope. 

These kinds of experiments (artificially inoculating insects) are unrealistic approaches. In 

reality, the inoculum source is an infected host (e.g. infected leaves or crop debris) rather 

than a fungal colony growing in a petridish. This fungal colony is probably a much denser 

source of inoculum/spores (worst-case scenario) compared to inoculum sources in fields. 

This problem was solves in a correct manner by Drakulic et al. (2015) who demonstrate that 

S. avenae aphids fed on symptomatic ears could not produce disease in subsequent hosts. F. 

graminearum could be promoted by aphid infestation without acting as a vector for the 

pathogen (Bagga, 2008, Drakulic et al., 2015, De Zutter et al., 2016a). 
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Several insects (with different feeding modes) can contribute to the dissemination of a 

fungus but it is dependent on the population density of the transmitting insects, the quantity 

of infected plants and the inoculum density present for acquisition. Dispersal of fungal 

particles by insects also implies that there should be an alignment between the life cycle of 

the arthropod and the infection period of the pathogen. This alignment is crucial for the 

uptake of fungal particles. In addition, dispersal of these particles should also be done in a 

(often short) time period when other (healthy) host plants are still receptive for disease. In 

order to help control fungal diseases, it is advisable to also control the insects that are 

possible vectors of fungi (or contribute to the disease pressure in any other way). This can be 

done by using insecticides and insect resistant plant cultivars (see 1.4.3). Unfortunately, 

many studies do not conclusively demonstrate the direct interactions between herbivores 

and pathogens because it can be easily be entangled with plant-mediating effects. 

1.3.2 Herbivorous feeding wounds as entrance sites for pathogens 

 

Feeding wounds made by herbivorous insects are not only deleterious for the plant tissue 

but also make an important contribution to pathogen infection and disease severity. The 

wounds can facilitate penetration and colonization of the plant by fungi. On macro scale this 

can lead to more disease pressure in the field. These findings are very much depending on 

the feeding nature of the insects. Parsons and Munkvold (2010) found strong associations 

between thrips and Fusarium ear rot symptoms (caused by F. verticillioides) in maize. These 

correlations were not as strongly present for corn earworms Helicoverpa zea. It could be 

partly accounted by the nature of their feeding damage. Unlike thrips which do not 

completely consume maize kernels but damage them by weakening the pericarp tissue, corn 

earworms destroy the individual kernel completely but leave adjacent kernels mostly intact, 

rendering thrips damaged kernels more prone to infection. A similar phenomenon was 

demonstrated for the European corn borer Ostrinia nubilalis larval feeding damage that 

poorly correlated with Aspergillus flavus infection of corn kernels (Mencarelli et al., 2013), a 

pathogen that occurs in the field at a later time point, during crop ripening. Larvae only 

occurred on the tip of the ears, whereas the fungus infected the whole ear, explaining the 

poor correlation. 
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Moreover, studies indicate a positive correlation between presence of insects on 

plants and mycotoxin production by the fungus. For example, the production of 

moniliformin and deoxynivalenol (DON) by Fusarium spp. (F. proliferatum and F. 

graminearum) are closely linked with insect injury caused by O. nubilalis larvae (Folcher et 

al., 2012, Scarpino et al., 2015). Higher mycotoxin occurrence (e.g. fumonisins, 

moniliformins, etc.) was associated with O. nubilalis feeding activity and it was suggested 

that reducing feeding damage by insect control measurements could be an effective solution 

to minimize mycotoxins (Mazzoni et al., 2011, Blandino et al., 2015) (also see 1.4.3).  

1.3.3 Fungivory 

 

Like plants, fungi are immobile organisms unable to escape from predator attack. The most 

obvious direct interaction between an insect and a fungus is fungivory (i.e. feeding from a 

fungus). As mentioned before several members of the Cecidomyiidae family are known to 

feed from fungal particles. Similar to plant adaptations to herbivore attack, fungal secondary 

metabolites are increasingly recognized to mediating resistance against fungivore grazing 

(Rohlfs, 2015). This is the case for the filamentous fungus Aspergillus nidulans that is being 

eaten by the soil arthropod, Folsomia candida. As a response, A. nidulans produced higher 

amounts of toxic secondary metabolites and invested more in sexual reproduction relative 

to unchallenged fungi (Doll et al., 2013). In contrast to inducible defense strategies that are 

well known in plants attacked by herbivorous insects, induced resistance of fungi against 

fungivorous animals remain largely unknown.  

 

1.4 Indirect interactions between herbivores and fungal 
pathogens 

 

1.4.1 Role of the host plant as intermediary agent 

 

In ecological systems, indirect interactions between plant pathogens and phytophagous 

arthropods can arise when infestation by a first attacker alters the common host plant so 

that although a second attacker could be spatially or temporally separated from the first 

one, the former could be affected. The induction of plant defense reactions leading to the 
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production of secondary metabolites is thought to have an important role since it involves 

antagonistic and/or synergistic cross-talks that may determine the outcome of such 

interactions (Mouttet et al., 2011). Plant-mediated indirect effects of pathogens on 

herbivores and vice versa is variable (related to different tissues of the same plant (systemic) 

or related to the same plant part (local)) and also dependent on the feeding mode of the 

attackers (biotrophic or necrotrophic; chewers or piercing-sucking insects). Since results 

obtained in laboratory experiments (under controlled conditions) not always reflect field 

conditions, we differentiate between field and controlled conditions: all examples are 

controlled unless otherwise stated. 

 Plant-mediated effect of herbivore infestation on fungal pathogens  

 

Chewing insects vs. biotrophic infections. The tripartite interaction between willow hybrid 

Salix cuspidata, the biotrophic rust Melampsora allii-fragilis and the willow leaf beetle 

Plagiodera versicolora was studied in laboratory assays and greenhouse experiments. The 

rust infection was not affected by herbivore feeding in a local scale (feeding on the same 

leaf). However, the susceptibility of the plants for rust was increased by herbivore feeding 

because more rust sori were found on the leaves adjacent from feeding-damages leaves (this 

is a systemical plant effect) (Simon & Hilker, 2003). 

Grazing by the beetle Gastrophysa viridula (chewing) on Rumex obtusifolius led to a 

decrease in lesion density Venturia rumicis (hemibiotrophic) and Uromyces rumicis 

(biotrophic) but not Ramularia rubella (necrotrophic) in field experiments during autumn. 

For V. rumicis and U. rumicis significant reductions in lesion density occurred on the 

undamaged leaves of damaged plants, compared with similar leaves on undamaged plants, 

suggesting a systemic induced resistance (Hatcher & Paul, 2000).  

 

Chewing insects vs. nectrophic infection. Herbivory by the leaf beetle Phaedon cochleariae 

did not influence fungal growth of Alternaria brassicae on Chinese cabbage neither locally 

(the same leaves) nor systemically (adjacent leaves). (Rostas & Hilker, 2002).  

Populus hybrids previously exposed to the cottonwood beetle Chrysomela scripta 

(chewers) affected (positively/negatively depending in the hybrid clones) the subsequent 

susceptibility of the plants to the necrotrophic Septoria musiva (Klepzig et al., 1997). 
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Piercing-sucking insects vs. biotrophic infection. The fungal pathogen Magnaporthe grisea 

(biotrophic) was less likely to cause symptoms of leaf blast on rice plants that had previously 

been infested with the white-backed planthopper Sogatella furcifera compared to 

uninfested plants. Resistance to M. grisea was induced in rice plants by planthopper 

infestation. The observed phenomenon could not be explained by the feeding behavior of 

the plant hoppers (stylet insertion, piercing-sucking) because no significant difference in leaf 

blast incidence was observed between damaged plants treated with needling and untreated 

control plants. In the insect infested plants, the expression of two genes regarding beta-1,3-

glucanase (which indicates a strong antimicrobial activity), Gns4 and Gns5, was confirmed by 

real time polymerase chain reaction analysis. These results indicated that infestation with 

plant hoppers apparently induced physiological changes including gene expression that were 

related to M. grisea resistance in rice plants (Kanno et al., 2005). The effect was also 

observed when plant hopper infestation (restricted to the stems) and blast infection were 

spatially separated (different plant parts) which indicated an induced systemic resistance 

(Kanno & Fujita, 2003). This evidence suggests that piercing-sucking insects will upregulate 

SA which can also lead to the inhibition of biotrophic pathogens (Lazebnik et al., 2014). 

 

Piercing-sucking insects vs. necrotrophic infection. One of the oldest evidences of insect 

infestation influencing the pathogen is the example of Leath and Byers (1977). Significantly 

more root rot caused by F. roseum (synonym F. graminearum) (hemibiotrophic) developed 

in alfalfa, red and white clover when the plants were subjected to A. pisum aphid feeding. It 

was not known whether this was due to an increased susceptibly of the plants or to 

increased pathogenecity of the fungus or to insect feeding injury itself.  

Similar and more recent examples of herbivores causing increased pathogen infection 

arises from the work of Drakulic et al. (2015) but also out own work (chapter 2). Drakulic et 

al. (2015) demonstrated that wheat ears exposed to both S. avenae cereal aphids and F. 

graminearum showed accelerated disease progression, an increase in disease severity and 

mycotoxin accumulation compared to plants treated only with F. graminearum. The authors 

suggested that honeydew deposits on the plant could promote fungal colonization and on 

top of that, molecular mechanisms induced by coincidental aphid stress must also play a 

significant role in the increase of host susceptibility to FHB disease. The role of wheat 

defense in the increased Fusarium disease symptoms and mycotoxin accumulation was 
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confirmed in this PhD thesis (see chapter 2) (De Zutter et al., 2016a). Expressions in ears 

containing both F. graminearum and aphids were observed earlier, similar and/or enhanced 

compared to ears containing only F. graminearum. We cannot directly link these enhanced 

expressions to the aphids but it seemed that if plant genes were already upregulated 

previously because of the aphids presence, they were able to react faster/better to a 

subsequent attack of the fungus. This enhanced response was circumvented by the fungus 

itself by producing higher levels of its virulence factor DON which could explained the 

accelerated disease progression and increase in disease severity (De Zutter et al., 2016a). In 

these experiments, both the aphids and the phytopathogen inhabited the same plant part 

(wheat ears). It is thus tempting to assume that the plant responses involved were locally 

induced.  

On the other hand, piercing-sucking insects can impact the infection of necrotrophic 

pathogens negatively. Mouttet et al. (2011) found a negative interaction between the 

necrotrophic fungus Botrytis cinerea and the aphid Rhodobium porosum, which is conveyed 

by reduced fungal lesion area. 

 Plant-mediated effect of a fungal pathogen infection on herbivores  

 

Host plants infected by pathogenic fungi represent a complex feeding niche for herbivores. 

The fungus induces changes in the plant metabolites but also produces secondary 

metabolites itself (e.g. fungal toxins). For the influence of fungal mycotoxins on herbivores, 

see chapter 4. Performance of herbivores feeding from fungi-infected plant tissue can be 

positively or negatively influenced and this often linked intrinsically with plant-mediated 

reactions.  

 

Biotrophic infection vs. chewing insects. Larvae of the stem-boring weevil Apion onopordi 

(chewing) developing in creeping thistle (Cirsium arvense) infected with Puccinia 

punctiformis rust showed higher survival, laid more eggs and were larger than weevils 

developing in healthy thistles (Bacher et al., 2002).  

In contrast, larvae of the butterfly Melitaea cinxia (chewing) developed more slowly 

and weighed less at diapause when feeding on leaves of narrowleaf plantain Plantago 

lanceolata infected with the biotrophic powdery mildew Podosphaera plantaginis compared 
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to healthy leaves. In a behavioral experiment larval groups tended to leave the original host 

plant when it was infected by P. plantaginis. The latter was confirmed under laboratory 

conditions as well as under common garden conditions. Although the exact mechanisms of 

the observed negative effects remained unclear, it seems likely that they were mediated by 

the host plant (Laine, 2004).  

 

Biotrophic infection vs. piercing-sucking insects. In field studies, there were no interactions 

found between the population densities of Aphis gossypii and Anasa tristis aphids and the 

presence of powdery mildew Erysiphe cichoracearum (biotroph) on leaves of quash plants 

(Cucurbita pepo x texana) (Moran & Schultz, 1998).  

Euceraphis betulae aphid performed better (weighed more, displayed enhanced 

embryo development) on silver birch (Betula pendula) infected with Marssonina betulae 

(biotroph) causing lesions on leaves compared to aphids reared on asymptomatic leaves 

(Johnson et al., 2003). Plant-mediated interactions can be the underlying reason for both 

examples: it is known necrosis after pathogen infection represents accelerated senescence, 

and on healthy plants, several aphid species perform better on senescing leaves. Indeed, 

enhanced aphid performance can be the result of improvement in leaf nutritional quality. 

Leaves inoculated with the fungus in the manipulative field experiment of Johnson et al. 

(2003) contained higher concentrations of free amino acids. Free amino acids from 

mesophyll cell degradation are translocated out of infected leaves through the phloem as a 

result of the plant’s response to the fungal attack. These changes are similar to leaf 

senescing and are proposed as the positive interaction between fungus and aphid (Johnson 

et al., 2003).  

Rust (Uromyces viciae-fabae) infection of Vicia faba plants enhanced the 

performance of Aphis fabae aphids. The aphid’s response to rust infection was attributed to 

an increase in leaf total nitrogen concentration (Al-Naemi & Hatcher, 2013). 

 

Necrotrophic infection vs. chewing insects. Evidence of a positive impact arises from the 

study of Carruthers et al. (1986). O. nubilalis larvae (chewing) developed faster on maize 

tissues showing symptoms of stalk rot caused by Colletotrichum graminicola 

(hemibiotrophic) than on non-inoculated tissue (Carruthers et al., 1986). The authors 

suggested that the accelerated development of the larvae was attributed to improvement of 



   

20 
 

the nutritional value of tissues via maceration of tissues and breakdown of complex 

carbohydrates by fungal enzymes. 

Necrotrophs can also impact chewers in a negative way. The phytophagous leaf 

beetle Cassida rubiginosa (chewing) consumed significantly more leaf tissue from healthy 

creeping thistle plants than from thistle plants infected with the necrotrophic fungus Phoma 

destructiva. Development time from freshly hatched larvae until pupation was significantly 

longer for larvae fed on infected leaves. Also the weight of last-instar larvae and pupae was 

lower, and larval and pupal mortality was higher when larvae had been fed with infected 

leaves (Kruess, 2002). Although this study could not easily attribute the negative effects to a 

specific mechanism it could be explained by the plant-mediated production of pathogenesis-

related enzymes (e.g. peroxidases) or to the production of toxins by the fungus.  

In laboratory studies, larvae of the above-ground diamondback moth larvae Plutella 

xylostella feeding (chewing) on leaves of cabbage plants that are inoculated with the soil-

borne endophytic fungi Acremonium alternatum suffered from increased mortality and 

other negative effects. Since the experiments were conducted before the endophyte 

reached the green plant parts, P. xylostella came not in direct contact with the endophyte 

and thus the negative effects on the insect must result from a systemic plant response effect 

(Raps & Vidal, 1998). This indicates that the systemic changes to the host’s biochemistry that 

are induced upon fungal attack can influence performance of insects feeding from the same 

plant but not necessarily the same plant part (e.g. above and below ground).  

Rostas and Hilker (2002) found that when the chewing leaf beetle Phaedon 

cochleariae fed on Chinese cabbage leaves infected with the necrotroph Alternaria brassicae 

had a prolonged larval development and reduced pupal weight. Adult beetles avoided 

feeding and egg deposition on fungus-infected leaves. In contrast to these local effects, no 

systemic effect of phytopathogenic infection on the herbivore was detected. The mechanism 

behind this local effect (on the same leaf) was not fully elucidated but could be attributed to 

noxious compounds released by the fungus in the infected tissue (e.g. destruxins) or the 

fungus induced metabolic changes in the infected tissue that negatively influenced the 

beetles.  

 

Necrotrophic infection vs. piercing-sucking insects. Infection of cucumber plants (Cucumis 

sativus) with necrotrophic pathogens Cladosporium cucumerinum (cucurbit scab fungus) and 
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Colletotrichum orbiculare led to an enhanced reproduction of melon aphid Aphis gossypii 

(Moran, 1998).  

Mouttet et al. (2011) found a negative interaction between Botrytis cinerea 

(necrotroph) and Rhodobium porosum aphids, expressed by decreased aphid growth rate. 

The necrotrophic fungus Botrytis cinerea had an inhibitory effect on development, 

survival and fecundity of individual Aphis fabae aphids. Infection of Vicia faba plants with 

this necrotroph led to reduction in leaf nitrogen concentration and this could possibly 

explain the negative effects on the aphid (Al-Naemi & Hatcher, 2013).  

 Defense responses and amino acid profiles influencing interactions between 
fungal pathogens and herbivores 

 

Few studies have investigated tripartite interactions. In almost all studies mentioned above, 

the phytohormones were not tested. Lazebnik et al. (2014) did an effort to include 

phytohormones in this context in a hypothetical manner (Fig 1.5) but came across some 

counterintuitive phenomenons. For example, in experiments with young rose plants under 

controlled conditions, Mouttet et al. (2011) found a negative interaction between the 

necrotrophic fungus Botrytis cinerea and the aphid Rhodobium porosum, which is conveyed 

by decreased aphid growth rate and reduced fungal lesion area. These results are 

counterintuitive because a necrotroph is expected to stimulate JA dependent defense 

pathways, at the cost of SA expression, which would in turn benefit the aphid. Similarly, 

piercing-sucking insects induce SA dependent pathways, which should be positive for 

necrotrophs (due to a cross talk between JA and SA). These contrasting results could be 

explained by the possible role of other plant defense mechanisms such as a change in 

phenolic compounds and free amino acids that occurs downstream from phytohormonal 

signaling (Johnson et al., 2003, Lazebnik et al., 2014). 
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Fig. 1.5  Overview of plant-mediated effects of pathogens on insects and vice versa 

with different feeding modes, including hypothetical phytohormone-mediated 

mechanisms. This scheme was made after reviewing literature about 

sequential tripartite interactions among plants, pathogenic microbes and 

herbivorous insects (Lazebnik et al., 2014). 

 

The amino acid (AA) composition of infected leaves can be altered by fungal infection. Given 

that aphids are sensitive to changes in composition of phloem AAs it would be instructive to 

determine the effect of plant pathogens on AA profile of host plants. 

Nitrogen mobilization in the plant can impact the available plant’s AA. The glutamate 

metabolism in the plant has a pivotal role in AA metabolization and plays a key role in the 

plant’s defense against pathogens (Seifi et al., 2013). Winter wheat grains infected with F. 

graminearum showed increasing levels of alanine, lysine and tyrosine and decreasing 

glutamic acid contents with a simultaneous increase in percentage of Fusarium damaged 

kernels or DON contents (Beyer & Aumann, 2008). Wheat ears treated with mycotoxin DON 

showed elevated levels of aromatic phenylalanine, tyrosine and tryptophan (Warth et al., 

2015b). Note that piercing-sucking insects like aphids ingest large amounts of phloem sap to 

obtain enough nutrients like AA that are indispensible compounds for the aphid survival. To 
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make up for the lack of essential AA (e.g. lysine, phenylalanine and tryptophan) in the 

phloem, aphids possess symbiotic intracellular bacteria Buchnera spp., that provide their 

host with certain essential AA (Douglas & Prosser, 1992). This indicates that host diet quality 

changes like altered AA concentrations induced by a preceding pathogen attack influences 

the insect performance. Changes to free AA composition of plants has already been 

suggested as a mechanism behind the altered fitness of Euceraphis betulae aphids on birch 

leaves infected with Marssonina betulae (Johnson et al., 2003) and Aphis fabae when 

feeding on bean plants infected with Botrytis fabae causing chocolate spot disease (Zebitz & 

Kehlenbeck, 1991). In support of this concept, it was previously suggested that R. padi aphid 

rejection of his primary host and subsequent migration to secondary hosts was stimulated 

by the decline in levels of free AA within primary host leaves caused by long-term R. padi 

feeding (Sytykiewicz et al., 2011). Moreover, Hale et al. (2003) indicated a correlation 

between aphid performance and essential AA availability.  

In contrast (the other way around), it is also conceivable that the competition 

between herbivores and fungi for nitrogen compounds in the plant tissue can also impact 

the pathogen itself. The ability of aphids to alter their host’s plant phloem has been 

suggested in several studies (Telang et al., 1999, Sandstrom et al., 2000, Petersen & 

Sandstrom, 2001, Wilson et al., 2011). Stylet exudates were analyzed (stylectomy) from 

Diuraphis noxia aphids feeding from wheat. Comparison of samples from undamaged and 

damaged susceptible wheat revealed changes in AA composition and an increase in levels of 

essential AAs, indicating a nutritionally enhanced ingesta (Telang et al., 1999). Such 

nutritional enhancement of host plants by aphids is dependent on the aphid species 

(Sandstrom et al., 2000, Petersen & Sandstrom, 2001). Changes in the AA profile can have an 

influence on pathogens. For example, it is assumed that the pathogen F. graminearum may 

perceive polyamines and related AAs as cues for the production of toxins (sometimes 

virulence factors) during the infection process (Gardiner et al., 2009, Gardiner, DM et al., 

2010). 

 

To impede an attack plants are able to induce multilayered defense responses. It is possible 

that some PR genes are essential for defense against one organism and play little or no role 

in defense against another. But some set of PR proteins display broad responses to both 

pathogens and insects. In this respect, Wu et al. (2014) studied the expression profile of PR 
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genes during Triticum species defense against Fusarium, aphid-transmitted Yellow Dwarf 

Virus and Hessian fly Mayetiola destructor (Diptera: Cecidomyiidae). They showed that PR12 

and PR14, encoding low molecular membrane acting protein, defensin and lipid transfer 

protein respectively, show broad responses to the pathogens and insects in their study. 

Similarly, microarray analysis of barley gene expression after R. padi aphid infestation of 

susceptible and partially resistant genotypes indicated that most induced genes belonged to 

the PR classes of proteins (Delp et al., 2009). These genes (such as PR1 and PR5, chitinases 

and β-1,3-glucanase) were also known to be induced in barley leaves encountering powdery 

mildew B. graminis (Erysiphales: Erysiphaceae) (Gregersen et al., 1997).  

Botha et al. (2005) reviewed the cereal host interactions with Russian wheat aphid 

Diuraphis noxia and suggested that D. noxia feeding displayed both SA- and JA/ET-

dependent signaling pathways by mimicking aspects of both pathogen and herbivorous 

insect attacks.  

 Conclusion of plant-mediated interactions 

 

Interactions between fungal phytopathogens and herbivores inhabiting the same plant as 

host are very complex (positive, negative of no effect at all). The outcome is dependent on 

the ability of the host to induce resistance, the biology and mode of feeding of the attackers, 

the way the experiments are performed (way of infecting the plant tissue, field versus 

laboratory conditions) but also the spatial scale (the same or different plant part) and timing 

of the interactions. In regard to the latter, Drakulic et al. (2015) demonstrated that S. avenae 

grain aphids could accelerate F. graminearum disease progression depending on the period 

of aphid colonization before wheat ear inoculation.  

To date little is known about how plants can convert their induced signals against 

multiple attackers (herbivores and phytopathogens) into a response that can increase plant 

fitness. Knowledge about plant mediated interactions against pathogens and herbivores are 

of interest in order to learn more about population dynamics of arthropods and pathogens 

in managed and natural ecosystems but also because they shed light on plant defenses 

against multiple attackers (Stout et al., 2006). A lot of research is necessary to better 

understand the role of plant hormones in mediating interactions between pathogens and 

herbivores, that are to date still poorly understood. Moreover, a lot of examples mention 



   

25 
 

the possible role of toxin produces by the pathogens that can have a serious impact on the 

arthropods feeding from the fungus-infected tissue. Performance of herbivores coping with 

secondary metabolites from fungi is explained in chapter 4.  

1.4.2 Role of plant and fungal volatiles 

 
Since plants are sessile, it is impossible for them to evade environmental challenges. 

Chemical plant defense as consequence of elevated defense gene expression leading to the 

production of secondary metabolites having a negative influence on attacking enemies is not 

the only plant defense tool. Inventive dodging of attackers implies the production of 

biogenic volatile organic compounds (BVOCs). The chemical composition of plant-emitted 

volatile blends and their intensity can carry information about the plants’ physiological 

status and the stresses they have been subjected to (Dudareva et al., 2006). Insects can 

perceive these volatiles and adjust their behavior accordingly. BVOCs can act repelling for 

insects (Birkett et al., 2000, Aharoni et al., 2003), can be attractive for natural enemies of 

herbivores (Birkett et al., 2000, Kessler & Baldwin, 2001, Shiojiri et al., 2006) and even 

possess antifungal properties (Hammer et al., 2003, Shiojiri et al., 2006, Terzi et al., 2007) 

among other functions. These secondary metabolites comprise terpenoids, phenyl-

propanoids/benzenoids, fatty acid derivatives and amino acid derivatives (Dudareva et al., 

2004). Insects use their highly sensitive olfactory system located in the antennae contain 

receptor neurons in the sensillae to detect volatile compounds and differentiate between 

hosts and non-hosts causing attractance and repellence respectively (Bruce & Pickett, 2011). 

They are able to perceive the total array of plant BVOCs. Remarkably, the whole is more than 

the sum of parts as Bruce and Pickett (2011) formulated.  

 The volatile blend upon single enemy attack 

 

The plant volatile blend becomes more complex upon attack by either insects, pathogens, or 

both. When a plant is attacked by a herbivore, the emission of a specific blend of volatile 

compounds is induced, known as herbivore-induced plant volatiles (Ponzio et al., 2013). Joo 

et al. (2010) investigated the volatile spectrum of Fagus sylvatica trees under natural field 

conditions and in a growth chamber and saw that the emission spectrum shifted from 
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monoterpenes to linalool, α-farnesene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene 

due to infection with Phyllaphis fagi aphids. 

Plant pathogens are also capable of inducing plant volatiles, but this has been far less 

studied than the induction by herbivores. The ecological function of pathogen-induced plant 

volatiles is not very clear yet but it is thought that they have an antimicrobial function (e.g. 

(Z)-3-hexenol and (E)-2-hexenal) (Croft et al., 1993, Ponzio et al., 2013). Piesik et al. (2011b) 

found that vegetative tissues of wheat artificially infected in the greenhouse with one of the 

three Fusarium spp. (F. graminearum, F. avenaceum or F. culmorum) had a significant 

increase in BVOC production compared to undamaged plants. Green leaf volatiles (GLVs) like 

(Z)-3-hexenal, (E)-2-hexenal, (E)-2-hexenol, (Z)-3-hexenyl acetate and 1-hexenyl acetate, and 

terpenes like β-linalool and β-caryophyllene were released in greater amounts after 

infection by all fungal pathogens.  

 Herbivore response to altered volatile blend 

 

When the volatile blend of a plant changes after a pathogen attack, it will impact the 

behavior of the herbivores. Preference of cereal leaf beetles Oulema cyanella for cereal 

plants was influenced by the volatile blend after Fusarium attack. GLVs like (Z)-3-hexenal and 

(Z)-3-hexenyl acetate attracted the beetles in a Y-tube olfactometer (Piesik et al., 2011a) at 

doses comparable with herbivore-injured plant emission levels (Piesik et al., 2010) while at 

high doses beetles were repelled by these two GLVs and by terpenes (Z)-β-ocimene and 

linalool (Piesik et al., 2013) indicating that concentrations of individual BVOCs are important.  

In light of the VOC blend after pathogen infestation, volatile emissions from plants 

infected with pathogens can provide the pathogen with their own benefit: attraction of 

insect vectors which can carry the pathogen to new hosts. This is described for bacterial 

pathogens (Mayer et al., 2008), viruses (Eigenbrode et al., 2002) and also for fungal 

pathogens (McLeod et al., 2005). The latter performed laboratory and field studies using 

volatiles from American elm wood and suggested that the fungus Ophiostoma novo-

ulmi manipulates host trees to enhance their appearance to foraging beetles Hylurgopinus 

rufipes, a strategy that increases the probability of transportation of the pathogen to new 

hosts (vectoring) (McLeod et al., 2005).  
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Behavior responses of herbivores are thus influenced by pathogen-infected versus 

healthy plants. Leaf beetles Cassida rubiginosa preferred feeding on healthy tissue 

compared to thistles plants infected with Phoma destructiva (Kruess, 2002), in the 

olfactometer larvae of the herbivorous moth Lobesia botrana were attacked to volatiles 

emitted from Botrytis cinerea-infected fruits of grapevine Vitis vinifera (Mondy et al., 1998). 

Preference of insects towards (or away from) infected plants could explain higher insect 

densities found on the plants (or more specifically on certain plant parts). 

 The volatile blend upon simultaneous attack 

 

When two plant enemies occupy the plant simultaneously, both the volatile blends and their 

proportional concentrations will alter. Maize seedlings in a climate chamber subjected to a 

concomitant attack of fungus Setosphaeria turcica and Spodoptera littoralis larvae emitted 

lower concentrations but qualitatively similar volatiles as when seedlings were only 

damaged by the herbivore (Rostas et al., 2006). The change in volatile blend can here 

possibly be explained by the underlying plant defenses. While S. turcica is a hemibiotroph 

(Chung et al., 2010) inducing SA- and ET-dependent pathways during early infection stages 

(Erb et al., 2009), S. littoralis is a leaf-chewer (typical induction of JA-dependent defenses). 

The reduced volatile emissions from the dual-infestation could be explained by a cross-talk 

between SA and JA pathways (Ponzio et al., 2013). 

Nevertheless, knowledge about BVOC induction under multiple attack is still scarce to 

draw solid conclusions on how plants determine their volatile blend emissions and is 

dependent on many factors like attacker identity, severity of attack, sequence and timing of 

attack, abiotic conditions and phytohormones (Ponzio et al., 2013). 

 Fungal volatiles and subsequent insect behavior 

 

Analysis of the volatile blend can be a useful tool for early detection of fungal infection. Not 

only the plant can produce volatiles, also fungi can. Trichodiene is a volatile intermediate in 

the production of trichothecenes and can be used as a useful marker in the detection of 

toxigenic Fusarium and trichothecenes formation (Jelen et al., 1997a, Jelen et al., 1997b, 

Perkowski et al., 2008, Girotti et al., 2012, Becker et al., 2014). This was also shown in a 

previous study of Jelen et al. (1995), which investigated the production of volatile 
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sesquiterpenes by F. sambucinum strains, having different abilities to synthesize 

trichothecenes. Strains that did produce toxins released high amounts of sesquiterpenes like 

β-farnesene, β-chamigrene, β-bisabolene, α-farnesene, trichodiene, etc. compared to strains 

that did not produce trichothecenes. These non-toxic strains showed besides a lower 

sesquiterpene production, also less chemical diversity. 

Fungal volatiles are also affect the insect’s behavior. Tenebrio molitor beetles larvae, 

a pest of stored products, were either repelled or attracted by grains according to their 

infection with different Fusarium spp. (probably due to fungal VOC cues) and could lead to 

increased mortality (Guo et al., 2014). Attraction to infected grains could potentially benefit 

the fungus in terms of dispersal or feeding damage by the beetle facilitating fungal infection. 

Females of the yellow peach moth Conogethes punctiferalis showed clear preferences for 

oviposition substrates baited with mouldy codling, mouldy rice cake or fungi-inoculated agar 

media. Since the insects were not allowed to contact the fungi, it was suggested that the 

moth’s response was induced by olfactory stimuli from volatile compounds associated with 

fungi like Penicillium spp., Aspergillus spp., Mucor spp., etc. (Honda et al., 1988). It was 

suggested that fungal volatiles could provide a useful tool for oviposition monitoring or can 

be used as a mass-trapping agent. 

 Altered volatile blend and natural enemies 

 

The plant-mediated response results in the release of BVOCs can affect the herbivore but 

can also mediate the behavior of natural enemies. Evidence of fungus-infected plants 

affecting the parasitoids arises from the next example: preference of the parasitoid wasp 

Cotesia marginiventris was influenced by plant volatiles upon infection with beet 

armyworms (Spodoptera exigua). The wasps were even more responsive to these volatiles 

when plants were infected with both catterpillars and white mold fungus Sclerotium rolfsii. 

This means that parasitoid behaviour is also influenced by the effect of pathogen-induced 

biochemical changes in plants (Cardoza et al., 2003). In this way, pathogens can also modify 

the interaction between herbivores and their natural enemies. Parasitism rate is likely to 

vary between pathogen-infected and non-infected host plants. 
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1.4.3 Human interference in tripartite interactions 

 

 Pesticides and planting dates 

 

Since crops must cope with many pests damages, humans have created several strategies to 

limit yield losses. Chemical pesticides are frequently used and interfere with the tripartite 

interaction of insects and pathogens inhabiting the same plant. In 1991 Farrar and Davis 

associated reductions in thrips populations by using insecticides with reductions of Fusarium 

ear rot incidence caused by F. verticillioides (Farrar & Davis, 1991). This pathogen is besides 

yield reduction also feared because of fumonisin contamination in grains. Foliar spray 

insecticide treatment led to ear rot and fumonisin B1 reduction. This result was influenced 

by the planting date, since at later planting dates (often associated with hot and droughty 

conditions, more favorable for thrips) higher thrips infestations led to more ear rot 

symptoms and higher toxin levels (Parsons & Munkvold, 2010). It was unclear how thrips 

influenced Fusarium ear rot risk but it may be accounted for by feeding damage. 

A similar phenomenon was recorded for O. nubilalis damaging maize. Insecticide 

treatments applied at the beginning of insect flight activity were most effective in controlling 

insect damage on ears resulting in lower fumonisin contamination (Blandino et al., 2009). 

The optimal treatment window was between the beginning of consistent adult flight activity 

and the flight peak. If treatment is delayed (after the adult flight peak), larvae from the eggs 

deposited early in the laying period enter the plant and are not controlled effectively by the 

insecticide. This results in more ear damage and fumonisin contamination. Also, earlier 

sowing dates reduced O. nubilalis damage leading to diminished ear rot incidence (Blandino 

et al., 2008). Folcher et al. (2009) did not notice Fusarium spp. reduction in maize trails when 

caterpillars of O. nubilalis and Sesamia nonagrioides were controlled with insecticides but 

did report on reduced mycotoxin (trichothecenes, fumonisins and zearalenone) levels. 

 

Instead of insecticide application altering disease epidemiology also the opposite is possible 

namely, fungicide (chlorothalonil) application in tomato crops (Lycopersicon esculentum) 

showed an inverse relationship between arthropod pest numbers (potato aphid 

Macrosiphum euophorbiae, green peach aphid Myzus persicae, flower thrips Thrips spp., flea 



   

30 
 

beetles Epitrix spp.) and disease (Alternaria solani) severity and a causative relationship 

could not be confirmed, though it was suggested that fungicide application provided more 

nutritious and suitable habitats for the pests by suppressing the disease of the tomatoes 

(Yardim & Edwards, 1998). 

 Plant modifications 

 

Besides pesticide treatment and altered planting dates, humans can affect the tripartite 

relationship between insects and pathogens in cereals by modifying the plant itself. An 

extensively studied example is corn. Transgenic corn hybrids inserted with a cry gene from 

bacterium Bacillus thuringiensis (Bt) have in some parts of the world been proposed as an 

alternative for insecticide application. Several Bt hybrids are developed with the cry1Ab gene 

and are designed to specifically target O. nubilalis. Transgenic Bt maize, highly resistant to O. 

nubilalis injury, is subjected to much lower levels of Fusarium ear rot and fumonisins, 

compared to conventional hybrids (Munkvold et al., 1999). This was confirmed by Clements 

et al. (2003) who examined the impact of Bt corn hybrids on the Fusarium ear rot severity 

and fumonisin contamination in grain. In seasons favoring O. nubilalis Bt hybrids were able 

to reduce fumonisin concentrations. Fungal biomass and fumonisin B1 in Bt maize were 

lower compared to isogenic maize (Bakan et al., 2002).  

In field trials positive correlations were found between Fusarium ear rot or grain 

fumonisin levels and injury from O. nubilalis, H. zea and western bean cutworms Striacosta 

albicosta (Bowers et al., 2013). Maize hybrids expressing two transgenic insect resistance 

proteins (cry1Ab x vip3Aa) were more likely to yield low fumonisin grain compared to 

cry1Ab-hybrids or hybrids expressing no insect resistance. Bt hybrids also showed lower DON 

levels (Schaafsma et al., 2002). As Munkvold (2003) stated, transgenic insect control plays a 

major role in prevention of mycotoxins in maize. Interestingly, fungal species composition in 

the maize stalk rot complex (Gibberella zeae, Colletotrichum graminicola, Stenocarpella 

maydis, and several members of the Fusarium genus) can differ between Bt maize hybrids 

and non Bt hybrids (Gatch & Munkvold, 2002).  

In contrast, plants protected from a particular pest can become more favorable for 

another. For example, von Burg et al. (2012) and Alvarez-Alfageme et al. (2011) tested the 

effects of powdery mildew B. graminis on cereal aphids. A genetically modified mildew-
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resistant wheat line and its non-transgenic sister line used in the experiments differed only 

in the presence of the transgene and in powdery mildew resistance. Pm3b wheat plants 

were generated by biolistic transformation of the spring wheat cultivar bob white, which has 

no endogenous pm3 gene and is susceptible to powdery mildew. Pm3b plants have shown 

an enhanced resistance against powdery mildew under protected glass house conditions and 

in the field (Zeller et al., 2010, Brunner et al., 2011, Brunner et al., 2012). The abundance of 

cereal aphids was negatively correlated with powdery mildew with transgenic powdery 

mildew-resistant spring wheat plants hosting more aphids than their mildew-susceptible 

controls under glasshouse conditions. In the field, there was no difference in aphid density 

between transgenic and susceptible wheat, probably due to low mildew and aphid pressure. 

For the negative correlation, the authors hypothesized that the fungal pathogen could 

change the allocation of plant metabolites and induce plant defense mechanisms which 

might change the nutrition provided to aphids by its host plant. These findings challenge the 

common assumption of transgenic plants counteracting a second party. 

 Chemical elicitors 

 

Another human interference in the tripartite interactions between plants, phytopathogens 

and insects is the use of chemical elicitors that induce resistance in plants against a broad 

spectrum of pathogens, insects and abiotic stresses (Small et al., 2012, Gordy et al., 

2015). BTH (SA-mimic benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester) treatment 

alone resulted in significant systemic resistance of maize seedlings against the pathogen 

Setosphaeria turcica (Rostas & Turlings, 2008). Moreover, when BTH was applied prior to 

Spodoptera littoralis caterpillar-feeding the plants became far more attractive to the 

parasitoid Microplitis rufiventris than plants that were only damaged by the herbivore 

(Rostas & Turlings, 2008). Also maize plants and cotton plants treated with BTH were more 

attractive for several parasitic wasps (Sobhy et al., 2012, Sobhy et al., 2015). Their studies 

confirmed that elicitors of pathogen resistance are compatible with the biological control of 

insect pests and may even help to improve it. 
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 Take home message of human interference in tripartite  interactions 

 

Together, the abovementioned findings highlight the complex impact of humans on 

tripartite cereal interactions due to agrochemical treatment, altered planting dates that 

impede or favor insect populations or pathogen infection and modification of plants (genetic 

modification or by use of plant fortifiers) for higher resistance against attackers. Crop 

protection targeting a particular plant enemy, whether that protection is based in genetic 

modification or conventional control methods, should always account for the possibility of 

an altered attack by other enemies. 

 

1.5 General recap and perspective 
 

This chapter gave an overview of herbivorous pests and pathogens occurring together on 

plants and how they interact with each other. Given the frequent co-occurrence of 

herbivores and pathogens on plants, insights in these tripartite interactions in crucial to 

learn more about epidemiology of both plant enemies. In light of this PhD thesis, focusing in 

cereal aphids S. avenae and the mycotoxin producing fungal phytopathogen F. 

graminearum, we demonstrate for this particular tripartite interaction that herbivores can 

impact pathogen epidemiology through plant-mediated defenses (De Zutter et al., 2016a), 

but vice versa, pathogens can impact the performance (De Zutter et al., 2016b) and 

preference of the herbivore. This chapter took into account both direct as indirect 

interactions. Direct interactions have not yet been satisfactorily demonstrated or 

distinguished from plant-mediated interactions. Indirect interactions involved the mediating 

role of the plant when insects encounter pathogens on the same plant and vice versa as well 

as the associated release of volatiles. Finally, a discussion on the anthropogenic impact on 

tripartite interactions through crop protection measures was given. 

In general, much remains to be discovered about the exact role of plants in relation 

with different kind of attackers and their different feeding strategies. In context of this PhD, 

it must be mentioned that a lot of research has been done on mycotoxin production in 

grains. Further research is needed to provide new insights in insect tolerance or resistance to 

secondary metabolites provoked or produced by phytopathogens. It is not inconceivable 
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that during co-evolution of herbivores and pathogens sharing the same cereal plant, 

herbivores have evolved mechanisms to cope with such deleterious components (see 

chapter 4).  

In nature, plants are faced with multiple attackers and they need to adapt to the 

ever-changing environment. The dynamic three-way interactions of insects, pathogens and 

plants can constantly change and can be subject to influences from the environment like 

humans (see 1.4.3), weather, climate change, etc. Crop protection measurements must be 

taken in order to prevent or reduce crop damage and yield loss resulting from pathogens 

and herbivorous pests. Finding a balance between pest reduction and pesticide application 

to an economically and ecologically acceptable level is the core idea of integrated pest 

management (Oerke, 2006). Further research on these unique complexities is necessary to 

provide more insights in the cereal’s ecosystem. This will provide us with knowledge about 

the plant’s ecology and tolerance mechanisms resulting from co-evolution of insect-

pathogen-plant interactions. 
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Abstract 

 

The pathogen Fusarium graminearum, producer of the mycotoxin deoxynivalenol (DON), 

and S. avenae aphids both reside on wheat ears. We explored the influence of an earlier 

aphid infestation on the expression profile of specific molecular markers associated with  F. 

graminearum infection. Using quantitative real time polymerase chain reaction (RT-qPCR) 

analysis, we followed the expression of wheat defense genes upon S. avenae infestation and 

explored the effect on a subsequent F. graminearum infection. This was done by assessing 

disease symptoms, fungal biomass, mycotoxin production and number of aphids at several 

time points during disease progress. Wheat ears infected with F. graminearum showed more 

disease symptoms and higher DON levels when ears were pre-exposed to aphids compared 

to a sole inoculation with F. graminearum. Aphids induced defense genes that are typically 

induced upon a F. graminearum infection. Other defense genes showed earlier and/or 

enhanced transcription after exposure to both aphids and F. graminearum. In the discussion, 

we link symptomatic and epidemiological parameters with the transcriptional induction 

pattern in the plant. Our study suggests that pre-exposal of wheat ears to aphids affect the 

plant response which plays a role in the subsequent attack of F. graminearum, enabling the 

fungus to colonize the ears faster. 

 

Key words 

 

Fusarium graminearum ∙ Mycotoxin production ∙ Plant defense ∙ Sitobion avenae ∙ Triticum 

aestivum 
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2.1 Introduction 
 

Fusarium head blight (FHB) is a disease on wheat caused by a complex of toxigenic wheat 

pathogens all belonging to the Fusarium genus. Fusarium spp. (Hypocreales: Nectriaceae) 

infect ears and can cause yield losses up to 40% (Parry et al., 1995). They also produce a 

plethora of mycotoxins with diverse chemical structures (Bottalico & Perrone, 2002, 

Goswami & Kistler, 2004). Within the FHB pathogen complex Fusarium graminearum, a 

hemi-biotrophic fungus, is a common causal agent of FHB in Europe (Xu et al., 2005). 

According to the type of mycotoxins produced, this species is divided into two different 

chemotypes producing primarily either DON and acetylated forms of DON (3-acetyl DON (3-

ADON) and 15-acetyl DON (15-ADON)) or primarily nivalenol and/or fusarenone-XS (Miller et 

al., 1991). High concentrations of DON in wheat ears can lead to human and animal health 

issues. DON has been notorious because it provokes acute and chronic disease symptoms 

like nausea, vomiting and diarrhea (Bennett & Klich, 2003). In regard to the massive yield 

losses and serious health concerns, profound research in Fusarium epidemiology is 

important.  

Upon pathogen attack, plants can activate different defense mechanisms (Fig. 2.1). 

The infection process of F. graminearum being a hemibiotrophic fungus is complicated. 

Successful defense implies a first line of defense mainly made up by salicylic acid (SA)-

directed responses during the biotrophic phase (Ameye et al., 2015). SA is related with 

the production of reactive oxygen species (ROS) which leads to programmed cell death 

(PCD). Because a biotrophic pathogen needs living plant tissue to be provided with nutrients, 

this PCD is effective to retain the fungus (Heath, 2000, Qi et al., 2012). The second line of 

defense comprises JA-directed defense mechanisms during the necrotrophic phase 

(Ameye et al., 2015). The PCD response is favorable for necrotrophic pathogens, which can 

live on dead plant material. This necrotrophic phase is accompanied by the production of 

its virulence factor DON.  

To date different layers of complexity in the interaction between Fusarium/DON and 

wheat have been uncovered. A first layer is situated at the pathogen exploiting the plants 

generic host stress response of polyamine and putrescine synthesis. It is assumed that the 

pathogen may perceive polyamines and related amino acids as cues for the production of 

toxins during the infection process (Gardiner et al. (2009), Gardiner, DM et al. (2010)). A 
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second layer of complexity is situated at the level of DON accumulation in infected tissue. As 

all other plant species when attacked by a pathogen, the wheat plant produces ROS to limit 

pathogen spread and induce antimicrobial plant response (O'Brien et al., 2012). However, 

ROS stimulate PCD is not efficient against Fusarium having a necrotrophic phase at later time 

points in the infection. The third layer is situated at the interphase of ROS interfering with 

the toxigenic metabolome of Fusarium. Pursuing an in vitro approach, it was demonstrated 

that exogenously administered hydrogen peroxide (H2O2) to liquid F. graminearum cultures 

at time of spore germination resulted in higher DON and its acetylated form levels (Ponts et 

al., 2006). Also Audenaert et al. (2010) suggested that after a sublethal application of 

fungicide, H2O2 can trigger DON accumulation. All the above mentioned examples show the 

role of ROS and polyamines in the interaction between Fusarium and wheat. A fourth and 

final layer of complexity involves plant detoxification mechanisms to weaken the detrimental 

effects of DON. This implies the binding of hydrophilic molecules like glucose (G) and 

glutathione (GSH) to DON and subsequently the transportation of the conjugated DON to 

vacuoles or apoplastic space (Coleman et al., 1997, Bowles et al., 2006). 

 

 

Fig. 2.1 Hypothetical model of the effect of deoxynivalenol (DON) during F. 

graminearum infection, based on defense-related responses in wheat (Green: 

pathways of the fungus, blue: pathways of the plant) (Audenaert et al., 2014).  
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To date, DON is one of the few mycotoxins of which the function is partially 

unraveled (Kazan et al., 2012, Audenaert et al., 2014) and is known to contribute to the 

virulence of the pathogen in wheat (Proctor et al., 1995, Desjardins et al., 1996, Bai et al., 

2002, Mesterhazy, 2002). Nevertheless, DON plays a role in many other processes. It has 

been shown that the presence of other fungi influences DON production by F. graminearum 

(Von der Ohe & Miedaner, 2011, Muller et al., 2012, Muller et al., 2015), also the 

relationship with insects inhabiting the same plant tissue can possibly lead to differential 

colonization of plant tissue and therefore needs our attention. 

 

Upon aphid attack, plants activate defense responses. Early events (recognition of elicitors, 

ROS, calcium influx etc.) lead to activation of multiple phytohormone-dependent pathways 

by the plant (Fig. 2.2). Phloem feeding insects like S. avenae can activate both the jasmonic 

acid (JA) and SA-dependent pathways (Zhao et al., 2009) and may act antagonistically 

(Koornneef & Pieterse, 2008, Vlot et al., 2009). SA promotes development of systemic 

acquired resistance, a broad range resistance against pathogens and some aphid species, 

and is crucial for localized hypersensitive response (Alvarez, 2000, Vlot et al., 2009). 

Moreover, SA stimulates expression of defense response genes like pathogenesis related 

(PR) proteins (Smith & Boyko, 2007). PR-gene RNAs, proteins and protein activities are 

elevated after hosts are attacked by phloem-feeders (Walling, 2000). The octadecanoid 

pathway can lead to JA. JA induces the accumulation of hydrogen peroxide in response to 

wounding in different plant species, but can also act as a plant defense against both 

herbivores and pathogens (Orozco-Cardenas & Ryan, 1999). ROS are elicitors of defense 

signaling pathways with known involvement in the elicitation of plant response to aphid 

feeding (Divol et al., 2005, Boyko et al., 2006) but may also be, as said before, toxic to the 

aphids and have direct adverse effects on arthropod midgut tissue. Also ethylene (ET) 

(Argandona et al., 2001), abscisic acid (ABA), giberellic acid (GA) (Boyko et al., 2006, Park et 

al., 2006) and nitric oxide (NO) (Moloi et al., 2015) play a role (Fig. 2.2). 
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Fig. 2.2  Representative plant signaling pathways involved in aphid resistance and 

aphid defense response signaling. Arrows indicate pathway activation 

(adjusted from Smith and Boyko (2007)). 

 

The interaction between fungi and insects has been studied by several research groups and 

involves several layers of complexity. Interactions can be direct, indirect or both. Direct 

interactions can include insects dispersing (vectoring) or feeding on fungal particles, or fungi 

utilizing feeding wounds made by the herbivore as entry points into the plant (Windels et al., 

1976, Martin, 1979, Mondy & Corio-Costet, 2004). Insects and fungi can also influence each 

other in an indirect manner which is often plant-mediated. Either party can bring about 

changes in plant quality, chemical composition or result in allelochemical production, 

thereby influencing the second party (Moran, 1998, Rostas et al., 2003a, Stout et al., 2006, 

Ponzio et al., 2013, Lazebnik et al., 2014). In addition, this can modulate the insect 

performance and affect parameters of reproduction, population size and survival rate 

(Kruess, 2002, Johnson et al., 2003, Tack & Dicke, 2013b).  
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Although several studies investigated tripartite insect-plant-pathogen interactions 

(Leath & Byers, 1977, Moran, 1998, Kruess, 2002, Johnson et al., 2003, Mondy & Corio-

Costet, 2004, Al-Naemi & Hatcher, 2013), aphid-cereal-Fusarium interactions remained 

elusive for a long time. Bagga (2008) demonstrated that FHB severity in wheat was 

significantly reduced by more than 30% when aphids were controlled by insecticide 

application. Also in maize, another host that is susceptible to Fusarium, a clear link between 

Fusarium or its toxins and insect control was demonstrated (Degraeve et al., 2016).  

Recently, Drakulic et al. (2015) explored the interaction between aphids, wheat and 

F. graminearum with focus on the aphid and the disease caused by F. graminearum. 

Pursuing this approach, they were able to discover synergistic effects both on the level of 

disease symptoms and DON production. They demonstrated that S. avenae grain aphids 

could accelerate disease progression and DON accumulation depending on the period of 

aphid colonization before F. graminearum ear inoculation. Drakulic et al. (2015) also showed 

that volatile production by FHB infected plants negatively impacts on the preference and 

performance of aphids rendering the host inhospitable. However, the role of the plant’s 

defense system in this tripartite interaction remained unexplored.  

Therefore, our study explored the interaction between S. avenae and the fungal 

pathogen F. graminearum but at the level of plant defense as this provides valuable 

information to interpret the outcome of the interaction. We hypothesize that plant defense 

signaling plays a major role in the enhanced F. graminearum disease progression and 

mycotoxin production when both the pathogen and the aphids inhabit ears of wheat. We 

monitored the expression of wheat defense genes after S. avenae infestation and F. 

graminearum infection during several days. We measured disease symptoms, fungal 

biomass and mycotoxin production at several time points during the disease progress and 

coupled it with a time course analysis of the transcriptional grid of well-known defense 

genes. Because of the hemibiotrophic lifestyle of F. graminearum, we selected biosynthesis 

genes for both the SA and JA pathways. Additionally, we chose plant defense genes encoding 

PR proteins which are known to play a role in the defense against F. graminearum (Bertini et 

al., 2009, Makandar et al., 2012, Gao et al., 2013) and genes involved in the redox state of 

plant cells because F. graminearum can interfere with this mechanism through the action of 

the mycotoxin DON (Desmond et al., 2008). We also selected genes encoding for lignin 

biosynthesis because cell wall reinforcement plays a role in plant defense against fungal 
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pathogens (Bi et al., 2011). To our knowledge, this is the first in depth transcriptional 

analysis in wheat plants of a tripartite plant-insect-fungal model system. 

 

2.2 Experimental procedures 
 

2.2.1 Insect, plant and fungal material 

 

The laboratory stock culture of S. avenae aphids was maintained on wheat seedlings (cv. 

Passat) at a constant temperature of 22 °C and a photoperiod of 16 h:8 h, light:dark, 

stimulating parthenogenesis.  

Spring wheat cv. Passat was sown in universal potting soil (3 seeds per pot). The 

plants were kept in the glasshouse and each plant received one application of 0.1 g 27% 

NH4NO3 during stem elongation. 

The strain of F. graminearum used in ear experiments was a constitutively green 

fluorescence protein-expressing Fusarium strain 8/1 (kindly provided by K. Heinz-Kogel, 

Justus Liebig University, Giessen, Germany) (Jansen et al., 2005). The fungus was cultivated 

on potato dextrose agar under a light regime of UV/darkness (12 h 365 nm 10W/12 h) to 

promote sporulation. The macroconidia were harvested by adding a suspension of sterile 

water amended with 0.01% Tween 80 and rubbing the mycelium with a sterile spatula.  

2.2.2 Experimental setup 

 

Spring wheat plants (cv. Passat) (N = 92) were used to examine the influence of aphid 

infestation on the ear colonizing of F. graminearum. Ears at anthesis were infested with 100 

aphids of different developmental stages (4 dbi, days before infection). The ears (still 

attached to the plant) were placed in a plastic cup with netting on top to prevent the aphids 

from escaping. After 4 days, this was followed by F. graminearum spray inoculation (dai 0, 

days after infection) with 10 sprays of 100 µl 5 x 105 spores mL-1 per ear. Control-ears were 

sprayed with sterile water. All ears were kept at 100% relative humidity for 24 h to ensure 

spore germination. Overall the experimental setup contained ears infected with F. 

graminearum and aphids (Fg+aphids, N = 16), ears infected with F. graminearum (Fg, N = 
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16), ears with aphids (Aphids, N = 28) and control-ears (Control, N = 32) (sprayed with sterile 

water). Ears with different treatments were chosen at random. At several time points in the 

experiment (see Fig. 2.3) ears were cut off, flash frozen in liquid nitrogen, and stored at -80 

°C until further analysis. This analysis included counting the number of aphids on the ears, 

sampling three spikelets haphazardly in the middle of the ear from each ear for RNA 

extraction to investigate plant defense, and crushing the remaining spikelets of the ear with 

liquid nitrogen to use for fungal DNA extraction and DON analysis. The experiment was 

repeated twice and this chapter represents the results of one representative experiment.  
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Fig. 2.3  Time line indicating important time points in the experiment elucidating the effect of S. avenae aphids on wheat response and F. 

graminearum infection. Each time point contains a summary of performed analyses and number of ears sampled. In total a batch 

of 92 wheat ears was used. 
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2.2.3 F. graminearum infection parameters: symptom assessment, 
analysis of fungal biomass and measurement of DON and 
acetylated forms 

 

Diseased ears were evaluated by scoring the percentage of diseased spikelets per ear with 

visible F. graminearum blight symptoms (Isebaert et al., 2009).  

DNA was extracted with an Invisorb Spin Plant mini kit (Invitek, Berlin, Germany) 

according to the manufacturer’s instructions. To calculate the fungal and plant biomass RT-

qPCR assays were performed using primers based on the elongation factor 1 alpha gene and 

the thermal profile described in Nicolaisen et al. (2009). The reaction mixture consisted of 

6.25 µl GoTaq qPCR Master Mix (Promega), 0.208 µl CRX reference dye (Promega), 250 nM 

of each primer and 2.5 µl DNA. Analysis was performed with an ABI 7000 Sequence 

Detection System (Applied Biosystems, Foster City, CA, USA). F. graminearum DNA from the 

ear samples was quantified using five DNA standards in ten-fold dilutions. Linear regression 

was used to calculate the quantity of F. graminearum DNA. F. graminearum DNA was 

normalized to the amount of plant DNA. 

The wheat ears were analyzed according to a validated liquid chromatography 

tandem mass spectrometry (LC-MS/MS) procedure for DON, 3-ADON and 15-ADON 

(Monbaliu et al., 2010, Monbaliu, 2011). A Waters Acquity ultra high performance liquid 

chromatography system coupled to a Quattro Premier XE mass spectrometer (Waters, 

Milford, MA, USA) was used to analyze the samples, equipped with MassLynxTM version 4.1 

and QuanLynx(r) version 4.1 software (Waters, Manchester, UK) for data acquisition and 

processing. Sample preparation was performed using an extraction with 

acetonitrile/H2O/acetic acid (79/21/1, v/v/v). The identity of the analytes was controlled 

according to Commission Decision 2002/657/EC (European Commission, 2002). In case that 

the obtained results were out of the range of the calibration curve, the sample was re-

analyzed in order to fit in the range of a new constructed calibration plot. Every analytical 

run consisted of a standard control mix, calibrants, a blank sample, a maximum of 20 

samples and a control sample (a re-injection of a spike of the calibration curve). 
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2.2.4 Analysis of the plant response against F. graminearum after 
infestation with S. avenae aphids: RNA extraction and RT-qPCR 
analysis of plant response genes 

 

This protocol is adapted from Ameye et al. (2015). RNA from ear spikelets was extracted 

using TRI reagent (Sigma-Aldrich, Saint-Louis, MO, USA) according to the instructions of the 

manufacturer. The extracted RNA was quantified using a Quantus Fluorometer (Promega, 

Madison, WI, USA). With a GoScript Reverse Transcription System (Promega) first-strand 

cDNA was synthesized and used to perform RT-qPCR assays elucidating plant response 

against F. graminearum and aphids. These assays were conducted with an ABI 7000 

Sequence Detection System (Applied Biosystems, Foster City, CA, USA) with following 

thermal settings: 50 °C for 2 min; 95 °C for 10 min; 35 cycles of 95 °C for 15 s and 60 °C for 1 

min; dissociation curve analysis was performed using a temperature profile of 95 °C for 15 s, 

cooling to 60 °C for 20 s and subsequently heating to 95 °C for 15 s. Primers for all genes 

used can be found in Table 2.1. The reaction mix consisted of 6.25 µl GoTaq qPCR Master 

Mix (Promega), 0.208 µl CRX reference dye (Promega), 250 nM of each primer and 2 µl 

cDNA. Each sample was repeated two-fold or more if Ct-values differed more than one cycle. 

Normalization of wheat defense genes was carried out using ADP-ribosylation factor 

(Ta2291) and GABARAP (GABA-receptor-associated protein) (Ta54963) as reference genes 

(Paolacci et al., 2009). Selection of reference genes (Ta2291 and Ta54963) was based on a 

GeNorm analysis performed using qBase+ software (Biogazelle NV, Zwijnaarde, Belgium) 

which was also used for all other calculations of the RT-qPCR data (Hellemans et al., 2007).  

2.2.5 Statistical analyses 

 

Data were analyzed using IBM SPSS software (Statistical Package for Social Sciences) version 

22.0 for Windows. All tests were conducted with a significance level of α = 0.05. For 

comparing the symptoms, fungal biomass, content of DON and acetylated forms between 

two groups (‘Fg’ and ‘Fg+aphids’) t-tests was used when data were normally distributed 

according to a Shapiro-Wilk test or Mann-Whitney U tests (non-parametric) when data were 

not normally distributed. For the expression data t-tests (3 dbi, 2 dbi and 0 dai, comparing 

two treatments) and one-way Anova’s post-hoc LSD (least significant difference) (1, 2 and 6 

dai, comparing four treatments with each other) were used for statistical analysis of the fold 
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increase over control. Boxplots of symptoms were generated in R Software version 3.1.0 (R 

Core Team (2014). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. 

 

Table 2.1  List of primers used to analyze wheat defense gene expression against F. 

graminearum and/or cereal aphids S. avenae. Normalization of wheat defense 

genes was carried out using Ta2291 and Ta54963 as reference genes. 

 

Primer  Sequence (5’-3’)  Reference  

LOX  F: AACAAGTTCGCCGTCACCTT; R: TTGTCGAGGGTGATGGTCTT  Beccari et al. (2011) 

AOS  F: TCTCATAGCAGCCGTCAATC; R: AAAACACGCACACACATACA  Zhao et al. (2009)  

PAL  F: TTGATGAAGCCGAAGCAGGACC; R: ATGGGGGTGCCTTGGAAGTTGC  Ding et al. (2011)  

ICS  F: AGAAATGAGGACGACGAGTTTGAC; R: CCAAGTAGTGCTGATCTAATCCCAA  Ding et al. (2011)  

PEROX  F: GAGATTCCACAGATGCAAACGAG; R: GGAGGCCCTTGTTTCTGAATG  Desmond et al. (2005)  

NADPHOX  F: ATGCTCCAGTCCCTCAACCAT; R: TTCTCCTTGTGGAACTCGAATTT  Ding et al. (2011)  

CCR3  F: CTGTCGGCTAGTTAATTCTATG; R: ATATGATCGCCAACCAACC  Bi et al. (2011)  

CAD1  F: AGATACCGCTTCGTCATCG; R: GAATCGCACGCACCAACC  Bi et al. (2011)  

FPS  F: TCAAGACGGCTTCAGGG; R: TCGCCAAAGTTATCCAAAT Zhao et al. (2009)  

PR1  F: CGTCTTCATCACCTGCAACTA; R: CAAACATAAACACACGCACGTA  Gao et al. (2013)  

PR2  F: CCGCACAAGACACCTCAAGATA; R: CGATGCCCTTGGTTTGGTAGA Gao et al. (2013)  

PR3  F: CAGGAAAATCAACAGTGGCGA; R: GCGTCGATCAAGAATCTAGCAA  Gao et al. (2013)  

PR4  F: ACACCGTCTTCACCAAGATCGACA; R: AGCATGGATCAGTCTCAGTGCTCA  Qi et al. (2012)  

PR5  F: ACAGCTACGCCAAGGACGAC; R: CGCGTCCTAATCTAAGGGCAG  Gao et al. (2013)  

Ta2291  F: GCTCTCCAACAACATTGCCAAC; R: GCTTCTGCCTGTCACATACGC  Paolacci et al. (2009)  

Ta54963  F: AGGAGAACAAGGACGAGGAC; R: AGGAGGCATTCAGAGCGATTG  Paolacci et al. (2009)  
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2.3 Results 
 

To evaluate the impact of S. avenae aphids on the plant response in wheat ears and 

subsequent F. graminearum infection process, we infested wheat ears with aphids four days 

before fungus inoculation. We investigated all agents of the tripartite interaction (wheat, 

aphids and F. graminearum) at several time points during the disease progress (Fig. 2.3) and 

coupled it with a time course analysis of the transcriptional grid of well-known defense 

genes. Different infection parameters for F. graminearum (symptoms, fungal biomass and 

production of DON and its acetylated forms), infestation of aphids (number of aphids at 

different time points) and gene response patterns using RT-qPCR assays were analyzed.  

 

2.3.1 Infection and infestation parameters of F. graminearum and 
aphids 

 

Diseased ears were evaluated by scoring the percentage of spikelets per ear with visible F. 

graminearum symptoms (Isebaert et al., 2009). At 6 days after infection with F. 

graminearum (dai) we observed 2.5 times more bleaching symptoms on ears containing 

both aphids and fungus compared to ears containing solely F. graminearum (mean of 73% 

vs. 29% respectively, P = 0.014). This difference was no longer observed at 12 dai (mean of 

94% vs. 81% respectively, P = 0.121) (Fig. 2.4). No bleaching symptoms were observed at 1 

and 2 dai, nor for ears containing solely aphids and the control-ears. For each time point (1, 

2, 6 and 12 dai) there were no significant differences found for the fungal biomass between 

F. graminearum infected ears with aphids and ears infected with F. graminearum alone. 

There was no fungal biomass retrieved in the ears with only aphids and the control-ears 

(Table 2.2). 

Concentrations of DON and acetylated forms (3-ADON and 15-ADON) were measured 

in ears sampled 6 dai using LC-MS/MS. Significantly higher DON, 3-ADON and 15-ADON 

concentrations were found (P = 0.031, 0.023 and 0.019 respectively) in ears containing both 

F. graminearum and aphids compared to ears containing solely F. graminearum (Table 2.3). 

There was no DON or acetylated forms of DON found in ears containing solely aphids and 

control-ears. 
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Fig. 2.4  Disease symptoms expressed as percentage of symptomatic spikelets per ear 

(number of bleached spikelets / number of total spikelets *100) of F. 

graminearum 6 and 12 dai for ears containing the following treatments: F. 

graminearum and S. avenae aphids (Fg+aphids) or solely F. graminearum (Fg). 

Data represent four ears for each treatment with different letters indicating 

significant differences between both treatments (6 dai: P = 0.014, two-sided t-

test; 12 dai: P = 0.121, Mann-Whitney U tests). No bleaching symptoms were 

observed at 1 and 2 dai, nor for ears containing solely aphids and the control-

ears. 
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Table 2.2 Fungal biomass (mean ± SE) found in F. graminearum infected ears with 

aphids (Fg+aphids) and without aphids (Fg) at different time points. No 

significant differences were found between both treatments using t-tests. 

There was no fungal biomass retrieved in the ears with only aphids and the 

control-ears. 

 

pg Fg DNA per 

ng plant DNA 

Fg Fg+aphids P-value 

1 dai 0.597 ± 0.200 1.085 ±0.420 0.334 

2 dai 5.328 ±3.329 3.381 ±1.025 0.596 

6 dai 296.3 ±127.4 303.0 ±147.3 0.974 

12 dai 432.6 ±93.11 731.8 ±245.1 0.317 

 

 

Table 2.3  Concentrations of deoxynivalenol (DON) and acetylated forms (3-ADON and 

15-ADON) (mean ± SE) found in F. graminearum infected ears with aphids 

(Fg+aphids) and without aphids (Fg) 6 dai. Different letters indicate significant 

differences between both treatments using one-sided Mann-Whitney U tests. 

There was no DON or acetylated forms of DON found in ears containing solely 

aphids and control-ears. 

 

mg kg-1 Fg Fg+aphids P-value 

DON 32.77 ± 12.73 a 65.83 ± 20.15 b 0.031 

3-ADON 0.53 ± 0.20 a 2.05 ± 0.83 b 0.023 

15-ADON 2.39 ± 0.96 a 9.60 ± 3.88 b 0.019 
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At 4 days before infection with F. graminearum (4 dbi), 100 S. avenae aphids were put in a 

plastic cup containing one wheat ear. Number of aphids on ears containing only aphids 

ranged from a mean of 56 to 112 aphids per ear (from 3 dbi till 12 dai respectively). Not all 

100 aphids found the ear during the first 24 h after they were introduced (3 dbi) and thus 

died of starvation. Over time, aphids reproduced and populations increased. Aphid 

population showed a little decline at 1 dai probably because of the spray inoculation and the 

related high humidity. Populations on ears containing both aphids and F. graminearum 

varied from a mean of 94 to 2 aphids per ear (from 1 dai till 12 dai, respectively). When 

fungal symptoms started to develop, aphids moved to the remaining green parts of the ear. 

At 6 dai aphid populations on ears containing F. graminearum (symptoms) were lower than 

on ears without fungus (a mean of 85 vs. 111 aphids per ear respectively, P = 0.048). At 12 

dai (fully diseased ears) this difference became even more pronounced (a mean of 2 vs. 112 

aphids alive per ear respectively, P = 0.004) (Table 2.4). 

 

Table 2.4  Number of aphids (mean ± SD) on ears during all time points in the 

experiment for ears containing only aphids (Aphids) and ears containing both 

aphids and F. graminearum (Fg+aphids). Different letters between both 

treatments indicate significant differences using t-tests. 

 

 4 dbi 3 dbi 0 dai 1 dai 2 dai 6 dai 12 dai 

Aphids 56 ± 11 90 ± 14 113 ± 39 88 ± 39 a 136 ± 29 a 111 ± 15 a 112 ± 37 a 

Fg+aphids    94 ± 23 a 122 ± 21 a 85 ± 15 b 2 ± 1 b 

P-value    0.809 0.456 0.048 0.004 
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2.3.2 Wheat response after exposing ears to aphids and followed by F. 
graminearum infection  

 

To elucidate the effect of aphids on the defense response in wheat and the infection process 

of F. graminearum, we exposed ears to 100 S. avenae aphids and examined the wheat 

defense response against both the aphids and the fungus over a period of 10 days (Fig. 2.5). 

We tested several defense related genes. We selected lipoxygenase (LOX) and allene oxide 

synthase (AOS) as markers genes for the JA biosynthesis pathway (Zhao et al., 2009, Feng et 

al., 2010, Beccari et al., 2011), and phenylalanine ammonia lyase (PAL) and isochorismate 

synthase (ICS) as marker genes for the SA biosynthesis/signaling pathway (Ding et al., 2011). 

Peroxidase (PEROX) and NADPH oxidase (NADPHOX) play a role in the plant’s redox state 

(Desmond et al., 2005, Desmond et al., 2008, Ding et al., 2011), while cinnamoyl CoA 

reductase 3 (CCR3) and cinnamyl alcohol dehydrogenase 1 (CAD1) indicate cell wall 

reinforcement (lignin biosynthesis) (Bi et al., 2011). We also tested farnesyl pyrophosphate 

synthase (FPS) which plays a role in isoprene biosynthesis (Zhao et al., 2009). PR genes were 

used to indicate a more downstream plant response: basic PR1 proteins (Makandar et al., 

2012, Gao et al., 2013), PR2 (β-1,3-glucanase) (Gao et al., 2013), PR3 (class-VII acidic 

chitinases) (Gao et al., 2013), PR4 (antifungal properties against Fusarium) (Bertini et al., 

2009, Qi et al., 2012) and PR5 (thaumatin-like protein) (Gao et al., 2013). 

 

At 4 dbi (ears without aphids), none of the tested genes were upregulated. Other genes such 

as PEROX, ICS, LOX, AOS and FPS did not show any significant induction at the tested time 

points (Fig. 2.6). These comprise mainly genes known to be involved in early steps of defense 

gene activation. However, PAL, a marker gene for the SA biosynthesis and signaling pathway, 

was significantly different for ears containing solely F. graminearum at 2 dai compared to 

the other treatments. 

PR1 gene expression (indicating SA mediated defense response) was significantly 

higher for ears exposed to S. avenae and ears exposed to both F. graminearum and S. 

avenae than control ears starting from 2 dbi till 2 dai. To explore the link between PR1 gene 

expression and aphid numbers, a correlation analysis was conducted. The Pearson 

correlation coefficient between aphid numbers and PR1 expression in ears was 0.608 (P = 
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0.002) for ears exposed to aphids and 0.849 (P = 0.002) for ears exposed to both F. 

graminearum and aphids (Fig. 2.7). This tight correlation might explain the lower induction 

of PR1 in ears exposed to aphids at 1 dai and in ears exposed to both aphids and F. 

graminearum at 6 dai. Both time points are characterized by a clear decline in aphid 

numbers. The slope of the linear trend line for PR1 expression in ears containing both aphids 

and F. graminearum was 2.45 times higher than for ears containing solely aphids (Fig. 2.7). 

PR2 (β-1,3-glucanase) gene expression in ears exposed to F. graminearum was 

initiated at 2 dai and became significantly different from control ears at 6 dai (P = 0.036). 

None of the other treatments showed a significant induction of PR2 gene expression. These 

results show that presence of aphids before a F. graminearum infection suppresses the PR2 

gene expression initiated by F. graminearum. 

Expression patterns of PR3 (class-VII acidic chitinases) and PR4 (antifungal properties 

against Fusarium) showed many parallels. The first induction of PR3 and PR4 appeared in 

ears exposed to aphids at 0 dai (P = 0.021 and 0.046 respectively), demonstrating that aphids 

induced PR3 and PR4. From 1 dai till 2 dai, the expression of PR3 and PR4 steadily increased 

and was significantly different from control ears in both ears exposed to aphids and ears 

exposed to both F. graminearum and aphids (PR3 at 2 dai: P = 0.002 and < 0.001 

respectively, PR4 at 2 dai: P = 0.015 and < 0.001 respectively). In addition, a remarkable 

inductive effect between ears containing aphids and ears with both F. graminearum and 

aphids was observed for PR4 gene expression (P = 0.001) and to a lesser extend of PR3 gene 

expression at 1 dai and 2 dai. This induction disappeared at time point 6 dai.  

The time lapse experiment on PR5 (Thaumatin-like protein) gene expression showed 

a clear induction at 2 dai in all treatments containing aphids (Aphids: P = 0.008, Fg+aphids: P 

= 0.004). Moreover, at 6 dai aphids were observed to have a predisposing effect on PR5 gene 

expression upon F. graminearum infection as PR5 gene expression in ears exposed to both F. 

graminearum and aphids showed higher induction than both ears exposed to aphids or F. 

graminearum alone (P = 0.001 and 0.029 respectively). 

NADPHOX gene expression (membrane bound precursor of H2O2) was clearly induced 

by aphids 2 dbi and 0 dai pointing to a limited oxidative burst induced by aphids in these 

ears. Remarkably, this early induction of NADPHOX gene expression clearly prompted wheat 

ears to activate NADPHOX gene expression faster and to a higher extend upon F. 

graminearum infection. Indeed, the NADPHOX gene was significantly induced at 1 dai in ears 
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exposed to both aphids and F. graminearum where this induction only became apparent at 6 

dai in ears solely infected with F. graminearum (P = 0.024).  

For CAD1 and CCR3, two genes involved in lignin biosynthesis, several similarities 

were observed. Both genes were induced in ears containing aphids and ears with both 

aphids and F. graminearum (CAD1 at 2 dai: P = 0.004 and 0.001 respectively, CCR3 at 2 dai: P 

= 0.024 and 0.02 respectively). In addition, combined exposure of wheat ears to F. 

graminearum and aphids resulted in a higher expression of CAD1 and CCR3 at 6 dai 

compared to sole exposure to F. graminearum (P = 0.015 and < 0.001 respectively). In 

addition, the clear induction of CAD1 and CCR3 gene expression in ears colonized by aphids 

disappeared at 6 dai.  
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Fig. 2.5 Wheat response against F. graminearum after pre-exposing ears with S. avenae aphids. 

Expression profile of PAL, PR1 to 5, NADPHOX, CAD1 and CCR3 in wheat ears infested with S. avenae aphids and/or infected with 

F. graminearum. Each bar represents the mean fold increase over control (± SE) of four ears or less, each consisting of three 

pooled spikelets. Data were normalized for Ta2291, Ta54963 and control treatments (‘Control’) with ‘Aphids’: ears with aphids, 

‘Fg’: ears containing F. graminearum and ‘Fg+aphids’: ears containing F. graminearum while being infested by aphids. Two-sided 

t-tests (3 dbi, 2 dbi and 0 dai) and one-way Anova’s (post-hoc LSD) (1, 2 and 6 dai) were used for statistical analysis with different 

letters indicating significant differences between treatments (P < 0.05) for each time point. Bars without letters are not 

significantly different (P > 0.05). The line chart above the bars indicate the mean number of aphids (± SD) at the different time 

points. ND: not detected. 
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Fig. 2.5  continued 
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Fig. 2.5  continued 
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Fig. 2.5  continued 
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Fig. 2.5  continued 
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Fig. 2.6   Wheat response against F. graminearum after pre-exposing ears with S. avenae aphids. 

 

Expression profile of other genes tested in wheat ears infested with S. avenae aphids and/or infected with F. 

graminearum. Each bar represents the mean fold increase over control (± SE) of four ears or less, each consisting of three 

pooled spikelets. Data were normalized for Ta2291, Ta54963 and control treatments (‘Control’) with ‘Aphids’: ears with 

aphids, ‘Fg’: ears containing F. graminearum and ‘Fg+aphids’: ears containing F. graminearum while being infested by 

aphids. Two-sided t-test (3, 2 and 0 dai) and one-way Anova’s (post-hoc LSD) (1, 2 and 6 dai) were used for statistical 

analysis with different letters indicating significant differences between treatments (P < 0.05) for each time point. Bars 

without letters are not significantly different (P > 0.05). The line chart above the bars indicate the mean number of aphids 

(± SD) at the different time points. 



   

61 
 

 

Fig. 2.6 continued 
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Fig. 2.6 continued 
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Fig. 2.7  Correlation between aphid population and gene expression of PR1 on ears infested with S. avenae aphids (blue dots, Pearson 

coefficient = 0.608, P = 0.002, N = 24) and ears with both aphids and F. graminearum infection (red dots, Pearson coefficient = 

0.849, P = 0.002, N = 10). Equations correspond with the linear trend lines in the same color. A significant linear regression for 

both treatments was demonstrated (P < 0.01). 
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2.4 Discussion 
 

2.4.1 Infection and infestation parameters of F. graminearum and 
aphids 

 

Ears infected with both F. graminearum and aphids showed more disease symptoms and 

higher DON and acetylated DON concentrations at 6 dai compared to ears with a sole F. 

graminearum infection (Fig. 2.4 and Table 2.3). The fungal biomass was not significantly 

different between ears treated with F. graminearum and ears treated with both F. 

graminearum and aphids at any of the time points. We hypothesize that the higher gene 

expressions in the treatment with both aphids and F. graminearum compared to solely F. 

graminearum are triggered by the activation of the fungal metabolism rather than more 

fungal biomass triggering more plant cells to defend themselves.  

In our experiment ears were infested with 100 S. avenae aphids. By the time the 

whole ear became symptomatic aphid populations dropped rapidly. Their death could be 

explained by the lack of phloem sap and by accumulating DON concentrations. In the field 

(where aphids are not trapped in plastic cups), aphids would move away from the diseases 

ears to find healthier ears to feed on. Drakulic et al. (2015) also found a greater mortality 

rate and a depressed reproductive rate after exposure of S. avenae to diseased ears, 

compared to healthy ears. 

 

2.4.2 Wheat response after exposing ears to aphids and followed by F. 
graminearum infection 

 

Although studies of defense gene expression against aphids in wheat ears remain scarce, 

there have been several studies investigating cereal defense responses against grain 

aphids at wheat seedling or leaf stage. Both JA- and SA-mediated signaling pathways 

play a role in the attack of wheat by S. avenae (Zhao et al., 2009, Cao et al., 2014). 

According to infestation tests of Zhu-Salzman et al. (2004) JA-regulated pathways were 

effective in sorghum defense against greenbugs (Schizaphis graminum). Liu et al. (2011) 

suggested that PR1 expression (indicating SA defense response) is of limited importance in 
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wheat defense responses against Russian wheat aphids Diuraphis noxia. In our study, we 

showed an upregulation of PR1 in wheat ears with S. avenae starting from 2 dbi onwards 

(Fig. 2.5).  

It is suggested that aphids are able to suppress or avoid activation of potentially 

effective plant defensive machinery, possibly through their particular mode of feeding (Zhu-

Salzman et al., 2004, Walling, 2008, Elzinga et al., 2014). Phloem feeding insects probe plant 

tissue intercellulary to establish feeding sites in the phloem sieve elements. This mode of 

feeding minimizes wounding and limits local induction of defense responses to a minimal 

number of cells (Tjallingii, 2006). Indeed, no induction of upstream biosynthesis genes (LOX 

and AOS, or PAL and ICS as marker genes for the JA and SA biosynthesis pathway, 

respectively) was observed in our experiment. 

Besides PR1, a diverse spectrum of defense related genes in wheat ears was 

upregulated upon aphid attack. Our experiments showed upregulation of defense genes 

NADPHOX (starting from 2 dbi), PR3 and PR4 (starting from 0 dai and peaking at 2 dai) and 

PR5, CAD1 and CCR3 (single peak at 2 dai) (Fig. 2.5). After 2 dai, these genes (except PR1) 

become similar in expression as the control-treatment. Several of these genes were 

previously reported to be induced upon grain aphid feeding. Moloi and van der Westhuizen 

(2006) noticed an early accumulation of H2O2 and an early increase of NADPH oxidase 

activity in wheat seedlings infected with D. noxia aphids (Moloi & van der Westhuizen, 

2006). Moreover, these data suggested a possible signaling role for H2O2 by activation of 

downstream defense enzymes like peroxidase and β-1,3-glucanase (Moloi & van der 

Westhuizen, 2006). Chitinase and glucanase activities were also highly induced in wheat 

subject to D. noxia feeding (van der Westhuizen et al., 1998b, van der Westhuizen et al., 

1998a). In our experiment we demonstrated an early induction of NADPHOX and induction 

of PR genes at later time points. 

 

Once the plant response upon aphid feeding was clarified, we wanted to explore the 

response against infection with F. graminearum. As F. graminearum is a hemibiotrophic 

fungus its infection process is complicated. Successful defense employs a first line of 

defense mainly made up by SA-directed responses during the biotrophic phase 

followed by a second line of defense comprising JA-directed defense mechanisms 

during the necrotrophic phase (Ameye et al., 2015). Although Ameye et al. (2015) 
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noticed a SA-dependent response after 24 h and a JA-dependent response after 48 h, 

our experiment indicated an SA-dependent response after 48 h (upregulation of PAL at 

2 dai). Possibly this difference can be explained by the different physiological stage 

between seedlings and ears. PR1, also an indicator of SA, was no longer upregulated at 

6 dai (Fig. 2.5).  

Other studies conducted experiments with wheat spikelets being infected with F. 

graminearum during 48 h. Gene expression of CCR3 and CAD1 in those ears increased more 

than 9-fold and 7-fold respectively compared to mock-inoculated controls (Bi et al., 2011). 

Ears also showed an increase in expression of PR1 and PR4 (Qi et al., 2012) and according to 

Pritsch et al. (2000) PR1, 2, 3, 4 and 5 expression peaked at 36 to 48 h after F. graminearum 

inoculation. Our data show similar results but at later time points. 

 

Once the response of wheat ears upon sole infection with F. graminearum or sole infestation 

with S. avenae was uncovered, the mutual interaction was explored. In general, early 

induction of defense genes NADPHOX, CAD1, CCR3, PR3, PR4 and PR5 by aphids is 

proliferated upon F. graminearum infection compared to a sole F. graminearum infection. 

Expressions in ears containing both F. graminearum and aphids were earlier, similar and/or 

enhanced compared to ears containing only F. graminearum even though the fungal biomass 

was not significantly different. 

NADPHOX, a membrane bound precursor of H2O2, was significantly upregulated in 

ears containing both F. graminearum and aphids. We hypothesize that this increased 

induction of NADPHOX is a consequence of the aphids inducing NADPHOX at early time 

points. H2O2 is known to be an inducer of DON production once the fungus becomes 

necrotrophic (Ponts et al., 2006, Audenaert et al., 2010, Audenaert et al., 2014). DON is a 

virulence factor of F. graminearum and appears to be crucial for ear colonization (Bai et al., 

2002, Langevin et al., 2004, Jansen et al., 2005). In our experiment, ears containing both F. 

graminearum and aphids had a higher DON content compared to ears with solely F. 

graminearum. This statement corroborates with the recent findings by Drakulic et al. (2015). 

DON-nonproducing F. graminearum strains are unable to prevent thickening of cell 

walls and thus impede colonization of the ear by the fungus (Bai et al., 2002, Jansen et al., 

2005, Maier et al., 2006). Thus, lignin accumulation in host cell walls neighboring necrotic 

cells may play an important role in restricting the spread of the pathogen in host tissues 
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(Kang & Buchenauer, 2000). Our experiment demonstrated earlier and higher expressions of 

genes (CAD1 and CCR3) indicated lignin biosynthesis (cell wall reinforcement) in ears 

containing both F. graminearum and aphids. Even though, one would suspect more lignin 

biosynthesis, and thus decreased spread of F. graminearum, ears containing both F. 

graminearum and S. avenae showed more symptoms. We hypothesize that the cell wall 

degrading properties of DON were able to render upregulation of CAD1 and CCR3 

insufficient to impede ear colonization. It is also possible that these genes were more 

upregulated in an attempt of the plant to overcome degrading cell walls.  

It is likely to assume that if aphids induce similar defense responses as against 

pathogens, pre-exposure to aphids would help protect plants from a subsequent fungal 

infection. However, this is not the case in this tripartite interaction because F. graminearum 

has an additional infection mechanism against plant defense, namely its production of the 

mycotoxin DON which acts as a virulence factor. It is possible that pathogens without 

specialized virulence factors cannot overcome the enhanced plant response due to pre-

treatment with aphids. In latter case, the aphids indirectly service the plant to avoid 

colonization by non-virulence-factor producing pathogens. These pathogens will not be able 

to overcome the enhanced plant response and disease in the field could be less severe 

compared to when aphids were absent. 

In contrast to the other genes (PR3-4-5, NADPHOX, CAD1 and CCR3), PR1 and PR2 

expression were exceptions. PR1 was never induced in ears containing solely F. 

graminearum, but slopes of trend lines in Fig. 2.7 indicate a boost in PR1 expression when 

both fungus and aphids were present compared to the expression in ears with solely aphids. 

PR2 (β-1,3-glucanase, breakdown of the fungal cell wall) expression was not upregulated in 

ears containing only aphids but showed a high increase in ears infected with F. 

graminearum. At 6 dai aphids inhibited PR2 expression in ears infected with F. graminearum. 

This indicates that F. graminearum would not be restricted by this defense strategy. Indeed, 

after 6 dai we observed more symptoms on ears with aphids. 

 

In general, the plant response to a dual infestation of ears with S. avenae and F. 

graminearum gives a rather complex interaction: in order to establish a long term 

interaction with the plant, aphids must limit or avoid the plant defense. Indeed, we saw no 

induction of upstream biosynthesis genes. However at later time points, we saw induction of 
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several PR genes, but only for a short period of time. These genes show clear overlap with 

genes typically induced during a successful infection of ears with F. graminearum. It is known 

that insect deceive plants in order to trigger non-effective defense strategies. Evidence 

arises from the following example: the silver leaf whitefly Bemisia tabaci can manipulate 

plant signaling (Arabidopsis thaliana) to suppress effective defenses. Under normal 

circumstances, the SA-based defense is upregulated upon whitefly feeding, while the JA-

based defense is unchanged. Experiments show that the JA-regulated defenses are 

important to deter whitefly development. But when using a plant mutant, with impaired SA-

regulated defenses and uncoupled SA-JA cross talk, that is treated with methyl jasmonate, 

the whitefly development is severely delayed. This demonstrates that JA controls defenses 

that actively impede the insects development. Whiteflies are able to trigger a non-effective 

defense based on SA in order to suppress the effective JA defenses (Kempema et al., 2007, 

Zarate et al., 2007). In our experiment, genes that are typically upregulated upon Fusarium 

attack were also shortly upregulated during aphid infestation (deception of the plant). 

Expressions in ears containing both F. graminearum and aphids were observed earlier, 

similar and/or enhanced compared to ears containing only F. graminearum. We cannot 

directly link these enhanced expressions to the aphids but it seemed that if plant genes were 

already upregulated previously (because of the aphids), they were able to react faster/better 

to a subsequent attack with F. graminearum. 

 

Recently, work by Drakulic et al. (2015) demonstrated that wheat ears exposed to both 

aphids and F. graminearum showed accelerated disease progression, an increase in disease 

severity and mycotoxin accumulation compared to plants treated only with F. 

graminearum. Similarly to these results, we demonstrated that ears pre-infested with S. 

avenae could exacerbate F. graminearum infection because we found more disease 

symptoms and DON production compared to ears without aphids. We were able to clarify 

these physiological results by investigating the transcriptional induction pattern in the wheat 

ears. Aphids induced some defense genes that are also typically induced upon a F. 

graminearum infection. Other defense genes showed earlier and/or enhanced transcription 

after exposure to both aphids and F. graminearum.  

Ameye et al. (2015) demonstrated that F. graminearum produces more DON in an 

attempt to circumvent enhanced defense. In their study they showed that wheat seedlings 
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primed with the volatile Z-3-hexenyl acetate and infected with F. graminearum produced 48 

h after inoculation lower fungal biomass, but a stronger upregulation of defense genes 

coinciding with a massive increase in DON. This is in agreement with our data, ears 

containing both F. graminearum and aphids show in general an earlier and higher response 

and higher DON, 3-ADON and 15-ADON contents. 

 

Overall, this chapter provides valuable information on the impact of cereal aphids on the 

proliferation of F. graminearum and concomitant DON load in wheat ears. We demonstrated 

that infestation with S. avenae aphids provoked earlier, similar and/or enhanced typical 

sensitive plant responses against F. graminearum. This led to more symptoms and higher 

DON contents in the wheat ears containing aphids compared to ears without aphids.  

 

Contributions: 

Measurements of DON and acetylated forms were done by the Department of 

Bioanalysis, Laboratory of Food Analysis 
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Abstract  

 

We investigated the influence of the Fusarium mycotoxin deoxynivalenol (DON) on the 

English grain aphid Sitobion avenae (Hemiptera: Aphididae) and its parasitic wasp Aphidius 

ervi (Hymenoptera: Braconidae) using in-vitro laboratory experiments. In this tritrophic 

interaction, DON caused lethal (declined survival) and sublethal (prolonged nymphal 

development and reduced reproduction) effects on S. avenae aphids and consequentially led 

to a decreased production of parasitoid offspring resulting from parasitized DON-

contaminated aphids. This chapter highlights that the presence of mycotoxins should be 

considered in environmental risk assessment tests because they may alter the efficiency of 

biological control agents such as parasitoids through food chain contamination. 

 

Keywords  

 

Cereal aphids ∙ Deoxynivalenol ∙ Food chain contamination ∙ Parasitic wasps ∙ Tritrophic 

interactions 
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3.1  Introduction 
 

The trichothecene DON is a mycotoxin produced by fungal species of the genus Fusarium 

that causes Fusarium head blight (FHB) disease on cereals (Bottalico & Perrone, 2002, 

Goswami & Kistler, 2004). DON can be translocated inside the plant through xylem vessels 

and phloem sieve tubes (Kang & Buchenauer, 1999). Concentrations of DON found in wheat 

samples from fields all over Flanders (Belgium) fluctuate around 0.1-10 mg kg-1 although 

concentrations in individual spikelets are probably higher (Audenaert et al., 2009, Isebaert et 

al., 2009, Landschoot et al., 2013). DON has been notorious because it provokes acute and 

chronic disease symptoms in humans and animals that consume contaminated grains 

(Bennett & Klich, 2003). Its toxic effects range from diarrhea, vomiting, gastro-intestinal 

inflammation, necrosis of the intestinal tract, the bone marrow and the lymphoid tissues. It 

causes inhibition of mitochondrial function and has effects on cell division and membrane 

integrity and induces apoptosis (Pestka, 2010). Finally, it also inhibits protein, DNA and RNA 

synthesis (Rocha et al., 2005). 

To date, little research has been done regarding the influence of trichothecenes on 

insects, even though it is an interesting topic to explore because trichothecenes can pose a 

threat for insects feeding on contaminated plant tissue and alter insect-plant interactions. It 

was found that trichodermin and other 12,13-epoxytrichothecenes have larvicidal activity 

against the mosquito Aedes aegypti (Grove & Hosken, 1975). DON and especially nivalenol 

have toxic effects on lepidopteran Spodoptera frugiperda cells (Fornelli et al., 2004). 

Diacetoxyscirpenol and neosolaniol are potent antifeedants against larvae of Galleria 

mellonella (Mule et al., 1992) and a novel isoquinoline type pigment from F. moniliforme 

showed larvicidal activity against A. aegypti and Anopheles stephensi (Pradeep et al., 2015). 

Also the impact of mycotoxins on the survival of insect natural enemies, developing 

in herbivorous insects that feed on mycotoxin-contaminated plants, is not well explored. 

Cereal aphids in Europe are prone to different natural enemies like predators and parasites.  

Aphid-specific predators consist of three groups: the coccinellids (Coccinellidae) like e.g. 

Harmonia axyridis and Coccinella septempunctata (Jansen, 2000, Vandereycken et al., 2013), 

the syrphids (Syrphidae) like Episyrphus balteatus and Syrphus vitripiennis (Chambers & 

Adams, 1986, Jansen, 2000, Vandereycken et al., 2013) and the chrysopids (Chrysopidae) 

e.g. Chrysoperla carnea (Jansen, 2000). Aphids are also subject to polyphagous predators like 
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carabids (Carabidae) e.g. Pterostichus melanarius (Harwood et al., 2009) and spiders 

(Linyphiidae) e.g. Erigone atra (Harwood et al., 2009). Two important groups of parasites are 

the parasitoids (Aphididae) e.g Aaphidius ervi and Aphidius rhopalosiphi (Olmez & Ulusoy, 

2003, Stary & Havelka, 2008) and the entomophthoralean pathogens like Pandora 

neoaphidis and Entomophthora planchoniana (Barta & Cagan, 2006).  

In this chapter we will focus on the Hymenopterous endoparasitoids which are key 

biological control agents contributing to biological control of economically important pests in 

both agricultural and natural ecosystems. Endoparasitoids spend a significant proportion of 

their life inside the host organism and kill their host (Fig. 3.1). As they are developing inside 

the host, they can come into contact with eventual toxic compounds e.g. mycotoxins 

originating from a plant infected by a toxigenic fungus which can be detrimental for the 

developing parasitoid.  

 

Fig. 3.1  Life cycle of an aphid endoparasitoid (adjusted from Knutson (2011, consulted 

28-09-2015)): oviposition (a), growth of parasite larva (aphid alive) (b), 

parasite pupates (aphid dies and becomes mummy) (c), adult parasite 

emerges (d), adult parasite (e). 

 

On a higher trophic level, natural enemies such as parasitic wasps developing in 

contaminated herbivores, can be directly exposed to these secondary metabolites or 

indirectly be affected by the reduced growth of the host (Bukovinszky et al., 2012, Gols, 

2014). Endoparasitoids can be especially vulnerable to mycotoxins because they develop for 

a period of time inside the mycotoxin-contaminated host. It is already known that plant 

secondary metabolites can pose a threat to natural enemies (Campbell & Duffey, 1981, 

Barbosa et al., 1991, Roth et al., 1997, Ode et al., 2004, Harvey et al., 2007). The effect of 

fungus-infected plants on adult female parasitoid behavior and development has been 
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investigated (Cardoza et al., 2003, Harri et al., 2008, van Nouhuys & Laine, 2008, Bultman et 

al., 2009). Still, to our knowledge, research remains scarce on the impact of mycotoxins on 

parasitoids which develop inside herbivorous insects feeding directly from those mycotoxins.  

To fill this knowledge gap, we performed a case study investigating the influence of 

the mycotoxin DON on the phloem-feeding cereal aphids S. avenae. Both the mycotoxin-

producing Fusarium spp. and the aphid S. avenae reside on wheat ears during anthesis, the 

critical fungal infection period. This can increase the chances that the cereal aphids come 

into contact with DON when feeding from the DON- contaminated phloem. Moreover, we 

examined the effect of DON-contaminated S. avenae on aphid parasitism by the parasitic 

wasp A. ervi, one of the most important parasitic wasps of S. avenae aphids in European 

cereal fields (Al Dobai et al., 1999, Tomanovic et al., 2008, Barczak et al., 2014).  

 

3.2  Material and Methods 
 

3.2.1  Insects and deoxynivalenol 
 

A laboratory stock culture of S. avenae aphids was maintained on wheat seedlings at 

constant temperature of 22 °C, 60% relative humidity and a photoperiod of 16 h light, 

stimulating parthenogenesis (De Zutter et al., 2012). 

S. avenae aphid mummies containing A. ervi were acquired from Biobest (Westerlo, 

Belgium). Newly emerged parasitoids were sexed and pairs consisting of one female and one 

male were put individually in Petri dishes to allow mating overnight in order to obtain naive 

females (i.e. females that have never laid an egg before) (Joseph et al., 2011, Pan & Liu, 

2014). All experiments were conducted in a climate chamber at 22 ± 2 °C, 60% relative 

humidity and a photoperiod of 16 h light. 

The mycotoxin DON (purity >99%) was kindly provided by M. Lemmens (BOKU, 

Vienna, Austria). A stock solution (1000 mg L-1) was prepared in sterile water and stored at -

20 °C.  
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3.2.2  Experimental setup to examine the lethal effects of 
deoxynivalenol on S. avenae and A. ervi 

 

Aphids were dietary exposed to DON by using an aphid feeding apparatus (Fig. 3.2) as 

described in Sadeghi et al. (2009). The feeding apparatus contained 200 µL of artificial diet 

based on formulation A of Prosser and Douglas (1992) amended with DON to a final 

concentration of 0.25, 1, 3 and 5 mg L-1 DON or sterile water (0 mg L-1 DON). During the 

experiment, the diet was changed every other day and amended with the different 

concentrations of the persistent molecule DON. Adult S. avenae aphids were randomly 

selected from the stock culture and put on wheat seedlings to produce neonates (nymphal 

stage 1). The age of these neonates was between 0 and 24 h (day 0). Five neonates were 

transported from the seedlings to each aphid feeding apparatus. At day 4 the aphids were 

exposed to one naive A. ervi female per aphid feeding apparatus. At this time the aphids 

were in the second or third nymphal stage. Subsequently, aphids remained in the feeding 

apparatus until mummification. The number of mummies was counted daily. Each mummy 

was then put in a small Petri dish in order to evaluate the time until emergence of the 

parasitoid progeny. 

 

 

Fig. 3.2  Experimental setup of aphid feeding apparatus: a parafilmsachet (a) exists of 

two stretched parafilm layers with artificial diet in between from which aphids 

can feed (b). Aphids are enclosed using a lid with netting on top (c). 

 

In total, 60, 30, 45, 45 and 30 aphids divided into groups of five individuals per 

feeding apparatus were used as starting population in this experiment and exposed to 0, 

0.25, 1, 3 and 5 mg L-1 DON, respectively. During the experiment the percentage of aphid 

populations was calculated at different stages: % surviving aphids in the DON treatment at 
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the moment of exposure to the parasitoid female and % surviving aphids at the beginning of 

mummification. Moreover, the percentages of aphids that turned into mummies (% 

mummification) and newly emerged parasitoids (% successful parasitism) were calculated.  

 

3.2.3  Experimental design to examine sublethal effects of 
deoxynivalenol on S. avenae aphids 

  

S. avenae neonates were exposed to DON in a final concentration of 0.25 or 1 mg L-1 DON or 

sterile water (0 mg L-1 DON) using aphid feeding apparatus as described above. Aphids were 

examined daily to examine the nymphal development and mortality. The presence of exuvia 

was used for the determination of a molt. To examine reproduction, the progeny of surviving 

females was counted daily and carefully removed using a fine brush. Progeny of females who 

died during nymphal development was considered zero. The intrinsic rate of increase (rm) 

(Wyatt & White, 1977) was calculated by following formula: rm = [0.738 ln(Md)]/D, with Md 

= numbers of nymphs produced by one female during its whole adult life (D). In total, ten 

aphids divided into ten aphid feeding apparatus (one per apparatus) were monitored daily 

for each concentration of DON (0, 0.25 and 1 mg L-1 DON). 

 

3.2.4  Dual-choice assay to test preference of A. ervi for control and 
DON-contaminated aphids 

 

In the preference test, naive female A. ervi were given the choice between aphids fed with 

DON and control aphids. A repeat consisted of two aphids in a small Petri dish (3.5 cm 

diameter), one fed with 3 mg L-1 DON and one control aphid (fed with 0 mg L-1 DON). Both 

aphids were synchronized to the second or third nymphal stage (Pan & Liu, 2014). In the 

Petri dish, one naive female was introduced and allowed to choose between the DON-

contaminated aphid and the control aphid. The female was monitored for a maximum of 10 

minutes. The aphid that was first stabbed by the female and the time until this first stab (i.e. 

parasitoid touching the aphid with its ovipositor) occurred was recorded.  

Females that required more than 10 minutes to stab an aphid were labeled as ‘no 

choice’ (Daza-Bustamante et al., 2003). In total, the choice of 60 females was tested. 
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3.2.5  Statistical analyses 
 

Data were analyzed using SPSS (Statistical Package for Social Sciences) Statistics 22. 

Statistical differences of (sub)lethal effects by different DON concentrations against S. 

avenae and A. ervi (Fig. 3.3 and Table 3.2) and the duration of A. ervi development (Table 

3.4) were analyzed using a nonparametric Kruskal-Wallis test. In case of significant 

differences between the treatments, nonparametric Mann-Whitney U tests were used to 

compare two treatments. Data in Fig. 3.3 were analyzed using one-sided Mann-Whitney U 

tests corrected with the Benjamini and Hochberg False Discovery Rate (B&H FDR) at a level 

of 0.05 for controlling the type I error rate (Benjamini & Hochberg, 2000). All tests were 

conducted with a significance level of α = 0.05. 

 

3.3  Results 
 

3.3.1  (Sub)lethal effects of deoxynivalenol on S. avenae and A. ervi 
 

In this experiment S. avenae aphids were dietary exposed to five different concentrations of 

DON (0, 0.25, 1, 3 and 5 mg L-1 DON). The lethal effects of DON were measured by 

calculating the percentage of surviving S. avenae, and for A. ervi by calculating the 

percentage of aphids that turned into mummies and resulted into newly emerged parasitoid 

progeny. When the aphids that were feeding on the different concentrations of DON, were 

exposed to the female parasitoid, a negative effect of 5 mg L-1 DON on the survival of S. 

avenae was found (Fig. 3.3 and Table 3.1). The surviving aphid population feeding on 5 mg L-1 

DON was significantly lower than the other treatments. Treatment of the aphids with 3 mg  

L-1 DON also caused a decrease in the aphid population but at a later time (when 

mummification started). 
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Fig. 3.3  The percentage of aphid populations (mean ± SE) at different stages: % surviving deoxynivalenol (DON) at the moment of 

exposure to the parasitoid female, % surviving at the beginning of mummification, % aphids becoming mummies and % aphids 

that produced newly formed parasitoid progeny. Different letters represent significant differences (P < 0.05) between 

treatments with different concentrations of DON using one-sided Mann-Whitney U tests corrected with B&H FDR. Starting 

populations (100%) consisted of 60, 30, 45, 45 and 30 aphids divided into groups of five individuals per aphid feeding apparatus 

exposed to 0, 0.25, 1, 3 and 5 mg L-1 DON, respectively. 
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Table 3.1  P-values according to one-sided Mann-Whitney U tests associated with Fig. 3.3. The concentrations of 0, 0.25, 1, 3 and 5 mg L-1 

deoxynivalenol are represented as numbers 1 to 5 respectively. P-values in bold are significant after B&H FDR correction. 

 

P-values 
At the moment of exposure to 

parasitoid 

At the beginning of 

mummification 

Turning into 

mummies 

Resulting into newly emerging 

parasitoids 

1-2 0.456 0.384 0.090 0.145 

1-3 0.075 0.071 0.316 0.232 

1-4 0.135 0.008 0.027 0.019 

1-5 0.017 0.001 0.007 0.013 

2-3 0.061 0.076 0.382 0.476 

2-4 0.135 0.098 0.002 0.004 

2-5 0.012 0.004 0.001 0.004 

3-4 0.406 0.013 0.039 0.018 

3-5 0.003 0.004 0.017 0.017 

4-5 0.006 0.002 0.116 0.207 
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Sublethal effects of DON were measured by investigating the aphids nymphal 

development and reproduction while feeding on 0, 0.25 and 1 mg L-1 DON (Table 3.2 and 

Table 3.3). The duration of the last three nymphal stages (days) of aphids dietary exposed to 

1 mg L-1 DON was significantly longer (P < 0.05) compared to 0 or 0.25 mg L-1 DON. When 

aphids were fed with 0, 0.25 and 1 mg L-1 DON, Md (i.e. the number of nymphs produced per 

female during its whole adult life), D (i.e. the whole adult life of the aphid in days) and rm 

(i.e. the aphid population intrinsic rate of increase) were calculated. Md, D and rm showed no 

significant differences between 0 and 0.25 mg L-1 but both treatments were significantly 

higher (P < 0.05) than 1 mg L-1 DON, except for rm where the effect by 0.25 and 1 mg L-1 DON 

was not significantly different (P = 0.057).  

Table 3.4 presents the duration of A. ervi development in days inside S. avenae 

aphids contaminated with different concentrations of DON (0, 0.25, 1 and 3 mg L-1 DON). No 

significant differences were found between treatments 0, 0.25, 1 and 3 mg L-1 DON (P = 

0.349 and 0.340 for oviposition until mummification and from mummification until 

emergence respectively, according to Kruskal-Wallis tests). No mummies were found for the 

5 mg L-1 DON treatment. Aphids feeding on 3 mg L-1 DON produced significantly fewer 

mummies compared to aphids feeding on 0.25 mg L-1 DON (Fig. 3.3 and Table 3.1 continued). 

Significantly less parasitoid progeny emerged from aphids fed on 3 mg L-1 DON compared to 

the lower concentrations tested. Table 3.5 presents the amount of mummies, amount of 

parasitoid progeny and sex ratio of the progeny. 

 

3.3.2  Preference of parasitic wasp to attack control and DON-
contaminated S. avenae aphids 

 

In our binary-choice experiment, female A. ervi did not discriminate between DON-

contaminated and control aphids. Out of a total of 60 wasps, 21 stabbed the control aphid 

first, 21 stabbed the DON-contaminated aphid first, and 18 were recorded as ‘no choice’. 

The mean time (± SE) needed by females to make a choice was not significantly different 

between both treatments (2.9 ± 0.5 minutes for control aphids and 3.3 ± 0.6 minutes for 

DON-contaminated aphids).  
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Table 3.2 Sublethal effects of different concentrations of deoxynivalenol (DON, mg L-1) on S. avenae aphids nymphal development and 

reproduction.  

 

 Duration of nymphal development (days)  Reproduction 

DON  N1 N2 N3 N4 Md D rm  

0 1.1 ± 0.1a 1.4 ± 0.2a 1.4 ± 0.4a 1.9 ± 0.1a 16.6 ± 4.6a 12.8 ± 3.6a 0.108 ± 0.033a 

0.25 1.0 ± 0.1a 1.8 ± 0.2a 1.6 ± 0.2a 1.9 ± 0.1a 14.3 ± 3.3a 14.6 ± 3.4a 0.076 ± 0.017ab 

1 1.5 ± 0.3a 2.6 ± 0.2b 3.0 ± 0.4b 3.5 ± 0.5b 0.9 ± 0.7b 1.7 ± 1.5b 0.035 ± 0.026b 

 

N1-N4: aphid nymphal stage 1 to 4, Md: number of nymphs produced by females during their whole adult life, D: whole adult life of the aphid 

in days, rm: aphid population intrinsic rate of increase. Data are presented as means ± SE. Levels of significance between treatments (0, 0.25 

and 1 mg L-1 DON) were derived by comparing treatments two by who using Mann-Whitney U tests. Different letters indicate significant 

differences between treatments (P < 0.05). 
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Table 3.3  P-values according to Mann-Whitney U tests associated with Table 3.2. The concentrations of 0, 0.25 and 1 mg L-1 deoxynivalenol 

are represented as numbers 1 to 3, respectively.  

 

 Duration of nymphal development (days) Reproduction 

P-values N1 N2 N3 N4 Md D rm 

1-2 0.563 0.195 0.677 1 0.818 0.646 0.566 

1-3 0.194 0.008 0.033 0.015 0.008 0.016 0.039 

2-3 0.114 0.042 0.016 0.015 0.008 0.008 0.057 
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Table 3.4 Duration of A. ervi development (mean ± SE) inside S. avenae aphids contamined with different concentrations of deoxynivalenol 

(DON, mg L-1).  

 

DON oviposition → mummification (days) mummification → emergence (days) 

0 8.1 ± 0.3 5.2 ± 0.2 

0.25 8.6 ± 0.3 5.5 ± 0.3 

1 8.4 ± 0.3 5.4 ± 0.2 

3 8.0 ± 0.7 4.5 ± 0.5 

 

Data are presented as means ± SE. There were no significant differences between treatments according to Kruskal-Wallis tests. 

 

Table 3.5 Parasitoid development parameters for A. ervi developing inside aphids feeding from different concentrations of deoxynivalenol 

(DON, mg L-1). 

 

DON Amount of mummies Amount of progeny Sex ratio (% females) 

0  19 15  54,5 

0.25  15 12  40 

1  19 19  35,7 

3  4 2  - 
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3.4  Discussion 
 

Survival, nymphal development and reproduction of S. avenae aphids were negatively 

influenced by DON. In our experiment, female A. ervi did not discriminate between control 

and DON-contaminated aphids, but successful parasitism of the aphids by A. ervi (i.e. 

emergence of parasitoid progeny) on 3 mg L-1 DON decreased. This could mean that the 

parasitoid eggs or larvae were directly or indirectly susceptible to DON or DON derivatives 

inside the aphid body. Directly, DON causes inhibition of mitochondrial function, has effects 

on cell division and membrane integrity, induces apoptosis and inhibits protein, DNA- and 

RNA synthesis (Rocha et al., 2005, Pestka, 2010). Possibly these toxic effects can lead to 

mortality of the parasitic wasp eggs or larvae inside the aphid body. Indirectly, it is possible 

that DON-contaminated aphids were feeding less efficiently than control ones (indeed, their 

nymphal development is slower), leaving the parasitoid larvae with fewer nutritional 

resources for its development. Nevertheless, there was a negative effect on the parasitoid 

developing inside DON-contaminated aphids. Aphids feeding from 3 mg L-1 DON were less 

likely to be successfully parasitized. Even though the aphid population dropped because of 

the negative effects of DON, the remaining aphids (tolerant to DON) would have higher 

surviving chances because there were also less likely to be successfully parasitized (worse 

development of parasitoid inside DON-contaminated aphid). These aphids have a dual 

advantage: they are tolerant to DON and are less successfully parasitized by A. ervi. This 

could suggest that DON causes a decreased efficiency of biological control agents such as 

parasitoids through food chain contamination. 

In our experiment we used concentrations of DON ranging from 0 to 5 mg L-1. DON is 

a water soluble compound and is translocated in ears of cereal crops through phloem sieve 

tubes (Kang & Buchenauer, 1999). Concentrations found in wheat samples from fields all 

over Flanders (Belgium) fluctuate around 0.1-10 mg kg-1 DON (Audenaert et al., 2009, 

Isebaert et al., 2009, Landschoot et al., 2013). These concentrations are present in grains at 

harvest and thus do not necessarily represent concentrations in the phloem during the time 

period that aphids are feeding from the phloem sieve tubes. It is not known which DON 

concentrations are present in the phloem during the moment that aphids are present on the 

ear although we assume these can rise to high concentrations. Indeed, when a field has an 
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average concentration of e.g. 5 mg kg-1, this means that individual infected spikelets might 

be exposed to e.g. 10 fold higher concentrations. Moreover, not all spikelets in the field are 

infected. Exact concentrations of DON and its derivatives in the phloem sap that impair both 

the aphids and their parasitoids are unknown. To cope with xenobiotics, S. avenae has 

several enzyme families which show increased activities upon contamination. P450s 

(cytochrome P450 mono-oxygenases, phase I metabolic enzymes) and GSTs (glutathion-S-

transferases, phase II metabolic enzymes) activities increased with the secondary plant 

compound hydroxamic acid levels in wheat (Castaneda et al., 2010) and GST activities also 

increased when S. avenae was dietary exposed to phenol catechol, alkaloid gramine and 

non-protein amino acid L-ornithine-HCI (Cai et al., 2009, Zhang et al., 2013). Lu and Gao 

(2009) suggested the involvement of P450s and GSTs in the susceptibility to the insecticide 

pirimicarb. More specifically for the role of these mechanisms in detoxifying mycotoxins, 

studies with aphids remain scarce. In contrast to the aphids, hymenopteran insects such as 

honeybees, bumblebees and the parasitoid Nasonia vitripennis, for which the whole 

genomes are sequenced, are known to have substantially fewer genes coding for 

detoxification enzymes (Claudianos et al., 2006, Oakeshott et al., 2010, Werren et al., 2010, 

Sadd et al., 2015) compared to other insects, leaving them more vulnerable for xenobiotics. 

Exposure of Hymenoptera parasitoids, such as A. ervi, to mycotoxins through food chain 

contamination is thus another important parameter when assessing the risk against natural 

enemies.  

 

In literature, evidence of fungus-infected plants affecting the parasitoids is present. 

Preference of parasitoid Cotesia marginiventris was influenced by plant volatiles upon 

infection with beet armyworms (Spodoptera exigua). The wasps were even more responsive 

to these volatiles when plants were infected with both catterpillars and white mold fungus. 

This means that parasitoid behaviour is also influenced by the effect of pathogen-induced 

biochemical changes in plants (Cardoza et al., 2003). In our model system, we did not 

observe host preference by A. ervi and A. ervi females did not discriminate between DON 

contaminated aphids and control aphids for oviposition. A possible explanation might come 

from the fact that besides volatiles, visual cues like aphid color, shape and movement are 

important features in preference of parasitoids (Mackauer et al., 1996). Fuentes-Contreras 

and Niemeyer (1998) showed that reduction in S. avenae size was related to a decreased 
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success in avoiding parasitoid oviposition of A. rhopalosiphi. Though we noticed in the 

experiments that aphids feeding from 3 mg L-1 DON were smaller, female A. ervi did not 

discriminate between treated and control aphids. In contrast to the study of Cardoza et al. 

(2003) who included the plant into the experiment, our study exclusively focuses on DON. It 

would be advisable that future experiments include the plant in order to get the bigger 

picture (e.g. preference of parasitoids can be influenced by plant volatiles produced upon 

pathogen attack). In that case, field studies including Fusarium-infected versus healthy grain 

ears would be necessary to investigate the performance of A. ervi. In this chapter, we 

focused on the mycotoxin itself. This implicates that the concentrations of DON must be 

known. In field studies, DON concentrations can’t be controlled and thus it isn’t known to 

which concentrations the aphids are exposed. Moreover, other factors like rain, natural 

Fusarium infections with a blend of Fusarium species and other mycotoxins can influence 

field experiments. In addition, FHB is caused in the field by a species complex all producing a 

different set of mycotoxins. 

The in planta presence of fungal endosymbionts triggers plants to produce herbivore-

toxic substances. Harri et al. (2009) investigated life-history traits of the parasitoid A. ervi 

when it was exposed to the endophyte-tolerant aphid Metopolophium festucae feeding from 

plants infected with a mycotoxin-producing endophyte. The presence of endophytes 

significantly increased the development time of A. ervi. The authors concluded that 

extended parasitoid development should ultimately reduce the population growth of A. ervi 

and thus endophyte presence may represent an advantage for endophyte-tolerant aphid 

species. Similarly, Bultman et al. (2009) demonstrated that the survival of parasitoid 

Euplectrus comstockii parasitizing fall armyworms (Spodoptera frugiperda) was also 

negatively influenced in caterpillars fed with plants infected with a fungal endophyte, 

although these results were varying when different isolates of the fungus were used. The 

above mentioned studies cannot directly link the negative effect on the parasitoids to the 

toxic substances inside the plants produce upon fungal attack. In contrast, our study is able 

to provide that direct link by using only the toxin without the interactions of the plant. 

The study of van Nouhuys and Laine (2008) provides also interesting insights in 

tritrophic interactions when plants are infected by fungi. Their study is supported by a six 

years analysis of population dynamics of the parasitoid Cotesia melitaearum that parasitizes 

Melitaea cinxia butterflies. Similar to the previous studies mentioned, a negative effect on 
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the parasitoid is demonstrated when they are parasitizing hosts fed with Podosphaera 

plantaginis-infected plants. The progeny of these parasitoid weighed less, indicating that the 

fungus causes the hosts to be of poor quality. In our study, we didn’t weigh the parasitoid 

progeny to compare this parameter between DON-contaminated and uncontaminated 

aphids. We also didn’t take into account the post-emergence reproduction of the parasitoid 

progeny. In future experiments (in the lab, in the field and with or without the use of plants 

as mediators) these parameters should be tested because they are good indicators of the 

parasitoid’s fitness. van Nouhuys and Laine (2008) also noticed that the parasitoids reared 

from hosts fed fungal-infected diet tended to be female, a characteristic that is associated 

with high host quality. As a result, the probability of colonization of a host population by the 

parasitoid increased more than twofold in a six year analysis of the parasitoid population 

dynamics. The authors were not able to determine a causal relationship between the plant 

pathogen and the increasing fraction of female offspring. During the experiment in this 

chapter, mummies were put separately in small petri dishes until the parasitoid emerged. 

This progeny was then sexed. We observed a shift in sex ratio from more female parasitoid 

progeny to more males. Although this result was consistent, it was not statistically 

significant. This might point to developing females being more susceptible to DON than 

developing males. To give a decisive answer about the effect of DON on the sex ratio of A. 

ervi, more biological replicates of higher DON concentrations might be included in future 

experiments. Also Joseph et al. (2011) noticed a shift towards male progeny in aphids 

contaminated with insecticide compared to the controls. Further research should investigate 

the DON concentration inside the aphids that is toxic for the different stages of both sexes of 

A. ervi and elucidate the molecular mechanism behind this parasitoid susceptibly to DON.  

 

In conclusion, chapter 3 emphasized the importance of DON in food chain contamination 

from plant to insects (insect-plant interactions; grain aphids S. avenae) and their natural 

enemies (higher trophic interactions; parasitic wasp A. ervi). Based on our data we believe 

that DON can cause a decreased efficiency of biological control agents such as parasitoids 

through food chain contamination. Therefore, it is important to consider the presence of 

mycotoxins in environmental risk assessments when insect pest control systems are based 

on biological control with natural enemies, such as the use of parasitic wasps against aphids. 
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Chapter 4:  
 

Aphids transform and detoxify deoxynivalenol via 
a type II bio-transformation mechanism yet 

unknown in animals 

 

 

Redrafted from De Zutter N*, Arroyo-Manzanares N*, Audenaert K*, De Boevre M,  
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Revisions in Scientific Reports 

*: equal first/last author 

 

 

 

 

Sitobion avenae 

Acyrthosiphon pisum 



 
   

90 
 

Abstract  

 

Biotransformation of mycotoxins in animals comprises phase I and phase II metabolization 

reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation 

reactions have been described resulting in DON-glutathiones, DON-glucuronides and 

DONsulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases 

and sulfotransferases, respectively. These metabolites can be easily excreted and are less 

toxic than their free compounds. Here, we demonstrate for the first time in the animal 

kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant 

pathogenic aphids. This phase II biotransformation has solely been reported in plants. As the 

DON-3G metabolite was less toxic for aphids than DON this conversion is a detoxification 

reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON 

producer Fusarium graminearum on wheat during the development of fusarium symptoms, 

tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids 

(Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. 

graminearum. Using a non-targeted high resolution mass spectrometric approach, we 

detected DON-diglucosides in the insects probably as a result of sequential glucosylation 

reactions. Data are discussed in the light of a co-evolutionary adaptation of S. avenae to 

DON. 
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4.1  Introduction 
 

Trichothecenes are a class of mycotoxins produced by several fungal species of the genus 

Fusarium and related genera in agricultural crops. They belong to the structural group of 

sesquiterpenoids, all bearing a common tricyclic 12,13-epoxytrichothec-9-ene core 

structure. Type A, B, C and D trichothecenes can be distinguished based on substitutions at 

position C-4, C-7, C-8 and/or C-15 (Bottalico & Perrone, 2002, McCormick et al., 2011). 

Worldwide deoxynivalenol (DON, Fig. 4.1) is the most important trichothecene (type B) 

because of its omnipresence in many cereal-based matrices (Bottalico & Perrone, 2002, 

Goswami & Kistler, 2004, De Boevre et al., 2012a). DON provokes acute and chronic disease 

symptoms in humans and animals (Bennett & Klich, 2003). Its toxic effects range from 

diarrhea, vomiting, gastro-intestinal inflammation, necrosis and apoptosis of the intestinal 

tract, the bone marrow and the lymphoid tissues. DON causes inhibition of the 

mitochondrial function and has effects on cell division and membrane integrity (Pestka, 

2010). Finally, it also inhibits protein, DNA- and RNA synthesis in eukaryotic cells (Jimenez et 

al., 1975, Grant et al., 1976, Rocha et al., 2005). The toxicity of these sesquiterpenes can be 

explained by their chemical structure containing an epoxide at the C-12 and C-13 position 

(Fig. 4.1) (Desjardins et al., 1993). Although most eukaryotic organisms are to a certain level 

prone to trichothecenes, many of them have developed strategies to arm themselves against 

the detrimental effects of these mycotoxins, and examples are present throughout the 

fungal, animal and plant kingdom. 

 

 

Fig. 4.1 Chemical structure of the mycotoxin deoxynivalenol. 
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In the yeast Saccharomyces cerevisiae a spontaneous mutant which was tolerant to 

the trichothecene trichodermin was isolated (Jimenez et al., 1975). The tolerance was shown 

to be based on alteration of the target side of trichothecenes. The gene responsible for the 

trichodermin resistance was called tcm1 (Grant et al., 1976) and was suggested to encode 

for the ribosomal protein L3 (RPL3) (Fried & Warner, 1981), which is the target of 

trichothecenes. The DNA sequence of tcm1 was determined (Schultz & Friesen, 1983) and a 

mutation in this gene did not only cause tolerance to trichothecenes, but also affected the 

maturation of either 40S or 60S ribosomal subunits (Fernandez-Lobato et al., 1990). 

Similarly, Mitterbauer et al. (2004) depicted several mutations in Rpl3 conferring semi-

dominant resistance to trichothecenes. Transgenic tobacco plants expressing a modified 

Rpl3 cDNA were shown to be able to adapt to DON. Nevertheless, the tolerance was not 

constitutive because the engineered RPL3 protein was not utilized in the presence of the 

native RPL3 due to a lower affinity of the engineered RPL3 for the ribosome assembly factor 

Rrb1p (Mitterbauer et al., 2004). 

In animals, two major metabolic pathways for detoxification of trichothecenes have 

been reported. Deepoxidation of the trichothecene DON to deepoxidated DON (DOM-1) is a 

well known example. In addition, several so called type II biotransformation reactions have 

been reported in which DON is conjugated with glucuronides, sulphonates or glutathione 

(Berthiller et al., 2013, Wen et al., 2016). Remarkably, in contrast to the vast amount of data 

on higher animals, information on transformation and detoxification strategies in insects 

remains scarce. Nevertheless, these animals often live in close proximity of trichothecene 

producing fungi and the toxicity has been reported in a few studies: trichodermin and other 

12,13-epoxytrichothecenes have been shown to have larvicidal activity against mosquitoes 

of Aedes aegypti (Grove & Hosken, 1975). DON has toxic effects on lepidopteran Spodoptera 

frugiperda cells (Fornelli et al., 2004). The trichothecenes (type A) diacetoxyscirpenol and 

neosolaniol were demonstrated to be potent anti-feedants against larvae of Galleria 

mellonella (Mule et al., 1992).  

Finally, trichothecenes are also prone to metabolization in plants. Cereals have 

developed mechanisms to detoxify trichothecenes by conjugation to endogenous 

metabolites (e.g. glucosylation) or de-epoxidation (Boutigny et al., 2008). With respect to 

DON, the probably most important detoxification reaction to reduce the toxicity of DON in 

planta is its conjugation to glucose reported for naturally F. graminearum-inoculated and 
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contaminated wheat (Berthiller et al., 2005). Glucosyltransferases insert a glucose on the 

free toxins that renders the toxin more water soluble (Berthiller et al., 2013). Such 

metabolites are DON-3G, DON-di-hexoside, 15-acetyl-DON-3-glucoside, DON-

malonylglucoside (Kluger et al., 2015). Recently, many other derivatives of DON have been 

identified in wheat. DON is also conjugated to glutathione (DON-S-glutathione (DON-GSH), 

“DON-2H”-S-glutathione, DON-S-cysteinyl-glycine and DON-S-cysteine) (Schroder et al., 

2007, Gardiner, SA et al., 2010, Kluger et al., 2015). Warth et al. (2015a) identified DON-3-

sulfate and DON-15-sulfate. After metabolization of DON, the compartmentation phase 

takes place: the resulting products are either transported to the vacuole and stored there, or 

further modified and deposited in the cell wall (Coleman et al., 1997, Berthiller et al., 2007). 

Walter et al. (2015) reported on an wheat ABC transporter that contributes to mycotoxin 

tolerance. ATP-binding cassette (ABC) transporters are transmembrane proteins that use the 

energy from ATP hydrolysis to transport substances across the cell membrane (Jones et al., 

2009). 

 

Finding new detoxification strategies for mycotoxins is a growing field of interest and a first 

crucial step in order to implement this knowledge in future mycotoxin remediation 

strategies. In this light, the present study aimed to assess the ability of plant-pathogenic 

aphids to cope with the trichothecene DON.  

More in particular, we conducted a comparative study between grain aphids S. 

avenae and pea aphids A. pisum. S. avenae are known to colonize cereals (monocots) and 

feed from the cereal ear’s phloem. They form a unique tripartite evolutionary relationship 

with wheat and Fusarium spp. Piercing-sucking insects like aphids ingesting plant phloem sap 

come into contact with all components in the transport fluid (Kehr, 2006). Thus these insects 

can also come in contact with secondary metabolites of pathogens that are being 

translocated in the plant through the phloem system when the pathogen is residing on the 

same plant part as the insect. Grain aphids reside on wheat ears and can come into contact 

with DON when this ear is infected by F. graminearum. DON is being translocated in ears 

through xylem vessels and phloem sieve tubes (Kang & Buchenauer, 1999). In contrast, A. 

pisum has a host specificity for several species of legumes (dicots) and thus, under natural 

conditions, never encounters DON. This unique tripartite relationship (grain aphids – wheat 

– Fusarium) occurred in nature for many generations. We believe that this co-evolution 
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could have resulted in adapted survival mechanisms of aphids in presence of toxins 

produced by pathogens, whereas this is not the case for pea aphids. To underpin this idea, 

we formulated several hypotheses: (i) S. avenae is more tolerant for DON compared to A. 

pisum when dietary exposed to this mycotoxin, (ii) mutations in the DON target molecule 

RPL3 is a possible tolerance mechanism, (iii) less toxic derivatives of DON as a result of type II 

biotransformation mechanisms will be found inside the S. avenae aphids using (non)targeted 

analyses.  

 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is a 

separation/detection technique, and is particularly useful for the simultaneous 

determination of multiple mycotoxins. The technique involves the use of reference 

standards (targeted approach). Nowadays, only three DON derivatives (DON-3G, 3-acetyl- 

DON (3-ADON) and 15-acetyl-DON (15-ADON)) are commercially available.  

Liquid chromatography (LC) is a dynamic separation technique that is able to 

separate mixtures of chemical compounds e.g. mycotoxins. For LC analysis, the compounds 

should be soluble in or miscible with the mobile phase. The basis of separation of target 

molecules is the difference in affinity between the mobile and stationary phase. To achieve 

the desired separation of target compounds the composition and nature of these two 

phases are crucial. A mass spectrometer (MS) converts sample molecules into ions in the gas 

phase (ionization). In the next step the formed ions are separated according to their mass-

to-charge ratio (m/z) and finally the individual ions are recorded according to the current 

intensities at each mass in a mass spectrum (detection). Electrospray ionization (ESI) is a 

type of atmospheric pressure ionization: it operates by a process called ‘ion evaporation’. 

During this process, ions are emitted from a droplet into the gas phase. The formed ions are 

transferred into the mass analyzer. Mass spectrometers use the difference in m/z of the ions 

to distinguish them. In this study, a Quattro Premier XE® MS/MS was used, consisting of two 

mass analyzers or quadrupoles and a T-wave collision cell. In quadrupole instruments the 

potentials are adjusted, so that only ions of a selected mass go through the rods. At the end 

of the mass spectrometric process the selected ions have to be transformed into a usable 

signal (detection). Because the number of ions leaving the mass analyzer is quite small, 

significant signal amplification is necessary (Monbaliu, 2011, De Boevre, 2013). 
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We also used a full-scan mode high-resolution mass spectrometry (HRMS) because of 

reference standards of conjugated mycotoxins are not always available and because 

unknown forms can occur. HRMS is able to analyze compounds for which only the molecular 

formulae are known, without the availability of reference standards (non-targeted 

approach). Compared to LC-MS/MS, the preselection of targeted compounds is not 

necessary (we do no longer have to pre-suppose which mycotoxins might be anticipated), 

and compound detection depends on a predefined full-scan over a wide mass range (to 

screen for a much wider group of metabolites). Another advantage of HRMS (Synapt G2-Si 

MS system) is that acquired data can even be evaluated retrospectively for additional 

compounds. In this study we used the Time-of-Flight (TOF) technology that provides high-

resolution data of the molecular and fragment ions, being thus particularly powerful for 

structure elucidation of unknown compounds. During TOF, ions are accelerated by an 

electrical field to equal kinetic energy with the velocity of the ion depending on m/z. This 

instrument is superior to quadrupole mass spectrometers in terms of full-scan sensitivity and 

mass accuracy (Monbaliu, 2011, De Boevre, 2013).  

 

4.2  Experimental procedures 
 

4.2.1  Insects and chemicals 
 

Laboratory stock cultures of cereal aphids S. avenae and pea aphids A. pisum were 

maintained on respectively wheat seedlings and young broad bean plants under standard 

conditions of 22 °C and a photoperiod of 16 h light, stimulating parthenogenesis (De Zutter 

et al., 2012).  

DON was kindly provided by M. Lemmens (BOKU, Vienna, Austria). Purity of the 

provided stock standard was > 99%. A stock solution was prepared by dissolving 5 mg DON in 

5 mL (1 mg mL-1) sterile water and stored at -20 °C.  
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4.2.2  Survival of S. avenae and A. pisum when feeding from DON and 
DON-3G 

 

To determine the effect of DON and DON-3G on the survival of S. avenae and A. pisum, DON 

and DON-3G were added to the artificial aphid diet based on formulation A from Prosser and 

Douglas (Prosser & Douglas, 1992) to a final concentration of 0.5, 1 or 3 and 100 mg L-1. 

Sterile water was added to the artificial diet as control (0 mg L-1 DON or DON-3G). For both 

aphid species, there were three aphid feeding apparatus prepared as described by Sadeghi, 

et al. (Sadeghi et al., 2009) for all treatments and control. Each apparatus contained ten 

randomly picked nymphs who could feed on a parafilm sachet containing 200 μL of the 

mixture. Over a period of three days the surviving nymphs were counted. Abbott’s formula 

(Abbott, 1925) was used to correct the survival rates: (nTa / nCa) * 100 with nTa the number 

of survivors after treatment and nCa the number of survivors in the control treatment. 

Statistical differences (P < 0.05) between aphid survival when feeding from different DON 

concentrations were analyzed by using non-parametric Kruskal Wallis analysis followed by a 

Dunn’s test to perform pairwise comparisons using IBM SPSS (SPSS Statistics 22). These 

experiments were repeated at least two times. 

To determine the long-term DON effect on the survival of S. avenae and A. pisum, 

aphids were gradually exposed to increasing concentrations: 0 → 0.5 → 1 → 3→ 5 mg L-1. For 

both aphid species, there were six aphid feeding apparatus prepared for the treatment and 

for the control (0 mg L-1 DON). Each apparatus contained five neonates produced by adult 

aphids within 24 h (day 0). In these experiments the diet was changed every two days. 

Statistical differences (P < 0.05) between treatments at different time points in the long-

term survival experiment were computed using one-sided t-tests (SPSS Statistics 22). 

For non-targeted and targeted LC-MS/MS analyses S. avenae and A. pisum aphids 

were taken from the laboratory stock cultures and put in aphid feeding apparatus containing 

0 or 100 mg L-1 DON. After 40 h the surviving aphids were stored at -20 °C until analysis. For 

each aphid species there were five repeats of aphids that were fed with 0 and 100 mg L-1 

DON. Also, the artificial diet after 40 h of feeding of all repeats were analyzed. 
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4.2.3  Analysis of the ribosomal protein L3 
 

RNA from S. avenae and A. pisum aphids was extracted using TRI reagent (Sigma-Aldrich) 

according to the manufacturer’s instructions. The extracted RNA was quantified using a 

Quantus Fluorometer (Promega, Madison, WI, USA). With a GoScript Reverse Transcription 

System (Promega) first-strand cDNA was synthesized. The PCR reactions were performed in 

a total reaction volume of 25 µL, consisting of 0.125 µL goTaq DNA polymerase (Promega), 5 

µL of 5 x goTaq buffer colorless (Promega), 1.25 µL dNTPs, 1 µL of each primer (5 µM), 

14.625 µL nuclease-free water (Promega) and 2 µL of the cDNA. The RPL3 sequence was 

picked up in two parts (p1 and p2) using following primers (5’-3’): GCACATCCACTTTCGTCAAG 

(p1_F), CTAGGATGCCATGCTCCAAT (p1_R), ACCAAGGGTCGTGGATACAA (p2_F) and 

CGCTGTGGCTTTCTCTTCTT (p2_R). PCR analysis was done with a Bio-Rad T100 Thermal Cycler 

and following thermocycle profile was used: 5 min at 95 °C followed by 35 cycles of 95 °C for 

30s, 59.7 °C (p1) or 60 °C (p2) for 20s and 72 °C for 60s. Finally 72 °C continued for 10 min 

and cooled down until 15 °C. The remaining product was purified using the E.Z.N.A. Cycle-

Pure Spin kit (VWR) and send to LGC Genomics for single sample DNA sequencing.  

4.2.4  Sample preparation and targeted LC-MS/MS analysis 

 

Individual mycotoxin solid standards (1 mg) of DON, 3-ADON, 15-ADON and DOM-1 (internal 

standard) were purchased from Sigma-Aldrich NV/SA (Bornem, Belgium). DON-3G (50.2 ng 

μL-1 in acetonitrile) was obtained from Biopure Referenzsubstanzen GmbH (Tulln, Austria). 

All mycotoxin solid standards were dissolved in methanol (1 mg mL-1), and were stored at -

18 °C. Working solutions of DON, 3-ADON, 15-ADON and DOM (10 ng μL-1) were prepared in 

methanol and stored at -18 °C, while DON-3G (50.2 ng μL-1) was dissolved in acetonitrile and 

stored at 4 °C. The targeted LC-MS/MS analysis was performed using a Waters Acquity UPLC 

system coupled to a Quattro Premier XE mass spectrometer (Waters, Milford, MA, USA) 

equipped with an electrospray interface in positive mode (ESI+). Following multiple reaction 

monitoring (MRM)-traces were monitored: DON (297>203.3 ; 249.4), 3-ADON (339.2>231.2 ; 

203.1), 15-ADON (339.1>137.1 ; 321.2) and DON-3G (476.1>248.6 ; 296.9). LC-MS/MS 

parameters are described in detail by De Boevre et al. (2012b). MassLynxTM version 4.1. and 
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QuanLynx® version 4.1. software (Waters, Milford, MA, USA) were used for data acquisition 

and processing. 

Aphid samples were collected, crushed and individually weighed in recipients. 

According to their weight, 500 ng g-1 of DOM internal standard (10 ng μL-1) was added. A 

matrix-matched calibration curve with a linear range of 0 ng g-1 to 1500 ng g-1 for DON, 3- 

ADON, 15-ADON and DON-3G with non-contaminated grain aphids was prepared. The 

reference standards were allowed to equilibrate for 15 min. An extraction with 1.5 mL 

acetonitrile/water/acetic acid (79/20/1, v/v/v) was performed, and the samples were 

vigorously vortexed for 1 min. The sample extract was centrifuged at 4307 g for 1 min, 

afterwards, the supernatant was collected in a small test tube using a glass Pasteur pipette 

with a bulb. This process was repeated twice. The organic mycotoxin-mixture was 

evaporated until dryness under N2 at 60 °C using the TurboVap® LV (Biotage, Dusseldorf, 

Germany), and redissolved in 150 μL of injection solvent (50/50 v/v, H2O/MeOH (95/5, v/v), 

0.1% of HCOOH + 10 mM of HCOONH4 [solvent A]; MeOH/H2O (95/5, v/v), 0.1% of HCOOH + 

10 mM of HCOONH4 [solvent B]). Finally, the redissolved sample was vortexed for 3 minutes, 

collected in an Ultrafree-MC centrifugal device (0.22 μm, Millipore, Bedford, MA, USA) and 

centrifuged for 10 minutes at 10,000 g. 

To confirm the presence of DON, 3-ADON, 15-ADON and DON-3G, two transitions 

between precursor and fragments were monitored. According to the Commission Decision 

of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of 

analytical methods and the interpretation of results (2002/657/EC, 2002), a system of 

identification points was applied to interpret the data (European Commission, 2002). The 

first criterion is that the relative retention time, relative to the internal standard DOM-1, 

should not exceed 2.5%. The second identification point involved that the relative 

abundance of both transitions should not exceed the range of 20% to 50%, depending on the 

relative intensity between the transitions. Also, all MRM-transitions should possess a signal-

to-noise (s/n) ratio higher than 3:1 (2002/657/EC, 2002). 

Statistical differences (P < 0.05) between concentrations of DON, DON-3G and total 

titer retrieved in aphids were analyzed by using One-way ANOVA post-hoc Tukey (SPSS 

Statistics 22). 
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4.2.5  Sample preparation and non-targeted LC-MSE analysis 
 

To an exact amount of the aphid sample (individually checked), 750 μL of extraction solvent 

acetonitrile/water/acetic acid (79/20/1, v/v/v) was added. Using a glass spatula, the aphids 

samples were crushed until a homogeneous mass was obtained. The spatula was rinsed with 

750 μL of extraction solvent. The organic mixture was vigorously vortexed for 1 minute. 

Next, the sample was centrifuged at 4307 g for 1 minute. The obtained supernatant was 

transferred into a small test tube. To extract the maximum amount of mycotoxins, 1.5 mL of 

extraction solvent was additionally added to the centrifuged residue. The vortex and 

centrifugation step were repeated, and the remaining supernatant was transferred into the 

same test tube. The organic mycotoxin-mixture was evaporated until dryness under N2 at 60 

°C using the TurboVap® LV (Biotage, Dusseldorf, Germany). The residue was redissolved with 

150 μL of MeOH/CAN/H2O (30/30/40, v/v/v) and centrifuged in a Ultrafree®-MC centrifugal 

device (0.22 μm) for 5 minutes at 14,000 g. 

DON and its derivatives (DON-3G, 3-ADON, 15-ADON, DON-GSH, DON-diglucosides, 

DON-triglucosides and DON-tetraglucosides) were investigated using UPLC/QTOF-MS with 

the MSE data acquisition strategy. The LC instrument used was an Acquity UPLCTM system 

(Waters Milford, MA, USA) with a ZORBAX RRHD Eclipse Plus C18 (1.8 μm, 2.1 x 100 mm) 

from Agilent Technologies (Diegem, Belgium). The mobile phase consisted of H2O/MeOH 

(95/5, v/v) containing 0.1% of HCOOH and 10 mM of HCOONH4 [solvent A] and MeOH/H2O 

(95/5, v/v) containing 0.1% of HCOOH and 10 mM of HCOONH4 [solvent B]. The following 

gradient elution program was applied: 0-0.5 min: 0% B, 0.5-20 min: 0-99% B, 20-21 min: 99% 

B, 21-24 min: 0% B, 24-28 min: 0% B. The flow rate was 0.4 mL min-1. The column 

temperature was set at 30 °C, and the temperature of the autosampler was 10 °C. Five μL of 

the sample was injected. Instrument control and data processing were carried out by 

MassLynxTM version 4.1. software (Waters, Milford, MA, USA). The Q-TOF MS instrument 

used was a Synapt G2-Si MS system (Waters, Milford, MA, USA). The data acquisition mode 

was TOF MSE in ESI+ mode. The data acquisition range was from 50 Da to 1200 Da with a 0.1 

s scan time. The MS source temperature was set at 150 °C, and the desolvation temperature 

was set at 500 °C with a desolvation gas flow set at 800 L h-1 and a cone gas flow at 100 L h-1. 

The capillary voltage was 2.8 kV and the sampling cone voltage was 30 V. The collision 

energy was set as 45 eV - 60 eV ramp (trap) for the high-energy scan. Data was collected in 
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continuum mode and the mass was corrected to ensure accuracy during the MS analysis 

after acquisition using leucine enkephaline (200 pg μL-1) at a flow rate of 100 μL min-1 as lock 

mass compound. HRMS data were processed using MassLynxTM and compounds were 

identified after applying lockspray correction, extracting the chromatogram and generating 

the molecular formula from the exact mass. 

4.3  Results 

4.3.1  Survival of S. avenae and A. pisum upon exposure to DON 

 

S. avenae and A. pisum aphids were fed for 3 days on a diet containing different 

concentrations of DON (0, 0.5, 1, and 3 mg L-1) using an aphid feeding apparatus. The 

survival of S. avenae aphids was not affected by DON up to concentrations of 3 mg L-1 

compared to the control, while survival of A. pisum aphids was significantly reduced. The 

lowest concentration of 0.5 mg L-1 DON significantly reduced the survival rate of A. pisum 

(Table 4.1 part 1). As we wanted to assess the tolerance of S. avenae more in detail, we 

exposed both aphid species to a concentration of 100 mg L-1 DON for 3 days. Remarkably 

43% ± 8 of the S. avenae aphids survived this dose while for the A. pisum aphids survival 

rates dropped to 4% ± 2. 

 

Table 4.1 Percentage survival of S. avenae aphids and A. pisum aphids feeding from diet 

containing different concentrations of deoxynivalenol (DON) and 

deoxynivalenol-3-glucoside (DON-3G). Different letters indicate significant 

differences (P < 0.05) between treatments using a two-sided non-parametric 

Kruskall wallis test followed by a Dunn’s for pairwise comparisons. Standard 

errors are indicated in the tables. 

  
  

Sitobion avenae Acyrthosiphon pisum 
  

control   97 ± 3 a 100 ± 0 a 

DON 

0.5 mg L-1 93 ± 3 a    62 ± 6 bc 

  1 mg L-1 93 ± 2 a  48 ± 9 c 

  3 mg L-1 93 ± 4 a    50 ± 11 c 

DON-3G 

0.5 mg L-1 88 ± 6 a    88 ± 5 ab 

   1 mg L-1 89 ± 5 a    96 ± 2 ab 

   3 mg L-1 81 ± 7 a    88 ± 6 ab 
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4.3.2 Involvement of RPL3 in the tolerance of S. avenae to DON 

 

Previous research has reported on increased tolerance to DON by amino acid modifications 

in the RPL3 protein which is the target of DON. The nucleotide sequence of the gene 

encoding for RPL3 of S. avenae and A. pisum was sequenced. After converting the nucleotide 

sequence to amino acids, no differences were found between the RPL3 sequence of S. 

avenae when aligned with 60S RPL3 of A. pisum (NCBI Reference Sequence: 

XP_001951042.1). The typical amino acid changes observed in Saccharomyces cerevisiae 

which were associated with DON tolerance were not reported in any of the aphid species. 

From experiments with transformed plants, it is known that an eventual modified DON 

insensitive RPL3 protein can be present heterozygously. In this case, the insensitive RPL3 

protein is not used by the translation machinery in the presence of the native RPL3 protein 

due to a lower affinity of the mutant RPL3 for the ribosome assembly factor Rrb1p. In this 

scenario, the mutant RPL3 protein only accumulates when organisms are gradually exposed 

to DON which allows the mutant RPL3 to push out the native RPL3 protein (Mitterbauer et 

al., 2004). In order to investigate whether a similar adaptation mechanism was present in A. 

pisum aphids, they were exposed to an increasing concentration of DON in a time-lapse 

experiment. However, feeding A. pisum aphids with increasing concentrations of DON during 

a longer period of time did not result in an increased survival (Fig. 4.2). As expected, the 

survival of S. avenae was not negatively influenced by increasing DON concentrations. 
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Fig. 4.2  Long-term survival of S. avenae aphids (left) and A. pisum aphids (right) (means ± SE) feeding from diet containing 

concentrations of deoxynivalenol (DON) that increased every two days (from 0, 0.25, 0.5, 1, 3 up to 5 mg L-1). Significant 

differences (P < 0.05) between treatment and control using one-sided t-tests are depicted with an asterisk. The purple line 

indicates the mortality of the aphids relative to the surviving fraction at each time point. 
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4.3.3 Conversion of DON to DON-3G in aphids results in a detoxification  

 

In order to get an insight into the ability of the aphids to detoxify DON, aphids fed on 100 mg 

L-1 of DON in an aphid feeding apparatus. In the control aphids which fed on artificial diet 

only, no DON or DON derivatives were detected. In the artificial diet amended with 100 mg 

L-1 DON, we found 99.37 ± 0.83 mg L-1 DON illustrating that DON was not chemically 

degraded in the feeding apparatus during the course of the experiment. Using a targeted 

liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approach, aphids 

which were exposed to DON were analyzed for DON (limit of detection (LOD), 45 μg kg-1; 

limit of quantification (LOQ), 89 μg kg-1), DON-3G (LOD, 34 μg kg-1; LOQ, 67 μg kg-1), 3- and 

15-acetyldeoxynivalenol (3-ADON: LOD, 47 μg kg-1; LOQ, 94 μg kg-1) and 15-ADON (LOD, 33 

μg kg-1; LOQ, 67 μg kg-1).  

Remarkably, DON-3G, a type II-conjugate of DON that is normally solely reported in 

plant detoxification pathways, was detected. Moreover, there was a clear difference in the 

metabolization efficiency between both aphid species. The S. avenae aphids which were 

shown in Table 4.1 to be tolerant to DON and efficiently converted DON to DON-3G, 

whereas in A. pisum only 55% of the total DON titer consisted of DON-3G (Fig. 4.3). In view 

of these results, the toxicity of DON-3G in aphids was assessed by dietary exposing both S. 

avenae and A. pisum to DON-3G concentrations of 0.5 mg L-1, 1 mg L-1, and 3 mg L-1. These 

experiments clearly demonstrate that DON-3G was no longer toxic for either of both aphid 

species (Table 4.1 part 2). 
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Fig. 4.3  Concentrations of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-

3G) and total titer (means ± SD, ng mg-1 aphid weight) retrieved in S. avenae 

and A. pisum aphids after two days feeding from artificial diet amended with 

100 mg L-1 DON. Different letters indicate significant differences (P < 0.05) 

between treatments using One-way ANOVA posthoc Tukey. 

 

4.3.4 DON-3G can be further metabolized: diglucosides of DON 

 

Using a non-targeted high resolution HR-MSE approach in the two aphid species fed with 

DON (100 mg L-1), we were able to pick-up DON-diglucosides, for which unfortunately 

reference standards are not available. Other possible conjugates such as DON-GSH which are 

known to be produced in other organisms as type II biotransformation products were 

investigated, however, we were not able to detect DON-GSH in any of the aphid samples. 

The DON-fed aphid samples were analyzed and discrepancies between aphid species were 

checked. Three peaks at retention times of 3.98 min, 4.25 min and 4.42 min were observed, 

corresponding to different structural isomers of DON-diglucoside (Fig. 4.4). For these specific 

retention times, the measured and theoretical masses were investigated via software-

analysis. The obtained molecular formula was C27H40O16Na+ with a mass of 643.2214 
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(theoretical) and 643.2202 (measured), resulting in a mass error of -1.9 ppm. The chemical 

structure of this diglucoside is proposed in Fig. 4.5. In addition, in view of the presence of 

DON-3G, we hypothesize here that the presence of the diglucoside form results from a 

sequential process in which the conversion of DON to DON-3G is the primary step. In order 

to understand the insertion of the glucose molecules of the three structural isomers, a study 

via nuclear magnetic resonance (NMR) is interesting but limited by the extremely small 

amounts that can be isolated from aphid samples. 

 

 

Fig. 4.4 The isomeric pattern of deoxynivalenol-diglucosides in pea aphid sample one 

of five (A) exposed to 100 mg L-1 deoxynivalenol (pea 100 A). 

 

 

 

Fig 4.5   Proposed chemical structure of deoxynivalenol-diglucoside. 
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4.4  Discussion   
 

The trichothecene DON is a sesquiterpenoid mycotoxin produced by several Fusarium 

species and is toxic for most eukaryotic cells. In the present study, we assessed the toxicity 

of DON for two aphid species: the English grain aphid S. avenae and the pea aphid A. pisum. 

Dietary exposure of both aphids to DON showed that S. avenae were tolerant to DON 

compared to A. pisum. To explain this unique difference in toxicity of DON between the two 

aphid species three hypotheses were verified.  

4.4.1 RPL3 is not involved in the tolerance of S. avenae to DON 

 

Firstly, we examined the amino acid sequence of the gene encoding RPL3, the target 

molecule of DON, in both aphid species. Trichodermin and other sesquiterpenoids of the 

same group are known inhibitors of the peptidyltransferase center of eukaryotic ribosomes, 

and thereby block protein synthesis (Carrasco et al., 1973, Barbacid & Vazquez, 1974). 

Research showed that RPL3 plays an essential role in the formation of this 

peptidyltransferase center (Fried & Warner, 1981, Schulze & Nierhaus, 1982, Meskauskas & 

Dinman, 2007). One of the resistance mechanisms to DON identified in yeast is the 

modification of this ribosomal target by amino acid changes in RPL3 (Mitterbauer & Adam, 

2002). Mitterbauer et al. (2004) used yeast as a model system to identify several mutations 

in the gene encoding RPL3 (e.g. W255C, a change of tryptophan into cysteine at position 

255), which confer resistance to trichothecenes, in particular to DON. However amino acid 

sequence of S. avenae’s RPL3 showed none of these mutations. In addition, no functional 

aberrations were observed between the amino acid sequence of RPL3 from S. avenae and 

the predicted RPL3 from A. pisum. Amino acids at places 190 and 382 are valine (V) for A. 

pisum, but isoleucine (I) for S. avenae, however, when comparing the chemical structure of 

these two amino acids we assume this cannot explain the better survival of S. avenae in 

presence of DON compared to A. pisum. Not the whole nucleotide sequence of S. avenae’s 

gene encoding for RPL3 was picked up, leaving seven amino acids undetermined at the end. 

As our sequencing data of the RPL3 of S. avenae did not show the mutations as reported to 

be reason for tolerance in yeast, we believe that we can conclude that the target of DON, 

the gene encoding RPL3, is not the reason of the tolerance in grain aphids.  
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Secondly, we investigated the hypothesis of Mitterbauer et al. (2004) stating that 

organisms might be heterozygous for the RPL3 locus. In this hypothesis, native ribosomes 

originating from one allele could be preferentially dismantled and degraded in vivo upon 

DON exposure, so that in turn the remaining fraction of resistant ribosomes on the second 

allele could allow the synthesis of new ribosomal proteins, eventually leading to a higher 

steady-state level of modified RPL3 protein in ribosomes. This hypothesis was validated by 

these researchers (Mitterbauer & Adam, 2002) via integrating an engineered tomato RPL3 

containing mutations of yeast RPL3 in tobacco which resulted in an adaptation but not in a 

constitutive tolerance against DON pointing to the semi-dominant nature of this tolerance. 

The aberrant RPL3 protein (rendering tolerance to DON) was not utilized when wild-type 

RPL3 protein was present, unless the yeast transformants or the transgenic tobacco plants 

were challenged with sub-lethal amounts of DON. Indeed, after toxin treatment in a dose-

dependent manner, they noticed an accumulation of the modified protein due to the 

selection pressure in the presence of DON (Mitterbauer et al., 2004). We investigated this 

hypothesis also with our two aphid species in an experimental setup where we fed the 

aphids increasing DON-concentrations over a longer period of 2 weeks. However, we did not 

detect any augmented tolerance especially not in the A. pisum aphids when gradually 

exposed to increasing DON doses.  

 

4.4.2 Aphids convert DON into the less toxic DON-3G  

 

Finally, we investigated whether DON was subject to a type II biotransformation process in 

aphids. Remarkably, we were able to demonstrate the presence of DON-3G in both aphid 

species. Moreover, the tolerant S. avenae species converted DON to DON-3G more 

efficiently than the susceptible A. pisum species. To our knowledge, this is the first time that 

the conversion of DON to DON-3G is reported in animal species. To date, DON glucosylation 

has solely been reported in plant cells. In plants, a vast number of genes that code for 

putative UDP-glycosyltransferases (UGTs) has been revealed (Berthiller et al., 2013). In 

barley and Brachypodium distachyon, genes from the UGT family with potential relevance 

for DON tolerance have functionally been characterized (Schweiger et al., 2010, Schweiger et 

al., 2013). Although DON glucosylation has never been reported in animals, genes encoding 
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for UGTs are known to be present in insects. They catalyze the conjugation of a range of 

diverse small lipophilic compounds with polar compounds (i.e. carbohydrates) to produce 

glucosides, and as such they play an important role in type II detoxification processes of 

xenobiotics in insects (Ahn et al., 2012). However, the presence of these UGTs have never 

been linked with mycotoxin glucosylation.  

 

Although we provide valuable evidence for a role of glucosylation in DON detoxification in 

aphids, several other detoxification enzymes have been described in aphids for coping with 

xenobiotics (e.g. secondary compounds of the plant or insecticides); examples are 

cytochrome P450 mono-oxygenases (P450s), glutathion-S-transferases, esterases and 

oxidoreductases (Figueroa et al., 1999, Cai et al., 2009, Castaneda et al., 2009, Lu & Gao, 

2009, Castaneda et al., 2010, Zhang et al., 2013). Some of these enzymes are known to be 

involved in the detoxification of mycotoxins (Gardiner, SA et al., 2010). With the use of 

piperonyl butoxide (PBO), a known P450 inhibitor, it was evidenced that P450s (phase I 

detoxification enzymes) were involved in bioactivation of aflatoxin B1 (AFL B1) produced by 

Aspergillus spp. by corn earworms Helicoverpa zea (Zeng et al., 2006). In contrast, P450s in 

honeybees (Apis mellifera) are able to detoxify ALF B1 (Niu et al., 2011). In some animal 

species P450s are responsible for bioactivation of these compounds, catalyzing the 

epoxidation of the terminal furan ring of AFL B1 resulting a highly genotoxic metabolite. Its 

toxicity originates from its ability to bind to DNA, RNA and proteins (Lequesne, 1983, Iyer et 

al., 1994, McLean & Dutton, 1995, Wild & Turner, 2002). In others, P450s metabolize AFL B1 

to hydroxylated metabolites, including AFL M1 and AFL Q1, that have lower genotoxic or 

toxic activities than AFL B1 (Eaton et al., 1988, Ramsdell & Eaton, 1990). Also 

conjugation of ALF B1 to glutathione (mediated by glutathione S-transferase) is regarded 

as an important detoxification pathway in animals. Resistance to AFL B1 toxicity has been 

interpreted in terms of levels and activities of these detoxifying pathways (McLean & 

Dutton, 1995).  

 

To elaborate, a possible involvement of multiple detoxification mechanisms in the aphids of 

this study cannot be excluded. It is possible that other degradation products of DON were 

present in the aphid bodies, but that were not (yet) discovered.  
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4.4.3 Formation of DON-diglucosides from DON-3G 

 

Using a non-targeted HR-MSE approach, we were able to detect DON-diglucosides (via HR-

MSE) in both S. avenae and A. pisum aphids. To date, the only report on the presence of 

DON-diglucosides was in beer; oligoglucosylated DONs with up to four bound hexose units 

were present (Zachariasova et al., 2012). Remarkably, although detoxification of DON 

through conjugation with glutathione (DON-GSH) has been observed in plants (Gardiner, SA 

et al., 2010, Kluger et al., 2013) and in many animal species (Wen et al., 2016) no glutathione 

derivatives of DON were observed during the HR-MSE analyses of our aphid samples.  

4.4.4 DON detoxification as a possible result from co-evolution 

 

The question remains why S. avenae is able to convert DON to DON-3G more efficiently than 

A. pisum. Insights might come from the knowledge that S. avenae occurs on cereal ears 

which are often colonized by Fusarium spp. producing DON while A. pisum occurs on plant 

species that are no hosts for DON producing Fusarium spp. It is remarkable that A. pisum 

although it disposes of a very large arsenal of UGTs compared to other insects (Ahn et al., 

2012), does not convert DON efficiently to DON-3G which points to the substrate specificity 

of these enzymes. Consequently, we might speculate on adaption by co-evolution in S. 

avenae. It has been reported before that insects are capable to develop tolerance when 

exposed to a toxin over many generations. Drosophila melanogaster larvae which were 

exposed to Aspergillus nidulans over 26 generations displayed higher survival rates in the 

presence of A. nidulans and a higher tolerance to the mycotoxin sterigmatocytin (i.e. an 

aflatoxin precursor) compared to control lines (Trienens & Rohlfs, 2011).  

Finally, it is tempting to argue on the origin of the glucosyltransferase in aphids. 

Although we do not provide firm evidence in the present study, one of the possibilities of 

acquiring this specific glucosyltransferase is through horizontal gene transfer. Indeed this 

idea is realistic as the gene encoding for the enzyme to detoxify the toxic hydrogen cyanide 

that is a plant defense toxin, has also been horizontal transferred so that plant feeding mites 

can survive (Wybouw et al., 2014). This might explain why it has never been encountered in 

higher animals. We believe our study increases the awareness of the importance of laterally 

transferred genes in the genomes of higher organisms. 
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Contributions: 

(Non)targeted analyses were done by Department of Bioanalysis, Laboratory of Food 

Analysis 
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Chapter 5:  
 

Discussion and future perspectives 
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5.1 Introduction to the tripartite pathosystem 
 

When pathogens and herbivores inhabit the same niche on a plant they can interact. These 

interactions are called tripartite as they involve three parties. In this thesis we focused on 

the grain aphid Sitobion avenae and the pathogen Fusarium graminearum, who both live on 

the ears of wheat Triticum aestivum. F. graminearum is a well-known toxigenic fungus which 

produces the mycotoxin deoxynivalenol (DON) as a virulence factor during its infection of 

the wheat ear (Bai et al., 2002, Langevin et al., 2004, Jansen et al., 2005). S. avenae are 

aphids that feed from the phloem sap in the ears (Kehr, 2006). 

 

5.2 Aphids smooth the path for F. graminearum 

 

Cereal aphids infest wheat plants soon after emergence. S. avenae are known to be ear-

feeders and rapidly move from the leaves to the ears when ears emerge (Wratten, 1975, 

Watt, 1979). At this moment they feed from the phloem sap of the ears and initiate plant 

responses. In order to establish a long-term interaction with the plant, the aphids must avoid 

or even suppress this response (Tjallingii, 2006). In chapter 2, we studied the response in 

wheat ears after an attack by aphids during a time period of twelve days using 

quantitative real time polymerase chain reaction (RT-qPCR) analysis (De Zutter et al., 2016a). 

We demonstrated that genes involved in early steps of defense gene activation were not 

upregulated. Indeed, it is suggested that aphids are able to suppress or avoid activation of 

potentially effective plant defensive machinery to allow optimal feeding from the plants 

phloem sap (Zhu-Salzman et al., 2004, Walling, 2008, Elzinga et al., 2014). Several other 

genes (e.g. pathogenesis-related (PR) genes) were induced upon aphid attack, but only for a 

short period of time. At the moment of anthesis, F. graminearum infects the ears of wheat 

as well. From this moment on, both the grain aphids and the pathogen live together on 

wheat ears. Infection with solely F. graminearum showed a typical sensitive plant response. 

Remarkably, genes that were upregulated during aphid attack, showed clear overlap with 

genes typically induced during successful infection with F. graminearum. It is known that 

insects are able to deceive the plant (triggering non-effective defenses) in order to enhance 

their success on host plants. The defense genes in ears that were infected with aphids and F. 
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graminearum together, showed earlier and/or enhanced transcription after exposure to 

both aphids and Fusarium compared to a sole Fusarium infection. We cannot directly link 

these enhanced expressions to the aphids but it seemed that if plant genes were already 

upregulated previously (because the plants were deceived by the aphids), they were able to 

react faster/better to a subsequent Fusarium attack. 

It must be highlighted that we only tested a small number of defense genes that are 

considered hallmarks of defense responses in wheat. This gives us a general though limited 

view on the plant response in wheat ears. A whole genome approach using a micro-array or 

RNAseq analysis to measure expression levels of large numbers of genes simultaneously 

might be a valuable more holistic approach.  

Moreover, it is important to highlight that in this chapter, solely gene expression was 

considered. There are many posttranscriptional processes that might affect the outcome of 

changes in gene expression. Measurement of enzymatic activity or monitoring accumulation 

of end products are additional techniques that can be included in future work. We can 

exemplify this by the observed induced expression of NADPH oxidase genes. This result 

suggests that H2O2 is formed and thus might play a role in this interaction. However, there 

are many enzyme activities involved in H2O2 formation such as NADPH oxidases, superoxide 

dismutases, catalases and peroxidases all influencing the resulting H2O2 concentration. 

Moreover, the end product itself H2O2 might also be monitored using NBT (nitro blue 

tetrazolium) or DAB (diaminobenzidine) staining procedures. 

Finally, it is known that both insects and pathogens influence the primary metabolism 

of plants. This has been demonstrated for F. graminearum (Audenaert et al., 2014) but also 

for aphids. These changes in primary metabolism upon pathogen attack have been 

elaborated for the N-metabolism in several model systems (Seifi et al., 2013). For F. 

graminearum it has been shown that upon infection, arginine and polyamines which are in 

turn triggers for DON biosynthesis pointing to the fact that the pathogen hijacks the plants 

primary metabolism to its benefit. Also in the interaction of plants with aphids, the amino 

acid (AA) metabolism has been shown to be involved. Changes in the plant’s AA composition 

can alter the fitness of S. avenae. Changes to AA composition of plants have already been 

suggested as a mechanism behind the altered fitness of Euceraphis betulae aphids on birch 

leaves infected with Marssonina betulae (Johnson et al., 2003) and Aphis fabae aphids when 

feeding on bean plants infected with Botrytis fabae (Zebitz & Kehlenbeck, 1991). Further 
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studies should investigate the aphid’s honeydew to get a clue about the host plant AA 

composition (Leroy et al., 2011). 

 

5.3  The induced plant defense response by aphids triggers 
the toxic secondary metabolism in F. graminearum 

 

In present study we could confirm findings of Drakulic et al. (2015) demonstrating more 

symptoms and increased production of DON by the fungus when ears were predisposed to 

aphids. However, we also found higher concentrations of DON derivatives, namely DON, 3-

acetyl deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol (15-ADON). In search for an 

explanation of these increased DON levels, which could not be attributed to a higher fungal 

biomass in ears exposed to both Fusarium and aphids, we hypothesize that NADPHOX 

induction results in the biosynthesis of H2O2. H2O2 is known to induce DON production once 

the fungus becomes necrotrophic (Ponts et al., 2006, Audenaert et al., 2010, Audenaert et 

al., 2014). This could explain the higher DON concentrations demonstrated in ears 

containing both aphids and F. graminearum compared to ears without aphids. Higher 

contents of DON in wheat ears can lead to serious problems regarding human and animal 

health. It is advisable for farmers to intervene timely when aphids are being spotted before 

the crucial flowering period. Moreover, 3-ADON and 15-ADON are two metabolites of 

particular importance as they augment the total DON titer in the plant and as they also 

display toxic effects to eukaryotic cells. From a legislative point of view, they are of particular 

interest as there are no maximum threshold concentrations yet but the European 

commission is gathering data on an eventual extension of the DON-legislation with these 

DON derivatives.  

 

5.4  Grain aphids are adapted to living in proximity of DON 
producing fungi 

 

As we observed high concentrations of DON in ears co-infected with aphids and F. 

graminearum, we contemplated on an eventual detrimental effect of DON on S. avenae who 

are feeding from the phloem sap in the Fusarium-infected ears. In our experiments, we 
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noticed that after 6 and 12 days of co-inhabiting the ears together with F. graminearum, 

aphid populations dropped. This could have two reasons: first, DON is toxic for the aphids 

(see chapter 3) and when the disease worsens the concentrations of DON in the phloem rise, 

and second, when F. graminearum colonizes the ear, the ear bleaches and sap streams shut 

down, leaving the aphids without food. Because we demonstrated in chapter 4 that grain 

aphids are able to efficiently (approximately 80%) convert DON into the less toxic DON-3-

glucoside (DON-3G) we think that toxicity of DON is not the limiting factor for aphid growth. 

In this context we must mention that a population of aphids was tested for DON derivatives 

inside their bodies, containing adults and nymphs. This means that we don’t know if aphids 

in different developmental stages have different converting efficiencies. We therefore 

believe that the second hypothesis (no sap stream and thus starvation) is an explanation for 

the decreasing aphid population at later time points. However, it is obvious that under 

natural conditions (in the field) the aphids will get winged and move away from the diseased 

ears towards healthier ears. At this time point they will not act as a vector of fungal particles 

because experiments in the beginning of the whole research demonstrated that the aphid’s 

stylet is too narrow for internal uptake and their body to smooth for external uptake of 

particles (mentioned in ‘thesis outline and research hypotheses’). When moving towards 

other ears, we believe they show no preference for F. graminearum infected ears (De Zutter, 

unpublished data). In contrast, other studies evidenced attraction or repellence of cereal 

insects (e.g. cereal leaf beetles Oulema spp.) to volatiles emitted by Fusarium infected 

cereals (Piesik et al., 2011a, Piesik et al., 2013). Drakulic et al. (2015) showed that 2-

pentadecanone produced by ears containing F. graminearum symptoms were repellent for 

S. avenae. As we didn’t see such a repellency in our study, we suggest that this volatile is 

only produced after symptom development. Our ears were not yet symptomatic when 

exposed to the aphids. This could mean that 2-pentadecanone is not a reliable component 

for early detection of F. graminearum infection. Probably, symptomless ears or ears with 

beginning symptoms do not yet trigger the aphid’s preference behavior by avoiding poor 

quality hosts. Under field conditions, no significant differences were found in choice 

behavior of the aphids. This implicates that S. avenae was not attracted nor repelled by the 

treatments. Their response was ‘neutral’. Probably, in our experiment external factors like 

wind could dilute the volatiles produced by ears with beginning disease symptoms, and 

thereby negate the aphid’s response. Further studies should elucidate the volatile blend 
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emitted by symptomatic ears and response by S. avenae aphids in a time-dependent 

manner. Moreover, because pathogen-induced plant volatiles can affect the behavior of 

herbivorous insects and discourage infestation, it would be interesting to explore this 

mechanism as a potential aphid control or prevention strategy in agriculture. After landing 

on a potential host, aphids probe the plant several times before deciding to accept or reject 

it. As severely Fusarium-infected ears loose phloem sap stream, these ears are no longer a 

favorable site to linger (we noticed decreased aphid populations on totally diseased ears in 

chapter 2) and aphids scatter towards better and less diseased ears.  

To reveal the effect of DON on S. avenae aphids, we used aphid feeding apparatus to 

expose the aphids to different concentrations of DON (from 0 to 5 mg L-1). Concentrations 

found in wheat samples from fields all over Flanders (Belgium) fluctuate around 0.1-10 mg 

kg-1 DON (Audenaert et al., 2009, Isebaert et al., 2009, Landschoot et al., 2013). These 

concentrations are present in grains at harvest and thus do not necessarily represent nor 

concentrations in an infected ear nor concentrations in the phloem during the time period 

that aphids are feeding from the phloem sieve tubes. It is known that on the level of infected 

spikelets, DON concentrations can mount to 50–100 mg kg-1. It is not known which DON 

concentrations are present in the phloem during the moment that aphids are present on 

ears. However, it is tempting to calculate this based on some assumptions. If an aphid is 

feeding from a wheat spikelet (approximately 100 mg) containing 10 mg kg-1 DON, the aphid 

is exposed to 1 µg DON. In comparison, when the aphid is feeding from 200 µL artificial diet 

containing 5 mg L-1 DON, it is also exposed to that same amount of DON (1 µg). When 

feeding the aphids (starting from neonates) with the different DON concentrations we 

noticed that there was a detrimental effect on their survival, on their nymphal development 

and their reproduction. Indeed, in chapter 2 we demonstrated that aphid populations 

dropped on ears infected with F. graminearum. Further aims should delve into the 

determination of DON concentrations in the phloem of wheat ears during Fusarium 

colonization. This will reveal the (accumulating) concentration of DON to which aphids are 

exposed during feeding. Kang and Buchenauer (1999) already demonstrated that toxins can 

be translocated upwards through the xylem vessels and phloem sieve tubes, and downwards 

through the phloem sieve tubes. Aphids are known phloem-feeders. Concentrations of DON 

in the phloem could be determined by using stylectomy (i.e. cutting of the stylet of the 

phloem feeding insect and collecting the exudates (Gaupels et al., 2008)). To elaborate on 
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the limitation that in our experiments DON concentrations were checked inside aphids that 

were feeding from artificial diet with a known DON concentration (100 mg L-1) (chapter 4), 

further studies should analyze the aphid’s stylet when feeding from Fusarium-infected 

wheat ears, over a long period of time (from the moment of Fusarium infection until phloem 

sap stream is stalled). In addition, in future experiments honeydew from aphids feeding on 

DON (in artificial diet and on infected plants) can be collected although this approach will 

give only a limited view on DON concentrations in the phloem of infected ears because it 

was proven that aphids can convert DON into other derivatives (chapter 4). A similar 

approach was pursued in order to analyze sugars in the phloem: although the sugar 

composition of honeydew reflects the composition of the phloem sap, a number of other 

mono-, di-, and oligo-saccharides are also synthesized by the sap feeder (through the action 

of gut enzymes on plant derived sucrose) (Hendrix et al., 1992, Wackers, 2000, Sabri et al., 

2013).  

 

5.5  Effect of DON on a hypertrophic level: one insect's breath 
is another insect's death 

 

The detrimental effect of a long-term exposure to DON led us wonder what the effect would 

be on parasitoids living inside the aphid bodies. The experiment in chapter 3 is pioneering 

work. No other studies ever tried to elucidate the direct effect of mycotoxins on the survival 

of parasitoids inside the host. Other studies did examine the effect of a fungus-infected plant 

on parasitoids (Cardoza et al., 2003, Harri et al., 2008, van Nouhuys & Laine, 2008, Bultman 

et al., 2009) but could only draw indirect conclusions. For more direct evidence, we studied 

the effect of DON on successful parasitism of S. avenae aphids by the parasitoid Aphidius ervi 

(chapter 3). Survival of A. ervi wasps inside DON-contaminated aphids was deteriorated 

even though the females did not discriminate between DON-contaminated and 

uncontaminated aphids (De Zutter et al., 2016b).  

Aphids feeding from 3 mg L-1 DON were less likely to be successfully parasitized. 

Although their population size already dropped because of the negative effects of DON, the 

remaining aphids (tolerant to DON) would have higher surviving chances because there were 

also less likely to be successfully parasitized (detrimental effects of DON on parasitoid 
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developing inside DON-contaminated aphid). At this point they would now have a dual 

advantage (tolerance to DON + less parasitism by A. ervi) which they could possibly pass on 

to their next generations, especially aphids that are reproducing parthenogenetically 

(producing clones of themselves). Therefore, chapter 3 emphasizes the importance of 

mycotoxins in food chain contamination from the plant to insects and their natural enemies. 

Until today information on this issue remains scarce.  

Because we didn’t know what happened with DON inside the aphid bodies, and thus 

we didn’t know to which DON concentration or DON metabolites the parasitoid was exposed 

we performed targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and 

non-targeted LC-MSE analysis to detect DON derivatives inside the aphid’s bodies (chapter 

4). This revealed that S. avenae aphids could convert DON into DON-3G. Thus, when the 

parasitoid developed inside the aphid’s body, they came in contact with DON as well as 

DON-3G. Although we demonstrated in chapter 4 that DON-3G was indeed less toxic to S. 

avenae aphids than DON itself, but we do not know if this is also the case for A. ervi.  

In a higher trophic level, natural enemies (predators and parasitoids) feeding on or 

developing in contaminated herbivores can be directly exposed to secondary (fungal) 

metabolites or indirectly be affected by the host’s reduced growth. In contrast to predation, 

parasitoids kill their host only after the larval development is completed. During this 

interaction, the host’s immune system may prevent successful parasitism by encapsulating 

and killing the parasitoid eggs or larvae. This immune response can be reduced by the plant’s 

quality (Gols, 2014). For example, Pieris rapae hosts developing on cabbage (Brassica 

oleracea) plants with less secondary metabolites were able to encapsulate more parasitoids 

eggs compared to hosts on plants with high levels of secondary metabolites (Bukovinszky et 

al., 2009). In contrast, De Zutter et al. (2016b) showed that higher concentrations of the 

mycotoxin DON could have a negative impact on the endoparasitoid Aphidius ervi 

developing inside DON-contaminated S. avenae aphids through food chain contamination 

(see chapter 3). These studies demonstrate that secondary metabolites (no matter the 

origin) can affect the immune response of herbivores to parasitism. 
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5.6  Aphids convert DON via a plant-type of detoxification 
mechanism 

 

In chapter 4, we delved into the possible tolerance mechanisms that aphids can have against 

mycotoxins. More in particular, we reported on a unique observation that S. avenae, being 

an important insect pest of wheat, could tolerate higher DON concentrations than pea 

aphids Acyrthosiphum pisum, known to feed on legumes worldwide and under natural 

conditions never encounter DON.  

The effects of DON seemed to more detrimental to S. avenae aphids in the 

experiments in chapter 3 compared to the results in chapter 4. This can be explained by the 

experimental setup. In chapter 3 the aphids were exposed to DON from the moment they 

were born (neonates). In chapter 4 nymphs of different stages were exposed to DON and in 

long-term experiments they became adults. It is tempting to assume that the survival of 

DON is depending on the aphid’s age.  

Also in chapter 4, assessing the aphid’s tolerance mechanisms, we reported that S. 

avenae were more efficient in converting DON into its glucosylated form, DON-3G than A. 

pisum. This is a phase II biotransformation implying a covalent binding of more polar 

endogenous compounds with the mycotoxin. We described for the first time in the animal 

kingdom that plant-pathogenic aphids are able to convert DON into DON-3G. We could 

retrieve DON-3G by the use of targeted LC-MS/MS. Unfortunately, there are only standards 

available for some DON metabolites but not for all (e.g. not for DON-glutathione (DON-GSH)) 

and this limits the study. As a result, we also conducted non-targeted analysis that detected 

DON-diglucosides in the insects, probably as a result of a sequential multiple glucosylation 

reaction. Earlier analyses of aphids fed with 1 and 10 mg L-1 DON did not detect DON. 

Probably the DON concentrations were lower than the limit of detection. Therefore, we 

performed the experiment again with the unusual high concentration of 100 mg L-1 DON, 

since it was the purpose to investigate if the aphids could convert DON into other derivatives 

(whether or not less toxic). In this experiment we were also unable to detect DON-GSH. 

There is a possibility that the concentration of this metabolite (or others) was also beneath 

the limit of detection. DON-GSH has already been observed in plants (Gardiner, SA et al., 

2010, Kluger et al., 2013) and in many animal species (Wen et al., 2016). 

Future studies should further elucidate which DON derivatives are present inside the 
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aphid’s body. We reported on DON-3G and DON-diglucosides but there can be other DON 

derivatives inside the aphids that are not yet discovered. In addition, examining the aphid’s 

honeydew (Hogervorst et al., 2007, Sabri et al., 2013) can help with the identification of the 

enzyme mechanisms behind tolerance to DON. Revealing such mechanisms can provide us 

insights into how aphids or other insects adapt to changing environments and food sources.  

Results in chapter 4 suggested a co-evolutionary adaptation of S. avenae to DON but 

this is a hypothesis and also needs further exploration. Although it has not (yet) been 

demonstrated for trichothecenes, it is possible that over many generations insects develop a 

certain tolerance when exposed to a toxin. This is the case for Drosophila melanogaster 

larvae which were exposed to Aspergillus nidulans over several generations. They became 

less susceptible to the mycotoxin sterigmatocytin (Trienens & Rohlfs, 2011). We hypothesize 

the possibility of an adaptation of S. avenae to DON through co-evolution, resulting in aphids 

with an increased tolerance to DON by evolving toxin-tolerating metabolic mechanisms. 

Future research should focus on a comprehensive analysis of genes encoding for UDP-

glucosyltransferase (UGTs) present in S. avenae grain aphids and search for potential 

horizontal transfers of UGT genes from e.g. endosymbionts to the aphid.  

S. avenae aphids used in the experiments were not all originating from the same 

stock culture (new cultures were regularly purchased). It is possible that the cultures of 

obligate bacteria like Buchnera - that are essential for the survival of the aphids - were 

varying between the aphid stock cultures. We do not think that this had an impact on the 

results of the experiments, because the biological observations were very consistent 

throughout the four research years, especially when looking at aphid survival.  

Still, another interesting hypothesis that was not addressed in this PhD thesis is the 

role of endosymbionts in the detoxification of DON inside aphids. There are several 

categories of endosymbionts inside aphids. The primary symbionts (Buchnera aphidicola in 

aphids) consists of obligate mutualists required to support normal host development (supply 

nutrients to hosts). They are typically restricted to a specialized organ, called a bacteriome. 

The facultative (or secondary) symbionts are able to invade various cell types, including 

reproductive organs, and may reside extracellularly in the hemolymph. These facultative 

symbionts consist of two categories. The first ones are the facultative mutualist who provide 

fitness benefits to their hosts by allowing the hosts to live longer and reproduce more. As a 

result, there are increasing frequencies of mutualists in the infected hosts. The benefits for 
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the insects include protection against natural enemies, heat or other mortality factors. In 

aphids they are represented by Hamiltonella defense, Regiella insecticola and Serratia 

symbiotica. The second facultative category are the reproductive manipulators: parasites 

that spread by increasing host reproduction through daughters at the expense of 

reproduction through sons. In many arthropods Cardinium hertigii and Wolbachia species 

are present (Moran et al., 2008). One of the major differences between obligate and 

facultative symbionts is that obligate symbionts show no horizontal transfer compared to 

the facultative symbionts who show horizontal transfer within and between host species 

(Moran et al., 2008). For example, the pea aphid A. pisum acquired genes from bacteria via 

lateral gene transfer and these genes are used to maintain the obligately mutualistic 

bacterium, Buchnera (Nikoh & Nakabachi, 2009, Richards et al., 2010). These functional 

genes in A. pisum were acquired from bacteria other than its primary endosymbiont B. 

aphidicola (Nikoh et al., 2010). The horizontal DNA transfers from Wolbachia to different 

insect species are described (Nakabachi, 2015).  

Although it has not (yet) been demonstrated that endosymbiotic bacteria inside 

aphids can contribute to detoxification of mycotoxins or horizontal transfer of certain genes 

from bacteria to aphid can contribute to detoxification, it would be an interesting future 

research line. Mycotoxin-degrading bacteria have already been isolated from agricultural 

soils (Shima et al., 1997, Islam et al., 2010), infested plant material (Sato et al., 2012) and 

animal digestive tracts (Binder et al., 1997, Guan et al., 2008, Guan et al., 2009, Berthiller et 

al., 2011, Meca et al., 2012). But the effect of DON on obligate or facultative endosymbionts 

is to our knowledge until today not known.  

 

5.7  Aphids transmitting viruses can impact the tripartite 
interaction 

 

The tripartite interaction (plant-insect-fungus) can possibly also be affected by the aphids 

that are able to carry and transmit viruses. Most research conducted over the past years has 

deepened into vectoring of viruses by herbivores. This brought forward a classification 

according to their mode of transmission. Persistently transmitted viruses require the vector 

upon feeding on the infected host for several hours before acquiring the virus for life and 
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dispersing it to new healthy hosts. Non-persistently transmitted viruses are incorporated in 

seconds or minutes upon feeding on the infected host but do not retain by the vector for 

more than a few hours. Semi-persistently transmitted viruses are vectored by a transmission 

mode in between the former two (Gray & Banerjee, 1999, Mauck et al., 2012). For example, 

barley yellow dwarf virus (BYDV) is persistently vectored by cereal aphids R. padi (Jimenez-

Martinez et al., 2004b) and S. avenae (Fereres et al., 1989, Liu, XF et al., 2014). Leaf hoppers 

Graminella nigrifrons (Hemiptera: Cicadellidae) transmit maize chlorotic dwarf virus in a 

semi-persistent manner (Childress & Harris, 1989). Host selection behavior of vectors can 

change after the acquisition of a virus. R. padi aphids vectoring BYDV preferred non infected 

wheat plants after acquiring the virus while non infective aphids preferred infected wheat 

plants (Ingwell et al., 2012). Perception of BYDV infected plants by aphids was influenced by 

volatile cues (Jimenez-Martinez et al., 2004a). In general we can hypothesize that virus-

infected aphids can affect the tripartite interaction. Not only does their preference for 

certain plants change, it is also known that the physiology of a plant is greatly affected by 

viruses. This can, on its turn, result in a differential colonization by fungi. For example, the 

barley stripe mosaic virus causes chlorosis, leaf curling and growth inhibition in wheat. The 

symptoms are accompanied by induction of defense genes implicated in the defense against 

pathogens, namely PR1, PR4, PR5, PR10 and PAL. Inoculation of wheat with the virus 

resulted in decreased susceptibility against the blast pathogen Magnaporthe oryzae due to a 

reduction in penetration of epidermal cells and cell colonization but did not affect the 

development of Blumeria graminis f. sp. tritici (powdery mildew) (Tufan et al., 2011). Further 

research should also investigate the role of viruses (e.g. BYDV) in the tripartite interaction 

between aphids and F. graminearum on wheat . 

 

5.8 The conclusion  

 

In conclusion, this thesis emphasizes the importance of studying interactions with other 

organisms developing on the same plant part in order to gain knowledge about the 

epidemiology of each and every individual participator, herbivore or pathogen. The dynamic 

three-way interactions of insects, pathogens and plants can constantly change and can be 

subject to influences from the environment like the weather. Further research on these 
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unique complexities is necessary to provide more insights into the cereal’s ecosystem. This  

research should tend towards a time-specific approach. Through the growing season of 

wheat, the interactions between pathogens and insects can change. The tripartite 

interaction in this thesis started at anthesis (= infection period of Fusarium head blight 

(FHB)), where the wheat response towards Fusarium infection was altered by aphids that 

were already feeding from the ears. When feeding from infected wheat ears, the aphids are 

indirectly able to modulate epidemiology of F. graminearum through activation of host plant 

responses. A structural insight into tripartite interactions is warranted to acquire a 

comprehensive view of the array of defenses that wheat can use against fungal and insect 

invaders. While aphids can provide a benefit for the fungus, the fungus creates a detrimental 

environment for the aphids, either directly by the production of toxic DON or indirectly by 

turning ears in a unfavorable environment (lack of nutritional value for the aphids). 

Increasing concentrations of DON during disease development did not only impact the 

performance of the aphids, but also the parasitoids developing inside the aphids. On high 

concentrations of DON S. avenae experience negative effects on their performance, but are 

still more tolerant to the mycotoxin than pea aphids due to the reason (and possibly other 

reasons that we don’t know about) that they were able to convert DON into DON-3G more 

efficiently. Aphids developed tolerance mechanisms to cope with this toxin, probably due to 

generations of co-existence. Future experiments investigating tripartite interactions should 

contain such a time lapse principle (from the moment one of the two organisms interact 

with the plant till the time both pathogen and insect go their separate ways (or one or the 

other dies)). Further research on these unique complexities is necessary to provide more 

insights into the cereal’s ecosystem. Moreover, little work has been done to evaluate the 

potential role of insects in FHB epidemiology while cereals are growing in the vegetative 

stage. 

Beside the interactions between wheat ears, cereal aphids S. avenae and the toxin 

producing pathogen F. graminearum, many other tripartite interactions are present in 

cereals (and other crops) that still remain to be uncovered. For example, on wheat leaves an 

interaction between cereal aphids Metopolophium dirhodum (the rose-grain aphid) and 

Septoria spp. (causing septoria leaf blotch) can occur. Other organisms with other feeding 

mechanisms (chewing insects instead of piercing-sucking insects and biotrophic pathogens 

instead of hemibiotrophic or necrotrophic pathogens) probably result in totally different 
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interactions with different outcomes and results. This makes the research of investigating 

three (or four in case of parasitoids) organisms at once interesting and intriguing.  

 If we take human impact or climate change into account when studying these 

interactions the experiments and possible outcomes become unlimited as these interactions 

are continuously subject to changes (the life and performance of each organisms on its own 

can be changed and on their turn impact the interaction). This broadens the research topic 

and makes room for many more experiments with many more hypotheses as a result. 

Although this thesis gives more insight into the interactions that can occur between 

cereal aphids, F. graminearum and wheat, many questions and topics remain unanswered. 
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Summary 

Cereal crops are a very important food source in the world. With the human population 

increasing rapidly, a higher demand for cereals arises to satisfy the human nutritional needs. 

Unfortunately, wheat is prone to many diseases. An important disease in wheat is Fusarium 

head blight that is caused by a complex of Fusarium species that attack wheat during 

anthesis and produce a plethora of mycotoxins. Fusarium graminearum is especially feared 

because of its aggressive nature and production of the mycotoxin deoxynivalenol (DON). 

DON can cause serious health problems for humans and animals upon consumption of 

contaminated wheat-derived foods.  

In this thesis we tried to elucidate the interaction with aphids present on Fusarium- 

infected wheat ears. To learn more about the infection process of F. graminearum and grain 

aphid epidemiology, it is imperative to investigate every interaction between fungus and 

aphid inhabiting the same plant tissue. The English grain aphid Sitobion avenae is a known 

ear-feeder and thus inhabits the same ears as F. graminearum during flowering.  

At the moment that both the fungus and grain aphids inhabit the wheat ears, we 

tried to elucidate plant defense responses that are triggered by S. avenae and F. 

graminearum. Wheat ears infected with F. graminearum showed more disease symptoms 

and higher DON levels when ears were predisposed to aphids compared to a sole inoculation 

with F. graminearum. Aphids induced defense genes that are typically induced upon a F. 

graminearum infection. Our study suggests that predisposal of wheat ears to aphids can 

affect the plant response which plays a role in the subsequent attack of F. graminearum, 

enabling the fungus to colonize the ears faster. Higher contents of DON in wheat ears can 

lead to serious problems regarding human and animal health.  

 The effect of DON on S. avenae aphids and their parasitoid Aphidius ervi was tested. 

DON had a negative impact on the development of S. avenae but also on their parasitoid A. 

ervi. This part emphasizes the importance of mycotoxins in food chain contamination from 

the plant to insects (insect-plant interactions) and their natural enemies (higher trophic 

interactions), which until today remains scarce. 

On high concentrations of DON S. avenae experience negative effects on their 

performance, but are still more tolerant to the mycotoxin than pea aphids Acyrthosiphon 
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pisum because they were able to convert DON into its glucosylated form DON 3-glucoside 

more efficiently.  

This thesis emphasizes the importance of studying interactions with other organisms 

developing on the same plant part in order to gain knowledge about the epidemiology of 

each and every individual participator, herbivore or pathogen. The dynamic three-way 

interactions of insects, pathogens and plants can constantly change and can be subject to 

influences from the environment like humans, weather, climate change, etc. Further 

research on these unique complexities is necessary to provide more insights into the cereal’s 

ecosystem. 
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Samenvatting 

Graangewassen zijn een zeer belangrijke voedselbron in de wereld. Door de snel 

toenemende menselijke bevolking ontstaat er een hogere vraag naar graan om aan de 

nutritionele behoeften van de mens te voldoen. Helaas, tarwe is gevoelig aan vele ziekten. 

Een belangrijke ziekte bij tarwe is aarfusarium. Deze wordt veroorzaakt door een complex 

van verschillende Fusariumsoorten die tarwe tijdens de bloei infecteren en een overvloed 

aan mycotoxines produceren. De pathogeen Fusarium graminearum is vooral gevreesd 

vanwege zijn agressieve aard en productie van het mycotoxine deoxynivalenol (DON). DON 

kan tot ernstige gezondheidsproblemen leiden bij mens en dier wanneer deze voedsel 

consumeren die van besmette tarwe afkomstig is.  

In dit proefschrift bestuderen we de interactie van herbivore bladluizen met 

Fusarium-besmette tarwe-aren. Om meer kennis te vergaren over het infectieproces van F. 

graminearum en graanluis epidemiologie, is het noodzakelijk om elke interactie tussen de 

schimmel of graanluis die hetzelfde plantenweefsel benutten te onderzoeken. De grote 

graanluis Sitobion avenae voedt zich ook op tarwe-aren. Diezelfde aren worden tijdens de 

bloei geïnfecteerd met F. graminearum.  

 Op het moment van bloei, wanneer zowel F. graminearum als S. avenae de aren 

bewonen, hebben we getracht om de verdedigingsreacties van tarwe tegen bladluizen en F. 

graminearum op te helderen. Tarwe-aren besmet met F. graminearum vertoonden meer 

symptomen van aarfusarium en hogere DON niveaus wanneer de aren eerder blootgesteld 

werden aan S. avenae bladluizen in vergelijking met aren zonder bladluisinfestatie. 

Bladluizen induceerden verdedigingsgenen die doorgaans ook worden opgewekt door een F. 

graminearum infectie. Deze studie suggereert dat blootstelling van tarwe-aren aan 

bladluizen een impact heeft op de plantrespons bij een daaropvolgende aanval van F. 

graminearum, waardoor de schimmel de aren sneller kan koloniseren. Dit leidt tot hogere 

concentraties aan DON in de tarwe-aren, wat ernstige problemen met betrekking tot de 

gezondheid van mens en dier kan teweeg brengen.  

  Het effect van DON op S. avenae bladluizen en hun natuurlijke vijand, de sluipwesp 

Aphidius ervi, werd ook getest. DON had een negatief effect op de ontwikkeling van S. 

avenae, maar ook op hun sluipwesp A. ervi. Dit deel benadrukt het belang van onderzoek 
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naar mycotoxinen in de voedselketen in insect-plant interacties en interacties met hogere 

trofische niveaus, wat tot op heden schaars is. 

 Op hoge concentraties van DON ervaren S. avenae negatieve effecten op hun 

ontwikkeling maar ze zijn nog steeds toleranter aan het mycotoxine dan erwtenbladluizen 

Acyrthosiphon pisum onder andere omdat ze DON efficiënter kunnen convergeren naar zijn 

geglucolyseerde vorm DON-3-glucoside.  

 Dit proefschrift benadrukt het belang van onderzoek naar interacties met andere 

organismen op hetzelfde plantendeel om kennis te vergaren over de epidemiologie van elke 

individuele deelnemer in de interacties, zowel herbivoor als pathogeen. De dynamische 

driedelige interacties tussen insecten, pathogenen and planten kunnen continue veranderen 

en zijn onderhevig aan invloeden vanuit de omgeving zoals de mens, het weer, 

klimaatsveranderingen enz. Verder onderzoek naar deze unieke complexe interacties is 

noodzakelijk om meer inzicht te verwerven in het ecosysteem van graangewassen. 
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