Delving deeper into the phylogenetics of the herbaceous bamboos (Poaceae, Bambusoideae, Olyreae): evaluation of generic boundaries within the Parodiolyra/Raddiella clade uncovers a new genus

IASMIN L. C. OLIVEIRA ${ }^{1 *, \oplus}$, ANDREZA O. MATOS ${ }^{1}$, CHRISTIAN SILVA², MARIA LUIZA S. CARVALHO ${ }^{3}$, CHRISTOPHER D. TYRRELL ${ }^{4}$, LYNN G. CLARK ${ }^{5}$ and R. PATRÍCIA OLIVEIRA ${ }^{1}$
${ }^{1}$ Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Avenida Transnordestina s.n., 44036-900 Feira de Santana, Bahia, Brazil
${ }^{2}$ Universidade do Estado de Santa Catarina, Centro de Educação Superior da Região Sul, Departamento de Engenharia de Pesca e Ciências Biológicas, Rua Cel. Fernandes Martins 270, Progresso, 88790-000 Laguna, Santa Catarina, Brazil
${ }^{3}$ Universidade Federal da Bahia, Instituto de Biologia, Rua Barão de Jeremoabo 147, Campus de Ondina, 40170-290 Salvador, Bahia, Brazil
${ }^{4}$ Milwaukee Public Museum, Botany Department, 800 W Wells Street, Milwaukee, WI 53233, USA
${ }^{5}$ Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 500114009, USA

Received 1 March 2019; revised 13 May 2019; accepted for publication 16 July 2019

Abstract

The present study aims to expand the knowledge of phylogenetic relationships in Olyrinae, a subtribe of herbaceous bamboos (Poaceae: Bambusoideae: Olyreae). Our focus is on Parodiolyra and Raddiella, two historically related genera that, with their sister Diandrolyra, form one of the four main lineages in the subtribe. Previous phylogenetic analyses suggested that Parodiolyra is not monophyletic, but its taxonomic boundaries and its relationship with Raddiella remain uncertain due to low sampling. We increased the taxon sampling and sequenced five regions of the nuclear and plastid genomes for this lineage and other representatives of Olyreae. We used maximum parsimony, maximum likelihood, Bayesian inference and coalescence analysis. Our results corroborate the paraphyly of Parodiolyra, with P. micrantha sister to a clade including the remaining Parodiolyra and Raddiella. All remaining Parodiolyra form a well-supported clade, but Raddiella had conflicting resolutions, being either monophyletic or not. Thus, based on phylogenetic and morphological evidence, we here recircumscribe Parodiolyra, transferring P. micrantha and P. colombiensis to the new genus Taquara (described here). Regarding Raddiella, sampling is still not comprehensive and does not allow a decision on to its taxonomic status to be made at this time. Inclusion of other phreatophytic species may be crucial to resolve the problem of conflicting topologies.

ADDITIONAL KEYWORDS: coalescent analysis - grasses - molecular data - Neotropics - taxonomy - Taquara.

INTRODUCTION

Herbaceous bamboos (Olyreae) constitute a monophyletic group in Poaceae subfamily Bambusoideae (BPG, 2012; Oliveira et al., 2014; Kellogg, 2015; Soreng et al., 2017). They currently

[^0]comprise 22 genera and 123 species almost exclusive to the Neotropics, occurring from Mexico and the Caribbean to northern Argentina and Paraguay (Ferreira et al., 2013; Oliveira et al., 2014; Vorontsova et al., 2016; Clark \& Oliveira, 2018). Members of Olyreae mainly inhabit forest edges or understory, but less commonly occur in open, humid areas (Soderstrom, 1984; Judziewicz et al., 1999; Ferreira et al., 2013;

Oliveira et al., 2014; Clark, Londoño \& Ruiz-Sanchez, 2015; Clark \& Oliveira, 2018). Brazil has the greatest diversity of Olyreae, especially in the Atlantic Forest, one of the 25 global biodiversity hotspots (Soderstrom, Judziewicz \& Clark, 1988; Clark, 1990; Myers et al., 2000; Oliveira, Longhi-Wagner \& Jardim, 2011; BFG, 2015).

Olyreae are monoecious and mostly perennial plants with well-developed and shortly pseudopetiolate leaf blades (Judziewicz et al., 1999; BPG, 2012). They differ from woody bamboos by the lack of well-differentiated culm leaves and outer ligules (contraligules) combined with relatively weakly lignified culms, restricted vegetative branching and their predominantly unisexual, one-flowered spikelets (Clark et al., 2015; Kellogg, 2015). Some genera display extensive variation in vegetative characters, and the grouping of spikelets in racemose, paniculate or spiciform synflorescences and synflorescence position along the body of the plant help characterize generic boundaries (Judziewicz et al., 1999; Oliveira et al., 2011, 2014).
Three subtribes are currently accepted in Olyreae: Buergersiochloinae; Olyrinae and Parianinae (Judziewicz \& Clark, 2007; Oliveira et al., 2014; Clark et al., 2015; Kellogg, 2015). Buergersiochloinae are monotypic and endemic to New Guinea, whereas the other two are mostly restricted to the Neotropics and comprise the vast majority of the diversity in the tribe, especially concentrated in Olyrinae (18 genera and 88 species) (Oliveira et al., 2014; Clark \& Oliveira, 2018).
Several phylogenetic studies have focused on bamboos and included members of Olyreae (e.g. Sungkaew et al., 2009;Triplett \& Clark, 2010; Kelchner \& BPG, 2013; Wysocki et al., 2015; Saarela et al., 2018), but the most comprehensive phylogenetic tree to date for the tribe is that of Oliveira et al. (2014). In that study, four main lineages were recovered in Olyrinae, one composed of the genera Raddia Bertol. and Sucrea Soderstr., one of Piresia Swallen and Reitzia Swallen, one of Arberella C.E.Calderón \& Soderstr., Cryptochloa Swallen, Lithachne P.Beauv. and Olyra L. and one of Diandrolyra Stapf, Parodiolyra Soderstr. \& Zuloaga and Raddiella Swallen, which is the main focus of the present work.
Diandrolyra, Parodiolyra and Raddiella have a connection with Olyra, either morphologically or nomenclaturally (Soderstrom \& Zuloaga, 1989). Diandrolyra, the earliest described among them (Stapf, 1906), includes just three species endemic to the understory of lowland forests in the Brazilian Atlantic Forest. These species are characterized by usually specialized flowering culms, composed of a single leaf with the blade inverted, covering the contracted synflorescence containing both female and male spikelets, the latter with two stamens (Judziewicz
et al., 1999; Oliveira \& Clark, 2009; Kellogg, 2015). Raddiella, described by Swallen (1948), includes eight tiny species, most of them rare, found in savannas or forest margins or among wet rocks near rivers and waterfalls (phreatophytes) from near sea level to 1500 m . This genus is characterized by decumbent and monomorphic culms, unisexual synflorescences and female spikelets with filiform pedicels, three-nerved glumes and smooth, white, indurate anthoecia (Zuloaga \& Judziewicz, 1991; Clark et al., 2015). Parodiolyra, described by Soderstrom \& Zuloaga (1989), includes six species of erect to scandent plants that may reach up to 4 m tall, and are found in forests, or occasionally in savannas, from sea level to $1200-1800 \mathrm{~m}$, from Costa Rica to Bolivia and Brazil (Judziewicz et al. 1999, 2000). They are characterized by the presence of firm culms, female spikelets that disarticulate below the glumes, filiform pedicels, inflated internodes between the glumes and a shortened hilum (Judziewicz et al., 1999; Zuloaga \& Davidse, 1999; Grande Allende, 2011; BPG, 2012).
Although Diandrolyra, Raddiella and Parodiolyra seem distinctive in general appearance, a close relationship among them had been hypothesized previously by Soderstrom \& Zuloaga (1989) based on the presence of female spikelets with filiform pedicels that disarticulate below the glumes, an inflated and conspicuous internode between the glumes and a caryopsis with a shortened hilum. The molecular phylogenetic study of Oliveira et al. (2014) corroborated this hypothesis, recovering Diandrolyra as monophyletic and sister to the clade composed of Parodiolyra + Raddiella. These authors also showed that Parodiolyra might not be monophyletic, with P. micrantha (Kunth) Davidse \& Zuloaga as sister to a clade formed by P. ramosissima (Trin.) Soderstr. \& Zuloaga and Raddiella esenbeckii (Steud.) C.E.Calderón \& Soderstr. However, these were the only species sampled, and only one plastid ($\operatorname{trnD-trnT\text {)regionand}}$ one nuclear (ITS) DNA region were analysed.

Parodiolyra and Raddiella are both widely distributed in the Neotropics, mainly due to the ranges of P. micrantha and R. esenbeckii, respectively. These species, however, are also highly variable in morphology, raising questions about their delimitation, as mentioned by Oliveira et al. (2014). The relationship between these two genera was discussed by Zuloaga \& Judziewicz (1991), who emphasized that R. esenbeckii is more similar to P. lateralis (J.Presl ex Nees) Soderstr. \& Zuloaga than to its phreatophytic congeners, leading to problems in the delimitation of the two genera. Recently, Grande Allende (2016) expanded the circumscription of Raddiella by the inclusion of Parodiolyra in its synonymy, making it highly heterogeneous. However, his decision was based
only on morphology, and therefore the evolutionary relationships among these genera and their species remain uncertain.

Thus, the objective of the present work is to provide a better, phylogenetically based circumscription for Parodiolyra and Raddiella, based on the following questions. (1) Are Parodiolyra and Raddiella monophyletic genera? (2) Are there supported relationships in and between Parodiolyra and Raddiella? (3) What is the correct phylogenetic placement of Parodiolyra micrantha? (4) What are the taxonomic implications of the molecular analyses herein presented? To answer these questions, we have increased the taxon sampling and the number of DNA regions analysed for the clade composed on these genera and tested the topologies of the resulting phylogenetic trees, with an emphasis on testing the monophyly of both Parodiolyra and Raddiella. These results allow us to make more confident taxonomic decisions regarding some generic boundaries and provide a more stable classification for the group.

MATERIAL AND METHODS

TAXON SAMPLING

Fourteen genera and 42 species currently accepted for Olyreae were sampled (following BPG, 2012; Vorontsova et al., 2016; Clark \& Oliveira, 2018), including multiple accessions for some taxa of interest. Species (number sampled/total number in the genus) of Eremitis Döll (4/5), Pariana Aubl. (3/27), Parianella Hollowell, F.M.Ferreira \& R.P.Oliveira (2/2) (subtribe Parianinae) and Arberella (1/7), Cryptochloa (2/9), Diandrolyra (2/3), Lithachne (2/4), Olyra (4/25), Parodiolyra (4/6), Piresia (2/5), Raddia (9/9), Raddiella (3/8) and Sucrea (3/3) (subtribe Olyrinae) were selected as ingroup taxa (Table 1). The New Guinean Buergersiochloa bambusoides Pilg. (Buergersiochloinae) was chosen as the outgroup.

Most samples were already available from previous studies done by our bamboo research team (Oliveira, 2001; Oliveira et al., 2014; Carvalho et al., unpubl. data; Ferreira et al., 2019). New samples, especially of Parodiolyra and Raddiella, were obtained either through field work or from herbarium specimens (Table 1). Specimen acquisition was performed following the procedures described by Bridson \& Forman (1998) and Soderstrom \& Young (1983), including preservation of leaves in silica gel for DNA extraction (Chase \& Hills, 1991).

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

Samples dehydrated in silica gel were extracted using the $2 \times$ CTAB protocol (Doyle \& Doyle, 1987), modified for microtubes. For herbarium material,
we used the extraction kits DNeasy Plant Mini Kit (QIAGEN, GmbH, Hilden, Germany) and ReliaPrep gDNA Tissue Miniprep System (Promega, Madison, WI, USA), following the manufacturer's protocols. All samples are stored in the DNA bank of the Plant Molecular Systematics Laboratory (LAMOL) of the State University of Feira de Santana, Bahia, Brazil.

The regions $\operatorname{trn} D-\operatorname{trn} T, \operatorname{trn} S-\operatorname{trn} G, r p l 32-\operatorname{trn} L$ and $n d h F$ from the plastid genome and ITS1-5.8SITS2 (ITS) of the nuclear genome were amplified via PCR (Table 2). These markers were selected because they were found to be informative for phylogenetic reconstruction in bamboos (Clark, Zhang \& Wendel, 1995; Ferreira, 2012; Carvalho, 2013; Oliveira et al., 2014). PCR reactions were performed using the TopTaq Master Mix Kit (QIAGEN, GmbH, Hilden, Germany) following the manufacturer's protocol with an adjustment for a final volume of $10 \mu \mathrm{~L}$. ITS reactions also included $0.2 \mu \mathrm{~L}$ of bovine serum albumin $0.3 \%, 2 \mu \mathrm{~L}$ of betaine 5 M and $0.2 \mu \mathrm{~L}$ of dimethyl sulphoxide 99.5%. Primers used for amplification and sequencing and PCR conditions for each region are presented in Table 2.

PCR products were purified using the enzymes exonuclease I and shrimp alkaline phosphatase (EXOSAPkit, GEHealthcare) or PEG20\% (polyethylene glycol; Paithankar \& Prasad, 1991) and sequenced in both directions using the Big Dye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Austin, TX, USA) according to the following protocol: a hot start with 3 min of initial denaturation at $96^{\circ} \mathrm{C}, 30$ cycles of $96^{\circ} \mathrm{C}$ denaturation for $15 \mathrm{~s}, 50^{\circ} \mathrm{C}$ annealing for 10 s and $60^{\circ} \mathrm{C}$ extension for 4 min . Sequenced products were cleaned using isopropanol 80% and ethanol 70%, and analysed on a 3130xl Genetic Analyzer (Applied Biosystems/HITACHI, Tokyo, Japan).

Phylogenetic analysis

Raw sequence reads were edited using the Staden Package v.2.0.0b10 released (Staden, Beal \& Bonfield, 1999) or Geneious Pro v.4.8.4 (Biomatters, Auckland, New Zealand) and assembled in individual matrices for each region, which were first aligned using the GUIDANCE Web Server (Penn et al., 2010), using the algorithm MAFFT and then manually checked. The data sets were analysed individually and in combination using maximum parsimony (MP), Bayesian Inference (BI) and maximum likelihood (ML) (Table 3). A multispecies coalescence analysis was also carried out. Gaps were considered as missing data.

MP analyses were performed in PAUP* 4.0b10a (Swofford, 2002) with Fitch parsimony as the optimality criterion (Fitch, 1971). The heuristic search was conducted using the TBR (tree bisectionreconnection) algorithm, with 1000 replications
Table 1. Samples used in the present study, with vouchers and accession numbers for the ITS, $\operatorname{trn} D-\operatorname{trn} T, \operatorname{trn} S-\operatorname{trn} G, r p l 32-\operatorname{trn} L$ and $n d h F$ sequences from GenBank. (--) indicates missing data, (**) indicates herbarium material and italicized accession numbers indicates new sequences generated in this study

Species	VOUCHER	ITS	trnD-trnT	trnS-trnG	rpl32-trnL	ndhF
Outgroup						
Buergersiochloinae						
Buergersiochloa bambusoides Pilg.	Dransfield 1365 (K)	KC990734	FJ643988	KX027403	KY612930	
						AF182341.1
Ingroup						
Parianinae						
Eremitis afimbriata F.M.Ferreira \& R.P.Oliveira	Ferreira 2196 (HUEFS)	KX016075	KX016043	MK175382	KY612894	MK175271
Eremitis linearifolia Hollowell, F.M.Ferreira \& R.P.Oliveira	Ferreira 2185 (HUEFS)	KX016085	KX016050	----------	KY612904	MK175272
Eremitis magnifica F.M.Ferreira \& R.P.Oliveira	Ferreira 2158 (HUEFS)	KX016086	KX016051	----------	KY612905	MK175273
Eremitis robusta Hollowell, F.M.Ferreira \& R.P.Oliveira	Ferreira 2215 (HUEFS)	KX016093	KX016056		KY612912	
Pariana nervata Swallen	Oliveira 1876 (HUEFS)	KX016099	KX016060	MK175385	KY612919	MK175278
Pariana pallida Swallen	Oliveira 1194 (HUEFS)	----------	FJ644017	MK175386	KY612920	MK175279
Pariana vulgaris Tutin	Oliveira 1844 (HUEFS)	KY674523	KY659797	MK175387	MK175320	MK175280
Parianella carvalhoi (R.P.Oliveira \& Longhi-Wagner) F.M.Ferreira \& R.P.Oliveira	Mota 298 (HUEFS)	KX016105	KX016066	MK175388	KY612925	MK175281
Parianella lanceolata (Trin.) F.M.Ferreira \& R.P.Oliveira	Oliveira 681 (HUEFS)	KC990729	KC990763	KX027433	KY612927	MK175282
Olyrinae						
Arberella bahiensis Soderstr.\& Zuloaga	Jardim s.n. (HUEFS)	KC990700	KC990735	MK175377	MK175309	----------
Cryptochloa capillata (Trin.) Soderstr.	Oliveira 969 (HUEFS)	KC990710	KC990745			
	Silva 359 (HUEFS)			MK175378	MK175310	MK175266
Cryptochloa decumbens Soderstr. \& Zuloaga	Sánchez-Ken 664 (MO)	MK175245	MK175358	MK175379	MK175311	MK175267
Diandrolyra bicolor Stapf	Oliveira 850 (HUEFS)	KC990727	KC990761	MK175381	MK175313	MK175269
Diandrolyra bicolor	Oliveira 2278 (HUEFS)	MK175246	MK175359	MK175380	MK175312	MK175268
Diandrolyra tatianae Soderstr. \& Zuloaga	Oliveira 726 (HUEFS)	KC990728	KC990762	KX027406	MK175314	MK175270
Lithachne horizontalis Chase	Viana 5202 (BHCB)	KC990706	KC990741	MK175383	MK175315	MK175274
Lithachne pauciflora (Sw.) P.Beauv.	Oliveira 970 (HUEFS)	KC990707		KX027407	MK175316	MK175275
	Clark 1297 (ISC)	----------	KC990741	----------	----------	----------
Olyra bahiensis R.P.Oliveira \& Longhi-Wagner	Oliveira 977 (HUEFS)	KC990705	KC990740	MK175384	MK175317	MK175276
Olyra glaberrima Raddi	Verveloet 2206 (HUEFS)	KC990702	KC990737	KX027408	MK175318	MK175277
Olyra humilis Nees	Longhi-Wagner 8001 (HUEFS)	KC990701	KC990736	KX027409	----------	----------
Olyra latifolia L.	Oliveira 667 (HUEFS)	KC990704	KC990739	KX027410	MK175319	---------
	Londoño \& Clark 911 (ISC)	----------	---------	----------	----------	U21971.1
Parodiolyra lateralis (J.Presl ex Nees) Soderstr. \& Zuloaga	Londoño \& Clark 898 (US)	----------	MK175360	MK175390	MK175322	MK175284
Parodiolyra lateralis	Cardoso 3362 (HUEFS)	----------	----------	MK175389	MK175321	MK175283
Parodiolyra luetzelburgii (Pilg.) Soderstr. \& Zuloaga	Oliveira 2330 (HUEFS)	---------	----------	----------	MK175323	MK175285
Parodiolyra luetzelburgii	Oliveira 2335 (HUEFS)	----------	----------	----------	MK175324	MK175286
Parodiolyra micrantha (Kunth) Davidse \& Zuloaga	Oliveira 650 (HUEFS)	KC990713	KC990748	KX027411	MK175330	MK175291
Parodiolyra micrantha	Oliveira 939 (HUEFS)	MK175250	MK175366	MK175393	MK175331	MK175292
Parodiolyra micrantha	Oliveira 2258 (HUEFS)	MK175249	MK175365	MK175392	MK175329	MK175290

Table 1. Continued

Species	VOUCHER	ITS	trnD-trnT	trnS-trnG	rpl32-trnL	$n d h F$
Parodiolyra micrantha	Oliveira 2249 (HUEFS)	MK175248	MK175364	MK175391	MK175328	MK175289
Parodiolyra micrantha	Zanatta 13 (HUEFS)	MK175247	MK175361	----------	MK175325	MK175287
Parodiolyra micrantha	Oliveira 2326 (HUEFS)		MK175362	----------	MK175326	----------
Parodiolyra micrantha	Oliveira 2336 (HUEFS)	----------	MK175363	----------	MK175327	MK175288
Parodiolyra ramosissima (Trin.) Soderstr. \& Zuloaga	Oliveira 688 (HUEFS)	KC990714	KC990749	MK175396	MK175334	MK175295
Parodiolyra ramosissima	Oliveira 2252 (HUEFS)	MK175252	MK175368	MK175395	MK175333	MK175294
Parodiolyra ramosissima	Silva 426 (HUEFS)	MK175251	MK175367	MK175394	MK175332	MK175293
Piresia goeldii Swallen	Oliveira 1205 (HUEFS)	KC990708	KC990743	KX027413	MK175335	----------
Piresia sympodica (Döll) Swallen	Oliveira 1195 (HUEFS)	KC990709	KC990744	KX027417	MK175336	
Raddia angustifolia Soderstr. \& Zuloaga	Oliveira 725 (HUEFS)	KC990715	KC990750	MK175397	MK175337	----------
Raddia brasiliensis Bertol.	Oliveira 972 (HUEFS)	KC990716	KC990751	MK175398	----------	----------
Raddia distichophylla (Schrad. ex Nees) Chase	Oliveira 601 (HUEFS)	KC990717	KC990752	MK175399	MK175338	
	Clark 1306 (ISC)					U22007.1
Raddia guianensis (Brongn.) Hitchc.	Oliveira 911 (HUEFS)	KC990718	----------	MK175400	MK175339	
	Oliveira 993 (HUEFS)	---------	KC990753	----------	---------	----------
Raddia lancifolia R.P.Oliveira \& Longhi-Wagner	Oliveira 980 (HUEFS)	KC990719	KC990754	MK175401	MK175340	
Raddia megaphylla R.P.Oliveira \& Longhi-Wagner	Oliveira 981 (HUEFS)	KC990720	KC990755	MK175402	MK175341	----------
Raddia portoi Kuhlm.	Oliveira 1042 (HUEFS)	KC990721	KC990751	MK175403	MK175342	----------
Raddia soderstromii R.P.Oliveira, L.G.Clark \& Judz.	Oliveira 722 (HUEFS)	KC990722	----------	KX027427	MK175343	----------
	Oliveira 993 (HUEFS)		KC990757			
Raddia stolonifera R.P.Oliveira \& Longhi-Wagner	Oliveira 1078 (HUEFS)	MK175253	KC990758	MK175404	MK175344	----------
Raddiella esenbeckii (Steud.) C.E.Calderón \& Soderstr.	Oliveira 664 (HUEFS)	MK175258	KC990747	KX027428	MK175352	MK175303
Raddiella esenbeckii	Longhi-Wagner s.n. (HUEFS)	----------	MK175372	MK175408	MK175348	MK175299
Raddiella esenbeckii	Silva 1441 (HUEFS)	----------	MK175373	MK175409	MK175350	MK175301
Raddiella esenbeckii	Oliveira 1181 (HUEFS)	MK175257	MK175374	MK175410	MK175351	MK175302
Raddiella esenbeckii	Silva 748 (HUEFS)	MK175254	MK175369	MK175405	MK175345	MK175296
Raddiella esenbeckii **	Irwin 15566 (NY)	----------	----------	----------	MK175349	MK175300
Raddiella esenbeckii	Silva 924 (HUEFS)	MK175255	MK175370	MK175406	MK175346	MK175297
Raddiella esenbeckii	Silva 940 (HUEFS)	MK175256	MK175371	MK175407	MK175347	MK175298
Raddiella malmeana (Ekman) Swallen	Silva 1404 (HUEFS)	MK175259	KC990746	MK175411	MK175353	MK175304
Raddiella malmeana**	Londoño 317 (NY)	MK175260	----------	----------	MK175354	----------
Raddiella minima Judz. \& Zuloaga	Viana 2712 (INPA)	MK175262	MK175376	MK175413	----------	MK175306
Raddiella minima	Viana 2634 (INPA)	MK175261	MK175375	MK175412	----------	MK175305
Sucrea maculata Soderstr.	Oliveira 851 (HUEFS)	MK175263	----------	MK175414	MK175355	----
	Clark \& Zhang 1345 (ISC)	---	FJ644061	---	----------	AF182343.1
Sucrea monophylla Soderstr.	Oliveira1072 (HUEFS)	MK175264	KC990759	KX027430	MK175356	MK175307
Sucrea sampaiana (Hitchc.) Soderstr.	Oliveira 991 (HUEFS)	MK175265	KC990760	MK175415	MK175357	MK175308

Table 2. Summary of the DNA regions used: primer sequences, PCR amplification conditions and models used for each partition in Bayesian inference. PCR conditions for ITS and $\operatorname{trnD-trnT}$ follow Oliveira et al. (2014) and Carvalho (2013), for $n d h F$ and $\operatorname{trnS-trn} G$ follow Silva et al. (2015) and for rpl32-trnL follow Carvalho (2013) and Ferreira et al. (2019)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Primer \& Sequence \& Reference \& PCR conditions \& Partitions from each data set \& Pb \& Models used to Bayesian Inference \\
\hline ITS 92 \& AAG GTT TCC GTA GGT GAA C \& Desfeaux et al., 1996 \& \multirow[t]{3}{*}{1 cycle of initial denaturing: \(94^{\circ} \mathrm{C}\) for 3 min ; 28 amplification cycles of denaturing: \(94^{\circ} \mathrm{C}\) for 1 min ; primer annealing: \(50^{\circ} \mathrm{C}\) for 1 min and chain extension: \(72^{\circ} \mathrm{C}\) for \(7 \mathrm{~min} ; 1\) cycle of final extension: \(72^{\circ} \mathrm{C}\) for 7 min .} \& ITS 1 \& 282 \& GTR+G \\
\hline \multirow[t]{2}{*}{ITS 4} \& \multirow[t]{2}{*}{TCC TCC GCT TAT TGA TAT GC} \& \multirow[t]{2}{*}{White et al., 1990} \& \& 5.8 S \& 164 \& \(\mathrm{K} 80+\mathrm{I}+\mathrm{G}\) \\
\hline \& \& \& \& ITS 2 \& 271 \& GTR+I+G \\
\hline \(t r n D\) \& ACC AAT TGA ACT ACA ATC CC \& Demesure, Sodzi \& Petit, 1995 \& 1 cycle of initial denaturing: \(94^{\circ} \mathrm{C}\) for \(1 \mathrm{~min} ; 30\) amplification cycles of \& \(t r n D-t r n T\) \& 1628 \& GTR+G \\
\hline \(t r n T\) \& CCC TTT TAA CTC AGT GGT A \& Demesure et al., 1995 \& denaturing: \(94^{\circ} \mathrm{C}\) for 30 s ; primer annealing: \(52^{\circ} \mathrm{C}\) for 40 s and chain extension: \(72^{\circ} \mathrm{C}\) for 1 min and 10 s ; 1 cycle of final extension: \(72{ }^{\circ} \mathrm{C}\) for 5 min . \& \& \& \\
\hline \(t r n S\) \& AGA TAG GGA TTC GAA CCC TCG GT \& Shaw et al., 2005 \& 1 cycle of initial denaturing: \(94^{\circ} \mathrm{C}\) for \(1 \mathrm{~min} ; 30\) amplification cycles of \& tRNA-Ser \& 405 \& GTR+I \\
\hline \(t r n G\) \& GTA GCG GGA ATC GAA CCC GCA TC \& Shaw et al., 2005 \& denaturing: \(94^{\circ} \mathrm{C}\) for 30 s ; annealing \(52^{\circ} \mathrm{C}\) a 40 s and chain extension: \(72^{\circ} \mathrm{C}\) a \(1 \mathrm{~min} 10 \mathrm{~s} ; 1\) cycle of final extension: \(72^{\circ} \mathrm{C}\) for 5 min . \& \[
\begin{aligned}
\& p s b Z \\
\& p s b Z-\operatorname{trn} G
\end{aligned}
\] \& \[
\begin{aligned}
\& 189 \\
\& 338
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { HKY+I } \\
\& \text { GTR+G }
\end{aligned}
\] \\
\hline rpl32 \& CAG TTC CAA AAA AAC GTA CTT C \& Shaw et al., 2007 \& 1 cycle of initial denaturing: \(80{ }^{\circ} \mathrm{C}\) for \& rpl32: Codon 1 \& 54 \& F81+G \\
\hline \& \& \& \(5 \mathrm{~min} ; 30 \mathrm{amplification} \mathrm{cycles} \mathrm{of}\) \& rpl32: Codon 2 \& 54 \& HKY \\
\hline \(t r n L\) \& CTG CTT CCT AAG AGC AGC GT \& Shaw et al., 2007 \& denaturing: \(94^{\circ} \mathrm{C}\) for 1 min ; primer annealing: \(50^{\circ} \mathrm{C}\) for 1 min and chain extension: \(65^{\circ} \mathrm{C}\) for 4 min ; 1 cycle of final extension: \(65{ }^{\circ} \mathrm{C}\) for 5 min . \& \begin{tabular}{l}
rpl32: Codon 3 \\
rpl32-trnL
\end{tabular} \& \[
\begin{array}{r}
54 \\
950
\end{array}
\] \& \[
\begin{aligned}
\& \text { GTR } \\
\& \text { GTR+G }
\end{aligned}
\] \\
\hline \(972 F\)

$1660 R$ \& GTC TCA ATT GGG TTA TAT GAT G \& Olmstead \& Sweere
(1994) \& 1 cycle of initial denaturing: $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min} ; 35 \mathrm{amplification}$ cycles of \& $n d h F:$ Codon 1
$n d h F:$ Codon 2 \& 234
234 \& GTR+I+G

GTR+G

\hline 1660R \& ATC CAA TGA ACA AAG TAA AAA \& Aliscioni et al., 2003 \& annealing: $53^{\circ} \mathrm{C}$ for 40 s and chain extension: $72{ }^{\circ} \mathrm{C}$ for $50 \mathrm{~s} ; 1$ cycle of final extension: $72{ }^{\circ} \mathrm{C}$ for 5 min . \& $n d h F$: Codon 3 \& $$
\begin{aligned}
& 234 \\
& 234
\end{aligned}
$$ \& GTR+I

\hline
\end{tabular}

Table 3. Summary of the phylogenetic analyses performed, based on four plastid and one nuclear DNA regions. Legend: N - number of samples analysed; Matrix - aligned matrix size; PIC - potentially informative character numbers for parsimony; \% PIC - percentage of potentially informative characters for parsimony; NMPT - number of most-parsimonious trees; CI - consistency index and RI - retention index. Support values are provided for the clades, bootstrap for MP, bootstrap for ML and posterior probability for BI. - indicates an unrecovered relationship in the analysis

DNA Regions	N	Matrix	PIC / \%PIC	NMPT	MP score	CI	RI	Olyrinae	Taquara micrantha	Parodiolyra	Parodiolyra + R. malmeana	R. malmeana + (R. esenbeckii $+R$. minima)
ITS	53	717	283/39.5	579	1045	0.56	0.80	$64 / 73 / 0.82$	100 / 100 / 0.99	100 / $100 / 1.0$	- / - / -	- / - / -
rpl32-trnL	58	1112	$185 / 16.6$	390	390	0.79	0.94	$86 / 92$ / 1.0	99 / 100 / 1.0	0.93 / 99 / 1.0	- /-1-	73/97/0.88
Plastid (3) combined	61	3262	401/ 12.3	10000	849	0.79	0.92	$83 / 85 / 0.99$	91/99 / 0.99	84/100/0.99	93/99 / 1.0	-/-/-

and random taxa addition, saving up to 15 trees per replication, with an upper limit of 10000 trees. A second round of TBR swapping was performed on the resulting trees, keeping the upper limit of 10000 trees. Statistical support was generated using nonparametric bootstrapping (Felsenstein, 1985) with 2000 replications (Hedges, 1992; Müller, 2005), simple taxon-addition and TBR, saving 15 trees per replicate.

ML analyses were conducted using RAxML v.8.2.8 (Stamatakis, 2006) on the CIPRES Science Gateway v.3.3 (Miller, Pfeiffer \& Schwartz, 2010), under the model GTR + Γ, with the option '-f a' (search for the best-scoring ML tree and a rapid bootstrap analysis) and 1000 bootstrap replicates (Stamatakis, Hoover \& Rougemont, 2008). Only bootstrap values $\geq 70 \%$ were considered as significant for MP and ML (70-79\% weak, $80-89 \%$ moderate and $90-100 \%$ strong support).

For the BI analyses, models for each partition (spacers, coding and non-coding genes) were chosen using the Akaike information criterion (Akaike, 1974) in MrModeltest v.2.3 (Nylander, 2004) (Table 2). Two parallel simultaneous runs were performed using the Metropolis-coupled MCMC algorithm with four random-initiated chains (Huelsenbeck et al., 2001) for 10000000 generations, sampling trees every 1000 generations. The trees produced in both runs were graphically analysed using Tracer v.1.5 (Rambaut \& Drummond, 2009), and then the initial 2500 trees of each run were discarded as burn-in. The remaining trees were summarized in a majority consensus tree with posterior probabilities (PP) as branch support estimates. Only values of $\mathrm{PP} \geq 0.95$ were considered as significant (Erixon et al., 2003). Trees were edited using ITOL (Interactive Tree of Life) (Letunic \& Bork, 2016) and CorelDraw (Corel Corporation).

To reconcile conflicts among the estimated ML trees, we inferred a coalescent-based species tree using ASTRAL III (Zhang et al., 2018). Independent ML trees for each DNA region were input into ASTRAL III to produce a species tree. Support values for the branches of the species tree were calculated with a multi-locus resampling procedure to estimate local posterior probabilities (LPP). Phylogenetic incongruence was assessed by comparing the bootstrap support values across clades according to Cardoso et al. (2013).

ALTERNATIVE TREE TOPOLOGY TESTS

The monophyly of Raddiella and Parodiolyra was tested with the non-parametric test of ShimodairaHasegawa (SH), using a likelihood criterion (Shimodaira \& Hasegawa, 1999), under the model GTR $+\Gamma$ and 1000 bootstrap replicates (Stamatakis et al., 2008). The trees were generated from each marker separately, and then the constrained topologies from each genus were compared with the topology obtained
from the ML analyses. The test was conducted with PAUP, using 1000 bootstrap replicates.

TAXONOMY

Morphological descriptions, identification keys, data about distribution and habitat, protologue information and photographs of the living plants are based on data from the literature (Soderstrom \& Zuloaga, 1989; Zuloaga \& Judziewicz, 1991; Zuloaga \& Davidse, 1999; Judziewicz \& Sepsenwol, 2007; Oliveira \& Clark, 2009; Grande Allende, 2011), field work carried out by our bamboo research team, analyses of herbarium specimens from CEPEC, HUEFS, INPA, NY, UB and US (acronyms according to Thiers, 2019) and the online databases Tropicos (www.tropicos.org), International Plant Names Index (www.ipni.org) and World Checklist of Selected Plant Families (www.kew. org/wcsp). Distribution maps were generated using ArcMap v.10.1 (ESRI, 2012).

RESULTS

DATA SETS

We used a total of 266 sequences from plastid and nuclear genomes, of which 155 were newly generated for the present study (49 of rpl32-trnL, 19 of $\operatorname{trn} D$ $\operatorname{trn} T, 23$ of $\operatorname{trnS-trn} G, 43$ of $n d h F$ and 21 of ITS; Table 1). The matrices comprised 5091 characters of which 717 belong to ITS, 1628 to trnD-trnT, 1112 to rpl32-trnL, 932 to $\operatorname{trnS-trnG}$ and 702 to ndhF (Table 3). For rpl32-trnL, 12 characters were considered as ambiguous (522-533) and were excluded (Table 2). Topologies inferred from the ML and BI analyses were congruent with MP, recovering clades with significant statistical support (Fig. 1). The individual $\operatorname{trn} D-\operatorname{trn} T$, $\operatorname{trnS-trn} G$ and $n d h F$ topologies were congruent with each other, so these were combined into a single partition. However, the rpl32-trnL topology was incongruent with the other plastid markers, so it was analysed separately. The ITS topology was similar to the rpl32-trnL topology, but it was incongruent with the combined plastid topology, so it was also analysed separately.

The matrix combining $\operatorname{trn} D-\operatorname{trn} T, \operatorname{trn} S-\operatorname{trn} G$ and $n d h F$ data resulted in 3262 characters, in which 2644 were constant, 217 variable and 401 potentially informative for parsimony, reaching the limit of 10000 most-parsimonious trees with 894 steps [consistency index $(\mathrm{CI})=0.80$; retention index $(\mathrm{RI})=0.92$] (Table 3). Of the 1100 characters for the rpl32-trnL marker, 840 were constant, 75 variable and 185 potentially informative for parsimony. Heuristic searches resulted in an upper limit of 10000 most-parsimonious
trees with 390 steps each for rpl32-trnL $(\mathrm{CI}=0.79$; $\mathrm{RI}=0.94$) (Table 3).

Individually, rpl32-trnL demonstrated the highest percentage of potentially informative characters [\% potentially informative characters (PIC)], with 16.6% PIC, followed by $n d h F(13.2 \%)$, $\operatorname{trn} D-\operatorname{trn} T$ (12.5\%) and $\operatorname{trnS}-\operatorname{trn} G(11.4 \%)$ (Table 3). The ITS matrix (ITS1-5.8S-ITS2) resulted in 717 characters, from which 359 were constant, 75 variable and 283 potentially informative for parsimony with 39.5% PIC (Table 3). Heuristic searches found 579 most-parsimonious trees with 1045 steps $(\mathrm{CI}=0.56 ; \mathrm{RI}=0.80)$ (Table 3).

The results obtained from the SH test, performed for each marker separately, could not reject a monophyletic Raddiella (ITS, $P=0.312$; trnD-trnT, $P=0.339$; trnS$\operatorname{trn} G, P=0.230 ; r p l 32-\operatorname{trn} L, P=0.499$ and $n d h F$, $P=0.103)$. ITS $(P=0.358), \operatorname{trn} S-\operatorname{trn} G(P=0.05)$ and $n d h F(P=0.063)$ did not support the monophyly of Parodiolyra.

COMBINED THREE-MARKER PLASTID DATA ANALYSIS

The combined analysis of the three congruent plastid markers recovered a clade including Parianella, Eremitis and Pariana with strong support (MPBS 100/ MLBS 100/PP 1.0), corresponding to Parianinae (Fig. 1). In this clade, Parianella [P. carvalhoi (R.P.Oliveira \& Longhi-Wagner) F.M.Ferreira \& R.P.Oliveira + P. lanceolata (Trin.) F.M.Ferreira \& R.P.Oliveira (100/100/1.0)] emerged as sister to Pariana + Eremitis with strong support (95/93/1.0) (Fig. 1).

Species of Olyrinae were recovered in a moderately supported clade (83/85/0.99), composed of two main clades (Fig. 1). In the first clade, Piresia goeldii Swallen + P. sympodica (Döll) Swallen (100/100/1.0) were recovered as sister to the clade composed of Olyra, Cryptochloa, Lithachne and Arberella + Sucrea and Raddia (95/99/1.0) (Fig. 1). Only Cryptochloa [C. capillata (Trin.) Soderstr. + C. decumbens Soderstr. \& Zuloaga (100/100/1.0)] and Lithachne [L. pauciflora (Sw.) P.Beauv. + L. horizontalis Chase (100/100/1.0)] were recovered as monophyletic (Fig. 1). In Olyra, three main relationships were resolved: (1) O. latifolia L. as sister to the clade formed by Cryptochloa spp. (76/84/0.99); (2) O. bahiensis R.P.Oliveira \& LonghiWagner as sister to Lithachne (100/100/1.0) and (3) O. glaberrima Raddi + O. humilis Nees (99/100/1.0) (Fig. 1). The only sample of Arberella (A. bahiensis Soderstr. \& Zuloaga) emerged as sister to the Olyra spp. described as lineage 3 (53/54/-) (Fig. 1). The clade formed by Olyra and related genera is sister (61/68/0.95) to the strongly supported clade including Sucrea and Raddia (98/100/1.0) (Fig. 1). Sucrea sampaiana (Hitchc.) Soderstr. emerged as sister to the other Sucrea spp. and the relationship of S. maculata

Tree scale: 0.01 \qquad

Figure 1. Plastid combined tree ($\operatorname{trn} D-\operatorname{trn} T, \operatorname{trn} S-\operatorname{trn} G$ and $n d h F$) obtained using maximum likelihood. The numbers below the branches indicate bootstrap support (values $\geq 70 \%$; 1000 replications), numbers above the branches indicate the

Soderstr. + S. monophylla Soderstr. was also recovered with support (73/86/1.0) (Fig. 1). The nine Raddia spp. formed a clade with strong support (99/100/1.0) (Fig. 1).

The other clade in Olyrinae, composed of Diandrolyra, Parodiolyra and Raddiella, was recovered with strong support (93/95/1.0) (Fig. 1). Diandrolyra spp. composed the clade sister to all the other species (100/100/1.0), and multiple samples of P. micrantha also emerged in a well-supported clade (91/99/0.99), which was sister to the clade formed by Raddiella and the other Parodiolyra spp. (98/100/1.0) (Fig. 1). The clade formed by R. esenbeckii + . minima Judz. \& Zuloaga (100/100/1.0) was recovered as sister to R. malmeana (Ekman) Swallen (-/-/1.0) $+[P$. ramosissima $+(P$. luetzelburgii (Pilg.) Soderstr. \& Zuloaga + P. lateralis) (84/100/0.99)] (93/99/1.0) (Fig. 1).

TOPOLOGY INCONGRUENCE

ITS and rpl32-trnL each recovered the same relationships found in the combined plastid analyses, except for three clades. First, Sucrea sampaiana formed a polytomy with Piresia-Olyra-Cryptochloa-Lithachne-Arberella and Sucrea-Raddia in the rpl32trnL topology; in the ITS analysis S. sampaiana was recovered as sister to the Sucrea-Raddia clade (MPBS -/ MLBS 49/PP 0.99). Second, the Piresia clade was recovered as sister to the clade composed of Olyra and related species $(64 / 75 / 0.96)$. The third exception is with the samples of Raddiella malmeana (99/100/1.0),
which emerged in a clade with the other species of Raddiella (73/97/-) in the rpl32-trnL analysis (Fig. 2C) or as sister (-/41/0.80) without support to the ((Parodiolyra ramosissima $+($ Raddiella esenbeckii + R. minima)) (99/100/1.0; 58/57/0.98) clade in the ITS analysis (Fig. 2A).

The multispecies coalescence tree was informed by the independent trees from each of the five loci. A summary diagram of the species tree focused on the Parodiolyra and Raddiella clade is provided in Fig. 3, and the full coalescent tree with local posterior probability branch support is available in Supplementary Material. The topology of the recovered species tree is most similar to the $\operatorname{trn} D$ trnT, trnS-trnG and $n d h F$ ML trees. Parodiolyra and Raddiella, as sampled here, were not monophyletic in the coalescent tree. Parodiolyra micrantha was a well-supported clade (LPP 1.39) sister to a clade containing the other sampled species of Raddiella and Parodiolyra (LPP 1.39). In this well-supported sister clade (LPP 1.39), R. esenbeckii and R. minima were both monophyletic and well supported (both LPP 1.20); R. malmeana received only weak support (LPP 0.69). Pariodiolyra spp. were also recovered as monophyletic, but with P. lateralis and P. luetzelburgii having weaker support (both LPP 0.69) than P. ramosissima (LPP 1.20). Raddiella malmeana formed a poorly supported sister relationship with these remaining Pariodiolyra spp. (LPP 0.29), and that clade was sister to the rest of Raddiella.

Figure 2. Trees from the maximum likelihood analysis for the individual markers or set of markers. A, ITS. B, trnD$\operatorname{trn} T, \operatorname{trnS-trn} G$ and $n d h F$ combined. C, rpl32-trnL. Numbers below the branches indicate bootstrap support (\%; 1000 replications).

[^1]

Figure 3. Summary diagram of the species tree (grey) inferred under a multispecies coalescent model from gene trees inferred from maximum likelihood for $n d h F$, $\operatorname{trnS}-$ $\operatorname{trn} G, \operatorname{trn} D-\operatorname{trn} T$ (same topology; purple line), internal transcribed spacer (ITS; green line) and rpl32-trnL (blue line).

DISCUSSION

MOLECULAR EVOLUTION OF THE REGIONS USED

The considerable level of molecular variation found between plastid and nuclear markers is related to an abundance of homoplasy in the ITS markers, especially the spacers ITS1 and ITS2, indicated by the low CI and RI values. In addition, ITS shows a higher percentage of PIC for parsimony than those found in previous studies involving herbaceous bamboos [17.8\% (Ferreira, 2012); 37.8\% (Carvalho, 2013); 38.2\% (Oliveira et al., 2014)] and other groups of Poaceae [e.g. Pooideae, 37.4\% PIC (Hsiao et al., 1995); Panicoideae, 29.6\% (López \& Morrone, 2012); Chloridoideae, 26\% (Siqueiros-Delgado et al., 2013)], reflecting different evolutionary rates between different lineages of the family.

Plastid markers were more conservative than ITS, but high numbers of PICs were found when compared to the variation in tropical woody bamboos such as Chusquea Kunth (Fisher et al., 2009; Fisher, Clark \& Kelchner, 2014; Vidal et al., unpubl. data). On the other hand, the plastid markers showed similar variability to previous phylogenetic analyses of Olyrinae (Oliveira et al., 2014) and Parianinae (Ferreira, 2012). Additionally, many indels (insertions and deletions) were found, inhibiting the establishment of homologies in the alignment, except in $n d h F$, which is a coding region (gene) expected to be less variable and to contain few to no indels, despite the presence of high evolutionary rates (Olmstead \& Sweere, 1994; Olmstead \& Reeves, 1995; Scotland et al., 1995). Regarding the other markers, rpl32-trnL had the most informative characters but also incongruent positions for Sucrea sampaiana, Piresia and Raddiella malmeana.

Phylogenetic relationships in Olyreae FOCUSING ON OLYRINAE

Our data presented confirmed the results of previous phylogenetic studies involving herbaceous bamboos (Ferreira, 2012; Carvalho, 2013; Kelchner \& BPG, 2013; Oliveira et al., 2014) that recovered Olyrinae and Parianinae as monophyletic. Although the relationships among the main groups in Olyrinae were similar to previous studies, we increased sampling in the subtribe and improved the statistical support for some clades. The most significant change occurred in the clade including Raddia and Sucrea, which previously showed low resolution and no significant statistical support (Oliveira et al., 2014). Our analysis also unambiguously resolved Sucrea as non-monophyletic, suggesting the need for more detailed investigation, which is in progress by Oliveira et al. (Reinterpreting the phylogenetic position, systematics and distribution of the Raddia-Sucrea lineage (Poaceae, Olyrinae), with a new monotypic and endangered herbaceous bamboo genus from Brazil, unpubl. data).

Another update in comparison to previous studies refers to the genus Cryptochloa, sampling of which in previous phylogenetic analyses was restricted to C. capillata (Trin.) Soderstr. (Carvalho, 2013; Oliveira et al., 2014). In the current study we increased its sampling with the addition of C. dressleri Soderstr., indicating for the first time that the genus is probably monophyletic. Although the diversity of Cryptochloa is not high (seven or eight species), the genus displays an interesting biogeographic pattern, represented by a disjunction in which the majority of species occur in Central America and northern and western South America, with only one species occurring in the Atlantic Forest of Brazil (Judziewicz et al., 1999). However, complementary studies on systematics and evolution of Cryptochloa are in progress and will require the inclusion of other species, including the type species, to further elucidate its internal relationships.

The DIANDROLYRA-PARODIOLYRA-RADDIELLA CLADE

In agreement with the results of Oliveira et al. (2014), the clade within Olyrinae comprising Diandrolyra, Parodiolyra and Raddiella was recovered. Therefore, it showed higher statistical support in our analyses in comparison to Oliveira et al. (2014), which can be explained by the increase in sampling for Parodiolyra and Raddiella or the inclusion of more molecular markers.

Diandrolyra was historically considered to be related to Piresia (Soderstrom \& Calderón, 1974; Clayton \& Renvoize, 1986) due to the presence of synflorescences produced on dimorphic culms. Oliveira et al. (2014) recovered this relationship based
on a combined ITS $+\operatorname{trn} D-\operatorname{trn} T$ dataset, but with no significant support. However, Carvalho (2013) used greater sampling in Piresia and Reitzia, and was able to show that these two genera compose a strongly supported lineage in Olyrinae, with many shared morphological characters (Carvalho \& Oliveira, 2014) and did not exhibit a direct relationship to the Diandrolyra-Parodiolyra-Raddiella clade.

As discussed by Oliveira et al. (2014), synflorescences produced on dimorphic and commonly decumbent culms occur in several genera of Olyreae. In Olyrinae, this condition has been reported in Piresia, Diandrolyra, Cryptochloa, Piresiella Judz., Zuloaga \& Morrone, Mniochloa Chase and some Olyra spp. In Parianinae, dimorphic culms occur in Eremitis and in some species of Pariana, but in Parianella only monomorphic culms are known thus far (Ferreira et al., 2019). Considering that this character is present in many but not all lineages of the tribe, there are two possible explanations: (1) the character represents a symplesiomorphy of the tribe, being lost or modified in diverse lineages; or (2) the character evolved independently in different lineages.

Representatives of Diandrolyra-ParodiolyraRaddiella are heterogeneous in their general morphological characters. However, they share a shortened hilum, in contrast to other Olyrinae (with the hilum typically extending the length of the caryopsis), female spikelets that disarticulate below the glumes, inflated internodes between the glumes and filiform pedicels (Soderstrom \& Zuloaga, 1989). These characters are possible synapomorphies of this clade, but ancestral state reconstruction analysis, as recently performed for Parianinae by Ferreira et al. (2019), is necessary to test these characters.

Diandrolyra, here represented by two of its three species (D. bicolor Stapf and D. tatianae Soderstr. \& Zuloaga), was recovered with high support values in all our analyses. It differs from Parodiolyra and Raddiella in vegetative aspects and synflorescence structure, which is racemose and usually develops on differentiated culms, with a single leaf protecting and hiding the synflorescence (Soderstrom \& Calderón, 1974). Female and male spikelets are slightly dimorphic, and the male spikelets possess only two stamens (Stapf, 1906; Soderstrom \& Zuloaga, 1985). Despite having only three described species, there are several putative new species in this genus the delimitation of which requires more investigation (Oliveira \& Clark, 2009).

On the other hand, Parodiolyra and Raddiella are morphologically similar to each other, possessing synflorescences produced on non-differentiated culms with completely developed leaves, differing especially by the presence of unisexual synflorescences in Raddiella and bisexual ones in Parodiolyra
(Judziewicz et al., 1999). Our data indicate that Parodiolyra is paraphyletic, with P. micrantha arising as a sister lineage of the clade including the other species of Parodiolyra + Raddiella. This relationship agrees with the results of Oliveira et al. (2014) and is bolstered by greater taxon sampling and more markers. In the present work, the other Parodiolyra spp. constitute a well-supported clade, including the type species, P. ramosissima. Raddiella was recovered as paraphyletic in most gene trees, but was monophyletic in the rpl32-trnL tree (Fig. 2C), leaving its circumscription inconclusive.

UnCERTAINTIES ABOUT THE CIRCUMSCRIPTION OF RADDIELLA

Only three Raddiella spp. were included in this study (R. esenbeckii, R. malmeana and R. minima), two from dry environments and only one (R. malmeana) being a phreatophyte. The further addition of other phreatophyte species in our analyses would be crucial, but there is a scarcity of knowledge about the distributions of these species, some of which are only known from type material. They are difficult to collect because they grow in remote parts of the Amazon region (Zuloaga \& Judziewicz, 1991; Cardoso et al., 2017), and our attempts to obtain quality DNA from herbarium samples were not successful.

Raddiella esenbeckii and R. minima were recovered as sister groups in all analyses, but R. malmeana was recovered as their sister only in the rpl32-trnL analysis. Despite this, the alternative hypothesis for the monophyly of Raddiella in the SH test was rejected for that marker. The branches in each of these lineages are long (Figs 1, 2), indicating accumulation of mutations. Thus, it is possible that the position of R. malmeana was the result of long-branch attraction due to an excess of homoplasy in the rpl32-trnL matrix. This type of systematic error tends to happen when two lineages with long branches separated by a short internode evolve identical bases by chance, which are interpreted as synapomorphic (Bergsten, 2005), which seems to be the case for R. malmeana. Additionally, in contrast to Oliveira et al. (2014), in which R. malmeana was recovered as a poorly supported part of the Raddia-Sucrea lineage, we found no relationship between Raddiella and that lineage.

Raddiella is identified by the reduced size of its plants, including the smallest species (R. vanessae Judz.) known in Bambusoideae (Soderstrom, 1984; Judziewicz \& Sepsenwol, 2007). Raddiella spp. possess numerous and well-developed axillary synflorescences (Zuloaga \& Judziewicz, 1991) and male and female spikelets arising from different synflorescences (Soderstrom \& Zuloaga, 1989) (Fig. 4). Some species are obligatory phreatophytes, growing

Figure 4. Habit and detail of inflorescences in Parodiolyra and Raddiella. A, B, Parodiolyra lateralis; C, D, Parodiolyra ramosissima; E, F, Raddiella esenbeckii. Photographs by D. Cardoso (A-B) and C. Silva (C-F).
on humid rocks and at the base of waterfalls (Zuloaga \& Judziewicz, 1991), except R. esenbeckii, R. minima and R. vanessae, which inhabit dry savannas and cerrados (Fig. 5). These are the only species in the genus to exhibit nyctinasty or 'sleep movements' (Zuloaga \& Judziewicz, 1991; Judziewicz \& Sepsenwol, 2007), even though this mechanism is common in several other genera in Olyreae (Judziewicz et al., 1999; Oliveira, 2006). Nyctinasty is characterized by rhythmic movements in which the leaf blades fold during the night or under water stress (Kerbauy, 2004), and functions in protection, water economy and maximizing photosynthesis in adverse conditions (Rodrigues, 2006). Thus, the presence of this character in Raddiella spp. seems to be related to their habitat and the consequent need to reduce water loss in dry environments.

The R. minima $+R$. esenbeckii clade, strongly supported in this study, is characterized by firm, strongly asymmetrical leaf blades (Zuloaga \& Judziewicz, 1991), contrasting with the phreatophyte species, which possess ovate-triangular leaf blades that are membranous and slightly asymmetrical, with a truncate base and acuminate apex (Zuloaga \& Judziewicz, 1991). In addition, the male spikelets are borne on terminal, whereas female spikelets are on axillary synflorescences (Zuloaga \& Judziewicz, 1991), as is the case in R. malmeana. The monophyly of Raddiella is difficult to discern from our analyses. Morphologically, R. malmeana possesses the diagnostic characteristics for the genus, despite the differences from the other species sampled. Molecularly, the rpl32trn L analysis places R. malmeana with Parodiolyra, but it does not seem to share morphological similarities with

Figure 5. Known geographical distribution of the species belonging to the lineages under study. (Acronyms of the states of Brazil: Acre, AC; Alagoas, AL; Amapá, AP; Amazonas, AM; Bahia, BA; Ceará, CE; Distrito Federal, DF; Espírito Santo, ES; Goiás, GO; Maranhão, MA; Mato Grosso, MT; Mato Grosso do Sul, MS; Minas Gerais, MG; Pará, PA; Paraíba, PB; Paraná, PR; Pernambuco, PE; Piauí, PI; Rio de Janeiro, RJ; Rio Grande do Norte, RN; Rio Grande do Sul, RS; Rondônia, RO; Roraima, RR; Santa Catarina, SC; São Paulo, SP; Sergipe, SE; Tocantins, TO). A, Distribution of Raddiella spp. occurring in savannas and forests. B, Distribution of phreatophyte Raddiella spp. C, Distribution of Parodiolyra s.s. D, Distribution of Taquara, including T. micrantha and T. colombiensis.

Figure 6. Comparison of female spikelets and the female anthoecium of the analysed species of Parodiolyra and Raddiella.A, Parodiolyra lateralis (Cardoso 3362). B, P. luetzelburgii (Oliveira 2335). C, P. micrantha (Queiroz et al. 9429). D, P. micrantha (Oliveira 2326); E, P. ramosissima (Silva 426). F, Raddiella esenbeckii (Longhi-Wagner 9451). G, R. malmeana (Silva 1404). H, R. minima (Viana 2712).
that genus. Clearly, the circumscription of Raddiella will require inclusion of additional species to sort it out. In addition, the use of additional conservative markers (e.g. $r b c L$) may be needed in order to reconstruct the relationships given the elevated amount of homoplasy observed in the non-coding plastid markers.

PaRAPhYLY OF PARODIOLYRA AND ITS TAXONOMIC IMPLICATIONS

The paraphyly of Parodiolyra was suggested for the first time by Oliveira et al. (2014), based only on P. micrantha and P. ramosissima, and is confirmed in the present work, following the inclusion of P. lateralis and P. luetzelburgii. The latter two species are morphologically similar and overlap in their distribution (both occur in the northern portion of South America), whereas P. ramosissima is endemic to Bahia (Soderstrom \& Zuloaga, 1989) (Figs 4, 5). Parodiolyra lateralis, P. luetzelburgii, P. ramosissima and P. aratitiyopensis J.R.Grande possess morphological affinities, mainly in the ornamentation of the female anthoecia (smooth or with rounded pits only at the apex of lemma and palea) (Fig. 6). Parodiolyra aratitiyopensis is known only from the Venezuelan Amazon (Grande Allende, 2011), and was not sampled in this study. Additionally, P. lateralis, P. luetzelburgii and P. ramosissima appear to share zoochoric dispersal syndromes. The first two species produce sticky secretions from micro-trichomes at the apex of the female lemma that facilitate external dispersal. The third species has shiny, glabrous lemmas, suggesting internal dispersal by animals via ingestion (Davidse, 1987; Judziewicz et al., 1999).

Originally described as part of Olyra, P. micrantha was always considered atypical for the genus, due to the presence of female spikelets disarticulating below the glumes, conspicuous internodes between the glumes and filiform pedicels (Soderstrom \& Zuloaga, 1989) (Figs 6, 7). Even after its transfer to Parodiolyra (Zuloaga \& Davidse, 1999), this species remained somewhat anomalous because of its much longer leaves and synflorescences with numerous male and female spikelets (Judziewicz et al., 1999). The species is most
similar to P. colombiensis Davidse \& Zuloaga, because these are the only two species with a completely foveolate anthoecia (Zuloaga \& Davidse, 1999) (Fig. 6).

The foveolate female anthoecia has been noted in different genera of Olyreae, with the depth and distribution of the depressions varying. This character is conspicuous in Parodiolyra micrantha and P. colombiensis (Zuloaga \& Davidse, 1999) and in some Olyra spp., e.g. O. filiformis Trin., O. longifolia Kunth, O. ecaudata Trin. and O. fasciculata Trin. (Soderstrom \& Zuloaga, 1989). In Raddia and Sucrea (Oliveira, 2006) and some Raddiella spp. (Zuloaga \& Judziewicz, 1991), however, the anthoecia are only slightly foveolate. Thus, the extent to which this character, which also seems to have evolved independently, occurs in other genera of Olyrinae needs to be better investigated.

Many bamboos exhibit specialized mechanisms for fruit and seed dispersal, with adaptations reflected in the presence of specialized synflorescences and spikelets (Davidse, 1987). Vasconcelos et al. (2005) observed that granivorous birds are associated with the fruiting events of 'taquaras' in the Espinhaço Range. After analysing the crop content of an individual of Tiaris fuliginosus (Thraupidae), the authors found caryopses of P. micrantha, and other non-identified grasses. This bird is partially migratory (Sigrist, 2013) and its distribution overlaps the distribution of P. micrantha, suggesting a possible animal-plant relationship in the dispersal of the species. In this way, the wide distribution of P. micrantha in the Neotropical region may be attributable to the efficiency of its dispersal mechanisms and the behaviour of the dispersal agent.

TAXONOMIC IMPLICATIONS

Based on the phylogenetic information presented here, the circumscription of Parodiolyra is confirmed, being composed of four species (P. lateralis, P. luetzelburgii, P. ramosissima and P. aratityopensis). Additionally, we propose transferring Parodiolyra micrantha and P. colombiensis to the new genus Taquara (Fig. 7), which is sister to the Raddiella-Parodiolyra clade (Fig. 8) and shares the characters discussed above, but differs by the characters indicated below.

KEY TO THE GENERA OF THE DIANDROLYRA, PARODIOLYRA, RADDIELLA AND TAQUARA CLADE
1.Synflorescences produced on dimorphic culms

Diandrolyra
1'. Synflorescences produced on monomorphic culms.
2. Female and male spikelets in separate synflorescences ...Raddiella

2'. Female and male spikelets in the same synflorescences.
3. Female anthoecia with small pits (foveolate) only at the apex of lemma and/or palea

3'. Female anthoecia completely covered with small pits (completely foveolate)

Figure 7. Taquara micrantha (\equiv Parodiolyra micrantha). A, Habit. B, Inflorescence location on the culm. C, Detail of the leaves in the stem. D, Detail of the arrangement of the female (upper portion) and male (lower portion) spikelets in the inflorescence. E, Floral visitor registration. Photographs by Reyjane Patrícia de Oliveira.

Figure 8. Summary of recovered relationships and detail of the female spikelets, female anthoecia (florets) and hilum.

Taquara I.L.C.Oliveira \& R.P.Oliveira, gen. nov. \equiv Parodiolyra micrantha. Type: Olyra micrantha Kunth [三 Taquara micrantha (Kunth) I.L.C.Oliveira \& R.P.Oliveira].

Taquara differs from other genera of Olyreae by having usually terminal panicles with male spikelets in the lower portion and female spikelets above, and female anthoecia entirely foveolate (covered in small pits).

Perennial. Culms erect, ramified at the upper nodes, sometimes leaning on surrounding vegetation; internodes cylindrical, hollow and glabrous; nodes compressed, dark, glabrous to pubescent. Leaf sheaths striate or not, brownish or straminous, glabrous to densely pubescent; auricles present or absent at the apex; ligules membranous-ciliate, small or conspicuous; blades oblong-lanceolate or ovate-lanceolate, apex acuminate, base symmetric or asymmetric, truncate or subcordate, margins ciliate to scabrous or glabrous, midnerve prominent or not. Synflorescences paniculate, terminal, lax, open or diffuse, with male spikelets in the lower portion and female spikelets above; axillary synflorescences present or absent; rachis scaberulous to hispid; pedicels filiform, not thickened. Female spikelets oval to elliptical, aristate to acuminate, with an internode between the glumes present or absent, disarticulating below the glumes; lower glume scabrous or hispid, three- to five-nerved; upper glume scabrous or hispid, three- to five-nerved; anthoecia (florets) ovoid or ellipsoid, foveolate over the entire surface, lemma five-nerved, pilose or glabrous. Male spikelets fusiform
to lanceolate; lemma acuminate or aristate, scabrous; palea scabrous, two-nerved.

This new genus is named based on the common name of herbaceous bamboos in Brazil ('taquaras' or 'taquarinhas'). It includes only two species, one widely distributed in the Neotropical region and the other restricted to the Araracuara region of Colombia. They are found along forest edges and in the understory or in sandy paramos, respectively.

Taquara colombiensis (Davidse \& Zuloaga) I.L.C.Oliveira \& R.P.Oliveira, comb. nov. based on Parodiolyra colombiensis Davidse \& Zuloaga. Novon 9(4): 587, f. 1-2. 1999. TYPE: Colombia. Caquetá: Região de Araracuara, arredores da pista aérea, D. Restrepo \& A. Matapi 467 (holotype, COAH-017796; isotypes, COAH-020068, MO-05102566).

Distribution and habitat: Known only from the type material collected in south-western Colombia in sandy paramos (Zuloaga \& Davidse, 1999) (Fig. 5).

Taquara micrantha (Kunth) I.L.C.Oliveira \& R.P.Oliveira, comb.nov.based on Olyra micrantha Kunth. Humboldt, Bonpland \& Kunth, Nov. Gen. Sp.1:199. 1816 [\equiv Parodiolyra micrantha (Kunth) Davidse \& Zuloaga. Novon 9(4): 590. 1999]. TYPE: Venezuela. Amazonas: Maypures do Rio Orinoco, Humboldt and Bonpland s.n. (holotype: P; isotype: US-2877940 (fragment ex P)).

Distribution and habitat:Widely distributed in South America, from eastern Colombia and Venezuela to the Atlantic Coast of Brazil and the eastern Andes along forest edges and in the interior of forests (Soderstrom \& Zuloaga, 1989) (Fig. 7).

KEY TO THE SPECIES OF TAQUARA

1. Leafblades oblong-lanceolate, base symmetrical, subcordate, adaxially glabrous; female and male spikelets aristate \qquad T. micrantha

1'. Leaf blades ovate-lanceolate, base asymmetrical, truncate, adaxially pilose; female and male spikelets acuminate T. colombiensis

ACKNOWLEGEMENTS

The authors thank their colleagues Pedro Viana for suggesting the name Taquara for the new genus, Domingos Cardoso and Fabrício Ferreira for pictures and Kaio Vidal and João Vieira for suggestions and assistance with the literature. The authors are grateful to the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, grants 562349/2010-3 and 401526/2014-3); FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia, grant PIE0009/2016) for financial support for field trips and laboratory work, and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil, financial code 001), which provided grants to ILCO, MLSC and AOM. We also thank the CNPq for fellowships given to LGC, CS and RPO (PQ1C) and CAPES for grants given to the Grass Systematics and Evolution symposium (88887.194402/2018-00).

REFERENCES

AkaikeH. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723.
Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA. 2003. A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. American Journal of Botany 90: 796-821.
Bergsten J. 2005. A review of long-branch attraction. Cladistics 21: 163-193.
BPG (Bamboo Phylogeny Group). 2012. An updated tribal and subtribal classification of the bamboos (Poaceae: Bambusoideae). The Journal of the American Bamboo Society 24: 1-10
BFG - The Brazil Flora Group. 2015. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66: 1085-1113.
Bridson D, Forman L. 1998. The herbarium handbook. Kew: Royal Botanic Gardens.
Cardoso D, Queiroz LP, Lima HC, Suganuma E, van den Berg C, Lavin M. 2013. A molecular phylogeny of the vataireoid legumes underscores floral evolvability that is general to many early-branching papilionoid lineages. American Journal of Botany 100: 403-421.
Cardoso D, Särkinen T, Alexander S, Amorim AM, Bittrich V, Celis M, Daly DC, Fiaschi P, Funk VA, Giacomin LL, Goldenberg R, Heiden G, Iganci J, Kelloff CL, Knapp S, Cavalcante de Lima H, Machado AFP, dos Santos Rubens M, MelloSilva R, Michelangeli FA, Mitchell J, Moonlight P, de Moraes PLR, Mori SA, Nunes TS, Pennington TD, Pirani JR, Prance GT, de Queiroz LP, Rapini A, Riina R, Rincon CAV, Roque N, Shimizu G, Sobral M, Stehmann JR, Stevens WD, Taylor CM, Trovó M, van den Berg C, van der Werff H, Viana $P L$, Zartman CE, Forzza RC. 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proceedings of the National Academy of Sciences 114: 10695-10700.

Carvalho MLS. 2013. Estudos biossistemáticos em Piresia Swallen (Poaceae: Bambusoideae: Olyreae). Unpublished D. Phil. Thesis, Universidade Estadual de Feira de Santana.

Carvalho MLS, Oliveira RP. 2014. (2260) Proposal to conserve the name Piresia against Reitzia (Poaceae, Bambusoideae). Taxon 63: 190-191.
Chase MW, Hills HG. 1991. Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215-220.
Clark LG. 1990. Diversity and biogeography of Neotropical bamboos (Poaceae: Bambusoideae). Acta Botanica Brasilica 4: 125-132.
Clark LG, Londoño X, Ruiz-Sanchez E. 2015. Bamboo taxonomy and habitat. In: Liese W, Köhl M, eds. Bamboo: the plant and its uses. Chamonix: Springer, 1-30.
Clark LG, Oliveira RP. 2018. Diversity and evolution of the New World bamboos (Poaceae: Bambusoideae: Bambuseae, Olyreae). In: Lucas S, ed. Proceedings of the 11th World Bamboo Congress, Xalapa, Mexico. Plymouth: The World Bamboo Organization, 35-47.
Clark LG, Zhang W, Wendel JF. 1995. A phylogeny of the grass family (Poaceae) based on $n d h F$ sequence data. Systematic Botany 20: 436-460.
Clayton WD, Renvoize SA. 1986. Genera graminum: grasses of the World. London: Her Majesty's Stationery Office.
Davidse G. 1987. Fruit dispersal in the Poaceae. In: Soderstrom TR, Hilu KW, Campbell SC, Barkworth ME, eds. Grass systematics and evolution. Washington: Smithsonian Institution Press, 143-155.
Demesure B, Sodzi N, Petit RJ. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4: 129-134.
Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH. 1996. Evolution of reproductive systems in the genus Silene. Proceedings of the Royal Society of London. Series B: Biological Sciences 263: 409-414.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, Botanical Society of America 19: 11-15.
Erixon P, Svennblad B, Britton T, Oxelman B. 2003. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52: 665-673.
ESRI (Environmental Systems Resource Institute). 2012. Arcmap 10.1. Redlands: ESRI.
Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Ferreira FM. 2012. Filogenia da subtribo Parianinae e sistemática de Eremitis Döll (Poaceae: Bambusoideae: Olyreae). Unpublished D. Phil. Thesis, Universidade Estadual de Feira de Santana.
Ferreira FM, Oliveira RP, Welker CAD, Dorea MC, Lima ALC, Oliveira ILC, Santos FAR, Van den Berg C, Clark, LG. 2019. Phylogenetic relationships within Parianinae (Poaceae: Bambusoideae: Olyreae) with emphasis on Eremitis: evidence from nuclear and plastid DNA sequences, macromorphology, and pollen ectexine patterns. Molecular Phylogenetics and Evolution 139: 106541.

Ferreira FM, van den Berg C, Hollowell VC, Oliveira RP. 2013. Parianella (Poaceae, Bambusoideae): morphological and biogeographical information reveals a new genus of herbaceous bamboos from Brazil. Phytotaxa 77: 27-32.
Fisher AE, Clark LG, Kelchner SA. 2014. Molecular phylogeny estimation of the bamboo genus Chusquea (Poaceae: Bambusoideae: Bambuseae) and description of two new subgenera. Systematic Botany 39: 829-844
Fisher AE, Triplett JK, Ho C, Schiller AD, Oltrogge KA, Schroder ES, Kelchner SA, Clark LG. 2009. Paraphyly in the bamboo subtribe Chusqueinae (Poaceae: Bambusoideae), and a revised infrageneric classification for Chusquea. Systematic Botany 34: 673-683.
Fitch WM. 1971. Towards defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20: 406-416.
Grande Allende JR. 2011. Novitates agrostologicae, II. Parodiolyra aratitiyopensis, un nuevo bambú herbáceo del sur de la Guayana Venezolana. Novon 21: 40-43.
Grande Allende JR. 2016. Novitates agrostologicae, V. Generic mergers in the tribe Olyreae. Boletín del Centro de Investigaciones Biológicas 50: 19-43.
Hedges SB. 1992. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Molecular Biology and Evolution 9: 366-369.
Hsiao C, Chatterton NJ, Asay KH, Jensen KB. 1995. Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theoretical and Applied Genetics 90: 389-398.
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.
Judziewicz EJ, ClarkLG.2007.Classification and biogeography of New World grasses: Anomochlooideae, Pharoideae, Ehrhartoideae, and Bambusoideae. Aliso 23: 303-314.
Judziewicz EJ, Clark LG, Londoño X, Stern MJ. 1999. American bamboos. Washington: Smithsonian Institution Press.
Judziewicz EJ, Sepsenwol S. 2007. The world's smallest bamboo: Raddiella vanessiae (Poaceae: Bambusoideae: Olyreae), a new species from French Guiana. Journal of the Botanical Research Institute of Texas 1: 1-7.
Judziewicz EJ, Soreng RJ, Davidse G, Peterson PM, Filgueiras TS, Zuloaga FO. 2000. Catalogue of New World grasses (Poaceae): I. Subfamilies Anomochlooideae, Bambusoideae, Ehrhartoideae, and Pharoideae. Contributions from the United States National Herbarium 39: 1-128.
Kelchner SA, BPG (Bamboo Phylogeny Group). 2013. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Molecular Phylogenetics and Evolution 67: 404-413.
Kellogg EA. 2015. Flowering plants, monocots, Poaceae. In: Kubitski K, ed. The families and genera of vascular plants. Chamonix: Springer International, 1-416.
Kerbauy GB. 2004. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan.
Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44: W242-W245.

López A, Morrone O. 2012. Phylogenetic studies in Axonopus (Poaceae, Panicoideae, Paniceae) and related genera: morphology and molecular (nuclear and plastid) combined analyses. Systematic Botany 37: 671-676.
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 1-8.
Müller KF. 2005. The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. BMC Evolutionary Biology 5: 58.
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
Nylander JAA. 2004. MrModeltest. Program distributed by the author. Uppsala: Evolutionary Biology Centre.
Oliveira RP. 2001. A tribo Olyreae (Poaceae: Bambusoideae) no estado da Bahia, Brasil. Unpublished Master's thesis. Universidade Estadual de Feira de Santana.
Oliveira RP. 2006. Estudos taxonômicos, filogenéticos e biossistemáticos em Raddia Bertol. (Poaceae: Bambusoideae: Olyreae). Unpublished D. Phil. Thesis, Universidade Estadual de Feira de Santana.
Oliveira RP, Clark LG. 2009. A tiny new Brazilian species of Diandrolyra (Poaceae, Bambusoideae, Olyreae), with notes on the systematics of the genus. Novon 19: 209-214.
Oliveira RP, Clark LG, Schnadelbach AS, Monteiro SHN, Borba EL, Longhi-Wagner HM, Van den Berg C. 2014. A molecular phylogeny of Raddia and its allies within the tribe Olyreae (Poaceae, Bambusoideae) based on noncoding plastid and nuclear spacers. Molecular Phylogenetics and Evolution 78: 105-117.
Oliveira RP, Longhi-Wagner HM, Jardim JG. 2011. Diversidade e conservação dos bambus herbáceos (Poaceae: Bambusoideae: Olyreae) da Mata Atlântica, Brasil. In: Anais do Seminário Nacional "Bambu: estruturação da rede de pesquisa e desenvolvimento". Brasília: Faculdade de Arquitetura e Urbanismo, Universidade de Brasilia, 62-66.
Olmstead RG, Reeves PA. 1995. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast $r b c L$ and $n d h F$ sequences. Annals of the Missouri Botanical Garden 82: 176-193.
Olmstead RG, Sweere JA. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Systematic Biology 43: 467-481.
Paithankar KR, Prasad KSN. 1991. Precipitation of DNA by polyethylene glycol and ethanol. Nucleic Acids Research 19: 1346.
Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T.2010. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research 38: W23-W28.
Rambaut A, Drummond AJ. 2009. Tracer: MCMC trace analysis tool, version 1.5. Oxford: University of Oxford.
Rodrigues TM. 2006. Anatomia e aspectos ultra-estruturais de pulvinos de leguminosas de cerrado. Unpublished Master's thesis. Universidade Estadual Paulista.
SaarelaJM,BurkeSV, Wysocki WP, BarrettMD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. 2018. A 250 plastome phylogeny of the grass
family (Poaceae): topological support under different data partitions. PeerJ 6: e4299.
Scotland RW, Sweere JS, Reeves PA, Olmstead RG. 1995. Higher level systematics of Acanthaceae determined by chloroplast DNA sequences. American Journal of Botany 82: 266-275.
Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166.
Shaw J,Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275-288.
Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114-1116.
Sigrist T. 2013. Guia de campo Avis Brasilis - avifauna brasileira. São Paulo: Avis Brasilis.
Silva C, Snak C, Schnadelbach AS, van den Berg C, Oliveira RP. 2015. Phylogenetic relationships of Echinolaena and Ichnanthus within Panicoideae (Poaceae) reveal two new genera of tropical grasses. Molecular Phylogenetics and Evolution 93: 212-233.
Siqueiros-Delgado ME, Ainouche M, Columbus JT, Ainouche A. 2013. Phylogeny of the Bouteloua curtipendula complex (Poaceae: Chloridoideae) based on nuclear ribosomal and plastid DNA sequences from diploid taxa. Systematic Botany 38: 379-389.
Soderstrom TR. 1984. In quest of the pygmy bamboos. Bulletin Fairchild Tropical Garden 39: 6-12.
Soderstrom TR, Calderón CE. 1974. Primitive forest grasses and evolution of the Bambusoideae. Biotropica 6: 141-153.
Soderstrom TR, Judziewicz EJ, Clark LG. 1988. Distribution patterns of Neotropical bamboos. In: Vanzolini PE, Heyer WR, eds. Proceedings of a workshop on Neotropical distribution patterns. Rio de Janeiro: Academia Brasilera de Ciências, 121-157.
Soderstrom TR, Young SM. 1983. A guide to collecting bamboos. Annals of the Missouri Botanical Garden 70: 128-136.
Soderstrom TR, Zuloaga FO. 1985. Diandrolyra tatianae (Poaceae: Olyreae), a new herbaceous bamboo from Brazil. Brittonia 37: 1-5.
Soderstrom TR, Zuloaga FO. 1989. A revision of the genus Olyra and the new segregate genus Parodiolyra (Poaceae: Bambusoideae: Olyreae). Smithsonian Contributions to Botany 69: 1-79.
Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO. 2017. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. Journal of Systematics and Evolution 55: 259-290.
Staden R, Beal KF, Bonfield JK. 1999. The Staden package, 1998. In: Bioinformatics methods and protocols, 115-130.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758-771.
Stapf O. 1906. XI.-Decades Kewenses, decades XL. XLI. Bulletin of Miscellaneous Information 1906: 71-78.
Sungkaew S, Stapleton CMA, Salamin N, Hodkinson T. 2009. Non-monophyly of the woody bamboos (Bambuseae: Poaceae): a multi-gene region phylogenetic analysis of Bambusoideae s.s. Journal of Plant Research 122: 95-108.
Swallen JA. 1948. Gramineae. In: Plant explorations in Guiana in 1944, chiefly to the Tafelberg and the Kaieteur Plateau. Bulletin of the Torrey Botanical Club 75: 56-115.
Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b10a. Sunderland: Sinauer Associates.
Thiers B. 2019. Index herbariorum: a global directory of public herbaria and associated staff. The Bronx: New York Botanical Garden's Virtual Herbarium.
Triplett JK, Clark LG. 2010. Phylogeny of the temperate bamboos (Poaceae: Bambusoideae: Bambuseae) with an emphasis on Arundinaria and allies. Systematic Botany 35: 102-120.
Vasconcelos MF, Vasconcelos AP, Viana PL, Palú L,Silva JF. 2005. Observações sobre aves granívoras (Columbidae e Emberizidae) associadas à frutificação de taquaras (Poaceae, Bambusoideae) na porção meridional da Cadeia do Espinhaço, Minas Gerais, Brasil. Lundiana 6: 75-77.
Vorontsova MS, Clark LG, Dransfield J, Govaerts R, Baker WJ. 2016. World checklist of bamboos and rattans. INBAR Technical Report No. 37. Beijing: International Network of Bamboo \& Rattan.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR: a guide to methods and applications. San Diego: Academic Press, 315-322.
Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR. 2015. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evolutionary Biology 15: 50.
Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153.
Zuloaga F, Davidse G. 1999. A new species and a new combination in the genus Parodiolyra (Poaceae: Bambusoideae: Olyreae). Novon 9: 587-591.
Zuloaga FO, Judziewicz EJ. 1991. A revision of Raddiella (Poaceae: Bambusoideae: Olyreae). Annals of the Missouri Botanical Garden 78: 928-941.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

[^0]: *Corresponding author. E-mail: iasminlaiane@gmail.com

[^1]: Bayesian posterior probability (values ≥ 0.95) and maximum parsimony bootstrap support (values $\geq 70 \%$). Arrows indicate incongruent clades in the ITS and rpl32-trnL analyses.

