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ABSTRACT 

In a reciprocal, obligate mutualism, ambrosia beetles cultivate gardens of fungi to 

extract nutrients from sapwood and carve a unique niche in this traditionally nutrient-

poor substrate. This mutualism is the most ancient, widespread, and diverse system of 

insect agriculture. The beetles carry pure cultures of fungal spores to new trees using a 

variety of organs called mycangia. However, the diversity and evolutionary dynamics of 

these fungi and of the mycangia that carry them are poorly understood. Beetles with 

particularly large and specialized mycangia appear to associate with ambrosia fungi in the 

family Ceratocystidaceae (Microascales). Based on widespread geographic and 

taxonomic sampling of host beetles, isolation and characterization of their fungi, and 

molecular phylogenetics of these fungi, the diversity of ambrosia fungi and the evolution 

of ambrosia symbiosis in the Ceratocystidaceae are related to the development of 

mycangia in their respective beetle hosts. The mycangia of Indocryphalus, Remansus, 

Anisandrus maiche, and Corthylus papulans are newly characterized. Phylogenetic 

analyses supported six new genera and seventeen new species of fungi. Four unrelated 

lineages of ambrosia beetles with unique mycangia were found to carry ambrosia fungi in 

five genera of Ceratocystidaceae. Ambrosiella is associated with mesonotal mycangia of 

the Xylosandrus complex (Xyleborini) and the pronotal disk mycangium of Remansus 

mutabilis (Scolytoplatypodini). Meredithiella gen. nov. is associated with prothoracic coil 

mycangia of Corthylus (Corthylina). Phialophoropsis is associated with prothoracic 

pleural mycangia of Trypodendron (Xyloterini). Toshionella gen. nov. is associated with 

pronotal disk mycangia of Asian Scolytoplatypus (Scolytoplatypodini) and the 

prothoracic pleural mycangia of Indocryphalus pubipennis (Xyloterini). Wolfgangiella 



x 

gen. nov. is associated with pronotal disk mycangia of African Scolytoplatypus. Two 

unrelated symbionts, Raffaelea aff. canadensis (Ophiostomatales) and Kaarikia 

abrahamsonii gen. et sp. nov. (incertae sedis), are associated with oral and prothoracic 

basin mycangia, respectively, of Xyloterinus politus (Xyloterini). Sexual states are 

characterized for species of Ambrosiella and Wolfgangiella, the first report of sexual 

states in mycangial symbionts of ambrosia beetles. Co-adaption between fungal genera 

and mycangial type was evident, but not species-level co-evolution. It is proposed that 

there were at least three independant domestication events in the Ceartocystidaceae, the 

first domestication most likely with the Scolytoplatypodini.  
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CHAPTER 1.    GENERAL INTRODUCTION AND LITERATURE 

REVIEW 

Dissertation Organization 

The first chapter of the dissertation is a review of the literature on ambrosia fungi 

and the mycangia of ambrosia beetles. Chapters two through six are journal-formatted 

articles with individual methods, results, and discussion sections. Chapter two shows that 

three genera of ambrosia fungi in the Ceratocystidaceae are each associated with a 

different type of large mycangium. Chapter three reports the first sexual state in a 

mycangial ambrosia fungus, the Ambrosiella symbiont of the invasive ambrosia beetle 

Anisandrus maiche. Chapter four studies the symbionts of Corthylus ambrosia beetles in 

North, Central, and South America and characterizes mycangium diversity in Corthylus. 

Chapter five is a family-wide phylogenetic study of ambrosia fungi in the 

Ceratocystidaceae, enabled by the discovery of new ambrosia fungi from the tribe 

Scolytoplatypodini and a time-calibrated phylogeny comparing the estimated dates of 

origins of the five ambrosial genera to the origins of their associated mycangia. Chapter 

six is a study of the varied fungal symbionts and mycangia of ambrosia beetles in tribe 

Xyloterini. Chapter seven draws general conclusions from the results of the dissertation. 

Section 1. Introduction 

Ambrosia beetles comprise multiple lineages of wood-dwelling weevils 

(Curculionidae: Coleoptera: subfamilies Scolytinae and Platypodinae) that share the 

unique biology of boring tunnels (‘galleries’) into sapwood and cultivating gardens of 

fungi (‘ambrosia fungi’) (Fig. 1a) that serve as their primary source of sustenance (Baker 

1963; Francke-Grosmann 1967; Beaver 1989; Hulcr and Stelinski 2017). Ambrosia fungi 

form thick layers of nutritious mycelium along the walls of the galleries that both beetles 
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and larvae feed upon (Francke-Grosmann 1963). The beetles gain a reliable source of 

food that allows them to extract energy from the nutrient-poor sapwood. In return, the 

adult beetles carry propagules of their fungal crops in special organs called ‘mycangia’ 

and bring their fungi to new trees. The fungi grow in and overflow from the mycangium 

to inoculate the walls of the galleries (Francke-Grosmann 1967; Schneider 1975; Six 

2003). As partners in the most ancient and specialized of insect-fungus symbioses, 

ambrosia fungi and ambrosia beetles present a fascinating model system for the study of 

mutualism and co-adaptation. 

Many reviews have touched on the ambrosia beetle symbiosis (Baker 1963; 

Francke-Grosmann 1963, 1967; Beaver 1989; Schneider 1991; Hulcr and Stelinski 2017), 

on mycangia (Francke-Grosmann 1963, 1967; Six 2003), on bark and ambrosia beetle 

associations with fungi (Francke-Grosmann 1967; Paine et al. 1997; Harrington 2005), 

and on ambrosia beetle phylogeny and diversity (Kirkendall et al. 2015; Hulcr et al. 

2015). Batra (1985) also published a review on research trends and techniques for 

working with ambrosia beetles. This literature review will focus on ambrosia beetle 

mycangia and the ambrosia fungi they carry. Section 2 is a brief summary of the early 

history of research on ambrosia fungi, a period also reviewed by Baker (1963), Francke-

Grosmann (1967), and Beaver (1989); Section 3 details broad aspects of the ambrosia 

symbiosis, including its ecology and evolution; Section 4 concerns the diversity of 

ambrosia beetle mycangia; Section 5 is an overview of the currently-known taxonomic 

groups of primary ambrosia fungi, their associated hosts and mycangia, and their role in 

the symbiosis; and Section 6 is an overview of gaps in understanding in the ambrosia 

symbiosis, especially those explored in the dissertation. 
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Section 2. Early History 

The Austrian monk Josef Schmidberger first used “ambrosia” to denote a 

conspicuous crust he noticed in tunnels bored in wood by Anisandrus dispar 

(Schmidberger 1836). He incorrectly assumed the crust was dried sap processed by the 

beetles into food. Hartig (1844) realized the crust was fungal and later discovered that the 

ambrosia was the major diet of the beetles (Hartig 1872a, 1872b), but he incorrectly 

assumed the fungi spontaneously formed when tree sap mixed with beetle frass. Goethe 

(1895) provided the first microscopic illustration of an ambrosia fungus (Fig. 1b), and 

Hubbard (1897) wrote the first comprehensive review on ambrosia beetles and fungi. In 

addition to various insights on the beetles, Hubbard established several important facts 

about their fungi: (1) the ambrosia farmed by different ambrosia beetle species varies, but 

closely-related beetles farm similar fungi; (2) the occurance of ambrosia within the 

gallery is not accidental, and the fungus is somehow introduced by the mother beetles; (3) 

the ambrosia is specialized for insect feeding, with nutritious and easily-grazed  

 

Figure 1. The ambrosia symbiosis. (a) Gallery of Xylosandrus crassiusculus, with beetle larvae (bl), adult 

beetle (ba), and fungal growth of Ambrosiella roeperi (fg). (b) The first known illustration of an ambrosia 

fungus, Ambrosiella hartigii. (a) Photograph by C. Mayers. (b) from Goethe (1895). 
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sporulation; and (4) the ambrosia is maintained in a delicate balance within the galleries 

by the ambrosia beetles, who keep the ambrosia healthy and pure through significant 

effort and cooperation. All four of these concepts have held and have been expanded 

upon in the century-plus since they were proposed. 

Pioneering work on ambrosia fungi was conducted by Neger (e.g. 1908a, 1908b, 

1908c, 1909), Beauverie (1910), and Schneider-Orelli (1911, 1913). Hubbard’s revelation 

that these fungi must be introduced to wood by the beetles drove scientists to hypothesize 

that the fungi were carried superficially (Strohmeyer 1911) or in the gut (Schneider-Orelli 

1911, 1913). Beeson (1917) supposed that ambrosia spores might adhere to the secretions 

produced by pits on the pronotum of Genyocerus talurae. However, transmission in the 

gut remained the commonly-accepted mechanism until Hadorn (1933) reported that guts 

of female Trypodendron lineatum were empty after winter, despite their effective 

transmission of ambrosia fungi. Nunberg (1951) correctly hypothesized that the pits 

observed by Beeson, the large organ of Scolytoplatypus illustrated by Berger and 

Cholodkovsy (1916), large paired organs he discovered in Trypodendron, and structures 

in other ambrosia beetles might all serve the common role of storing and transporting 

fungal propagules. Unaware of Nunberg’s work, Francke-Grosmann (1956a), following 

up on Hadorn’s findings, searched for cryptic internal cavities that might carry fungal 

propagules. In doing so she discovered the large transmission organs of An. dispar, 

Xylosandrus germanus, and Trypodendron. In this and follow-up studies (Francke-

Grosmann 1956a, 1956b, 1958), she discovered other such organs and definitively proved 

that they stored masses of fungal propagules. Francke-Grosmann hypothesized that only 

ambrosia beetles that overwintered needed these organs, but tropical species of ambrosia 
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beetles were soon found to have them also (Baker 1963). Batra (1963) introduced the 

term “mycangium” to refer to any of the growing number of described transmission 

organs, including those described by Schedl (1962). Batra (1967) wrote the first 

comprehensive treatment on ambrosia fungi, and Francke-Grosmann (1967) produced a 

seminal review on ambrosia beetles, their fungi, and their mycangia. 

Since 1967 there was sporadic study on ambrosia beetles and their fungi, 

including notable work by Schneider on mycangium dynamics (Schneider and Rudinsky 

1969a, 1969b; Schneider 1975) and by Roeper on the diversity of North American 

ambrosia beetles and their fungi (e.g. Roeper and French 1981; Roeper 1996, 2011). 

There were two major catalysts responsible for stimulating interest in ambrosia symbiosis 

in the past two decades. The first was the availability of PCR and DNA sequencing in the 

90s that allowed a better recognition of the diversity and classification of ambrosia fungi 

(Cassar and Blackwell 1996; Blackwell and Jones 1997; Harrington et al. 2010). The 

second cause of the renewed interest was the outbreak of the devastating laurel wilt, 

caused by the ambrosia fungus Raffaelea lauricola (Fraedrich et al. 2008; Harrington et 

al. 2008). Thanks to this renewed interest, there is now approximately one research article 

on ambrosia fungi or ambrosia beetles published per week (Hulcr and Stelinski 2017). 

Section 3. The ambrosia symbiosis 

Ecology 

Insect agriculture 

Mueller et al. (2005) defined four requirements for ‘agriculture’, and they 

considered only four groups of animals to meet these requirements: fungus-farming ants 

(Hymenoptera: Formicidae: Myrmicinae: Attini: subtribe Attina), fungus-farming 

termites (Blattodea: Termitidae: Macrotermitinae), ambrosia beetles, and humans. The 
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four requirements included (1) planting their crops with the propagules of previous 

crops; (2) cultivating their crop by removing weeds, fertilizing, and controlling its 

growth conditions; (3) harvesting their crop to eat; and (4) depending obligately (or, in 

humans, facultatively) on the crop for nutrition. Ambrosia beetles are the oldest and the 

most diverse of these farmers. Fungus-farming originated once in termites at about 31 Ma 

(Roberts et al. 2016), and they farm a single fungal genus, Termitomyces (Agaricales: 

Lyophyllaceae) (Aanan et al. 2002; Nobre et al. 2011). Fungus-farming also originated 

only once in ants, at about 55–65 Ma (Branstetter et al. 2017), and they farm one of five 

lineages of basidiomycetous fungi in three clades (two in Leucocoprineae and one in 

Pterulaceae) (Schultz and Brady 2008; Branstetter et al. 2017). The single sublineage of 

fungus-farming ants with fully-domesticated, obligate fungi arose about 25 Ma (Schultz 

and Brady 2008; Branstetter et al. 2017). 

In contrast to the single origins of farming in termites and ants, fungus farming 

beetles (i.e., ambrosia beetles) evolved from phloem feeding weevils (e.g., bark beetles) 

in at least 11 separate events (Farrell et al. 2001; Cognato et al. 2011; Jordal and Cognato 

2012; Kirkendall et al. 2015; Hulcr and Stelinski 2017). The first origin was in 

Platypodinae at an estimated 96 Ma, followed by the first of multiple origins in the 

Scolytinae at an estimated 48–60 Ma (Jordal and Cognato 2012; Jordal 2015; Gohli et al. 

2017; Pistone et al. 2017). The numerous evolutionary jumps and the more than 3000 

described ambrosia beetle species (Hulcr and Stelinski 2017) attest to the effectiveness of 

the symbiosis. Central to the ambrosia beetles’ success are mycangia, which guarantee 

cultivar specificity and vertical transmission to a degree that is unmatched in other 

fungus-farming insects. Fungus-farming ants have infrabuccal pouches to enable verticle 
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transfer of their fungi, but these pouches are found in all groups of ants (Mueller 2002; 

2005). Fungus-farming termites capture their symbionts horizontally from the 

environment, with two exceptional clades that practice clonal vertical transmission 

without mycangia (Aanen et al. 2002).  

Other insects use mycangia to maintain fungal symbionts, but these insects may 

or may not not practice true agriculture. Females of ship-timber beetles (Lymexylidae) 

have mycangia near their ovipositors that inoculate their eggs with Alloascoidea 

symbionts (Saccharomycetales) (Kurtzman and Robnett 2013), which then spread with 

the larvae as they bore their galleries (Batra and Francke-Grosmann 1961, 1964; Francke-

Grosmann 1967). This symbiosis is exceptional within Lymexylidae; fellow lymexylid 

Melittomma insulare does employ a mutualistic relationship with a yeast/bacteria 

complex in coconut (Brown 1954), but this symbiosis is less specialized (Baker 1963) 

and may not involve mycangia. Some bark beetles use the ambrosia growth of their 

ascomycetous and basidiomycetous symbionts to supplement their nutrition, and most of 

these beetles have mycangia for selective vertical transmission (Francke-Grosmann 1967; 

Harrington 2005; Hofstetter et al. 2015), but it is not clear if the bark beetles tend to their 

crops. A recently-suggested fungus farmer, Doubledaya bucculenta (Coleoptera: 

Erotylidae: Languriinae) uses mycangia to maintain a relationship with an apparent yeast 

cultivar in bamboo (Toki et al. 2012). Certain female wood wasps or horntails (Siricidae 

and Xiphydriidae) have mycangia and inoculate wood with wood decay fungi during egg-

laying, and the larvae eat the decayed wood (Baker 1963; Francke-Grosmann 1963, 1967; 

Talbot 1977). Larvae of the ambrosia gall midge rely on thick ambrosia growth in their 

galls, but it is unclear if they introduce the fungus themselves (Kobune et al. 2012). The 
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leaf-rolling weevil Euops (Attelabidae) is the only other curculionid outside of the bark 

and ambrosia beetles with a well-supported mycangium (Grebennikov and Leschen 

2010), but it does not feed on its symbiont (Kobayashi et al. 2008).  

Two genera of ambrosia beetles, Ambrosiodmus and Ambrosiophilus 

(Xyleborini), tunnel in wood decayed by a basidiomycete, Flavodon ambrosius (Kasson 

et al. 2016; Simmons et al. 2016b; Li et al. 2017). The fungus is found in the beetles’ oral 

mycangia but does not form ambrosia growth in the galleries. Instead, the larvae 

apparently feed on the decayed wood. The Flavodon farmers do not quality for Mueller et 

al.’s (2005) definition of agriculture, but instead represent an interesting alternative 

strategy for weevils that is similar to that employed by the mycangial wood 

wasps/horntails and their decay fungi. 

An obligate symbiosis 

Ambrosia beetles are obligately dependent on their fungal cultivars for nutrition 

(Francke-Grosmann 1967; Six 2003; Beaver 1989; Schneider 1991), and the beetles’ 

galleries are usually dominated by primary mycangial symbionts (Batra 1967, 1985; 

Nakashima et al. 1987; Kinuura et al. 1991; Kinuura 1995; Gebhardt et al. 2004; 

Harrington et al. 2014). In the period between initial gallery construction and the 

establishment of the ambrosia, the gallery founder does not eat and will eventually starve 

if the ambrosia fungus fails to establish (Brader 1964; Francke-Grosmann 1967). Failure 

of the ambrosia could be due to one of several factors, but perhaps the most important are 

moisture content and temperature; both have narrow limits for suitable ambrosia growth, 

outside of which the gallery will fail (Cachan 1957 as cited in Francke-Grosmann 1967; 

Schneider 1991). Ambrosia beetle larvae either feed exclusively on fungi (mycetophagy) 

or on both fungi and wood (xylomycetophagy), whereas adults usually are 
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xylomycetophagous (Francke-Grosmann 1963). The wood ingested by adults (or larvae, 

while assisting with gallery enlargement) is not necessarily digested, and the larvae of 

some species are so adapted to fungus feeding that their mandibles are weak and 

physically unable to macerate wood (Francke-Grosmann 1967; Beaver 1989).  

Most ambrosia beetle species practice some form of parental care, at a minimum 

by tending to the ambrosia as their larvae develop in the gallery, thus helping to maintain 

a pure fungal culture. The beetles actively remove contaminating fungi from their 

galleries, either mechanically or chemically (Francke-Grosmann 1967). In some beetle 

species, multiple generations collaborate in tending the gallery and maintaining the 

ambrosia (Biedermann and Taborsky 2011; Biedermann et al. 2013), and one species is 

known to be eusocial (Kent and Simpson 1992). Gallery purity may change during the 

life cycle of the beetles (Kajimura and Hijii 1992; Yang et al. 2008), and there may be a 

succession of other fungi (Kinuura et al. 1991; Kinuura 1995), especially once the beetles 

cease to actively maintain the ambrosia or abandon the gallery (Francke-Grosmann 

1967). Other fungi are often found in galleries, even when the ambrosia appears healthy, 

and these other fungi may contribute to the symbiosis (Haanstad and Norris 1985). 

Howeve, such fungi are generally also found associated with non-ambrosial bark beetles 

and should be considered auxiliary fungi. Ubiquitous contaminants, such as Fusarium 

spp., can be carried superficially on the beetles or rarely as interlopers in mycangia 

(Francke-Grosmann 1967; Bateman et al. 2016), and may be sparse in healthy ambrosia 

growth. However they can grow aggressively in culture, which can obscure ambrosia 

fungi in isolations and may lead to inaccurate assessments of associations (Francke-

Grosmann 1967). Established ambrosia fungi may be able to exclude weed fungi from 
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entering the gallery from the surrounding sapwood (Baker 1963; Castrillo et al. 2016), 

and wood ethanol content may also play a role in controlling gallery fungi (Ranger et al. 

2018). 

Evolution 

Origins of the ambrosia symbiosis 

Most ambrosia beetle progenitors were apparently phloem-feeding bark beetles 

(Jordal 2015; Kirkendall et al. 2015), and early ambrosia beetles in most lineages likely 

fed on the nutrient-poor wood as well as on phloem- and wood-associated fungi. Delving 

deeper into the sapwood and farming fungal gardens may have allowed emerging 

lineages to take advantage of a new ecological niche, away frome competition with bark 

beetles and other insects in the nutrient-rich inner bark (Harrington 2005; Six 2012). 

There are two theories on the origin of ambrosia beetle-fungus symbioses (Six 2012). The 

first, the “transmission first model,” sees the fungi first adapt (perhaps using sticky spore 

drops) to being transmitted by the beetles. The beetles then adapt to the food source they 

have been contaminated with, and eventually become dependent on it (Mueller et al. 

2005). The second, the “consumption first model,” hypothesizes that beetles began 

feeding on fungal contaminants in their galleries, became dependent on them, and in the 

meantime the fungi adapted transmission strategies that increased both their hosts’ and 

their own fitness.  

Ambrosia fungi were likely domesticated from ancestors such as Ophiostoma 

sensu lato (Ophiostomatales) and Ceratocystis sensu lato (Ceratocystidaceae), many of 

which are known to be intimately but not obligately associated with bark beetles 

(Harrington 2005). These taxa have fruiting structures and spores specifically adapted to 

stick to the exterior cuticle of bark beetles in order to be transmitted to new trees, and 
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these fungi were likely present when the ambrosia beetle ancestors first began to 

domesticate fungal symbionts. Fungi with large, nutritious spores (Harrington 2005) and 

dimorphic growth (a yeast-like phase for growth in mycangia) would have selective 

advantage as ambrosia beetle associates. The most grazed-upon species may have been 

eventually domesticated and gained traits that would make them better food for the 

beetles. However, these traits may have been at the cost of a loss of the ability to live and 

disperse freely. The specialized fungi may have then been traded among ambrosia beetles 

in other genera or tribes. This pattern appears to hold true for the large and diverse genus 

Raffaelea (Vanderpool et al. 2017), and similar patterns may be seen in the small clade of 

Fusarium associated with ambrosia beetles (Kasson et al. 2013; O’Donnell et al. 2015). 

The conidia and conidiophores of ambrosia fungi may be large and specialized for 

beetle grazing, and they may contain abundant lipid bodies, as in the conidiophores and 

aleurioconidia of Ambrosiella (Harrington 2005; Harrington et al. 2010, 2014). Ambrosia 

growth may provide special nutrients, such as sterols or lipids, that are necessary for 

insect development (Norris et al. 1969; Kok 1979; Six 2003). Studies have also examined 

the role of the fungi in concentrating nitrogen, as the nitrogen content of wood would 

likely be limiting for the beetles (Abrahamson and Norris 1970; Roeper and French 1981; 

Six 2003). Many ambrosia fungi also produce secondary metabolites, including aromatic 

fruity esters and deeply pigmented liquids (Francke-Grosmann 1967), and ambrosia 

beetles may be attracted to the scents of these fungi (Hulcr et al. 2011). 

In order to fill and emerge from mycangia, the mycangial symbionts must be able 

to grow either in a yeast-like phase (Francke-Grosmann 1956a, 1958; Lhoste and Roche 

1959; Batra 1967; Harrington et al. 2008, 2010) or as thallic-arthric hyphal fragments 
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(Batra and Michie 1963; Harrington et al. 2014; Bateman et al. 2017; Li et al. 2017). The 

mycangia are filled by glandular secretions that presumably select for the growth of the 

symbionts (Schneider 1975). Francke-Grosmann (1975) presented an exception in 

Raffaelea sulphurea, which is transmitted in the gut of Xyleborinus saxeseni. But most 

ambrosia fungi are dimorphic (Batra and Michie 1963; Francke-Grosmann 1967; Beaver 

1989), which allows them to grow in a yeast-like stage inside the mycangium and 

transition to a filamentous form in the gallery to penetrate the wood, extract nutrients, and 

eventually form ambrosia.  

Young adult beetles fill their mycangia with the fungal propagules lining their 

natal galleries (Beaver 1989), so their mycangium contents should be derived from the 

same fungi brought into the gallery by their parents. Ambrosia fungi have been assumed 

to be asexual, clonal lineages (Farrel et al. 2001; Normark et al. 2003; Harrington 2005; 

Harrington et al. 2010; van de Peppel et al. 2018), which limits their ability to escape the 

symbiosis. This links the ancestry of ambrosia beetle farmers and their fungal cultivars 

through vertical inheritance, which allows for progressive domestication of the fungi by 

the beetles over many generations. Under these conditions, one would expect the 

symbiosis to move towards species-specificity (Mueller et al 2005; van de Peppel 2017). 

This has been questioned, however (Batra 1966; Francke-Grosmann 1967; Bateman et al. 

2015; Li et al. 2017). Generally, Raffaelea species appear to often associate with multiple 

ambrosia beetle species in unrelated tribes, whereas Ambrosiella may have more specific 

associations (Harrington et al. 2010, 2014; Kostovcik et al. 2015).  

Defining ambrosia fungi 

The term ‘ambrosia fungus’ has not been used consistently, and by itself is an 

ambiguous and imprecise designation. The term ‘fungal symbiont’ is also inadequate 
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because symbiosis can include any fungus associated with the beetles, as discussed by 

Skelton et al. (2018). Batra (1985) introduced two terms: ‘primary ambrosia fungus’ for 

co-adapted mycangial fungi that dominate tunnels of the beetle during peak growth of the 

brood and are fed upon by larvae; and ‘auxiliary ambrosia fungus’ for fungi present 

facultatively in the galleries that are accidentally associated with ambrosia beetles and 

carried superficially. Batra’s concept of ‘primary ambrosia fungus’ was sound, except for 

his argument that primary ambrosia fungi are always species-specific, which has been 

questioned for both Raffaelea (e.g. Gebhardt et al. 2004; Harrington et al. 2010) and 

Ambrosiella (Lin et al. 2017). Instead of ‘auxiliary ambrosia fungus’, it may be more 

appropriate to simply use ‘auxiliary fungus’ or ‘weed fungus’. The expansion of 

‘ambrosia fungus’ to include all fungi that may be fed upon and transmitted in mycangia 

of bark beetles and the use of ‘ambrosial mutualist’ as the specific term for closely-

adapted symbionts (e.g. Hulcr and Stelinski 2017) is confusing and unnecessary, as 

already discussed by Francke-Grosmann (1963). For the purposes of this dissertation, 

‘ambrosia fungus’ is the equivalent of ‘primary ambrosia fungus’ and ‘mycangial 

symbiont’, and is restricted to those fungi that (1) are associated with and fed upon by 

ambrosia beetles; (2) are primary, co-adapted mycangial symbionts of their associated 

beetles; (3) dominate ambrosia growth in galleries of the beetle during brood 

development; and (4) are not found as free-living species. 

The majority of studied ambrosia fungi are placed in the genera Raffaelea 

(Ophiostomatales) or Ambrosiella (Microascales: Ceratocystidaceae), though there is 

evidence for a recent clade of ambrosia fungi in the genus Fusarium (Hypocreales: 

Nectriaceae); all three groups are discussed in Section 5. Species of Geosmithia with 
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large conidia were found dominating ambrosia beetle galleries of Eupagiocerus dentipes, 

Cnesinus lecontei, and Microcorthylus sp. (Kolařík and Kirkendall 2010; Kolařík et al. 

2015), and these may represent true ambrosia fungi, but their associations with mycangia 

have not been confirmed. 

Yeasts are often associated with bark beetles and their galleries (Davis 2015), as 

well as ambrosia beetles (e.g. Batra 1963, 1967; Francke-Grosmann 1963; Baker and 

Kreger-van Rij 1964; Batra and Francke-Grosmann 1964; Giese 1967; Baker and Norris 

1968; van der Walt 1972; Endoh et al. 2008; Six et al 2009; Suh and Zhou 2010; 

Ninomiya et al. 2013; James et al. 2014). However, yeasts are unlikely to be primary 

ambrosia fungi because they do not form dense ambrosial growth (see Chapter 4 for 

further discussion). Many other fungi are associated superficially or antagonistically with 

both ambrosia beetles and bark beetles (Harrington 2005) but are outside of the scope of 

this study. The so-called ambrosia fungi of ship-timber beetles (Batra and Francke-

Grosmann 1961, 1964; Francke-Grosmann 1967), ambrosia midges (Francke-Grosmann 

1967; Kobune et al. 2012), and others are also outside of the scope of this dissertation. 

Section 4. Mycangia 

Each lineage of ambrosia beetles has at least one type of mycangium, which 

serves several purposes (Francke-Grosmann 1967; Schneider 1975). They protect the 

valuable but vulnerable ambrosia propagules from desiccation (Batra 1963; Francke-

Grosmann 1963), allow ambrosia beetles to retain their symbionts while overwintering 

(Francke-Grosmann 1963, 1967), and perhaps most importantly, allow ambrosia beetles 

to bring their specialized fungal cultivars with them to new trees (Batra 1963; Francke-

Grosmann 1963; Beaver 1989). Mycangia vary dramatically in size, shape, and where 

they are located on the beetles’ bodies (Francke-Grosmann 1963, 1967; Schneider 1991; 
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Hulcr et al. 2015). Each separate evolution of an ambrosia beetle lineage was apparently 

coincidental with the development of a novel mycangium (Hulcr and Stelinski 2017). 

The fungal inoculum inside mycangia is typically a pure culture of ambrosia fungi 

(Gebhardt et al. 2004; Harrington et al. 2010; Harrington et al. 2014). However, as in the 

galleries, fungal purity and conditions inside the mycangium changes seasonally and over 

the course of the beetles’ life cycle (Kajimura and Hijii 1992; Schneider and Rudinsky 

1969a, 1969b; Schneider 1991), and there can be interlopers (Batra 1963; Kinuura 2002; 

Bateman et al. 2016; Lynch et al. 2016).  

Propagules of the primary ambrosia symbiont divide and multiply in the 

mycangium, with the fungus fed by nearby glandular secretions that are often referred to 

as ‘oily’ or ‘waxy’ (Francke-Grosmann 1956a; Batra 1963; Francke-Grosmann 1963; 

Schneider 1975; Beaver 1989). Some mycangia may have developed in locations where 

glandular cells were already present, such as locations of joint or boring lubrication 

(Francke-Grosmann 1967). Mycangium contents may include fatty acids, phospholipids, 

free sterols, sterol esters, and triglycerides, as well as an abundance of amino acids such 

as alanine, valine, and especially proline (Abrahamson 1969; Norris 1979). However, the 

specific chemicals produced and secreted by the gland cells are unknown, though 

Francke-Grosmann (1956a) found that the glandular secretions were a clear, slightly 

acidic, oily liquid. Gland cells were described in detail for Anisandrus dispar (Happ et al. 

1976), Platypus cylindrus (Cassier et al. 1996), Gnathotrichus spp. (Schneider and 

Rudinsky 1969b), and Cnestus mutilatus (Stone et al. 2007). Similar glands have been 

described in bark beetle mycangia, e.g. those of Dendroctonus (Six 2003). 
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Schneider (1975) carefully dissected different sections of different types of 

mycangia at different times and found that the fungal growth within mycangia follows a 

similar pattern. First, a few fungal cells enter the opening of the mycangium; next, the 

cells produce hyphae that disarticulate into individual propagules; finally, mycangium-

associated gland cells activate and begin to secrete, prompting the ambrosia propagules to 

propagate and fill the organ. The size and activity of the gland cells increase when 

activated, with a corresponding change in the morphology of the mycangial propagules 

(Schneider and Rudinsky 1969a, 1969b). The gathering of spores into the mycangium 

may be nonselective, but only the ambrosia fungus is able to grow and proliferate in the 

mycangium (Beaver 1989). Schedl (1962) and Batra and Batra (1967) reported that 

immature adults of many species perform distinct rocking movements in order to force 

spores into their mycangia, and Stone et al. (2007) reported similar movements in 

Cnestus mutilatus. Kaneko (1967) observed that when Xylosandrus germanus performed 

such movements, the pocket-like mycangium turned inside-out, collected spores from the 

gallery walls, and was then reverted with spores attached. Kent (2008) proposed an 

interesting method in Austroplatypus incompertus in which setae adorning each of the 

many mycangial pits guide single spores into the adjacent pit when the beetle’s body 

scrapes the gallery walls. Kent supposed that this mechanism may be analogous in other 

platypodines with similar pit setae. 

Generally, only one sex has mycangia, and usually this is the female (Francke-

Grosmann 1967). In the Corthyline genera Corthylus and Gnathotrichus, the male has the 

mycangium (Francke-Grosmann 1967). Typically it is the sex that initiates gallery 

construction that has the mycangia, though there are exceptions in the Scolytinae and in 
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much of the Platypodinae (Francke-Grosmann 1967). In Xyloterinus politus both sexes 

have oral mycangia in addition to the female’s prothoracic mycangia (Abrahamson and 

Norris 1966, 1969), and many platypodids have mycangia in both sexes or have more 

than one mycangium type (Nakashima 1971). There has been an apparent reduction in 

mycangia in multiple multiple ambrosia beetle genera that have become mycokleptics 

and bore their galleries directly adjacent to ambrosial galleries so that the ambrosia 

fungus grows through the wood and along their walls of the kleptic (Hulcr and Cognato 

2010). Mycangium reduction has also been reported in a lineage within Camptocerus 

(Scolytini) associated with a possible reversion to phloem feeding (Smith 2013), and 

some species of Scolytoplatypus (Scolytoplatypodini) apparently lack mycangia (Beaver 

and Gebhardt 2006). 

When Batra (1963) first used the term “mycangium” it was defined as sac- or cup-

shaped cavities on the exterior of ambrosia beetles for the purpose of holding growing 

fungal propagules. Batra (1963) and Francke-Grosmann (1963) categorized mycangia by 

their location on the beetle, and Francke-Grosmann (1963, 1967) reviewed the different 

types in detail. Subsequent authors broadened the term to include a wider range of 

structures (e.g. Farris and Funk 1965; Livingston and Berryman 1972; Nakashima 1975), 

and Furniss et al. (1987) broadened the definition further to “…any repository of the 

insect cuticle that is adapted for the transport of fungus.” Six (2003) proposed a 

hierarchical classification of mycangia that first separated them into ‘pit’, ‘sac’, or ‘setal’ 

mycangia, next into glandular or non-glandular, and then into their location on the body. 

Hulcr et al. (2015) restricted ‘mycangium’ to refer only to glandular sac mycangia. Some 

bark beetles utilize mycangia with glands (Francke-Grosmann 1967; Six 2003; 
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Harrington et al. 2005), but the use of ‘mycangium’ in this dissertation is generally 

restricted to the glandular mycangia of ambrosia beetles. 

Non-glandular mycangia 

Non-glandular mycangia are smaller and are often merely crevices, shallow pits, 

or setal tufts (Six 2003). However, neither the presence of an exoskeleton cavity in a 

mycophagous beetle nor the circumstantial presence of fungal spores in such cavities is 

adequate evidence for its utility as a mycangium (Grebennikov and Leschen 2010). 

Scolytodes unipunctatus has shallow, non-glandular pits, was associated with Raffaelea 

scolytodis and other fungi, and has no other known mycangium (Hulcr et al. 2007b; 

Kolařík and Hulcr 2009). Scolytodes unipunctatus is the only ambrosial species in its 

genus, so its biology needs further study (Hulcr and Stelinski 2017). Cnestus mutilatus 

has non-glandular scutellum pits (Stone et al. 2007), but it also has a large mesonotal 

mycangium (Stone et al. 2007) that carries an Ambrosiella symbiont (Six et al. 2009). If 

fungi are carried in the C. mutilatus scutellum pits, the pits only serve a secondary role. 

Certain species in the tribe Bostrosternini (Bosthrosternus, Eupagiocerus, and Cnesinus) 

have setose patches on the proepisternum that are implicated as mycangia (Hulcr and 

Stelinski 2017). However, none of the three genera of Bostrosternini are solely composed 

of ambrosia beetles, and the ambrosial status of certain species remains ambiguous 

(Wood 2007). Phloeoborus (Hylesinini) has similarly-described mycangia and unknown 

symbionts (Hulcr and Stelinski 2017).  

Glandular mycangia 

Pronotal pit mycangia 

Ambrosia beetles in the Platypodinae have a variety of mycangium types 

(Nakashima 1975), the most well-characterized of which are pits in the cuticle of the 
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pronotum associated with active secretory glands (Beeson 1917; Roche and Lhoste 1960; 

Farris and Funk 1965; Nakashima 1972, 1975; Cassier et al. 1996; Moon et al. 2008, 

2012). Gland cells are found on the underside of the cuticle and feed secretions through 

small tubules to each pit (Cassier et al. 1996; Kent 2008), or there may be several gland 

cells directly associated with the walls of larger pits, each with a separate secretory 

channel to the pit (Lhoste and Roche 1961). The number, size, and arrangement of pits 

varies considerably between genera, within genera, and even within species of 

Platypodinae (Francke-Grosmann 1967; Nakashima 1972, 1975; Wood 1993; Belhoucine 

et al. 2013). For example, Diacavus philippinensis has only two large pits (Nakashima 

1975), whereas in Platypus koryoensis there are six large pits that hold large masses of 

fungal propagules flanked by many smaller pits (Moon et al. 2008, 2012). In Genyocerus 

talurae there are one to two dozen pits that each hold masses of fungal propagules 

(Beeson 1917). In Austroplatypus incompertus there are many pits (in some cases more 

than 80) in a concentrated patch on the pronotum, and these pits are much smaller, each 

only large enough to fit a single fungal spore (Kent 2008). The mycangial pits are present 

in only the female in some Platypodinae, but the pits are sometimes present in both sexes 

or are reduced in size or number in the male (Farris and Funk 1965; Kent 2008; Moon et 

al. 2008; Belhoucine et al. 2013). Often, each pit is accompanied by a seta that hold the 

fungal propagules in place (Kent 2008), and some of these setae are quite elaborate, such 

as the fan-like pit setae of Diapus quinquespintus (Nakashima 1975).  

Oral mycangia 

Perhaps the most commonly evolved type of mycangia (Beaver 1989; Hulcr et al. 

2015; Hulcr and Stelinski 2017) are oral/preoral pouch mycangia, which are small 

pockets in or near the mouth. Paired bilateral preoral mycangia are found in several 
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genera in the Xyleborini (Fernando 1959; Francke-Grosmann 1963; Schedl 1962, 1963; 

Schneider 1987; Hulcr and Stelinski 2017), both sexes of the xyloterine Xyloterinus 

politus (Abrahamson and Norris 1966), and in Premnobius cavipennis (Ipini) (Schedl 

1962; Bateman et al. 2017). Schedl (1962) illustrated an unpaired, medial oral pouch 

mycangium is Pterocyclon bicallosum (now Monarthrum bicallosum, Corthylina; Wood 

2007). A mycangium opens into the oral cavity of the platypodine Crossotarsus 

niponicus (Nakashima 1971, 1975); the mycangium consists of a thin membranous cavity 

wrapped around a conspicuous spherical body (Nakashima 1979). 

Elytral mycangia 

Elytral mycangia are small, sclerotized cavities on the anterior aspect of the elytra 

whose openings are fenced with setae. So far, elytral mycangia have been characterized 

only in Xyleborinus gracilis and X. saxeseni (Francke-Grosmann 1956a, 1956b, 1967; 

Schedl 1962; Hulcr et al. 2007a; Biedermann et al. 2012), but they may be present in 

other Xyleborini (Hulcr et al. 2007a). These mycangia are surrounded by gland cells 

(Schedl 1962). Though found in a somewhat similar location to mesonotal pouch 

mycangia, elytral mycangia are posteriad rather than anteriad to the scutellum. 

Mesonotal pouch mycangia 

A monophyletic group in tribe Xyleborini comprising the genera Anisandrus, 

Cnestus, Diuncus, Eccoptopterus, Hadrodemius, and Xylosandrus (hereafter the 

‘Xylosandrus complex’) have similar pouch-like mesonotal mycangia (Hulcr et al. 2007a; 

Hulcr and Stelinski 2017). The mycangium is formed by invaginations of the 

integumental membrane that connects the dorsal side of the pronotum to the mesonotum, 

that is, the anterior edge of the scutellum (Francke-Grosmann 1956a, 1956b, 1967; 

Schedl 1962; Stone et al. 2007; Li et al. 2018). The general morphology of these 
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mycangia is similar among genera of the Xylosandrus complex, and their mycangia 

presumably share a single evolutionary origin. The mycangia differ in the absence or 

presence of dual lobes and whether the pouch extends forward into the pronotum or 

underneath the scutellum (Francke-Grosmann 1963). In Xylosandrus the mycangium 

pouch is comprised of two large lobes in the prothorax anterior to the scutellum that are 

connected to each other and the mycangium entrance via a central bridge, and only a 

portion of the bridge is under the scutellum (Francke-Grosmann 1956a, 1956b, 1958; 

Lhoste and Roche 1959; Schedl 1962; Kaneko 1967; Li et al. 2018). The mycangium 

enlarges as the beetles mature and as it fills with growing fungal propagules (Li et al. 

2018). In Anisandrus, the mycangium is unlobed and is much smaller, and it wraps under 

the bottom of the scutellum to form a cavity that lines nearly the entirety of the bottom of 

its ventral surface (Francke-Grosmann 1956a, 1956b, 1958, 1967). In Eccoptopterus the 

scutellum and mycangium bridge spiral extensively (Francke-Grosmann 1958, 1963, 

1967). The mycangium of Cnestus is similar to that of Xylosandrus, but the mycangium 

bridge travels further back under the scutellum and spirals slightly, though not as 

extensively as in Eccoptopterus, and the mycangium wall is reticulated (Stone et al. 

2007). The mycangia of Diuncus and Hadrodemius have not been characterized, though 

Diuncus may have reduced or absent mycangia as a result of specialization to 

mycokleptism/fungus-stealing (Cognato and Hulcr 2010). Gland cells are found on the 

portions of the scutellum inside the mycangium lumen (Francke-Grosmann 1963, 1967), 

and in Cnestus mutilatus the gland cells are interspersed across the entire reticulated wall 

of the organ (Stone et al. 2007). 
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Subcoxal mycangia 

Fungal propagules are carried in enlargements of the prosternal subcoxa in the 

corthyline genera Gnathotrichus (Farris 1963; Francke-Grosmann 1963, 1967; Schneider 

and Rudinsky 1969a, 1969b) and Monarthrum (Schedl 1962; Lowe et al. 1967). In both 

genera, the cavities are lined with gland cells (Schedl 1962; Schneider and Rudinsky 

1969a, 1969b), and in Gnathotrichus the glands feed secretions into the cavities via small 

channels (Schneider and Rudinsky 1969b). Similar mycangia are also found in the 

Platypodinae (Nakashima 1972, 1975). 

Prothoracic coil mycangia 

Two long, winding or spiraling, hose-like tubes inside the prothorax exit into the 

procoxal cavities of male Corthylus (Schedl 1962; Finnegan 1963; Giese 1967; Nord 

1972; Orañegui and Atkinson 1984) and Microcorthylus species (Schedl 1962). The 

mycangium wall is intricately reticulated (Finnegan 1963) and presumably holds gland 

cells, but these have not been identified. Presumably this mycangium type is derived 

from relatives in the Corthylini with smaller, subcoxal mycangia in males such as 

Monarthrum, to which Corthylus is closely related (Gohli et al. 2017).  

Prothoracic pleural mycangia 

Females of Trypodendron in tribe Xyloterini have two large, inverted U-shaped 

chambers on the inside of the prothorax, and these chambers empty through seta-lined 

slot openings on the sides of the prothorax (i.e. the pleura) (Nunberg 1951; Francke-

Grosmann 1956a, 1956b, 1958, 1959; Abrahamson et al. 1967; Schneider and Rudinsky 

1969a). These cavities are very similar across Trypodendron spp. and mostly vary in the 

size of the ascending portion of the cavity or in how extensively the terminus curls 

(Francke-Grosmann 1956a). The opening of the mycangium opens and closes via the leg 
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muscles (Francke-Grosmann 1963). The walls of the mycangium are sclerotized and 

reticulated (Francke-Grosmann 1956a; Abrahamson et al. 1967) and are lined with gland 

cells (Schneider and Rudinsky 1969a). The contents of the ascending and descending 

portions of the mycangia can differ from each other in the off season, and various debris 

can fill the mycangia at that time (Schneider and Rudinsky 1969a). However, during 

dispersal and gallery initiation the mycangia are packed with homogenous propagules of 

yeast-like propagules (Francke-Grosmann 1956a, 1958; Abrahamson et al. 1967; 

Schneider and Rudinsky 1969a). Another genus in tribe Xyloterini, Indocryphalus 

(=Dendrotrypum), has what appear to be mycangium openings on the sides of the 

prothorax in a location similar to the openings of Trypodendron mycangia (Wood 1957; 

Beaver 2000; Cognato et al. 2015). However, the internal morphology of the 

Indocryphalus mycangium is unknown. Indocryphalus may have split early from 

Trypodendron and Xyloterinus politus (Gohli et al. 2017; Pistone et al. 2017), the second 

of which has different mycangia as discussed below. 

Prothoracic basin mycangia 

The monotypic Xyloterinus (Xyloterini) appears to have simpler prothoracic 

mycangia that are shallow basins rimmed with setae (Francke-Grosmann 1963, 1967; 

Abrahamson and Norris 1966; MacLean and Giese 1968). The protoracic mycangium of 

X. politus could be a reduced form of the Trypodendron mycangia (Francke-Grosmann 

1963), but the two mycangial types are located on different parts of the prothorax. The 

prothoracic mycangia of X. politus carry an unknown fungus with large spherical conidia 

(Abrahamson and Norris 1969). Xyloterinus politus is unique among Scolytids in that it 

also has oral mycangia in both sexes (Abrahamson and Noris 1966). 
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Pronotal disk mycangia 

Beetles in the genus Scolytoplatypus (Scolytoplatypodini) have a single pore on 

the anterior pronotum that leads to a large saucer- or disc-shaped mycangium just under 

the cuticle. The mycangium is surrounded by large masses of gland cells, and the 

mycangium walls are lined with setae that feed towards and through the pore, presumably 

helping guide spores to exit the organ (Berger and Cholodkovsky 1916; Schedl 1962; 

Beaver and Gebhardt 2006). There are African and Asian sublineages of Scolytoplatypus 

(Jordal 2013). The mycangium wall setae are seated on reticulated cones in the Asian 

species (Berger and Cholodkovsky 1916; Schedl 1962; Beaver and Gebhardt 2006), but 

the African species have simpler setae attached directly to the wall of the mycangium 

(Schedl 1962). The only other genus in the tribe, Remansus, has a pronotal pore that leads 

to a presumably similar but unstudied mycangium (Jordal 2013). 

Mycangia with unconfirmed glandular nature 

Several types of mycangia have been characterized that remain understudied. 

Three of these mycangia were discovered in the underappreciated work of Nunberg 

(1951). The platypodid Diapus pusillimus has a crevice-type mycangim on the posterior 

side of the pronotum (Nunberg 1951). Similarly, D. quinquespinatus, which also has 

glandular pit mycangia, has a pair of elongated, transverse, crevice-type mycangia that 

are covered by fences of protective setae on the posterior side of the pronotum 

(Nakashima 1975). In another platypodid, Periommatus excisus, Lhoste and Roche 

(1961) found small notches on the prothorax that held fungal spores but did not believe 

the notches to be associated with glands.  

Camptocerus (Scolytini) has paired circular depressions on the prothorax (Smith 

2013). Sueus (Hyorrhynchini) is a genus of ambrosia beetles with an obvious fungus-
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farming habit (Beaver 1984, as cited in Hulcr and Stelinski 2017), but its mycangium and 

symbiont are unknown (Hulcr and Stelinski 2017). Mycangia appear to be present in two 

scolytids whose ambrosial habits are unclear (Hulcr and Stelinski 2017). Dactylpalpus 

transversus (Hylesinini) has a broad, central-transverse, slot-like mycangium on the 

anterior pronotum (Nunberg 1951). Phloeoborus rudis (Ipini) has paired mycangia that 

are circular cups ringed with protective setae on the sides of the pronotum, with pores at 

the bottom of the cups that may be associated with gland cells (Nunberg 1951). 

Section 5. Ambrosia fungi 

Baker (1963) and Francke-Grosmann (1967) give reviews of the convoluted 

taxonomy of ambrosia fungi prior to 1967, which was confused by misunderstandings of 

primary symbionts, morphological convergence toward easily-grazed conidia, lack of 

observed sexual states, and the difficulty of isolating ambrosia fungi in pure culture. The 

major ambrosia fungus genera Raffaelea and Ambrosiella were described in 1965 (von 

Arx and Hennebert 1965). Batra (1967) published a taxonomic revision and review of 

ambrosia fungi, in which he placed most ambrosia beetle symbionts into one of the two 

genera. The advent of PCR and DNA sequencing gave the first indications that Raffaelea 

and Ambrosiella were distantly related (Cassar and Blackwell 1996; Blackwell and Jones 

1997; Rollins et al. 2001; Paulin-Mahady et al. 2002; Harrington 2009) and that each 

genus contained species that should have been treated in the other. Harrington et al. 

(2010) revised the genera so that Raffaelea accommodated symbionts in the 

Ophiostomatales and Ambrosiella accommodated symbionts in the Microascales. 

Raffaelea 

Raffaelea is related to genera such as Leptographium, Ophiostoma, and 

Sporothrix in the Ophiostomataceae (Ascomycota: Sordariomycetes: Ophiostomatales) 
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(Harrington et al. 2010; de Beer and Wingfield 2013; Simmons et al. 2016a; Vanderpool 

et al. 2017). Ophiostoma includes some important plant pathogens, such as the causative 

agent of Dutch elm disease Ophiostoma novo-ulmi, but many Ophiostoma spp. are 

saprophytes carried on the exoskeleton of bark beetles (Harrington 2005). Sporothrix is 

the only genus in the family that contains human pathogens (de Beer et al. 2016). Within 

the Ophiostomataceae, Raffaelea is currently polyphyletic and contains two or three 

clades. Raffaelea sensu stricto (which contains the type species Raffaelea ambrosiae) is 

clearly separate from the Raffaelea sulphurea complex, which is placed inside 

Leptographium sensu lato (Dreaden et al. 2014; Simmons et al. 2016a; Vanderpool et al. 

2017). Raffaelea sensu lato currently includes at least 27 species (Simmons et al. 2016a) 

with evidence for additional, cryptic species. Raffaelea spp. produce asexual conidia 

holoblastically on the end of long, thin, branched conidiophores (Gebhardt and 

Oberwinkler 2005; Harrington et al. 2010), in contrast to the larger phialidic 

conidiophores of Ambrosiella discussed below. Sexual states for some species placed in 

Raffaelea were recently reported (Musvuugwa et al. 2015), though the Raffaelea species 

were not clearly associated with ambrosia beetles. 

Raffaelea species have been associated with a wide variety of mycangium types, 

do not appear to be limited to specific ambrosia beetle species or tribes, and a single adult 

beetle can carry multiple Raffaelea spp. in its mycangia (Harrington et al. 2010; 

Harrington and Fraedrich 2010; Kostovcik et al. 2015; Vanderpool et al. 2017). The 

studied Platypodinae have Raffaelea symbionts, regardless of mycangium type 

(Harrington et al. 2010; Vanderpool et al. 2017). Most identified symbionts of oral 

mycangia in the Platypodinae and Scolytinae are Raffaelea spp. (Harrington et al. 2010). 



27 

Subcoxal mycangia in Monarthrum and Gnathotrichus also harbor Raffaelea symbionts 

(Batra 1967; Funk 1970), as do elytral mycangia of Xyleborinus (Verral 1943; Harrington 

et al. 2010; Biedermann et al. 2013; Gharabigloozare 2015). 

Ambrosiella 

Ambrosiella as defined by Harrington et al. (2010) is in the family 

Ceratocystidaceae (Ascomycota: Sordariomycetes: Microascales) (de Beer et al. 2014). 

Many relatives in the family have insect vectors or are dispersed in frass of ambrosia 

beetles, and many are tree pathogens (Harrington 2009; Harrington 2013). Ambrosiella 

consists of six species: A. xylebori (Brader 1964), A. hartigii (Batra 1967), A. beaveri 

(Six et al. 2009), and A. roeperi (Harrington et al. 2014) associated with the mesonotal 

pouch mycangia of the Xylosandrus complex; and A. ferruginea and A. trypodendri 

associated with the prothoracic pleural mycangia of Trypodendon spp. (Mathiesen-Käärik 

1953; Batra 1967; Harrington et al. 2010). Unlike Raffaelea spp., Ambrosiella spp. 

produce phialidic conidiophores (Gebhardt and Oberwinkler 2005; Harrington et al. 

2010). Ambrosiella conidiophores are often monillioid and produce distinctive asexual 

conidia termed aleurioconidia (Harrington et al. 2014). The sexual state of Ambrosiella is 

unknown, and its species show limited genetic variation (van de Peppel et al. 2018). 

All studied species with mesonotal mycangia in the Xylosandrus complex have 

been associated with Ambrosiella symbionts (Batra 1967; Francke-Grosmann et al. 1967; 

Roeper 1996, 2011; Yang et al. 2008; Harrington et al. 2010, 2014; Bateman et al. 2015, 

2016; Ito and Kajimura 2017; Lin et al. 2017; van de Peppel et al. 2018). Multiple 

Trypodendron spp. have been associated with A. ferruginea (=Monilia ferruginea), and T. 

scabricollis is associated with A. trypodendri (Funk 1965; Batra 1967; Francke-

Grosmann 1967; Harrington et al. 2010; Roeper 1996). However, Ambrosiella may be 
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polyphyletic (Harrington et al. 2010, 2014). The mesonotal mycangium symbionts A. 

beaveri, A. hartigii, A. roeperi, and A. xylebori appear to be closely related to 

Ceratocystis adiposa, whereas Ambrosiella ferruginea is more closely-related to the oak 

wilt fungus Bretziella fagacearum (de Beer et al. 2017) than to other Ambrosiella 

(Harrington et al. 2014). Ambrosiella-like symbionts have also been implicated as 

associates of the prothoracic coil mycangia of Corthylus punctatissimus (Batra 1967; 

Nord 1972; Roeper 1996) and the pronotal disk mycangia of Asian Scolytoplatypus spp. 

(Nakashima et al. 1987; Nakashima 1989; Kinuura et al. 1991). Ambrosiella may be 

associated with mycangia that are more developed when compared with the mycangia 

that carry Raffaelea symbionts (Roeper 2011). 

Other ambrosia fungi 

The recently-described Afroraffaelea is monotypic and phylogenetically placed 

within the Ophiostomatales, perhaps near Raffaelea, and it is an oral mycangium 

symbiont of Premnobius cavipennis (Ipini) (Bateman et al. 2017). The prothoracic basin 

mycangia of Xyloterinus politus carry an unknown fungus that forms large, dark, 

spherical propagules (Abrahamson and Norris 1966, 1969a; MacLean and Giese 1968). 

Some Euwallacea spp. (Xyleborini) have been associated with an ambrosial clade of 

Fusarium, though Euwallacea spp. also carry Raffaelea symbionts (Eskalen et al. 2012; 

Kasson et al. 2013; O’Donnel et al. 2015). 

Section 6. Gaps in understanding 

Although there has been recent progress on understanding the numerous lineages 

of ambrosia beetles and mycangial fungi, there is still only a basic understanding of the 

dynamics of this symbiosis. Comprehensive and in-depth studies of coevolution between 

the different lineages of beetles and fungi, as has been done in fungus-farming ants 
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(Branstetter et al. 2017) and fungus-farming termites (Aanen et al. 2002), is lacking in 

ambrosia beetles. There has been little attention given to the evolution of mycangia and 

the fungal lineages adapted to the most advanced mycangia. The study by Farrell et al. 

(2001) was limited by an incomplete understanding of the fungi, and a recent study on the 

coevolution of Raffaelea and its ambrosia beetle hosts (Vanderpool et al. 2017) did not 

accommodate the symbiotic patterns of Ceratocystidaceae symbionts. 

Only about half of the known ambrosia beetle lineages have clearly associated 

fungal symbionts (Harrington et al. 2010; Hulcr et al. 2015; Kirkendall et al. 2015; Hulcr 

and Stelinski 2017), and only a small fraction of ambrosia beetle species have been 

studied. Sampling has been hindered by the cryptic nature of ambrosia beetles and the 

limited geographic distribution of some groups. Further, ambrosia fungi are notoriously 

difficult to isolate and grow, and sometimes it is only possible to get barcode DNA 

sequences from mycangia or galleries with no associated live culture. Studies using next-

generation sequencing to elucidate the diversity of ambrosia fungi present in mycangia 

and galleries can be done, but in the absence of microscopic observation or isolation of 

cultures, it is difficult to identify the important members of the symbiosis. 

This dissertation study targets the groups of ambrosia beetles with relatively large 

and complex mycangia and those said to carry symbionts in the Ceratocystidaceae, i.e. 

Ambrosiella. Preliminary evidence suggested that cryptic diversity existed in the 

Ambrosiella symbionts of the Xylosandrus complex and of Trypodendron, and in the 

unstudied symbionts of Corthylus and Scolytoplatypus. Additionally, we sought to 

characterize the understudied mycangia of Corthylus, Scolytoplatypus, and 

Indocryphalus, and to attempt to relate these mycangia to apparent specificity in 
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symbionts. We suspected that the four beetle groups with large mycangia might harbor 

four distinct groups of Ambrosiella symbionts. We also wanted to confirm that these 

mycangia are not associated with the otherwise-ubiquitous Raffaelea and have only 

Ambrosiella symbionts. 



31 

CHAPTER 2.    THREE LINEAGES IN THE CERATOCYSTIDACEAE 

ARE THE RESPECTIVE SYMBIONTS OF THREE INDEPENDENT 

LINEAGES OF AMBROSIA BEETLES WITH LARGE, COMPLEX 

MYCANGIA 
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Abstract 

 The genus Ambrosiella accommodates species of Ceratocystidaceae 

(Microascales) that are obligate, mutualistic symbionts of ambrosia beetles, but the genus 

appears to be polyphyletic and more diverse than previously recognized. In addition to A. 

xylebori, A. hartigii, A. beaveri, and A. roeperi, three new species of Ambrosiella are 

described from the ambrosia beetle tribe Xyleborini: A. nakashimae sp. nov. from 

Xylosandrus amputatus, A. batrae sp. nov. from Anisandrus sayi, and A. grosmanniae sp. 

nov. from X. germanus. The genus Meredithiella gen. nov. is created for symbionts of the 

tribe Corthylini, based on M. norrisii sp. nov. from Corthylus punctatissimus. The genus 

https://doi.org/10.1016/j.funbio.2015.08.002
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Phialophoropsis is resurrected to accommodate associates of the Xyloterini, including P. 

trypodendri from Trypodendron scabricollis and P. ferruginea comb. nov. from T. 

lineatum. Each of the 10 named species was distinguished by ITS rDNA barcoding and 

morphology, and the ITS rDNA sequences of four other putative species were obtained 

with Ceratocystis-specific primers and template DNA extracted from beetles or galleries. 

These results support the hypothesis that each ambrosia beetle species with large, 

complex mycangia carries its own fungal symbiont. Conidiophore morphology and 

phylogenetic analyses using 18S (SSU) rDNA and TEF1α DNA sequences suggest that 

these three fungal genera within the Ceratocystidaceae independently adapted to 

symbiosis with the three respective beetle tribes. In turn, the beetle genera with large, 

complex mycangia appear to have evolved from other genera in their respective tribes 

that have smaller, less selective mycangia and are associated with Raffaelea spp. 

(Ophiostomatales). 

Introduction 

The six recognized species of Ambrosiella Brader ex Arx & Hennebert (1965) 

(Sordariomycetes: Microascales: Ceratocystidaceae) are obligate, mutualistic symbionts 

of ambrosia beetles. Ambrosia beetles are an ecological group of more than 3400 species 

of mycophagous sapwood-boring beetles in the subfamilies Platypodinae and Scolytinae 

(Coleoptera: Curculionidae). Whereas their bark beetle relatives generally feed on the 

nutritious inner bark (secondary phloem) of trees, ambrosia beetles tunnel in the nutrient-

poor sapwood and depend on mutualistic fungi for their nutrition (Harrington 2005). The 

beetles generally do not eat wood while boring (Beaver 1989), though the larvae of some 

ambrosia beetles ingest fungus-colonized wood (xylomycetophagy) (De Fine Licht and 

Biedermann 2012, Roeper 1995). The major food of both larvae and adults is ambrosial 
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growth of fungi within the sapwood tunnels. A diverse fungal flora grows in ambrosia 

beetle galleries, but the dominant fungi are obligate symbionts of ambrosia beetles and 

have not been found as free-living species (Harrington et al. 2010).  

The fungal symbionts rely on the beetles for dispersal and are primarily carried by 

adult beetles in special sacs called mycangia, in which the fungi grow in a budding yeast-

like or arthrospore-like phase (Fraedrich et al. 2008, Harrington et al. 2014). In the 

studied cases of ambrosia beetle mycangia, gland cells secrete material into or near the 

mycangium to support growth of the fungal symbionts (Schneider and Rudinsky 1969a, 

1969b), and the overflow of spores from the mycangium inoculates the galleries during 

construction. Of the two weevil subfamilies, the Platypodinae consist entirely of 

ambrosia beetles and have relatively small and simple mycangia (Cassier et al. 1996, 

Marvaldi et al. 2002, Nakashima 1975). In contrast, ambrosia beetles arose at least 10 

separate times from bark beetle lineages within the Scolytinae (Farrell et al. 2001, Jordal 

and Cognato 2012, Kirkendall et al. 2015), each event apparently marked by the 

development of novel mycangia. Generally, the Scolytinae mycangia are relatively small 

and harbor one or more species of Raffaelea Arx & Hennebert (1965) (Ophiostomatales) 

(Cassar and Blackwell 1996, Harrington and Fraedrich 2010, Harrington et al. 2010, 

2014). These small mycangia include oral pouches, pronotal pits, elytral pouches, and 

coxal enlargements, each of which are simple modifications of the adult beetle’s 

exoskeleton, with secreting gland cells near the opening of the mycangium (Beaver 1989, 

Francke-Grosmann 1967). In contrast, certain genera of Scolytinae exhibit markedly 

larger and more elaborate mycangia that are set entirely within the body and are 

composed of a reticular structure punctuated by gland cells secreting directly into the 
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mycangium (Finnegan 1963, Francke-Grosmann 1956, Schneider and Rudinsky 1969b, 

Stone et al. 2007). These larger, complex mycangia have specialized channels or tubes 

that direct the overflow of fungal growth to the outside of the beetle for tunnel 

inoculation. 

Ambrosiella spp. have so far been recovered or reported from five beetle genera 

(Harrington et al. 2014), and each of these genera appear to have relatively large and 

complex mycangia with secretions directly through reticulated mycangial walls. Within 

the tribe Xyleborini, species of Xylosandrus, Anisandrus, and Cnestus have large, internal 

mesonotal mycangia in female adults (Beaver 1989, Cognato et al. 2011a, Francke-

Grosmann 1956, 1967, Hulcr and Cognato 2010, Hulcr et al. 2007, Kinuura 1995, Stone 

et al. 2007). In the Corthylini, Corthylus spp. have long, folded tubes that open into the 

procoxae of adult males (Finnegan 1963, Giese 1967). In the Xyloterini, female 

Trypodendron spp. have large, tubular, pleural-prothoraic mycangia (Francke-Grosmann 

1956, 1967, Schneider and Rudinsky 1969b).  

Ambrosiella initially included ambrosia beetle symbionts with percurrent 

proliferation of conidiogenous cells vs. sympodial proliferation by Raffaelea spp. (Batra 

1967, Brader 1964, von Arx and Hennebert 1965). Gebhardt et al. (2005) demonstrated 

that some Raffaelea spp. have percurrent and sympodial proliferation, but Ambrosiella 

xylebori Brader ex Arx & Hennebert (1965), A. hartigii L.R. Batra (1968), and A. 

ferruginea (Math.-Käärik) L.R. Batra (1968) produced conidia from phialides. 

Harrington et al. (2010) limited Ambrosiella spp. to the phialidic ambrosia fungi within 

the Ceratocystidaceae and Raffaelea spp. to symbionts within the Ophiostomatales. All 
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known Ambrosiella spp. produce a fruity aroma (Harrington 2009), and these volatiles 

may play a role in attracting ambrosia beetles within the galleries (Hulcr et al. 2011).  

As now recognized, most Ambrosiella spp. produce large, thick-walled, ovoid, 

terminal aleurioconidia with inconspicuous collarettes and/or basipetal chains of 

cylindrical to barrel-shaped phialoconidia via ring-wall building (Minter et al. 1983, Nag 

Raj and Kendrick 1993, Riggs and Mims 2000). The deep-seated phialides of the 

symbiont of T. scabricollis (tribe Xyloterini), A. trypodendri (L.R. Batra) T.C. Harr. 

(2010), was used to erect the monotypic genus Phialophoropsis L.R. Batra (1968), but 

Harrington et al. (2010) placed Phialophoropsis in synonomy with Ambrosiella. 

However, phylogenetic analyses have generally suggested that the two genera are distinct 

(Alamouti et al. 2009, de Beer et al. 2014, Harrington 2009, Harrington et al. 2010, Six et 

al. 2009).  

At present, there are six named species of Ambrosiella: A. trypodendri 

(Harrington et al. 2010) from T. scabricollis (Batra 1967); A. ferruginea from T. lineatum 

(Batra 1967); A. xylebori from Xylosandrus compactus (Brader 1964); A. hartigii from 

Anisandrus dispar (Batra 1967); A. beaveri Six, de Beer & W.D. Stone (2009) from 

Cnestus mutilatus (Six et al. 2009); and A. roeperi T.C. Harr. & McNew (2014) from X. 

crassiusculus (Harrington et al 2014). In addition to X. compactus, A. xylebori has been 

reported from Corthylus columbianus (Batra 1967, Nord 1972) and C. punctatissimus 

(Roeper 1995). Besides An. dispar, A. hartigii has been reported from An. sayi and An. 

obesus (Hazen and Roeper 1980, Roeper and French 1981), as well as X. germanus 

(Roeper 1996, Weber and McPherson 1984). A. ferruginea has been reported from 

several Trypodendron spp., including T. lineatum, T. domesticum, T. retusum, T. 
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rufitarsis, and T. betulae (Batra 1967, French and Roeper, 1972, Roeper 1981, Roeper 

1996), and Nakashima et al. (1992) illustrated a fungus from T. signatus with similar 

conidiophore morphology.  

Most of the above identifications of Ambrosiella spp. were based on 

morphological characters only, and more detailed phylogenetic analyses may reveal 

cryptic species and genera among the fungal symbionts. Preliminary DNA sequence 

analyses and observations of cultures from beetles with large mycangia suggested that 

there was more species diversity within Ambrosiella than previously recognized, and 

each studied ambrosia beetle with large, complex mycangia appeared to be associated 

with a single, unique species, either within Ambrosiella or a closely related genus in the 

Ceratocystidaceae. 

We studied fungal isolates, beetle galleries and insect specimens of 14 ambrosia 

beetle species with large, complex mycangia to determine the identity of their fungal 

symbionts and infer an evolutionary history of the fungi. Our hypothesis was that each 

beetle would yield a unique fungal species, and that all species recovered from beetles 

with large, complex mycangia would form a monophyletic genus (Ambrosiella) within 

the Ceratocystidaceae, stemming from a single evolutionary jump to ambrosia beetle 

symbiosis. 

Materials and Methods 

Beetle collection and fungal isolation 

Most of the adult beetles were caught in flight using Lindgren traps with water or 

polyethylene glycol in collection cups, while the cups of other traps were dry and had No 

Pest insecticide strips (vapona, Spectrum Brands, Middleton, Wisconsin). The traps were 

baited with either ethanol lures or lineatin flexlure (Contech Enterprises, Victoria, British 
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Columbia) in the case of T. lineatum and T. scabricollis. Some adult beetles were caught 

in-flight with rotary net traps. Other mature adults were taken directly from fresh 

galleries by splitting infested wood sections. 

Most fungal isolates were obtained by grinding beetles and dilution plating 

(Harringon and Fraedrich 2010, Harrington et al. 2011) or by placing whole beetles or 

parts of beetles containing mycangia on plates of SMA (1% malt extract, Difco; 1.5% 

agar, Sigma-Aldritch; and 100 ppm streptomycin sulfate added after autoclaving). 

Isolations were also attempted directly from ambrosia growth in beetle galleries by 

scraping with a sterile needle and transferring to SMA or MYEA (2% malt extract, 0.2% 

Difco yeast extract, 1.5% agar). 

For mycangial examination, adult female Xyleborini were dissected in 20% lactic 

acid on a deep well slide using fine forceps and a scalpel. An incision was made just 

posterior to the scutellum to expose the interior of the beetle without damaging the 

mycangium, which sits directly beneath the mesonotum and is attached to the scutellum.  

Fine forceps were then used to gently tease out the mycangium and scutellum. The 

mycangium/scutellum was either transferred to a drop of Cotton blue on a slide and 

covered with a cover slip for microscopic examination, or the spore mass separated and 

used for isolation of the fungal symbiont or for DNA extraction with PrepMan® Ultra 

(Applied Biosystems, Foster City, CA). 

DNA extraction and sequencing 

Isolates were grown at room temperature on MYEA, and DNA was extracted 

using one of two methods: either the cultures were grown 2-7 days and DNA was 

extracted using PrepMan® Ultra, or isolates were grown 4-14 days and extracted using 

the ProMega Wizard® Genomic DNA Purification Kit (Promega, Madison, WI).  
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PrepMan® Ultra was used to extract DNA from scraped fungal material in beetle 

galleries or beetle mycangia. In some cases, the extracted DNA was concentrated using 

Amicon® Ultra-0.5 Centrifugal Filter Devices (EMD Millipore, Billerica, CA). Whole 

beetles preserved in ethanol were ground with a tissue grinder and Prepman® Ultra 

extraction buffer, and the resulting mix was transferred to a microcentrifuge tube for 

DNA extraction. 

ITS barcoding 

Sequencing of the internal transcribed spacer (ITS) region of the ribosomal DNA 

for initial identification of unknown cultures utilized the general fungal primer ITS1-F 

(Gardes and Bruns 1993) and ITS4 (White et al. 1990) and the PCR conditions of Paulin-

Mahady et al. (2002) and Harrington et al. (2000).  When using extracted DNA from 

gallery material, mycangial masses, or ground beetles, Ceratocystis-specific primers were 

used to amplify the ITS region in two parts: primer pairs Cerato1F (5’ 

GCGGAGGGATCATTACTGAG 3’) and ITSCer3.7R (5’ 

GTGAAATGACGCTCGGACAG 3’) for ITS1 and primer pair ITSCer3.1 (5’ 

CAACGGATCTCTTGGCTCTA 3’) and ITS4 (5’ TCCTCCGCTTATTGATATGC 3’) 

for ITS2 (Harrington et al. 2014). 

All ITS sequences generated from cultures, beetles and galleries were compared 

with the ITS sequences of representative Ceratocystidaceae in a manually aligned ITS 

rDNA dataset. There were regions of ambiguously aligned characters in both ITS1 and 

ITS2 due to numerous areas of insertions and deletions (indels), and the indel regions had 

limited reliable phylogenetic signal. Nonetheless, the aligned dataset was analyzed by 

UPGMA in PAUP 4.0b10 (Swofford 2002) using uncorrected (“p”) distance, and gaps 

were treated as missing data. 
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Phylogenetic analysis 

Sequences of the small subunit rDNA (SSU, 18S rDNA) and translation 

elongation factor 1-alpha (TEF1α) were used for phylogenetic placement of the ambrosia 

beetle symbionts. Taxa selected (Table 1) included a representative of each symbiont and 

other representatives of the newly recognized genera in the Ceratocystidaceae, which 

were previously treated as Ceratocystis spp. or Thielaviopsis spp. (de Beer et al. 2014).  

The representative taxa are well characterized, except for the members of the C. 

moniliformis complex, now treated as Huntiella. Our H. moniliformis isolate C792 from a 

Populus sp. in Minnesota is probably an undescribed species, while H. moniliformis 

isolate C1007 (CBS 204.90, CMW 11046) from India has the ITS sequence of H. 

omanensis (DQ074739). Other taxa in the Microascales included Pseudallescheria spp. 

(mixed species; P. ellipsoidea for 18S rDNA (U43911) and P. angusta for TEF1α) and 

Gondwanamyces capensis (18S rDNA, FJ176834,). Outgroup taxa were Plectosphaerella 

cucumerina (18S rDNA, AF176951) and Neurospora crassa (18S rDNA, X04971). 

The SSU sequences were amplified and sequenced using a variety of primers 

(Vilgalys 2005, White et al. 1990), typically using the overlapping sequences from NS-

1/NS-6 and SR-9R/NS-8, but sometimes overlapping sequences were obtained with NS-

1/NS-4, NS-3/NS-6, and NS-5/NS-8.  These overlapping sequences yielded an aligned 

sequence of approximately 1700 bp.  

Amplification of TEF1α used the forward amplification primer EFCF1a (5’ 

AGTGCGGTGGTATCGACAAGCG 3’) or EFCF1.5 (5’ 

GCYGAGCTCGGTAAGGGYTC 3’) and the reverse primer EFCF6 (5’ 

CATGTCACGGACGGCGAAAC 3’) following the protocol of Oliveira et al. (2015). 

Sequencing was generally performed with the PCR primers as well as the internal 
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primers EFCF2 (5’ TGCTCAACGGGTCTGGCCAT 3’) and EFCF3 (5’ 

ATGGCCAGACCCGTGAGCA 3’). The aligned sequences were approximately 1200 

bp. 

A combined SSU and TEF1α dataset (TreeBase URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S17680) of 2781 characters was used 

for phylogenetic analysis. Model testing using ModelTest 2.1.7 v20141120 (Darriba et al. 

2012) on both the combined dataset and the separate datasets for each gene showed the 

GTR+I+G model to be most appropriate. MrBayes 3.2.1 (Ronquist and Huelsenbeck 

2003) was used for Bayesian analysis with this GTR+I+G model. A single MCMC run 

with four chains (one cold, three heated) ran for 600,000 generations, which was 

sufficient to bring the convergence diagnostics below 0.01; a burn-in of 25% was applied 

before creating a majority rule consensus tree with the function “sumt”. The tree was 

visualized with FigTree. 

A full heuristic, maximum parsimony (MP), 10,000-replicate bootstrap analysis 

and 50% majority rule consensus tree was created with PAUP to add bootstrap support 

values to the Bayesian inference tree. All characters had equal weights, and the heuristic 

search was performed with simple stepwise addition. The MP analysis used the same 

combined dataset but treated gaps as a new state (5th base). 

Species descriptions 

For growth rate studies, selected isolates were grown on MYEA plates. Plugs 

from the leading edge of growth taken with a sterile #1 cork borer were placed upside 

down on three new MYEA plates per isolate, and the plates were incubated at 25°C for 4-

6 days. Color descriptions of cultures followed Rayner (1970.)  
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Results 

Using ITS rDNA sequences as a barcode to delineate putative species, we were able to 

associate an Ambrosiella sp. with each of 14 studied species of ambrosia beetles with 

large, complex mycangia: eight species from tribe Xyleborini (Cnestus mutilatus, 

Xylosandrus amputatus, X. germanus, X. crassiusculus, X. compactus, Anisandrus 

dispar, An. sayi, and Eccoptopterus spinosus), two from tribe Corthylini (Corthylus 

punctatissimus and C. consimilis), and four from tribe Xyloterini (Trypodendron 

lineatum, T. domesticum, T. scabricollis, and T. retusum.) The ITS sequences were 

obtained from pure cultures or from DNA extracted from dissected mycangial spore 

masses, whole beetles, or from sporulation in beetle galleries. Gallery sporulation and 

isolates on MYEA showed fungi with macro- and microscopic characteristics expected of 

Ambrosiella spp. (Figs. 1, 2), including a fruity aroma when grown on MYEA. Each of 

the beetle species yielded a different Ambrosiella sp. based on unique ITS sequences 

(Fig. 3) and morphology (conidiphores and/or culture characteristics). No species of 

ambrosia fungus was found associated with more than one beetle species. 

Beetle associations 

Xyleborini 

Two Cnestus mutilatus females caught in a trap in Barrow County, Georgia in 

September 2013 were ground and plated on SMA, and the recovered isolates had both 

aleurioconidia and phialoconidia typical of A. beaveri (Six et al. 2009.) The ITS sequence 

of these isolates was identical to a culture (CBS 121750) from the holotype of A. beaveri 

from C. mutilatus in Mississippi (Six et al. 2009).  
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Figure 1. Conidiophores and conidia of Ambrosiella spp. A, B. A. beaveri isolate C2749 (CBS 121750,ex 

para-type). A. phialoconidiophore. B. aleurioconidiophore. C-F. A. nakashimae. C, D. in gallery, specimen 

BPI 893134 (holotype). E, F. Isolate C3445 (CBS 139739, ex-type). G-I. A hartigii isolate C3450 (CBS 

139746). G. phialoconidiophore. H, I. aleurioconidiophore and detached aleurioconidia. J-L. A. batrae 

isolate C3130 (CBS 139735) and M, N. isolate C3045 (CBS 139736). O-R. A. grosmanniae. O-Q in 

gallery, specimen BPI 893133. R. Isolate C3125 (CBS 137357). S, T. A. roeperi isolate C2448 (CBS 

135864, ex-type). U-W. A. xylebori isolate C2455. All photos by Nomarski interference microscopy of 

material stained with cotton blue. Bar = 10 µm. 

Galleries of Xylosandrus amputatus in two stems of Cinnamomum camphora in 

Lowndes County, Georgia in August 2014 were lined with a thick, grey-white mycelium 

with aleurioconidiophores, and protoperithecia were scattered in the mycelium (Fig. 2A-

D). Isolations from the fungal growth in five beetle galleries yielded an Ambrosiella sp.  
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whose ITS sequence differed from that of A. beaveri by having an extra T in a string of 

Ts at the end of ITS2 (Fig. 3). 

 

 

Figure 2. Growth and sporulation of ambrosia fungi in galleries of ambrosia beetles from three beetle 

tribes. A-D. Ambrosiella nakashimae in galleries (BPI 893134) of Xylosandrus amputatus. A. growth in 

tunnels. B, C. protoperithecia and aleurioconidia. D. chained aleurioconidia on aleurioconidiophore. E, F. 

Meredithiella norrisii in galleries of Corthylus punctatissimus. E. Growth in gallery (BPI 893135). F. 

Branched aleurioconidiophore (BPI 893137).  G-J. M. norrisii in culture (C3152, CBS 139737, BPI 

893136, ex-type). G. detached single aleurioconidium. H. detached aleurioconidium with conidiophore cell 

attached. I, J. Branched aleurioconidiophores. K-O. Phialophoropsis ferruginea in galleries of 

Trypodendron lineatum. K-N. Specimen BPI 893130. K. Gallery growth. L-N. Deep-seated phialides. O. 

Deep-seated phialide (specimen BPI 407710). All photos by Nomarski interference microscopy of material 

stained with Cotton blue. Bar = 10 µm. 



44 

 

Figure 3. Unrooted UPGMA distance tree of ITS rDNA sequences of Ambrosiella spp. from Cnestus, 

Xylosandrus, and Anisandrus spp.; Meredithiella spp. from Corthylus spp.; Phialophoropsis spp. from 

Trypodendron spp.; and several representatives of the Ceratocystidaceae. Single asterisks indicate 

sequences obtained from DNA extracted from whole beetles or mycangial spore masses; double asterisks 

indicate sequences from DNA extracted from gallery growth. Sequences without asterisks are from DNA 

extracted from cultures. Country or USA state (two letter abbreviation) of origin of the beetle is indicated. 

Xylosandrus germanus adults collected in eight different USA states (Georgia, 

Iowa, Michigan, Missouri, New York, Ohio, Tennessee, and Virginia) and Europe 

(Germany, the Netherlands, and Switzerland) yielded a unique Ambrosiella sp. A female 

beetle trapped in flight in Missouri was dissected to remove and observe the mycangium 

and its spore contents, and a culture of the Ambrosiella sp. was recovered from the 

removed spore mass. The mycangium sat just below the mesonotum and was attached to 
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the scutellum (Fig. 4A). When the mycangial contents were freed, the spore mass 

maintained the shape of the mycangium (Fig. 4B, C), and the spore mass did not disperse 

in water, lactic acid, or oil (Isopar 

M). When mounted and stained 

(Fig. 4D-F), contents of the 

mycangium were observed to be a 

homogenous mass of arthrospore-

like cells, similar to those reported 

by Harrington et al. (2014) from 

mycangia of X. crassiusculus. The 

ITS rDNA sequences of all 

isolates from X. germanus were 

identical except at one base 

position near the end of ITS2, and 

these ITS sequences closely 

matched two GenBank accessions 

(HQ538467 and HQ670423) from 

Korean X. germanus specimens 

(Fig. 3). 

Xylosandrus crassiusculus adult beetles from Georgia, Missouri, Ohio, and South 

Carolina yielded isolates with ITS sequences matching that of A. roeperi (Harrington et 

al. 2014).  An additional adult X. crassiusculus was trapped in Taiwan in July 2014 and 

yielded an isolate of A. roeperi with an ITS sequence similar to other recovered  

Figure 4. Mycangia and excised spore mass of Ambrosiella 

grossmaniae from a female Xylosandrus germanus. A. excised 

mycangium (myc) and attached scutellum (sc). B-F. mycangial 

spore mass. B. ventral aspect. C. dorsal aspect. D, E. pressed 

with coverslip. D. full spore mass. E. detail between lobes. F. 

edge of spore mass. B, C by stereo microscope, unstained 

material. All other photos by Nomarski interference 

microscopy of material stained with cotton blue. For A and D, 

bar = 100 µm; for F, bar = 10 µm.  
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A. roeperi sequences, but the sequence most closely matched that of a South Carolina 

isolate from X. crassiusculus (Fig. 3). 

Three Xylosandrus compactus beetles trapped in Georgia in 2007 yielded isolates 

of A. xylebori, and each had an ITS sequence identical to a culture (CBS 110.61 = 

C1650) from the holotype, which was from X. compactus in the Ivory Coast (Fig. 3). 

Fresh A. hartigii isolates were obtained from An. dispar collected in Austria and 

the Czech Republic. These isolates (including CBS 139746 = C3450, from Austria) 

sporulated heavily, unlike the isolate from the holotype specimen (CBS 404.82 = C1573, 

from Germany). The ITS sequences of all A. hartigii isolates were identical, except for 

the Austrian isolate, which had one base substitution as well as an additional T near the 

end of the ITS2 region (Fig. 3). 

An Anisandrus sayi adult trapped in Boone County, Missouri in May 2013 

yielded a novel Ambrosiella sp. with branching aleurioconidiophores and disarticulating 

aleurioconidia (Fig. 1 J-N). Additional An. sayi adults trapped with a rotary net trap in 

Montcalm County, Michigan in May 2014 yielded the same fungal species. More 

specimens were trapped in Chattahoochee National Forest, Georgia in June and July 

2014, and four beetles were ground and dilution plated, yielding the same Ambrosiella sp. 

The ITS sequences of isolates from all three locations were identical and most similar to 

that of A. hartigii (Fig. 3). 

An Eccoptopterus spinosus adult was trapped in Taiwan in July 2014 and stored 

in ethanol. Although fungal isolation was not possible, the mesonotal mycangium was 

dissected and yielded a dual-lobed spore mass similar in morphology to that recovered 

from the mycangia of X. germanus (Fig. 4). DNA extracted from the spore mass from the 
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mycangium of E. spinosus yielded a unique ITS sequence (GenBank KR611325) 

somewhat close to that of A. xylebori but most closely matching a sequence (HQ670422) 

of an unidentified Ceratocystis sp. (“CspXapi1”) from an ambrosia beetle in Korea, 

perhaps An. apicalis (formerly X. apicalis.) 

Corthylini 

Isolation from the galleries of Corthylus punctatissimus in young black maple 

(Acer nigrum) saplings in Iowa in August 2013 yielded a fungus with an ITS sequence 

close to but distinct from all known Ambrosiella. The sporulation in galleries and cultures 

formed terminal aleurioconidia on many short side branches (Fig 2 E-J). Surface-

sterilized males taken from these Iowa galleries, as well as galleries and beetles collected 

in Michigan from Acer saccharum in October 2013, yielded isolates with the identical 

ITS sequence (Fig. 3). 

Male C. consimilis beetles from La Esperanza, Mexico, collected in 2007, were 

stored in ethanol. DNA was extracted from the prothorax of one of the specimens and 

yielded an ITS sequence (KR611327) similar to the symbiont from C. punctatissimus but 

differing at 10 base positions (Fig. 3). A dissection of the prothorax revealed a long, 

coiled tube connected to the procoxal cavity and containing a homogenous spore mass of 

cells similar to those seen in mesonotal mycangia of Xyleborini females (Harrington et al. 

2014). 

Xyloterini 

T. scabricollis beetles trapped in 2013 from 10 locations in Missouri were stored 

in ethanol. The DNA extractions from female beetles from each location yielded an 

identical ITS sequence (KR611329) using the Ceratocystis-specific primers, and the 

sequence was similar to that of the symbionts of other Trypodendron spp. (Fig. 3). 
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Trypodendon lineatum beetles were trapped in Alaska using Lineatin lure and 

collection cups that were dry and contained the insecticide Vapona (Reich et al. 2014). 

Several female specimens were dried and shipped to Iowa for isolations, but no 

Ambrosiella sp. was isolated. Galleries in an infested log of Picea sp. collected in 

Colorado in 2014 were also examined. The galleries (BPI 893129, 893130) were packed 

with conidiophores with deep-seated phialides but no aleurioconidia (Fig. 2 K-N). 

Attempts to isolate the fungus from the galleries were not successful, but DNA was 

extracted from the fungal growth. The ITS sequences from the extracted DNA from 

female beetles trapped in Alaska and from the gallery growth in Colorado were identical 

(KR611328) and similar to those of the fungal symbionts from other Trpodendron spp. 

(Fig. 3).  

A culture deposited as A. ferruginea (CBS 460.82) was isolated in 1971 from T. 

domesticum in Germany. No conidiophores were seen in this culture, but its ITS 

sequence differed only slightly from that of the T. lineatum and T. scabricollis symbionts 

(Fig. 3). 

The ITS sequence (KC305145) of another A. ferruginea isolate from T. retusum 

in Wisconsin (CBS 408.68 = MUCL 14520) was similar to, but distinct from, the ITS 

sequence from the three other Trypodendron associates (Fig. 3). 

Phylogenetic analysis 

A Bayesian consensus tree of the combined SSU and TEF1α dataset placed the 

fungal symbionts within the Ceratocystidaceae (Fig. 5). There was strong support for 

grouping the ambrosia beetle symbionts with C. adiposa (Butler) Moreau (1952), C. 

fagacearum (Bretz) J. Hunt (1956), C. norvegica J. Reid & Hausner (2010), and 

Huntiella spp. There appeared to be three lineages of ambrosia symbionts, and these three 
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lineages correlated with the three respective host beetle tribes: Xyleborini, Corthylini, and 

Xyloterini (Fig. 5). 

There was strong support (1.0 prior probability, 100% bootstrap) for the 

Xyleborini associates as a monophyletic clade, and all of these species formed 

aleurioconidia on branching conidiophores (Fig. 5). The X. amputatus associate had 

sequences similar to those of A. beaveri, the An. sayi associate had sequences similar to 

those of A. hartigii, and the X. germanus associate had sequences most similar to those of 

A. roeperi and A. xylebori (Fig. 5). The single species from the Corthylini appeared to 

group separately from the Ambrosiella spp. from the Xyleborini and appeared to be more 

closely related to C. adiposa and C. norvegica, as well as to the genus Huntiella 

(formerly the C. moniliformis complex). The sequences of the Trypodendron symbionts 

were most similar to those of C. fagacearum (Fig. 5). 

Comparison of marginal likelihoods from topological testing in MrBayes showed 

that it was more likely that the three lineages of ambrosia beetle symbionts were 

polyphyletic (-10,793.39) rather than a single, monophyletic group (-10,803.71). 

Phialophoropsis (Xyloterini associates) was more likely to be a separate clade distinct 

from the Xyleborini associates (i.e., Ambrosiella) (-10,793.91), rather than forming a 

single monophyletic group with it (-10,795.35). The Corthylus punctatissimus associate 

was clearly outside of Ambrosiella sensu stricto (Fig. 5), but the C. punctatissimus 

associate was found to be more likely grouped with the Xyleborini associates as a sister 

group (-10,789.59) than not (-10,794.99) in the marginal likelihood testing. 
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Figure 5. Phylogenetic tree from Bayesian analysis of the combined TEF1α and SSU (18S) rDNA dataset 

of ambrosia beetle symbionts and representatives of the Microascales. Posterior probabilities from 

Bayesian analysis and bootstrap support values (> 50%) from maximum parsimony analysis are indicated 

on branch labels. Thickened branches with asterisks indicate posterior probability of 1.0 and 100% 

bootstrap support. Tribes and the type of mycangium exhibited by the host beetles in the genera associated 

with Ceratocystidaceae are indicated in the three shaded boxes. Diagramatic illustrations of conidiophores 

of the ambrosia beetle symbionts are included; solid arrows indicate consistent observation in a species, 

and the dashed arrows indicate rare or ambiguous observations. The tree is rooted to Neurospora crassa 

and Plectosphaerella cucumerina. 
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Taxonomy 

Phylogenetic analysis and morphological characters supported recognition of 

three new species of Ambrosiella, resurrection of the genus Phialophoropsis for the 

symbionts of Trypodendron spp., and assignment of the Corthylus punctatissimus 

symbiont to a new genus. 

 

AMBROSIELLA Arx & Hennebert emend. T.C. Harr., Mycotaxon 111: 354. 2010 

Type species: Ambrosiella xylebori Brader ex Arx & Hennebert 

Ambrosiella beaveri Six, De Beer and W.D. Stone, Antonie van Leeuwenhoek 96: 23. 

2009 

MycoBank MB 504757 

Comments – This species was probably introduced to the Southeastern USA with 

its beetle host, Cnestus mutilatus, from Asia (Six et al 2009). The culture from the 

holotype of A. beaveri (CBS 121750) and two isolates (C3180 and C3181) from C. 

mutilatus in Georgia produce chains of phialoconidia from deep-seated phialides (Fig 

1A) and terminal aleurioconidia on branched conidiophores (Fig 1B), as illustrated by Six 

et al. (2009). 

Ambrosiella nakashimae McNew, C. Mayers, and T. C. Harr., sp. nov.        (Fig. 1 C-F) 

MycoBank MB 812571 

Etymology. Named after Toshio Nakashima, who characterized fungi sporulating 

in the galleries of numerous ambrosia beetles in Japan. 
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Typus: USA: Georgia: Lowndes Co., 30° 49' 06.6" N, 83° 28' 48.3" W, 

Xylosandrus amputatus gallery in Cinnamomum camphora, Aug 2014, S. Cameron, 

holotype (BPI 893134); ex-type C3445 (CBS 139739). 

Colonies on malt extract yeast agar 7-32 mm after 4 days and 25-50 mm after 6 

days at 25° C, surface mycelium white, flat, becoming smoke gray to olive green with 

cream patches, reverse cream white, becoming dark green to black, odor weak, slightly 

sweet at 6-10 days. Sporodochia white to gray on surface, superficial. 

Aleurioconidiophores (Fig 1E) hyaline to brown with age, simple to branched, 12-115 

(155) µm long, composed of one or more cells, producing a single terminal 

aleurioconidium or a chain of aleurioconidia, conidiogenous cell with a collarette. 

Aleurioconidia (Fig 1F) globose to subglobose, hyaline to light brown with age, thick-

walled, aseptate, 6-10 (14)  6-10 µm. Phialoconidiophores uncommon, with moderately 

seated phialides, producing basipetal chains of conidia by ring-wall building.  

Phialoconidia ellipsoidal to globose, hyaline to light olive brown with age, becoming 

thick-walled, aseptate 6-10 (12)  5-9 µm. Protoperithecia (Fig 2B, 2C) superficial, 

spherical, tan to brown, 55-70 µm diam. Gallery growth dense, flat, white to grey, 

becoming brown with age. Aleurioconidiophores (Figs 1C) similar to those in culture, 9-

70 µm long, ending in a phialide that may have a distinct collarette. Aleurioconidia in 

galleries (Fig 1D) larger than in culture, terminal or in chains, globose to suboblate, thick 

walled, aseptate, hyaline, may become light brown with age, (8) 9-12.5 (15)  (7.5) 8.5-

11.5 (16) µm. 



53 

Other cultures examined: USA: Georgia: Lowndes Co., 30° 49' 06.6" N, 83° 28' 

48.3" W, Xylosandrus amputatus gallery in Cinnamomum camphora, Aug 2014, S. 

Cameron, CBS 139740 (C3443). 

Notes. The symbiont of X. amputatus is similar to A. beaveri both in DNA 

sequences and morphology, especially the aleurioconidiophores, but differs in growth 

rate (7-32 mm vs. 28-36 mm diam after 4 days at 25 C), rarity of phialoconidiophores, 

and  the production of protoperithecia. This is the first report of protoperithecia in 

ambrosia beetle symbionts, which are thought to be asexual (Harrington et al. 2010). No 

perithecia or ascospores were seen, but the studied isolates were from galleries of a single 

infestation and may be of a single mating type. The beetle is native to Asia (Cognato et 

al. 2011b), and it is possible that only a single mating type of A. nakashimae was 

introduced. It also is possible that A. nakashimae is conspecific with A. beaveri, but 

phenotypic differences between the strains warrants distinction at this time. 

Ambrosiella hartigii L.R. Batra, Mycologia 59: 998. 1968 

MycoBank MB 326143 

Comments – The ambrosial symbiont of Anisandrus dispar in Germany was 

originally named Monilia candida by Hartig (1844), but this name was found to be a 

homonym of an earlier species and was redescribed by Batra (1967) as Ambrosiella 

hartigii. The fungus has been reported from An. dispar in Michigan, Oregon, and 

Washington (Batra 1967, Roeper et al. 1980, Roeper and French 1981). We obtained 

DNA sequences (Fig. 4) from another German isolate from a mycangium of An. dispar 

(CBS 404.82 = C1573), though this isolate is no longer sporulating. Recently obtained 

European isolates from A. dispar from Austria (CBS139746 = C3450) and the Czech 
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Republic sporulated heavily on MYEA, and these isolates produced two spore types in 

culture: chained phialoconidia from moderately seated phialoconidiophores (Fig 1G) and 

terminal aleurioconidia (Fig 1I) on aleurioconidiophores (Fig 1H), as illustrated by Batra 

(1967). A. hartigii has been reported as the fungal symbiont of An. sayi and An. obesus 

(Hazen and Roeper 1980, Roeper and French 1981, Roeper et al. 1980) and X. germanus 

(Roeper 1996, Weber and McPherson 1984), but the symbionts of An. sayi and X. 

germanus are described here as new species of Ambrosiella. 

Ambrosiella batrae C. Mayers, McNew & T.C. Harr., sp. nov.                        (Fig. 1 J-N) 

MycoBank MB 812572 

Etymology: Named after Lekh Raj Batra, who worked extensively on fungi 

symbiotic with ambrosia beetles. 

Typus: USA: Michigan: Montcalm County, Alma College Ecological Station, 43° 

23’ 32.31” N, 34° 53’ 40.91” W, isolated from Anisandrus sayi caught in flight, July 

2013, R. Roeper, holotype (dried culture, BPI 893131); ex-type living culture C3130 

(CBS 139735). 

Colonies on malt yeast extract agar 13-51 mm diam. after 4 days at 25° C, odor 

sweet at 4-10 days, surface growth white to buff, fluffy to chalky, growth below surface 

dense, with irregular colony margins, coloring the media deep rust, darkening with age to 

chestnut, rust colored liquid drops occasionally seen on surface mycelium. Conidiophores 

scattered on aerial mycelium or concentrated in sporodochia, white to buff, spherical. 

Aleurioconidiophores hyaline to light brown, simple to branched, 25-105 µm tall, either 

composed of monilioid cells and with a terminal aleurioconidium with subtending 

collarette (Fig 1L), or rarely composed of non-monilioid cells with chained 
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aleurioconidia from shallow phialides (Fig 1J). Aleurioconidia globose to subglobose, 

thick-walled, aseptate, smooth, hyaline to rarely light brown, 11-16.5 (21)  11-16 µm, 

either borne terminally on monilioid aleurioconidiophores, often tearing away along with 

one, two, or three conidiophore cells attached (Fig 1M, 1N), or borne on non-monilioid 

aleurioconidiophores in short chains of aleurioconidia that break off either singly (Fig 

1K) or in short chains. 

Other cultures examined: USA: Georgia: Chattahoochee National Forest, from 

An. sayi caught in flight, 1 July 2014, S. Fraedrich (C3415). Missouri: Boone County, 

isolated from An. sayi caught in flight, 20 May 2013, S. Reed (CBS 139736, C3045). 

Notes. This species was isolated from a North American native (Wood and Bright 

1992a, 1992b), An. sayi, females of which have mesonotal mycangia (Hazen and Roeper 

1980). Cultures of A. batrae can be distinguished from other Ambrosiella species by their 

dark rust/chestnut staining of the medium, the scattered, spherical sporodochia, and the 

presence of both conidia borne in chains (Fig. 1 J) and terminal conidia that tear away 

with conidiophore cells attached (Fig. 1 M,N). 

Ambrosiella xylebori Brader ex Arx & Hennebert, Mycopathologia et Mycologia 

Applicata 25: 314. 1965 

MycoBank MB 326147 

Comments – The genus Ambrosiella was invalidly described by Brader (1964) as 

A. xylebori from a Xylosandrus compactus gallery in Coffea canephora from the Ivory 

Coast, but no type was designated. Von Arx and Hennebert (1965) illustrated and 

designated a type for the genus and species based on Brader’s isolate (CBS 110.61). The 

association of an Ambrosiella with X. compactus has been confirmed in India (Batra 
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1967, Bhat and Sreedharan 1988) and Japan (Kaneko and Takagi 1966). Brader’s culture 

(CBS 110.61 = C3051) in our collection no longer sporulates, but an isolate from X. 

compactus collected in 2007 from Georgia (C2455) showed vigorous growth (62 – 63 

mm after 4 days on MYEA) and sporulation. We observed the two types of 

aleurioconidiophores illustrated by Brader (1964) and von Arx and Hennebert (1965): 

one with disarticulating monilioid conidiophore cells (Fig 1V), breaking off with attached 

aleurioconidia (Fig 1U), and a second, straight, hyphoid aleurioconidiophore with a 

single, attached aleurioconidium (Fig 1W). The latter conidiophore type appears to be 

unique to A. xylebori. The fungus reported from Corthylus colombianus as A. xylebori 

(Batra 1967) is likely closely related to the new species we describe here from C. 

punctatissimus, which also was previously reported to be A. xylebori (Roeper 1996). 

Ambrosiella roeperi T.C. Harr. & McNew, Mycologia 106: 841. 2014 

MycoBank MB 805798 

Comments – This recently described symbiont of the Asian species Xylosandrus 

crassiusculus (Harrington et al. 2014) produces aleurioconidiophores (Fig 1S) with 

terminal aleurioconidia (Fig 1T) that break off with one or more conidiophore cells 

attached; no phialoconidiophores have been observed. A. roeperi has been reported from 

Georgia, Ohio, Missouri, and South Carolina. A new isolate from X. crassiusculus in 

Taiwan is confirmed to be A. roeperi based on morphology and ITS sequence (Fig. 4). A 

culture from X. crassiusculus in Taiwan identified as A. xylebori by Gebhardt et al. 

(2005) was likely A. roeperi. 
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Ambrosiella grosmanniae C. Mayers, McNew & T.C. Harr., sp. nov.             (Fig. 1 O,P) 

MycoBank MB 812573. 

Etymology. Named after Helene Francke-Grosmann for her pioneering work on 

ambrosia beetles and their mycangia. 

Typus: USA: Iowa: Story County, Ames, Reactor Woods, 42° 02' 39.0" N, 93° 39' 

40.5" W, isolated from Xylosandrus germanus caught in flight, 5 August 2013, C. 

Mayers, holotype (BPI 893132); ex-type C3151 (CBS 137359). 

Colonies on malt yeast extract agar 45-60 mm diam. after 4 days at 25° C, surface 

covered with dense buff to olivaceous aerial mycelium, leading margin white, underside 

olivaceous to isabelline, becoming darker with age, odor sweet, noticeable at 4 days, 

fading after 8 days. Aleurioconidiophores (Fig. 1R) rare, occurring singly or grouped on 

white to buff sporodochia, hyaline, simple to branched, 20-60 µm long, composed of 

moniliod cells. Aleurioconidia produced terminally from a distinct subtending collarette, 

thick-walled, smooth, hyaline, aseptate, globose to subglobose, 7.5-12  7.5-12 µm, 

tearing away with attached conidiophore cells. Gallery growth a dense layer of 

aleuriocondiophores (Fig. 1O), producing aleurioconidia Fig 1P, 1Q) as in culture. 

Growth in mycangium composed of arthrospore-like cells 4.4-8.0 µm in diameter, 

irregular in shape, single or in septate chains of two to four cells (Fig. 4F). 

Other specimens examined: USA: Michigan: Grand Traverse County, Traverse 

City, Ashton Park, 44° 46’ 10.77’ N, 85° 38’ 59 W, gallery of X. germanus in Acer 

saccharum, 24 July 2013, R. Roeper (BPI 893133). 

Other cultures examined: Germany: Waldeck: near Jena, beech forest, from X. 

germanus caught in flight, 2014, P. Biedermann (C3467). Netherlands: Gelderland: near 
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Wageningen, from X. germanus caught in flight, 2014, L. van de Peppel (C3466). USA: 

Georgia: Clarke Co., Whitehall Forest, from X. germanus specimen caught in flight, 21 

March 2014, S. Fraedrich (C3312). Michigan: Grand Traverse Co., Traverse City, 

Ashton Park, 44° 46' 10.77" N, 85° 38' 59" W, isolated from X. germanus taken from 

gallery (BPI 893133) in Acer saccharum, 24 July 2013, R. Roeper (CBS 137358, C3149). 

Missouri: St. Louis County, from X. germanus specimen caught in flight, 30 April 2014, 

S. Reed (C3385). New York: Tompkins Co., Ithaca, from X. germanus mycangium, April 

2009, L. Castrillo (C3127). Ohio: Wayne Co., isolated from X. germanus mycangium, 

May 2010, B. Anderson (C3126). Tennessee: Warren Co., McMinnville, from X. 

germanus mycangium, April 2011, N. Youssef (C3128). Virginia: Princess Anne Co., 

Virginia Beach, isolated from X. germanus mycangium, June 2009, P. Schultz (CBS 

137357, C3125). Switzerland: Canton of Bern: near Bern, beech forest, from X. 

germanus caught in flight, 2014, P. Biedermann (C3470). 

Notes. This new species has been consistently isolated from X. germanus 

galleries, mycangia, and ground beetles from eight USA states and three European 

countries. Sequences of ITS rDNA (HQ538467 and HQ670423) from a “Ceratocystis 

sp.” isolated from X. germanus in Korea matched closely to those of A. grosmanniae (Fig 

3). The dense aerial mycelium of A. grosmanniae grows quickly in culture, but 

sporulation is rare, as previously reported for the X. germanus symbiont in Japan 

(Kaneko et al. 1965). It shares these qualities with A. xylebori, but the olivaceous to 

brown pigmentation of A. grosmanniae cultures distinguishes it from the white growth of 

A. xylebori. Growth in the mycangium is similar to that observed for A. roeperi in 
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mycangia of X. crassiusculus, though the mycangial spores of A. grosmanniae are 

somewhat smaller (Harrington et al 2014). 

 

MEREDITHIELLA McNew, C. Mayers & T.C. Harr., gen. nov. 

Mycobank MB 812574 

Etymology. Named for Meredith Blackwell, whose work has included fungi 

associated with a wide array of insects. 

Solitary, thick-walled, terminal aleurioconidia produced on short side branches 

from monillioid hyphae. Associated with ambrosia beetles. 

Type species: Meredithiella norrisii McNew, Mayers, and T.C. Harr., sp. nov. 

Though only one species of Meredithiella is described at this time, an ITS 

sequence from Corthylus consimilis and Batra’s (1967) illustrations of a similar fungus 

from C. columbianus imply that there are other species in Meredithiella associated with 

Corthylus spp. The aleurioconidia of Meredithiella look similar to those of some 

Ambrosiella spp., but the aleurioconidiophores of the C. punctatissimus (Fig. 2 I, J) and 

C. columbianus symbionts are uniquely branched. 

Meredithiella norrisii McNew, C. Mayers & T.C. Harr., sp. nov.                     (Fig. 2 F-J) 

MycoBank MB 812575. 

Etymology. Named after Dale Norris who, along with his students, studied 

ambrosia beetles and their fungi. 

Typus: USA: Iowa: Story Co., McFarland Park, Corthylus punctatissimus gallery 

in Acer nigrum sapling, 8 August 2013, T. Harrington, holotype (BPI 893135); ex-type 

C3152 (living culture CBS 139737, dried culture BPI 893136). 
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Colonies on malt yeast extract agar 20-38 mm diam. after 4 days at 25 C, surface 

mycelium flat to aerial, white, becoming light gray brown, underside olivaceous, 

becoming dark brown, odor sweet at 4-10 days then fading. Sporodochia common, 

occurring singly or coalescing into dense, flat masses on the surface of mycelia, white to 

buff, spherical, sometimes exuding a light red liquid. Aleurioconidiophores (Fig. 2I, 2J) 

on sporodochia or in loose aerial tufts, hyaline to light brown, as one-celled or rarely 

multiple-celled side branches, 13.5 - 16 µm long, arising from long chains of monillioid 

hyphae, bearing a single, terminal aleurioconidium. Aleurioconidia terminal, subglobose 

to globose, thick-walled, aseptate, smooth, hyaline, 9-11  8-11 µm, breaking off with a 

conidiophiore cell attached (Fig. 2H) or rarely singly (Fig. 2G). Gallery growth with 

abundant aleurioconidiophores (Fig. 2F) bearing terminal aleurioconidia, 9-12.5  7.5-13 

µm. 

Other specimens examined: USA: Michigan: Grand Traverse Co., Traverse City, 

Ashton Park, 44° 46’ 11.60” N, 85° 38’ 34.89” W, C. punctatissimus gallery in Acer 

saccharum, 8  July 2013, R. Roeper (BPI 893137). 

Other cultures examined: USA: Iowa: Story Co., McFarland Park, isolated from 

C. punctatissimus beetle in gallery of Acer nigrum sapling, 8 August 2013, T. Harrington 

(C3160). Michigan: Grand Traverse Co., Traverse City, Ashton Park, isolated from C. 

punctatissimus beetle in gallery of Acer saccharum sapling, October 2013, R. Roeper 

(C3187). 

Notes. Meredithiella norrisii was recovered from galleries and from male C. 

punctatissimus beetles from Michigan and Iowa. Though the symbiont of both C. 

punctatissimus (Roeper 1995, 1996) and C. colombianus (Batra 1967) were previously 



61 

identified as A. xylebori, the C. punctatissimus symbiont is morphologically distinct and 

falls outside of Ambrosiella in phylogenetic analyses (Fig. 5). The ITS sequence from C. 

consimilis is likely that of a distinct species of Meredithiella (Fig. 3), and Batra’s (1967) 

illustrations of A. xylebori from C. colombianus galleries look similar to the gallery 

sporulation of M. norrisii. 

 

PHIALOPHOROPSIS L.R. Batra emend. T.C. Harr 

Conidiophores hyaline, one-celled to septate, ending in deep-seated phialides, 

producing hyaline, aseptate conidia singly or in chains; and/or hyphae forming monilioid 

chains of chlamydospores, breaking apart singly or in groups. Aleurioconidia not present. 

Associated with ambrosia beetles. 

Type species: Phialophoropsis trypodendri L.R. Batra 

Batra (1967) originally created Phialophoropsis to accommodate P. trypodendri 

from Trypodendron scabricollis. Though he placed the T. lineatum associate in 

Ambrosiella, both P. trypodendri and A. ferruginea form deep-seated phialides, and 

aleurioconidia have not been noted in either species. Based on the distinctive phialides, 

Roeper (1972) suggested that A. ferruginea and A. hartigii should be transferred to 

Phialophoropsis or the genus Ambrosiella should be emended to include species with 

deep-seated phialides. The latter was done in a revision of Ambrosiella (Harrington et al. 

2010). However, the morphological and phylogenetic evidence support retention of 

Phialophoropsis to accommodate ambrosia beetle symbionts with deep-seated phialides 

and the absence of aleurioconidia. The T. lineatum associate also forms thick-walled, 

hyphal swellings that disarticulate in the beetle galleries, as found in the T. lineatum 



62 

galleries from Colorado and as illustrated by Mathiesen-Käärik (1953). Thus far, only 

Trypodendron symbionts are accommodated in Phialophoropsis. 

Phialophoropsis trypodendri L.R. Batra, Mycologia 59:1008. 1968 

MycoBank MB 336297. 

Synonym: Ambrosiella trypodendri (L.R. Batra) T.C. Harr., Mycotaxon 111:355. 

2010 MycoBank MB 515299. 

Comments – Batra (1967) described this species from cultures isolated from 

galleries of T. scabricollis in Pinus echinata collected in Arkansas. We examined the 

type material (BPI 422499, LRB-1952) of P. trypodendri and found a single microscope 

slide, which had short chains of what appear to be phialoconidia, as illustrated by Batra 

(1967) and redrawn by Seifert et al. (2011). No other material of P. trypodendri appears 

to be available, but the ITS rDNA sequence from DNA extracted from female T. 

scabricollis trapped at 10 locations in Missouri was similar to the ITS rDNA sequences 

of the symbionts of T. lineatum, T. domesticum, and T. retusum (Fig. 3). 

Phialophoropsis ferruginea (Math.-Käärik) T.C. Harr, comb. nov. 

MycoBank MB 812586. 

Basionym: Monilia ferruginea Math.-Käärik, Meddelanden fran Statens 

Skogforskningsinstitut 43: 57 (1953)  

MycoBank MB 474947 

Synonym: Ambrosiella ferruginea (Math.-Käärik) L.R. Batra, Mycologia 59: 1000 

(1968)  

MycoBank MB 326141 
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Comments – An ambrosial fungus in the galleries of T. lineatum was observed by 

Hartig (1872) in Germany and later by Leach et al. (1940) in Minnesota. Mathiesen-

Käärik (1953) described the fungus as Monilia ferruginea, and Batra (1967) moved the 

species to Ambrosiella. Other studies confirmed the relationship between P. ferruginea 

and T. lineatum (Francke-Grosmann 1967, Funk 1965), but this species was also thought 

to be the symbiont of T. domesticum and T. retusum (Batra 1967), T. betulae (Roeper and 

French 1981), and T. rufitarsis (French and Roeper 1972). We examined Batra’s (1967) 

Oregon material (BPI 407710) from T. lineatum galleries and saw palisades of 

conidiophores with deep-seated phialides bearing phialoconidia singly or in chains. 

Isolations were attempted from galleries made by T. lineatum in a log of Picea sp. from 

Colorado (BPI 893129, 893130), but the attempts were unsuccessful. Microscopic 

examination of this gallery growth found phialoconidiophores with deep-seated phialides 

and chains of conidia (Fig. 2L, 2M) packed densely along the walls of the gallery (Fig. 

2N). The ITS sequence from T. lineatum beetles trapped in Alaska matched the sequence 

from the T. lineatum galleries in Colorado. The ITS, SSU, and TEF1α sequences from the 

DNA extracted from T. lineatum galleries in Colorado were similar to those of the 

symbionts from T. domesticum and T. retusum (Fig. 3, 5), which appear to be different 

Phialophoropsis spp. awaiting further study. 

Uncertain or excluded species of Phialophoropsis 

Phialophoropsis cambrensis B.L. Brady & B. Sutton, Trans. Br. Mycol. Soc. 72: 337. 

1979 

MycoBank MB 319858 

Comments – This species was described from a leaf lesion on Embrothium 

lanceolatum in Wales (Brady and Sutton 1979). The illustrations of the conidiogenous 
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cells are similar to those of Phialophoropsis. However, the cultures and conidia were 

reported to be salmon pink, there was no report of the odor of ripe bananas typical of 

Phialophoropis cultures, and P. cambrensis was not associated with an ambrosia beetle. 

Phialophoropsis nipponica Matsush., Matsushima Mycological Memoirs 9: 19. 1996 

MycoBank MB 415852 

Comments – This species was isolated from the surface of a decaying branch and 

associated with apothecia (Matsushima 1996), which would not be consistent with the 

current placement of Phialophoropsis within the Microascales. 

Discussion 

This study is the first to associate lineages of ambrosia fungi with specific 

mycangial types and suggest a tighter co-evolutionary pattern between the fungal and 

beetle mutualists than has previously been recognized. However, the fungal associates of 

only a small percentage of the more than 3400 ambrosia beetle species have been studied 

(Batra 1967, Harrington et al. 2010), and the symbioses between ambrosia beetles with 

large, elaborate mycangia and the Ceratocystidaceae may prove to the exception rather 

than the rule. Ambrosia beetles typically feed on a mixture of fungi (Batra 1966, 1967, 

Kinnuura 1995), and adult beetles may be externally contaminated with a diversity of 

microorganisms, but growth in mycangia appears to be more specific. In the case of the 

more ubiquitous and relatively small mycangia found in most ambrosia beetle genera, 

mixtures of Raffaelea spp. and other fungi may be found in an individual beetle, and a 

single Raffaelea sp. may be associated with more than one beetle tribe (Harrington and 

Fraedrich 2010, Harrington et al. 2010, 2011, Kasson et al. 2013). There appears to be 

much more specific associations in those ambrosia beetle genera that have large, 

elaborate mycangia (Harrington et al. 2014). We examined 14 ambrosia beetle species in 
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six genera and three tribes with relatively large, elaborate mycangia and found that each 

species harbored a unique ambrosia species in the Ceratocystidaceae. The fungi 

recovered or detected included six previously recognized species, four new species, and 

four putative species. The 14 fungal species sorted into three lineages, suggesting that the 

symbiosis independentaly arose within each of the three respective beetle tribes: 

Ambrosiella within Xyleborini, Meredithiella within Corthylini, and Phialophoropsis 

within Xyloterini.  

The large mycangia of beetles in these three tribes are found in different parts and 

sexes of the adult beetles and apparently arose independently. In each case, it appears that 

the genera with large, complex mycangia evolved from other genera with smaller and 

simpler mycangia that are known to harbor Raffaelea spp. (Harrington et al. 2014). In the 

Xyleborini, females of species in the genera Xylosandrus, Anisandrus, Cnestus, and 

Eccoptopterus have large mesonotal mycangia (Beaver 1989, Francke-Grosmann 1956, 

1967, Happ et al. 1976, Hulcr and Cognato 2010, Hulcr et al. 2007) that harbor 

Ambrosiella spp., while other genera of Xyleborini with simple oral mycangia (e.g., 

Xyleborus and Euwallacea) or with small elytral mycangia (e.g., Xyleborinus) (Beaver 

1989, Francke-Grosmann 1967) may harbor unrelated species of Raffaelea or Fusarium 

(Freeman et al. 2013, Harrington et al. 2010, 2011, Kasson et al. 2013, O’Donnell et al. 

2015). In Corthylini, male Corthylus spp. have long, folded tubes opening into the 

procoxal cavity (Finnegan 1963, Giese 1967), which apparently harbor Meredithiella 

spp., while other genera of Corthylini (e.g., male Gnathotrichus spp. and female 

Monarthrum spp.) have simple enlargements of the procoxal cavity (Batra 1963, Farris 

1963, Lowe et al. 1967, Schneider and Rudinsky 1969a) and have Raffaelea symbionts 
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(Batra 1967, Funk 1970, Harrington et al. 2010, Roeper and French 1981). Finally, in 

Xyloterini, Trypodendron spp. carry Phialophoropsis in their complex, tubular, pleural-

prothoracic mycangia (Abrahamson et al. 1967, Batra 1967, Francke-Grosmann 1956, 

1967, French and Roeper 1972, Schneider and Rudinsky 1969b), while Xyloterinus 

politus has a prothoracic cavity guided by hairs with an unidentified fungus and simple 

oral mycangia in both sexes that harbor Raffaelea spp. (Abrahamson and Norris 1966, 

1969, Harrington unpublished). 

Our initial hypothesis was that the fungal species associated with large, complex 

mycangia would form a monophyletic group, i.e., Ambrosiella (Harrington et al. 2010). 

Although members of the Ceratocystidaceae were consistently associated with the large 

mycangia, the fungal associates appeared to be in three phylogenetic lineages that 

correlate with the tribe of their host, suggesting three separate origins of the symbiosis 

without horizontal exchange of the fungal symbionts between tribes. The clearest 

phylogenetic distinction is seen between the Xyleborini associates (Ambrosiella) and the 

Xyloterini associates (Phialophoropsis) (Alamouti et al. 2009, de Beer et al. 2014, 

Harrington 2013, Harrington et al. 2010, Six et al. 2009). Phialophoropsis appears to be 

closest to Ceratocystis fagacearum, while our analyses suggest that Ambrosiella and the 

new genus Meredithiella are more closely related to C. adiposa, C. norvegica, and the 

genus Huntiella (formerly the C. moniliformis complex). Huntiella spp., C. fagacearum 

and C. adiposa form phialoconidia in deep-seated phialides, but only C. adiposa forms 

aleurioconidia (Harrington 2009, Nag Raj and Kendrick 1975). None of these 

Ceratocystis spp. are clearly associated with ambrosia beetles (Harrington 2009), but C. 

norvegica was recovered from galleries of a conifer bark beetle (Reid et al. 2010). 
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Ceratocystis fagacearum, C. adiposa and C. norvegica are distinct from Ceratocystis 

sensu stricto (the C. fimbriata complex) and need further phylogenetic and taxonomic 

study (de Beer et al. 2014), as do the ambrosia beetle symbionts in the family.  

The ambrosia fungi in the Ceratocystidaceae appear to be obligate symbionts and 

may only be dispersed in mycangia, in which they produce arthrospore-like cells with 

schizogenous division, rather than yeast-like budding (Harrington et al. 2014). Conidia 

produced in the galleries would likely be the propagules that enter the mycangia of 

callow adults (Harrington et al. 2014), but the conidiophores and conidia appear to be 

important adaptations for beetle grazing. Many of these fungi produce dense palisades of 

conidiophores or columns of conidia in ambrosia beetle galleries, and disarticulating 

conidiophores appear to be a common feature. The conidia and cells of the conidiophores 

often contain large lipid bodies (Harrington et al. 2014), and fungal-produced lipids and 

sterols may be important for beetle development (Kok 1979, Norris 1979, Norris et al. 

1969, Six 2012).  

Production of phialoconidia from deep-seated phialides by ring-wall building is 

found throughout the Ceratocystidaceae (Harrington 2009, Paulin-Mahady et al. 2002), 

and moderately- to deep-seated phialides were found in species of Phialophoropsis and 

Ambrosiella. The simplest ambrosia growth was found in the galleries of T. lineatum, 

where the phialoconidiophores of P. ferruginea are only one or two cells long and 

arranged side-by-side in a hymenium, as illustrated by Batra (1967), and basipetal chains 

of oily phialoconidia are produced in dense columns. The chlamydospore-like hyphal 

swellings of P. ferruginea described by Mathiesen-Käärrick (1953) were not observed in 
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our cultures of Phialophoropsis, nor were aleurioconidia seen in galleries or cultures of 

Phialophoropsis spp.  

Gebhardt et al. (2005) reported phialidic conidiogenous cells in P. ferruginea, A. 

hartigii, and A. xylebori, but we have found only aleurioconidiophores with 

inconspicuous collarettes in A. xylebori. Moderately-seated phialides were observed in A. 

beaveri, A. hartigii, and perhaps A. nakashimae, but these may be the least specialized 

conidiophores produced by Ambrosiella spp. All three of these species form a second 

type of conidiophore, with an inconspicuous, subtending collarette and aleurioconidia 

that break off singly or in chains, but the conidia do not disarticulate with conidiophore 

cells attached. This second type of conidiophore also was observed in A. batrae, which 

also displays a third conidiophore type, which appears to be the most advanced and best 

adapted for insect grazing. The conidiophore is made up of branching, monillioid cells 

that may break off with attached, terminal aleurioconidia (Harrington et al. 2014). 

Distinctive, monillioid conidiophores have been illustrated in A. xylebori (Batra 1967, 

Brader 1964, Kaneko 1967, von Arx and Hennebert 1965), A. roeperi (Kaneko 1967, 

Harrington et al. 2014), and A. grosmanniae (Nakashimae et al. 1992), and we observed 

them in A. batrae. In addition to disarticulating aleurioconidiophores, A. xylebori 

produces single aleurioconidia from simple, hyphae-like aleurioconidiophores (Batra 

1967, von Arx and Hennebert 1964), which likely do not disarticulate (Harrington et al. 

2014).  

Meredithiella norrisii produces terminal aleurioconidia on monillioid hyphae that 

tear away with one or more conidiophore cells attached, similar to the third type of 

Ambrosiella conidiophore. However, the M. norrisii aleurioconidia are borne on short 
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side branches that arise from a central monillioid hypha, as opposed to the branched 

aleurioconidiophores of Ambrosiella spp.  

Most species in the family Ceratocystidaceae are weak to aggressive plant 

pathogens (Harrington 2009, 2013), but the ambrosia beetle symbionts in this family 

appear to be strictly nutritional symbionts. Ambrosia beetles have a broad array of fungal 

associations and have been implicated as vectors of tree pathogens, but rather than acting 

directly as vectors, they more commonly facilitate spread of pathogens, such as C. 

fimbriata, via expelled frass containing aleurioconidia (Harrington 2009, 2013). An 

exception is the invasive Xyleborus glabratus, whose mycangial symbiont is the laurel 

wilt pathogen, Raffaelea lauricola (Fraedrich et al. 2008, Harrington et al. 2011). Other 

Raffaelea spp. and Fusarium spp. associated with ambrosia beetles may aid their beetles 

in killing trees, but these fungi are not wilt fungi and do not systemically colonize their 

hosts (Harrington and Fraedrich 2010, Harrington et al. 2011, Kessler Jr 1974, Kusumoto 

et al. 2015, Mendel et al. 2012, Ploetz et al. 2013). In isolations from ambrosia beetles 

with large mycangia, we rarely recovered other fungi, such as Fusarium spp. However, 

Ambrosiella spp. dominated the ambrosia growth in fresh galleries of the Xyleborini and 

were consistently associated with the mycangia in microscopic observations, in 

isolations, and in PCR amplifications. The limited observations of galleries and mycangia 

of Corthylus spp. and Trypodendron spp. found similarly tight associations with 

Meredithiella and Phialophoropsis spp., respectively. 

Ambrosiella spp. appear to be associated with only the genera of Xyleborini with 

large, mesonotal mycangia. In a possible exception, Kostovcik et al. (2014) detected 

DNA of an Ambrosiella sp. from oral mycangia of both Xyleborus ferrugineus and X. 
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affinis using PCR. The amplified ITS sequence from X. ferrugineus matched most closely 

to the ITS sequence of A. grosmanniae from X. germanus (HQ538467), referred to as 

“Ceratocystis sp., CspXger3” (Kostovcik et al. 2014). It is possible that contaminating 

DNA of an Ambrosiella sp., such as A. roeperi from X. crassiusculus, was amplified by 

Kostovcik et al. (2014). They failed to detect a Raffaelea sp. in X. ferrugineus or X. 

affinis mycangia, but we (Harrington, unpublished) have isolated Raffaelea spp. but not 

Ambrosiella spp. from both of these beetle species, which have small, oral mycangia. 

Evidence suggests that mycangial symbionts in the Ceratocystidaceae are 

species-specific and consistently found in both the native and introduced populations of 

their respective beetle symbionts. Examples include the respective Ambrosiella spp. 

associated with intercontinental populations of Xylosandrus germanus, X. crassiusculus, 

and X. compactus. Also, related species within beetle genera carry related fungal 

symbionts, even if the beetle species are native to different continents. The American An. 

sayi harbors A. batrae, while the closely related A. hartigii is associated with the 

European An. dispar. Vertical, linear transfer of asexual fungal symbionts from parent to 

offspring within galleries and severe inbreeding in the haplo-diploid Xyleborini (Cognato 

et al. 2010) may lead to tight co-evolution between the beetle and fungal lineages, 

perhaps foretelling an evolutionary dead end. However, the discovery of what appears to 

be protoperithecia in A. nakashimae suggests that these mycangial symbionts are not 

strictly asexual, and their sexual spores may be transmitted on the exoskeleton of insects, 

facilitating horizontal transfer among beetle species. 

There is likely much unexplored diversity among the fungi associated with 

ambrosia beetles with large, complex mycangia. Study of additional Corthylus spp. and 
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Trypodendron spp. is required to determine the degree of specificity to their fungal 

symbionts as compared to the Xyleborini. Of particular interest are Scolytoplatypus spp., 

which have large mycangial pockets in the pronotum (Schedl 1962) and have been 

associated with fungi with monillioid chains of spores (Kinuura 1995; Nakashima et al. 

1987, 1992; Nakashima 1989). Microcorthylus spp. apparently have mycangia similar to 

Corthylus spp. (Schedl 1962) and may harbor species similar to M. norissii. On the other 

hand, further studies of ambrosia beetles with simpler mycangia may find that symbionts 

in the Ceratocystidaceae have other, less-specific associations with ambrosia beetles.  
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Tables 

Table 1. Cultures, specimens, and GenBank accessions for representative species. 

Species 

Specimen ID 

(Collection ID) 

Associated 

ambrosia beetle 

GenBank Accession No  

ITS SSU TEF-1a 
 

       
Ambrosiella       

 A. batrae C3130 (CBS 139735) Anisandrus sayi KR611322 KR673881 KT290320  

 A. beaveri C2749 (CBS 121750) Cnestus 

mutilatus 

KF669875 KR673882 KT318380  

 A. nakashimae C3445 (CBS 139739) Xylosandrus 

amputatus 

KR611323 KR673883 KT318381  

 A. grosmanniae C3151 (CBS 137359) Xylosandrus 
germanus 

KR611324 KR673884 KT318382  

 A. hartigii C1573 (CBS 404.82) Anisandrus 

dispar 

KF669873 KR673885 KT318383  

 A. roeperi C2448 (CBS 135864) Xylosandrus 

crassiusculus 

KF669871 KR673886 KT318384  

 A. xylebori C3051 (CBS 110.61) Xylosandrus 

compactus 

KF669874 KR673887 KT318385  

 Ambrosiella sp. M257 Eccoptopterus 
spinosus 

KR611325    

Meredithiella       

 M. norrisii C3152 (CBS 139737) Corthylus 

punctatissimus 

KR611326 KR673888 KT318386  

 Meredithiella sp. M260 Corthylus 

consimilis 

KR611327    

Phialophoropsis       

 P. ferruginea M243 (BPI 893129) Trypodendron 
lineatum 

KR611328 KR673889 KT318387  

 Phialophoropsis sp. C2230 (CBS 460.82) Trypodendron 

domesticum 

KC305146 KR673890 KT318388  

 Phialophoropsis sp. CBS 408.68 Trypodendron 

retusem 

KC305145    

 P. trypodendri SUTT Trypodendron 
scabricollis 

KR611329    

Ceratocystis and other Ceratocystidaceae      

 C. adiposa C999 (CBS 183.86)  =JN604448 KR673891 HM569644  

 C. fagacearum C927 (CBS 129242)  =KC305152 KR673892 KT318389  

 C. fimbriata C1099 (ICMP 8579)  AY157957 KR673893 HM569615  

 C. norvegica C3124 (UAMH 9778)  DQ318194 KR673894 KT318390  

 Endoconidiophora 

coerulescens 

C301 (CBS 100.198)  KC305116 KR673895 HM569653  

 Huntiella moniliformis C1007 (CBS 204.90)  =DQ074739 KR673896 KT318391  

 Huntiella sp. C792  KR611330 KR673897 KT318392  

 H. moniliformopsis C1934 (DAR 74609)  =NR119507 KR673898 HM569638  

 Thielaviopsis ethacetica C1107  =KJ881375 KR673899 HM569632  
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Abstract 

Genera of ambrosia beetles in the tribe Xyleborini with large, mesonotal 

mycangia host unique fungal symbionts in the genus Ambrosiella. The symbiont of a 

recent invasive to the USA from Asia, Anisandrus maiche, had not been previously 

characterized. We found the mycangium anatomy of An. maiche collected in Ohio to be 

similar to that of Anisandrus dispar and consistently isolated a novel fungus, Ambrosiella 

cleistominuta sp. nov., from An. maiche mycangia and galleries. The fungus was 

distinguished from other named Ambrosiella by morphological characters and DNA 

sequences (ITS rDNA and TEF-1a). The mycangial symbionts of ambrosia beetles had 

been assumed to be strictly asexual, but A. cleistominuta produces cleistothecious 

ascomata with ascospores in beetle galleries and in culture. In contrast to ascomata of 

other Ceratocystidaceae, the relatively small ascomata of A. cleistominuta are neckless 

https://doi.org/10.1139/cjb-2016-0297
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and without ostioles. The ascospores are relatively large, and single ascospore colonies 

produced ascomata and ascospores in culture, showing that A. cleistominuta is 

homothallic. 

Introduction 

Anisandrus maiche (Coleoptera: Curculionidae: Scolytinae) is an Asian ambrosia 

beetle that has recently invaded the USA and Europe (Rabaglia et al. 2009; Terekhova & 

Skrylnik 2012). Adult female A. maiche have been recovered from flood-stressed Cornus 

florida L. trees attacked in Ohio, USA (Ranger et al. 2015), and could present a similar 

risk to ornamental and horticultural trees as other invasive Xyleborini (Ranger et al. 

2016). Based on studies of other Anisandrus spp. (Mayers et al. 2015), a species of 

Ambrosiella Arx & Hennebert emend. T.C. Harr. (Microascales: Ceratocystidaceae) 

would be expected to serve as a mycangial symbiont of An. maiche.  

Ambrosia beetles cultivate fungal gardens along the walls of galleries tunneled in 

sapwood, and larvae and adults feed on crops of conidia and conidiophores as their food 

source (Batra 1967; Harrington et al. 2010). Ambrosia beetles are polyphyletic 

(Kirkendall et al. 2015), and tribes of ambrosia beetles have independently evolved 

special organs (mycangia) to transport their symbionts to new trees (Batra 1967; Francke-

Grosmann 1967; Beaver 1989; Six 2012). The adult beetles secrete nutrients into the 

mycangium to support active growth of the symbiont, and the overflow of fungal 

propagules leads to inoculation of newly excavated galleries (Beaver 1989). Mycangia of 

various genera and tribes of ambrosia beetles vary considerably in size, shape, and 

location on the body (Francke-Grosmann 1967; Beaver 1989), and their primary fungal 

symbionts also vary (Harrington et al. 2010, 2014; Mayers et al. 2015).  
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The Xyleborini genera Anisandrus, Cnestus, Eccoptopterus, Hadrodemius, and 

Xylosandrus form a monophyletic group with relatively large mesonotal (mesothoracic) 

mycangia (Hulcr & Cognato 2010). These mycangia are formed by a deep invagination 

of the intersegmental membrane between the scutellum and pronotum (Francke-

Grosmann 1956; Happ et al. 1976; Stone et al. 2007). Species of Ambrosiella have 

proven to be the primary fungal symbionts of Xyleborini with large mesonotal mycangia, 

such as Anisandrus dispar F., Anisandrus sayi Hopkins, Cnestus mutilatus (Blandford), 

Eccoptopterus spinosus (Oliver), Xylosandrus compactus (Eichhoff), Xylosandrus 

crassiusculus (Motschulsky), and Xylosandrus germanus (Blandford) (Six et al. 2009; 

Harrington et al. 2010, 2014; Mayers et al. 2015). 

The goals of this study were to characterize the mycangium and identify the 

mycangial symbiont of an invasive population of An. maiche established in Ohio, USA. 

We hypothesized that An. maiche would have a mesonotal mycangium similar to that of 

other Anisandrus (Francke-Grosmann 1956, 1967; Happ et al. 1976; Hulcr et al. 2007). 

Further, we expected the mycangium to harbor budding spores of Ambrosiella, which 

would serve as the primary food source of the larvae (Mayers et al. 2015).  

Materials and Methods 

Beetle collection 

Live Anisandrus maiche females were collected using ethanol-baited bottle traps 

deployed at four locations in Wayne County, Ohio: Barnard Road Site: Lat. 

40o45'41.43"N, Long. 81o51'16.88"W; Davey Farm Site: Lat. 40o51'53.41"N, Long. 

82o3'8.80"W; Badger Farm Site: Lat. 40o46'38.62"N, Long. 81o51'9.34"W; Metz Road 

Site: Lat. 40o52'19.87"N, Long. 81o56'26.06"W. Bottle traps were assembled according 

to Ranger et al. (2010), but moist paper towels were placed in the lower collection bottle 
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rather than low-toxicity antifreeze in order to maintain beetle and fungal viability (Ranger 

et al. 2015). Female adults were stored refrigerated in parafilm-sealed Petri dishes with 

moist filter paper, then killed by crushing the exoskeleton and shipped overnight in glass 

vials with or without sterile moist filter paper. Male A. maiche are flightless and were not 

collected.  

Additional adult females were excavated from naturally-infested Gleditsia 

triacanthos L. trees growing in a commercial ornamental nursery in Ohio (Lat. 

41°49'35.41"N; Long. 81°2'27.40"W). Stem sections were refrigerated and then split 

using a sterilized hand pruner. Adult female A. maiche collected from their host galleries 

were stored, killed, and shipped as described above.  

Mycangia  

Intact mycangia were dissected from beetles and separated from the scutellum 

with sterile needles, forceps, and razors on glass slides in a manner similar to that 

described by Batra (1985). Intact mycangia and spore masses teased from intact 

mycangia were mounted in cotton blue on a microscope slide and observed with 

Nomarski interference contrast (BH-2 compound microscope, Olympus, Melville, NY) 

and digitally photographed (Leica DFC295 camera and Leica Application Suite V3.6, 

Leica Camera Inc., Allendale, NJ). For some images, composites of several images taken 

at the same magnification and focus level were stitched together with the Photomerge 

function in Photoshop CS6 (Adobe, San Jose, CA) in “reposition” mode with blending 

enabled. 

Fungal isolations  

Intact A. maiche females were first surface-sterilized by submerging in 75% 

ethanol for 10s, then submerging in two successive baths of sterile deionized water and 
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allowed to dry on paper towels. Beetles were then pulled apart with sterile forceps and 

the portions containing the prothorax/mesothorax, scutellum, and mycangium were 

separately plated directly on SMA (1% malt extract, Difco Laboratories, Detroit, MI; 

1.5% agar, Sigma-Aldrich, St. Louis, MO; and 100 ppm streptomycin sulfate added after 

autoclaving). Fungal colonies were subcultured to MYEA (2% Difco malt extract, 0.2 % 

Difco yeast extract, 1.5% agar). 

Hyphal tip and single spore cultures 

Round, pigmented structures resembling cleistothecia were observed in galleries 

with ambrosia growth and in one of the cultures on MYEA. Individual spherical 

structures were removed from galleries, cleaned by dragging across the surface of sterile 

MEA (1.5% malt extract, 1.5% agar), and DNA was extracted from these cleaned 

structures using PrepMan® Ultra (Applied Biosystems, Foster City, CA).  

Single hyphal tip and single ascospore colonies were obtained from the culture 

(C3843) that produced spherical bodies on MYEA. Isolated hyphal tips beyond the 

advancing margin of growth were identified on MYEA using a dissecting scope (at 25 – 

40 magnification and substage lighting), excised, and transferred to MYEA. Single 

ascospore cultures were obtained by crushing a single, spherical structure in a drop of 

sterile water on a flame-sterilized glass slide under a sterile coverslip, confirming the 

presence of the putative ascospores but absence of conidia at 500, carefully raising the 

coverslip, and transferring the liquid containing spores to MEA with a micropipette. 

Individual spores were separated at 25 – 40 using a sterile needle. The isolated spores 

were allowed to germinate, and spores with a single germ tube were transferred to fresh 

MYEA plates. 
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Artificially-infested stem segments 

Live An. maiche trapped in-flight at the Badger Farm and Davey Farm locations 

were allowed to infest Cornus florida stem sections under laboratory conditions that were 

1.0–2.5 cm diam. and 9–10 cm long. Stem sections taken from live trees were soaked in 

distilled/deionized water for ~18 hrs, blotted and air-dried for 5 min, and placed in closed 

plastic containers (13 cm in diam., 9 cm tall) with moist paper towels. About 12 

punctures were placed in the lid for ventilation. Stems were held at room temperature for 

14 d at 23 °C and stored refrigerated until dissection. The infested stems were then split 

open and ambrosia growth within galleries was removed with sterile needles and plated 

on SMA for isolation or mounted in cotton blue for microscopic observation. 

Culture description 

Isolates from A. maiche and C. florida were grown at room temperature on 

MYEA. Agar plugs cut with a #1 cork borer (approximately 3mm diameter) were 

transferred from the leading margin of growth to three MYEA plates, grown at 25 °C for 

7 d in the dark, and the diameter of the colonies measured and averaged for each isolate. 

Culture pigmentation/colors are in accordance with Rayner (1970). 

DNA sequencing and analysis 

Extractions of mycelia and spores were as previously described (Mayers et al. 

2015), but extractions from some Ambrosiella cultures with excessive pigment were 

performed with the E.Z.N.A.® Fungal DNA Mini Kit (Omega Bio-tek, Norcross, GA). 

The internal transcribed spacer (ITS) region of the ribosomal DNA, small subunit rDNA 

(SSU, 18S rDNA), and translation elongation factor 1-alpha (TEF-1a) were amplified 

and sequenced as per Mayers et al. (2015). Forward and reverse reads were compared 

using Sequence Navigator v 1.0.1 (Applied Biosystems, Foster City, CA). The SSU and 
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TEF-1a sequences were used as queries in NCBI’s (National Center for Biotechnology 

Information) BLASTn tool. 

The ITS sequences of the new species were aligned with those of eight other 

putative and named Ambrosiella (Mayers et al. 2015) in PAUP 4.0bb10 (Swofford 2002). 

The outgroup taxon was Ceratocystis adiposa (E.J. Butler) C. Moreau (DQ318195), a 

close relative to Ambrosiella within the Ceratocystidaceae (de Beer et al. 2014; Mayers 

et al. 2015). The dataset had 557 aligned characters, including gaps, and 106 of the 

characters were parsimony-informative. Gaps were treated as a fifth state. The analyses 

used stepwise addition and the tree-bisection-reconnection branch-swapping algorithm. 

Bootstrap support values were obtained by a full heuristic, maximum parsimony, 10,000-

replicate bootstrap analysis in PAUP. 

Results 

Mycangium observations 

Each of the seven examined female Anisandrus maiche (three trapped in flight, 

and four infesting G. triacanthos) had a mesonotal mycangium that opened between the 

scutellum and pronotum. The prominent dual lobes described for the mycangia of related 

genera, such as Cnestus, Eccoptopterus, and Xylosandrus (Stone et al. 2007; Harrington 

et al. 2014; Mayers et al. 2015), were not observed in the An. maiche mycangia. Instead, 

spores were observed in a small, unlobed pouch below the scutellum (Fig. 1), as 

illustrated in Anisandrus dispar by Francke-Grosmann (1956, 1958, 1967) and Happ et 

al. (1976). The scutellum curves ventrally on its anterior side, as in An. dispar (Francke- 

Grosmann 1958), and the dorsal surface is covered with pits, each ornamented on its rim 
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Figure 1. Mycangium of Anisandrus maiche and mycangial propagules of Ambrosiella cleistominuta sp. 

nov. (a) Exterior spore mass on the posterior margin of the pronotum (arrow). (b) Exterior spore mass, with 

germinating propagules. (c) Female with pronotum removed, revealing the light brown scutellum (arrow) 

protruding from below the mesonotum. (d) Dorsal aspect of excised scutellum. (e) Pits covering scutellum, 

scutellum hinge (sh), and fungal spores (fp) exiting from the mycangium below. (f) Detail of scutellum pits 

with rim setae. (g) Fungal propagule in shallow pit, with setae above. (h) Ventral aspect of scutellum, 

showing mycangium pouch full of fungal spores (fp). (i) Fungal propagules growing in mycangium. Photos 

a, c, and d by dissecting microscope. All other photos by Nomarski interference microscopy of material 

stained with cotton blue. Bar = 10 µm in b, f, g, i. For all other photos, bar = 100 µm. 

with a single seta (Figs. 1d–f). The pit setae posterior to the hinge of the scutellum point 

anteriorly and medially, while the pit setae anterior to the scutellum hinge are not as 

uniform in their direction. The pits often contained one or more fungal propagules (Fig. 

1g). A tuft of hairs at the base of the pronotum, often associated with mesonotal 

mycangia (Hulcr et al. 2007), was present in all females of An. maiche, as illustrated by 

Rabaglia et al. (2009).  

The material teased from inside the mycangium was a dense, homogenous mass 

of fungal propagules (Figs. 1h, i), similar in appearance to that of other Ambrosiella 

(Francke-Grosmann 1956; Kaneko & Takagi 1966; Harrington et al. 2014, Mayers et al. 

2015). The propagules appeared to proliferate by schizogenous, arthrospore-like growth. 
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Some beetles had external masses of spores associated with the tuft of hairs on the 

posterior edge of the pronotum (Fig. 1a). The external mass appeared to be composed of 

germinating propagules with branching hyphae (Fig. 1b).  

Fungal isolation and identification 

Isolations from dissected mycangia of surface-sterilized An. maiche trapped in 

flight or taken from infested G. triacanthos stems consistently yielded cultures of a fast-

growing fungus that produced red-brown aerial hyphae with rust-colored liquid drops. 

The cultures had a sweet, fruity-ester smell and only rarely sporulated on MYEA.  

Twelve of the 13 crushed beetles caught in flight and shipped with moist filter 

paper yielded the new fungal species, but only one of the nine beetles shipped without 

moist filter paper yielded the fungus. Only the new species grew from the mycangia of 

beetles shipped with moist filter paper, though in some cases other fungi grew from other 

plated parts of the beetle, such as unidentified yeasts from pieces of the gut. Three of the 

four plated beetles excavated from G. triacanthos, all shipped with moist filter paper, 

yielded the new fungal species. 

Each of the 12 sequenced isolates from An. maiche adults and three from galleries 

in C. cornus yielded the same ITS sequence (GenBank KX909940), which differed from 

Ambrosiella hartigii L.R. Batra, the symbiont of An. dispar, by an additional T near the 

end and a repeated AATT at the very end of ITS2. The new species formed a strongly-

supported clade with A hartigii separate from other Ambrosiella in phylogenetic analysis 

(Fig. 2). 
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Figure 2. One of 12 most parsimonious trees of Ambrosiella spp. produced by unweighted maximum 

parsimony analysis of an ITS rDNA dataset of 557 aligned characters, 106 of which were parsimony-

informative. Branch support values are from 1000 bootstrap replications. The outgroup was Ceratocystis 

adiposa. Species names or sources are followed by isolate numbers from the Iowa State University 

collection. Accession numbers for the Centraalbureau boor Schimmelcultures and GenBank are given in 

parentheses, where available.  

Isolates C3843 and C3924 from An. maiche had identical TEF-1a and SSU 

sequences. Sequences for both gene regions confirmed placement of the new species 

within Ambrosiella. The trimmed TEF-1a sequence (KX925309) was 1168 bases long 

and included a 107-bp intron; it was most similar (1154/1167 bp matching) to the TEF-1a 

sequence of A. hartigii (KT318383.1). The trimmed SSU sequence of the new species 

(KX925304) was 1657 bases long and was most similar to the SSU sequence of 

Ambrosiella grosmanniae C. Mayers, McNew, & T.C. Harr. (KR673884, 1655/1655 bp 

matching) and A. hartigii (KR673885, 1653/1655 bp matching). 
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Culture morphology 

Conidiophores (Figs. 3a–h) of the new species were rare in culture but were 

morphologically similar to those of A. hartigii and Ambrosiella batrae C. Mayers, 

McNew, & T.C. Harr. (Mayers et al. 2015). Two types of conidiophores were observed, 

but intermediate forms were seen. Phialoconidiophores (Figs. 3a, 3b) were usually 

composed of multi-branched, monilioid hyphae and moderately-seated phialides that 

produced cylindrical to barrel-shaped phialoconidia in chains. Aleurioconidiophores 

(Figs. 3c–h) produced globose, thick-walled aleurioconidia from what appeared to be 

very shallow phialides, often with inconspicuous collarettes. Aleurioconidiophores 

usually produced a single terminal aleurioconidium (Figs. 3c–e), but occasionally, chains 

of lightly pigmented aleurioconidia surrounded by a membranous sheath (Fig. 3f) and/or 

red-brown pigment (Figs. 3g, h) were seen. 

 

Figure 3. Conidiophores and conidia of Ambrosiella cleistominuta sp. nov. (a, b). Phialoconidiophores. (a) 

Bearing chained phialoconidia. (b) Deeply-seated phialide on monillioid hyphae. (c–h) 

Aleurioconidiophores. (e) On simple hyphae. (f) With membranous sheath (arrows). (g, h) With pigment. 

(i) Arthrospore (arrow) disarticulating from monillioid chain. All photos by Nomarski interference 

microscopy of material stained with cotton blue of ex-holotype isolate C3843 (CBS 141682). Bar = 10 µm. 
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Ascomata 

None of the studied isolates of the new species initially produced ascomata. 

However, after several serial transfers of isolate C3843, a sector produced thick, white, 

fluffy aerial mycelia with many small, brown spherical structures in the aerial mycelium 

(Fig. 4). The fluffy white phenotype and the production of the spherical structures 

persisted through several serial transfers when grown on MYEA, but not on MEA. The  

 

Figure 4. Gallery growth and sexual state of Ambrosiella cleistominuta sp. nov. (a–d) In gallery of 

Anisandrus maiche. (a) Opened cleistothecia (white arrow) in grazed area of the ambrosia growth and 

unopened cleistothecia (black arrow) in ungrazed areas. (b) Longitudial-sections of three cleistothecia 

embedded in ambrosia growth showing lighter ascospore masses inside. (c) Crushed cleistothecium and 

ascospores. (d–m) From cultures of the ex-holotype, isolate C3843 (CBS 141682). (d) Dense cluster of 

cleistothecia in white, aerial mycelium. (e) Ascospores from cracked cleistothecia. (f) Three developmental 

stages of cleistothecia. (g) Outer texture of cleistothecium. (h–m) Ascospores. (h) Side view. (i) Top view. 

(j) End view. (k) Paired ascospores. (l, m) Ascospores in membranous material. All photos by Nomarski 

interference microscopy of material stained with cotton blue. Bar = 100 µm in a and b.; = 10 µm in c–m.  
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spherical structures were small (40 – 80 µm diam) and lacked ostioles or necks, and were 

first assumed to be protoperithecia, as reported in Ambrosiella nakashimae McNew, C. 

Mayers & T. C. Harr. (Mayers et al. 2015). However, microscopic examination of 

crushed spheres revealed reniform spores of uniform size and shape (Figs. 4h–m), 

sometimes found in pairs (Fig. 4k), as has been found with ascospores of other 

Ceratocystidaceae (Van Wyk et al. 1993). Five hyphal tip colonies from C3843 and five 

colonies derived from single spores teased from the spherical structures each produced 

white, fluffy mycelia and the spherical fruiting bodies with reniform spores. The ITS 

sequence obtained from two cleaned ascomata, a hyphal tip colony, and a single-

ascospore colony were identical to the original C3843 culture and to the other isolates of 

the new species.  

Gallery growth 

Some of the C. florida stem segments infested by An. maiche had only short, 

abandoned galleries, which contained neither brood nor ambrosia growth. However, three 

stem segments had one or more galleries running along the pith, and each gallery had 

larvae and/or pupae with luxurious, white ambrosia growth (Fig. 4a). 

Phialoconidiophores and aleurioconidiophores, identical to those in culture, dominated 

the galleries, though there was also limited sporulation of unidentified contaminating 

molds. Isolates obtained from the ambrosia growth in each of the three stems had the ITS 

sequence and culture morphology of the isolates from individual beetles (Fig. 2).  

Buried in the ambrosia growth of the three stem segments were spherical fruiting 

structures without necks or ostioles, identical to those seen in culture but slightly larger, 

bearing reniform spores (Figs. 4a–c). Where the ambrosial growth had been grazed by 
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larvae, the spheres were open, irregular hemi-spheres, with edges of the dark, pigmented 

outer walls flush with the surrounding grazed mycelium. Pale yellow-brown spore masses 

were visible inside the cup-like remains of the spheres (Fig. 4a). It appeared that the 

spheres were broken or chewed open by the grazing of larvae because the white, 

ungrazed growth had only intact spheres, which were buried in the ambrosia growth (Fig. 

4a). 

Taxonomy 

Morphological characters and DNA sequence analyses supported the recognition 

of the symbiont of An. maiche as a new species of Ambrosiella. 

Ambrosiella cleistominuta C. Mayers & T.C. Harr. sp. nov.                    Figs. 1, 3, 4 

MYCOBANK NUMBER: 819507. 

TYPUS: United States of America. Ohio: Wayne county, near Barnard Rd, a 

dried culture isolated from an Anisandrus maiche female caught in flight, 40°45'41.43"N, 

81° 51'16.88"W, 8-Jul-2015, coll. C. Ranger (BPI 910177, holotype; CBS 141682 = 

C3843, ex-type culture). GenBank ITS rDNA sequence accession No. KX909940. 

ETYMOLOGY: (L.) cleistominuta, in reference to its small cleistothecia. 

DESCRIPTION: Colonies: on malt yeast extract agar 45–75 mm diam. after 4 d 

at 25 °C, odor sweet at 3–5 d, fading by 7 d, surface growth aerial, white to buff, dense 

and matted or sparse and in tufts, with small, wet, rust-colored clumps sometimes 

suspended on aerial hyphae, older cultures producing amber- to rust-colored liquid drops, 

margin hyaline, submerged, coloring the agar medium deep rust to chestnut. Ascomata: 

dark brown, spherical, texture intricata, suspended in aerial hyphae, 40–80 µm in 

diameter at maturity (Fig. 4d–g), lacking necks or any apparent opening. Asci: not 

observed. Ascospores: 9.0–12.0 µm  4.5–7.0 µm in side view, 7.0–12.0 µm  4.5–6.5 
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µm in top view, thick-walled, reniform, occasionally in pairs or groups (Figs. 4h–m). 

Sporodochia: rare in cultures, white, spherical, superficial, bearing conidiophores. 

Conidiophores (Figs. 3a–h) often branching, scattered in tufts on media surface, in 

clusters near plate edges, or on sporodochia, single- or many-celled, of two types: 

Phialoconidiophores: (Figs. 3a, b) hyaline, bearing single or chained phialoconidia from 

moderately- to deeply-seated phialides. Aleurioconidiophores: (Figs. 3c–h) hyaline to 

dark red-brown, bearing single or chained aleurioconidia, apparently from shallow 

phialides with inconspicuous collarettes. Phialoconidia: cylindrical, aseptate, smooth, 

hyaline, 8.0–14.0 µm  6.0–14.0 µm, usually longer than wide (Fig. 3a, b), detaching 

singly or in chains. Aleurioconidia: globose to ellipsoidal, generally thick-walled, 7.0–

10.5 µm  8.0–12.0 µm, not detaching easily, hyaline to red-brown, borne singly and/or a 

red-brown pigment (Figs. 3f–h). Arthrospores: (Fig. 3i) rare in culture, exogenous, 

derived from disarticulating chains of monilioid cells, globose to ellipsoidal, 8.5–10.0 µm 

 6.5–8.0 µm. Mycangial growth: (Figs. 1c, d) composed of irregular to globose, thick-

walled cells 4.5–10.5 µm  5.5–14.0 µm, with polar growth and dividing schizogenously, 

germinating with short, branching hyphae upon exiting the mycangium (Figs. 1a, b). 

Gallery growth: as in cultures, but cleistothecia somewhat larger, 70.0–110.0 µm diam. 

(Fig. 4c). 

ECOLOGY AND DISTRIBUTION: In galleries and mycangia of Anisandrus 

maiche. 

OTHER SPECIMENS EXAMINED: USA: Ohio: Wayne Co., ambrosia growth 

in Cornus florida artificially infested by Anisandrus maiche that were caught in flight in 

Wayne Co., August 2015, C. Ranger, OHAnma1-3 gal1, BPI 910176. 
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OTHER CULTURES EXAMINED: USA: Ohio: Lake Co., isolated from 

Anisandrus maiche infesting saplings of Gleditsia triacanthos, 15 August 2015, C. 

Ranger, C4029. Wayne Co., culture isolated from gallery with ambrosia growth 

(OHAnma1-3 gal1) in Cornus florida artificially infested by Anisandrus maiche caught 

in flight in Wayne Co., August 2015, C. Ranger, C3926. 

COMMENTS: Based on DNA analyses, the mycangial symbiont of the Asian 

species Anisandrus maiche is most closely related to Ambrosiella hartigii, which is the 

mycangial symbiont of the related European species, Anisandrus dispar (Mayers et al. 

2015). While Ambrosiella cleistominuta produces two types of conidiophores that could 

be classified as phialoconidiophores or aleurioconidiophores, there was a gradient of 

conidiophore morphologies, similar to what has been found in A. hartigii (Mayers et al. 

2015). Cultures of A. cleistominuta are a darker red-brown, lacking the white, chalky 

surface growth sometimes seen in cultures A. hartigii. Of all known Ambrosiella, only A. 

cleistominuta is known to produce ascomata and ascospores. 

Discussion 

As hypothesized, Anisandrus maiche has a mesonotal mycangium like other 

Anisandrus, and the mycangium harbors budding spores of Ambrosiella. While 

Ambrosiella spp. can be difficult to isolate because the mycangium and gallery 

propagules are intolerant of desiccation (Zimmermann & Butin 1973; Beaver 1989), 

Ambrosiella cleistominuta was consistently isolated from beetles shipped with moist filter 

paper. Ambrosiella cleistominuta was the only ambrosia fungus isolated from the 

mycangium of An. maiche, supporting the conclusion that Ambrosiella is tightly 

associated with Xyleborini species with mesonotal pouch mycangia (Harrington et al. 

2014; Mayers et al. 2015). Surprisingly, A. cleistominuta produced ascomata in cultures 
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and in galleries. Aside from associated yeasts (Batra 1963), a sexual state has never been 

reported from a mycangial symbiont of an ambrosia beetle. 

Mycangium 

The large mesonotal mycangia of Anisandrus, Cnestus, Eccoptopterus, 

Hadrodemius, and Xylosandrus are formed by an invagination of the intersegmental 

membrane between the scutellum and posterior base of the pronotum (Francke-Grosmann 

1956, 1967; Happ et al. 1976; Stone et al. 2007). Francke-Grosmann (1956,1958) noted 

morphological differences in the mycangia of X. germanus and Anisandrus dispar. 

Xylosandrus germanus has two large bilateral lobes forming the left and right sides of the 

mycangium, as illustrated by Mayers et al. (2015), and its posterior membrane is attached 

to the anterior edge of the scutellum. The mycangium of An. dispar lacks the large 

bilateral lobes, is somewhat smaller, and its posterior membrane is attached further back 

on the ventral scutellum. Like An. dispar, the mycangium of An. maiche is relatively 

small and lacks the dual lobes reported for Cnestus, Eccoptopterus, and Xylosandrus 

(Francke-Grosmann 1967; Stone et al. 2007; Harrington et al. 2014; Mayers et al. 2015) 

The conspicuous pits on the dorsal side of the scutellum are ornamented with 

setae on their rims, which sometimes hold fungal spores. Stone et al. (2007) illustrated 

similar pits holding propagules of Ambrosiella beaveri Six, de Beer & W.D. Stone on the 

scutellum of Cnestus mutilatus. We (unpub. data) have also noted scutellum pits with 

setae in Anisandrus sayi, C. mutilatus, and E. spinosus; setae with no pits in Xylosandrus 

amputatus (Blandford); and the absence of pits or setae on the completely smooth 

scutella of X. compactus, X. crassiusculus, and X. germanus. The biological significance 

of these pits and setae is unclear. In An. maiche, the setae that are posterior to the hinge 

of the scutellum generally point towards the opening of the mycangium, perhaps assisting 
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movement of spores into the mycangium of a callow female, or setae may spread or filter 

the spore mass exiting the mycangium of a tunneling female.  

Culture morphology 

Like the symbionts of An. dispar and An. sayi, A. cleistominuta produces 

phialoconidiophores bearing chains of barrel-shaped conidia and aleurioconidiophores 

that generally produce larger, single, globose, thick-walled conidia. The former 

apparently produces conidia via ring wall-building and the latter via replacement wall-

building, following the terminology of Nag Raj & Kendrick (1993). The delicate chains 

of phialoconidia may be better adapted to enter the mycangium of their beetle hosts, 

while the aleurioconidia may be better adapted as food for grazing by the larvae and 

adults. Associates of Xylosandrus, such as Ambrosiella roeperi TC Harr. & McNew and 

A. grosmanniae, only produce aleurioconidiophores (Harrington et al. 2014; Mayers et al. 

2015). Females of Xylosandrus have been reported to evert their large, lobed mycangia to 

acquire aleurioconidia from the ambrosia growth along the gallery walls (Kaneko 1967), 

and these species may not need phialoconidiophores for sowing of their mycangia. 

Aleurioconidia are common in the family, but the unusual membranous sheaths 

around chains of aleurioconidia of A. cleistominuta have been described for only one 

other species in the Ceratocystidaceae, Ceratocystis adiposa  (Hawes & Beckett 1977a, 

1977b), a close relative of Ambrosiella (Mayers et al. 2015). In C. adiposa, the sheath 

surrounding the first aleurioconidium is formed within the phialide neck from the inner 

wall of the conidiogenous cell, and the sheath elongates along with the developing spore 

chain (Hawes & Beckett 1977b).  
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Sexual state of Ambrosiella 

This is the first report of a sexual stage in a mycangial symbiont of an ambrosia 

beetle, but spherical structures assumed to be proto-perithecia were previously seen in 

cultures and galleries of Ambrosiella nakashimae associated with X. amputatus (Mayers 

et al. 2015). Beauverie (1910) also illustrated spherical structures with textured, darkened 

walls that may have been ascocarps of Ambrosiella hartigii embedded in ambrosia 

growth in galleries of An. dispar. Recently, Musvuugwa et al. (2015) reported sexual 

states for some species of Raffaelea, and Raffaelea are generally associates of ambrosia 

beetles (Harrington et al. 2010). However, the three reported Raffaelea spp. with sexual 

states may not be ambrosia beetle symbionts. R. vaginata T. Musvuugwa, Z.W. de Beer, 

L.L. Dreyer, & F. Roets was isolated from a Lanurgus (Coleoptera: Curculionidae) 

(Musvuugwa et al. 2015), but beetle species in this genus are herbiphagous or 

phloeophagous scolytids (Kirkendall et al. 2015) and do not have mycangia (Hulcr et al. 

2015). Raffaelea deltoideospora (Olchow. & J. Reid) Z.W. de Beer & T.A. Duong was 

isolated from wood and from pupal chambers of cerambycid beetles, not ambrosia beetles 

(Musvuugwa et al. 2015). Raffealea seticollis (R.W. Davidson) Z.W. de Beer & T.A. 

Duong was reported from an abandoned beetle gallery in a hemlock stump (Davidson 

1966). Cryptic sex was hypothesized for Raffaelea lauricicola T.C. Harr., Fraedrich, & 

Aghayeva, the mycangial symbiont of Xyleborus glabratus Eichhoff., but ascomata were 

not identified (Wuest et al. 2017). 

Ambrosia fungi have been assumed to be strictly asexual, clonal lineages (Farrell 

et al. 2001; Normark et al. 2003; Harrington 2005; Harrington et al. 2010) because of the 

yeast-like reproduction in the mycangium during dispersal. Additionally, vertical 

transmission from mothers to daughters in the haplo-diploid lifestyle of the Xyleborini 
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(Cognato et al. 2011) limits opportunities for effective heterothallic mating. While 

asexual species are widespread in ascomycetes, it may be a transient or unstable state in 

nature, even in ancient lineages (Taylor et al. 1999). Truly strict asexual lineages are 

hypothesized to accumulate deleterious mutations over time, leading to evolutionary 

dead-ends (Haigh 1978; Taylor et al. 1999). A. cleistominuta formed fertile ascomata in 

nature and in culture, and all single-ascospore and hyphal tip colonies also produced 

ascomata and ascospores, indicating homothalism. The discovery of a sexual state in A. 

cleistominuta and ascocarp initials in A. nakashimae (Mayers et al. 2015) suggests that 

other ambrosia fungi may maintain cryptic sexual states despite the nature of their 

obligate mutualisms. Male Xyleborine beetles, which are flightless, travel to other 

galleries in heavily-infested trees, which may allow for contact between fungal strains 

and genetic recombination. Homothalism may facilitate sexual reproduction in spite of 

limited contact between thalli, but it may also limit outcrossing.  

Cain (1956) argues that adaptations from ostiolate to cleistothecious ascomata are 

common in the ascomycetes and not taxonomically informative, but the unique 

cleistothecia of A. cleistominuta are noteworthy. Ascomata of other Ceratocystidaceae 

have spherical bases within which ascospores are produced, and the spores travel through 

long necks, exiting from ostioles and forming a wet mass of ascospores at the tip, which 

is an adaptation for contamination of the exoskeleton for insect-based dispersal (Malloch 

& Blackwell 1993; Harrington 2005, 2009). Ascomata of other families of Microascales 

also are typically ostiolate, though some species of Kernia, Pithoascus, and 

Pseudallescheria in the Microascaceae are known to be cleistothecious (Malloch 1970; 

von Arx 1978; von Arx et al. 1988; Barr 1990).  
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The ascomata of A. cleistominuta have no apparent opening, and the only exposed 

ascospore masses were observed in grazed galleries. The ascomata appeared to be broken 

open following grazing by the larvae or adults, despite the fact that pigmented ascomata 

are thought to be resistant to grazing by insects (Malloch & Blackwell 1993). The 

ascospores may be eaten by the beetles as a supplemental food source, or dispersed on the 

beetle exoskeleton or passed through the gut. The ascospores produced by A. 

cleistominuta are relatively large and are most similar in shape to those produced by its 

close relative, C. adiposa (Van Wyk & Wingfield 1990), which also produces reniform 

ascospores but has perithecia with very long necks (Malloch & Blackwell 1993). 

Other lineages of mycangial symbionts of ambrosia fungus may harbor cryptic 

sexual states. Fruiting bodies buried in gallery growth may have been missed, overlooked 

as contaminants, or ignored due to a lack of evidence that they were produced by the 

fungal symbionts. Sexual fruiting structures in ambrosia beetle galleries may be rare, as 

in the fungal cultivars of some attine ants (Taylor et al. 1999). Future studies should take 

special note of spherical bodies found in ambrosial growth.  
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Abstract 

Meredithiella norrisii (Microascales, Ceratocystidaceae) is an ambrosia fungus 

carried in mycangia of the North American ambrosia beetle, Corthylus punctatissimus. 

Reports on the identity of the fungal symbionts of other species of Corthylus have been 

inconsistent. This study tested the hypothesis that Meredithiella spp. are the primary 

symbionts of Corthylus spp. Cultures and/or ITS rDNA barcode sequences of 

Meredithiella spp. were obtained consistently from beetles and galleries of nine 

Corthylus spp. The ITS sequences of three putative species of Meredithiella were 

associated with C. consimilis and C. flagellifer in Mexico and C. calamarius in Costa 

Rica. The symbiont of C. columbianus in the USA was identified as M. norrisii. Two 

new Meredithiella spp. are described: M. fracta from C. papulans in Florida and 

Honduras, and M. guianensis associated with C. crassus and two unidentified Corthylus 

spp. in French Guyana. The Meredithiella spp. propagate in the mycangia of adult 

females by thallic-arthric growth, and the ambrosia growth in larval cradles comprises 
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bead-like hyphal swellings or conidiophores, with or without terminal aleurioconidia. 

Bayesian phylogenetic analysis of a combined 18S and 28S nuc rDNA, and TEF1-α 

dataset demonstrated that Meredithiella is a distinct monophyletic clade within the 

Ceratocystidaceae, but its phylogenetic placement with regard to the other ambrosial 

genera in the family remains ambiguous. The mycangia of C. punctatissimus and C. 

papulans are also compared using light microscopy and micro CT imaging, revealing that 

they differ in both size and shape, but these differences may not correlate with different 

lineages of Meredithiella. 

Introduction 

Like other ambrosia beetles (Kirkendall et al. 2015; Hulcr and Stelinski 2017), 

species of Corthylus (Coleoptera, Curculionidae, Scolytinae, Corthylini, subtribe 

Corthylina) farm and feed upon fungal gardens along the walls of their galleries and 

larval cradles in wood. One or both sexes of adult ambrosia beetles use organs called 

mycangia to store and transport actively-growing propagules of their fungal symbionts to 

establish fungal gardens in new trees (Francke-Grosmann 1967; Six 2003). Usually the 

adult female has the mycangia, but in Corthylus males have the mycangia, which consist 

of a pair of coiled, reticulated tubes in the prothorax that open into the procoxal cavities 

(Schedl 1962; Finnegan 1963; Giese 1967; Nord 1972). Meredithiella norrisii was 

described as the mycangial symbiont of C. punctatissimus (Mayers et al. 2015), but the 

fungal species associated with mycangia of other Corthylus have not been clearly 

identified. 

Corthylus species are only found in the Americas, ranging from Canada to 

Argentina (Wood 1982; Wood and Bright 1992), but many of the species are uncommon 

and understudied (Wood 2007). Some species construct galleries in living hosts and are 



110 

important pests. For example, C. columbianus causes a discoloration known as flagworm 

in hardwoods (Nord 1972), and C. zulmae may facilitate disease in Alnus acuminata in 

Colombia (Gil et al. 2004; Jaramillo et al. 2011). Of the four Corthylus species in the 

USA, C. punctatissimus and C. columbianus are widespread in the eastern USA, while C. 

petilus is native to Arizona and Mexico; C. papulans (=C. spinifer) is an introduced 

species in Florida (Wood 1977, 1982; Wood and Bright 1992). 

Ambrosia beetles are associated with a variety of fungi, including mutualistic 

primary ambrosia fungi that serve as their main food source and have co-adapted to be 

transmitted in mycangia (Batra 1985). Auxiliary fungi may be transmitted on the cuticle 

or in the gut (Batra 1985; Biedermann et al. 2013), or potentially in mycangia (Bateman 

et al. 2016), but such auxiliary fungi may not be important symbionts (Harrington 2005). 

Many primary ambrosia fungi are species of the genus Raffaelea (Ophiostomatales) 

(Harrington et al. 2010; Dreaden et al. 2014; Simmons et al. 2016), but some ambrosia 

beetles with relatively large and specialized mycangia host ambrosia fungi in one of three 

genera in the Microascales: Ambrosiella, Phialophoropsis, and Meredithiella (Harrington 

et al. 2010; Mayers et al. 2015).  

A variety of fungi have been suggested to be the primary ambrosia fungi of 

Corthylus. A yeast species in Pichia was isolated from galleries, observed in mycangia, 

and interpreted as a primary nutritional symbiont of C. columbianus (Wilson 1959; Kabir 

and Giese 1966; Giese 1967; Gil et al. 2004). Batra (1967) identified the primary 

symbiont of C. columbianus as Ambrosiella xylebori, although illustrations suggest that 

the symbiont was similar to M. norrisii, the recently described symbiont of C. 
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punctatissimus (Mayers et al. 2015). Mayers et al. (2015) also detected DNA of another 

putative species of Meredithiella in mycangia of C. consimilis. 

Several species of Corthylus were encountered in ongoing studies by the authors 

and collaborators, presenting opportunities to clarify the primary ambrosia fungi of 

Corthylus. The goal of this study was to characterize Corthylus mycangia, identify their 

fungal contents, isolate symbionts from the beetles, and characterize ambrosia growth in 

their galleries and larval cradles.  

Materials and Methods 

Sample Collection 

The following beetle and gallery specimens were studied: Corthylus papulans: 

USA: Florida, Gainesville, Austin Cary Forest (29.732161, -82.219386), ethanol-baited 

light trap, two males kept alive on moistened tissue paper until dissection, Spring 2016,  

C. Bateman; Honduras, Francisco Morazán, campus of Zamerano Pan-American 

Agricultural School, ethanol-baited light trap, one male immediately preserved in 95% 

ethanol, Summer 2013, C. Storer; C. crassus: French Guiana, near Kaw Mountain 

(4.55892, -52.19662), gallery with male in unidentified tree host immediately preserved 

in 97% ethanol, June 2015, C. Bateman; Corthylus sp. A: French Guiana, near Kaw 

Mountain (4.55892, -52.19662), gallery with male in unidentified tree host immediately 

preserved in 97% ethanol, June 2015, C. Bateman; Corthylus sp. B: French Guiana, near 

Kaw Mountain (4.55892, -52.19662), gallery with male in unidentified tree host 

immediately preserved in 97% ethanol, June 2015, C. Bateman; C. flagellifer: Mexico, 

Michoacán, Ario de Rosales, six females in single gallery in Persea americana, 23 

September 2014, S. Ochoa-Ascencio; and C. calamarius: Costa Rica, Cerro de la Muerte, 

single male in Chusquea subtessellata, 26 June 2010, S. Smith.  
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Two herbarium specimens deposited in KANU (University of Kansas Herbarium) 

as C. columbianus gallery material were studied: KANU 376401 and KANU 376400, 

cited by Batra (1967) as 1893-LRB and 2032-LRB, respectively. Hand-written notes 

(presumably Batra’s) on the single packet in KANU 376401, which contained galleries in 

wood, identified the contents as 1893-LRB but gave collection information (October 

1963, beech, Deer, Arkansas) that was not consistent with Batra’s (1967) published notes 

for 1893-LRB (May 1965, Ulmus sp., Deer, Arkansas), so the material inside could not 

be verified. The other specimen (KANU 376400) contained three packets, collected by 

J.C. Nord in June 1966 from Acer rubrum wood with C. columbianus galleries, as well as 

a dried-down culture isolated from the gallery tunnels; the written notes matched Batra’s 

(1967) published notes for 2032-LRB.  

Males of C. consimilis and males and galleries of C. punctatissimus, as well as M. 

norrisii cultures, were available from a previous study (Mayers et al. 2015).  

Mycangium dissection and observation 

Mycangia were dissected and removed from freshly killed males or ethanol 

preserved specimens. For light microscopy, the prothorax was separated and bisected 

longitudinally, and excess body tissue was trimmed carefully with a scalpel until only the 

front leg, procoxa, and mycangium remained. The leg/coxa/mycangium was then 

mounted in cotton blue for imaging with Normarski interference contrast microscopy 

(BH-2 compound microscope, Olympus, Melville, New York). Images were captured 

using a Leica DFC295 camera and Leica Application Suite 3.6 (Leica Camera Inc., 

Allendale, New Jersey). Some images taken at different focus levels and combined into a 

single focus-stacked composite image using CombineZP (Alan Hadley).  



113 

Three-dimensional images of mycangia were rendered using non-destructive X-

ray tomography (micro-CT scans) using a Pheonix v|tome|x m (GE, Boston, 

Massachusetts) at the University of Florida Nanoscale Research Facility. Settings were as 

described in Bateman et al. (2017), and data were visualized post-scan using VG 

StudioMAX 3.0 (Volume Graphics, Heidelberg, Germany). Most of the tissues 

surrounding the mycangium, such as tracheoles, were collapsed in the dried specimens 

and were easy to differentiate from the rigid, tubular mycangia. The tubular process was 

highlighted manually and appeared to denote the mycangium wall, including gland cells, 

and the fungal cells within.  

Fungal Isolation from Corthylus papulans 

Fresh males were surface-sterilized by immersing in 75% ethanol for 10 s 

followed by two washes in sterile deionized water, then dried on paper towels. The 

prothorax was separated using a sterile scalpel, crushed with sterile forceps, and plated 

directly onto malt extract agar with streptomycin (SMA: 1% malt extract, Difco 

Laboratories, Detroit, Michigan; 1.5% agar, Sigma-Aldrich, St. Louis, Missouri; 100 ppm 

streptomycin sulfate added after autoclaving). Fungi growing from the procoxal region or 

from fragmented sections of the tubular mycangium were subcultured onto plates of malt 

yeast extract agar (MYEA: 2% Difco malt extract, 0.2 % Difco yeast extract, 1.5% agar). 

Microscopic examination of fungi and species description 

Ambrosia growth in galleries or in pure culture was scraped with a sterile needle 

and mounted in cotton blue on a sterile microscope slide. Slides were viewed by light 

microscopy and imaged as described above.  

For the novel species from C. papulans, agar plugs with mycelia were cut with a 

#1 cork borer (3 mm diam.) taken from the leading margin of growth on MYEA, placed 
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onto the center of fresh MYEA, and grown at 25 C in the dark for 5 d. Color designations 

are those of Rayner (1970).  

For the novel species associated with C. papulans, a representative culture was 

deposited in the culture collection of the Westerdijk Fungal Biodiversity Centre, Utrecht, 

the Netherlands (CBS), and a dried culture was deposited in the U.S. National Fungus 

Collections (BPI) as a holotype specimen. For the novel species associated with multiple 

Corthylus spp. in French Guiana, a representative specimen was deposited in BPI as a 

holotype specimen. 

DNA extraction and sequencing 

DNA from mycangia was extracted using either PrepMan® Ultra (Applied 

Biosystems, Foster City, California) or the DNeasy® Blood and Tissue Extraction Kit 

(QIAGEN, Valencia, California). In some cases, several mycangia from a collection were 

combined for a single extraction. DNA from fungal cultures (MYEA at room 

temperature, 4–14 d) was extracted using PrepMan® Ultra, the ProMega Wizard® 

Genomic DNA Purification Kit (Promega, Madison, Wisconsin) or the E.Z.N.A.® Fungal 

DNA Mini Kit (Omega Bio-tek, Norcross, Georgia). DNA was obtained from gallery 

specimens using PrepMan® Ultra. Some PrepMan® Ultra extractions were concentrated 

using Amicon® Ultra-0.5 Centrifugal Filter Devices (EMD Millipore, Billerica, 

California). 

Amplification and sequencing of the nuc rDNA internal transcribed spacer 

barcode (ITS1-5.8S-ITS2 = ITS), nuc 18S rDNA (18S), and translation elongation factor 

1-α (TEF1-α) were as described in Mayers et al. (2015). For nuc 28S rDNA (28S), 

amplification used primers LR0R and LR5, and sequencing used LR0R and LR3 

(Vilgalys 2005), with the ITS PCR conditions described in Mayers et al. (2015). For ITS 
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sequencing from extracted DNA that was potentially mixed with DNA of contaminating 

fungi or in low-yield (such as galleries, dried specimens, whole beetles, or dissected 

beetle mycangia), the Ceratocystidaceae-specific primer pairs Cerato1F/ITSCer3.7R and 

ITSCer3.1/ITS4 were used for amplification and sequencing (Mayers et al. 2015). 

Complementary and overlapping DNA reads were checked and assembled using 

Sequence Navigator 1.0.1 or AutoAssembler 1.3.0 (Applied Biosystems, Foster City, 

California). 

Phylogenetic analyses for ITS 

New ITS sequences were manually aligned using Notepad++ 6.5.5 (Notepad++ 

Team). The dataset (TreeBase URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S20925) had 492 aligned characters, 

including gaps, of which 38 were parsimony-informative, 53 were variable but 

parsimony-uninformative, and 401 were constant. To illustrate sequence differences 

among isolates, including single-base indels, a maximum parsimony (MP) analysis was 

performed with PAUP 4.0b10 (Swofford 2003) with gaps treated as a fifth state, stepwise 

addition, and the tree-bisection-reconnection (TBR) branch-swapping algorithm. The 

outgroup taxa were Ceratocystis norvegica, Ceratocystis adiposa, and Ambrosiella 

xylebori (Table 1), which are close relatives to Meredithiella within the 

Ceratocystidaceae (Mayers et al. 2015). The tree was midpoint rooted. Bootstrap branch 

support values were obtained with 1000 replications in PAUP. 

Phylogenetic analyses of multigene dataset 

A combined dataset (TreeBase URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S20924) of sequences of 18S (aligned 

length 1600 bp), 28S (592 bp) and TEF1-α (1226 bp), total aligned length 3478 
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characters, was aligned manually in Notepad++ and included sequences from Mayers et 

al. (2015, 2017) and newly generated sequences (Table 1). The TEF1-α alignment 

included an intron of 124 bp that could not be unambiguously aligned across all taxa, and 

a single-codon (3 bp) insert found only in the two outgroup taxa. These 127 characters 

were eliminated before analyses, leaving 3351 characters in the final combined dataset. 

Outgroup taxa were Plectosphaerella cucumerina and Knoxdaviesia capensis (Table 1).   

For Bayesian analysis of the combined dataset, optimum models and partitions 

were found using PartitionFinder 2 (Lanfear et al. 2016) with linked branch lengths, all 

models, “aicc” (converted Aikaike Information Criterion) model selection, and a greedy 

algorithm (Lanfear et al. 2012), powered by PhyML (Guindon et al. 2010). The best 

models and partitions were found to be: TRN+G for 18S; F81+I+G for TEF1-α codon 

positions 1 and 2; GTR+G for TEF1-α codon position 3; and SYM+G for 28S. A 

Bayesian consensus tree was produced with MrBayes 3.2.2 (Ronquist and Huelsenbeck 

2003) using these models, and a single MCMC run with four chains (one cold, three 

heated) for 1 000 000 generations, after which a burn-in of 15% was applied. A 

consensus tree was generated using the SUMT function. 

To obtain further branch support for the Bayesian tree, maximum likelihood (ML) 

and maximum parsimony (MP) bootstrap analyses were run on the same multigene 

alignment. The ML analysis was performed with RAxML 8.2.7 (Stamatakis 2014), using 

the model GTR+I+G selected with PartitionFinder 2 in “raxml” mode. Bootstrap values 

were obtained with 1000 replicates and ML non-parametric analysis, with each replicate 

starting from a randomized MP starting tree. The MP analysis was performed with PAUP 

4.0b10 by running 1000 bootstrap replicates of a full heuristic analysis with gaps treated 
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as a fifth state; the multi-gene alignment had 436 parsimony-informative, 284 variable 

but parsimony-uninformative, and 2631 invariant characters. 

Results 

Mycangium observations 

Male specimens of C. punctatissimus, C. consimilis, C. papulans, and C. crassus 

had pairs of tube-shaped mycangia on the lateral sides of the interior of the prothorax that 

fed into the procoxal cavities (Figs. 1A, B, 2A, B). The mycangia of all four species had 

reticulated walls (Fig. 1B, F) and were packed with homogenous masses of irregularly-

shaped, budding spores. The spores persisted as a tightly-packed columnar mass when 

expelled from the mycangium by pressing with a glass cover slip (Figs. 1D, F, G).  

 

Figure 1. Mycangia and spores from Corthylus papulans (A–C), Corthylus crassus (D, E), and Corthylus 

consimilis (F, G). A. Mycangium seen through exoskeleton of the dissected left half of prothorax; dotted 

lines trace the rest of the tube exiting into the mycangium opening (mo) into coxal cavity above the coxa 

(co); beetle anterior is to the upper left. B. Spiraling mycangium terminus that travels medially at center of 

spiral in A, showing reticulated walls. C. Spore mass squeezed from the mycangium. D, G. Columnar mass 

of spores squeezed from the mycangium. E. Spores from mycangium. F. Spore mass exposed after the 

rigid, reticulated mycangium has broken away.  All photos by Nomarski interference microscopy of stained 

material (cotton blue). Bar = 100 µm for A, 10 µm for others. 
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The spores appeared to vary in both size and shape, perhaps a consequence of poorly 

developed cell walls. 

As previously illustrated (Finnegan 1963), the mycangia of C. punctatissimus 

wound back and forth horizontally within the prothorax (Fig. 2A), as did the mycangia of 

C. consimilis. The mycangia of C. crassus (not pictured) were similar to those of C. 

punctatissimus but were significantly smaller and wound vertically rather than 

horizontally. In C. papulans, the mycangia folded posteriorly once and then tightly 

spiraled (Fig. 1A, B, 2B).  At the center of this spiral, the tubes turned medially and 

ended in a loose spiral, like a pig’s tail (Fig. 1B).  

 

Figure 2. Micro-CT scans of adult male (A) Corthylus papulans and (B) Corthylus punctatissimus showing 

tubular mycangium structure highlighted in red. Bar = 0.5 mm.  

All observed mycangia had large tracheoles nearby, perhaps suppling oxygen to 

secretory gland cells. The tracheoles could be mistaken for the mycangial tubes, but the 

tracheoles were ribbed rather than reticulated, and the tracheoles did not have spores 

within. 
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Figure 3. One of 12 most parsimonious trees of representative Ceratocystis, Ambrosiella, and 

Meredithiella spp. based on sequences of the internal transcribed spacer (ITS) regions 1 and 2 and 5.8S 

rDNA. Bootstrap support values from 1000 replications indicated on branches. GenBank accession 

numbers in parentheses (when available) and isolate numbers are given for each sequence. Single asterisk 

indicates sequences obtained from DNA extractions of whole beetles or dissected beetle parts (i.e. 

mycangia); double asterisks are from galleries; sequences without asterisks are from pure cultures. Type 

status of sequences designated by bold acronyms: HT = holotype; ET = ex-type. 

Fungal associations 

Adult specimens and/or galleries of nine Corthylus spp. from five countries were 

studied for the presence of Ceratocystidaceae, and each of the nine species were 

associated with one of six putative species of Meredithiella based on ITS DNA barcoding 

(Fig. 3). 

Corthylus punctatissimus and C. columbianus specimens 

 Meredithiella norrisii was consistently associated with C. punctatissimus (Mayers 

et al. 2015), and cultures of this species produced characteristic aleurioconidia on short 

side-branches of conidiophores on MYEA (Figs. 4A–D). Batra’s (1967) herbarium 

specimens of C. columbianus galleries contained sparse ambrosia growth that consisted 
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of monilioid chains with short, two-celled side branches (Fig. 4E), identical to the 

ambrosia growth of M. norrisii in galleries of C. punctatissimus. Amplification of ITS 

rDNA was unsuccessful from the DNA extracted from C. columbianus galleries. 

However, PCR was successful with DNA extracted from the dried-down culture included 

in KANU 376400, which was isolated from the same galleries. The DNA extracted from 

a single sporodochium taken from this dried culture yielded an ITS1 sequence (using 

Ceratocystidaceae-specific primers) that was identical to that of M. norrisii (Fig. 3). 

Corthylus papulans specimens 

 The dissected mycangial contents of the two male specimens of C. papulans 

trapped in-flight in Florida yielded a pigmented fungus with a fruity odor on SMA (Fig. 

4F). The ITS sequences from the two isolates were identical and similar to that of M. 

norrisii (Fig. 3). One of the mycangia from the ethanol-preserved C. papulans male that 

was trapped in-flight in Honduras was filled with a homogenous mass of irregularly-

shaped fungal propagules (Fig. 1C). The DNA extracted from the other mycangium of 

this beetle yielded an ITS sequence nearly identical to the sequence from the cultures 

from Florida, differing by only a single base substitution (a “C” for a “T”) in ITS2 (Fig. 

3).  

 The isolates from the two C. papulans beetles trapped in Florida produced 

branched monilioid hyphae in culture (Figs. 4G, H), similar to the conidiophores of M. 

norrisii (Figs. 4B–E). However, thick-walled, terminal aleurioconidia were not seen in 

the new species. The monilioid cells appeared to disarticulate into short chains or 

individual cells (Fig. 4J, K). Some of the cells had golden inclusions of an unknown 

substance (Fig. 4I), perhaps carotenoids (Avalos and Limón 2015). One isolate (C4171) 
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Figure 4. Cultures, ambrosia growth in galleries, conidiophores, and conidia of Meredithiella spp. (A–E) 

Meredithiella norrisii. A. Growth at 13 d on MYEA. B. Conidiophore bearing side-branches and terminal 

aleurioconidia. C. Detached aleurioconidium with conidiophore cell attached. D. Detached 

aleurioconidium. E. Conidiophore from C. columbianus gallery bearing side-branch and terminal 

aleurioconidia. (F–L) M. fracta. F. Growth at 13 d on MYEA. G. Branching monillioid chains of 

arthroconidia. H. Short side branches. I. Chain of arthrospores with golden inclusions. J, K. Disarticulated 

arthrospores. L. Immature spherical ascomata. (M–U) M. guianensis. M. Gallery of Corthylus crassus 

showing adults in the parent gallery and larvae with ambrosia growth in larval cradles. N. Ambrosia growth 

in larval cradle. O. Conidiophore bearing side-branch and terminal aleurioconidia. P. Disarticulated 

arthrospores. Q, R. Detached aleurioconidia with conidiophore cell attached; collar marked with arrows. S. 

Detached aleurioconidium. T. Terminal aleurioconidium on conidiophore; collar marked with arrows. U. 

Detached aleurioconidium with conidiophore cell attached. A–D from ex-type culture from Corthylus 

punctatissimus (C3152, CBS 139737). E from Corthylus columbianus gallery specimen 2032-LRB (KANU 

376400). F–L from ex-type culture (C4171, CBS 142645) from Corthylus papulans. M–S from holotype 

(BPI 910532) from Corthylus crassus gallery. T, U from gallery V8805 of an unidentified Corthylus sp. All 

photos except A, F, M, N by Nomarski interference microscopy of stained material (cotton blue). A, F 

imaged with Epson 10000XL scanner with blue background. M, N by digital photography. Bar = 10 µm. 
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produced a V-shaped sector in culture that produced small brown spheres (Fig. 4L) that 

were similar to the immature ascomata reported in Ambrosiella nakashimae and A. 

cleistominuta (Mayers et al. 2015, 2017). Production of the immature ascomata persisted 

after transfer of the C4171 sector to new media, but no asci or ascospores were observed.  

French Guiana specimens 

 Six nearly-identical ITS sequences were obtained from DNA extracted from 

mycangia or gallery growth of C. crassus and two unidentified Corthylus spp. in French 

Guiana. These included sequences from C. crassus mycangia (M547) and gallery 

(V9004), Corthylus sp. A mycangia (M539, ITS1 only) and galleries (V8805 and 

V9026), and a Corthylus sp. B gallery (V9068). The sequence from gallery V9026 

differed by two single-base substitutions from the other five ITS sequences. Ambrosia 

growth from two areas of each of the four galleries were separately extracted, amplified, 

and sequenced, and in each case the same ITS sequence was obtained from the two 

samples. The ITS sequences from the French Guiana specimens were most similar to the 

sequence from an adult C. consimilis collected in Mexico (Fig. 3).  

 Gallery specimens V9026 (Corthylus sp. A) and V9068 (Corthylus sp. B) 

contained tunnel sections with only sparse hyphal growth, but gallery specimens V8805 

(Corthylus sp. A) and V9004 (C. crassus) included larval cradles with thick, white, 

luxurious ambrosia growth of tightly packed, monilioid conidiophores (Figs. 4M–O). 

Entrances of the larval cradles were plugged with mycelium (Figs. 4M, N). A black rind 

of pigmented hyphae lay beneath the thick white ambrosia growth in the cradles and the 

superficial, white growth of the parent galleries (Figs. 4M, N). Aleurioconidia formed on 

small, side-branches of the conidiophores (Fig. 4 O–U) and were subtended by 

inconspicuous collarettes as seen in Ambrosiella (Harrington et al. 2014; Mayers et al. 
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2015). Aleurioconidia usually detached with a single conidiogenous cell or rarely 

detached singly (Fig. 4Q–S). The monilioid conidiophores also disarticulated into 

individual cells or chains of cells (Fig. 4P). 

Corthylus flagellifer and C. calamarius specimens 

 Females identified as C. flagellifer were excavated from a dying avocado tree in 

Mexico. Females lack mycangia, but the dissected foregut, especially the crop, anterior to 

the proventriculus (Rubio et al. 2008), of one female appeared to have fungal cells. An 

ITS sequence recovered from the extracted DNA of the foregut material was unique and 

similar to that of other Meredithiella spp. (Fig. 3). The DNA extract from the foregut also 

yielded a 28S sequence (KY748664) similar to Cyberlindnera fabianii (Wick) Minter 

(904/913 bp matching KY107356) using BLASTn (NCBI). The DNA extracted from the 

C. calamarius mycangia yielded a unique ITS sequence that was most similar to the 

sequence from the DNA extracted from C. flagellifer (Fig. 3). 

Phylogenetic analyses 

 There was limited variation among the ITS sequences of the symbionts associated 

with the Corthylus spp. Analyses yielded 12 most parsimonious trees, with some support 

for separating the Meredithiella spp. from other related genera in the Ceratocystidiaceae 

(Fig. 3), but most of the branches within the genus were unsupported. The ITS sequences 

associated with C. columbianus and C. punctatissimus were identical, which appears to 

represent M. norrissi. A second group comprised the fungi associated with C. papulans, 

C. flagellifer, and C. calamarius. A third unsupported group contained the fungi 

associated with C. consimilis and the three Corthylus spp. from French Guiana. 

 A Bayesian consensus tree of the combined 18S, 28S, and TEF1-α dataset placed 

the Corthylus symbionts within the Ceratocystidaceae in a monophyletic group with 
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strong support (Fig. 5). The other genera of ambrosial beetle symbionts (Ambrosiella, 

Phialophoropsis) each had strong support, but there was only weak support for the 

relationships of the three genera of ambrosia beetle symbionts with Huntiella, 

Ceratocystis adiposa, Ceratocystis norvegica, and Ceratocystis fagacearum. 

 

 

Figure 5. Multigene (18S rDNA, 28S rDNA, and TEF1-α) Bayesian tree of Ceratocystidaceae 

representatives including three species of Meredithiella (in gray box). Support values for branches labelled 

with lowercase letters are given in the key and in the following order: MrBayes posterior 

probability/RAxML bootstrap support/maximum parsimony bootstrap support. Branches labelled with 

asterisks have support values of 1.0, 100, and 100, respectively; thick branches have support values of 1.0, 

>90, and >90, respectively. Isolate numbers and sequence accessions are given after species names. Bar = 

0.04 estimated substitutions per site. Type status of sequences designated by bold acronyms: HT = 

holotype; ET = ex-type; IT = isotype; PT = paratype; NT = neotype. 
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Taxonomy 

 Phylogenetic analyses and differences in morphology between described taxa and 

those observed here supported the description of two new species of Meredithiella from 

Corthylus spp. 

Meredithiella fracta C. Mayers, C. Bateman & T.C. Harr.  sp. nov.            Figs. 1C, 4E–J 

MycoBank MB823267 

Typification: USA. FLORIDA: Alachua County, Gainesville (29.732161, -

82.219386), dried culture isolated from mycangium of Corthylus papulans, 23 Feb 2016, 

C. Bateman C4171 (holotype BPI 910531). Ex-holotype culture CBS 142645. 

Etymology: “fracta” (Latin), nominative, feminine of fractus, 

“broken/fragmented.” 

Colonies on MYEA 35–55 mm diam after 5 d at 25C; margin hyaline, submerged, 

later superficial, becoming white to pale mouse grey, aerial mycelium clumped, 

becoming olivaceous, with hyaline, to cinnamon, to rust colored exudate that may 

eventually soak the aerial mycelium and form craters in white clumps of mycelium and 

stain the medium rust; reverse buff with isabelline tendrils, becoming olivacious black; 

odor sweet, fading by 3 wk. Sporodochia rare, clustered near center of plate, white to 

pale mouse gray, irregular. Conidiophores on sporodochia or in loose aerial tufts, 15–75 

μm tall, hyaline to light brown, branching, monilioid, produced by acropetal budding, 

disarticulating into thallic-arthric conidia. Conidia oblate-spheroidal to globose to 

broadly ellipsoidal, thin- or thick-walled, 5.5–10 × 6–7.5 μm, sometimes with golden 

inclusions, breaking off singly, in short chains, or rarely in branched aggregates, truncate 

on one or both ends. Immature ascocarps spherical, dark brown, 15–45 μm diam., walls 

composed of textura angularis, lacking ostiole or neck. Ascospores not observed. Growth 
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in mycangium composed of thick-walled, arthrospore-like cells singly or in short chains, 

sometimes branched, produced by thallic-arthric growth, irregular, 4.5–11.5 × 3–9 μm. 

Other cultures examined.  USA. FLORIDA: Alachua County, Gainesville 

(29.732161, -82.219386), isolated from mycangium of C. papulans, 23 May 2016, C. 

Bateman C4205. 

Notes. The new species was associated with the mycangia of male C. papulans 

from both Florida and Honduras (Fig. 3). Unlike other known Meredithiella spp., no 

terminal aleurioconidia were seen in culture. Instead, M. fracta produces simple, 

branched, monilioid conidiophores that disarticulate. It grows much faster than M. 

norrisii on MYEA at 25 C, and cultures of M. fracta at 5 d have less white-chalky surface 

growth, less pigment in the center of the colony, and a stronger, fruity odor. 

Meredithiella guianensis C. Mayers, C. Bateman & T.C. Harr. sp. nov.  

               Figs. 1G, H, 4K–R 

MycoBank MB823268 

Typification: FRENCH GUIANA. CAYENNE: near Kaw Mountain (4.55892, -

52.19662), gallery of Corthylus crassus in unknown host, 5 Jun 2015, C. Bateman V9004 

(holotype BPI 910532). 

Etymology: guianensis, after the country of origin, French Guiana. 

Gallery growth thick, white, with black layer below; Aleurioconidiophores 

hyaline, monilioid, breaking apart easily to form arthrospores or forming long central 

strands with many side branches, one- or multiple-celled, 20–50 μm long, each bearing a 

single, terminal aleurioconidium with an inconspicuous collarette. Aleurioconidia 

terminal, oblate-spheroidal to globose to broadly ellipsoidal, 11–22  10.5–20 µm, 
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generally taller than wide, usually spherical, often ovoid, rarely pyriform when 

constrained by collar, thick-walled, aseptate, smooth, hyaline, breaking off with 

conidiogenous cell attached, sometimes with multiple conidiophore cells attached, or 

rarely singly. Arthrospores formed from disarticulating conidiophores, 7.5–11  6–8  µm, 

globose to fusoid, truncate on one or both ends. Growth in mycangium composed of 

irregular cells, 5–16  3.5–11 µm, propagating by schizogenous division, single or in 

septate chains of a few cells, rarely branching. 

Additional specimen examined: FRENCH GUIANA. CAYENNE: near Kaw 

Mountain (4.55892, -52.19662), gallery of an unidentified Corthylus sp. in unknown 

host, 5 Jun 2015, C. Bateman V8805. 

Notes. Meredithiella guianensis is very similar in morphology to M. norrisii, but 

the aleurioconidia are much larger in M. guianensis. The holotype specimen of M. 

guianensis was from a gallery of C. crassus, but similar ITS sequences were also 

obtained from DNA extracts of ambrosia growth in galleries of two unknown Corthylus 

spp., also found in French Guiana. The gallery material and beetles were preserved in 

ethanol in the field, and no attempt was made to isolate M. guianensis in pure culture. 

Discussion 

This study confirms that Meredithiella spp. are primary symbionts of Corthylus. 

Nine different Corthylus spp. from five countries were associated with named or 

unnamed Meredithiella spp. Like Ambrosiella, which are associated with Xylosandrus 

spp. and close relatives in the Xyleborini that have large, mesonotal mycangia 

(Harrington et al. 2014; Mayers et al. 2015, 2017), species of Meredithiella appear to be 

exclusively associated with Corthylus spp., which have unique large, tubular mycangia. 
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Each of the studied Corthylus spp. carries Meredithiella, just as each of the studied 

Xyleborini with large, mesonotal mycangia carries Ambrosiella (Mayers et al. 2015, 

2017). A similarly exclusive association appears to occur between the unique, large, 

prothoraxic mycangia of Trypodendron and Phialophoropsis (Mayers et al. 2015). These 

exclusive associations suggest coadaptation, in which each evolutionary event leading to 

a large, well-developed mycangium corresponds with a domestication of a distinct fungal 

lineage, each adapted to produce luxuriant ambrosia growth in galleries and arthrosporic 

type growth in mycangia (Harrington et al. 2014; Mayers et al. 2015). However, species 

level co-evolution within genera is less clear. There is a suggestion in Corthylus that 

there is horizontal transfer of fungal symbionts among sympatric beetle species. 

Tubular mycangia opening into the procoxae were first described in Corthylus 

schaufussi and C. punctatissimus by Schedl (1962) and Finnegan (1963), respectively. 

Similar tubular mycangia were later reported in C. columbianus (Giese 1967) and C. 

fuscus (Orañegui and Atkinson 1984). Our microscopic examinations revealed that the 

mycangia of Corthylus spp. have reticulated walls and are rigid, and they fracture rather 

than flex when manipulated. Each examined mycangium held tightly packed, 

homogeneous masses of fungal spores. The tubes appeared to wind back and forth in C. 

punctatissimus, C. consimilis, and C. crassus, as do the mycangia of C. columbianus 

(Giese 1967; Nord 1972). In contrast, the mycangia of C. papulans form a spiral. The 

mycangia of C. schaufussi may be intermediate between these two morphologies, with a 

broadly-folded lateral portion that terminates in an intricate spiral (Schedl 1962). There 

are too few observations to test the hypothesis that Corthylus spp. with similar mycangia 

carry closely-related Meredithiella spp. 
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Blandford (1895) placed Corthylus spp. into two groups (‘division I’ and ‘division 

II’) based primarily on morphology. Division I included C. papulans, C. flagellifer, and 

other species whose females have long cirri on their antenna. Of the species we studied, 

C. calamarius, C. crassus, and both unknown Corthylus spp. from French Guiana would 

have been placed in division I based on antenna cirri. Blandford’s division II included C. 

punctatissimus, C. fuscus, and other species whose females have small or nonexistent 

antenna cirri; C. columbianus, C. consimilis, and C. schaufussi would probably be 

considered members of division II. The two mycangia shapes do not appear to divide into 

Blandford’s (1895) divisions as his division I includes the spiral-shaped mycangia of C. 

papulans and the winding mycangia of C. flagellifer, C. calamarius, and C. crassus.  

It is not known if a molecular phylogeny of Corthylus would match Blandford’s 

divisions, and it is not clear if Blandford’s placement of Corthylus spp. into the two 

divisions correlates to the relationships of their fungal mutualists. The ITS analysis of 

Meredithiella spp. is tenuous, but M. fracta associated with C. papulans appears to be 

related to the symbionts of C. flagellifer from Mexico and C. calamaris from Costa Rica, 

and each of these beetle species have the long antenna cirri of division I. The division II 

species C. punctatissimmus and C. columbianus carry M. norrisii, while the other studied 

division II species, C. consimilis, appears to have a symbiont more closely related to M. 

guianensis, which was associated with the division I species from French Guiana. 

The ITS relationships among the described and putative Meredithiella spp. 

suggest that there may be three geographic groups within Meredithiella: eastern USA, 

Central American and South American. Meredithiella norrisii is the associate of the USA 

natives C. punctatissimus and C. columbianus. Corthylus papulans is an invasive in 
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Florida but native to Central America (Wood 1977), and the ITS sequences of the M. 

fracta from Florida and Honduras were similar to that of the unidentified mycangial 

symbiont of C. calamarius, only reported in Costa Rica (Wood 1974), and to the 

Meredithiella detected in the foregut of female C. flagellifer (Guatemala to Central 

Mexico) (Wood 1982). Meredithiella guianensis may represent a South American clade; 

C. crassus has only been reported from French Guiana (Wood 2007), and the other two 

Corthylus spp. sampled there are unidentified or undescribed. The implied relatedness of 

the symbiont of the Mexican C. consimilis to M. guianensis may contradict the 

hypothesis that there are geographic groupings within Meredithiella. However, the ITS 

tree was not robust, and more thorough sampling and multigene analyses are needed.  

Phylogenetic relationships among the genera of Ceratocystidaceae are not well 

resolved, but the grouping of the genera of ambrosia beetle symbionts (Ambrosiella, 

Phialophoropsis, and Meredithiella) with Huntiella, Ceratocystis adiposa, C. 

fagacearum, and C. norvegica was also evident in earlier analyses (de Beer et al. 2014; 

Harrington et al. 2014; Mayers et al. 2015). Huntiella, C. adiposa, C. fagacearum, and C. 

norvegica are non-ambrosial and unrelated to each other, and it appears unlikely that they 

represent four reversions from ambrosia mutualists to free-living fungi. The ambrosial 

species appear to be obligate symbionts and highly derived, but phylogenetic analyses 

fail to support a monophyletic grouping of the ambrosial genera. Mayers et al. (2015) 

suggested that Meredithiella represents an independent adaptation to ambrosia beetle 

symbiosis, distinct from the convergent adaptations of Ambrosiella (to Xyleborini with 

large mesonotal mycangia) and Phialophoropsis (to Xyloterini with large, prothoraxic 

pleural mycangia). However, the aleurioconidia of M. norrisii and M. guianensis are 
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similar to the aleurioconidia found in some species of Ambrosiella, and C. adiposa also 

forms aleurioconidia (Mayers et al. 2017). Meredithiella and Ambrosiella may produce 

chains of monilioid cells that break apart, which is thought to be an adaptation that 

facilitates beetle grazing (Harrington et al. 2014; Mayers et al. 2015). The recently-

described ambrosia fungus Afroraffaelea ambrosiae (in the Ophiostomatales) has similar 

disarticulating, monilioid conidiophores (Bateman et al. 2017).  

There have been conflicting reports on the primary mutualists of Corthylus spp. 

Hubbard (1897) illustrated monilioid strings in galleries of C. punctatissimus that 

disarticulated into short chains of “dumb-bell shaped” cells, consistent with the 

disarticulating conidiophore cells of M. norrisii (Mayers et al. 2015). Batra (1967) and 

Nord (1972) identified the primary symbiont of C. columbianus to be A. xylebori, but the 

ITS1 sequence generated from the DNA extraction of Batra’s culture (from Nord’s 

material) in KANU proved to be M. norrisii. Wilson (1959) and Kabir and Giese (1966) 

reported a yeast (Pichia sp.) with hat-shaped ascospores in galleries of Corthylus 

columbianus and suggested that it was the primary food source for the larvae. Giese 

(1967) illustrated hat-shaped ascospores, presumably of the same Pichia sp., inside the 

mycangium of C. columbianus. More recent studies of associates of C. zulmae in 

Colombia (Gil et al. 2004; Jaramillo et al. 2011) also found a Pichia sp. among gallery 

associates. However, we did not see hat-shaped ascospores or other indications of yeasts 

in mycangia of C. punctatissimus, C. consimilis, C. papulans, or C. crassus, and we did 

not isolate yeasts from the dissected mycangia of C. papulans.  

Mycangial association was one of Batra’s (1985) qualifications for a primary 

ambrosia fungus, and we consistently found homogeneous spore masses of Meredithiella 
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spp. within mycangia of male Corthylus beetles. Meredithiella species also dominated the 

ambrosia growth of fresh, active galleries and larval cradles. Meredithiella spp. may have 

been overlooked in other studies because propagules of Meredithiella from galleries and 

mycangia are very difficult to germinate, grow slowly, and can be easily missed or 

overrun by other fungi. Fusarium spp. were consistently reported as contaminants of C. 

columbianus galleries (Wilson 1959; Kabir and Giese 1966; Giese 1967; Gil et al. 2004), 

and Wilson (1959) reported that a sparsely-distributed but fast-growing Fusarium sp. 

overran other fungi in isolation attempts. The mycoflora of ambrosia beetle galleries 

changes over the life stages of the beetle (Kajimura and Hijii 1992; Kinuura 1995), but 

the Corthylus galleries that we studied had healthy ambrosia growth of Meredithiella.  

Yeasts such as Pichia have been frequently associated with ambrosia beetles, 

especially in the gut (Suh et al. 2005; Harrington and Fraedrich 2010). Common yeast 

genera associated with ambrosia beetles include Ambrosiozyma (Walt 1972; Endoh et al. 

2008; Kurtzman and Robnett 2013), Wickerhamomyces (Ninomiya et al. 2013; James et 

al. 2014), Cyberlindnera (Ninomiya et al. 2013), and various unclassified Pichia and 

Candida spp. (Haanstad and Norris 1985; Gil et al. 2004; Harrington and Fraedrich 2010; 

Suh and Zhou 2010). Yeasts have only occasionally been associated with ambrosia beetle 

mycangia (Batra and Francke-Grosmann 1964; Giese 1967; Kurtzman 2000; Six et al. 

2009). Yeasts may not form thick layers of ambrosia growth for beetle grazing 

(Harrington 2005), but they are certainly fed upon by ambrosia beetles, as evidenced by 

the 28S sequence obtained from the foregut of Corthylus flagellifer (KY748664), which 

is similar to that of Cyberlindnera fabianii (KY107356). This does not necessarily imply 

a mutualistic association with the beetle.  
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Corthylus is rich in unstudied species, and their mycangial symbionts need further 

investigation. Of the other genera in the American sub-tribe Corthylina, Microcorthylus 

castaneus has mycangia similar to C. schaufussi, but the mycangia are smaller and less-

spiraled (Schedl 1962). A Microcorthylus sp. in Costa Rica was found to have a 

Geosmithia sp. forming ambrosial growth in its galleries (Kolařík and Kirkendall 2010), 

but mycangial symbionts of Microcorthylus have not been identified. Gnathotrichus and 

Monarthrum have small, coxal mycangia (Farris 1963; Lowe et al. 1967; Schneider and 

Rudinsky 1969) and Raffaelea mycangial symbionts (Harrington et al. 2010). Intriguing 

patterns of evolution of mycangial types and fungal symbionts are just now emerging, 

and fungal symbioses within the Corthylina warrant further study. 
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Tables 

Table 1. Collection information and GenBank accessions for studied cultures and specimens of Ceratocystidaceae and outgroup taxa. 

 

 Ambrosia  

beetle host Locality 

Culture or  

specimen number(s) 1 ITS LSU SSU TEF-1α 
 

          
Ambrosiella Arx & Hennebert emend. T.C. Harr.          

 A. batrae C. Mayers, McNew & T.C. Harr.  Anisandrus sayi Michigan, USA C3130 (CBS 139735) KR611322 KY744584 KR673881 KT290320  

 A. beaveri Six, de Beer & W.D. Stone  Cnestus mutilatus Mississippi, USA C2749 (CBS 121750) KF669875 KF646765 KR673882 KT318380  

 A. cleistominuta C. Mayers & T.C. Harr.  An. maiche Ohio, USA C3843 (CBS 141682) KX909940 KY744585 KX925304 KX925309  

 A. nakashimae McNew, C. Mayers & T.C. Harr.  Xylosandrus 

amputatus 

Georgia, USA C3445 (CBS 139739) KR611323 KY744586 KR673883 KT318381  

 A. grosmanniae C. Mayers, McNew & T.C. Harr.  X. germanus Iowa, USA C3151 (CBS 137359) KR611324 KY744587 KR673884 KT318382  

 A. hartigii L.R. Batra  An. dispar Germany C1573 (CBS 404.82) KF669873 KY744588 KR673885 KT318383  

 A. roeperi T.C. Harr. & McNew  X. crassiusculus Georgia, USA C2448 (CBS 135864) KF669871 KF646767 KR673886 KT318384  

 A. xylebori Brader ex Arx & Hennebert  X. compactus Ivory Coast C3051 (CBS 110.61) KF669874 KM495318 KR673887 KT318385  

Meredithiella McNew, C. Mayers & T.C. Harr.          

 M. norrisii McNew, C. Mayers & T.C. Harr.  Corthylus 

punctatissimus 

Iowa, USA C3152 (CBS 139737) KR611326 KY744589 KR673888 KT318386  

   C. columbianus Arkansas, USA KANU 376400 ITS1 

=KR611326 
— — —  

 M. fracta   C. papulans Florida, USA C4171 (CBS 142645) KY744578 KY744590 KY744594 KY773179  

   C. papulans Francisco Morazan, 
Honduras 

M540 KY744579 — — —  

 M. guianensis   C. crassus Kaw Mountain, French 

Guiana 

BPI 910532 KY744583 KY744223 KY744227 KY773180  

   Corthylus sp. A Kaw Mountain, French 

Guiana 

M544 KY744582 — — —  

   Corthylus sp. B Kaw Mountain, French 
Guiana 

M546 =KY744583 — — —  

 Meredithiella sp.  C. consimilis La Esperanza, Mexico M260 KR611327 — — —  

 Meredithiella sp.  C. calamarius Costa Rica M541 KY744581 — — —  

 Meredithiella sp.  C. flagellifer Michoacán, Mexico M574 KY744580 — — —  
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Table 1 continued          

Phialophoropsis L.R. Batra emend. T.C. Harr.          

 P. ferruginea (Math.-Käärik) T.C. Harr.  Trypodendron 

lineatum 

Colorado, USA M243 (BPI 893129) KR611328 KY744224 KR673889 KT318387  

 Phialophoropsis sp.  T. domesticum Germany C2230 (CBS 460.82) KC305146 KF646766 KR673890 KT318388  

Other Ceratocystidaceae          

 Ceratocystis adiposa (Butler) C. Moreau   Ontario, Canada C999 (CBS 183.86) =DQ318195 =KM495320 KR673891 HM569644  

 C. fagacearum (Bretz) J. Hunt   Iowa, USA C927 (CBS 129242) =KC305152 =AF222483 KR673892 KT318389  

 C. fimbriata Ellis & Halst .  Papua New Guinea C1099 (ICMP 8579) AY157957 =KR347445 KR673893 HM569615  

 C. norvegica J. Reid & Hausner   Norway C3124 (UAMH 9778) DQ318194 KY744591 KR673894 KT318390  

 C. variospora (R.W. Davidson) C. Moreau emend. 

J.A. Johnson & T.C. Harr. 

  Iowa, USA C1963 (CBS 135862) — KF646773 KX925305 KR347450  

 Endoconidiophora coerulescens Münch.   Minnesota, USA C301 (CBS 100198) KC305116 AF275510 KR673895 HM569653  

 E. virescens R.W. Davidson   New York, USA C252 (CBS 128998) — =KM495385 KX925306 HM569645  

 Huntiella moniliformis (Hedgc.) Z.W. de Beer, T.A. 

Duong & M.J. Wingf 

.  India C1007 (CBS 204.90) =DQ074739 AF222487 KR673896 KT318391  

 H. moniliformopsis (Yuan & Mohammed) Z.W. de 

Beer, T.A. Duong & M.J. Wingf. 

  Warra, Tasmania C1934 (DAR 74609) =NR119507 KF646769 KR673898 HM569638  

 Huntiella sp.   Minnesota, USA C792 KR611330 KY744592 KR673897 KT318392  

 Thielaviopsis basicola (Berk. and Broome) Ferraris   Netherlands C1372 (CBS 414.52) AF275481 AF222458 KX925307 HM569628  

 Thielaviopsis ethacetica Went   South America C1107 =KJ881375 KY744593 KR673899 HM569632  

 Thielaviopsis ovoidea (Nag Raj & W.B. Kendr.) 

A.E. Paulin, T.C. Harr. & McNew 

  Baarn, Netherlands C1375 (CBS 354.76) AF275483 AF275502 KY744595 HM569625  

 Thielaviopsis punctulata (Hennebert) A.E. Paulin, 
T.C. Harr. and McNew 

  California, USA C869 (CBS 114.47) AF275495 AF275513 KX925308 KX925310  

 Thielaviopsis thielavioides (Peyronel) A.E. Paulin, 

T.C. Harr. & McNew 

  Oklahoma, USA C1378 (CBS 130.39) AF275486 AF222480 AF222518 HM569627  

1Collections include: Iowa State University collection (beginning with C or M), Westerdijk Fungal Biodiversity Institute (CBS), U.S. National Fungus 

Collections (BPI), New South Wales Plant Pathology Herbarium (DAR), UAMH Centre for Global Microfungal Diversity (UAMH), International Collection of 

Microorganisms from Plants (ICMP), University of Kansas McGregor Herbarium (KANU). 2GenBank accession numbers preceded by ‘=’ represent identical 

(100% identity) match.
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Abstract 

Ambrosia beetles farm fungi in sapwood and use pocket-like organs called 

mycangia to carry propagules of their fungal cultivars. Fungi selectively grow in the 

mycangia, which are central to the symbiosis, but the temporal dynamics of evolution 

between fungal cultivars and mycangia are poorly understood. We studied ambrosia fungi 

in the family Ceratocystidaceae from four unrelated tribes of ambrosia beetles with four 

different types of mycangia, including the uncharacterized symbionts of tribe 

Scolytoplatypodini. Fungal species were delineated using ITS rDNA barcoding, and a 

concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1) was 

used to produce a phylogeny of ambrosia fungi in the family Ceratocystidaceae. Three of 
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the four mycangium types each consistently carried one of three genera of ambrosia 

fungi: Ambrosiella, Meredithiella, and Phialophoropsis. The pronotal disc mycangia of 

tribe Scolytoplatypodini had three minor morphological variants (in African 

Scolytoplatypus, Asian Scolytoplatypus, and Malagasy Remansus mutabilis) each 

associated with symbionts in one of three genera of Ceratocystidaceae (two new species 

of Wolfgangiella gen. nov., three new species of Toshionella gen. nov., and Ambrosiella 

remansi sp. nov., respectively). Catunica adiposa gen. nov. et comb. nov. and Solaloca 

norvegica gen. nov. et comb. nov. accommodate closely-related species that are not 

symbionts of ambrosia beetles. The phylogenetic placement and divergent morphology of 

the ambrosial genera when compared with related non-ambrosial taxa, and discordance 

between the estimated fungal divergence dates and the estimated origins of their 

associated mycangia, suggest that a single origin of ambrosia symbiosis in the 

Ceratocystidaceae was unlikely. The Scolytoplatypodini may have been the first tribe to 

establish a symbiosis with the Ceratocystidaceae, and the Xyleborini with mesonotal 

mycangia may have acquired their symbiont lineage from a Remansus-like ancestor. 

Although beetle-fungus associations are not necessarily coevolving at the species level, 

ambrosia fungus genera in the Ceratocystidaceae appear to be locked into co-adapted 

associations with specific types of mycangia and show a pattern of diffuse coevolution. 

Introduction 

Multiple groups of wood-boring weevils, collectively known as ambrosia beetles, 

cultivate fungal gardens in sapwood in a mutualistic partnership (Hulcr and Stelinski 

2017). These ambrosia beetles avoid competition that occurs in the nutritious inner bark 

(phloem) by exploiting fungal agriculture in the nutrient-poor sapwood (Harrington 

2005). Most ambrosia beetle lineages are derived from phloem-feeding bark beetles 
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(Kirkendall et al. 2015) and share three critical components: first, the development of 

mycangia, any of a wide spectrum of physical adaptations the beetles use to carry and 

transport viable fungal propagules (Francke-Grosmann 1956, 1963, 1967; Hulcr and 

Stelinski 2017); second, the acquisition of a domesticated fungal cultivar (ambrosia 

fungus) that can grow in the mycangia and provide nutrition to the beetles and larvae by 

forming a dense layer of sporulation (‘ambrosia’) in the beetles’ tunnels (‘galleries’) 

(Harrington et al. 2010, 2014; Mayers et al. 2015); and third, a behavioral change in the 

beetles to tunnel into and lay eggs in sapwood and to actively cultivate their fungal 

gardens, often involving sub-sociality (Biedermann et al. 2013; Biedermann and Rohlfs 

2017). The reciprocal co-adaptation of mycangia and ambrosia fungi presents an 

intriguing model system for the evolution of obligate mutualisms. Recent studies suggest 

patterns of interdependence, specificity, and co-adaptation vary greatly across ambrosia 

beetles and their fungi, and these patterns may correspond with the diversity of mycangia 

(Harrington et al. 2010; Mayers et al. 2015; Skelton et al. 2018).  

Some bark beetles use fungi to supplement their diets, and a few have well-

developed mycangia in which their fungal symbionts can grow (Harrington 2005). In 

contrast, ambrosia beetles rely on fungi to survive in sapwood (Harrington et al. 2010). 

At least eleven separate lineages of bark-dwelling weevils in the subfamilies Scolytinae 

and Platypodinae (Coleoptera: Curculionidae) made the evolutionary leap to fungus 

farmers (i.e. ambrosia beetles) (Hulcr and Stelinski 2017). Several lineages of fungi have 

been identified as their primary ambrosia symbionts, making both ambrosia beetles and 

ambrosia fungi polyphyletic. A review of the literature suggests that each ambrosia beetle 

lineage originated with a novel mycangium type (Hulcr and Stelinski 2017), and some 
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lineages gave rise to sublineages with new mycangium types. The term ‘mycangium’ is 

applied to a wide array of unrelated physical crevices and cavities whose only common 

feature is the storage and transport of fungal spores (Six 2003), but the most effective and 

selective mycangia are ‘glandular sac mycangia,’ which are associated with gland cells 

that secrete nutrients into the mycangium lumen (Francke-Grosmann 1967; Schneider 

1975; Six 2003). These secretions support the growth and overflow of fungal inoculum 

for colonization of the gallery (Schneider 1975; Beaver 1989). Some mycangia are 

relatively small and simple in relation to the beetle’s body size, such as the oral pouch 

mycangia that have convergently developed in multiple ambrosia beetle lineages (Hulcr 

and Stelinski 2017). Four unrelated ambrosia beetle lineages have mycangia that are 

relatively large and complex, representing significant energy commitments by the beetles 

(Mayers et al. 2015, 2018). 

Three of the lineages of ambrosia beetles with large and complex mycangia are 

each associated with one of three genera of ambrosia fungi in the family 

Ceratocystidaceae (Microascales) (Mayers et al. 2015, 2018). Ambrosia beetles in a 

fourth lineage, tribe Scolytoplatypodini, have large and complex disc-shaped pronotal 

mycangia (Schedl 1962; Nakashima et al. 1987; Beaver and Gebhardt 2006), but their 

fungal partners have not been well studied. Multiple Asian species of Scolytoplatypus 

were reported to have a symbiont in the genus Ambrosiella (Ceratocystidaceae) 

(Nakashima et al. 1987, 1992; Nakashima 1989; Kinuura et al. 1991; Kajimura and Hijii 

1994; Beaver and Gebhardt 2006; Ito and Kajimura 2017). Tribe Scolytoplatypodini is 

thought to be older than the previously-studied ambrosia beetle lineages with large 

mycangia (Jordal 2013; Gohli et al. 2017; Pistone et al. 2017), and fungal symbionts of 
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this tribe could provide a missing link in the unresolved evolutionary history of ambrosia 

fungi in the Ceratocystidaceae (Mayers et al. 2015).  

We hypothesized that there was a single origin of ambrosia beetle symbiosis in 

the fungal family Ceratocystidaceae, and that this origin corresponded with the evolution 

of the large, pronotal disc mycangium of the Scolytoplatypodini. Our first aim was to 

isolate ambrosia fungi from all three lineages in this understudied tribe: Asian 

Scolytoplatypus, African Scolytoplatypus, and Remansus (Jordal 2013). We used 

phylogenetic analyses to test the hypothesis that the fungal symbionts would comprise a 

single, novel, monophyletic group in the Ceratocystidaecae. The second aim was to 

construct a rigorous phylogeny of all ambrosia fungi in the Ceratocystidaceae, estimate 

their divergence dates, and compare those dates to available estimated divergence dates 

for beetle lineages with large mycangia. We hypothesized that the crown divergence date 

of each mycangium type would approximate or predate the crown divergence date of its 

specific, domesticated fungal lineage. Further, we hypothesized that all ambrosia fungi in 

the family are derived from a single domestication by tribe Scolytoplatypodini, that is, 

that the crown divergence date of the pronotal disc mycangium of the Scolytoplatypodini 

ambrosia beetles would approximate or predate the origin of ambrosia beetle symbiosis in 

the Ceratocystidaceae. The crown ages of each of the other large mycangium types 

should thus be coincidental with, or closely followed by, a separate symbiont capture of 

Scolytoplatypodini associates. 

Materials and Methods 

Specimen collection and fungal isolation 

In addition to ambrosia fungus cultures and specimens available from previous 

studies (Mayers et al. 2015, 2017, 2018), additional fungal material was collected from 
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ambrosia beetles in tribes Scolytoplatypodini, Xyleborini, and Xyloterini and their 

galleries. Fungal cultures were isolated from beetles by surface-sterilizing, dissecting, 

and directly plating portions of the prothorax containing mycangia on fungal culture 

media (Mayers et al. 2015, 2017, 2018). Not all isolation attempts were successful from 

galleries and beetles, often due to desiccation of the insect or gallery material, but we 

were often able to extract DNA and identify the fungal symbionts by ITS-rDNA 

barcoding. Collection information for all material from which fungal isolates or DNA 

sequences were obtained are included in Table 1. 

Microscopic observations 

Fungal material or dissected mycangia were scraped from gallery walls or the 

surface of pure cultures with sterile tools and mounted in lactophenol and cotton blue or 

lactic acid and viewed with an Olympus BH-2 compound microscope (Mayers et al. 

2017, 2018). Photographs were captured with a Leica DFC295 camera and Leica 

Application Suite V3.6 (Leica Camera Inc., Allendale, NJ). Contrast and brightness 

levels of some images were adjusted with Leica Application Suite or Adobe Photoshop 

CS6 (Adobe Systems Incorporated, San Jose, CA). Some images are composites of 

multiple photographs taken at different focus planes and combined with CombineZP 

(Hadley 2010). Some mycangium illustrations are composites of multiple images taken at 

the same magnification and stitched together with the Photomerge function in Adobe 

Photoshop CS6.  

Species descriptions 

Isolates were first grown on malt yeast extract agar (MYEA; 2% malt extract, 

Difco Laboratories, Detroit, MI, USA; 0.2% yeast extract, Difco; 1.5% agar, Sigma-

Aldrich, St. Louis, MO, USA) at room temperature. Agar plugs cut with a #1 cork borer 
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(3mm diam.) were transferred from the leading margin of growth to three new MYEA 

plates, incubated at 25° C for 7 d in the dark, and the diameter of the colonies measured. 

Colors are per Rayner (1970). Representative cultures were deposited in the Westerdijk 

Fungal Biodiversity Institute (CBS), and representative dried specimens were deposited 

in the U.S. National Fungus Collections (BPI). 

DNA extraction, amplification, and sequencing 

When working with small amounts of gallery growth, dissected mycangia, or 

whole beetles, DNA extractions generally used the PrepMan® Ultra kit (Applied 

Biosystems, Foster City, CA, USA), and extracts were concentrated when needed with 

Amicon® ultra-0.5 Centrifugal Filter Devices (EMD Millipore, Billerica, CA, USA). 

Extractions from pure cultures generally used the Promega Wizard® Genomic DNA 

Purification Kit (Promega, Madison, WI) or, when pigments inhibited PCR amplification, 

the E.Z.N.A. Fungal DNA Mini Kit (Omega Bio-Tek, Norcross, GA).  

For routine species identification, amplification and sequencing of the nuclear 

rDNA ITS1-5.8S-ITS2 (internal transcribed spacer region, ITS barcode) used fungal 

primers ITS1F and ITS4 (Gardes and Bruns 1993; White et al. 1990). The 

Ceratocystidaceae-specific ITS primer sets Cerato-1F/ITSCer3.7R and ITSCer3.5/ITS4 

(Mayers et al. 2015) were also used to obtain sequences from DNA extracts from 

galleries, mycangia, and whole beetles. All ITS amplification used the same PCR 

conditions (85°C for 2m; 95°C for 1m35s; 36 cycles of 58°C for 1m, 72°C for 1m20s, 

and 95°C for 1m10s; 52°C for 1m; 72°C for 15m; and 4°C hold). 

Six nuclear genes were sequenced for multi-locus analyses. For nuclear large 

subunit ribosomal DNA (28S rDNA), primers LR0R and LR5 were used for 

amplification, with the same PCR conditions as the ITS barcode, and primers LR0R and 
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LR3 were used for sequencing (Rehner and Samuels 1994; Vilgalys and Hester 1990). 

For nuclear small subunit ribosomal DNA (18S rDNA) amplification and sequencing, a 

combination of general primers (NS1, NS3, NS6, NS7, and NS8, SR1R, and SR9R) were 

used (Elwood et al. 1985; White et al. 1990; Vilgalys and Hester 1990), as well as a new 

primer designed for Ascomycetes (“NS4Asco”, 5’-CTTCCGTCAATTTCTTTAAG-3’) 

and two primers designed to specifically amplify fungal 18S rDNA from mycangia 

(“NS4Cer”, 5’-CACTTTGATTTCTCGAAAG-3’, used in place of NS4; and 

“SR9RCer”, 5’-GGCATCAGTATTCAGCTGTC-3’, used in place of SR9R). All 18S 

rDNA PCR used the same PCR conditions (94°C for 2m; 36 cycles of 94°C for 30s, 52°C 

for 30s, and 72°C for 1m; 72°C for 5m; and 4°C hold), but annealing temperature was 

lowered to 49°C in some cases. For translation elongation factor 1-alpha (tef1-α), primers 

EFCF1 and EFCF6 were used for amplification using the PCR conditions of Oliveria et 

al. (2015), though we generally replaced EFCF1 with a new primer designed to avoid a 

problematic intron in many isolates (“EFCF1.5”, 5’-GCYGAGCTCGGTAAGGGYTC-

3’). Internal primers EFCF2 (Oliveira et al. 2015) and another new primer (“EFCer3”, 5’-

CARACHCGTGAGCAYGCTCT-3’) were occasionally used for supplemental internal 

sequencing. Amplification and sequencing of beta-tubulin (tub) used the primers (Bt1a 

and Bt1b) and conditions of Glass and Donaldson (1995). Amplification and sequencing 

of 60S ribosomal protein L1 (rpl1) and DNA replication licensing factor 

minichromosome maintenance complex component 7 (mcm7) used the primers (60S-

506F/60S-908R and Cer-MCM7F/Cer-MCM7R) and conditions of de Beer et al. (2014), 

but for some isolates the annealing temperature was reduced to 55°C. Sequencing was 

performed by the Iowa State University DNA Sequencing Facility, and complementary 
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and overlapping DNA reads were checked and assembled using Sequence Navigator v 

1.0.1 or AutoAssembler v 1.3.0 (Applied Biosystems, Foster City, California). 

Molecular phylogeny 

The ITS rDNA sequences of the Ceratocystidaceae have numerous indels that are 

ambiguously aligned, so for barcoding purposes, ITS sequences were manually aligned in 

two separate datasets: one for Ambrosiella and close relatives (TreeBASE URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S22558) and one for Phialophoropsis 

and close relatives (TreeBASE URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S22559). In addition to new ITS 

sequences obtained in this study (Table 1), both alignments also included additional ITS 

sequences (Table S1) from previous studies (Harrington et al. 2014; Lin et al. 2017; 

Mayers et al. 2015, 2017, 2018), newly-generated sequences of Ceratocystis adiposa, and 

sequences of Phialophoropsis isolates (Chapter 6). To illustrate identity among 

sequences, a separate maximum parsimony tree was created from each of the two 

alignments with PAUP 4.0b10 (Swofford 2002) via heuristic searches with gaps treated 

as fifth character (which preserved the important diagnostic signals present in indels), 

starting trees obtained via stepwise addition, and the tree-bisection-reconnection branch-

swapping algorithm. Using C. adiposa and Meredithiella norrisii as a monophyletic sister 

group to the ingroup, the Ambrosiella alignment had 552 characters, of which 135 were 

parsimony-informative, 43 were variable but parsimony-uninformative, and 374 were 

constant. The Phialophoropsis alignment used Bretziella fagacearum as an outgroup and 

midpoint rooting, with 507 characters, of which 39 were parsimony-informative, 31 were 

variable but parsimony-uninformative, and 437 were constant. A representative tree was 

chosen from the trees produced from each alignment for illustration, and branch support 
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values were generated for each tree via 1000-replicate bootstrap maximum parsimony 

analysis in PAUP. 

All multi-locus analyses used a manually-aligned, concatenated alignment 

(TreeBASE URL: http://purl.org/phylo/treebase/phylows/study/TB2:S22560) of 18S 

rDNA, tef1-α, 28S rDNA, tub, mcm7, and rpl1. Accession numbers for newly-generated 

sequences and those from previous studies (de Beer et al. 2014; Lin et al. 2017; Mayers et 

al. 2015, 2017, 2018) are listed in Table S2. Representatives of the major lineages in the 

Ceratocystidaceae were included (de Beer et al. 2014, 2017; Nel et al. 2017), but a close 

relative of the family, Cornuvesica (Marincowitz et al. 2015), was not included in 

analyses due to inadequate sequence data. Sequences also included those of a Michigan 

isolate of an unnamed Microascales sp. (C3547 = CBS 142647) from a gallery of the ship 

timber beetle, Elateroides lugubris. Sequences for the six genes were also extracted from 

genome assemblies available in the NCBI database (National Center for Biotechnology 

Information, Bethesda, Maryland): Huntiella moniliformis JMSH00000000 (van der Nest 

et al. 2014), Huntiella bhutanensis MJMS00000000 (Wingfield et al. 2016b), and 

Scedosporium boydii NJFT00000000 (unpublished). The resulting six-gene alignment 

had 5276 characters. Introns were eliminated from tef1- α, tub, mcm7, and rpl1, and 

ambiguously-aligned regions were eliminated (618 characters total) from 18S rDNA and 

28S rDNA. The final alignment consisted of 4658 characters, 3347 of which were 

constant, 261 were variable but parsimony-uninformative, and 1050 were parsimony-

informative. 

A Bayesian analysis of the six-gene alignment was performed with MrBayes 3.2.2 

(Ronquist et al. 2012), with a single MCMC run with four chains (one cold, three heated) 
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for 1,000,000 generations, which was sufficient to achieve an average standard deviation 

of split frequencies less than 0.002. Models and partitions were selected by 

PartitionFinder 2 (Lanfear et al. 2016) in “mrbayes” mode, using “aicc” (converted 

Aikaike Information Criterion) model selection and a greedy algorithm (Lanfear et al. 

2012) and powered by PhyML (Guindon et al. 2010). As suggested by PartitionFinder 2, 

GTR+I+G was applied to the first partition (18S rDNA), fifth partition (28S rDNA and 

tub codon position 1), sixth partition (rpl1 codon position 2 and tub codon position 2), 

seventh partition (mcm7 codon position 1), tenth partition (rpl1 codon position 1), and 

eleventh partition (rpl1 codon position 3); GTR+G was applied to the third partition 

(tef1-α codon position 3 and tub codon position 3) and ninth partition (mcm7 codon 

position 3); GTR+I was applied to the eighth partition (mcm7 codon position 2); and 

F81+I+G was applied to the second partition (tef1-α codon position 2) and fourth 

partition (tef1-α codon position 1). A consensus tree was generated using the function 

‘sumt’ with a burnin value of 150,000 and visualized with FigTree 1.4.0. In addition to 

posterior probability values provided by MrBayes, additional branch support values were 

generated for the tree via 1000-replicate bootstrap parsimony analysis in PAUP and 

1000-replicate bootstrap maximum likelihood analysis in RAxML (Mayers et al. 2018). 

Divergence date estimates 

A Bayesian tree with estimates of divergence dates (Analysis A) was generated 

using BEAST v. 2.4.7 (Bouckaert et al. 2014) and an .xml file created in BEAUti 2 from 

the same six-gene alignment used to create the consensus BI tree of the 

Ceratocystidaceae. Most genera were pruned to two representative species, and the 

sequences from three outgroup taxa were extracted from the genomes of Aspergillus 

niger ASM285v2 (Pel et al. 2007), Sclerotinia sclerotiorum AAGT01000000 (Amselem 
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et al. 2011), and Xylaria sp. JS573 JWIU00000000 (unpublished). In the absence of 

fossils of Ceratocystidaceae, secondary calibrations were applied in uniform distributions 

(Schenk 2016) to the Leotiomycetes-Sordariomycetes crown (267–430 Ma) and the 

Sordariomycetes crown (207–339 Ma), defined as the 95% highest posterior density 

range from the 5-fossil-calibrated analysis of Beimforde et al. (2014). Site models were 

unlinked, and the tree and relaxed log normal clock were linked for all partitions. The 

birth-death model (Gernhard 2008) was used for the tree prior.  Preliminary runs using 

the same models and partitions selected by PartitionFinder 2 in section 2.5, examined 

with Tracer 1.6 (Rambaut et al. 2014), gave unacceptably low effective sample size 

(ESS) values below 100 for both the posterior and prior distributions. This appeared to be 

due to certain base substitution rates tending towards zero and giving low ESS values, 

which we interpreted as over-parameterization (Surina et al. 2014). To mitigate this, the 

models for partitions 3, 6, 7, 9, 10, and 11 were relaxed from the GTR to the HKY model 

in the final analysis, which yielded acceptable ESS values. In the final analysis two 

separate MCMC runs of 25,000,000 generations were performed with pre-burnins of 

150,000 and their output combined with LogCombiner 2.4.7. The combined output was 

analyzed with Tracer v. 1.6, resulting in all ESS values above 200 and convergence in the 

prior, likelihood, and posterior values. The tree files from both runs were combined and 

reduced to 10,000 trees with LogCombiner 2.4.7, then a maximum clade credibility tree 

was created and annotated with TreeAnnotator v. 2.4.7 with 15% burnin and mean height 

nodes then visualized with FigTree 1.4.0. 

Generated fungal divergence dates were compared to the origins of their 

associated mycangia using the crown dates estimated by Gohli et al. (2017) and/or 
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Pistone et al. (2018). Specifically, the mesonotal pouch mycangium clade included the 

Xylosandrus complex (i.e., Xyleborini genera with mesonotal mycangia: Anisandrus, 

Cnestus, Eccoptopterus, Hadrodemius, and Xylosandrus); the prothoracic coil 

mycangium clade included Corthylus (subtribe Corthylina); the prothoracic pleural 

mycangium clade included Trypodendron (tribe Xyloterini); and the pronotal disk 

mycangium clade included Remansus and Scolytoplatypus (tribe Scolytoplatypodini). 

Both studies used four relevant fossils and BEAST to estimate divergence times for the 

subfamily Scolytinae. Gohli et al. (2017) used 5 genes from 305 species and Pistone et al. 

(2017) used 18 genes from 182 species. 

Results 

Fungus-beetle associations 

We successfully identified putative species of Ceratocystidaceae from nine 

Scolytoplatypodini species representing the three recognized lineages of the tribe (Jordal 

2013), including three species from the African/Malagasy lineage of Scolytoplatypus (S. 

fasciatus, S. permirus, and S. rugosus), six species from the Asian lineage of 

Scolytoplatypus (S. daimio, S. eutomoides, S. mikado, S. pubescens, S. shogun, and S. 

tycon), and a species from Remansus (R. mutabilis) (Table 1). We also obtained new ITS 

sequences of Ambrosiella symbionts from 5 Asian Xyleborini beetle species, including 

Anisandrus apicalis and four Xylosandrus species (X. brevis, X. crassiusculus, X. 

germanus, and X. aff. germanus). Individual Xyleborini species were in some cases 

associated with more than one mycangial symbiont, as reported by Lin et al. (2017), and 

some Ceratocystidaceae mycangial symbionts were associated with more than one 

ambrosia beetle species. One fungus species from a Scolytoplatypus was found to have a 
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sexual state, only the second discovered among mycangial symbionts of ambrosia beetles 

(Mayers et al. 2017). 

African and Malagasy Scolytoplatypus 

Galleries of S. permirus from two different locations in Madagascar (Table 1) had 

thick, homogeneous, white-grey ambrosia growth, and the larval cradles were sealed 

from the main tunnels by frass and fragmented mycelium. The material was desiccated, 

and isolation attempts from the galleries and the females inside were unsuccessful. The 

DNA extracted from the ambrosia growth in both galleries yielded the same ITS 

sequence, which grouped within the Ceratocystidaceae and was more similar to 

sequences of Phialophoropsis than of Ambrosiella (Fig. 1). Deep-seated phialides were 

not seen at the tip of the conidiophores, but the ambrosia growth contained monilioid 

branches of disarticulating, irregular to globose, thallic-arthric propagules (Figs. 2N–R). 

Fungal propagules in the mycangium of a S. permirus female from a third location 

 

Figure 1. One of four unrooted maximum parsimony trees of ITS rDNA sequences of Phialophoropsis and 

close relatives. Sequences in bold are new to this study. Isolate or specimen numbers from the Iowa State 

University collection (C or M), Westerdijk Fungal Biodiversity Institute (CBS), or U.S. National Fungus 

Collections (BPI). Sequences in bold were obtained in this study. Single asterisks indicate sequences 

obtained from DNA extracted from whole beetles or mycangial spore masses; double asterisks indicate 

sequences from DNA extracted from gallery growth. Sequences without asterisks are from DNA extracted 

from cultures. Country of origin of the beetle, gallery, or culture is indicated. Bootstrap support values (> 

50%) from 1000-replicate maximum parsimony analysis are indicated on branch labels. Ceratocystis 

fagacearum was used as an outgroup with midpoint rooting.  Bar = 5 changes (bp). An ‘e’ indicates an ex-

type culture; HT = holotype; IT = isotype; and PT = paratype. 
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in Madagascar (Table 1) formed a homogeneous mass of thallic-arthric fungal propagules 

that were solitary or in short chains (Fig. 2T), and the DNA from this spore mass yielded 

an ITS sequence nearly identical (Fig. 1) to that obtained from the two galleries of S. 

permirus (but with a repeated “TC” in the first variable region of ITS1). 

A gallery of Malagasy S. rugosus had nearly-identical ambrosia growth to that in 

galleries of S. permirus, and DNA extracted from the S. rugosus gallery yielded an ITS 

sequence nearly identical to sequences of the fungus associated with S. permirus (Fig. 1), 

though lacking a repeated “CC” in the first variable region of ITS1. Isolations from the 

desiccated gallery and the single female inside were not successful. Conidiophores in the 

gallery of S. rugosus (Fig. 2G) were similar to those in galleries of S. permirus, but  

 

Figure 2. Wolfganiella franznegeri (A–J) and W. madagascarensis (K–T). (A). Culture morphology at 15d 

on MYEA. (B). Ascomata. (C). Ascospores emerging from ascocarp. (D, E). Ascospores. (F). Germinating 

ascospore. (G-J). Conidiophores. (K, L). Detached thallic-arthric conidia. (M). Larger, thick-walled 

propagules in culture. (N–S). Conidiophores and detached thallic-arthric conidia. (T). Propagules in 

mycangium of S. permirus. (A–C, E, F, H–M). ex-holotype isolate CBS 144149 from S. fasciatus. (D, G) 

from gallery BPI 910640 of S. rugosus. (N–S). Holotype BPI 910641 from gallery of S. permirus. All 

photos except A by Nomarski interference microscopy of material stained with cotton blue. A imaged with 

Epson 10000XL. Bar = 10 µm. 
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galleries of the former had spherical ascomata in the homogenous mat of ambrosia 

growth. The ascomata lacked necks or ostioles and contained large, banana-shaped spores 

(Fig. 2D). 

The DNA extracted from the mycangium contents of a South African S. fasciatus 

female preserved in ethanol (Table 1) yielded an ITS sequence identical to that of the 

gallery of the Malagasy S. rugosus (Fig. 1). Isolations from six fresh South African S. 

fasciatus females yielded isolates of a green-grey, slow-growing fungus (Fig. 2A), and 

the ITS sequences derived from those cultures were identical to that obtained from the 

preserved S. fasciatus specimen (Fig. 1). The six cultures produced branching, 

disarticulating, thallic-arthric propagules (Figs. 2H–M), identical to those observed in 

galleries of the Malagasy S. fasciatus, and the six cultures also produced the spherical, 

immature ascomata found in the S. rugosus gallery. In two of the isolates (C4325 and 

C4328), the ascomata matured and produced large, boat-shaped ascospores (Figs. 2C, E) 

identical to those produced by the ascomata in the S. rugosus gallery. Single ascospores 

isolated on sterile MYEA from fertile ascomata using a sterile needle (Mayers et al. 

2017) from C4328 successfully germinated from both ends (Fig. 2F). The colonies 

produced looked similar to the parent culture and yielded the same ITS sequence, but 

these colonies did not produce ascomata and appeared debilitated in that they produced 

less surface growth, had a slower growth rate, attained smaller maximum colony 

diameters. 

Asian Scolytoplatypus 

Isolates from Scolytoplatypus spp. in Japan and Taiwan (Table 1) had ITS 

sequences that were unique among the Ceratocystidaceae but were most similar to those 

of Ambrosiella (Fig. 3). Five Japanese S. shogun females yielded green-grey,  
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Figure 3. One of twelve unrooted maximum parsimony (MP) trees of ITS rDNA sequences of Ambrosiella 

and close relatives. Sequences in bold are new to this study. Isolate numbers in the Iowa State University 

collection (C or M), Westerdijk Fungal Biodiversity Institute (CBS), U.S. National Fungus Collections 

(BPI), the UAMH Centre for Global Microfungal Biodiversity (UAMH), or other designations provided in 

parentheses where available. Single asterisks indicate sequences obtained from DNA extracted from whole 

beetles or mycangial spore masses; double asterisks from DNA extracted from gallery growth. Sequences 

without asterisks from DNA extracted from cultures. Country of origin of the beetle, gallery, or culture is 

indicated. Bootstrap support values > 50% indicated on branches. Catunica adiposa and Meredithiella 

norrisii were used as outgroups.  Bar = 5 changes (bp). An ‘e’ indicates an ex-type culture; HT = holotype, 

IT = isotype, and PT = paratype  
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slow-growing cultures (Figs. 4A, G, Q) with an identical ITS sequence. All five isolates 

produced terminal, globose, thick-walled aleurioconidia (Figs. B–E) that were much 

larger than those observed in Ambrosiella (Mayers et al. 2015, 2017; Lin et al. 2017). The 

individual cells of the branching conidiophores occasionally became globose and thick-

walled (Fig. 4C) and were difficult to differentiate from aleurioconidia. 

A sixth isolate from S. shogun (C3908) had conidiophores and branching, 

disarticulating, thallic-arthric propagules (Figs. 4H–M) similar to those of the other S. 

shogun isolates, but C3908 had an atypical colony morphology (Fig. 4G) and a different 

ITS sequence. The DNA extracted from the mycangium of a Russian S. tycon (Table 1) 

yielded an ITS sequence that differed from C3908 at only one base position. Propagules 

in the S. tycon mycangium appeared to be thallic-arthric propagules (Figs. 4O, P), and in 

contrast to the propagules observed in mycangia of the Malagasy/African Scolytoplatypus 

spp., the propagules in the S. tycon mycangium appeared to sometimes branch, as 

illustrated in mycangia of S. shogun (Nakashima et al. 1987). 

Two S. pubescens females collected from different locations in Taiwan (Table 1) 

yielded isolates of a dark, olive-green fungus (Fig. 4Q) with an ITS sequence that was 

most similar to those from Japanese S. shogun (Fig. 3). Chains of aleurioconidia formed 

in culture generally were longer and the conidiophores less branched compared to those 

in S. shogun isolates (Figs. R–V), and the S. pubescens isolates produced more aerial 

hyphae and unique vertical hyphae with branching, dark brown chlamydospores (Figs. 

4X, Y). The DNA extracted from two mycangia and one isolate from a Taiwanese S. 

mikado female yielded identical ITS sequences to the isolates from S. pubescens (Fig. 3). 
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Figure 4. Toshionella nipponensis (A–F), T. transmara (G–P), and T. taiwanensis (Q–Z). (A, G, Q). 

Culture morphology at 8.5d on MYEA. (B). Conidiophore bearing aleurioconidia. (C). Conidiophore with 

globose, thick-walled cells. (D). Detached, single aleurioconidia. (E). Detached aleurioconidium with 

penultimate conidiophore cell attached. (F). Globose, thick-walled propagules forming wet mounds in 

culture (B). Conidiophore bearing chain of aleurioconidia. Arrows indicate membranous sheath. (I). 

Detached solitary aleurioconidia. (J). Detached aleurioconidium with penultimate conidiophore cell 

attached. (K). Branched chains of disarticulating thallic-arthric conidia. (L, M). Detached thallic-athric 

conidia. (N). Globose, thick-walled propagules forming wet mounds in culture. (O, P). Propagules in 

mycangium of Scolytoplatypus tycon. (R). Long, branched conidiophore bearing aleurioconidia. (S). Young 

conidiophore with terminal aleurioconidium subtended by developing aleurioconidia. Single arrow 

indicates remnant of conidiogenous cell. Double arrows indicate membranous sheath. (T). Aleurioconidium 

breaking free of conidiophore. Single arrow indicates collarette. Double arrow indicates sloughing 

membranous sheath. (U). Solitary aleurioconidium. (V). Aleurioconidium with penultimate conidiophore 

cell attached. (W). Globose, thick-walled propagules forming wet mounds in culture. (X). Vertical hyphal 

tower bearing pigmented chlamydospores. (Y). Pigmented chlamydospores. (Z). Propagules in mycangium 

of S. mikado. (A–F). Ex-holotype isolate CBS 141492 from S. shogun. (G–N). Ex-holotype isolate CBS 

141493 from S. shogun. (Q–Y). Ex-holotype isolate CBS 141494 from S. pubescens. All photos except A, 

G, Q by Nomarski interference microscopy of material stained with cotton blue. A, G, Q imaged with 

Epson 10000XL. Bar = 10 µm. 
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Isolate C3448 from S. mikado initially had colony morphology similar to that of S. 

pubescens isolates, but C3448 later differentiated into a slower-growing form with a 

reddish tint. Propagules in the mycangia of S. mikado were single or chained, sometimes-

branching and thallic-arthric (Fig. 4Z). 

Cultures had been obtained in 2002 from S. daimio, S. mikado, S. shogun, and S. 

tycon collected in Japan (Table 1). The cultures have since been lost, but partial to full 

ITS sequences from 2002 were available. The ITS sequences of the S. daimio, S. mikado, 

and S. shogun cultures grouped with sequences obtained from the fresher isolates from S. 

shogun (Fig. 3). Small one- or two-bp differences among the 2002 ITS sequences may be 

due to ambiguities or errors in older sequencing technology. The sequences from S. tycon 

isolates grouped with that of one of the S. shogun isolates (C3908) and the DNA 

extracted from the Russian S. tycon mycangium (Fig. 3). 

An ITS sequence provided by J. Skelton (U. Florida) from the spore mass oozing 

from the mycangium of a female S. eutomoides caught in Mu village, Chimbu Province, 

Papua New Guinea by J. Hulcr (U. Florida) was similar to the sequences of the Taiwan 

Scolytoplatypus spp., differing only in a two-bp deletion in the variable region of ITS1 

(Fig. 3). 

Remansus 

Galleries of R. mutabilis collected in Madagascar (Table 1) appeared to be 

recently-initiated and devoid of ambrosia growth. The DNA extracted from the 

mycangium contents of a female taken from one of the galleries yielded an ITS sequence 

that closely matched sequences of Ambrosiella (Fig. 3). This mycangium was full of 

arthric-thallic propagules that were solitary or in short, linear chains (Fig. 5C, D) and  
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were very similar to mycangium propagules of Ambrosiella (Harrington et al. 2014; 

Mayers et al. 2015, 2017). Isolations were unsuccessful from the desiccated galleries and 

from the mycangia of two other females. 

 

Figure 5. Mycangium of Remansus mutabilis and mycangium propagules of Ambrosiella remansi. (A). 

Cross-section of pronotal disk mycangium, showing mycangium wall (mw), reticulated pouches (rp), and 

fungal spores (fs). (B). Detail of mycangium wall, showing socketed seta (ss) on hollow cylindrical 

pedestal and reticulated cone (rc). (C). Propagules of A. remansi surrounding seta. (D). Propagules of A. 

remansi. All photos by Nomarski interference microscopy of BPI 910622, stained with cotton blue. (A). 

Bar = 100µm. (B-D) Bar = 10µm 
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Xyleborine beetles 

Isolations were made from several Xyleborini species in the Xylosandrus complex 

that were sympatric with the studied Asian Scolytoplatypus species. All of these 

Xyleborini had Ambrosiella symbionts, as expected (Mayers et al. 2015, 2017; Lin et al. 

2017). Two Japanese and one Taiwanese X. crassiusculus yielded isolates of A. roeperi 

(Fig. 3) (Harrington et al. 2014; Lin et al. 2017), and four Japanese X. germanus yielded 

isolates of A. grosmanniae (Fig. 3) (Mayers et al. 2015; Lin et al. 2017). Three 

unidentified Japanese females identified as Xylosandrus aff. germanus yielded isolates of 

a putative undescribed species (Ambrosiella aff. grosmanniae NRgro1) that was closely 

related to A. grosmanniae (Fig. 3), but the undescribed species had distinct culture 

morphology, formed concentric rings of mounded hyphae in culture, and it sporulated 

much more densely than A. grosmanniae. This may coincide with the cryptic diversity in 

X. germanus and its A. grosmanniae symbionts reported by Ito and Kajimura (2017). 

Two Japanese X. brevis, as well as one Japanese X. germanus, yielded isolates of another 

putative undescribed species (Ambrosiella aff. beaveri NRbea1) in the A. beaveri 

complex (Fig. 3). Members of this complex had been reported from X. brevis and several 

other beetle species in the Xylosandrus complex (Lin et al. 2017). Five Japanese 

Anisandrus apicalis yielded isolates with ITS sequences and morphology identical to A. 

catenulata (Fig. 3), which had been isolated from multiple species in the Xylosandrus 

complex (Lin et al. 2017), but this is the first report of its association with An. apicalis. 

Scolytoplatypodini mycangia 

Consistent with Schedl’s (1962) illustrations, all observed mycangia of 

Scolytoplatypodini were disc-shaped cavities just under the cuticle on the dorsal side of 

the pronotum that emptied through a central, circular pore on the dorsal side. Waxy 
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masses of fungal propagules in an unidentified matrix generally plugged the pores and 

oozed out when pressure was applied to the dissected mycangium. As seen in Schedl’s 

(1962) illustrations, the interior of Scolytoplatypus mycangia were lined with long setae 

that led towards the pore and presumably helped guide fungal propagules to exit. The 

morphology of these internal setae differed between African and Asian Scolytoplatypus 

species. The setae of African Scolytoplatypus species (S. fasciatus, S. rugosus, S. 

permirus) were of two types: shorter, thinner setae that grew directly from the sclerotized 

plates of the mycangium wall, and longer, thicker setae that grew from short, cone-

shaped sockets on the mycangium wall, as illustrated in the African species S. 

acuminatus (Schedl 1962). In contrast, Asian Scolytoplatypus species (S. pubescens, S. 

mikado, S. tycon) had only one type of setae, which were socketed on the apexes of tall, 

hollow, reticulated, conical towers that were extensions of the reticulated network of the 

mycangium wall, as illustrated in multiple Asian Scolytoplatypus species (Berger and 

Cholodkovsky 1916; Schedl 1962; Nakashima et al. 1987; Beaver and Gebhardt 2006). 

Mycangia of the rare and recently-described (Jordal 2013) genus Remansus had 

not been illustrated previously. The mycangium of the female R. mutabilis collected in 

Madagascar was a pronotal disk similar to that of Scolytoplatypus. However, its interior 

setae were of only one type, which were socketed on the apexes of tall, hollow, 

elongated, non-reticulated, cylindrical, and pigmented pedestals (Figs. 5A, B). 

Interspersed with these pedestals were tall, hollow, reticulated, conical towers (Fig. 5B) 

that did not support terminal setae but were otherwise similar to the reticulated cones 

supporting the interior setae of Asian Scolytoplatypus. The mycangium wall of R. 

mutabilis was composed of a large, reticulated network, between which hung more 
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finely-reticulated, semi-spherical pouches (Fig. 5A). This reticulated network was more 

similar to the reticulated mycangium walls of Asian Scolytoplatypus than the sclerotized 

plates of African Scolytoplatypus (Schedl 1962). Both the setal pedestals and reticulated 

cones of R. mutabilis appeared to be contiguous with this reticulated network. Fungal 

propagules were found throughout the mycangium lumen as well as in the semi-spherical 

pouches (Fig. 5A). 

Phylogenetic analyses 

We hypothesized that the mycangial fungi of the three Scolytoplatypodini 

lineages would form a novel monophyletic group within the Ceratocystidaceae. The 

recovered symbionts were all members of the Ceratocystidaceae, but they did not form a 

single monophyletic group. The ITS sequences of African Scolytoplatypus symbionts 

were related to Trypodendron (Xyloterini) symbionts (Phialophoropsis). Parsimony 

analysis of the Phialophoropsis-affiliated alignment produced four trees, including Fig. 1, 

with a consistency index of 0.9494 and differing only in branch lengths within 

Phialophoropsis. The African Scolytoplatypus symbionts formed a distinct sister group to 

Phialophoropsis, with good bootstrap support (Fig. 1). The ITS sequences of the 

mycangial symbionts of Asian Scolytoplatypus and R. mutabilis were more similar to 

Ambrosiella, and parsimony analysis of the Ambrosiella-affiliated alignment produced 84 

trees, including Fig. 3, with a consistency index of 0.7823 and differing only in the 

topology among the 2002 sequences from Japanese Scolytoplatypus symbionts. The 

Asian Scolytoplatypus symbionts formed a distinct sister group to Ambrosiella with good 

bootstrap support, but the symbiont of R. mutabilis grouped within Ambrosiella sensu 

stricto with good bootstrap support and near the A. beaveri complex with moderate 
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support (Fig. 3). New ITS sequences of Xyleborini symbionts were placed within 

Ambrosiella sensu stricto, as expected (Lin et al. 2017; Mayers et al. 2015, 2017). 

Multi-gene Bayesian analysis confirmed the sister relationships of African 

Scolytoplatypus symbionts with Phialophoropsis and Asian Scolytoplatypus symbionts 

with Ambrosiella, as well as the placement of the R. mutabilis symbiont with Ambrosiella 

sensu stricto, where it was placed as the first-diverging taxon (Fig. 6). Including 

Meredithiella, there were five distinct, well-supported clades of ambrosia fungi with high 

posterior probability, RAxML bootstrap, and parsimony bootstrap support values. The 

inferred relationships among genera in the Ceratocystidaceae were similar to those of 

previous analyses, with the ambrosia beetle symbionts, Huntiella, and three poorly placed 

species grouping separately from the other half of the family (de Beer et al. 2014, 2017). 

The placement of Huntiella within the ambrosia half of the family was somewhat 

ambiguous. The genus was positioned under a short internode with 0.98 posterior 

probability support, but this branch was observed to collapse to a polytomy when certain 

Huntiella taxa were added to or removed from analysis. The ambiguous phylogenetic 

placements of Bretziella fagacearum, Ceratocystis adiposa, and C. norvegica with 

respect to the ambrosia beetle symbionts were better resolved than in earlier studies (de 

Beer et al. 2014, 2017; Mayers et al. 2015, 2018). Ceratocystis adiposa was placed as 

sister taxon to Meredithiella with 1.0 posterior probability support, B. fagacearum 

formed a sister taxon to the Phialophoropsis/African Scolytoplatypus symbiont clade 

with moderate support, and C. norvegica was placed as sister taxon to the 

Ambrosiella/Asian Scolytoplatypus symbiont clade with moderate support. 
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Figure 6. Phylogenetic tree from Bayesian analysis of a six-gene dataset (18S rDNA, 28S rDNA, tef1-α, 

tub, mcm7, and rpl1) of ambrosia fungi and other representative of the Microascales. The family 

Ceratocystidaceae is indicated by a grey-shaded rectangle. Colored tags indicate the association of each 

ambrosial species with the mycangium types in the key. Isolate or specimen numbers indicate the Iowa 

State University collection (C or M), Westerdijk Fungal Biodiversity Institute (CBS), U.S. National Fungus 

Collections (BPI), the Belgian Co-ordinated Collections of Micro-organisms (MUCL), the International 

Collection of Microorganisms from Plants (ICMP), or the UAMH Centre for Global Microfungal 

Biodiversity (UAMH). Posterior probabilities from Bayesian inference (BI), bootstrap support values from 

1000-replicate maximum likelihood analysis in RAxML (ML), and bootstrap support values from 1000-

replicate maximum parsimony analysis in PAUP (MP) are indicated in box at left margin with lowercase 

letters indicating the associated branch. Branches with BI = 1.0, ML = 100, and MP = 100 support are 

labelled with an asterisk, and branches with BI = 1.0, ML ≥ 95, and MP ≥ 95 are indicated with thicker line 

weights. Posterior probability values ≥ 0.995 and < 1.0 are represented as “0.99,” bootstrap support values 

≥ 99.5 and < 100 are represented as “99,” and bootstrap support values < 50 are indicated with two hyphens 

(‘--‘). Bar = 0.1 estimated substitutions per site. 
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Both C. adiposa and C. norvegica were clearly placed outside of Ceratocystis sensu 

stricto but not accommodated by any currently-defined genera (de Beer et al. 2014, 2017; 

Mayers et al. 2015; Nel et al. 2017). Each of these species have no known close relatives, 

and they are biologically and morphologically distinct from each other and the ambrosia 

beetle symbionts.  

Taxonomy 

In recognition of their distinct morphological characteristics, and supported by 

clear phylogenetic separation from known taxa, two new genera are proposed for the 

symbionts of African and Asian Scolytoplatypus. The symbiont of Remansus mutabilis is 

described as a new species of Ambrosiella. Two new monotypic genera are created to 

accommodate the problematic non-ambrosial taxa C. adiposa and C. norvegica. 

Disclaimer: The novel taxa proposed in this chapter of the dissertation are not 

intended to represent validly published names under the International Code of 

Nomenclature for algae, fungi, and plants. 

 

WOLFGANGIELLA C. Mayers & T.C. Harr., gen. nov. 

MycoBank MB 824930. 

Etymology. Feminine. After entomologist Wolfgang Dietrich Schedl, who 

characterized the mycangia of Scolytoplatypus among other significant contributions to 

mycangium diversity. 

Irregular to spherical thallic-arthric conidia on branching hyphae that disarticulate 

singly or in chains. Ascocarps when present spherical, pigmented, non-ostiloate, 

containing fusiform to falcate ascospores. Associated with ambrosia beetles, including 

Scolytoplatypus in Africa and Madagascar. 
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Type species: Wolfgangiella franznegeri C. Mayers, T.C. Harr., & F. Roets, sp. 

nov. 

Wolfgangiella is most closely related to Phialophoropsis (Fig. 6), and its arthric-

thallic conidia are somewhat similar to the disarticulating cells observed in 

Phialophoropsis (Mathiesen-Käärik 1953). However, all studied Phialophoropsis spp. 

produce chained conidia from deep-seated phialides (Batra 1967; Mayers et al. 2015), 

which were not observed in Wolfgangiella. Cultures of the type species for Wolfgangiella 

also produce significantly less pigment than Phialophoropsis spp. 

Wolfgangiella franznegeri C. Mayers, T.C. Harr., & F. Roets, sp. nov.  (Figs. 2A–M) 

MycoBank MB 824932. 

Etymology. After the German botanist Franz Wilhelm Neger (1868–1923), an 

early pioneer in the study of the ambrosia beetle symbiosis. 

Typus. South Africa: Western Cape Province, Betty’s Bay, Harold Porter 

National Botanical Garden, 34°21'1.58"S, 18°55'37.03"E, from mycangium of 

Scolytoplatypus fasciatus caught in flight, 21 Jan 2017, F. Roets, holotype (dried culture, 

BPI 910639); ex-type living culture C4328 (CBS 144149). 

Colonies on malt yeast extract agar 5 – 25 mm after 7 days at 25° C, odor sweet, 

margin submerged, hyaline to olivaceous buff with olivaceous clumps, reverse buff to 

isabelline to pale mouse grey, surface growth aerial, white to pale olivaceous grey, with 

superficial white spherical sporodochia in clusters bearing tufts of conidiophores. 

Ascomata embedded in mounded mycelium, cleistothecious, spherical, brown, texture 

intricata, 28 – 142 µm in diameter at maturity, lacking necks or ostioles. Asci not 

observed. Ascospores 7 – 19 × 33 – 60 µm, thick-walled, fusiform to falcate. 
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Conidiophores 14 – 66 µm long, composed of branching, disarticulating chains of thallic-

arthric conidia. Conidia irregular to globose, 4.5 – 13 (32) × 6 – 16 (32) µm, detaching 

singly or in linear or branching chains.  

Other specimens examined. Madagascar: Andasibe-Mantadia National Park, 

ambrosia growth in gallery of Scolytoplatypus rugosus in Ocotea sp., May 2015, B. 

Jordal, BPI 910640. South Africa: Western Cape, Diepwalle Forest Station, propagules 

in mycangium of S. fasciatus in unidentified tree, November 2007, B. Jordal, sp2. 

Other cultures examined. South Africa: Western Cape Province, Betty’s Bay, 

Harold Porter National Botanical Garden, from mycangium of Scolytoplatypus fasciatus 

caught in flight, 21 Jan 2017, F. Roets, C4325. Western Cape Province, Betty’s Bay, 

Harold Porter National Botanical Garden, from mycangium of S. fasciatus caught in 

flight, 21 Jan 2017, F. Roets, C4326. Western Cape Province, Betty’s Bay, Harold Porter 

National Botanical Garden, from mycangium of S. fasciatus caught in flight, 21 Jan 2017, 

F. Roets, C4327. Western Cape Province, Betty’s Bay, Harold Porter National Botanical 

Garden, from mycangium of S. fasciatus caught in flight, 21 Jan 2017, F. Roets, C4329. 

Western Cape Province, Betty’s Bay, Harold Porter National Botanical Garden, from 

mycangium of S. fasciatus caught in flight, 21 Jan 2017, F. Roets, C4331. 

Notes. Wolfgangiella franznegeri was isolated from six of six females of S. 

fasciatus trapped in flight in South Africa, and it dominated a gallery of S. rugosus in 

Madagascar. S. fasciatus and S. rugosus are close relatives, but the former is only known 

from South Africa and the latter from a small area in Madagascar (Jordal 2013). ITS 

sequences from all sources were identical (Fig. 1). 
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Wolfgangiella madagascarensis C. Mayers, McNew, & T.C. Harr., sp. nov. (Figs.2N–T) 

MycoBank MB 824933. 

Etymology. After the country of origin, Madagascar. 

Typus. Madagascar: Ambohitantely Forest Reserve, ambrosia growth in gallery 

of Scolytoplatypus permirus in Ocotea sp. or Macaranga sp., May 2015, B. Jordal, 

holotype (BPI 910641). 

Conidiophores composed of branching, disarticulating chains of thallic-arthric 

conidia. Conidia irregular or globose to subglobose, 4 – 13.5 (17) µm in diameter, 

detaching singly or in chains. Growth in mycangium composed of irregular cells 3.5 – 7 × 

4.5 – 12.5 µm in size, solitary or in branched or unbranched chains. 

Other specimens examined: Madagascar: Ranomafana National Park, propagules 

in mycangium of Scolytoplatypus permirus caught in flight, 2012, B. Jordal, sp3. 

Andasibe-Mantadia National Park, ambrosia growth in gallery of S. permirus in Ocotea 

or Macaranga sp., May 2015, B. Jordal, M399. 

Notes. Wolfgangiella madagascarensis was observed in galleries from two 

locations in Madagascar and detected by ITS sequence analysis at another location, all 

associated with S. permirus, which is only known from Madagascar (Jordal 2013). The 

ITS sequence obtained from the mycangium contents differed by a two-base repeat in the 

first variable region compared to the sequences from galleries (Fig. 1). The DNA 

sequences of W. madagascarensis and W. franznegeri differed slightly in the ITS region 

(Fig. 1) and in the multi-gene alignment (one insertion in 18S rDNA, three substitutions 

in tef1-a, one insertion in the tub intron, and one substitution in mcm7). Aside from the 
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presence of ascomata and ascospores in W. franznegeri cultures, and two species of 

Wolfgangiella are morphologically similar. 

 

TOSHIONELLA C. Mayers & T.C. Harr., gen. nov. 

MycoBank MB 824934. 

Etymology. Feminine. After Toshio Nakashima, who contributed the majority of 

our previous knowledge on Asian Scolytoplatypus symbionts. 

Aleurioconidia terminal, thick-walled, globose, single or in basipetal chains, 

sometimes surrounded by a membranous sheath, on branching monilioid or simple 

conidiophores. Associated with ambrosia beetles, including Scolytoplatypus spp. in Asia. 

Sexual state unknown. 

Type species: Toshionella nipponensis C. Mayers, T.C. Harr, & H. Masuya, sp. 

nov. 

One or more members of this genus were previously reported from Asian 

Scolytoplatypus and treated as putative species of Ambrosiella (Nakashima et al. 1987, 

1992; Nakashima 1989; Kinuura et al. 1991; Kinuura 1995; Beaver and Gebhardt 2006). 

Toshionella is closely related to Ambrosiella (Fig. 6), and its conidiophores are similar, 

but its aleurioconidia are much larger. The phialidic conidiophores reported in 

Ambrosiella (Lin et al. 2017; Mayers et al. 2015, 2017) were not observed in Toshionella. 

The thin membranous sheath observed around chains of aleurioconidia (Figs. 4H, S, T) 

has been reported in A. cleistominuta (Mayers et al. 2017) and C. adiposa (Hutchinson 

1939; Bhat 1972; Hawes and Beckett 1977a, 1977b). Though rarely, Toshionella 

aleurioconidia sometimes disarticulate with the penultimate conidiophore cell attached 
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(Figs. 4E, J, V), as is common in Ambrosiella and Meredithiella (Harrington et al. 2014; 

Mayers et al. 2015, 2018). All Toshionella cultures produced wet and gooey mounds of 

thick-walled, globose to irregular, hyaline cells (Figs. 4F, N W), which may be the 

“sprout cells” previously reported forming a “slimy layer” in galleries of Scolytoplatypus 

spp. (Nakashima 1989, Beaver and Gebhardt 2006). 

Toshionella nipponensis C. Mayers, T.C. Harr, & H. Masuya, sp. nov.  (Figs. 4A–F) 

MycoBank MB 824935. 

Etymology. After the country of origin, Japan. 

Typus. Japan: Akita prefecture, Tazawako, from mycangium of emerging 

Scolytoplatypus shogun, July 2014, H. Masuya, holotype (dried culture, BPI 910635); ex-

type living culture C3904 (CBS 141492). 

Colonies on malt extract yeast agar 32 – 55 mm after 7 days at 25° C, surface 

growth white, fluffy in patches, later covering surface and becoming chalky, pale 

olivaceous to olivaceous grey, reverse grey olivaceous to olivaceous black, becoming 

dark slate blue, margin hyaline, becoming greenish black. In older cultures, irregular buff 

sporodochia on surface, sometimes bearing red liquid drops, later center growth thick, 

dense, raised, and red-brown. Conidiophores 8.5 – 35 µm long, single- or multiple-celled, 

hyaline becoming red-brown, branched, composed of thick-walled monilioid cells, 

bearing terminal aleurioconidia, conidiophore cells later becoming thick-walled and 

disarticulating into single cells. Aleurioconidia hyaline becoming faintly red-brown, 

globose to subglobose, ovoid, 17.5 – 25.5 × 18 – 26 µm, generally wider than tall, often 

flat on bottom, borne singly or in chains, terminally, from monilioid conidiophores, 

terminally or intercalary on simple hyphae, or rarely directly from the side of 
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conidiophore. In older cultures, thick-walled cells presumed to be aleurioconidia 

accumulate in moist mounds on the culture surface, globose to ellipsoidal, thick-walled, 7 

– 25 µm in diameter. 

Other cultures examined: Japan: Akita prefecture, Tazawako, from mycangium 

of Scolytoplatypus shogun, July 2014, H. Masuya, C3905. Akita prefecture, Tazawako, 

from mycangium of S. shogun, July 2014, H. Masuya, C3906. Akita prefecture, 

Tazawako, from mycangium of S. shogun, July 2014, H. Masuya, C3907. Iwate 

prefecture, Hachimantai, from mycangium of S. shogun, 7 July 2014, H. Masuya, C4064. 

Notes. T. nipponensis was isolated from five S. shogun females in Japan, and the 

cultures had an identical ITS sequence that was nearly identical to those obtained from 

Japanese S. daimio, S. mikado, and S. shogun isolates in 2002 (Fig. 3). The fungus 

illustrated in galleries of Japanese S. daimio, S. mikado, and S. shogun (Nakashima et al. 

1987, 1992; Nakashima 1989; Kinuura et al. 1991; Kinuura 1995) and informally 

described by Nakashima et al. (1987) is probably T. nipponensis. An atypical isolate from 

S. shogun that differed in phenotype, DNA sequences, and culture morphology is 

described below as a separate species. 

Toshionella transmara C. Mayers, T.C. Harr., & H. Masuya, sp. nov.  (Figs. 4G–P) 

MycoBank MB 824936. 

Etymology: After Latin transmara (adj) ‘sea-crossing’, as it was detected from 

both sides of the Sea of Japan. 

Typus. Japan: Iwate prefecture, Hachimantai, from mycangium of 

Scolytoplatypus shogun, June 2015, H. Masuya, holotype (dried culture, BPI 910638); 

ex-type living culture C3908 (CBS 141493). 
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Colonies on malt extract yeast agar 40 – 63 mm after 7 days at 25° C, surface 

growth superficial, greyish sepia to olivaceous grey, covered in randomly dispersed 

superficial, spherical, white to off-white sporodochia 1 – 1.2 mm in diameter, distributed 

randomly, in concentric rings, or clustered around site of transfer, reverse greenish black, 

margin greenish black, aerial hyphae absent. Conidiophores 8 –40 um long, single- or 

multi-cellular, hyaline, branched, composed of thick-walled monilioid cells, bearing 

terminal aleurioconidia. Conidiophore cells later becoming thick-walled, disarticulating 

into single cells.  Aleurioconidia hyaline, thick-walled, globose to subglobose, ovoid, 

(8.3) 14 – 18 × (8.5) 14 – 19 µm, generally wider than tall, often flat on bottom, borne 

singly or in chains, terminal on monilioid conidiophores or on single-celled side 

branches, or rarely directly from the side of conidiophores. Thick-walled cells presumed 

to be aleurioconidia occasionally accumulate in moist mounds on the culture surface, 

globose to ellipsoidal, thick-walled, 10.5 – 30 µm in diameter. Thallic-arthric conidia 

thick walled, 9 – 13.5 (16) × 11 – 17 (19.5) µm, usually ellipsoidal to globular, borne in 

branching monilioid chains on the surface of mature sporodochia, disarticulating singly 

or in chains. Mycangial growth of branching, thallic-arthric cells, 4.5 – 10 × 5 – 14 µm, 

solitary or in chains. 

Other specimens examined: Russia: Vladivostok, propagules in mycangium of 

Scolytoplatypus tycon caught in flight, July 2008, B. Jordal, sp1. 

Notes. This species is closely related to T. nipponensis (Fig. 3) but can be 

differentiated by its faster rate of growth, scattered spherical sporodochia, and lack of 

chalky white surface growth. The single living representative (C3908 = CBS 141493) 

was isolated from S. shogun in Japan, but nearly-identical ITS sequences were obtained 
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from the mycangium of a female S. tycon caught in Vladivostok, Russia (sp1) and three 

cultures from Japanese S. tycon sequenced in 2002 (Fig. 3). Nakashima et al. (1992) may 

have illustrated T. transmara in galleries of Japanese S. tycon. 

Toshionella taiwanensis C. Mayers, T.C. Harr., & H.H. Shih. sp. nov.  (Figs. 4Q–Z) 

MycoBank MB 824937. 

Etymology. After the country of origin, Taiwan. 

Typus. Taiwan: Kaohsiung municipality, Douna, from Scolytoplatypus pubescens 

caught in flight, February 2014, H. Shih, holotype (dried culture, BPI 910637); ex-type 

living culture C3687 (CBS 141494). 

Colonies on malt extract yeast agar (22) 40 – 53 mm after 7 days at 25° C, reverse 

greenish black, margins hyaline to buff, submerged, becoming white, dense, raised, fruity 

smell at 5 days, somewhat fading by 14 days, covered with a dense white to olivaceous 

grey carpet of aerial mycelium and conidiophores. Subsurface hyphae visible beneath the 

dendroid margin of surface growth, deeply pigmented with diffusible pigment rarely 

extending beyond surface growth, deep brown to greenish black. Conidiophores 15 – 115 

µm long, hyaline or red-brown, branched, composed of thick-walled monilioid cells or 

thin-walled irregular cells, produced densely across the entire surface of the culture, 

bearing terminal aleurioconidia, conidiophore cells developing into thick-walled 

chlamydospores. Aleurioconidia hyaline, thick-walled, globose to subglobose, ovoid, 

13.5 – 23 × 12.5 –22 µm, generally wider than tall, often flat on bottom, produced 

terminally, singly or in chains, on long monilioid conidiophores or single-celled side 

branches or directly on simple hyphae. Chlamydospores of two types, borne terminally 

on branching, aerial, erect towers of simple hyphae, thick-walled, globose to subprolate, 
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obovoid, deeply pigmented, 15 – 16 × 15.5 – 18 µm, generally taller than wide; or 

ellipsoidal to globular, lightly red-brown, thick-walled, disarticulating singly or in chains, 

borne in branching monilioid chains. Thick-walled cells (aleurioconidia) in moist mounds 

on the surface of old cultures, globose to ellipsoidal, thick-walled, 10.5 – 26.5 µm in 

diameter. Mycangial growth branching, thallic-arthric, of thick-walled cells, 3.5 – 8 × 4.5 

– 11.5 µm, solitary or in chains.  

Other cultures examined: Taiwan: Kaohsiung municipality, Jingdashan, from 

Scolytoplatypus pubescens caught in flight, February 2014, H. Shih, C3688. Lienhuachih, 

from S. mikado caught in flight, Aug 2014, C. Wuest, C3448 (dried culture BPI 910636; 

living culture CBS 141495). 

Other specimens examined: Taiwan: Kaohsiung municipality, Lienhuachih, 

propagules in mycangium of Scolytoplatypus mikado caught in flight, June 2013, H. Shih, 

M304. Lienhuachih, propagules in mycangium of S. mikado in Cinnamomum sp., June 

2013, H. Shih, M305. 

Notes. This new species is associated with both S. pubescens and S. mikado in 

Taiwan and is related to the Japanese Toshionella species (Fig. 3). Sequences obtained in 

2002 from Japanese S. mikado were of T. nipponensis rather than T. taiwanensis, 

implying geographic rather than species-specific distribution of the two species (Fig. 3). 

Toshionella taiwanensis can be differentiated from the Japanese Toshionella by its dense, 

fluffy surface growth and the presence of upright, branching aerial towers bearing 

terminal, pigmented chlamydospores (Figs. 4X, Y), which are unique among the studied 

ambrosia fungi but similar to the aleurioconidia produced by species of Ceratocystis 

sensu lato (Paulin-Mahady et al. 2002). The fungus isolated from S. pubescens in Taiwan 
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by Lin (2016) and given the provisional name ‘Ambrosiopsis globosa’ is probably T. 

taiwanensis. The isolate from S. mikado (C3448 = CBS 141495) initially resembled the 

two isolates from S. pubescens, but C3448 later grew more slowly (32 –36 mm after 7 

days at 25° C with a maximum growth diameter of 63 – 67 mm) and produced a 

diffusible red-brown pigment that was not observed in the other isolates. The changed 

culture also lacked fluffy surface growth, instead forming conidiophores in loose tufts 

across the surface and below the surface of the agar. 

 

AMBROSIELLA Brader ex Arx & Hennebert emend, T.C. Harr., Mycotaxon 111: 354. 

2010. 

Type species: Ambrosiella xylebori Brader ex Arx & Hennebert. 

Ambrosiella remansi C. Mayers & T.C. Harr., sp. nov.    (Figs. 5C, D) 

MycoBank MB 824938. 

Etymology. After Remansus, the genus from which the only known specimen was 

associated. 

Typus. Madagascar: Andasibe-Mantadia National Park, propagules in 

mycangium of female Remansus mutabilis, May 2015, B. Jordal, holotype (BPI 910622). 

Growth in mycangium composed of thallic-arthric cells 4 – 10 × 6 – 13 µm in 

size, globose to irregular in shape, single or in chains of two or more cells. 

Notes. This species was found in the mycangium of R. mutabilis, the type species 

for the genus Remansus, which is only known from Madagascar (Jordal 2013). The ITS 

sequence obtained from this single specimen places it with Ambrosiella (Fig. 3), and the 

multigene phylogeny places the fungus as an early-diverging member of Ambrosiella 
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(Fig. 6). Though its conidial state is unknown, the mycangial growth of R. remansa is 

identical to the non-branched, thallic-arthric mycangial propagules of Ambrosiella 

(Harrington et al. 2014; Mayers et al. 2015, 2017) and unlike the sometimes-branching 

mycangial growth of Toshionella. The rarity of Remansus specimens (Jordal 2013) 

precludes further study at this time, but the novelty of the discovery as the first 

Ambrosiella sp. not associated with a host in the Xylosandrus complex warrants the 

naming of A. remansi as a new species. 

 

CATUNICA C. Mayers & T.C. Harr., gen. nov. 

MycoBank MB 824939. 

Etymology. Feminine. An arbitrary construction based on the Latin catena (n), 

chain; and tunica (n), tunic/membrane. 

Perithecial bases globose, black, superficial. Perithecial necks long, black. 

Ostiolar hyphae hyaline to brown, divergent. Asci not observed. Ascospores hyaline, 

half-moon-shaped, sometimes with a sheath. Conidiophores phialidic, hyaline to brown, 

simple, producing terminal conidia. Conidia variable: hyaline to brown-pigmented, 

ovoid, truncate, thin and smooth-walled to verrucose, becoming dark brown to black, 

globose, thick-walled, ornamented with conspicuous papillae, in long chains, often 

enveloped by a brown membranous sheath, detaching in chains, with or without sheath. 

Type species: Catunica adiposa (Butler) C. Mayers & T.C. Harr. 

The only known species of the genus, C. adiposa is a causal agent of sugar cane 

rot (Butler 1906, Sartoris 1927), has been implicated in human illness (Agarwal et al. 

2014), and has been isolated from Prunus (Paulin-Mahady et al. 2002), Pinus (Talbot 
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1956), air (e.g. CBS 138.34), books (e.g. IMI 21285), and other substrates. Catunica has 

distinctive variation in conidium morphology ranging from typical barrel-shaped conidia 

from deep-seated phialides (endoconidia) to thick-walled, dark, papillae-ornamented 

conidia (aleurioconidia). These conidial types were referred to as phialoconidia and 

chlamydospores by Nag Raj and Kendrick (1975). We agree with other authors (Butler 

1906; Sartoris 1927; Davidson 1935; Moreau 1952; Hunt 1956; Talbot 1956; Uphadhyay 

1981) that both types of spores are produced from common conidiophores and change 

over time. It may produce the longest perithecium necks in the family (Malloch and 

Blackwell 1993) and also produces distinctive, half-moon-shaped ascospores with 

gelatinous sheaths. The phylogenetic position of C. adiposa is unique and distinct (Fig. 

6), and its relationship to Meredithiela spp., which are obligate symbionts of ambrosia 

beetles, is difficult to reconcile. 

Catunica adiposa (E.J. Butler) C. Mayers & T.C. Harr., comb. nov.     (Fig. S1) 

MycoBank MB 824940. 

Etymology: After the “fatty substance” in which the ascospores are suspended 

(Butler 1906). 

Basionym: Sphaeronema adiposum E.J. Butler, Mem. Dept. Agric. India, Bot. 

Ser. 1: 40 (1906). 

≡ Ceratostomella adiposa (E.J. Butler) Sartoris, J. Agric. Res. 35: 585 (1927). 

≡ Ophiostoma adiposum (E.J. Butler) Nannf., In Melin & Nannf., Svenska 

Skogsv.-Fören. Tidskr. 32: 408 (1934). 

≡ Endoconidiophora adiposa (E.J. Butler) R.W. Davidson, J. Agric. Res. 50: 802 

(1935). 
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≡ Ceratocystis adiposa (E.J. Butler) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 

17: 22 (1952). 

= Ceratostomella major J.F.H. Beyma, Zentrabl. Bakteriol., 2. Abt. 91: 348 

(1935). 

≡ Ophiostoma majus (J.F.H. Beyma) Goid., Boll. Staz. Patol. Veg. Roma 15: 158 

(1935). 

≡ Ceratocystis major (J.F.H. Beyma) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 

17: 22 (1952). 

Typus: India: Bihar, Champaran, Seeraha, on Saccharum officinarum, 30 October 

1903, E.J. Butler lectotype (HCIO 3531). 

Descriptions: Butler (1906); Sartoris (1927); Davidson (1935); Moreau (1952); 

Hunt (1956); Talbot (1956); Nag Raj and Kendrick (1975); Uphadhyay (1981). 

Notes. Butler (1906) did not designate a type specimen when describing 

Sphaeronema adiposum, but he founded Herbarium Cryptogamae Indiae Orientalis 

(HCIO) in 1905, and into it he deposited a specimen under the name S. adiposum, HCIO 

3531. This specimen consists of an infected section of S. officinarum with red-brown 

streaks and dark black fungal growth consistent with his 1906 descriptions, and its 

collection info of 1903 in Bihar matches his report of his first discovery of the fungus 

(personal communication, HCIO). The specimen is available in HCIO, which is 

maintained by the Division of Plant Pathology, ICAR-Indian Agricultural Research 

Institute, New Delhi, India. As this is the only known specimen to be directly identified 

by Butler as S. adiposum, we have designated it as lectotype for the species. The only 

specimen previously cited as holotype for C. adiposa is IMI 21355, by Nag Raj and 
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Kendrick (1975).  This specimen, which consists of dried cultures isolated from 

sugarcane in India on an uncertain date and prepared slides, was deposited in 1927 by W. 

McRae, who was then the Imperial Mycologist and colleague of Butler. A letter by 

McRae accompanying the specimen, and presumably explaining its origin, is lost 

(personal communications, CABI and Royal Botanic Gardens, Kew). Another specimen, 

IMI 21285, includes envelopes labelled “type” and “extype”, but this specimen was never 

published as type material and was collected in England decades after the species 

description (personal communications, CABI and Royal Botanic Gardens, Kew). We did 

not examine the holotype, but six isolates on hand of C. adiposa (Table S1) displayed the 

characters of C. adiposa (Fig. S1) as illustrated by Butler (1906) from his specimens, as 

well as those illustrated by Hunt (1956) and Nag Raj and Kendrick (1975), who both 

examined IMI 21355. The ITS sequences of the six isolates, from six different countries, 

were identical (Fig. 3). A draft genome is available for C. adiposa CBS 136.34 

(Wingfield et al. 2016a). 

 

SOLALOCA T.C. Harr., gen. nov. 

MycoBank MB 824941. 

Etymology. Feminine. An arbitrary construction based on the Latin sola (adj), 

‘alone/by oneself’, and locus (n), ‘place/specific location’. 

Perithecial bases and necks black. Ostiolar hyphae hyaline, convergent. Asci not 

observed. Ascospores hyaline, thick-walled, cylindrical to rarely curved. Conidiophores 

not observed. 

Type species: Solaloca norvegica (J. Reid & Hausner) T.C. Harr. 
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Solaloca norvegica was described from seven isolates from galleries of Ips 

typographus in Picea abies in Norway in 1974, but the new species was not described 

until 2010 (Reid et al. 2010). Conidia were not described, and we failed to find conidia in 

the ex-type strain C3124 (UAMH 9778, =UAMH 11187). Phylogenetically, Solaloca is 

placed within the family Ceratocystidaceae (Fig. 6) but with no obvious relatives. In 

morphology (perithecia and ascospores) and habitat, it resembles the conifer-inhabiting 

members of Endoconidiophora (Reid et al. 2010), and it shares no obvious characters 

with ambrosia beetle symbionts. 

Solaloca norvegica (J. Reid & Hausner) T.C. Harr., comb. nov. 

MycoBank MB 824942. 

Etymology: After the country of origin, Norway (Reid et al. 2010). 

Typus: Norway: Ostfold, near Sandem, from gallery of Ips typographus in Picea 

abies, September 1973, J. Reid, holotype (dried culture and ex-type living culture under 

same accession, UAMH 11187). 

Basionym: Ceratocystis norvegica J. Reid & Hausner, Botany 88: 977 (2010). 

Description: See Reid et al. (2010). 

Notes. We examined culture UAMH 9778 (a duplicate of the holotype/ex-type 

UAMH 11187) and found its characters to be consistent with the original description. 

Divergence date estimates 

The topology of the Ceratocystidaceae tree from the BEAST analysis (Fig. S2) 

was identical to that of the MrBayes tree (Fig. 6). The estimated crown age for the 

Ceratocystidaceae at 81.2 Ma was somewhat older than the estimate of 61.9 Ma by van 

der Nest et al. (2015), who used similar secondary analysis and calibration points but 

fewer taxa. The clade accommodating all ambrosia fungi in the family (Fig. 7, node 1)  
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had a mean crown age of 63.2 Ma, older than estimates of the origin of the pronotal disk 

mycangium at 34.4 Ma (Gohli et al. 2017) and 52 Ma (Pistone et al. 2018). The estimated 

age of the split between Wolfgangiella and Phialophoropsis (Fig. 7, node 2) was 31.8 

Ma. There was insufficient divergence to obtain a reasonable crown age for 

Wolfgangiella. The mean crown age of Phialophoropsis was estimated at 5.3 Ma,  

 

Figure 7. Estimated divergence dates of ambrosia fungi in the Ceratocystidaceae compared to the origins 

of the mycangia of their associated ambrosia beetle hosts. (A). A portion of the dated phylogenetic tree in 

Figure S2. Genera with more than one species representative are indicated by triangles, with the point of 

the triangle at the crown age of the genus.  Colored triangles and tags indicate that the clade is associated 

with the indicated mycangium type in the key. Horizontal node bars indicate 95% HPD (highest posterior 

density) range. (B). Bars below the tree represent estimated divergence dates for each of the indicated 

mycangium types. Silhouettes showing the location of each mycangium (white) inside the beetles’ bodies 

(black) are included to the left of each bar. For the paired mycangia (prothoracic coil and prothoracic 

pleural) only one of the paired mycangia are shown. Dotted vertical lines indicate mean crown divergence 

estimates by Gohli et al. (2017), solid vertical lines indicate estimates by Pistone et al. (2017). The section 

of the bar between estimates from the two studies, where both available, is hatched. Horizontal scale is in 

millions of years (Ma). 
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younger than the estimated origin of the prothoracic pleural mycangium at 11.2 ma 

(Gohli et al. 2017) and 9.0 ma (Pistone et al. 2017) (Fig. 7).  

The mean estimated age of the common clade containing ambrosia fungi with 

aleurioconidia (Fig. 7, node 3) was 47.2 Ma, in between the estimates for origin of the 

pronotal disk mycangium at 34.4 Ma and 52 Ma (Gohli et al. 2017, Pistone et al. 2018).  

The mean crown age of Meredithiella was 17.2 Ma, which closely matched an estimated 

divergence date of 16.4 Ma for the prothoracic coil mycangium of Corthylus (Gohli et al. 

2017). The estimated age of the split between Toshionella and Ambrosiella (Fig. 7, node 

4) was 30.9 Ma. The mean crown age of Ambrosiella, including A. remansi (Fig. 7, node 

5), was 18.5 Ma. The mean crown age of Ambrosiella species associated with ambrosia 

beetles in the Xylosandrus complex was 12.4 Ma, younger than estimates for the 

Xylosandrus complex at 22.5 Ma (Gohli et al. 2017) and for all of tribe Xyleborini at 15 

Ma (Pistone et al. 2017) (Fig. 7).  

Discussion 

This study is the first to fully characterize the mycangia and mycangial symbionts 

of the ambrosia beetle tribe Scolytoplatypodini.  It is also the most comprehensive 

molecular phylogeny of ambrosia fungi in the Ceratocystidaceae and the first to compare 

the evolutionary history and biogeography of ambrosia fungi in the Ceratocystidaceae to 

the mycangia they inhabit. Two novel genera, Wolfgangiella and Toshionella, were 

needed to accommodate the symbionts of Scolytoplaypus, bringing the number of 

symbiotic genera in the Ceratocystidaceae to five: Ambrosiella, Meredithiella, 

Toshionella, Phialophoropsis, and Wolfgangiella.  
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Scolytoplatypodini mycangia and setae 

Seven Asian Scolytoplatypus species reportedly do not have pronotal mycangium 

openings (Beaver and Gebhardt 2006), and Bright (1994) noted that in one of these 

species (S. reticulatus) the females instead have a smooth, circular spot in place of the 

mycangium opening. These species are unusual and should be examined further to 

determine if they represent a monophyletic group with a single loss of the mycangium, if 

they utilize alternative methods of transporting their symbionts or carry alternative 

primary symbionts, and if some vestigial remnant of the mycangium still exists in the 

pronotum under the smooth circular spot. If confirmed, the absence of mycagia in these 

species would represent the only known losses of a mycangium in an ambrosia beetle 

lineage, except for a possible analogous case in a subclade of Camptocerus that reverted 

to phloem feeding (Smith 2013). 

All other females of the Scolytoplatypodini share a common mycangium type that 

may be the oldest among Scolytine ambrosia beetles, perhaps emerging as early as 52 Ma 

(Pistone et al. 2018). The large, conspicuous, disc-shaped mycangium and associated 

internal setae were first illustrated by Berger and Cholodkovsky (1916), but Nunberg 

(1951) was the first to propose that the organ might be used to grow and transmit an 

ambrosia fungus. The mycangium is filled with fungal propagules, surrounded with 

abundant secretory gland cells, and lined with interior setae that help guide the 

propagules to exit through a circular pore on the dorsal pronotum (Schedl 1962; Beaver 

and Gebhardt 2006). The gross mycangium morphology of the three lineages in the tribe 

(African Scolytoplatypus, Asian Scolytoplatypus, and Remansus) is similar, though the 

pore is located more anteriorly in Remansus (Jordal 2013) and the mycangia differ in 

their walls and interior setae. The inner mycangium walls of Asian Scolytoplatypus 
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(Beaver and Gebhardt 2006) and Remansus are heavily reticulated, but the mycangium 

wall of African Scolytoplatypus is simpler and composed of sclerotized cuticular plates 

(Schedl 1962). In African species such as S. acuminatus (Schedl 1962), and confirmed by 

this study in S. fasciatus, S. permirus, and S. rugosus, the setae are of two types: most are 

short, thin, and grow directly from the sclerotized mycangium wall, but some of the setae 

are longer, thicker, and socketed into squat cones in the wall of the mycangium and reach 

through the mycangia pore. In contrast, Asian species such as S. shogun (Schedl 1962, 

Nakashima et al. 1987), S. daimio and S. mikado, (Schedl 1962), S. blandfordi (Beaver 

and Gebhardt 2006), and S. tycon (Berger and Cholodkovsky 1916) have setae that are 

socketed on the apices of tall, reticulated cones rising from the reticulated mycangium 

wall, and the setae reach the mycangial pore. Interestingly, the mycangium of R. 

mutabilis had a third form of mycangial setae that are socketed terminally on hollow 

cylindrical pedestals, which may be homologous with the squat conical sockets that 

support the longer setae in African Scolytoplatypus. In the Remansus mycangium, 

reticulated finger-like cones also project into the mycangium and appear similar to the 

reticulated cones of Asian Scolytoplatypus, but these cones lack terminal setae in 

Remansus. In both Remansus and Asian Scolytoplatypus, the reticulated cones appear to 

contain active gland cells; the cones stain deeply with cotton blue, implying active 

cytoplasm, and Berger and Cholodkovsky (1916) illustrated cells with nuclei filling the 

spaces between the reticulations. Alternatively, the cones could serve as channels for 

glandular secretions from the mass of gland cells outside the mycangium wall (Schedl 

1962). In either case, the cones may help penetration of secreted nutrients into the dense 

mass of fungal propagules in the mycangium. Additionally, the reticulated cones may fill 
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space in the mycangium so that a smaller fungal mass is required to fill the mycangium 

and, thus, the spore mass would be more easily squeezed out of the mycangium opening. 

A simple movement of the beetle’s head and thorax muscles push the spore mass out of 

the opening (Schedl 1962).  

The disc-shaped mycangia of the three Scolytoplatypodini lineages clearly have a 

single evolutionary origin. The similarly of mycangium walls and the highly developed 

reticulated cones in Remansus and Asian Scolytoplatypus, and their closely-related 

symbionts (Ambrosiella and Toshionella), might be explained by African Scolytoplatypus 

being a sister group to the other two lineages as implied by K. Schedl (1975). However, 

phylogenetic analyses (Jordal 2013, 2018; Gohli et al. 2017; Pistone et al. 2018) place 

Remansus sister to a monophyletic Scolytoplatypus. Under this assumption, Asian 

Scolytoplatypus and Remansus either: (1) independently evolved the complex reticulation 

of their mycangium walls and their tall, reticulated cones; or (2) the African lineage of 

Scolytoplatypus underwent a reduction in complexity of the mycangium wall and lost the 

reticulated cone structures. Further, the Toshionella and Ambrosiella symbionts 

associated with the mycangia with reticulated cones are closely related and form large, 

lipid-filled aleurioconidia and conidiophore cells, which are believed to be superior 

adaptations for insect grazing (Harrington et al. 2014; Mayers et al. 2015). In contrast, the 

Wolfgangiella ambrosia growth in the galleries of African Scolytoplatypus is less 

luxuriant and provides smaller propagules for insenct grazing. Species of the African 

lineage of Scolytoplatypus are the only extant members of Scolytoplatypodini in the 

purported Afro-tropical ancestral origin of the tribe (Pistone et al. 2017), while the Asian 

species are strictly Asian and Remansus is known only from Madagascar. Thus, the 



189 

 

relatedness of the fungal symbionts of Remansus and Asian Scolytoplatypus, the derived 

nature of their ambrosia growth and mycangia, and their proposed migrations out of 

Africa appear to be in conflict with phylogenetic analyses of the tribe. 

Mycangium morphology is often underappreciated in taxonomic treatments of 

ambrosia beetles. The mycangium setae in Scolytoplatypus are one of several clear 

morphological traits separating the Asian and African clades (Schedl 1975; Beaver and 

Gebhardt 2006; Jordal 2013) and support a separate genus for the Asian clade (the 

African S. permirus is the type species of Scolytoplatypus). The subgenera Spongocerus 

and Taeniocerus were previously proposed for Japanese Scolytoplatypus spp. and are 

available, but they were not generally accepted (Beaver and Gebhardt 2006) and were 

synonymized with Scolytoplatypus by Wood (1983). 

Fungal farming represents a major evolutionary feature in the Scolytinae (Gohli et 

al. 2017), and mycangia play an essential role in the upkeep, survival, and transmission of 

vital symbiotic fungi, which are themselves likely under appreciable evolutionary 

pressure. Mycangium-associated gland cells secrete nutrients that support the active 

growth of mycangium propagules (Schneider 1975), and mycangia represent a significant 

energy investment for the long-term maintenance of domesticated fungal cultivars. 

Reticulated mycangium walls such as those in some Scolytoplatypodini are a common 

feature of large and complex mycangia that harbor Ceratocystidaceae. Reticulated walls 

have been observed in the mycangia of Trypodendron (Francke-Grosmann 1956; 

Schneider and Rudinsky 1969) and Corthylus (Giese 1967; Mayers et al. 2018), and in 

Cnestus mutilatus the spaces between the reticulations of the mesonotal mycangium are 

filled with glandular cells (Stone et al. 2007). In Trypodendron the mycangium is 
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surrounded by gland cells that presumably secrete through the openings of the reticulated 

walls (Schneider and Rudinsky 1969). Thus far, all genera of ambrosia beetles with 

reticulated mycangial walls have been associated with symbionts in the 

Ceratocystidaceae. 

Evolution of ambrosia fungi in the Ceratocystidaceae 

Vanderpool et al. (2017) proposed that Raffaelea (Ophiostomatales) symbionts 

were first domesticated by the Platypodid tribe Tesserocerini at about 86 Ma, and 

Raffaelea spp. were then horizontally acquired by multiple ambrosia beetle lineages in 

the Scolytinae beginning around 48–60 Ma. These Scolytid beetles presumably 

developed mycangia from nooks and crannies of the beetles’ exoskeleton that collected 

fungal spores, especially in parts of the body near secretory glands (such as those 

providing lubrication for moveable body parts) that could produce nutrients for the fungi 

to grow in the mycangia (Francke-Grosmann 1967; Schneider 1975). New Scolytid 

fungus-farming lineages and novel mycangia were likely facilitated by the availability of 

Raffaelea cultivars, and their mycangia could have led to the domestication of other 

superior ambrosia fungi, such as those in the Ceratocystidaceae.  

Species of Raffaelea generally freely associate with different types of mycangia in 

unrelated ambrosia beetle species in different tribes or subfamilies (Harrington et al. 

2010, 2014; Vanderpool et al. 2017; Skelton et al. 2018), and there can be several 

Raffaelea spp. within the mycangia of a single beetle (Harrington and Fraedrich 2010; 

Harrington et al. 2011). This does not appear to be the case for Ceratocystidaceae 

symbionts, which co-evolved with the mycangia of their ambrosia beetle farmers. The 

fungus-host beetle relationships in Ambrosiella were hypothesized to be species-specific 

(Mayers et al. 2015), but this is probably not strictly the case (Lin et al. 2017; Mayers et 
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al. 2018). Instead, the genera of Ceratocystidaceae associated with ambrosia beetles 

appear to be associated with specific mycangium types, but species can be traded among 

beetle species with the same mycangium type. Also, specific ambrosia beetles are not 

necessarily associated with particular species of ambrosia fungi, since S. mikado carries 

T. nipponensis in Japan but T. taiwanensis in Taiwan. As pointed out by Bateman et al. 

(2015), Hulcr et al. (2017), and Skelton et al. (2018), most studies have been with 

introduced populations of Xyleborini, and the introduced populations appear to have 

specific mycangial symbionts. However, the sampled species in our study were all from 

their native ranges, and species-specific associations were less apparent. 

Several points of evidence suggest that there were multiple origins of ambrosia 

beetle symbiosis in the Ceratocystidaceae. The Scolytoplatypodini must have acquired 

Ceratocystidaceae in at least two separate evolutionary events, and other ambrosial 

genera in the family may or may not have been novel domestications. 

Phylogenetic analyses show that the ambrosial genera are interspersed with non-

ambrosial genera Huntiella, Bretziella, Catunica, and Solaloca. These taxa include 

wound colonizers (Huntiella), plant pathogens (B. fagacearum and C. adiposa), and a 

bark beetle associate with an unknown ecological role (S. norvegica) (Reid et al. 2010; de 

Beer et al. 2014). The five ambrosial genera share highly-derived and apparently 

convergent traits conducive to their role as obligate ambrosia beetle symbionts, including 

large, lipid-filled conidia that are sensitive to desiccation, easily-fragmented 

conidiophores, dense ambrosia growth in galleries, and dimorphic mycangial forms. 

Multiple reversions from such derived traits back to a free-living lifestyle would appear 

highly unlikely (Farrell et al. 2001), and such reversions have not been observed in 
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Raffaelea (Vanderpool et al. 2017). The non-ambrosial taxa all form the long-necked 

perithecia and stick ascospore masses that are found throughout the family, which 

facilitate dispersal on insect exoskeletons (Malloch and Blackwell 1993). The two 

ambrosial genera with known sexual states (Ambrosiella and Wolfgangiella) are unique 

in forming cleistothecious ascomata without sticky ascospore drops. Rather than four 

reversions from cleistothecia back to necked perithecia, it seems more likely that the 

common ambrosial ancestor had long-necked perithecia and the cleistothecious ascomata 

arose convergently in the absence of an evolutionary pressure on cuticular dispersal of 

ascospores. 

There are also significant morphological differences among the ambrosial genera, 

most notably the presence of aleurioconidia in the ambrosia growth of Toshionella, 

Ambrosiella, and Meredithiella, whereas Phialophoropsis and Wolfgangiella lack 

aleurioconidia (as does their nearest neighbor, the non-ambrosial B. fagacearum). 

Phialophoropsis produces relatively unremarkable phialoconidia and Wolfgangiella only 

produces fragmenting arthroconidia, neither of which were observed to contain 

conspicuous lipid bodies. The ascospores of Ambrosiella and Wolfgangiella, despite 

being produced in similarly cleistothecious ascomata, also differ in that the Wolfgangiella 

ascospores are much larger and more curved. Thus, as does the phyplogenetic data, 

morphology suggests at least two origins for the symbiosis. 

Pistone et al. (2017) estimated an Afrotropical origin for tribe Scolytoplatypodini. 

If an Ambrosiella/Toshionella-like symbiont was the first ambrosia fungus cultivated by 

the tribe at the origin of the mycangium at 30–50 Ma, the descendants of that fungal 

symbiont may have accompanied Remansus to Madagascar (Jordal 2013) and the Asian 
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Scolytoplatypus to Asia. However, it is difficult to explain how this hypothetical early 

fungus symbiont was then replaced in mainland Africa by Wolfgangiella symbionts, 

which appear to produce inferior ambrosia growth with smaller conidiophores and lipid 

bodies when compared to Ambrosiella and Toshionella. Perhaps the common 

Scolytoplatypodini ancestor had a poorly-developed pronotal mycangium and carried a 

mixed assemblage of fungi, and lineage sorting in the beetle tribe resulted in a different 

fungal lineage to co-adapt with each geographic Scolytoplatypus lineage. Morphology 

suggests that the African Scolytoplatypus mycangium is the least developed in its lack of 

wall reticulation and poorly developed conical structures, and it may not have been as 

highly selective for fungal symbionts in its earlier evolutionary history. However, only 

three African Scolytoplatypus spp. were sampled in Madagascar and South Africa, and 

more extensive surveys may find a wider diversity of symbionts in African 

Scolytoplatypodini. 

Incongruence between fungal divergence dates and mycangium origins also 

suggest that there was more than one origin of the symbiosis in the family 

Ceratocystidaceae. Although there were significant 95% HPD ranges in both our analysis 

and the estimates for origins of mycangium types (Gohli et al. 2017; Pistone et al. 2017), 

the mean crown of the ambrosial common ancestor at 63.2 Ma is much older than the 

Gohli et al. (2017) estimate for the crown of tribe Scolytoplatypodini at 34.3 Ma and 

somewhat older than the Pistone et al. (2018) estimate at 52 Ma. Accepting these dates, a 

single origin of ambrosia symbiosis in the fungal family would have predated the origin 

of the first large Scolytine mycangium. 
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Ambrosiella and Toshionella 

Toshionella and Ambrosiella are closely related and likely derived from a single 

domestication, perhaps at 31 to 47 Ma based on our phylogenetic analyses. The genera 

have similar condiophores and they form similar aleurioconidia with large lipid bodies, 

which may be particularly nutritious for grazing beetles (Harrington et al. 2014). 

Toshionella are carried by Asian Scolytoplatypus, but Remansus (represented in this 

study only by R. mutabilis) is found only in Madagascar (Jordal 2013) and carries a 

symbiont aligned with Ambrosiella sensu stricto. Ambrosiella have otherwise been found 

associated only with species of Xyleborini with mesonotal mycangia, i.e., the 

Xylosandrus complex (Lin et al. 2017; Mayers et al. 2015, 2017). With A. remansi as the 

sole representative of extant Remansus symbionts, it could be speculated that the split 

between the Remansus symbionts (Ambrosiella) and the Asian Scolytoplatypus symbionts 

(Toshionella) was at 31 Ma, which would have followed the estimated 

Remansus/Scolytoplatypus split using either the estimates of Pistone et al. (2018) or 

Gohli et al. (2017). The origin of the mesonotal mycangium early in the evolution of the 

Xyleborini may have corresponded with the acquisition of Ambrosiella from Remansus. 

The Gohli et al. (2017) estimate for the divergence of the Xylosandrus complex (and 

therefore the mesonotal mycangium) is at 22.5 Ma. However, Pistone et al. (2017) 

estimated the origin of the entire tribe Xyleborini at 15 Ma, and the crown age of the 

Xylosandrus complex would have to be slightly younger than 15 Ma (Cognato et al. 

2011, Gohli et al. 2017), which predates our estimated crown age of Ambrosiella 

symbionts of the Xyleborini at 12.4 Ma. The origin of tribe Xyleborini has been proposed 

to be Afro-Asian (Cognato et al. 2011), and perhaps the Xylosandrus complex and its 

mesonotal mycangium originated in Africa. A single transfer of Ambrosiella to the 
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Xyleborini may have prompted the diversification of the monophyletic Xylosandrus 

complex (Hulcr and Cognato 2010; Hulcr and Stelinski 2017) and their Ambrosiella 

symbionts (Mayers et al. 2015). It is possible that as more Scolytoplatypus symbionts are 

discovered, it will become apparent that Ambrosiella and Toshionella are part of a 

spectrum of symbionts rather than two clearly-distinct groups. However, the studied 

species of Toshionella produce much larger, lipoid cells in the ambrosia layer than do 

Ambrosiella spp. 

Meredithiella 

The clade containing the ambrosia fungi with aleurioconidia (Meredithiella, 

Ambrosiella, and Toshionella) has an estimated crown divergence date of 47 M. 

Corthylus could have acquired an early Scolytoplatypodid symbiont, and Meredithiella 

has aleurioconidia similar to those found in Ambrosiella and Toshionella (Mayers et al. 

2018). However, this clade contains two non-ambrosial taxa (C. adiposa and S. 

norvegica), and a single domestication for Meredithiella and Toshionella/Ambrosiella is 

problematic because Meredithiella is associated with the New World genus Corthylus 

(Mayers et al. 2018), and the Asian/African Scolytoplatypodini are not thought to have 

ever been sympatric with Corthylus. Further, the estimated crown divergence of 

Meredithiella and Ambrosiella at 47 Ma would have been post-Gondwanan. The 

estimated ages of Mereditiella and Corthylus were quite similar, and a independent origin 

for this symbiosis seems likely (Mayers et al. 2015). 

 It is not clear if other members of the Corthylina have mycangia homologous to 

those of Corthylus. Amphicranus is sister to Corthylus (Pistone et al. 2017), but neither 

the symbionts nor mycangia of Amphicranus are known. Microcorthylus may have 

mycangia similar to Corthylus (Schedl 1962), and a species of Geosmithia was observed 
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in galleries of an unnamed Microcorthylus sp. (Kolařík and Kirkendall 2010), but its 

mycangial symbionts have not been confirmed. 

Wolfgangiella and Phialophoropsis 

Two genera of ambrosia fungi in the Ceratocystidaceae lack aleurioconidia and 

appear distantly related to other ambrosia beetle symbionts in the family and to each 

other. The split of Phialophoropsis and Wolfgangiella was estimated at 32 Ma, but both 

taxa were placed on long branches. Trypodendron has a prothoracic pleural mycangium, 

and its primary symbionts are Phialophoropsis spp. (Mayers et al. 2015), which show 

limited diversity and an estimated crown age of only 5.3 Ma. Both the Gohli et al. (2017) 

estimate of 11.2 Ma and the Pistone et al. (2018) estimate of 9.0 Ma for the crown of 

Trypodendron spp. predate the crown age of Phialophoropsis, but the tribe Xyloterini is 

much older. 

Wolfgangiella and Phialophoropsis are only distantly related to each other and 

their sister taxon Bretziella fagacearum, and the three genera have no known relatives. 

Each of the genera show very little genetic diversity and share few significant common 

morphological characters, other than the absence of aleurioconidia. Wolfgangiella and 

Phialophoropsis may represent two separate and relatively recent ambrosia 

domestications. The limited sampling to date indicates that only Trypodendron carry 

Phialophoropsis symbionts (Mayers et al. 2015), and Phialophoropsis shows limited 

genetic diversity. Wolfgangiella spp. associated with Scolytoplatypus on the west coast of 

South Africa and in Madagascar barely differed in DNA sequence. This may be because 

the Scolytoplatypus in Madagascar came from Africa as recently as 7 Ma (Jordal 2013), 

and the fungal symbionts of Scolytoplatypus in central and northern Africa may be more 

diverse.  
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Diffuse coevolution between mycangia and Ceratocystidaceae fungi 

The association of large and complex mycangium types with specific fungal 

genera is likely the result of co-adaptations, but species-level associations appear to have 

followed a pattern of diffuse co-evolution. A single common origin of a mycangium type 

would have been followed by progressive adaptations in their carried fungi, perhaps with 

a succession of early cultivars replaced with better alternatives and horizontal transfer 

among beetle species with the same mycangium type. Fungal adaptations for superior 

ambrosia growth may have been matched by reciprocal adaptations in the mycangium, 

leading to the tightly linked fungal lineage-mycangium associations observed today. 

Under this scenario, the crown age of these mycangia should closely match or predate the 

crown age of their fungal cultivars. This appears to have been the case with the 

Xylosandrus complex and its Ambrosiella symbionts, Corthylus and its Meredithiella 

symbionts, and Trypodendron with its Phialophoropsis symbionts. Species-level 

coevolution is not apparent, but a more diffuse coevolution is seen within Ambrosiella 

(Lin et al. 2017), Meredithiella (Mayers et al. 2018), Phialophoropsis (Chapter 6), 

Toshionella and Wolfgangiella, which appear to be delineated by geography more than 

species of host beetle.  

The Scolytoplatypodini may have been the first to acquire Ceratocystidaceae as 

fungal cultivars, but taxon sampling remains limited for this tribe. African 

Scolytoplatypus were only studied in southern Africa and Madagascar, but related species 

are found in central and western Africa (Browne 1971; Schedl 1975; Jordal 2013). The 

African S. congonus and S. unipilus represent interesting phylogenetic intermediaries 

between the studied African/Malagasy and Asian species of the genus (Jordal 2013, 

2018). Only one species of Remansus was available for study, and the fungal symbionts 
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of Asian Scolytoplatypus were only identified from eastern Asia, though they are found in 

South Asia as well (Beaver and Browne 1975; Schedl 1975; Beaver and Gebhardt 2006). 

Study of extant species, such as S. kunala (Mandelshtam and Petrov 2010), along the 

purported migration route out of Africa would help confirm whether or not the 

Scolytoplatypus-Wolfgangiella and Scolytoplatypus-Toshionella associations show 

evolutionary fidelity or are merely geographically delineated. 

This study serves as a first look at Scolytoplatypodini symbionts and a foundation 

for greater examination of the most specialized symbioses among ambrosia beetles. 

Symbionts for the three genera in tribe Xyloterini also need to be studied to determine 

whether or not the tribe may represent an alternative origin for the Ceratocystidaceae 

associated with the Scolytoplatypodini, and relatives of Corthylus such as Amphicranus 

need to be studied to ascertain if other Corthylini have Ceratocystidaceae symbionts.  
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Tables 

Table 1. Collection information for selected studied fungal material, including ITS accession numbers. 

Ambrosia fungus 

Associated 
ambrosia beetle Specimen Type 

Specimen ID  
(Collection ID)1 Location 

Year 
collected 

Collected 
by ITS GenBank 

                

Wolfgangiella 
       

 
W. franznegeri Scolytoplatypus 

fasciatus 

Propagules in mycangium of 

female in unidentified tree 

sp2 Diepwalle Forest Station, Western 

Cape, South Africa 

November 

2007 

B. Jordal same as MG950180 

 
W. franznegeri S. fasciatus Culture from female 

(ethanol trap) 

C4325 Near Betty's Bay, Western Cape, 

South Africa 

January 

2017 

F. Roets same as MG950180 

 
W. franznegeri S. fasciatus Culture from female 

(ethanol trap) 
C4326 Near Betty's Bay, Western Cape, 

South Africa 
January 
2017 

F. Roets same as MG950180 

 
W. franznegeri S. fasciatus Culture from female 

(ethanol trap) 

C4327 Near Betty's Bay, Western Cape, 

South Africa 

January 

2017 

F. Roets same as MG950180 

 
W. franznegeri S. fasciatus Culture from female 

(ethanol trap) 

C4328 (CBS 

144149) eHT 

Near Betty's Bay, Western Cape, 

South Africa 

January 

2017 

F. Roets MG950180 

 
W. franznegeri S. fasciatus Culture from female 

(ethanol trap) 

C4329 Near Betty's Bay, Western Cape, 

South Africa 

January 

2017 

F. Roets same as MG950180 

 
W. franznegeri S. fasciatus Culture from female 

(ethanol trap) 

C4331 Near Betty's Bay, Western Cape, 

South Africa 

January 

2017 

F. Roets same as MG950180 

 
W. franznegeri S. rugosus Ambrosia growth in Ocotea 

sp. 

M288 (BPI 

910640) 

Andasibe-Mantadia NP, 

Madagascar 

May 2015 B. Jordal KX342063 

 
W. madagascarensis  S. permirus Ambrosia growth in 

unidentified tree 
M286 (BPI 
910641) HT 

Ambohitantely FR, Madagascar May 2015 B. Jordal KX342062 

 
W. madagascarensis  S. permirus Ambrosia growth in 

unidentified tree 

M399 Andasibe-Mantadia NP, 

Madagascar 

May 2015 B. Jordal same as KX342062 

 
W. madagascarensis  S. permirus Propagules in mycangium of 

female (ethanol trap) 

sp3 Ranomafana NP, Madagascar 2012 B. Jordal KX342061 

Toshionella 
       

 
T. nipponensis S. shogun Culture from female (on 

unidentified tree) 

C3904 (CBS 

141492) eHT 

Tazawako, Akita prefecture, 

Japan 

July 2014 H. Masuya KX342064 

 
T. nipponensis S. shogun Culture from female (on 

unidentified tree) 
C3905 Tazawako, Akita prefecture, 

Japan 
July 2014 H. Masuya same as KX342064 

 
T. nipponensis S. shogun Culture from female (on 

unidentified tree) 

C3906 Tazawako, Akita prefecture, 

Japan 

July 2014 H. Masuya same as KX342064 

 
T. nipponensis S. shogun Culture from female (on 

unidentified tree) 

C4064 Hachimantai, Iwate prefecture, 

Japan 

July 2014 H. Masuya same as KX342064 

 
T. transmara S. shogun Culture from female (on 

unidentified tree) 
C3908 (CBS 
141493) eHT 

Hachimantai, Iwate prefecture, 
Japan 

June 2015 H. Masuya KX342065 
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Table 1 continued       
 

T. transmara S. tycon Propagules in mycangium of 

female (ethanol trap) 

sp1 Vladivostok, Russia July 2008 B. Jordal KX342066 

 
T. taiwanensis S. pubescens Culture from female 

(ethanol trap) 

C3687 (CBS 

141494) eHT 

Douna, Kaohsiung, Taiwan February 

2014 

H. Shih KX342067 

 
T. taiwanensis S. pubescens Culture from female 

(ethanol trap) 
C3688 Jingdashan, Kaohsiung, Taiwan February 

2014 
H. Shih same as KX342066 

 
T. taiwanensis S. mikado Culture from female 

(ethanol trap) 

C3448 (CBS 

141495) 

Lienhuachih, Taiwan August 

2014 

C. Wuest same as KX342066 

 
T. taiwanensis S. mikado Propagules in mycangium of 

female (ethanol trap) 

M304 Lienhuachih, Taiwan June 2013 H. Shih same as KX342066 

 
T. taiwanensis S. mikado Propagules in mycangium of 

female (in Cinnamomum 

sp.) 

M305 Lienhuachih, Taiwan June 2013 H. Shih same as KX342066 

Ambrosiella 
       

 
Ambrosiella aff. 
beaveri NRbea1 

Xylosandrus 
germanus 

Culture from female (in 
Lindera triloba) 

C4059 Aichi, Toyota, Inabu, Japan July 2014 H. Kajimura same as MG950182 

 
Ambrosiella aff. 

beaveri NRbea1 

X. brevis Culture from female (in 

Lindera triloba) 

C4060 Aichi, Toyota, Inabu, Japan July 2014 H. Kajimura MG950181 

 
Ambrosiella aff. 

beaveri NRbea1 

X. brevis Culture from female (in 

Lindera triloba) 

C4061 (CBS 

142650) 

Aichi, Toyota, Inabu, Japan July 2015 H. Kajimura MG950182 

 
A. catenulata Anisandrus 

apicalis 
Culture from female C3909 Morioka, Iwate Prefecture, Japan April 2015 H. Masuya same as MG950184 

 
A. catenulata An. apicalis Culture from female C3910 Morioka, Iwate Prefecture, Japan April 2015 H. Masuya same as MG950184 

 
A. catenulata An. apicalis Culture from female C3911 Morioka, Iwate Prefecture, Japan April 2015 H. Masuya same as MG950184 

 
A. catenulata An. apicalis Culture from female C3912 Morioka, Iwate Prefecture, Japan April 2015 H. Masuya same as MG950184 

 
A. catenulata An. apicalis Culture from female C3913 (CBS 

142649) 

Morioka, Iwate Prefecture, Japan April 2015 H. Masuya MG950184 

 
A. grosmanniae X. germanus Culture from female C3901 Hachimantai, Iwate prefecture, 

Japan 

June 2015 H. Masuya same as KR611324 

 
A. grosmanniae X. germanus Culture from female C3902 Hachimantai, Iwate prefecture, 

Japan 
June 2015 H. Masuya same as KR611324 

 
A. grosmanniae X. germanus Culture from female C3903 Hachimantai, Iwate prefecture, 

Japan 

June 2015 H. Masuya same as KR611324 

 
A. grosmanniae X. germanus Culture from female (in 

Lindera triloba) 

C4058 Aichi, Toyota, Inabu, Japan July 2010 H. Kajimura MG950185 

 
Ambrosiella aff. 
grosmanniae NRgro1 

Xylosandrus 
aff. germanus 

Culture from female C3898 Iwate Prefecture, Morioka, Japan April 2015 H. Masuya same as MG950186 

 
Ambrosiella aff. 

grosmanniae NRgro1 

Xylosandrus 

aff. germanus 

Culture from female C3899 (CBS 

142648) 

Iwate Prefecture, Morioka, Japan April 2015 H. Masuya MG950186 

 
Ambrosiella aff. 

grosmanniae NRgro1 

Xylosandrus 

aff. germanus 

Culture from female C3900 Iwate Prefecture, Morioka, Japan April 2015 H. Masuya same as MG950186 

 
A. remansi Remansus 

mutabilis 
Propagules in mycangium of 
female in unidentified tree 

M290 (BPI 
910622) HT 

Andasibe-Mantadia NP, 
Madagascar 

May 2015 B. Jordal KX342068 
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Table 1 continued        
 

A. roeperi X. 
crassiusculus 

Culture from female 
(ethanol trap) 

C3449 Fushan, Taiwan July 2014 H. Shih MG950187 

 
A. roeperi X. 

crassiusculus 

Culture from female (in 

Quercus crispula) 

C4062 Aichi, Toyota, Inabu, Japan September 

2013 

H. Kajimura same as KF669871 

 
A. roeperi X. 

crassiusculus 

Culture from female (in 

Quercus crispula) 

C4063 Aichi, Toyota, Inabu, Japan September 

2013 

H. Kajimura MG950183 

1Includes isolate or specimen numbers from the culture collection of T.C. Harrington, Iowa State University (C or M), Westerdijk Fungal Biodiversity Institute 

(CBS), and U.S. National Fungus Collections (BPI). Holotype specimens indicated by bold 'HT'; ex-holotype cultures indicated by bold 'eHT'. 
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Supplemental Tables 

Table S1. GenBank accesions for other ITS sequences used in parsimony analyses. 

Fungal species and authority Specimen ID (Collection ID) Location ITS GenBank Source 

          

Ambrosiella batrae C. Mayers, McNew & T.C. Harr. C3130 (CBS 139735) USA KR611322 Mayers et al. (2015) 

Ambrosiella beaveri Six, de Beer & W.D. Stone C2749 (CBS 121750) USA KF669875 Harrington et al. (2014) 

Ambrosiella catenulata Y.T. Lin & H.H. Shih W186g (CBS 142152) Taiwan LC175301 Lin et al. (2017) 

Ambrosiella cleistominuta C. Mayers & T.C. Harr. C3843 (CBS 141682) USA KX909940 Mayers et al. (2016) 

Ambrosiella grosmanniae C. Mayers, McNew & T.C. Harr. C3151 (CBS 137359) USA KR611324 Mayers et al. (2015) 

Ambrosiella hartigii L.R. Batra C1573 (CBS 404.82) Germany KF669873 Harrington et al. (2014) 

Ambrosiella nakashimae McNew, C. Mayers & T.C. Harr. C3445 (CBS 139739) USA KR611323 Mayers et al. (2015) 

Ambrosiella roeperi T.C. Harr. & McNew C2448 (CBS 135864) USA KF669871 Harrington et al. (2014) 

Ambrosiella xylebori Brader ex Arx & Hennebert C3051 (CBS 110.61) Ivory Coast KF669874 Harrington et al. (2014) 

Catunica adiposa (E.J. Butler) C. Mayers & T.C. Harr. C299 USA same as DQ318195 This study 

Catunica adiposa C871 (CBS 600.74) Japan same as DQ318195 This study 

Catunica adiposa C905 (CBS 147.53) France same as DQ318195 This study 

Catunica adiposa C906 (CBS 138.34) Netherlands DQ318195 Reid et al. (2010) 

Catunica adiposa C997 (CBS 127.27) India same as DQ318195 This study 

Catunica adiposa C999 (CBS 183.86) Canada same as DQ318195 Mayers et al. (2015) 

Bretziella fagacearum  (Bretz) Z.W.deBeer, Marinc., T.A. 

Duong & M.J.Wingf. 

C927 (CBS 129242) USA same as KC305152 Mayers et al. (2015) 

Meredithiella norrisii McNew, C. Mayers & T.C. Harr. C3152 (CBS 139737) USA KR611326 Mayers et al. (2015) 

Phialophoropsis trypodendri L.R. Batra SUTT USA KR611329 Mayers et al. (2015) 

Phialophoropsis aff. ferruginea NRfer1 C3550 (CBS 408.68) USA KC305145 Hamelin et al. (Unpublished) 

Phialophoropsis aff. ferruginea NRfer1 C3386 (CBS 141683) USA MF399190 Mayers et al. (Unpublished) 

Phialophoropsis aff. ferruginea NRfer2 C2230 (CBS 460.82) Germany KC305146 Hamelin et al. (Unpublished) 

Phialophoropsis aff. ferruginea NRfer2 C3828 (CBS 141685) Germany MF399188 Mayers et al. (Unpublished) 

Phialophoropsis ferruginea (Math.-Käärik) T.C. Harr. C3549 (CBS 223.55, MUCL 9940) Sweden MF399187 Mayers et al. (Unpublished) 

Solaloca norvegica (J. Reid & Hausner) T.C. Harr. C3124 (UAMH 9778) Norway DQ318194 Reid et al. (2010) 
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Table S2. GenBank accession numbers for sequences used in multi-locus analyses. 

Species 

Strain/specimen and  

Collection IDs1, 2 Country 

Associated 

ambrosia beetle 

GenBank Accession No.3 

28S rDNA 18S rDNA tef1-α tub mcm7 rpl1 

                    

Wolfgangiella C. Mayers & T.C. Harr.         
 

W. franznegeri C. Mayers, 

T.C. Harr., & F. Roets 

C4328  

(CBS 144149) eHT 

South 

Africa 

Scolytoplatypus 

fasciatus 

MG269974 MG950188 MG944393 MG269951 MG270167 MG272461 

 
W. madagascarensis C. 

Mayers, McNew, & T.C. 
Harr. 

M286  

(BPI 910641) HT 

Madagascar Scolytoplatypus 

permirus 

MG269975 KX342069 KX354417 MG269950 MG270168 MG272462 

Toshionella C. Mayers & T.C. Harr. 
        

 
T. nipponensis C. Mayers, 

T.C. Harr., & H. Masuya 

C3904  

(CBS 141492) eHT 

Japan Scolytoplatypus 

shogun 

MG269978 KX342070 KX354420 MG269942 MG270160 MG272454 

 
T. transmara C. Mayers, T.C. 

Harr., & H. Masuya 

C3908  

(CBS 141493) eHT 

Japan Scolytoplatypus 

shogun 

MG269979 KX342071 KX354422 MG269943 MG270159 MG272453 

 
T. taiwanensis C. Mayers, 

T.C. Harr., & H.H. Shih 
C3687  
(CBS 141494) eHT 

Taiwan Scolytoplatypus 
pubescens 

MG269980 =KX342071 KX354425 MG269940 MG270161 MG272451 

 
T. taiwanensis C3448  

(CBS 141495) 

Taiwan Scolytoplatypus 

mikado 

MG269981 =KX342071 KX354423 MG269941 — MG272452 

Ambrosiella Brader ex Arx & Hennebert emend, T.C. Harr. 
       

 
A. batrae C. Mayers, McNew 

& T.C. Harr. 

C3130  

(CBS 139735) eHT 

USA Anisandrus sayi KY744584 KR673881 KT290320 MG269932 MG270152 MG272445 

 
A. beaveri Six, de Beer & 

W.D. Stone 
C2749  
(CBS 121750) ePT 

USA Cnestus 
mutilatus 

KF646765 KR673882 KT318380 MG269938 MG270156 MG272448 

 
A. catenulata Y.T. Lin & H.H. 

Shih 

C3913  

(CBS 142649) 

Japan Anisandrus 

apicalis 

MG269982 MG950189 MG944394 MG269937 MG270154 MG272446 

 
A. cleistominuta C. Mayers & 

T.C. Harr. 

C3843  

(CBS 141682) eHT 

USA Anisandrus 

maiche 

KY744585 KX925304 KX925309 MG269936 MG270153 MG272443 

 
A. nakashimae McNew, C. 

Mayers & T.C. Harr. 
C3445  
(CBS 139739) eHT 

USA Xylosandrus 
amputatus 

KY744586 KR673883 KT318381 MG269939 MG270158 MG272450 

 
A. grosmanniae C. Mayers, 

McNew & T.C. Harr. 

C3151  

(CBS 137359) eHT 

USA Xylosandrus 

germanus 

KY744587 KR673884 KT318382 MG269933 MG270150 MG272444 

 
A. hartigii L.R. Batra C1573  

(CBS 404.82) 

Germany Anisandrus 

dispar 

KY744588 KR673885 KT318383 MG269931 MG270157 MG272442 

 
A. remansi C. Mayers & T.C. 

Harr. 
M290  
(BPI 910622) HT 

Madagascar Remansus 
mutabilis 

— KX342072 KX354426 — — — 

 
A. roeperi T.C. Harr. & 

McNew 

C2448  

(CBS 135864) eHT 

USA Xylosandrus 

crassiusculus 

KF646767 KR673886 KT318384 MG269935 MG270151 MG272449 

 
A. xylebori Brader ex Arx & 

Hennebert 

C3051  

(CBS 110.61) eIT 

Ivory Coast Xylosandrus 

compactus 

KM495318 KR673887 KT318385 MG269930 KM495407 KM495495 

 
A. aff grosmanniae NRgro1 C3899  

(CBS 142648) 
Japan Xylosandrus 

aff. germanus 
MG269983 MG950190 MG944395 MG269934 MG270155 MG272447 
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Table S2 continued         

Phialophoropsis L.R. Batra emend. T.C. Harr. 
  

      
 

P. ferruginea (Math.-Käärik) 

T.C. Harr. 

C3549  

(CBS 223.55) eHT 

Sweden Trypodendron 

lineatum 

MF399166 MF398168 MF375458 MG269947 MG270166 MG272458 

 
Phialophoropsis sp. NRfer1 C3828  

(CBS 141685) 

Germany Trypodendron 

domesticum 

MF399167 MF398169 MF375459 MG269948 MG270164 MG272460 

 
Phialophoropsis sp. NRfer2 C3386  

(CBS 141683) 
USA Trypodendron 

retusum 
MF399169 MF398171 MF375461 MG269949 MG270165 MG272459 

Meredithiella McNew, C. Mayers & T.C. Harr. 
        

 
M. norrisii McNew,  

C. Mayers & T.C. Harr. 

C3152  

(CBS 139737) eHT 

USA Corthylus 

punctatissimus 

KY744589 KR673888 KT318386 MG269944 MG270162 MG272456 

 
M. fracta C. Mayers,  

C. Bateman & T.C. Harr. 

C4171  

(CBS 142645) eHT 

USA Corthylus 

papulans 

KY744590 KY744594 KY773179 MG269945 MG270163 MG272457 

 
M. guianensis C. Mayers,  

C. Bateman & T.C. Harr. 
M552  
(BPI 910532) HT 

French 
Guiana 

Corthylus 
crassus 

KY744223 KY744227 KY773180 MG269946 — — 

Other Ceratocystidaceae 
  

 
      

 
Berkeleyomyces basicola 

(Berk. & Broome) W.J. 
Nel, Z.W. de Beer, T.A. 

Duong, & M.J. Wingf. 

C1372  

(CBS 414.52, MUCL 
8363) 

Netherlands — AF222458 KX925307 HM569628 MG269963 — — 

  
CMW7068  
(CBS 413.52) 

Netherlands — — — — — KM495484 KM495574 

 
Bretziella.fagacearum (Bretz) 

Z.W.deBeer, Marinc., 
T.A.Duong & M.J.Wingf. 

C927  

(CBS 129242) 

USA — =AF222483 KR673892 KT318389 MG269953 MG270170 MG953416 

 
Catunica adiposa (E.J. Butler) 

C. Mayers & T.C. Harr. 

C999  

(CBS 183.86) 

Canada — =KM495320 KR673891 HM569644 MG269952 MG270169 MG953415 

 
Ceratocystis fimbriata Ellis & 

Halst 

C1099  

(ICMP 8579) 

Papua New 

Guinea 

— =KR347445 KR673893 HM569615 MG269954 — — 

  
CMW 15049  
(CBS 141.37) 

USA — — — — — KM495432 KM495520 

 
Ceratocystis variospora (R.W. 

Davidson) C. Moreau 

emend. J.A. Johnson & 

T.C. Harr. 

C1963  
(CBS 135862) 

USA — KF646773 KX925305 KR347450 MG269956 — — 

  
CMW 20935, C1843 

(CBS 114715) 

USA — — — — — KM495471 KM495561 

 
Chalaropsis ovoidea (Nag Raj 

& W.B. Kendr.) A.E. 

Paulin, T.C. Harr. & 

McNew 

C1375, CMW 22733 
(CBS 354.76) 

Netherlands — AF275502 KY744595 HM569625 MG269957 KM495487 KM495577 
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Table S2 continued          
 

Chalaropsis thielavioides 

(Peyronel) A.E. Paulin, 
T.C. Harr. & McNew 

C1378  

(CBS 130.39) 

USA — AF222480 MF398184 HM569627 MG269958 — — 

  
CMW 22736 (CBS 

148.37, MUCL 6235) 

Italy — — — — — KM495489 KM495579 

 
Endoconidiophora 

coerulescens Münch. 

C301  

(CBS 100198) 

USA — AF275510 KR673895 HM569653 MG269960 — — 

  
CMW26365, C313, 
C695 (CBS 140.37, 

MUCL 9511) 

Germany — — — — — KM495418 KM495506 

 
Endoconidiophora virescens 

R.W. Davidson 
C252  
(CBS 128998) 

USA — =KM495385 KX925306 HM569645 MG269959 — — 

  
CMW17339, C261 

(CBS 130772) 

USA — — — — — KM495472 KM495562 

 
Huntiella bhutanensis (M. van 

Wyk, M.J. Wingf. & 

Kirisits) Z.W. de Beer, 
T.A. Duong & M.J. Wingf. 

CMW8217  

(CBS 114289) 

Bhutan — All six genes were extracted from genome assembly MJMS00000000. 

 
Huntiella moniliformis 

(Hedgc.) Z.W. de Beer, 
T.A. Duong & M.J. Wingf 

CMW10134  

(CBS 118127) 

India — All six genes were extracted from genome assembly JMSH00000000. 

 
Huntiella moniliformopsis 

(Yuan & Mohammed) 
Z.W. de Beer, T.A. Duong 

& M.J. Wingf. 

C1934  

(DAR 74609) 

Australia — KF646769 KR673898 HM569638 MG269962 — — 

 
Huntiella sp. C792 C792 USA — KY744592 KR673897 KT318392 MG269961 MG270172 MG272465 

 
Solaloca norvegica (J. Reid & 

Hausner) T.C. Harr. 
C3124  
(UAMH 9778) 

Norway — KY744591 KR673894 KT318390 MG269955 MG270171 MG272455 

 
Thielaviopsis ethacetica Went C1107 South 

America 
— KY744593 KR673899 HM569632 MG269964 — — 

  
CMW 37775 (IMI 

50560, MUCL 2170) 

Malaysia — — — — — KM495426 KM495514 

 
Thielaviopsis punctulata 

(Hennebert) A.E. Paulin, 

T.C. Harr. and McNew 

C869, CMW 1032 

(CBS 114.47, 146. 

MUCL 9526) 

USA — AF275513 KX925308 KX925310 =MG269965 KM495459 KM495548 

Outgroups 
         

 
Unnamed Microascales sp. 

C3547 

C3547  

(CBS 142647) 

USA — MF399171 MF398173 MF375463 MG269966 MG270148 MG272463 

 
Knoxdaviesia capensis M.J. 

Wingf. & P.S. van Wyk 
C1960, CMW997 South 

Africa 
— MG269985 FJ176834 HM569657 MG269967 KM495478 KM495568 

 
Graphium penicillioides 

Corda 

C1506 Czech 

Republic 

— MG269984 MG950191 MG944396 MG269968 MG270149 MG272464 
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Table S2 continued     
 

Scedosporium boydii (Shear) 

Gilgado, Gené, Cano & 
Guarro 

(IHEM 23826) France — All six genes were extracted from genome assembly NJFT00000000. 

 
Xylaria sp. JS573 — — — All six genes were extracted from genome assembly JWIU00000000. 

 
Sclerotinia sclerotiorum (Lib.) 

de Bary 

— — — All six genes were extracted from genome assembly AAGT01000000. 

 
Aspergillus niger Tiegh. (CBS 513.88) — — All six genes were extracted from genome assembly ASM285v2. 

1Includes isolate or specimen numbers from the culture collection of T.C. Harrington, Iowa State University (C or M), Westerdijk Fungal Biodiversity Institute 

(CBS), U.S. National Fungus Collections (BPI), New South Wales Plant Pathology Herbarium (DAR), UAMH Centre for Global Microfungal Diversity 

(UAMH), International Collection of Microorganisms from Plants (ICMP), Belgian Co-ordinated Collections of Micro-organisms (IHEM), Royal Botanic 

Gardens Kew HerbIMI (IMI), and and the culture collection of the Forestry and Agricultural Biotechnology Institute, University of Pretoria (CMW). 2Isolates of 

ambrosia fungi are followed by a bolded abbreviation representing their type status: 'HT', holotype; 'IT', isotype; 'ET', epitype; 'PT', paratype; preceded by 'e', ex-

type culture. 3GenBank accession numbers preceded by ‘'=’ represent an identical (100% identity) match with that accession. 
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Supplemental Figures 

 

Figure S1. Catunica adiposa. (A). Chain of conidia produced from phialidic conidiophore. (B). Detached, 

pigmented and unpigmented conidia. (C). Two mature, darkly-pigmented aleurioconidia with basal 

developing aleurioconidium, membranous sheath visible. (D). Chain of mature aleurioconidia with 

membranous sheath visible. (E). Detached aleurioconidia in membranous sheath. (F). Ascospores.  (A, B). 

Isolate C871 (CBS 600.74) from Japan. (C). Isolate C906 (CBS 138.34) from The Netherlands. (E–F) 

Isolate C299 from USA. Bar = 10 µm.
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Figure S2. Raw output produced by secondary-calibrated analysis in BEAST of the six-gene tree dataset (18S rDNA, 28S rDNA, tef1-α, tub, mcm7, and rpl1). 

Horizontal bars are 95% Highest Posterior Density (HPD). Branch support values are Bayesian posterior probability from BEAST analysis.  Nodes labelled with 

node ages; scale in millions of years ago (Ma). Aspergillus niger was used as the outgroup.
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Abstract 

Ambrosia beetles carry co-adapted fungal cultivars in a variety of storage organs 

called mycangia, which occur in various body parts and vary greatly in complexity. The 

understudied fungi associated with mycangia of ambrosia beetles in tribe Xyloterini 

(Trypodendron, Indocryphalus, and Xyloterinus politus) were morphologically and 

phylogenetically characterized. The association of Phialophoropsis (Ceratocystidaceae), 

including three new species, with Trypodendron was confirmed. Isolations of fungi and 

extraction of DNA from the prothoracic mycangia and galleries of seven Trypodendron 

spp. consistently yielded the same Phialophoropsis symbiont from each beetle species, 

though some Phialophoropsis spp. were shared among beetle species. This supports 
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earlier observations that fungal species in the Ceratocystidaceae are adapted to a 

mycangium type rather than to individual beetle species. Using rDNA sequencing, the 

Asian I. pubipennis was unexpectedly associated with an undescribed Toshionella, which 

are otherwise mycangial symbionts of Asian species of Scolytoplatypus 

(Scolytoplatypodini). The I. pubipennis mycangium was also prothoracic, but was found 

to be substantially smaller than that of Trypodendron. Xyloterinus politus has two 

different mycangia and carries a different symbiont in each: Raffaelea cf. canadensis 

RNC5 (Ophiostomatales) in paired oral mycangia and Kaarikia abrahamsonii gen. et sp. 

nov. in reduced prothoracic mycangia. These findings further support the concept that 

developments of new mycangium types are critical events in the evolution of ambrosia 

beetles and their co-adapted fungal genera. In addition to their highly adapted mycangial 

symbionts, both Trypodendron and Xyloterinus harbor a surprising diversity of non-

mutualist gallery commensals, including several Raffaelea spp. 

Introduction 

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) 

cultivate and feed on fungal gardens along the walls of their galleries in sapwood. The 

adults carry propagules of their fungal symbionts in a variety of specialized structures 

called mycangia (Francke-Grosmann 1956, 1967; Hulcr and Stelinski 2017). Ambrosia 

beetles are associated with and may feed upon a wide variety of commensal fungi (Batra 

1967, Francke-Grosmann 1967), but mycangial fungi (sometimes called primary 

ambrosia fungi) are obligate symbionts adapted to serve as a food source and to be 

carried in the mycangia (Batra 1985). Mycangial fungi are generally dimorphic, forming 

a palisade of ambrosia growth in the gallery and adopting a yeast- or athrospore-like 

growth in the mycangium (Francke-Grosmann 1956, 1963, 1967), where they actively 
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grow and proliferate, nourished by glandular secretions of the beetle (Abrahamson 1969; 

Schneider and Rudinsky 1969; Schneider 1975).  

Both ambrosia beetles (Hulcr and Stelinsky 2017) and mycangial fungi 

(Harrington et al. 2010; Mayers et al. 2015; Bateman et al. 2016) are polyphyletic groups 

that evolved multiple times. In the beetles, each lineage appears to be marked by the 

development of a different type of mycangium. Some lineages of ambrosia beetles have 

elaborate and relatively large mycangia (Mayers et al. 2015, 2018). Genera of ambrosia 

fungi in the Ceratocystidaceae (Microascales) appear to have co-adapted with such 

elaborate mycangium types: Ambrosiella with the mesonotal mycangia of the 

Xylosandrus complex in tribe Xyleborini (Harrington et al. 2014; Mayers et al. 2015, 

2017; Lin et al. 2017), Meredithiella with the coiled tubular mycangia of Corthylus in 

subtribe Corthylina (Mayers et al. 2015, 2018), Phialophoropsis with the prothoracic 

mycangia of Trypodendron in tribe Xyloterini (Mayers et al. 2015), and Ambrosiella, 

Toshionella, and Wolfgangiella with the pronotal disc mycangia of tribe 

Scolytoplatypodini (Chapter 5). 

There are three genera of ambrosia beetles in tribe Xyloterini (Kirkendall et al. 

2015). The genus Trypodendron have paired mycangia that are two large, folded cavities 

on the inside of the prothorax that exit laterally on both sides of the prothorax (Francke-

Grosmann 1956, 1967). Phialophoropsis trypodendri and P. ferruginea have been 

reported as mycangial symbionts of Trypodendron spp. (Mayers et al. 2015), but 

molecular evidence suggests there may be cryptic diversity in Phialophoropsis and that 

different Phialophoropsis spp. are associated with different Trypodendron spp. (Cassar 

1993; Blackwell & Jones 1997; Mayers et al. 2015). Indocryphalus has prothoracic 
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mycangia with openings that appear to differ from those of Trypodendron (Wood 1957; 

Beaver 2000; Cognato et al. 2015), but the interior morphology of its mycangium has not 

been characterized, and its fungal symbionts are unknown. The monotypic Xyloterinus is 

unique in being the only known Scolytine ambrosia beetle species to have two different 

types of mycangia: oral mycangia in male and female adults, and shallow prothoracic 

basins on the ventral posterior prothorax in females (Abrahamson and Norris 1966; 

Francke-Grosmann 1967). Abraham and Norris (1969) reported that the two mycangia of 

X. politus appear to carry different, unnamed mycangial fungi. The oral symbiont was 

tentatively identified as a Raffaelea sp., but the prothoracic symbiont was unidentified. 

The primary aim of this study was to isolate and characterize the primary 

mycangial symbionts of species in the three genera of tribe Xyloterini, and we hoped to 

illustrate the mycangium of Indocryphalus. We expected that that the symbiont in the oral 

mycangium of X. politus would prove to be a Raffaelea, as proposed by Abraham and 

Norris (1969), and we hypothesized that the prothoracic mycangia of Trypodendron, 

Indocryphalus, and Xyletorinus were homologous and associated with primary symbionts 

in Phialophoropsis or related genera in the Ceartocystidaceae. 

Materials and methods 

Specimen collection and fungal isolation 

In the USA, beetles were collected from active galleries in infested wood or 

captured in flight with lineatin lure. In Europe, beetles were collected from active 

galleries in infested wood or caught in flight with ethanol-baited traps. Galleries were 

chopped from wood bolts using chisels and dissected with sterile tools. In Japan beetles 

were collected as they landed on the trunks of unidentified trees. 
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Fungal isolations focused on beetle mycangia or ambrosia growth in galleries 

using sterile needles to directly plate fungal material onto malt extract agar with 

streptomycin (SMA; 1% malt extract, Difco Laboratories, Detroit, Michigan, USA; 1.5% 

agar, Sigma-Aldrich, St. Louis, Missouri, USA; and 100 ppm streptomycin sulfate added 

after autoclaving). Direct plating of dissected mycangia was found to be more effective 

than grinding whole beetles and dilution plating (Mayers et al. 2015). Beetles were first 

surface-sterilized for 10 s in 75% ethanol, followed by two washes in sterile water and 

drying on paper towels. Parts of the beetle containing the mycangia were dissected with 

sterile forceps and plated directly on SMA. Plates were incubated at room temperature 

and lighting, and filamentous colonies growing from the pieces of mycangium were 

subcultured and maintained on malt yeast extract agar (MYEA; 2% Difco malt extract, 

0.2% Difco yeast extract, 1.5% agar). Some live beetles (some surface-sterilized, some 

not) were transferred to dry SMA (dried overnight at ambient temperature) then allowed 

to walk around freely for one or more days (‘walkabout plates’). These beetles were 

transferred to new SMA plates daily, and filamentous colonies growing on the SMA 

plates were subcultured.  

Microscopic observation and descriptions 

Fungal material was mounted in cotton blue for light microscopy using Normarski 

interference contrast (Olympus BH-2). Some images taken at different focus levels were 

combined into focus-stacked composites using CombineZP (Alan Hadley). Contrast, 

brightness, and tonal range of some images were adjusted using Leica Application Suite 

V3.6 (Leica Camera Inc., Allendale, NJ) or Adobe Photoshop CS6 (Adobe Systems 

Incorporated, San Jose, CA). Indocryphalus pubipennis mycangia and contents were 
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similarly imaged. Images of X. politus mycangia and contents were unstained or stained 

with Trypan blue and photographed with bright field microscopy.  

For species descriptions, agar plugs were cut from the margin of colonies on 

MYEA with a #1 cork borer (3mm diam.), transferred to fresh MYEA, and grown at 25 C 

in the dark for 7 d. Color designations are per Rayner (1970). Representative cultures 

were deposited in the Westerdijk Fungal Biodiversity Institute (CBS), and dried cultures 

and gallery specimens were deposited in the U.S. National Fungus Collections (BPI). 

DNA sequencing and phylogenetic analyses 

Most of the template DNA for ITS sequencing was extracted from galleries, 

whole beetles, dissected mycangia, or cultures using PrepMan Ultra (Applied 

Biosystems, Foster City, CA), and the DNA was concentrated, if needed, using Amicon® 

ultra-0.5 Centrifugal Filter Devices (EMD Millipore, Billerica, CA). DNA was also 

extracted from cultures with the ProMega Wizard® Genomic DNA Purification Kit 

(Promega, Madison, WI) or, for cultures with excessive pigment, the E.Z.N.A. Fungal 

DNA Mini Kit (Omega Bio-Tek, Norcross, GA). Amplification and sequencing of the 

nuc rDNA ITS1-5.8S-ITS2 (ITS barcode) used the general primer pair ITS1F/ITS4 or 

ITS4 and the Ceratocystidaceae-specific primers Cerato1F, ITSCer3.7R, and ITSCer3.1 

(Mayers et al. 2015). Amplification and sequencing of nuc 28S rDNA (28S), nuc 18S 

rDNA (18S), translation elongation factor 1-alpha (tef1-a), beta tubulin (tub), DNA 

replication licensing factor MCM7 (mcm7), and 60S ribosomal protein (rpl1) used the 

primers and protocols described in Chapter 5. Complementary and overlapping DNA 

reads were checked and assembled using Sequence Navigator v 1.0.1 or AutoAssembler 

v 1.3.0 (Applied Biosystems, Foster City, CA). The ITS barcode was used to identify 

unknown fungal isolates, except for members of the Ophiostomatales such as Raffaelea, 
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for which 28S rDNA was used instead due to ITS sequencing difficulties (Harrington et 

al. 2010). 

Where possible, insect identifications were confirmed by sequencing 

mitochondrial cytochrome c oxidase subunit I (COI barcode). This was especially 

important for T. lineatum, for which coloration can vary considerably and is not 

diagnostic (Wood 1957). One leg was removed, placed in 50 µl of Prepman Ultra, 

crushed with the tip of a sterile needle, and extracted per the recommended protocol at 

100° C for ten minutes. Amplification and sequencing was performed with the primers 

LepF1 and LepR1 (Hebert et al. 2004), except with X. politus, for which these primers 

were not effective and S1718 and A2411 (Simon et al. 1994) were used instead (Jordal et 

al. 2011). PCR conditions for both primers sets were as follows: 2 m at 94° C; five cycles 

of 30 s at 94° C, 40 s at 45° C, and 1 m at 72° C; 35 cycles of 30 s at 94° C, 40 s at 51° C, 

and 1 m at 72° C; and 10 m at 72° C. 

Barcode sequences (ITS, 28S, and COI) were trimmed and compared against the 

NCBI GenBank database using the NCBI BLASTn suite (National Center for 

Biotechnology Information, Bethesda, MD), and COI sequences were also compared to 

sequences in the dataset of Gohli et al. (2017) provided by J. Gohli. All unique sequences 

were deposited in GenBank. To illustrate sequence variation among the fungi, ITS 

sequences were manually aligned in two datasets to accommodate ambiguity in variable 

regions. The first aligned dataset contained the ITS sequences of Phialophoropsis and 

relatives; this dataset had 506 characters, including gaps (treated as a fifth state), of which 

46 were parsimony-informative, 31 were variable but parsimony-uninformative, and 429 

were constant. The second alignment contained Ambrosiella and relatives; this second 
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dataset had 552 characters, including gaps (treated as a fifth state), of which 117 were 

parsimony-informative, 57 were variable but parsimony-uninformative, and 378 were 

constant. A maximum parsimony (MP) tree was produced for each alignment with PAUP 

4.0b10 (Swofford 2003). The Phialophoropsis-aligned dataset used Bretziella 

fagacearum as the outgroup with midpoint rooting, and the Ambrosiella-aligned dataset 

used Catunica adiposa and Meredithiella norrisii as outgroup taxa, which were forced 

into a monophyletic sister group to the ingroup. Branch support values were obtained via 

1000-replicate bootstrap analysis of maximum parsimony in PAUP. 

A six-gene (18S rDNA, 28S rDNA, tef-1a, tub, mcm7, and rpl1) tree of the 

Ceratocystidaceae was produced with MrBayes 3.2.2 (Ronquist et al. 2012) using the 

same alignment and methods in Chapter 5 with the addition of sequences obtained in this 

study (Table 1, Table S1). The resulting alignment is available at TreeBASE (URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S22561). The alignment had 5276 

characters after exclusion of 618 characters found in introns and other ambiguously-

aligned regions (Chapter 5). In addition to posterior probability branch support from 

Bayesian analysis, additional branch support was produced via 1000-replicate bootstrap 

analysis of maximum parsimony in PAUP. Of the analyzed 4658 characters, 1065 were 

parsimony-informative, 271 were parsimony-uninformative, and 3322 were constant.  

The two unidentified symbionts of X. politus were phylogenetically placed using a 

two-gene (28S and 18S rDNA) analysis of the Ophiostomatales and other representatives 

of the Sordariomycetes. The alignments of Réblová et al. (2015, 2016) and Senanayake et 

al. (2016) were combined, supplemented with sequences of isolates obtained in this 

study, pruned to relevant representative taxa after preliminary analyses, and further 
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supplemented with sequences of close relatives available on GenBank (Table S2). 

Excluded from the alignment (TreeBASE URL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S22562) were four ambiguously-

aligned segments of the 28S gene (20 bp, 9 bp, 12 bp, and 13 bp, respectively), leaving an 

unpartitioned alignment of 2683 characters, of which 383 were parsimony-informative, 

213 were variable but parsimony-uninformative, and 2087 were constant. Xylaria 

hypoxylon was used as an outgroup taxon. A Bayesian tree was produced (GTR+I+G 

model, 3,000,000 generations, 150,000-generation burnin), and a consensus tree and 

branch support values were generated as described above. 

Results 

Beetle collection and fungal associations 

Using ITS barcoding and morphological characters, we identified five putative 

species of Phialophoropsis associated with seven species of Xyloterini ambrosia beetles: 

Trypodendron scabricollis, T. lineatum, T. domesticum, T. signatum, T. retusum, T. 

betulae, and T. aff. proximum (Table 1). Although it appeared that some Phialophoropsis 

spp. were associated with more than one Trypodendron species, each of the seven 

Trypodendron species were associated with a single putative Phialophoropsis sp. (Fig. 

1A). A Toshionella sp. was identified in the mycangium of Indocryphalus pubipennis 

(Fig. 1B). We also identified two fungi from the mycangia of Xyloterinus politus: 

Raffaelea aff. canadensis RNC5 from the oral mycangia and a novel fungus apparently 

related to the Ophiostomatales from the prothoracic mycangia. Several genera in the  
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Figure 1. Maximum parsimony (MP) trees from alignments of ITS rDNA sequences of Phialophoropsis 

and relatives (A) and Ambrosiella and relatives (B) in the Ceratocystidaceae. (A). One of four most 

parsimonious trees produced by heuristic search in PAUP, including symbionts of Trypodendron, rooted to 

Ceratocystis fagacearum. Vertical bars denote Phialophoropsis species as defined in this study. (B). One of 

eight most parsimonious trees produced by heuristic search in PAUP, with the putative Toshionella 

symbiont of Indocryphalus pubipennis denoted with vertical line. Isolate or specimen numbers in the Iowa 

State University collection precede insect name; accession numbers for the Westerdijk Biodiversity 

Institute (CBS) or U.S. National Fungus Collections (BPI) are provided in parentheses where available. 

Single asterisks indicate sequences obtained from DNA extracted from whole beetles or mycangia; double 

asterisks indicate sequences from gallery growth; sequences without asterisks are from pure culture. 

Country or state (two letter abbreviation) of origin of the beetle or gallery material is indicated. Sequences 

from holotype followed by “HT”; from ex-type cultures followed by “ET”. 
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Ophiostomatales, including Raffaelea and Leptographium, were recovered as gallery 

commensals and superficial associates of several Trypodendron spp. and X. politus. 

Trypodendron scabricollis 

The type species for Phialophoropsis is P. trypodendri, the primary symbiont of 

T. scabricollis (Batra 1967). No living culture of P. trypodendri was available. Batra’s 

(1967) holotype material (KANU 394426) from the University of Kansas Ronald L. 

McGregor Herbarium (KANU) contained galleries of T. scabricollis collected in Newton 

County, Arkansas and dried cultures of P. trypodendri from the holotype. Batra (1963, 

1967) and Seifert et al. (2011) illustrated phialidic conidiophores in the type material of 

P. trypodendri (see taxonomy section for more details). Phialidic conidiophores could not 

be found in larval cradles in the holotype, but we did observe phialoconidia and potential 

phialides in material associated with isotypes in BPI. The dark, red-brown mycelia, 

stained media, and superficial sterile surface growth of the dried culture of the holotype 

were typical for the culture morphology described in other species of Phialophoropsis 

(Leach et al. 1940; Funk 1965; Batra 1967; Cassar 1993; Kühnholz 2004). However, our 

attempts to obtain an ITS sequence from DNA extracted from a larval cradle and a dried 

culture were unsuccessful.  

In an earlier study (Mayers et al. 2015), DNA was extracted from ethanol-

preserved T. scabricollis females trapped in flight at nine locations in Missouri, each of 

which yielded an identical ITS sequence (KR611329) of a Phialophoropsis sp. using 

Ceratocystis-specific primers. Two additional female T. scabricollis were caught in flight 

in Georgia using lineatin lures in spring 2017. The beetles were dry, and isolation of 

fungi was unsuccessful, but an ITS sequence identical to that from the Missouri T. 

scabricollis was obtained from the DNA extracted from the mycangium of one of the 
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beetles (Fig. 1). The identity of the beetle was confirmed by COI sequence (MF373741), 

which matched a T. scabricollis sequence of Gohli et al. (2017). The Georgia specimens 

had pleural-prothoraxic mycangia opening on the lateral sides of the prothorax, with 

interior morphology typical of other Trypodendron spp. 

Trypodendron lineatum 

Phialophoropsis ferruginea was described by Mathiesen-Käärik (1953) from 

galleries of T. lineatum in Sweden. We obtained the ex-type culture (MUCL 9940, =CBS 

223.55, =C3549) from the Belgian Coordinated Collections of Micro-organisms 

(BCCM). The culture was isolated in 1952 from a gallery of T. lineatum in Picea abies in 

Regna, Sweden by Mathiesen-Käärik. The mycelium of C3549 was red-brown and 

produced a red-brown diffusible pigment and sparse surface growth on MYEA, 

consistent with reports of P. ferruginea (Mathiesen-Käärik 1953; Funk 1965; Batra 

1967). Three additional isolates were obtained from mycangia of T. lineatum females 

caught in-flight at three different locations in June 2015 (C3821, Wageningen, The 

Netherlands; C3822, Glanz, Austria; C3836, Slovenia). The four isolates were nearly 

identical in culture morphology, and ITS sequences obtained from them were identical 

(e.g. MF399187) (Fig. 1A). ITS sequences obtained by Mayers et al. (2015) from 

ambrosia growth in a T. lineatum gallery in Colorado and from female beetles trapped in-

flight in Alaska lacked a repeated “GT” in the ITS1 region compared to the European 

sequences. In addition, the sequences from gallery M240 from Colorado (KR611328) 

and B36 from Alaska have three Ts at the end of ITS2, whereas gallery M241 from 

Colorado (MF399197) and the European isolates have four Ts. The COI sequences of the 

three European beetles (e.g., MF373743) closely matched sequences of European T. 

lineatum, and a COI sequence from an Alaska beetle (MF373742) matched closely to 
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other North American specimens of T. lineatum (e.g., MF373744). North American and 

most European T. lineatum COI sequences group separately (Jordal and Kambestad 

2014). 

Mathiesen-Käärik’s isolate (C3549) produced swollen, beaded hyphae (Fig. 2F), 

which she considered to be the sole means of propagation (Mathiesen-Käärik 1953). 

However, we also observed conidiophores in C3549 that were rarely produced on one or 

few small isolated tufts on MYEA. The conidiophores had deep-seated phialides (Fig. 

2A–C), as expected in Phialophoropsis (Batra 1967, Mayers et al. 2015), with solitary or 

long chains of phialoconidia (Fig. 2D, E). These matched the conidiophores observed in 

USA galleries of T. lineatum (Mayers et al. 2015).  

Though no Phialophoropsis culture was isolated from T. lineatum collected in 

Alaska or Colorado, several other fungi were occasionally isolated on media selective for 

Ophiostomatales (CSMA, 1% malt extract, Difco; 1.5% agar, Sigma-Aldrich; 200 ppm 

cycloheximide and 100 ppm streptomycin sulfate added after autoclaving) or SMA. 

 

Figure 2. Phialophoropsis ferruginea from Trypodendron lineatum. (A). Branched phialoconidiophores. 

(B). Long chains of conidia from phialoconidiophores. (C). Shallow phialide with detached conidia. (D). 

Single detached conidium. (E). Chained, detached conidia. (F). Beaded hyphae. (A–E). Isolate C3549 (CBS 

223.55; ex-type). (F). From gallery in Colorado. Photos by Nomarski interference microscopy of material 

stained with cotton blue. Bars = 10 µm. 
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Three isolates of a Raffaelea sp. (‘Raffaelea cf. brunnea RNB3’) were isolated 

from a non-surface-sterilized Alaska beetle and two Colorado galleries. The isolates had 

a unique 28S sequence (e.g. C3493; MF399176), which was most similar to the 28S 

sequence of R. brunnea (526/531 bp matching, 99%, with EU177457) and identical to the 

sequence of the unnamed TR25 (533/533 bp, 100% match, with EU984281) isolated 

from T. rufitarsis in Pinus cortorta in western Canada (Kühnholz 2004; Alamouti et al. 

2009). Other fungi isolated from surfaces of USA T. lineatum and its galleries included 

Leptographium abietinum and unidentified Ophiostoma spp. with 28S sequences similar 

to those of O. montium (C3501; MF399181) and O. piceae (C3492; MF399182). 

Trypodendron aff. proximum 

A single female of an undescribed Trypodendron sp. with affinity to T. proximum 

was collected in the Korea National Arboretum, Gyeonggi-do, Pocheon-si, South Korea. 

It yielded an isolate (C4275 = CBS 144148) with culture characteristics similar to those 

of P. ferruginea, and its ITS sequence (MF399198) was similar to that of P. ferruginea 

isolate C3549, differing from it by the deletion of a ‘GT’ in ITS1 and a C-to-T 

substitution in ITS2 (Fig. 1A). The isolate sporulated abundantly and produced many 

tufts of phialidic conidiophores that appeared identical to those of C3549. 

Trypodendron domesticum 

Culture C2230 (= CBS 460.82), isolated from a T. domesticum gallery in Fagus 

sylvatica in Germany (Zimmerman 1973), has been used as a representative of P. 

ferruginea (Six et al. 2009; de Beer et al. 2014; Harrington et al. 2014). However, its ITS 

sequence (KC305146) was distinct from the ex-type culture (C3549) of P. ferruginea 

(Fig. 1A). Our isolate C2230 appeared to be debilitated, as it grew slowly, was hyaline 

rather than pigmented, and did not sporulate. Nine fresh isolates (including C3828 = CBS 
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141685) were recovered from nine T. domesticum females in Spring 2015; eight were 

trapped in Hainich, Germany, and one in Wageningen, Netherlands. The identity of one 

of the German specimens was confirmed by its COI sequence (MF373734). The nine 

isolates had an ITS sequence identical to that of C2230 (Fig. 1A) but appeared healthy, 

with growth rates and red-brown pigment expected of Phialophoropsis (Fig. 3M, N).  

 

Figure 3. Phialophoropsis nunbergii from Trypodendron domesticum and T. signatum. (A–E). 

Phialoconidiophores. (A). With single terminal conidium. (B, D). Chained phialoconidia from shallow 

phialide, with phialide collar indicated by arrows. (C). Long chain of phialoconidia, with first conidium 

larger and more globose. (E). Phialide supported by subtending stalk. (F, G) Detached phialoconidia. (H). 

Palisade of phialoconidiophores in gallery. (I, K). Growth at 7d on MYEA. (J). Growth at 14d on MYEA of 

three transferred subcultures from the same isolate. (A, I, J). Isolate C3828 (CBS 141685; ex-type) from T. 

domesticum. (B, F, G). Isolate C3826 from T. domesticum. (C–E, K) Isolate C3914 (CBS 141686) from T. 

signatum. (H). In gallery of T. signatum in Fagus sylvatica. (A–H) imaged by Nomarski interference 

microscopy of material stained with cotton blue, Bars = 10 µm. (I–K) imaged with Epson 10000XL 

scanner, plate diam. 90mm. 
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Two isolates produced conidiophores with deep-seated phialides (Fig. 3A–D) on small, 

isolated tufts in culture and solitary or chained phialoconidia (Fig. 3E, F), similar to 

cultures of P. ferruginea, but with somewhat shallower phialides. The nine isolates from 

T. domesticum tended to spontaneously sector into one of four mycelial phenotypes, and 

the phenotypes persisted when transferred (Fig. 3N). 

Trypodendron signatum 

Galleries of T. signatum in Fagus sylvatica were collected in Bern, Switzerland in 

July 2012. The galleries contained ambrosia growth with deep-seated phialides (Fig. 3G), 

but ITS amplification was not successful from this material. Three females from the same 

collection stored in ethanol yielded ITS sequences identical to sequences of 

Phialophoropsis from T. domesticum (Fig. 1A). COI barcoding was not successful for 

these beetles, but their antennae clubs were as expected for T. signatum (Grüne 1979), 

which is otherwise easily confused with T. lineatum. The DNA extracted from a single T. 

signatum female caught in-flight in the Netherlands and stored in ethanol yielded a 

Phialophoropsis ITS sequence (MF399196) that differed from the other T. domesticum 

and T. signatum sequences by a repeated ‘TA’ near the beginning of ITS1 that was 

unique among Phialophoropsis spp. (Fig. 1A). COI sequencing was successful on this 

beetle (MF373737), which confirmed its identity as T. signatum. 

Several additional T. signatum females were collected in Morioka, Iwate 

Prefecture, Japan in April 2015. Isolations from six of the beetles yielded isolates of a 

dark brown fungus with an ITS sequence (MF399189) nearly identical to the common 

sequence from T. domesticum and T. signatum, differing by a G-to-A substitution in ITS1 

region that is unique among Phialophoropsis spp. (Fig. 1A). The culture morphology of 

these six T. signatum isolates was similar to isolates from T. domesticum, but the isolates 
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from T. signatum tended to have a dense, contiguous carpet of white surface growth and 

produced less pigment (Fig. 3O), and one isolate (C3914, = CBS 141686) sporulated 

densely in culture. The conidiophores of C3914 were uniquely flask-shaped and 

subtended by a thin stalk (Fig. 3H, I). No other isolates from T. signatum sporulated, and 

gallery growth was not observed. COI sequencing was not successful from a female from 

this collection, but it had morphological characters consistent with T. signatum (Grüne 

1979). 

Trypodendron retusum 

Isolate C3550 (= CBS 408.68 = MUCL 14520, isolated by D.M. Norris in 1968 

from a T. retusum female infesting Populus sp. in Wisconsin, USA) has also been used as 

a representative of P. ferruginea (Paulin-Mahady et al. 2002; Alamouti et al. 2009; Six et 

al. 2009; Harrington et al. 2014). Its ITS sequence (KC305145) was distinct from P. 

ferruginea C3449 (Fig. 1A), as was the culture, which was sterile and fast-growing, with 

fluffy, red-brown aerial hyphae.  

Galleries of T. retusum in Populus grandidentata were collected in Michigan on 

four occasions: in Benzie County in July 2013, and in Montcalm County in May 2014, 

July 2014 and May 2015. COI sequences obtained from two T. retusum females, Tret213 

from 2013 (MF373738) and Tret216 from July 2014 (MF373739), were most similar to 

the sequence of T. retusum in the dataset of Gohli et al. (2017). Larval cradles in all four 

collections had moist, translucent, beige to red-brown carpets of ambrosia growth (Fig. 

4A) composed of palisades of phialoconidiophores (Fig. 4B, C). The ambrosia growth in 

the cradles yielded ITS sequences (e.g. MF399194) identical to that of C3550 (Fig. 1A). 

Isolations of Phialophoropsis were unsuccessful from the 2013, July 2014, and 2015 

collections, but ITS sequences from cradles of the three collections were identical to that 
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of C3550 (Fig. 1A). Isolations from the mycangium of a female and from the ambrosia 

growth in an egg niche from the May 2014 collection yielded two cultures with 

characteristics expected of Phialophoropsis, including the production of brown pigment, 

though these cultures often shifted to very slow growth rates with excessive pigment 

production. The two isolates yielded ITS sequences (e.g. MF399190) identical to that of 

C3550 and the three galleries (Fig. 1A), but the faster, fluffier growth of C3550 was not 

observed in these field isolates. Sporulation was not observed in the Phialophoropsis 

isolates from T. retusum.  

A female taken from the May 2014 collection had a spore mass attached to one of 

its coxa (Fig. 4H, black arrow), which presumably came from the nearby mycangium 

opening on the proepimeron, from which another small mass of fungal cells was observed 

(Fig. 4H, white arrow). The coxal spore mass was composed of thick-walled propagules, 

several of which appeared to be germinating (Figs. 4I, J). The spores exiting from the 

mycangium, and teased from inside of it (Figs. 4K, L), were composed of a homogenous 

mix of septate, sometimes branched, thallic-arthric propagules, consistent with 

mycangium propagules reported previously in Trypodendron (Batra 1963; Francke-

Grosmann 1956, 1958; Abrahamson et al. 1967). 

The main tunnels of T. retusum were colored black and were devoid of ambrosia 

growth. However, the mycelium, conidia and perithecia of Ophiostomatales were 

sometimes seen. Other Ophiostomatales isolated from T. retusum galleries and identified 

via 28S rDNA sequencing included Raffaelea tritirachium, Leptographium piriforme 

(C3144; MF399183), and Ophiostoma spp. with sequences similar to Ophiostoma 

floccosum (C3142; MF399184) and Ophiostoma piceae (C3145; MF399185). 
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Figure 4. Phialophoropsis hubbardii from Trypodendron retusum. (A, B, C) Palisades of 

phialoconidiophores on gallery walls. (D). Phialoconidiophores with phialoconidia produced in shallow 

phialides. (E). Palisade of phialoconidiophores. (F, G). Detached phialoconidia. (H). Prothorax and head of 

T. retusum with spore mass near mycangium opening (white arrow) and detached spore mass on coxa 

(black arrow). (I, J). Detached fungal mass attached to coxa showing germinating thick-walled mycangial 

spores. (K, L). Spore mass teased from mycangium showing thick-walled, septate, arthrospore-like 

propagules. (A, B, D–G) In gallery of T. retusum in Populus grandidentata (BPI 910630; holotype). (C). 

Gallery M597. (H). T. retusum female Tre83. All photos except A, H by Nomarski interference microscopy 

of material stained with cotton blue, Bars = 10 μm, except I, K = 100 μm. A, H by stereo microscope. 

Trypodendron betulae 

Galleries of T. betulae in Betula papyrifera were collected in Chippawa 

Township, Isabella County, Michigan in June 2014. A COI sequence (MF373740) 

obtained from a female found in the gallery was most similar to two sequences in 

GenBank: from an unknown Curculionidae sp. (KM850234) and a sequence attributed to 

T. lineatum (KU876414) that was probably misidentified, since the sequence differed 

greatly from other T. lineatum sequences. The only COI sequence in GenBank attributed 

to T. betulae (KU876412) matches sequences of T. lineatum. However, our studied 
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beetles morphologically fit the descriptions of T. betulae, which is restricted to Betula 

and, rarely, Alnus (Wood 1957). 

The larval cradles of T. 

betulae had moist carpets of 

ambrosia growth composed of 

palisades of phialoconidiophores 

(Figs. 5A, B), similar to those of 

other Trypodendron. The ITS 

sequence obtained from the cradles 

(MF399193) was unique within 

Phialophoropsis (Fig. 1A). The 

cradles yielded two isolates, C3404 

(=CBS 141684) and C3405, with 

characters expected of 

Phialophoropsis; they did not sporulate and tended to sector into a much slower growth 

form with excessive pigment production. The ITS sequence from both isolates 

(MF399191) was identical to the gallery sequences (Fig. 1A). An 18S rDNA sequence 

obtained from C3404 differed somewhat (619/630 bp) from the sequence (U40016) of a 

1996 isolate from T. betulae used to represent P. ferruginea (Cassar and Blackwell 1996; 

Blackwell and Jones 1997), but the 20-year-old sequence contained a number of Ns and 

other single-base differences that may have been due to limitations in sequencing 

technology. 

 

 

Figure 5. Phialophoropsis leachii from Trypodendron 

betulae. (A). Phialoconidiophore bearing chain of 

phialoconidia, with phialide collar marked with black arrows. 

(B). Palisade of phialoconidiophores on gallery wall. (A). In 

gallery of T. betulae in Betula papyrifera (BPI 910632; 

holotype). (B).From another T. betulae gallery in B. 

papyrifera. Both photos by Nomarski interference micrscopy 

of material stained with cotton blue, bars = 10 μm. 
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Ten isolates of a Raffaelea sp. were obtained from galleries of T. betulae. Four of 

the isolates (e.g. C3387; MF399177) had a 28S sequence identical to that of Raffaelea cf. 

brunnea RNB3 isolated from T. lineatum. 

Indocryphalus pubipennis 

Female I. pubipennis were collected in Jeju, South Korea from galleries in an 

unidentified tree in April 2016 and stored in ethanol. The COI sequence from one of the 

females (MH042542) was similar to other I. pubipennis sequences on GenBank. 

Extractions of DNA from dissected mycangia or teased spore masses from five females 

yielded an ITS sequence (MH040803) that was closest to but distinct from Toshionella 

(Fig. 1B), a genus of Asian Scolytoplatypus ambrosia symbionts (Chapter 5). Additional 

female I. pubipennis were collected in Senboku, Akita Prefecture, Japan in July 2017 and 

stored in ethanol. The COI sequence from one of the females (MH042543) was also 

similar to other I. pubipennis sequences on GenBank, and it differed from the sequence 

from South Korea by two base substitutions. The Japanese beetles were caked in a white, 

waxy material that appeared to be fungal in nature. The ITS sequence obtained from a 

piece of this material matched Geosmithia putterillii (100% identity, match with 

HF546347), a common superficial bark beetle associate (Kolařík et al. 2017). 

Nevertheless, the mycangia were full of homogenous masses of fungal propagules 

identical to those in the mycangia of the South Korean I. pubipennis. The ITS sequence 

obtained from a dissected mycangium of I. pubipennis in Japan was identical to that from 

the South Korean I. pubipennis (Fig. 1B). 

The females from the South Korean and Japanese collections had mycangium 

openings on the side of the prothorax, positioned just under the ridge separating the 
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curved dorsal pronotum from the episternal region (Fig. 6A). The openings were 

horizontal slits that generally tapered on the anterior side and curved slightly dorsally on 

the posterior side, as expected for I. pubipennis (Cognato et al. 2015). The openings were 

completely covered with a fence of vertical setae that presumably keeps spores inside the 

cavity (Fig. 6B). Spore masses typically overflowed from the openings in the South 

Korean beetles (Fig. 6B), and the external masses were often like balls of yarn, composed 

of long, tangled strings of hyphae (Fig. 6E). Internally, the mycangia were pocket-like, 

triangular invaginations, shaped like upside-down shark fins with apices that pointed 

ventrally and anteriorly (Fig. 6C), with walls composed of a sclerotized, reticulated 

matrix (Fig. 6D). When gentle pressure was applied to the side of the prothorax, 

homogenous ribbons of fungal propagules (Fig. 6F) protruded from inside the mycangia.  

 

Figure 6. Mycangium of Indocryphalus pubipennis and mycangium propagules of its putative Toshionella 

symbiont. (A). Left aspect of female, with mycangium opening indicated by white arrow. (B). Detail of 

mycangium opening lined with setae, with exiting fungal propagules; beetle anterior is to the left. (C). 

Dissected left mycangium, viewed from exterior side of exoskeleton; beetle anterior is to the left. (D). 

Reticulated texture of mycangium wall. (E). Exterior fungal mass, showing long mycelial threads and 

bundled mass. (F). Spore mass teased from inside mycangium. (G, H). Irregular, chained, branching-arthric 

propagules in mycangium. (I). Solitary or short-chained propagules in mycangium. All photos except A, B 

by Nomarski interference micrscopy of material stained with cotton blue, bars = 10 μm, except C, E, F bars 

= 100 μm. A, B by stereo microscope. 
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These contents comprised irregularly shaped, thallic-arthric propagules in branching 

chains (Fig. 6G, H) or the cells were solitary and in short chains (Fig. 6I). 

Xyloterinus politus 

Galleries of X. politus were examined in logs of Acer rubrum (August 2013) and 

Populus sp. (May 2014) collected in Montcalm County, Michigan, and in a log of Betula 

papyrifera (June 2014) in Isabella County, Michigan. The COI sequences obtained from 

two beetles in the 2013 collection (MF373736 and MF373735) matched other sequences 

of X. politus in GenBank. The prothoracic mycangia of female X. politus from galleries 

were shallow basins rimmed with protective setae (Fig. 7O), as previously reported 

(Abrahamson and Norris 1966, 1969; Abrahamson 1967; Francke-Grosmann 1967). As 

illustrated by Abrahamson and Norris (1966, 1969) and MacLean and Giese (1968), the 

prothoracic mycangia contained thick-walled, spherical spores (Figs. 7P, Q). The second 

type of mycangium, near the mouthparts of both males and females (Abrahamson and 

Norris 1966, 1969; Abrahamson 1967) was not examined in this study. 

Unlike galleries of Trypodendron spp., the galleries of X. politus were mostly 

dominated by superficial, darkly pigmented, sparse fungal growth composed of thick, 

sterile olivaceous hyphae. The mycelium grew along the tunnel walls and intermixed 

with sawdust and frass to seal or plug the egg niches and larval cradles from the main 

gallery. Growth in niches and cradles was lighter-colored and thicker than the growth in 

the main gallery (Fig. 7A) due to the abundance of large, club-shaped conidia (Figs. 7B, 

C), which appeared similar to the spores in galleries of X. politus illustrated by MacLean 

and Giese (1968). Large, spherical chlamydospores were sometimes observed in the main 

gallery and cradle plugs (Fig. 7R).  
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Eight cultures of a very slow-growing, olive-brown fungus were isolated on SMA 

from X. politus galleries and from surface-sterilized female prothoraxes. The cultures 

initially grew slowly but transitioned to a faster-growing, red-brown phenotype with  

 

Figure 7. Kaarikia abrahamsonii and prothoracic mycangia of Xyloterinus politus. (A–F). Conidia and 

conidiophores in galleries. (A). Larval cradle. (B). Palisade of conidiophores in larval cradle. (C). Detached 

conidia in egg niche. (D). Simple conidiophore. (E). Terminal conidium with truncate attachment (black 

arrow). (F). Detached conidium with two septa (black arrows). (G–N). Culture morphology. (G). Growth at 

7d on MYEA. (H–M). Chlamydospores. (H). Terminal and intercalary chlamydospores, breaking free. (I). 

Free chlamydospore on right, with empty pigmented sheath (black arrow) on left. (J). Terminal, with 

pigmented outer sheath visible. (K). Terminal on simple hypha. (L). Solitary chlamydospore. (M). Chained 

chlamydospores. (N). Beaded hyphae in culture. (O–Q). Prothoracic mycangium and mycangial 

propagules. (O). Posterior aspect of X. politus prothorax with rest of body removed, showing paired 

prothoracic basin mycangia (white arrows). (P). Prothoracic basin mycangium cracked under cover slip, 

with mycangial spores inside. (Q). Spherical mycangial propagules. (R). Spherical chlamydospores at 

cradle entrance. (A, B, D, F, R) in Acer rubrum (BPI 910626). (C) in Betulae papyrifera (BPI 910623, 

holotype). (G–N) isolate A1268 (CBS 142646). (A, O) by stereo microscope. (B–F, H–N, R) by Nomarski 

Interference Microscopy of material stained with cotton blue, Bar = 10 μm. (O, P) by light microscopy. (P). 

Stained with Trypan blue. (G). By Epson 10000XL scanner, plate diam. 90mm. 
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textured aerial mycelium (Fig. 7G) after serial transfer on MYEA. The cultures produced 

thick, olivaceous hyphae similar to that seen in the galleries, but club-shaped conidia 

were not observed in culture. Submerged hyphae in older cultures typically produced 

thick-walled chlamydospores (Figs. 7H–M) that appeared to burst irregularly from within 

the pigmented hyphae (Fig. 7 H–J), leaving behind pigmented membranes (Fig. 7 I, black 

arrow). Chlamydospores also were produced terminally on simple hyphae (Fig. 7 K). 

Knobbed, monilioid hyphal swellings formed in culture (Fig. 7N). Multiple attempts at 

PCR and direct sequencing with ITS primers were unsuccessful from these isolates, but 

six isolates yielded an identical 28S sequence (e.g. A1268=CBS 142646; MF399172), 

which had some similarity to the 28S gene of Ophiostomatales but had no close (>91% 

identity) matches in NCBI BLASTn searches. In both culture morphology and 

chlamydospore morphology, these isolates resembled UWE-132M, which had been 

earlier isolated from galleries and prothoracic mycangia of X. politus (Abrahamson and 

Norris 1969). 

Seven isolates of a Raffaelea sp., ‘Raffaelea cf. canadensis RNC5’, including 

C3169 (=CBS 142652), were isolated from galleries, the dissected head of a surface-

sterilized female, and two walkabout plates of X. politus. The isolates had small, round to 

pyriform, truncate spores on simple conidiophores, similar to those of R. canadensis 

(Batra 1967). Six of the isolates yielded nearly identical 28S sequences (e.g. C3169, = 

CBS 142652; MF399173) that were similar to that of the ex-type culture of R. 

canadensis (543/555, 98% match, with EU177458) but more closely matched those of 

unnamed Raffaelea spp. in the R. canadensis complex: Raffaelea sp. PL6404 (548/553 

bp, 99% match, with KT803726) (Bateman et al. 2015), Raffaelea sp. C1943 (546/554 
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bp, 99% match, with EU177465) (Harrington et al. 2010), and Raffaelea sp. C2711 

(544/553 bp, 98% match, with HQ688665) (Harrington et al. 2011). Abrahamson and 

Norris (1969) consistently isolated an unidentified fungus, tentatively designated 

Raffaelea sp. UWE-132L, from heads of male and female X. politus. Their illustrations 

show small, hyaline conidiophores with spherical conidia that were similar to those of R. 

cf. canadensis RNC5. However, their representative culture of UWE-132L (CBS 410.68) 

has a 28S sequence nearly identical to that of R. tritirachium (personal communication, 

Gerard Verkleij, Fungal Collection Curator, CBS), which produces elongated, ellipsoidal 

spores (Batra 1967). 

Six cultures of ‘Raffaelea cf. lauricola RNL1’ were isolated from X. politus 

galleries and beetles on walkabout plates, but this species was not isolated from surface-

sterilized beetles. The six isolates (e.g. C3162) yielded an identical 28S sequence 

(MF399178) that was most similar to that of R. lauricola (528/545 bp, 97% match, with 

KF515710 from ex-type isolate). Two isolates of a third Raffaelea sp. closely-related to 

or conspecific with R. tritirachium were isolated from X. politus: C3431 from a larval 

cradle in Populus sp. (28S = MF399180, 544/547 bp matching with EU177464 from ex-

type) and C3400 from the exterior of a female in Betula papyrifera (28S = MF399179, 

545/547 bp matching with EU177464). A single isolate (C3478; 28S = MF399186) with 

a sequence similar to that of Ophiostoma karelicum (467/475 bp, 98% match, with 

EU443756) (Linnakoski et al. 2008) was obtained from the surface of a female.  

Phylogenetic analyses 

Representatives of the putative Phialophoropsis species from Trypodendron and 

the putative Toshionella from I. pubipennis were included in a six-gene Bayesian tree of 

the Ceratocystidaceae (Fig. 8). There was strong support for a monophyletic  
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Figure 8. Multi-locus tree from Bayesian analysis of the combined 28S rDNA, 18S rDNA, tef1- α, tub, 

mcm7, and rpl1 dataset of the Ceratocystidaceae and representatives of the Microascales. Mycangial 

symbionts of Xyloterini ambrosia beetles are in bold. Posterior probabilities from Bayesian analysis and 

bootstrap support values (>50%) from maximum parsimony analysis are indicated in the key and 

correspond to lowercase letters on branches. Thickened branches indicate Bayesian posterior probability of 

1.0 and maximum parsimony bootstrap support ≥ 95%. Branches with Bayesian posterior probability 1.0, 

bootstrap support 100% are indicated with asterisks and not included in the key. Microascales 

representatives outside the Ceratocystidaceae are indicated by the grey-shaded box, with other families 

indicated with vertical bars. Accession numbers for bolded species in the Iowa State University collection 

(C) and other collections are given where available; collection information for other species representatives 

are detailed in Chapter 5. The tree is rooted to Scedosporium boydii, which was allowed to collapse into a 

polytomy with Graphium penicillioides. Bar = 0.2 estimated substitutions per site. 
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Phialophoropsis sister to Wolfgangiella, with separation of P. ferruginea (from T. 

lineatum) from the symbiont from T. domesticum and T. signatum, the T. retusum 

symbiont, and the T. betulae symbiont. Phialophoropsis and Wolfgangiella formed a 

sister group to Bretziella fagacearum, as has been reported previously (de Beer et al. 

2014; Mayers et al. 2015; Chapter 5). Only the ITS and 28S sequences were obtained 

from the mycangial symbiont of I. pubipennis, and both of these sequences place the 

fungus in the genus Toshionella, which is the mycangial symbiont of Asian 

Scolytoplatypus spp. (Chapter 5). 

Representatives of the prothoracic and oral symbionts of X. politus were included 

in a two-gene Bayesian tree of the Diaporthomycetidae, including representatives of the 

Ophiostomatales (Fig. 9). Raffaelea cf. canadensis RNC5 was placed clearly within 

Raffaelea. Isolates A1264 (= CBS 144155) and A1268 (= CBS 142646) of the olive-

green fungus, which dominated the galleries and was isolated from the prothoracic 

mycangia of X. politus, formed a sister group to the Ophiostomatales on a long branch. 

There was good posterior probability support for the Ophiostomatales as a monophyletic 

group excluding the X. politus prothoracic symbionts, but there was only moderate 

support for the branch comprising both the prothoracic symbiont and the 

Ophiostomatales. The recently-described Afroraffaelea ambrosiae (Bateman et al. 2017) 

was placed in the Ophiostomales clade, but on a very long branch (Fig. 9). When the 

analysis was repeated without A. ambrosiae, the support values for the Ophiostomatales 

(Fig. 9, branch h.) improved significantly (posterior probability 1.0, MP bootstrap support 

91%), whereassupport for the common clade of the prothoracic symbiont and the 

Ophiostomatales (Fig. 9, branch g.) decreased slightly (posterior probability 0.83,  



246 

 

 

bootstrap support <50%). It is noteworthy that both A. ambrosiae (Bateman et al. 2017) 

and the prothoracic symbiont of X. politus do not tolerate cycloheximide, whereas 

members of the Ophiostomatales tolerate this antibiotic (Harrington 1981). Thus, the 

prothoracic symbiont of X. politus appears to fall outside of the Ophiostomatales but 

within the Diaporthomycetidae, with no close relatives known and uncertain placement in 

order or family. 

 

Figure 9. Multi-locus tree from Bayesian analysis of the combined 28S and 18S rDNA dataset of the two 

mycangial symbionts of Xyloterinus politus (Kaarikia abrahamsonii and Raffaelea cf. canadensis RNC5) 

and other representatives of orders of the Diaporthomycetidae. The two mycangial symbionts are in bold. 

Posterior probabilities from Bayesian analysis and bootstrap support values (>50%) from maximum 

parsimony analysis are indicated in the key and correspond to lowercase letters on branches. Thickened 

branches indicate Bayesian posterior probability of 1.0 and maximum parsimony bootstrap support ≥95%. 

Branches with Bayesian posterior probability 1.0, bootstrap support 100% are indicated with asterisks and 

not included in the key. Taxa for which 18S rDNA sequences were not available are marked with asterisks. 

The tree is rooted to Xylaria hypoxylon and includes other Sordariomycetes outside the 

Diaporthomycetidae (grey box, classes in all caps). Bar = 0.02 estimated substitutions per site. 
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Taxonomy 

Morphological comparisons and phylogenetics support recognition of three new 

species of Phialophoropsis associated with Trypodendron. A new genus and species is 

proposed for the prothoracic symbiont of X. politus. The oral symbiont of X. politus may 

be a new Raffaelea species, but the species we isolated is closely related to R. canadensis, 

and significant differences in morphology with R. canadensis ex-type culture CBS 

168.66 were not found.  

Disclaimer: The novel taxa proposed in this chapter of the dissertation are not 

intended to represent validly published names under the International Code of 

Nomenclature for algae, fungi, and plants. 

 

PHIALOPHOROPSIS L.R. Batra emend. T.C. Harr., Fungal Biology 119: 1086. 2015 

TYPE SPECIES – Phialophoropsis trypodendri L.R. Batra 

Phialophoropsis trypodendri L.R. Batra, Mycologia 59: 1008. 1967 (“1968”) 

MycoBank MB 336297. 

Synonym: Ambrosiella trypodendri (L.R. Batra) T.C. Harr., Mycotaxon 111:355. 

2010 MycoBank MB 515299. 

Typus. USA: Arkansas: Newton County, Deer, ambrosia growth in galleries of T. 

scabricollis in Pinus echinata, 10 April 1963, L.R. Batra, 1952-LRB (holotype, including 

dried ex-type culture, KANU 394426; isotype BPI 422498; isotype BPI 422499) 

Comments –Batra (1967) designated 1952-LRB in KANU (presumably KANU 

394426) as the type for T. trypodendri, and two isotypes (BPI 422498 or BPI 422499) are 

also labelled 1952-LRB. We were unsuccessful in finding phialides in the larval cradles 

or dried cultures contained in KANU 394426. Batra (1967) illustrated phialidic 
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condiophores and conidia from this material, and Seifert et al. (2011) illustrated the 

fungus based on Batra’s illustration and the BPI material. We could not find conidia or 

conidiophores in either of the BPI isotypes, but there were three packets labelled LRB-

1952 associated with the isotypes that had phialoconidia typical of Phialophoropsis. 

There is no known living culture of P. trypodendri, but a dried culture in KANU 394426 

was very similar in morphology to other Phialophoropsis spp., though no conidia were 

seen. ITS sequencing was unsuccessful from Batra’s holotype material (KANU 394426), 

but females of T. scabricollis caught in Georgia yielded the same ITS sequence as 

females from eight Missouri locations in an earlier study (Mayers et al. 2015) (Fig. 1). 

Phialophoropsis ferruginea (Math.-Käärik) T.C. Harr., Fungal Biology 119: 1087. 2015             

(Fig. 2) 

MycoBank MB 812586. 

Basionym: Monilia ferruginea Math.-Käärik, Meddelanden fran Statens 

Skogforskningsinstitut 43: 57 (1953)  

MycoBank MB 474947. 

Synonym: Ambrosiella ferruginea (Math.-Käärik) L.R. Batra, Mycologia 59: 1000 

(1967) 

MycoBank MB 326141. 

Typus. Sweden: Regna, from Trypodendron lineatum gallery in Picea abies, 17 

May 1952, A. Mathiesen-Käärik, lectotype (dried culture, BPI 910629); ex-type C3549 

(living culture CBS 223.55, MUCL 9940). 

Comments –Mathiesen-Käärik (1953) did not designate a type specimen when she 

described Monilia ferruginea from T. lineatum. Batra (1967) indicated that she deposited 
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a holotype in the Forest Research Institute, Stockholm, Sweden (now Department of 

Forest Products, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 

Uppsala), but all herbarium specimens from the institute were lost (Geoffrey Daniel, 

personal communication). Mathiesen-Käärik deposited a culture of M. ferruginea from 

her original description (Mathiesen-Käärik 1953) in CBS (CBS 223.55) (personal 

communication, Gerard Verkleij, Fungal Collection Curator, CBS), with collection 

information matching the type: May 17, 1952, gallery of T. lineatum in P. abies, Regna, 

Sweden (Batra 1967). This culture had since been lost in CBS, but it was duplicated in 

MUCL (MUCL 9940) in 1967, likely by G.L. Hennebert (personal communication, Cony 

Decock, Principal Curator, MUCL). We obtained culture MUCL 9940 (C3549), which 

had consistent culture morphology to Mathiesen-Käärik’s (1953) and Batra’s (1967) 

descriptions. We have deposited a dried specimen of MUCL 9940 in BPI and designate it 

as the lectotype for P. ferruginea, and we deposited MUCL 9940 in CBS to replace the 

missing CBS 223.55. This culture is similar to our other European and USA collections 

from T. lineatum in morphology and DNA sequences. Ambrosia growth discovered by 

Hartig (1872a) and illustrated by later authors (Neger 1910, 1911; Hadorn 1933; Funk 

1965) in galleries of T. lineatum were probably P. ferruginea. Isolates CBS 460.82 from 

T. domesticum and CBS 408.68 from T. retusum, often cited as P. ferruginea in 

phylogenetic studies (Alamouti et al. 2009; Six et al. 2009; de Beer et al. 2014; 

Harrington et al. 2014; Mayers et al. 2015), are described below as new species. 
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Phialophoropsis nunbergii C. Mayers & T.C. Harr., sp. nov.                                 (Fig. 3) 

MycoBank MB 824943. 

Etymology: After Marian Nunberg, who in 1951 first discovered the mycangia of 

Trypodendron. 

Typus: Germany: Hainich, from female T. domesticum caught in flight, April 

2015, P. Biedermann, holotype (dried culture, BPI 910634); ex-type C3828 (CBS 

141685). 

Colonies on malt yeast extract agar 13–67 mm diam. after 7 d at 25 C, odor 

lightly sweet to non-distinctive, surface growth superficial, hyaline, regular, reverse 

ocherous to umber with chestnut center, reverse becoming chestnut with age, diffusible 

pigment staining agar bay. Sporodochium-like masses sometimes forming in older 

cultures, white, buff, or greyish-sepia, spherical, scattered or forming a dense carpet, 

rarely bearing rust-colored liquid drops, without conidiphores. Phialoconidiophores rare 

in culture, borne in small, lone tufts, branching or in palisades, hyaline to red-brown, 

sometimes flask-shaped and subtended by a stalk of simple hyphae, producing 

phialoconidia singly or in chains. Phialoconidia produced from shallow- to moderately-

seated phialides, hyaline to lightly red-brown, thick-walled, smooth, aseptate, cylindrical 

with rounded apices to globose, 6–13.5 × 7.5–16.5 μm, first conidium larger and 

somewhat obovoid, subtending conidia shorter and more barrel-shaped, detaching singly 

or in chains. 

Other cultures examined: Germany: Hann-Munden, from T. domesticum gallery 

in Sylvatica fagus, June 1971, G. Zimmerman, C2230 (CBS 460.82). Hainich: from 

female T. domesticum caught in flight, April 2015, P. Biedermann, C3826. Hainich: from 
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female T. domesticum caught in flight, April 2015, P. Biedermann, C3827. Hainich: from 

female T. domesticum caught in flight, April 2015, P. Biedermann, C3829. Hainich: from 

female T. domesticum caught in flight, April 2015, P. Biedermann, C3831. Hainich: from 

female T. domesticum caught in flight, June 2015, P. Biedermann, C3833. Hainich: from 

female T. domesticum caught in flight, June 2015, P. Biedermann, C3834. Hainich: from 

female T. domesticum caught in flight, July 2015, P. Biedermann, C3835. Netherlands: 

Wageningen: from female T. domesticum caught in flight, June 2015, L. van de Peppel, 

C3832. Japan: Iwate Prefecture: Morioka, from mycangium of T. signatum caught 

landing on unidentified tree species, 7 April 2015, H. Masuya, C3914. Iwate Prefecture: 

Morioka, from mycangium of T. signatum caught landing on unidentified tree species, 7 

April 2015, H. Masuya, C3915. Iwate prefecture: Morioka, from mycangium of T. 

signatum caught landing on unidentified tree species, 7 April 2015, H. Masuya, C3919. 

Iwate Prefecture: Morioka, from mycangium of T. signatum caught landing on 

unidentified tree species, 7 April 2015, H. Masuya, C3920. Iwate Prefecture: Morioka, 

from mycangium of T. signatum caught landing on unidentified tree species, 7 April 

2015, H. Masuya, C4056. Iwate Prefecture: Morioka, from mycangium of T. signatum 

caught landing on unidentified tree species, 7 April 2015, H. Masuya, C4057. 

Notes. This species is the mycangial symbiont of T. domesticum and T. signatum 

in Europe and Japan, respectively. The bulging, flask-shaped phialoconidiophores on 

stalks produced by isolate C3914 from T. signatum in Japan are unique within 

Phialophoropsis, but the conidiophores of isolates from T. domesticum appeared more 

typical. The isolates from T. signatum also were lighter pigmented. The Japanese T. 

signatum also had distinct ITS sequences (Fig. 1A) and may represent a separate species 
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in spite of limited DNA sequence differences (Fig. 8). The growth rate of P. nunbergii is 

notably faster than isolates from T. retusum and T. betulae, and it produces less pigment 

than isolates from those species and P. ferruginea. Previous associations of 

Phialophoropsis-like fungi with T. domesticum (Hartig 1872b; Francke-Grosmann 1956, 

1958; Batra 1967; Zimmerman 1973) or T. signatum (Francke-Grosmann 1952, 1956, 

1958; Nakashima et al. 1992) may have been P. nunbergii. 

Phialophoropsis hubbardii C. Mayers, T.C. Harr., McNew & Roeper, sp. nov.     (Fig. 4) 

MycoBank MB 824944. 

Etymology: After Henry Guernsey Hubbard, who in 1897 produced the first 

comprehensive review on ambrosia beetles and their fungi, which included the first 

illustration of Phialophoropsis from T. retusum. 

Typus: USA: Michigan: Montcalm County, Alma College Ecological Tract, 

ambrosia growth in gallery of T. retusum in Populus grandidentata, May 2014, R. 

Roeper, holotype M596 (BPI 910630); ex-type C3386 (living culture CBS 141683; dried 

culture BPI 910631). 

Colonies on malt yeast extract agar 11–77 mm diam. after 7 d at 25 C, odor 

lightly sweet to non-distinctive, strongly sweet to acetone-like when aerial hyphae 

abundant, surface sepia, becoming umber, rarely with cottony aerial hyphae, white to 

buff, becoming cinnamon, margin submerged and aerial, hyaline becoming umber, 

regular, underside umber, becoming chestnut, diffusible pigment staining media umber. 

Gallery growth dense, glistening, umber, in patches in larval cradles, superficial in main 

tunnel. Phialoconidiophores borne in patches in larval cradles but not observed in 

culture, hyaline to red-brown, bearing terminal phialoconidia singly or in chains. 
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Phialoconidia produced from shallow- to deeply-seated phialides, hyaline, thick-walled, 

smooth, aseptate, cylindrical with rounded apices to globose, 5.5–12.5 × (4.5) 7–17 μm, 

detaching singly or in chains, first conidium somewhat obovoid. Growth in mycangium 

composed of arthrospore-like cells 4.5–18 (20.5) μm in diameter, irregular in shape, 

thick-walled, single or in septate, rarely branched, chains of two or more cells. 

Other cultures examined: USA: Wisconsin: Madison, from mycangium of T. 

retusum, June 1968, D. Norris, C3550 (CBS 408.68). Michigan: Montcalm County, 

Alma College Ecological Tract, from egg niche of T. retusum in gallery in Populus 

grandidentata, May 2014, R. Roeper, C3403. 

Specimens examined: USA: Michigan: Benzie County, gallery of T. retusum in 

Populus grandidentata, July 2013, R. Roeper, M594, M595. Montcalm County, Alma 

College Ecological Tract, gallery of T. retusum in Populus sp., May 2015, M. Bunce. 

Notes. The mycangial symbiont of T. retusum grows more slowly and produces 

more diffusible pigment than other Phialophoropsis spp. with the exception of isolates 

from T. betulae, to which it is closely related (Fig. 8). P. hubbardii grows slightly faster 

than isolates from T. betulae and produces more aerial hyphae and less diffusible 

pigment. Although T. retusum and T. betulae are sympatric, they have different host 

preferences; T. retusum is restricted to Populus, and T. betulae to Betula and rarely Alnus 

(Wood 1957). Presumably the same is true of their symbionts. Previous associations of 

Phialophoropsis-like fungi with T. retusum (Hubbard 1897; Leach et al. 1940; Batra 

1967; Roeper et al. 1980; Roeper and French 1981; Cassar 1993) may have been P. 

hubbardii. 

  



254 

 

 

Phialophoropsis leachii C. Mayers, T.C. Harr., McNew & Roeper, sp. nov.          (Fig. 5) 

MycoBank MB 824945. 

Etymology: After J.G. Leach, who studied fungi associated with many insects, 

including T. betulae and T. retusum. 

Typus: USA: Michigan: Isabella County, Chippawa Township, ambrosia growth 

in larval cradle of Trypodendron betulae in Betula papyrifera, June 2014, R. Roeper, 

holotype M593/Gal10 (BPI 910632); ex-type C3404 (living culture CBS 141684, dried 

culture BPI 910633). 

Colonies on malt yeast extract agar 8–52 mm diam. after 7 days at 25 C, odor 

lightly sweet to non-distinctive, surface superficial, umber, dense, rarely ocherous, raised, 

margin superficial, hyaline, underside ocherous, becoming chestnut to fuscous black, 

diffusible pigment staining media rust to chestnut. Gallery growth dense, glistening, 

umber carpet forming patches in larval cradles, superficial in main tunnel. 

Phialoconidiophores borne in patches in larval cradles but not observed in culture, 

hyaline to red-brown, bearing terminal phialoconidia singly or in chains. Phialoconidia 

produced from shallow- to deeply-seated phialides, hyaline, thick-walled, smooth, 

aseptate, cylindrical with rounded apices to globose, 5–9.5 × 6–17 µm, detaching singly 

or in chains, first conidium somewhat obovoid.  

Other cultures examined: USA: Michigan: Isabella County, Chippawa Township, 

larval cradle of Trypodendron betulae in Betula papyrifera, June 2014, R. Roeper, 

C3405. 

Notes. The mycangial symbiont of T. betulae is most similar to the symbiont of T. 

retusum (P. hubbardii) in morphology and is closely related to it in multi-gene analysis 
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(Fig. 8), but it has a distinct ITS sequence from other Phialophoropsis spp. (Fig. 1A). It 

grows more slowly, produces almost strictly superficial surface growth, produces more 

diffuse pigment when compared to P. hubbardii, and it tends to produce a dense 

mycelium in culture that is noticeably harder to pierce with transfer instruments. It has a 

slower growth rate than the other species in the genus. We observed the culture variation 

but not the thick, white, highly-sporulating phenotype illustrated by Leach et al. (1940). 

Previous associations of Phialophoropsis-like fungi with T. betulae (Leach et al. 1940; 

Roeper et al. 1980; Roeper and French 1981; Cassar 1993; Kühnholz 2004) may have 

been P. leachii. 

 

KAARIKIA C. Mayers & T.C. Harr., gen. nov. 

MycoBank MB 824946. 

Etymology: After Aino Mathiesen-Käärik, who worked with fungi associated with 

many forest insects. 

Solitary, obovoid, truncate conidia formed terminally on simple conidiophores. 

Thick-walled chlamydospores, terminal or intercalary, inside pigmented hyphae. Sexual 

state unknown. 

Type species: Kaarikia abrahamsonii C. Mayers & T.C. Harr., sp. nov. 

Kaarikia is unique in morphology and DNA sequences, necessitating treatment as 

a monotypic genus. Phylogenetic analyses place Kaarikia within the 

Diaporthomycetidae, and it may have affinity with the Ophiostomatales and 

Annulatascales (Fig. 9). 
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Kaarikia abrahamsonii C. Mayers, T.C. Harr. & Roeper sp. nov.                          (Fig. 7) 

MycoBank MB 824947. 

Etymology: After Lawrence P. Abrahamson who, along with Dale M. Norris, 

performed pioneering work on the dual mycangia and ambrosia fungi of Xyloterinus 

politus. 

Typus: USA: Michigan: Isabella County, Ambrosia growth in galleries of X. 

politus in Betula papyrifera, June 2014, R. Roeper, M599 holotype (BPI 910623); ex-

type A1264 (living culture CBS 144155; dried culture BPI 910624). 

Colonies on malt yeast extract agar 45–56 mm diam. after 7 days at 25 C, odor 

earthy, surface superficial, umber with irregular patches of buff to mouse grey aerial 

hyphae, margin irregular, submerged, dendroid, buff, becoming dense and ochreous, 

reverse umber to olivaceous black, becoming chestnut, producing non-diffusible red-

brown pigment. Chlamydospores formed in culture hyaline to red-brown, thick-walled, 

single celled or rarely septate, globose to irregular, 6.5–22.5 × 8.0–28 µm, borne 

terminally or intercalary inside red-brown hyphae, separating by tearing of the pigmented 

hyphal membrane. Gallery growth black, superficial in main tunnels; white to green-grey 

in larval cradles and egg niches, with thick mat composed of palisades of conidiophores. 

Conidiophores simple, unbranched, erect, septate or aseptate, bearing single terminal 

conidia. Conidia obovoid to pyriform, hyaline, thick-walled, 6–18 × 12.5–35.5 µm, 

truncate, aseptate or rarely one- or two-septate. Chlamydospores in gallery as in culture 

but globose, smaller, 6.0–13.5 um diam. Mycangium growth spherical, thick-walled, 10–

17.5 µm diam. 
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Other cultures examined: USA: Michigan, Montcalm County, Alma College 

Ecological Tract, from prothorax of female X. politus in Populus sp., 21 May 2014, R. 

Roeper, A1268 (CBS 142646; dried culture BPI 910625). Isabella County, from gallery 

of X. politus in Betula papyrifera, June 2014, R. Roeper, A1262. From gallery of X. 

politus in B. papyrifera, June 2014, R. Roeper, A1263. From prothorax of female X. 

politus in B. papyrifera, June 2014, R. Roeper, A1265. From prothorax of female X. 

politus in B. papyrifera, June 2014, R. Roeper, A1266. From prothorax of female X. 

politus in B. papyrifera, June 2014, R. Roeper, A1267. From prothorax of female X. 

politus in B. papyrifera, June 2014, R. Roeper, A1269. 

Other specimens examined: USA: Michigan: Montcalm County, Alma College 

Ecological Tract, galleries of X. politus in Acer rubrum, 20 August 2013, R. Roeper, 

M598 (BPI 910626). 

Notes. The prothoracic symbiont of X. politus and dominant ambrosia form is a 

unique fungus that appears to be unrelated to other known symbionts of ambrosia beetles. 

The unknown fungus from X. politus illustrated by MacLean and Giese (1968) and the X. 

politus prothoracic symbiont UWE-132M studied by Abrahamson and Norris (1969) are 

undoubtedly K. abrahamsonii. 

Discussion 

A surprising diversity of ambrosia fungi were identified from Trypodendron spp., 

Indocryphalus pubipennis, and Xyloterinus politus. The well-developed prothoracic 

mycangium of Trypdoendron was closely tied to Phialophoropsis spp. We confirmed the 

association of P. ferruginea with European and American specimens of T. lineatum, but 

other Trypodendron spp. were found to harbor novel Phialophoropsis symbionts. The 

prothoracic mycangium of I. pubipennis was illustrated for the first time, and an unnamed 
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species of Toshnionella was associated with its mycangium. We confirmed previous 

findings that X. politus carries different symbionts (Raffaelea cf. canadensis RNC 5 and 

Kaarikia ambrahamsonii) in its two types of mycangia, oral and prothoracic. Thus, four 

genera of mycangial symbionts were identified for the tribe, and numerous non-

mycangial species in the Ophiostomatales were also found associated with these beetles. 

The Xyloterini are among the earliest ambrosia beetle tribes in the Scolytinae 

(Gohli et al. 2017; Pistone et al. 2017). The crown age of tribe Xyloterini is estimated at 

41 Ma (Gohli et al. 2017) to 50 Ma (Pistone et al. 2017), similar to the estimated origin of 

the Scolytoplatypodini (estimated by the same authors at 34 and 52 Ma, respectively), 

which may have been the first tribe to domesticate Ceratocystidaceae as mycangial 

symbionts (Chapter 5). In contrast to the Scolytoplatypodini, the range of mycangium 

types and wide range of mycangial symbionts suggest the symbiosis was not well 

developed or specialized in the early evolutionary history of the Xyloterini. Given its age, 

it is also surprising that there are so few genera and species in the Xyletorini. The 

circumboreal Trypodendron has 14 species (Robideau et al. 2016), the Asian 

Indocryphalus has eight (Cognato et al. 2015), and the North American Xyloterinus is 

monotypic (MacLean and Giese 1967). This stands in stark contrast to the much younger 

and more speciose tribe Xyleborini, for instance (Gohli et al. 2017; Pistone et al. 2017).  

Indocryphalus 

Indocryphalus has not been well studied, but it may not be monophyletic 

(Cognato et al. 2015), and some species may have split from the other Xyloterini early in 

the history of the tribe (Gohli et al. 2017; Pistone et al. 2017). The prothoracic 

mycangium openings in Indocryphalus vary and are either vertically- or horizontally-

oriented (Wood 1957; Beaver 2000; Cognato et al. 2015). The single species included in 
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this study, I. pubipennis, had a horizontal mycangium opening (Cognato et al. 2015), 

similar to but wider than those of Trypodendron. The I. pubipennis mycangia are 

significantly smaller in volume than the mycangia of Trypodendron but have similarly 

reticulated walls. The smaller mycangium of I. pubipennis carries a Toshionella 

symbiont, which are otherwise associated with Scolytoplatypus ambrosia beetles in Asia 

(Chapter 5). Indocryphalus pubipennis is sympatric with several Scolytoplatypus species 

in Asia (Beaver and Gebhardt 2006; Cognato et al. 2015), and it is possible that 

Toshionella is a recent acquisition from Scolytoplatypus or vice versa. Obviously, the 

ambrosia fungi of more Indocryphalus species need to be studied, especially those with 

different mycangium openings and from different locations to determine if Toshionella 

symbionts are generally the primary symbionts for the genus. The only other 

Indocryphalus species included so far in phylogenetic analyses, I. aceris, is more 

divergent from I. pubipennis than Trypodendron is from X. politus, and the estimated 

crown age of Indocryphalus is older than the estimate for the divergence of the other two 

genera (Gohli et al. 2017). 

Xyloterinus 

The monotypic genus Xyletorinus is unique, and its phylogenetic relationship to 

Indocryphalus and Trypodendron is not clear (Cognato et al. 2015). Xyloterinus politus is 

the only known Scolytid ambrosia beetle to have two sets of mycangia: a pair of small 

oral mycangia in both sexes and prothoracic mycangia in females (Abrahamson and 

Norris 1966; Abrahamson 1967; MacLean and Giese 1968), and each mycangium type is 

specific for their respective fungi. The prothoracic mycangia of X. politus are simple, 

shallow excavations in the base of the prothorax that are trimmed with setae and do not 

lead to large internal cavities. The vertical mycangium openings of some species of 
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Indocryphalus (Beaver 2000; Cognato et al. 2015) may be homologous to the vertical 

openings of X. politus (Wood 1957; Cognato et al. 2015). However, X. politus appears to 

be sister to Trypodendron (Gohli et al. 2017; Pistone et al. 2017), and its prothoracic 

basin mycangium may be a reduced organ derived from an ancester with mycangia more 

similar to those of Trypodendron or Indocryphalus. In contrast, Wood (1957) considered 

X. politus to have the most primitive characters among the Xyloterini, with Trypodendron 

having the most specialized characters, and Indocryphalus with intermediate characters. 

Perhaps the common ancestor of the Xyloterini had a non-selective, prothoracic 

mycangium (or no mycangium), and the three genera represent three different, separate 

adaptations to fungus-farming in the tribe, with separate mycangium developments and 

symbiont captures.  

Abrahamson and Norris (1969) carefully dissected X. politus males and females, 

and they isolated UWE-132M from 0/62 oral mycangia and 62/62 prothoracic mycangia 

of 32 females, but they were unable to isolate UWE-132M from seven males. The 

morphology of UWE-132M is consistent with the morphology of K. abrahamsonii 

recovered in this study, including the large, darkly pigmented hyphae, club-shaped 

aleurioconidia in galleries, and large, spherical, thick-walled chlamydospores. A fungus 

isolated from X. politus by MacLean and Giese (1968) also appears to be K. 

abrahamsonii, though the other fungi they isolated are common contaminating molds and 

not important associates (Abrahamson and Norris 1969). It is unclear if the spherical 

chlamydospores of K. abrahamsonii actually grow in the prothoracic mycangia of X. 

politus or are just scooped up from the gallery walls and stored.  
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We isolated three different Raffaelea species from X. politus: Raffaelea cf. 

canadensis RNC5, Raffaelea cf. lauricola RNL1, and Raffaelea tritirachium. Batra 

(1967) implicated an unnamed Raffaelea sp., ‘Raffaelea taxonomic sp.-1’, as the primary 

symbiont of X. politus and considered it separate from R. tritirachium. Abrahamson and 

Norris (1969) isolated a Raffaelea sp., UWE-132L, from 62/62 oral mycangia of females 

and 7/7 oral mycangia of males, but it was only isolated from one of the 62 sampled 

prothoracic mycangia of 32 females. The illustrations of globose conidia of UWE-132L 

provided by Abrahamson and Norris (1969) would be consistent with the conidia of R. cf. 

lauricola RNL1 or R. cf. canadensis RNC5, which also produces truncate conidia. 

However, the culture deposited by Abrahamson and Norris in CBS proved to be near or 

conspecific with R. tritirachium, which produces distinctive elongated conidia (Batra 

1967). Batra (1967) considered R. tritirachium an auxiliary rather than a primary 

ambrosia fungus in association with Monarthrum fasciatum, and we also isolated R. 

tritirachium from X. politus as a superficial contaminant. Alternatively, X. politus may 

harbor several Raffaelea spp. in its oral mycangia, as has been found with Xyleborus 

glabratus (Harrington and Fraedrich 2010). Paired preoral mycangia are not known in 

other genera of the Xyloterini, but they have evolved multiple times in the Scolytinae 

(Hulcr and Stelinski 2017), and they are often associated with Raffaelea spp. that are non-

specific in their beetle associations (Harrington et al. 2010, 2011; Vanderpool et al. 

2017). Regardless, Raffaelea cf. canadensis RNC5 was the most commonly isolated 

Raffaelea in this study, and it was the only symbiont recovered from surface-sterilized 

beetle heads. If the ancestor of the Xyletorini had a prothoracic mycangium and 

Indocryphalus diverged early from Trypodendron and Xyletorinus (Gohli et al. 2017; 
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Pistone et al. 2017), then the oral mycangia in X. politus arose later. Kaarikia 

abrahamsonii could be a parasitic or ineffective symbiont of a reduced mycangium, and 

R. canadensis may serve as the primary symbiont of X. politus, though both fungi were 

consistently found as ambrosia in galleries of X. politus and K. abrahamsonii was more 

conspicuous. 

Trypodendron 

The most developed Xyletorini mycangium is found in Trypodendron, whose 

mycangium openings are horizontal slits on the side of the prothorax that lead to a pair of 

large, folded, prothoracic pleural mycangia with sclerotized, reticulated walls (Nunberg 

1951; Francke-Grosmann 1956, 1958, 1967; Abrahamson et al. 1969; Schneider and 

Rudinsky 1969). Although a fossil specimen initially labeled as Trypodendron was given 

a date of 35 Ma (Hulcr et al. 2015), the specimen was unlikely a Scolytid (Hopkins 1900; 

Wood and Bright 1992). Extant Trypodendron species have an estimated crown age of 

only 9.0 Ma (Pistone et al. 2017) to 11.2 Ma (Gohli et al. (2017), which corresponds to 

the relatively young crown age of their Phialophoropsis symbionts (Chapter 5). Thus, 

Trypodendron may represent a young lineage with an advanced mycangium and a 

specialized, co-adapted fungal symbiont. 

Trypodendron mycangia differ slightly in cavity diameter, shape, and in the 

degree to which the terminus curls (Francke-Grosmann 1956), and these subtle 

differences may or may not correlate with beetle phylogeny and fungal associates. The 

mycangia of T. domesticum and T. signatum both have greatly-enlarged ascending 

cavities when compared to the mycangia of T. lineatum (Francke-Grosmann 1956), 

which may explain why T. domesticum and T. signatum appear to carry the same or 

closely related Phialophoropsis sp. The mycangial propagules might be somehow 
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adapted to the particular shape and size of the mycangium, which may confer some 

degree of specificity. 

Early studies on the ambrosia fungi of Trypodendron (Hubbard 1897; Neger 

1910, 1911; Hadorn 1933; Leach 1940; Funk 1965) recognized that they produced 

beaded, monilioid chains of cells, now recognized as the chained phialoconidia of 

Phialophoropsis (Mayers et al. 2015). Each species of Trypodendron may carry a 

particular Phialophoropsis symbiont in its prothoracic mycangium. As presented here, P. 

nunbergii is associated with both T. domesticum and T. signatum, but the symbionts from 

these two beetle species differ slightly and may represent cryptic species. Different 

Phialophoropsis symbionts of sympatric Trypodendron species may be explained by 

differences in host tree preferences. For example, the geographic ranges of T. retusum 

and T. betulae overlap in the USA, but the former is limited to Populus and the latter is 

limited to Betula and Alnus incana (Wood 1957). Populations of T. lineatum or T. 

signatum consistently yielded their specific fungal symbiont, whether the sampled insects 

were European, Asian, or North American. 

Superficial fungi 

A wide variety of fungi have been associated loosely with Trypodendron spp. 

(Kühnholz 2004). Besides ubiquitous contaminating molds such as Trichoderma and 

Aspergillus, several genera of common insect-associated fungi have been isolated from 

Trypodendron galleries (Bakshi 1950, 1952; Mathiesen-Käärik 1953; Funk 1965; Hinds 

and Davidson 1972; Zimmerman 1973; Babuder and Pohleven 1993; Carlier et al. 2006; 

Jankowiak et al. 2017). We isolated many superficial fungi from Trypodendron galleries 

and beetle surfaces, including Ophiostomatales in Raffaelea, Leptographium, and 

Ophiostoma. We isolated at least one Raffaelea from most of the sampled Xyloterine 
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galleries, including Raffaelea tritirachium from T. retusum and X. politus galleries. These 

auxiliary species may or may not be effectively transmitted by Trypodendron beetles, but 

if carried by the beetles they would most likely be superficial passengers similar to fungi 

carried by bark beetles (Harrington 2005) or as interlopers in the mycangium (Bateman et 

al. 2016). Haanstad and Norris (1985) and Suh & Zhou (2010) isolated several yeasts 

from X. politus adults and galleries, and they suggested they may play important roles in 

the beetles’ ecology, but such yeasts are not likely a part of the ambrosia symbiosis as 

they would not form a thick layer of sporulation for grazing (Mayers et al. 2018). 

The ambrosia growth of Phialophoropsis in Trypodendron larval cradles is 

generally thin, pigmented, and consists of a single palisade layer bearing chained 

phialoconidia, unlike the thick, luxurious, white ambrosia growth of Ambrosiella and 

Meredithiella (Mayers et al. 2015, 2017, 2018). Phialophoropsis typically does not 

produce ambrosia growth in the main tunnels, which are usually sparse and blackened. 

Healthy ambrosia growth in Trypodendron galleries consistently show Phialophoropsis 

as the dominant fungus, especially in cradles (Leach 1940; Mathiesen-Käärik 1953; Batra 

1967). However, Phialophoropsis spp. are slow growing and difficult to isolate 

(Mathiesen-Käärik 1953; Batra 1963, 1967), and it is not surprising that some studies 

failed to detect Phialophoropsis or considered other fungi to be the primary symbionts 

(e.g. Bakshi 1950, 1952; Zimmerman 1973; Linnakoski et al. 2010; Oranen 2013). 

Kühnholz (2004) reported difficulties isolating Phialophoropsis from Trypodendron but 

had greater success suspending mycangial contents in water before spreading. We found 

that Phialophoropsis propagules from females and galleries are very susceptible to 

desiccation, and isolations were unsuccessful if the material dried in storage or shipping. 
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Nonetheless, we have consistently detected Phialophoropsis with sequencing of DNA 

extracted from adult female prothoraxes with Ceratocystidaceae-specific primers, even 

when isolation was not successful.  

Compared to the galleries of other genera with Ceratocystidaceae symbionts, 

galleries of Trypodendron are frequently inhabited by auxiliary fungi. Trypodendron spp. 

overwinter in leaf litter rather than in their natal galleries in wood (Hadorn 1933; Border 

1988), so the autumn microflora may not be well tended and the adult beetles may 

acquire various fungi during the winter and spring (Schneider and Rudinsky 1969). 

Zimmerman (1973) mentions that Phialophoropsis was only isolated from T. domesticum 

galleries in the spring. The mycangia of Trypodendron are full of debris during winter, 

which might include non-ambrosial fungi (Schneider and Rudinsky 1969), and different 

fungi are isolated from Trypodendron depending on if they are attacking, dispersing, or 

overwintering (Oranen 2013). During winter months, propagules of Phialophoropsis may 

be stored deep in the crook of the mycangium, growing in spring when the nutrient-

producing gland cells are activated (Schneider 1975) and pushing other debris out of the 

mycangium. The mycangia are apparently full of homogenous fungal propagules during 

the first flight and gallery initiation (Schneider and Rudinsky 1969), so the secretions 

from the gland cells around the mycangium must be favoring the growth of 

Phialophoropsis. 

Future directions 

New Phialophoropsis spp. may be associated with unstudied Trypodendron 

beetles. Targets include T. laeve, a central European species with habits similar to T. 

domesticum (Lukášová and Holuša 2014), and the North American T. rufitarsis, which 

has similar mycangia to other Trypodendron (French and Roeper 1972) and may harbor a 
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Phialophoropsis symbiont (French and Roeper 1972; Roeper et al. 1980; Roeper and 

French 1981; Cassar 1993; Kühnholz 2004). However, the seven unstudied species of 

Indocryphalus may prove to be the most interesting for their variation in mycangium 

openings (Wood 1957; Beaver 2000; Cognato et al. 2015) and symbionts. Further study 

might determine if Toshionella was a recent acquisition from Asian Scolytoplatypus or if 

Toshionella co-adapted with Indocryphalus and was later acquired by Asian 

Scolytoplatypus. 
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Tables 

Table 1. Selected representative isolates of mycangial symbionts of the Xyloterini, with GenBank accession numbers. 

 

    
Culture or 
specimen 

number(s) 1 

GenBank Accession No. 

Associated 

ambrosia beetle Locality ITS rDNA 28S rDNA 18S rDNA tef-1a tub mcm7 rpl1 

                      

Phialophoropsis L.R. Batra emend. T.C. Harr.       
   

 P. ferruginea (Math.-
Käärik) T.C. Harr. 

Trypodendron 
lineatum 

Regna, Sweden C3549  
(CBS 223.55) 

MF399187 MF399166 MF398168 MF375458 MG269947 MG270166 MG272458 

 

 
T. lineatum Colorado, USA M243  

(BPI 893129) 

— KY744224 KR673889 KT318387 — — — 

 
 

T. lineatum Colorado, USA M240  

(BPI 893130) 

KR611328 — — — — — — 

 
 

T. lineatum Colorado, USA M241 MF399197 — — — — — — 

 
 

T. proximum Korea C4275  
(CBS 144148) 

MF399198 — — — — — — 

 P. nunbergii C. Mayers 

& T.C. Harr. 
T. domesticum Hann-Münden, 

Germany 

C2230  

(CBS 460.82) 

KC305146 KF646766 KR673890 KT318388 — KM495406 KM495493 

 

 
T. domesticum Hainich, 

Germany 

C3828  

(CBS 141685) 

MF399188 MF399167 MF398169 MF375459 MG269948 MG270164 MG272460 

 

 
T. signatum Morioka, Iwate, 

Japan 

C3914  

(CBS 141686) 

MF399189 MF399168 MF398170 MF375460 MH042544 — — 

 
 

T. signatum The Netherlands M560 MF399196 — — — — — — 

 
P. hubbardii C. 

Mayers, T.C. Harr., 

McNew & Roeper 

T. retusum Wisconsin, USA C3550  
(CBS 408.68) 

KC305145 AF275505 EU984254 HM569641 MH042545 — — 

 
 

T. retusum Michigan, USA C3386  
(CBS 141683) 

MF399190 MF399169 MF398171 MF375461 MG269949 MG270165 MG272459 

 
 

T. retusum Michigan, USA M594 MF399194 — — — — — — 

 
 

T. retusum Michigan, USA M596  

(BPI 910630) 

=MF399194 — — — — — — 

 
P. leachii C. Mayers, 

T.C. Harr., McNew & 

Roeper 

T. betulae Michigan, USA C3404  

(CBS 141684) 

MF399191 MF399170 MF398172 MF375462 MH042546 MH042549 MH042548 

 

 
T. betulae Michigan, USA M593  

(BPI 910632) 

MF399193 — — — — — — 

 P. trypodendri L.R. 
Batra 

T. scabricollis Georgia, USA M577 MF399195 — — — — — — 
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Table 1 continued          

Toshionella C. Mayers & T.C. Harr.          

 Toshionella sp. Indocryphalus 

pubipennis 

Jeju, South 

Korea 

M673 MH040803 MH040911 — — — — — 

Raffaelea Arx & Hennebert    
      

 R. cf. canadensis 

RNC5 

Xyloterinus 

politus 

Michigan, USA C3169  

(CBS 142652) 

— MF399173 MF398175 — — — — 

Kaarikia C. Mayers & T.C. Harr.    
      

 
K. abrahamsonii C. 

Mayers, T.C. Harr., & 

Roeper 

X. politus Michigan, USA A1264  
(CBS 144155) 

— =MF399172 =MF398174 — — — — 

 
 

X. politus Michigan, USA A1268  
(CBS 142646) 

— MF399172 MF398174 MF375464 MH042547 — — 

1 Collection abbreviations include: Iowa State University collection (C, M); Westerdijk Fungal Biodiversity Institute (CBS); U.S. National Fungus Collections 

(BPI). 2Accesion numbers preceded by ‘'=’ represent an identical (100% identity) match with that accession. 
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Supplemental Tables 

Table S1. GenBank accessions for other Microascales fungi included in phylogenetic analyses. 

Species Culture collection 1 

GenBank Accession No.
2
 

28S 18S tef-1a tub mcm7 rpl1 

Ceratocystidaceae representatives and outgroups        

 Ambrosiella batrae C. Mayers, McNew & T.C. Harr. C3130 (CBS 139735) KY744584 KR673881 KT290320 MG269932 MG270152 MG272445 

 A. beaveri Six, de Beer & W.D. Stone C2749 (CBS 121750) KF646765 KR673882 KT318380 MG269938 MG270156 MG272448 

 A. catenulata Y.T. Lin & H.H. Shih C3913 (CBS 142649) MG269982 MG950189 MG944394 MG269937 MG270154 MG272446 

 A. cleistominuta C. Mayers & T.C. Harr. C3843 (CBS 141682) KY744585 KX925304 KX925309 MG269936 MG270153 MG272443 

 A. grosmanniae C. Mayers, McNew & T.C. Harr. C3151 (CBS 137359) KY744587 KR673884 KT318382 MG269933 MG270150 MG272444 

 Ambrosiella aff. grosmanniae NRgro1 C3899 (CBS 142648) MG269983 MG950190 MG944395 MG269934 MG270155 MG272447 

 A. hartigii L.R. Batra C1573 (CBS 404.82) KY744588 KR673885 KT318383 MG269931 MG270157 MG272442 

 A. nakashimae McNew, C. Mayers & T.C. Harr. C3445 (CBS 139739) KY744586 KR673883 KT318381 MG269939 MG270158 MG272450 

 A. remansi C. Mayers & T.C. Harr. M290 (BPI 910622) — KX342072 KX354426 — — — 

 A. roeperi T.C. Harr. & McNew C2448 (CBS 135864) KF646767 KR673886 KT318384 MG269935 MG270151 MG272449 

 A. xylebori Brader ex Arx & Hennebert C3051 (CBS 110.61) KM495318 KR673887 KT318385 MG269930 KM495407 KM495495 

 Berkeleyomyces basicola (Berk. & Broome) W.J. Nel, Z.W. 

de Beer, T.A. Duong, & M.J. Wingf. 

C1372  

(CBS 414.52, MUCL 8363) 
AF222458 KX925307 HM569628 MG269963 — — 

  CMW7068 (CBS 413.52) — — — — KM495484 KM495574 

 Bretziella. fagacearum (Bretz) Z.W.deBeer, Marinc., 
T.A.Duong & M.J.Wingf. 

C927 (CBS 129242) =AF222483 KR673892 KT318389 MG269953 MG270170 MG953416 

 Catunica adiposa (Butler) C. Mayers & T.C. Harr. C999 (CBS 183.86) =KM495320 KR673891 HM569644 MG269952 MG270169 MG953415 

 Ceratocystis fimbriata Ellis & Halst C1099 (ICMP 8579) =KR347445 KR673893 HM569615 MG269954 — — 

  CMW 15049 (CBS 141.37) — — — — KM495432 KM495520 

 C. variospora (R.W. Davidson) C. Moreau emend. J.A. 

Johnson & T.C. Harr. 
C1963 (CBS 135862) KF646773 KX925305 KR347450 MG269956 — — 

  CMW 20935, C1843  

(CBS 114715) 
— — — — KM495471 KM495561 

 Chalaropsis ovoidea (Nag Raj & W.B. Kendr.) A.E. 
Paulin, T.C. Harr. & McNew 

C1375, CMW 22733  
(CBS 354.76) 

AF275502 KY744595 HM569625 MG269957 KM495487 KM495577 
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Table S1 continued        

 Ch. thielavioides (Peyronel) A.E. Paulin, T.C. Harr. & 

McNew 
C1378 (CBS 130.39) AF222480 MF398184 HM569627 MG269958 — — 

  CMW 22736  

(CBS 148.37, MUCL 6235) 
— — — — KM495489 KM495579 

 Endoconidiophora coerulescens Münch. C301 (CBS 100198) AF275510 KR673895 HM569653 MG269960 — — 

  CMW26365, C313, C695 
(CBS 140.37, MUCL 9511) 

— — — — KM495418 KM495506 

 E. virescens R.W. Davidson C252 (CBS 128998) =KM495385 KX925306 HM569645 MG269959 — — 

  CMW17339, C261  

(CBS 130772) 
— — — — KM495472 KM495562 

 Huntiella bhutanensis (M. van Wyk, M.J. Wingf. & 

Kirisits) Z.W. de Beer, T.A. Duong & M.J. Wingf. 
CMW8217 (CBS 114289) All six genes were extracted from genome assembly MJMS00000000 

 H. moniliformis (Hedgc.) Z.W. de Beer, T.A. Duong & 
M.J. Wingf 

CMW10134 (CBS 118127) All six genes were extracted from genome assembly MJMS00000000 

 H. moniliformopsis (Yuan & Mohammed) Z.W. de Beer, 

T.A. Duong & M.J. Wingf. 
C1934 (DAR 74609) KF646769 KR673898 HM569638 MG269962 — — 

 Huntiella sp. C792 C792 KY744592 KR673897 KT318392 MG269961 MG270172 MG272465 

 Knoxdaviesia capensis M.J. Wingf. & P.S. van Wyk C1960, CMW997 MG269985 FJ176834 HM569657 MG269967 KM495478 KM495568 

 Meredithiella norrisii McNew, C. Mayers & T.C. Harr. C3152 (CBS 139737) KY744589 KR673888 KT318386 MG269944 MG270162 MG272456 

 M. fracta C. Mayers, C. Bateman & T.C. Harr. C4171 (CBS 142645) KY744590 KY744594 KY773179 MG269945 MG270163 MG272457 

 M. guianensis C. Mayers, C. Bateman & T.C. Harr. M552 (BPI 910532) KY744223 KY744227 KY773180 MG269946 — — 

 Solaloca norvegica (J. Reid & Hausner) T.C. Harr. C3124 (UAMH 9778) KY744591 KR673894 KT318390 MG269955 MG270171 MG272455 

 Thielaviopsis ethacetica Went C1107 KY744593 KR673899 HM569632 MG269964 — — 

  CMW 37775  

(IMI 50560, MUCL 2170) 
— — — — KM495426 KM495514 

 T. punctulata (Hennebert) A.E. Paulin, T.C. Harr. & 
McNew 

C869, CMW 1032 (CBS 
114.47, 146. MUCL 9526) 

AF275513 KX925308 KX925310 =MG269965 KM495459 KM495548 

  Unnamed Microascales sp. C3547 C3547 (CBS 142647) MF399171 MF398173 MF375463 MG269966 MG270148 MG272463 

1Includes isolate or specimen numbers from the culture collection of T.C. Harrington, Iowa State University (C or M), Westerdijk Fungal Biodiversity Institute 

(CBS), U.S. National Fungus Collections (BPI), New South Wales Plant Pathology Herbarium (DAR), UAMH Centre for Global Microfungal Diversity 

(UAMH), International Collection of Microorganisms from Plants (ICMP), Royal Botanic Gardens Kew HerbIMI (IMI), and the culture collection of the 

Forestry and Agricultural Biotechnology Institute, University of Pretoria (CMW). 2Accession numbers preceded by ‘'=’ represent an identical (100% identity) 

match with that accession.
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Table S2. GenBank accessions for other Diaporthomycetidae fungi included in phylogenetic analysis. 

 

GenBank Accession No. 

28S rDNA 18S rDNA 

 Annulatascus velatisporus KX977086 KX977089 

 Annulusmagnus triseptatus GQ996540 JQ429242 

 Aureovirgo volantis KR051131 — 

 Ceratocystiopsis minuta EU913656 MF398176 

 Diaporthe eres AF362565 — 

 Esteya vermicola EU627684 — 

 Fragosphaeria purpurea AF096191 AF096176 

 Glomerella cingulata DQ286199 M55640 

 Gnomonia gnomon AF408361 DQ471019 

 Graphilbum rectangulosporium AB235158 AB235159 

 Grosmannia penicillata DQ294385 HQ634822 

 Hawksworthiomyces lignivorus EF139119 — 

 Lasiosphaeria ovina AF064643 AY083799 

 Leptographium crassivaginatum MF399175 MF398183 

 Le. lundbergii DQ294388 AH008988 

 Myrmecridium banksiae JX069855 — 

 Myrmecridium montsegurinum KT991664 KT991645 

 Ophiostoma piliferum AY281094 AJ243295 

 Phomatospora bellaminuta FJ176857 FJ176803 

 Raffaelea amasae MF399174 MF398177 

 R. ambrosiae EU177453 EU170278 

 R. brunnea EU177457 MF398180 

 R. canadensis EU177458 MF398181 

 R. lauricola KF515710 MF398179 

 R. sulphurea EU177463 MF398178 

 R. tritirachium EU177464 MF398182 

 Sordaria fimicola AY780079 X69851 

 Sporothrix schenckii KX590890 M85053 

 Tenuimurus clematis MFLUCC14 — 

 Trichoderma viride AY489726 AF525230 

  Xylaria hypoxylon AY544648 AY544692 
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CHAPTER 7.    GENERAL CONCLUSIONS 

The results of this dissertation make it clear that ambrosia fungi in the family 

Ceratocystidaceae are tightly linked with ambrosia beetle hosts that have uniquely large and 

complex mycangia. There appears to be a mycangium hierarchy, in which mycangia with 

Ceratocystidaceae symbionts are set apart from the smaller and simpler mycangia that 

typically carry Raffaelea symbionts. Some ambrosia beetle lineages may have started with 

Raffaelea cultivars and later developed more sophisticated mycangia and switched to 

Ceratocystidaceae symbionts. The surprisingly consistent associations of genera of 

Ceratocystidaceae with these mycangium types implies a cultivar hierarchy as well, and these 

fungi must provide some advantage over other available fungal cultivars such as Raffaelea. 

This work sets a basic foundation for further ambrosia research, for which many questions 

remain unanswered. 

Despite a wide variety of ubiquitous saprophytes and superficial passengers available 

for domestication, all of the large and complex mycangia are associated with species in five 

genera of a single family, Ceratocystidaceae: Ambrosiella, Meredithiella, Phialophoropsis, 

Toshionella, and Wolfgangiella. Despite frequent host switching in Raffaelea between beetles 

of completely different species, genera, tribes, and subfamilies, and despite the frequent 

presence of Raffaelea in galleries of Trypodendron, the mycangia that carry 

Ceratocystidaceae fungi were never observed to have taken up Raffaelea symbionts. The 

Ceratocystidaceae cultivars must provide some superior benefit to their farmers, such as 

luxuriant ambrosia growth and grazing efficiency, an abundance of specific nutrients, or 

more effective exclusion of weed fungi. It is noteworthy that the conidiophores and conidia 
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of many of the ambrosia symbionts of the Ceracystidaceae contain an abundance of lipid 

bodies, and fats have been implied as an important nutrient source for ambrosia beetles. 

The mycangia that carry Ceratocystidaceae fungi are relatively large in relation to the 

beetles’ size, and these mycangia are complex structures in the form of winding tubes or 

folded pouches rather than simple invaginations. However, these aspects alone cannot 

explain the success of these mycangia at selectively maintaining symbioses with 

Ceratocystidaceae. An abundance of gland cells often line the walls of these mycangia, and 

are usually held in reticulated scaffolds. Specificity is unlikely to be through the action of 

antifungal or antibacterial compounds produced by these glands, because the compounds 

would have to be exceedingly broad in their targets and potent in their effect yet leave the 

mycangial symbiont unharmed. More likely is that some specific nutrient produced by these 

mycangia is uniquely metabolized by Ceratocystidaceae, perhaps an unusual amino acid. The 

mycangial secretions must at least provide a competitive edge for the growth of 

Ceratocystidaceae fungi, which could then push other fungi out of the mycangium. 

The multiple origins of fungus farming in the Scolytinae may have been enabled by 

horizontal transfer of Raffaelea cultivars that were domesticated by the Platypodinae 

(Vanderpool et al. 2017), followed by additional transfers between Scolytinae tribes. These 

Raffaelea species remain the dominant symbionts of ambrosia beetles, but there is little 

evidence for their specificity among beetle tribes or co-evolution with their beetle hosts. The 

first Ceratocystidaceae symbiont was likely domesticated by a Scolytoplatypodini ancestor, 

arguably the first tribe of ambrosia beetles in the Scolytinae. A tight co-adaptation between a 

nutritionally superior symbiont and its host insect may have led to a highly derived and 

carefully tuned mycangium, which is found in all three lineages of the Scolytoplatypodini. 
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Fungal lineages derived from a Toshnionella/Ambrosiella-like ancestor survive as symbionts 

of Asian Scolytoplatypus and Remansus. Later, the Xylosandrus complex in the Xyleborini 

may have developed its highly specialized mesonotal mycangium to accommodate the 

unique nutritional requirements of an Ambrosiella from the Scolytoplatopodini, and a similar 

transfer may have occurred in Indocryphalus (Xyloterini), which was associated with a 

Toshionella-like symbiont.  

The American Corthylus likely evolved and developed its specialized mycangia in the 

absence of Scolytoplatypodini symbionts, because the latter tribe is strictly Old World. The 

coiled prothoracic mycangium in males of Corthylus may be derived from the simpler 

mycangium of a Monarthrum-like ancestor that had Raffaelea symbionts.  The elaboration of 

the Corthylus mycangium was likely a co-adaption with a saprophytic or plant parasitic 

Ceratocystidaceae, such as close relative Catunica adiposa. Catunica adiposa forms 

aleurioconidia similar to those of Toshionella and Ambrosiella, and such conidia may have 

been produced by the common ancestor of Meredihtiella, Toshionella, and Ambrosiella, 

which could explain the morphological similarity of these separately-domesticated genera. 

What, then, caused the other ambrosia beetle groups (African Scolytoplatypus and 

Trypodendron) to independently domesticate other unrelated Ceratocystidaceae lineages? 

African Scolytoplatypus may have originally had Toshnionella/Ambrosiella-like symbionts 

but later switched to a new lineage in the Ceratocystidaceae with a similar physiology. 

Trypodendron, too, may have had a Toshionella-like symbiont (as in Indocryphalus) but later 

independently co-adapted with a new Ceratocystidicaceae, giving rise to Phialophoropsis. 

However, the relative sparseness of the ambrosia growth of Wolfgangiella and 

Phialophoropsis and their lack of aleurioconidia with large lipid bodies does not suggest that 
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these genera are superior food sources for the ambrosia beetles. A much broader taxonomic 

and geographic sampling of ambrosia beetles would be necessary test these hypotheses. It is 

noteworthy that Central Asian species of Scolytoplatypus and Xyloterini remain unstudied, 

yet this region may have played a critical role in the origins of the fungal symbionts and 

horizontal exchange of symbionts among the tribes. 

A hierarchy of ambrosia symbionts, and historical replacement of fungal cultivars 

between insect sublineages lineages, would mirror similar patterns in fungus-growing ants 

(Schultz and Brady 2008) and fungus-growing termites (Aanen et al. 2002), though in each 

of these systems the origin of fungus farming occurred only once in the insects.  

There is still much that remains unknown about ambrosia fungi, ambrosia beetles, and 

the symbiosis as a whole. The ambrosia fungi of multiple ambrosia beetle lineages remain 

completely unknown (Hulcr and Stelinski 2017). Work also needs to be done on the 

molecular and chemical basis of the symbiosis. Which nutrients are secreted by mycangia to 

support fungal growth, and which nutrients are provided by ambrosia fungi that make them a 

superior food source? What triggers an ambrosia fungus to switch from a yeast-like phase in 

the mycangium to a filamentous form in wood or a sporulating form in galleries? What is the 

biological role of a sexual state in obligate mycangial symbionts, and is it widespread among 

such fungi or do the sexual species discovered in this dissertation represent exceptions? How 

did ambrosia fungi co-evolve or co-adapt with their beetle hosts? Deeper studies of evolution 

require genome sequencing, and the first ambrosia fungus genomes are now becoming 

available, such as the genomes of several Raffaelea spp. and Ambrosiella xylebori 

(Vanderpool et al. 2017). 
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The ambrosia symbiosis must be appreciated as three equally-important points of a 

triangle, each of which must co-adapt in response to the other two: the beetle’s biology, the 

fungus, and the mycangium. Of the three, mycangia are greatly underappreciated. I strongly 

urge future authors describing species of ambrosia beetles, especially in lineages where 

mycangia are not well known, to examine and describe their mycangia. They are essential 

components in the beetles’ lives and their successful reproduction, and must be assumed to 

have taxonomic and biological significance. Ambrosia fungi should also be examined, where 

possible, in studies of ambrosia beetles. Other components of the symbiosis, such as host 

tree, locality, and other microbes in the galleries, appear to be relatively minor players in 

evolutionary history. The ambrosial triangle forms the foundation of the most diverse system 

of insect agriculture on the planet, which serves as a promising model system for the study of 

mutualism. This dissertation significantly added to our understanding of Ceratocystidaceae 

ambrosia fungi, but other fungal lineages associated with unstudied beetles and mycangia 

wait to be discovered. Vast and unexplored aspects of this symbiosis remain unknown and 

were previously hindered by incomplete understanding of the beetles and especially of their 

fungi. Perhaps the last pillars of basic research will soon be completed, and deeper questions 

about the ecology and evolution of this fascinating symbiosis can finally be addressed.  
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