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PROCEDURAL FRACTAL TERRAINS 
F. K E N T O N  M U S G R A V E  

As pointed out in Chapter 14, the same procedural constructions that we use as tex- 
tures can also be used to create terrains. The only difference is that, instead of inter- 
preting what the function returns as a color or other surface attribute, we interpret it 
as an altitude. This chapter will now extend the discussion of terrain models begun 
in Chapter 14. 

Since we are designing these functions to generate terrain models external to the 
renderer or as QAEB primitives built into the renderer, we're switching back from 
the RenderMan shading language to C code for the code examples. 

ADVANTAGES OF POINT EVALUATION 

I first started working with procedural textures when I used them to color fractal ter- 
rains and to provide a sense of "environment," with clouds, water, and moons, as 
described earlier. Figure 15.8 is an example of this early work. The mountains I was 
making then were created with a version of polygon subdivision (hexagon subdivi- 
sion) described by Mandelbrot in an appendix of The Science of Fractal Images 
(Peitgen and Saupe 1988). They have the jagged character of polygon subdivision 
terrains and the same-roughness-everywhere character of a homogeneous fractal di- 
mension. Mandelbrot and I were working together at the time on including ero- 
sion features in our terrains. This led me to make some conjectures about varying the 
local behaviors of the terrain, which led to the two multifractal constructions I will 
describe next. Interestingly, I had never heard of "multifractals" when I devised 
these first two additive/multiplicative hybrid multifractal functions. When I showed 
Mandelbrot Figure 16.1 in 1991, he exclaimed in surprise, "A multifractal!" to 
which I astutely replied, "What's a multifractal? ''l 

What allowed me to intuitively "reinvent the (multifractal) wheel" was the flexi- 
bility implicit in our noise-based procedural fractals. Dietmar Saupe calls our Perlin 

1. His cryptic retort was, "Never mindmnow is not the time." 

489 
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FIGURE 16.1 A multifractal terrain patch. Note the heterogeneity: plains, foothills, and mountains, 
all captured in a single fractal model. Copyright © 1994 E Kenton Musgrave. 

noise -based  procedural fractal construction method "rescale and add" (Saupe 
1989). Its distinguishing feature, he points out, is point evaluation: the fact that each 
sample is evaluated at a point in space, without reference to any of its neighbors. 
This is quite a distinction indeed, in the context of fractal terrain generation algo- 
rithms. In polygon subdivision, a given altitude is determined by a series of interpo- 
lations between neighboring points at lower frequencies (i.e., earlier steps in the 
iterative construction). In Fourier synthesis, the entire terrain patch must be gener- 
ated all at once; no sample can be computed in isolation. In contrast, the context in- 
dependence of our procedural method allows us to do whatever we please at any 
given point, without reference to its neighbors. There is interpolation involved, but it 
has been hidden inside the noise function, where it takes the form of Hermite spline 
interpolation of the gradient values at the integer lattice points (see Chapters 2, 6, 
and 7 for details on this). In practice, you could employ the same tricks described be- 
low to get multifractals from a polygon subdivision scheme, at least. It's not so obvi- 
ous how you could accomplish similar effects with Fourier synthesis. The point is, I 
probably never would have thought of these multifractal constructions had I not 
been working in the procedural idiom. 

Another distinguishing feature of terrains constructed from the noise function is 
that they can be rounded, like foothills or ancient mountains (see Figure 16.2). To 
obtain this kind of morphology from polygon subdivision, we must resort to the 
complexities of schemes like Lewis's "generalized stochastic subdivision" (Lewis 
1987). The rounded nature of our terrains has to do with the character of the basis 
function; more on that later. And, as we have already shown, another distinguishing 
characteristic of the procedural approach is that it naturally accommodates adaptive 
band-limiting of spatial frequencies in the geometry of the terrain as required for 
rendering with adaptive level of detail, as in QAEB rendering (described in the next 
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FIGURE i~2 Carolina illustrates a procedural model of ancient, heavily eroded mountains. 
Copyright © 1994 E Kenton Musgrave. 

chapter). Such capability makes possible exciting applications like the planetary 
zoom seen in Figure 16.3. 

THE HEIGHT FIELD 

Terrain models in computer graphics generally take the form of height fields. A 
height field is a two-dimensional array of altitude values at regular intervals (or post 
spacings, as geographers call them). So it's like a piece of graph paper, with altitude 
values stored at every point where the lines cross. 2 

2. This is the simplest, but not the most efficient, storage scheme for terrains. Extended areas of nearly 
constant slope can be represented with fewer samples, for instance. Decimation algorithms (Schroeder, 
Zarge, and Lorensen 1992) are one way to reduce the number of samples in a height field and thus its 

storage space requirement. It may be desirable to resample such a model before rendering, however, to 
get back to the regular array of samples that facilitates fast rendering schemes such as grid tracing. For 
an animation of this zoom, see www.kenmusgrave.com/animations.html. 
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FIGURE 16,3 A series of frames from the Gaea 

Zoom animation demonstrate the kind of 
continuous adaptive level of detail possible 
with the models presented in the text. The 
MPEG animation is available at 
www. k enmus grave, com/animations.h tml. 

Copyright © E Kenton Musgrave. 
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(h) (i) 

There is one, and only one, altitude value at each grid point. Thus there can 
be no caves or overhangs in a height field. This limitation may seem easy to over- 
come, but it's not. In fact, the problem is hard enough that I issued a challenge 
in the first edition of this book, back in 1994, offering $100 to the first person to 
come up with an "elegant, general solution" to it. The reward was won in early 
1998 by Manuel Gamito, who came over from Portugul to work with us in the 
MetaCreations Skunk Works for a year. Manuel's award-winning image, an entirely 
procedural model rendered in a modified version of the minimal ray tracer I wrote to 
develop the QAEB algorithm, appears in Figure 17.2. Unfortunately, that image 
took about a day to render! 
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The regular (i.e., evenly spaced) samples of the height field accommodate ef- 
ficient ray-tracing schemes such as grid tracing (Musgrave 1988) and quad tree 
(Kajiya 1983a) spatial subdivision. A detailed discussion of such a rendering scheme 
is beyond the scope of this book; if you're interested in that, see Musgrave (1993). 
I've always preferred to ray-trace my landscapes, but if you lack the computational 
horsepower for that, there are some very nice non-ray-tracing terrain renderers, such 
as Vistapro, available for home computers. If you'd like to try your hand at ray- 
tracing height fields, you can buy MetaCreations' Bryce, Animatek World Builder, or 
World Tool Set. Or you can pick up Craig Kolb's public domain Rayshade ray tracer, 
which features a very nice implementation of hierarchical grid tracing for height 
fields. The hierarchical approach captures the best aspects of grid tracing (i.e., low 
memory overhead) and of quadtree methods (i.e., speed). For multiple renderings of 
a static height fieldmas in fly-by animationsmthe PPT algorithm is the fastest ren- 
dering method (Paglieroni 1994). 

There are several common file formats for height field data. There is the DEM 
(digital elevation map) format of the U.S. Geological Survey (USGS) height fields, 
which contain measured elevation data corresponding to the "quad" topographic 
maps available from the USGS, which cover the entire United States. The U.S. mili- 
tary establishment has their DTED (digital terrain elevation data) files, which are 
similar, but are likely to include terrains outside of the United States and its territo- 
ries. While you may render such data as readily as synthetic fractal terrains, as a syn- 
thesist (if you will), I consider the use of "real" data to be cheating! My goal is to 
synthesize a detailed and familiar-looking reality, entirely from scratch. Therefore, I 
have rarely concerned myself with measured data sets; I have mostly worked with 
terrains that I have synthesized myself. 

As I have usually worked alone, with no programming assistance, I generally 
prefer to implement things in the quickest, simplest manner I can readily devise so 
that I can get on to making pictures. Thus my home-grown height field file format 
(which is also used by Rayshade) is very simple: it is a binary file containing first a 
single integer (4 bytes), which specifies the size of the (square) height field, followed 
by n e floats (4 bytes each), where n is the value of the leading integer. I append any 
additional data I wish to store, such as the minimum and maximum values of the 
height field, and perhaps the random number generator seed used to generate it, af- 
ter the elevation data. While far more compact than an ASCII format for the same 
data, this is still not a particularly efficient storage scheme. Matt Pharr, of ExLuna, 
has implemented an improved file format, along with conversion routines from my 
old format to his newer one. In the new scheme, there is a 600-byte header block for 
comments and documentation of the height field. The elevation data is stored as 
shorts (2 bytes), with the values normalized and quantized into integers in the range 
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[ 0 ,  216 - -  1]. The minimum and maximum altitudes over the height field are also 
stored, so that the altitude values may be restored to their floating-point values at 
rendering time by the transformation 

a(Zmax -- Zmin) 
Z = 216 -- 1 + Zmin 

where a is the quantized and scaled altitude value, z is the decoded floating-point 
value, and Zmin and Zmax are the min/max values of the height field. Pharr's code also 
obviates the big-endian/little-endian byte-order problem that can crop up when 
transferring binary files between different computers, as well as automatically taking 
care of transfers between 32-bit and 64-bit architectures. Pharr's code is available on 
the Internet via anonymous ftp at cs.princeton.edu. If you intend to render many 
height fields, it is worth picking up, as it saves about half of the space required to 
store a given height field. 

HOMOGENEOUS iBm TERRAIN MODELS 

The origin of fractal mountains in computer graphics is this: Mandelbrot was work- 
ing with fBm in one dimension (or one-point-something dimensions, if you must), 
like the plot we saw in Figure 14.2. He noted that, at a fractal dimension of about 
1.2 (the second trace from the top in Figure 14.2), the trace of this function resem- 
bled the skyline of a jagged mountain range. In the true spirit of ontogenetic model- 
ing, he reasoned that, if this function were extended to two dimensions, the resulting 
surface should resemble mountains. Indeed it did, and thus were born fractal moun- 
tains for computer graphics. Figure 16.4 is a crude example of such a simple fractal 
terrain model. 

Again, there is no known causal relationship between the shape of real moun- 
tains and the shape of this fractal function; the function simply resembles moun- 
tains, and does so rather closely. Of course there are many features in real 
mountains, such as drainage networks and other erosion features, that are not pres- 
ent in this first model. Much of my own research has been toward including such 
features in synthetic terrain models, largely through procedural methods (Musgrave 
1993). 

Fractal Dimension 

As pointed out in Chapter 14 and as illustrated by Figure 14.2, fractal dimension can 
be thought of as a measure of the roughness of a surface. The higher the fractal di- 
mension, the rougher the surface. Figure 16.5 illustrates how the roughness of an 
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FI6URE t6,4 A terrain patch with homogeneous fractal dimension (of -2.2). 

fBm surface varies with fractal dimension: at the left edge of the patch, the fractal di- 
mension is 2.0; on the right it is 3.0. The most interesting thing about this patch is 
that it is not planar (i.e., flat) on the left, nor does it fill all of the space on the right. 
So we see that the formal definition of fractal dimension for fBm does not capture all 
of the useful fractal behavior available from the construction: the kind of rolling 
foothills that would occur off the left end of this patch are indeed self-similar and 

thus fit our heuristic definition of "fractal." Yet they do not fit the formal mathemat- 

ical definition of fractal dimension (at least not the one for fBm). 3 This is a good ex- 

ample of how fractals defy precise definition and sometimes require that we "paint 
with a broad brush" so that we don't unnecessarily exclude relevant phenomena. 
Many researchers in computer graphics and other fields have substituted terms such 
as "stochastic" and "self-similar" for "fractal" because of this poor fit with formal 

definitions, but this is probably not appropriate: there are few useful stochastic 

3. It's worth noting that different methods for measuring fractal dimension may give slightly different re- 
suits when applied to the same fractal. So even formal methods may not agree about the limits of fractal 
behavior and the exact values of quantitative measurements of fractal behavior. 
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FIGURE 16,5 In this patch, the fractal dimension varies from 2.0 on the left to 3.0 on the right. 
Copyright © 1994 F. Kenton Musgrave. 

models of visual natural phenomena that do not feature self-similarity, and self- 
similar models are best characterized as fractal, formal technicalities notwith- 
standing. 

Visual Effects of the Basis Function 

As illustrated in the previous chapter, the small spectral sums used to create random 
fractals for computer graphics allow the character of the basis function to show 
through clearly in the result. Usually, the choice of basis function is implicit in the al- 
gorithm: it is a sine wave for Fourier synthesis, a sawtooth wave in polygon subdivi- 
sion, and a piecewise-cubic Hermite spline in noise-based procedural fBm. You 
could use a Walsh transform and get square waves as your basis. Wavelets (Ruskai 
1992) promise to provide a powerful new set of finite basis functions. And again, 
sparse convolution (Lewis 1989) or fractal sum of pulses (Lovejoy and Mandelbrot 
1985) offer perhaps the greatest flexibility in choice of basis functions. With those 
methods, you could even use the profile of the kitchen sink as a basis function, lead- 
ing naturally to sinkholes in the terrain. 
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Gavin Miller (1986) showed that the creases in terrain constructed with the 
most common form of polygon subdivision (i.e., subdivision of an equilateral trian- 
gle) are really an artifact of the interpolation scheme implicit in the subdivision algo- 
rithm. But I think that for the most part it has simply been overlooked that there is a 
basis function implicit in any fBm construction and that the character of that basis 
function shows through in the result. As shown in the previous chapter, we can use 
this awareness to obtain certain aesthetic effects when designing both textures and 
terrains. 

The smoothness of the Hermite spline interpolant in the noise function allows us 
to generate terrains that are more rounded than those commonly seen in computer 
graphics previously. Figures 15.7, 16.2, and 20.9 illustrate this well. Other examples 
of basis function effects are seen in Figures 15.15, 16.6, 18.3, 20.18, and 20.20 and 
in Figures 17.4-17.6, where the ridged basis function was used to get a terrain with 
razorback ridges at all scales. Note that this terrain model can only be effectively 
rendered with adaptive level of detail, as with QAEB and other schemes (Bouville 
1985; Kajiya 1983b). Without this, in a polygonal model rendered with perspec- 
tive projection, nearby ridges would take on a saw-toothed appearance, as under- 
sampled elevation values would generally lie on alternating sides of the ridgeline, 
and distant areas would alias on the screen due to undersampling of the complex ter- 
rain model. A nonpolygonal approach to rendering with adaptive level of detail, 
QAEB tracing, is described in the next chapter. It is ideal for rendering such sharp- 
edged terrain models. 

HETEROGENEOUS TERRAIN MODELS 
It would seem that before our 1989 SIGGRAPH paper (Musgrave, Kolb, and Mace 
1989) it hadn't yet occurred to anyone to generate heterogeneous terrain models. 
Earlier published models had been monofractal, that is, composed of some form of 
fBm with a uniform fractal dimension. Even Voss's heterogeneous terrains (Voss 
1988) represent simple exponential vertical scalings of a surface of uniform fractal 
dimension. As pointed out in Chapter 14, nature is decidedly not so simple and well 
behaved. Real landscapes are quite heterogeneous, particularly over large scales 
(e.g., kilometers). Except perhaps on islands, mountains rise out of smoother ter- 
rains~witness the dramatic rise of the Rocky Mountains from the relatively flat 
plains just to their east. Tall ranges like the Rockies, Sierras, and Alps typically have 
rolling foothills formed largely by the massive earthmovers known as glaciers. All 
natural terrains, except perhaps recent volcanic ones, bear the scars of erosion. In 
fact, erosion and tectonics are responsible for nearly all geomorphological features 
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FI6URE t6,6 Parabolic Curves in the Plane of the Ecliptic employs most of the tricks described in 
Chapters 14-18, from multifractals to GIT textures to QAEB tracing. There are parabolas in the 
terrain, in the central valley, in the clouds, and in depth. Copyright © E Kenton Musgrave. 
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on our planet, other than volcanic features, impact craters, and various features due 
to bioturbation (humanity's included). Some erosion features are relatively easy to 
model: talus slopes, for example. Others, such as drainage networks, are not so easy 
(Musgrave, Kolb, and Mace 1989). The rest of this chapter will describe certain 
ontogenetic models designed to yield a first approximation of certain erosion fea- 
tures, without overly compromising the elegance and computational efficiency of 
the original fBm model. These models are, at least loosely speaking, varieties of 
multifractals. 

Statistics by Altitude 

The observation that motivated my first multifractal model is that, in real terrains, 
low-lying areas sometimes tend to fill up with silt and become topographically 
smoother, while erosive processes may tend to keep higher areas more jagged. This 
can be accomplished with the following variation on fBm: 

/* 

* Heterogeneous p rocedura l  t e r r a i n  f u n c t i o n :  s t a t s  by a l t i t u d e  method. 
* Eva lua ted  at  " p o i n t " .  r e t u r n s  va lue s to red  in " v a l u e " .  
~c 

* Parameters-  
* "H" de te rm ines  the f r a c t a l  d imens ion of  the roughes t  areas 
* " l a c u n a r i t y "  is  the gap between success ive  f r e q u e n c i e s  
* " o c t a v e s "  i s  the number o f  f r e q u e n c i e s  in the fBm 
* " o f f s e t "  r a i s e s  the t e r r a i n  from "sea l e v e l "  
* /  

double  
H e t e r o _ T e r r a i n (  Vec tor  p o i n t ,  

double  H, double  l a c u n a r i t y ,  double  oc taves ,  double  o f f s e t  ) 
{ 

double  va lue ,  i nc remen t ,  f r equency ,  rema inder ,  N o i s e 3 ( ) -  

i n t  i • 
s t a t i c  i n t  f i r s t  = TRUE" 
s t a t i c  double  * e x p o n e n t _ a r r a y .  

/ *  precompute and s t o r e  s p e c t r a l  w e i g h t s ,  f o r  e f f i c i e n c y  * /  

i f  ( f i r s t  ) { 
/ *  se i ze  r e q u i r e d  memory f o r  exponen t_a r ray  * /  

exponen t_a r ray  = 
(doub le  * ) m a l l o c ( ( o c t a v e s + l )  * s i z e o f ( d o u b l e )  )" 

f r equency  = 1 .0-  
f o r  ( i=O • i<=oc taves  • i++)  { 

/ *  compute we igh t  f o r  each f requency  * /  
e x p o n e n t _ a r r a y [ i ]  -- pow( f r equency ,  -H )" 
f r equency  *= l a c u n a r i t y .  

} 

f i r s t  = FALSE. 
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/ *  f i r s t  unscaled octave of  f u n c t i o n ,  l a t e r  octaves are scaled * /  
value = o f f s e t  + Noise3( p o i n t  ) .  p o i n t . x  *= l a c u n a r i t y -  
p o i n t . y  *-- l a c u n a r i t y ,  p o i n t . z  *= l a c u n a r i t y .  

/ *  spec t ra l  c o n s t r u c t i o n  inner  loop,  where the f r a c t a l  is  b u i l t  * /  
f o r  (1=1; i <oc taves ;  i++)  { 

/ *  ob ta in  d i sp laced  noise value * /  
increment  = Noise3( p o i n t  ) + o f f s e t ;  

/ *  sca le  ampl i tude  a p p r o p r i a t e l y  f o r  t h i s  f requency  * /  
increment  *= e x p o n e n t _ a r r a y [ i ] .  

/ *  sca le increment  by c u r r e n t  " a l t i t u d e "  of  f u n c t i o n  * /  
increment  *= va lue .  

/ *  add increment  to " v a l u e "  * /  
value +-- inc rement .  

/ *  r a i se  s p a t i a l  f requency * /  
p o i n t . x  *= l a c u n a r i t y ;  
p o i n t . y  *= l a c u n a r i t y ;  
p o i n t . z  *-- l a c u n a r i t y ;  

} / *  f o r  * /  

/ *  take care of  remainder in "oc taves "  * /  
remainder -- octaves - ( i n t ) o c t a v e s ;  
i f  ( remainder ) { 

/ *  " i "  and s p a t i a l  f r e q .  are p rese t  in loop above * /  
/ *  note t h a t  the main loop code is made s h o r t e r  here * /  
/ *  you may want to make t h a t  loop more l i k e  t h i s  * /  
increment  = (Noise3( p o i n t  ) + o f f s e t )  * e x p o n e n t _ a r r a y [ i ] ;  
value += remainder * increment  * va lue ;  

} 

r e t u r n (  value )- 

} / *  H e t e r o _ T e r r a i n ( )  * /  

We accomplish our end by multiplying each successive octave by the current 
value of the function. Thus in areas near zero elevation, or "sea level," higher fre- 
quencies will be heavily damped, and the terrain will remain smooth. Higher eleva- 
tions will not be so damped and will grow jagged as the iteration progresses. Note 
that we may need to clamp the highest value of the weighting variable to 1.0, to pre- 
vent the sum from diverging as we add in more values. 

The behavior of this function is illustrated in the terrains seen in Figures 16.2, 
16.7, and 18.2. 
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FIGUBE 16,7 This multifractal terrain patch is quite smooth at "sea level" and gets rougher as 
altitude increases. Copyright © 1994 E Kenton Musgrave. 

A Hybrid Multifractal 

My next observation was that valleys should have smooth bottoms at all altitudes, 
not just at sea level. It occurred to me that this could be accomplished by scaling 
higher frequencies in the summation by the local value of the previous frequency: 

/ *  Hybr id  a d d i t i v e / m u l t i p l i c a t i v e  m u l t i f r a c t a l  t e r r a i n  model.  * 
• Some good parameter  va lues to s t a r t  w i t h :  

• H- 0.25 
• o f f s e t -  0.7 
* /  

double  
H y b r i d M u l t i f r a c t a l (  Vec tor  p o i n t ,  double  H, double  l a c u n a r i t y ,  

double  oc taves ,  double  o f f s e t  ) 
{ 

double  f r equency ,  r e s u l t ,  s i g n a l ,  we igh t ,  rema inder .  
doubl e Noi se3( )  • 
i n t  i • 
s t a t i c  i n t  f i r s t  = TRUE. 
s t a t i c  double  * e x p o n e n t _ a r r a y .  

/ *  precompute and s t o r e  s p e c t r a l  we igh ts  * /  
i f  ( f i r s t  ) { 

/ *  se i ze  r e q u i r e d  memory f o r  exponen t_a r ray  * /  
exponen t_a r ray  = 

(doub le  * ) m a l l o c ( ( o c t a v e s + i )  * s i z e o f ( d o u b l e )  ) .  
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f requency = 1 .0 ;  
f o r  ( i=O; i<=oc taves ;  i++) { 
/ *  compute we igh t  f o r  each f requency * /  
e x p o n e n t _ a r r a y [ i ]  = pow( f requency ,  -H);  
f requency *-- I a c u n a r i t y ;  

} 
f i r s t  = FALSE; 

/ *  get f i r s t  octave of  f u n c t i o n  * /  
r e s u l t - -  ( Noise3( p o i n t  ) + o f f s e t  ) * exponen t_a r ray [O ] .  
we igh t  = r e s u l t .  

/ *  inc rease f requency * /  
p o i n t . x  *= l a c u n a r i t y ;  
p o i n t . y  *= l a c u n a r i t y ;  
p o i n t . z  *= l a c u n a r i t y ;  

/ *  spec t ra l  c o n s t r u c t i o n  inner  loop,  where the f r a c t a l  is b u i l t  * /  
f o r  (1=1; i <oc taves ;  1++) { 

/ *  p revent  d ivergence * /  
i f  ( we igh t  > 1.0 ) we igh t  = 1.0;  

/ *  get next  h igher  f requency * /  
s igna l  -- ( Noise3( p o i n t  ) + o f f s e t  ) * e x p o n e n t _ a r r a y [ i ] .  

/ *  add i t  i n ,  weighted by prev ious f r e q ' s  loca l  value * /  
r e s u l t  += we igh t  * s i g n a l -  

/ *  update the ( m o n o t o n i c a l l y  decreas ing)  we igh t i ng  value * /  
/ *  ( t h i s  is  why H must spec i f y  a high f r a c t a l  d imension)  * /  
we igh t  *= s i g n a l -  

/ *  increase f requency * /  
p o i n t . x  *= l a c u n a r i t y ;  
p o i n t . y  *= l a c u n a r i t y ;  
p o i n t . z  *= l a c u n a r i t y ;  

} / *  f o r  * /  

/ *  take care of remainder in "oc taves "  * /  
remainder = octaves - ( i n t ) o c t a v e s ;  
i f  ( remainder ) 

/ *  " i "  and s p a t i a l  f r eq .  are p rese t  in loop above * /  
r e s u l t  += remainder * Noise3( p o i n t  ) * e x p o n e n t _ a r r a y [ i ] ;  

r e t u r n (  r e s u l t  )" 

} / *  H y b r i d M u l t i f r a c t a l ( )  * /  

Note the offset applied to the noise function to move its range from [ - 1 ,  1] to 
something closer to [0, 2]. (If your noise function has a different range, you'll need to 



504 CHAPTER 16 Procedural Fractal Terrains 

adjust this.) You should experiment with the values of these parameters and observe 
their effects. 

An amusing facet of this function is that it doesn't do what I designed it to do: a 
valley above sea level in this function is defined not by the local value of the last fre- 
quency in the sum, as I have assumed, but by the local gradient of the function (i.e., 
the local tangent, the partial derivatives in x and y~however you care to view it). 
Put another way, in the above construction, we ignore the bias introduced by lower 
frequencies~we may be adding a "valley" onto the side of an already steep slope, 
and thus we may not get a valley at all, only a depression on the side of the slope. 
Nevertheless, this construction has provided some very nice, heterogeneous terrain 
models. Figure 16.1 illustrates a terrain model produced from the above function. 
Note that it begins to capture some of the large-scale heterogeneity of real terrains: 
we have plains, foothills, and alpine mountains, all in one patch. Figure 20.18 shows 
a similar construction, this time using the same ridged basis function seen in Figure 
20.20: it's like Perlin's original "turbulence" function, which used the absolute value 
of the noise function, only it's turned upside-down, as 1 - abs(noise) so that the re- 
sulting creases stick up as ridges. The resulting multifractal terrain model is illus- 
trated in Figures 17.4-17.6. It is generated by the following code: 

/ *  Ridged m u l t i f r a c t a l  t e r r a i n  model. 

* Some good parameter values to  s t a r t  w i t h -  
@c 

* H "  1.0 
* o f f s e t -  1 .0  
* gain" 2.0 
* /  

double R i d g e d M u l t i f r a c t a l (  V e c t o r  p o i n t ,  doub le  H, double lacunar i ty ,  
double octaves, double of fset ,  double gain ) 

{ 

double resul t ,  frequency, signal,  weight, N o i s e 3 ( ) .  

i n t  i • 
s t a t i c  i n t  f i r s t  = TRUE- 
sta t ic  double *exponent_array. 

/ *  precompute and store spectral weights * /  

i f  ( f i r s t  ) { 
/ *  s e i z e  r e q u i r e d  memory f o r  e x p o n e n t _ a r r a y  * /  
exponent_array = 

(double * ) m a l l o c ( ( o c t a v e s + I )  * s i z e o f ( d o u b l e )  ) ;  
frequency = 1 .0 ;  

f o r  ( i - -O; i < = o c t a v e s ;  i ++ )  { 
/ *  compute weight for each frequency * /  

exponent_array[i]  = pow( f r e q u e n c y ,  -H ) ;  
frequency *-- I a c u n a r i t y ;  
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} 
f i r s t  = FALSE. 

/ *  get  f i r s t  oc tave * /  
s i gna l  = Noise3( p o i n t  ) .  

/ *  get  abso lu te  va lue o f  s i gna l  ( t h i s  c rea tes  the r i d g e s )  * /  
i f  ( s i gna l  < 0.0 ) s i gna l  = - s i g n a l ;  
/ *  i n v e r t  and t r a n s l a t e  (no te  t h a t  " o f f s e t "  should be - =  1 .0)  * /  
s i gna l  = o f f s e t  - s i g n a l ;  
/ *  square the s i g n a l ,  to  i nc rease  " sha rpness "  o f  r i dges  * /  
s i gna l  *= s i g n a l ;  
/ *  ass ign  i n i t i a l  va lues * /  
r e s u l t  = s i g n a l ;  
we igh t  = 1 .0 ;  

f o r (  1=1; i < o c t a v e s ;  i++ ) { 
/ *  i nc rease  the f requency  * /  
p o i n t . x  *= l a c u n a r i t y ;  
p o i n t . y  *= l a c u n a r i t y ;  
p o i n t . z  *= l a c u n a r i t y ;  

/ *  we igh t  success ive  c o n t r i b u t i o n s  by p rev ious  s igna l  * /  
we igh t  = s igna l  * ga in ;  
i f  ( we igh t  > 1.0 ) we igh t  = 1 .0 ;  
i f  ( we igh t  < 0.0 ) we igh t  = 0 .0 ;  
s i gna l  = Noise3( p o i n t  ) ;  
i f  ( s i gna l  < 0.0 ) s i gna l  = - s i g n a l ;  
s i gna l  = o f f s e t  - s i g n a l ;  
s i gna l  *= s i g n a l ;  

/ *  we igh t  the c o n t r i b u t i o n  * /  
s i gna l  *= we igh t "  
r e s u l t  += s igna l  * e x p o n e n t _ a r r a y [ i ] "  

r e t u r n (  r e s u l t  ) .  

} / *  R i d g e d M u l t i f r a c t a l ( )  * /  

Multiplicative Multifractal Terrains 

In Chapter 14, Figure 14.3 illustrates, as a terrain patch, the multiplicative multi- 
fractal function presented in that chapter. Qualitatively, that terrain patch appears 
quite similar to the statistics-by-altitude patch seen in Figure 16.1. At the time of this 
writing, our formalmthat is, mathematical, rather than artisticmresearch into the 
mathematics of such multifractal terrain models is quite preliminary, so I have little 
of use to report. The multifractal construction of Chapter 14 does appear to have 
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some curious properties: as the value of s c a ] e goes from zero to infinity, the function 
goes from highly heterogeneous (at zero) to flat (diverging to infinity). We have not 
yet completed our quantitative study of the behavior, so I cannot elucidate further at 
this time. 

For the time being, however, for the purposes of terrain synthesis it seems best to 
stick with the two hybrid additive multiplicative multifractal constructions pre- 
sented in this chapter, rather than attempting to use the pure multifractal function 
presented in Chapter 14. These hybrid models may be no better understood mathe- 
matically, but they are better behaved as functions; that is, they don't usually need to 
be rescaled and are less prone to divergence. 

CONCLUSION 
I hope that in the last three chapters I have been able to illustrate the power of fractal 
geometry as a visual language of nature. We have seen that fractals can readily pro- 
vide nice visual models of fire, earth, air, and water. I hope that I have also helped 
clarify the bounds of usefulness of fractal models for computer graphics: while frac- 
tals are not the final word in describing the world we live in, they do provide an ele- 
gant source of visual complexity for synthetic imagery. The accuracy of fractal 
models of natural phenomena is of an ontogenetic, rather than physical, character: 
they reflect morphology fairly well, but this semblance does not issue from first prin- 
ciples of physical law, so far as we know. The world we inhabit is more visually com- 
plex than we can hope to reproduce in synthetic imagery in the near future, but the 
simple, inherently procedural complexity of fractals marks a first significant step to- 
ward accomplishing such reproduction. I hope that some of the constructions pre- 
sented here will be useful to you, whether in your own attempts to create synthetic 
worlds or in more abstract artistic endeavors. 

There is plenty of work left to be done in developing fractal models of natu- 
ral phenomena. Turbulence has yet to be efficiently procedurally modeled to every- 
one's satisfaction, and multifractals need to be understood and applied in computer 
graphics. Trees are distinctly fractal, yet to a large extent they still defy our ability to 
capture their full complexity in a simple, eff icient model; the same goes for river sys- 
tems and dielectric breakdown (e.g., lightning). Reproducing other, nonfractal mani- 
festations of heterogeneous complexity will, no doubt, keep image synthesists busy 
for a long time to come. I like to think that our best synthetic images reflect directly 
something of our depth~and lack~of  understanding of the world we live in. As 
beautiful and convincing as some of the images may be, they are only a first approxi- 
mation of the true complexity of nature. 


