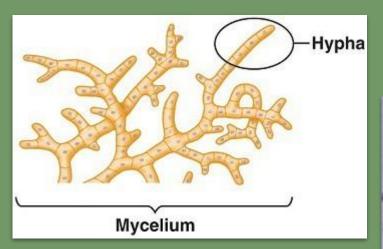
Understanding Plant Fungal Leaf Diseases in Nurseries

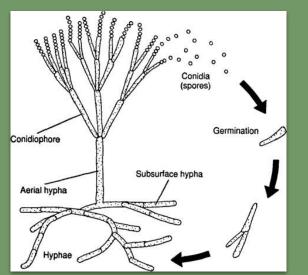
 $\bullet \bullet \bullet$

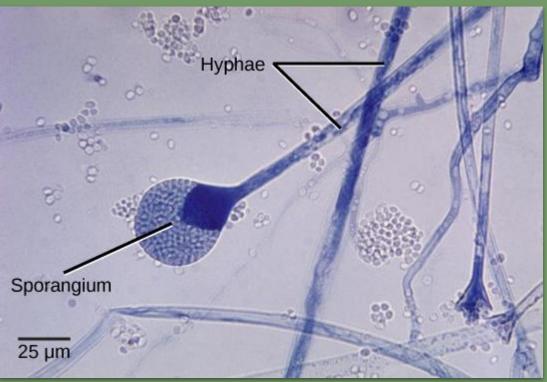
Sophia Ronan

Contents

	Brief Introduction to Fungi	
	Powdery Mildew	
	a. Causes and Description	5
	b. Environment and İnfection	
	Process	6
	c. Management Strategies	
	Leaf Spot	
	a. Causes and Description	8
	b. Environment and Infection	
	Process	9
	c. Management Strategies	10
4.	Leaf Rusts	
	a. Causes and Description	11
	b. Environment and İnfection	
	Process	12
	c. White Pine Blister Rust	
	d. Management Strategies	14
	Generalized Management Strategy	
6.	Vocabulary	
	References	


Fungal rust on oregon oxalis




Fungal rust

Brief Introduction to Fungi

- Fungi are eukaryotic organisms that lack chlorophyll making them taxonomically distinct from plants
- Fungi are heterotrophs obtains nutrients from complex organic substances (as opposed to fixing their nutrients from the atmosphere as plants do)
 - they digest organic matter externally before absorbing it
- Fungi grow from tips of filaments (**hyphae**) that make up a complex, radically expanding network (**mycelia**) which is the body of the organism (**thallus**)
- Reproduction
 - Mycelium produces spores on hyphae
 - Spores are produced in sporangia (sac-like sporophores)
 - Asexually produced spores (conidia) are typically formed terminally on special, spore-producing hyphae (conidiophores)

Powdery Mildew – Causes and Description

- Caused by multiple different species of fungi that generally have limited host ranges
 - Powdery mildew causing genera: Erysiphe,
 Microsphaera, Phyllactinia, Podosphaera,
 Sphaerotheca, and Uncinula
 - Biotrophic fungi: feed on living plant cells and barely survive in the absence of a living crop
- Appears as a powdery, white substance covering the leaves, stem, or fruit
 - This is actually a result of large numbers of microscopic **conidia**

Powdery Mildew – Environment and Infection Process

- Thrives in humid conditions and stagnant air
 - Can be caused by plants growing too close together
 - High relative humidity promotes germination of spores, but inhibits spore production overall effect is negligible
- Pathogen overwinters in plant debris and within buds of infected plants
- Conidia are the main means of dispersal (dispersed by wind)
 - o In greenhouses, dispersal of spores over small distances mainly occurs through workers clothing
- Fungal spores germinate on leaf surfaces, where germ tubes grow and branch out
 - Haustoria are produced from which fungus penetrates plant cell and takes up nutrients from epidermal layer of plant cells
 - Doesn't require moisture for infection
- Powdery mildew is rarely fatal, but it causes stress and weakens plants
 - Stressed and weakened plants are much more susceptible to other diseases
 - Photosynthesis can be inhibited when the fungus covers leaf surfaces

Powdery Mildew – Management Strategies

- Watering deeply, in the morning when possible, avoid watering from overhead
 - o NO overhead irrigation, keep foliage dry
- Remove infected plant material and destroy it
 - Continually remove dead leaves from soil to prevent an area for fungus to overwinter
- Neem oil coats leaf surface and suffocates fungus
- Baking soda 1 tsp in water, spray mixture onto affected leaves
 - o pH level creates unsuitable environment for the fungus to reproduce and spread
- Do not provide excess nitrogen, since this promotes the disease
 - Remove affected plants from fertilizing regime
- Prevention
 - Extra silicon and/or calcium nutrition hardens the cell wall and makes it harder for fungi to enter the leaves

Leaf Spot – Causes and Description

- Very common, caused by multiple species of fungi (some attack specific host plants and others will attack a wide range)
 - Leaf spot causing genera: Cercospora, Alternaria,
 Anthracnose, Ascochyta, Corynespora, Cylindrocladium,
 Cylindrosporium, Didymella, Entyloma, Fabraea,
 Marssonina, Phyllosticta, Pleospora, Ramularia, Septoria
- Spots are variable, but generally white to grayish-white and enclosed by reddish-brown, brownish, or yellowish margins
 - It is possible to see evidence of fungal pathogens (mycelium) at the center of some spots
- Spots first appear on adaxial surfaces, then become apparent on abaxial leaf surfaces

Leaf Spot – **Environment and Infection Process**

- Infection process requires water on the leaves or a prolonged period of high humidity
 - Prolonged period could be 12 24 hours
 - Leaf spots often mature in 1 2 weeks
- Spores are dispersed by splashing rain, wind,
 personnel working with infected, wet plant material,
 insects, or mites
- Spores can germinate in water or in the natural leaf openings
 - Hydathodes, lenticels, stomata
- The cycle of spore production and infection can repeat any time weather conditions are favorable
- Pathogen can survive winter in infected leaf debris
- Favorable conditions include humidity and after a rainfall (or overhead watering)

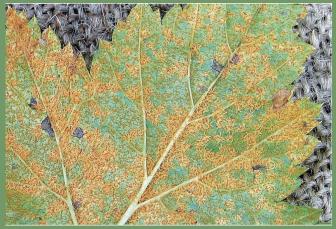
- The pathogen can cause leaves to drop prematurely, however it is generally considered an aesthetic concern
- Leaf spot can turn into a blight in which case tissue death can progress until the entire lamina is dead
- Blight or continual defoliating should be indications of a more concerning infection

Leaf Spot – Management Strategies

- Avoid overhead watering and keep the foliage as dry as possible
 - Apply irrigation only to roots and potting material
 - Water early in the day, if possible
- Prune dead leaves and stems AND remove dead plant material from the soil of pots as well
- Reduce stress on plants
 - Plants already experiencing stress are more likely to be susceptible to the pathogen and more likely to experience wrose symptoms
- Avoid fertilizing infected plants

Rust – Causes and Description

- Rust fungi are obligate parasites, meaning they can only grow on a living host
- Rust pathogens have the most complex life cycles of all fungal plant pathogens with up to five different spore stages that occur over at least two different host species
- Spores are identifiable as powdery pustules that initially appear on the abaxial side of a leaf
 - o Spore are yellow to orange-red and brown


Rust – Environment and Infection Process

- Rust pathogens thrive in cool and damp conditions
 - o Germination and infection requires water on the leaf surface for several hours
- Rust spores germinate on leaf surfaces and enter through the stomata or form a special organ to penetrate the cuticle and epidermis
 - Pathogen will penetrate plant cells and use a **haustorium** to absorb nutrients
- Rust spores are wind, rain, and splash dispersed during multiple stages
 - Some spores will remain close to the plant in fallen debris or dead material to overwinter
- A heavy rust infection can cause leaves to fall prematurely, which will prevent natural hardening of shoots and buds, resulting in lower outplanting success
- The fungus will destroy leaf tissue, reducing plant photosynthetic capacity and in some cases plants may be killed

White Pine Blister Rust

- Cause: Cronartium rubicola a fungus introduced to North America in the 1900s
- Hosts: all North American white pines/five-needle pines
- Alternate Hosts: currants and gooseberries (*Ribes*)
 and occasionally *Pedicularis* and *Castilleja* species
- Impact: Affects trees of all ages and sizes, can effectively eliminate white pines from certain ecosystems
 - o Branch and stem cankers eventually lead to entire tree death
 - Premature defoliation occurs on *Ribes* but otherwise there is little damage
- Concern: High

Rust – Management Strategies

- Regularly check plants, especially in Spring, paying close attention to the underside of leaves
- Avoid overhead watering and keep the foliage as dry as possible
 - Apply irrigation only to roots and potting material
 - Water early in the day, if possible
- Prune dead leaves and stems AND remove dead plant material from the soil of pots as well
- Reduce stress on plants
 - Plants already experiencing stress are more likely to be susceptible to the pathogen and more likely to experience wrose symptoms
- Potentially beneficial to begin fungicide application at the first appearance of rust
- Considerations for terminating a plant if infection cannot be managed?

Generalized Management Strategy

- Regular check plants for signs of infection
- Always avoid overhead irrigation and try to avoid splashing or wetting foliage
- Prioritize spacing of plants to promote quick drying and air circulation
- Prune dead leaves and stems **AND** remove dead plant material from the soil of pots as well
- Practice sanitary handling techniques wash hands in between touching infected plants, take caution when watering and handling wet plants
- Reduce stress on plants
 - Plants already experiencing stress are more likely to be susceptible to the pathogen and more likely to experience wrose symptoms
- Avoid fertilizing infected plants
- Monitor and assess damage from fungal infection before deciding to use chemical control (neem oil or a fungicide)

Vocabulary

- Abaxial = the bottom side of the leaf
- Abscission = "programmed self-pruning"
- Adaxial = the side of the leaf towards the sun, top side of the leaf
- Chlorosis = yellowing of leaf tissue due to a lack of chlorophyll
- Conidia = a spore produced asexually by various fungi
- Haustoria = a slender projection from the hyphae of a parasitic fungus, enabling parasite to penetrate tissue of its host and absorb nutrients
- Lamina = refers to the entire flat and extended section of the leaf, i.e. the leaf blade

References

Adam, S. (n.d.). Leaf spotting fungi. Penn State Extension. Retrieved March 6, 2023, from https://extension.psu.edu/leaf-spotting-fungi

Brien, R. (2021, March 10). *Rust plant disease - how to identify and treat rust fungal problems*. Gardening | Landscaping | Plants | My Garden Plot. Retrieved March 7, 2023, from https://www.mygardenplot.com/rust-plant-disease/

Douglas, S. M. (n.d.). *Fungal leaf spots of trees and ornamentals*. CT.gov. Retrieved March 7, 2023, from https://portal.ct.gov/CAES/Fact-Sheets/Plant-Pathology/Fungal-Leaf-Spots-of-Trees-and-Ornamentals

Encyclopædia Britannica, inc. (n.d.). Fungus. Encyclopædia Britannica. Retrieved March 6, 2023, from https://www.britannica.com/science/fungus

Encyclopædia Britannica, inc. (n.d.). *Powdery mildew*. Encyclopædia Britannica. Retrieved March 6, 2023, from https://www.britannica.com/science/powdery-mildew

Fungal spots, blights, and blotches. Visit Missouri Botanical Gardens. (n.d.). Retrieved March 5, 2023, from https://www.missouribotanicalgarden.org/gardens-gardening/your-garden/help-for-the-home-gardener/advice-tips-resources/pests-and-problems/diseases/fungal-spots

Grabowski, M. (2018). *Leaf spot diseases of trees and shrubs*. UMN Extension. Retrieved March 7, 2023, from https://extension.umn.edu/plant-diseases/leaf-spot-diseases-trees-and-shrubs

References

Libretexts. (2022, June 9). 24.1b: Fungi Cell Structure and function. Biology LibreTexts. Retrieved March 6, 2023, from https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/24%3A_Fungi/24.01%3A_Characte ristics_of_Fungi/24.1B%3A_Fungi_Cell_Structure_and_Function#:~:text=Most%20fungi%20are%20multicellular%20organisms,of%20hyphae%20is%20a%20mycelium.

Pegg, K., Manners, A., Cooke, T., & Coates, L. (2018, July). *Rust diseases - horticulture*. Nursery Papers. Retrieved March 8, 2023, from https://www.horticulture.com.au/globalassets/hort-innovation/resource-assets/ny15002-nursery-paper-july-2018.pdf

Powdery mildew: Koppert global. Koppert. (n.d.). Retrieved March 5, 2023, from

 $\frac{https://www.koppert.com/challenges/disease-control/powdery-mildew/\#:\sim:text=Life\%20cycle\%20and\%20appearance\%20of\%20Powdery\%20mildew\&text=Fungal\%20spores\%20germinate\%20on\%20the.epidermal\%20layer\%20of\%20plant\%20cells.$

Rust diseases. Rust Diseases - an overview | ScienceDirect Topics. (n.d.). Retrieved March 7, 2023, from https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/rust-diseases

Rust fungi. Rust Fungi - an overview | ScienceDirect Topics. (n.d.). Retrieved March 7, 2023, from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rust-fungi

White Pine Blister Rust. U.S. Forest Service. (n.d.), Retrieved from https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5302971.pdf