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THE NATURAL HISTORY OF MODEL ORGANISMS

Planting molecular functions
in an ecological context with
Arabidopsis thaliana
Abstract The vascular plant Arabidopsis thaliana is a central genetic model and universal reference

organism in plant and crop science. The successful integration of different fields of research in the

study of A. thaliana has made a large contribution to our molecular understanding of key concepts in

biology. The availability and active development of experimental tools and resources, in combination

with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the

most advanced systems biology approaches among all land plants. Research in molecular ecology

and evolution has also brought the natural history of A. thaliana into the limelight. This article

showcases our current knowledge of the natural history of A. thaliana from the perspective of the

most closely related plant species, providing an evolutionary framework for interpreting novel

findings and for developing new hypotheses based on our knowledge of this plant.

DOI: 10.7554/eLife.06100.001

UTE KRÄMER*

Introduction
Arabidopsis thaliana is a small, annual or winter

annual, rosette plant (Figure 1). It belongs to

the taxonomic family of the Brassicaceae in the

eudicotyledonous group of angiosperm vascular

plants (see Box 1 for a glossary of specialist

terms used in this article). This family also

includes morphologically diverse but closely

related oilseed crops, vegetables and spice

plants, for example rapeseed, brussel sprouts,

various cabbages, cauliflower, garden radish

and mustard. First described by the physician

Johannes Thal in the Harz Mountains of Northern

Germany in 1577, A. thaliana featured in the

Species Plantarum II published by Linnaeus in

1753, and it received its present name, Arabidopsis

thaliana (L.) Heynh, from Gustav Heynhold in 1842

(Kück, 2005). Friedrich Laibach was the first

researcher to publish an influential cytogenetic

study on A. thaliana in 1907, to foster genetics in

the 1940s, and to systematically collect acces-

sions in the wild after emphasizing the extent of

intraspecific phenotypic variation in A. thaliana

in the 1950s (Somerville and Koornneef, 2002;

Koornneef and Meinke, 2010).

The popularity of A. thaliana as a model

organism took off in the 1980s, and then rapidly

gained momentum when researchers successfully

began to combine genetics with powerful

molecular biology methods. The Arabidopsis

reference genome sequence was published as

the first nuclear genome of a flowering plant in

2000 (http://www.arabidopsis.org/) (Arabidopsis

Genome Initiative, 2000; Somerville and

Koornneef, 2002; Koornneef and Meinke,

2010). The ease and speed with which experiments

can be conducted on A. thaliana has allowed

enormous fundamental progress in our knowledge

of the molecular principles of plant development,

cell biology, metabolism, physiology, genetics and

epigenetics (http://www.arabidopsisbook.org/).

The many uses of Arabidopsis as the universal

reference plant continue to expand, particularly

in the field of systems biology (Brady et al.,

2007; Endo et al., 2014), and more recently

provide a means of placing molecular functions

into an ecological and evolutionary context in

natural environments (Tian et al., 2003;

Mitchell-Olds and Schmitt, 2006; Alonso-

Blanco et al., 2009; Atwell et al., 2010;
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Krämer. eLife 2015;4:e06100. DOI: 10.7554/eLife.06100 1 of 13

http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.06100.001
http://www.arabidopsis.org/
http://www.arabidopsisbook.org/
mailto:ute.kr�mer@ruhr-uni-bochum.de
mailto:ute.kr�mer@ruhr-uni-bochum.de
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.06100
http://elifesciences.org/natural-history-of-model-organisms


Bergelson and Roux, 2010; Fournier-Level

et al., 2011; Hancock et al., 2011; Züst et al.,

2012).

Many of the traits that render A. thaliana an

attractive model plant also constitute adapta-

tions that reflect the ecological niche occupied

by this species, such as the short generation time

and the ability to self-fertilize (selfing). Indeed,

the natural history of A. thaliana differs notably

from that of the species in its sister group of the

most closely related existing plant species, which

includes Arabidopsis lyrata, Arabidopsis arenosa

and Arabidopsis croatica, and the three species

Arabidopsis halleri, Arabidopsis cebennensis

and Arabidopsis pedemontana (Koch and

Matschinger, 2007; Hohmann et al., 2014)

(Figure 2). Within these six evolutionary lineages,

a number of phylogenetically (as yet) unresolved

taxa have been described, as have auto- and

allopolyploidization events (see Glossary).

The divergence time of the common ancestor

of these species and the A. thaliana lineage

was estimated at around 5 million years ago

(Mya) (Koch et al., 2000), with upper and lower

Figure 1. Life cycle of Arabidopsis thaliana. (A) A. thaliana of the accession Columbia (Col) at different stages of its life cycle, from seed (bottom left) to

seedling (11 days), to vegetative growth (39 days), and to reproductive growth (45 days). Photographs of (B) a flower, (C) a pollen grain (scanning electron

micrograph), and (D) mature siliques (seed pods; left: closed; right: open with a few remaining unshattered seeds) at higher magnification. Image credits:

B and C, Maria Bernal and Peter Huijser; other photographs, Ines Kubigsteltig and Klaus Hagemann.

DOI: 10.7554/eLife.06100.002

Krämer. eLife 2015;4:e06100. DOI: 10.7554/eLife.06100 2 of 13

Feature article The natural history of model organisms | Planting molecular functions in an ecological context with Arabidopsis thaliana

http://dx.doi.org/10.7554/eLife.06100.002
http://dx.doi.org/10.7554/eLife.06100


bounds of 17.9 and 3.1 Mya (Koch et al., 2000;

Beilstein et al., 2010; Ossowski et al., 2010). Thus,

divergence occurred immediately before or during

the transition from a warm period to progressively

colder climates, followed by rapid glacial cycles

from 3 Mya until the latest glacial maximum about

18,000 years ago. There has even been a natural

allopolyploidization event between A. arenosa and

A. thaliana 10,000–300,000 years ago, giving

rise to Arabidopsis suecica (Sall et al., 2003;

Jakobsson et al., 2006).

Work in recent years has increasingly empha-

sized the relevance of conducting experiments

on A. thaliana in natural or semi-natural settings

(Wilczek et al., 2009; Brachi et al., 2010;

Chiang et al., 2013; Karasov et al., 2014).

This important development will benefit from

a more detailed knowledge of the unique and

shared features of its natural and evolutionary

history, as well as of the natural environments

that host populations of A. thaliana.

The natural history of A. thaliana in
an evolutionary and ecological
context
Arabidopsis thaliana is recognized as native to

Western Eurasia (Figure 3). The species is a

Box 1. Glossary

Allopolyploidy: Following the hybridization of two different

species, this term describes when two (or more) chromo-

some sets from each parent are maintained in the genome.

Autopolyploidy: Polyploidy arising from the multiplica-

tion of chromosome sets in a genome, often due to the

formation of unreduced gametes in an aberrant meiosis.

Calcareous outcrops: Rocky areas with predominantly

calcium carbonate-rich minerals, sparse vegetation, soils

of high pH with poor biovailability of some nutrients and

poor water-holding capacity.

Commensal: An organism that lives in close association

with a host organism, from which it benefits—usually by

receiving nutrients—without harming the host or being

beneficial to it.

Effector-triggered immunity: A form of plant innate

immunity mediated by plant NLR proteins (see below) of

diverse recognition specificities, encoded by Resistance

(R) genes organized in recombinogenic, but somatically

stable, gene clusters. Each R protein detects a pathogen-

derived effector molecule or its action on a host target

protein.

Eudicotyledon: Angiosperm (flowering) plant species

characterized by two cotyledons (embryonic leaves) and

other morphological characteristics.

Glucosinolates: A group of secondary metabolites

characteristic of the plant order Brassicales, including the

Brassicaceae family.

Induced systemic resistance: Systemic resistance to

infection by a broad spectrum of pathogens and to attack

by herbivores. Its induction is triggered locally (usually in

the root) by the presence of plant-associated beneficial

microbes.

Metal hyperaccumulation: The accumulation in above-

ground plant structures (usually leaves) of metals or

metalloids at concentrations far higher than in non-

accumulator plants at the same site. A rare trait found in

∼0.2% of angiosperms that acts as an elemental defense

against biotic stress.

Molecular pattern-triggered immunity: A form of plant

innate immunity mediated by transmembrane pattern

recognition receptors that detect evolutionarily conserved

molecules, called cell damage-associated or microbe-

associated molecular patterns, usually on the plant cell

surface.

NLR proteins: NLR (nucleotide-binding domain leucine-

rich repeat) proteins function in plant effector triggered

immunity. Also denotes a family of proteins found

subsequently to act in animal innate immunity. All NLR

proteins share a similar three-domain architecture.

Phenology: The timing, or the study, of periodic life cycle

events in organisms in conjunction with seasonal cycles

and/or inter-annual climatic variation.

Photosynthate: A product of photosynthesis, that is, an

energy-rich carbon-containing molecule (most commonly

a sugar).

Plant growth-promoting rhizobacteria: Beneficial bac-

teria that enhance plant growth and biomass production

and live in association with plant roots in natural

environments.

Synanthropy: Occurrence of an organism in association

with human settlement, where human activities directly or

indirectly generate favorable environmental conditions for

the organism.

Ultramafic soils: Infertile, nutrient poor soils derived from

so-called serpentine minerals, which are common in zones

of tectonic activity.

DOI: 10.7554/eLife.06100.003

Krämer. eLife 2015;4:e06100. DOI: 10.7554/eLife.06100 3 of 13

Feature article The natural history of model organisms | Planting molecular functions in an ecological context with Arabidopsis thaliana

http://dx.doi.org/10.7554/eLife.06100.003
http://dx.doi.org/10.7554/eLife.06100


colonizer and pioneer plant of disturbed, poor,

stony or shallow soils, and it can also be found

in nutrient-poor, often sandy, meadow and

forest habitats (Mitchell-Olds and Schmitt,

2006). Similarly, the species closely related to

A. thaliana are able to colonize bare rocky

habitats. Sequence polymorphism data pro-

vide evidence for a historical expansion of the

A. thaliana species population (Nordborg et al.,

2005; Schmid et al., 2005), thus differing

from the known demographic histories of the

non-hybrid species in its sister group in the

Arabidopsis genus (Wright et al., 2003;

Heidel et al., 2010). It has been suggested

that A. thaliana re-colonized Central Europe

from glacial refugia in the Caucasus or Balkans

between ∼10,000 and 5000 years ago, possibly

accompanying the spread of human farming

from the Near East (Francois et al., 2008).

There is also clear evidence for additional glacial

refugia for A. thaliana in the Mediterranean

region, including the North African Atlas

Mountains (Brennan et al., 2014), and for

additional migration (for example, from the

Iberian peninsula in a northeastern direction

[Sharbel et al., 2000; Pico et al., 2008]), as

well as for population structure reflecting iso-

lation by distance in Eurasia (Nordborg et al.,

2005). This reflects an evolutionary history of

vast climatic and environmental fluctuations,

likely including a series of alternating phases of

population size contraction and expansion with

migration and admixture following glacial cycles

(Beck et al., 2008). In the past few 100 years,

A. thaliana has further expanded its geographic

and climatic range in synanthropy (see Glossary),

migrating to and across North America, as well

as southward in Africa, and more recently to

East Asia (see Figure 3). The present climatic

and geographic range of A. thaliana is larger

than that of any of its close relatives, which have

either not expanded into warmer climates or are

local endemics (Koch and Matschinger, 2007;

Hohmann et al., 2014).

In addition to—and likely permitting—the

rapid expansion of its range, A. thaliana has

undergone transitions to reproduction by self-

fertilization (selfing). Estimates place these

transitions as having occurred, based on differ-

ent approaches, at around 0.4 Mya or around

≥1 Mya (Bechsgaard et al., 2006; Tang et al.,

2007). By contrast, most species closely re-

lated to A. thaliana are either predominantly

or strictly outcrossing (the latter if species are

strongly self-incompatible). In addition to self-

ing, A. thaliana is an annual plant with a rapid

life cycle that can be as short as 6–8 weeks in

some accessions, whereas most of its close

relatives are biannuals or herbaceous perennials

(Al-Shehbaz and O’Kane, 2002) (see Figures 1, 2).

Vegetative A. thaliana plants are smaller in size

than most of its close relatives, and their survival

and reproduction are comparably robust in a

variety of environments. The leaves of A. thaliana

are positioned to form a more compact rosette,

and inflorescences are more erect and elon-

gated, than in its close relative A. halleri.

These morphological differences are likely to

constitute adaptations to differing environments.

By comparison to its sister group of species, the

Figure 2. A. thaliana and a subset of species from its sister clade. From left to right: A. thaliana (Col), A. halleri (ssp. halleri; individual Lan5, Langelsheim,

Harz, Germany), A. lyrata (ssp. lyrata; selfing accession Great Lakes, North America), and A. croatica (Baške Oštarje/Ljubičko Brdo, Croatia). A. thaliana was

grown from seed to early reproductive stage, and the other species were propagated vegetatively and grown for 3–6 months. The individuals shown here

do not reflect the large within-species morphological diversity, particularly in leaf shape, among different accessions of A. halleri and A. lyrata. Image

credit: Ute Krämer and Klaus Hagemann.

DOI: 10.7554/eLife.06100.004
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flowering of A. thaliana is highly synchronized,

with the formation of a larger number of siliques

(seed pods) per plant, each containing a higher, or

far higher, number of seeds that are smaller in

size compared to those of its relatives. Seeds of

A. thaliana are long-lived and highly viable by

comparison to those of A. halleri and A. lyrata

(Ute Krämer, personal observation). These fea-

tures of A. thaliana render it ideal for mutagenesis,

genetics, and for the identification, selection and

propagation of mutant or transgenic lines, as well

as for stock maintenance.

The complexity of organ architecture appears

to be reduced in A. thaliana. Notably, its roots

mostly contain only a single layer of each

specialized cell type, a feature that is optimal

for in vivo imaging (Figure 4) (De Lucas and

Brady, 2013). This organization differs from

the roots of its close relative A. halleri, which

contain two additional cell layers (Hanikenne

et al., 2008), and is in stark contrast to root

tissues composed of multiple cell layers, as

found in many other plants. The metabolic

cost of building an A. thaliana root is evi-

dently minimal, and this is likely to have

ecological implications which have yet to be

determined.

The ancestral number of chromosomes in the

Brassicaceae (n = 8) is conserved in A. thaliana’s

closest relatives. By comparison, the genome of

the diploid A. thaliana is rearranged, with two

sets of n = 5 chromosomes. This is associated

with a pronounced reduction in genome size in

A. thaliana, down to 157 Mbp (Bennett et al.,

2003) (reference genome assembly of 135

Mbp)—one of the smallest known genomes

among flowering plants. For comparison, nuclear

genome sizes of its closest relatives are larger,

mostly due to a higher abundance of transpos-

able elements in euchromatic regions, with

207 Mbp for the reference assembly of the

nuclear genome of A. lyrata (Hu et al., 2011),

and about 260 Mbp estimated for A. halleri

(Johnston et al., 2005; Peer et al., 2006;

Hohmann et al., 2014). These properties of A.

thaliana have greatly facilitated the sequencing,

assembly and annotation of its genome, as well

as molecular genetics and genomics approaches.

All of these characteristic features of A.

thaliana are likely to constitute adaptations

that jointly define the ecological niche of the

species and reflect an ecological strategy that

has apparently been highly successful in recent

evolutionary history.

Figure 3. Map of A. thaliana worldwide distribution. Areas colored in red correspond to the continuous distribution

of A. thaliana; red circles mark additional sites. This map is based on a partial map kindly provided by Matthias

Hoffmann (personal communication, November 2014), with manual additions to the southern hemisphere

(Bresinsky et al., 2008). Image credit: Ute Krämer and Klaus Hagemann.

DOI: 10.7554/eLife.06100.005
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Plant development and its
environmental control
Classical molecular genetics approaches have

been used in A. thaliana to dissect the patterning

and development of flowers (Meyerowitz et al.,

1991), embryos (Mayer et al., 1991), leaves and

roots (Di Laurenzio et al., 1996), and of the

maintenance of stem cell niches at the plant’s

growing tips. These stem cells fuel the ongoing

(indeterminate) growth that is characteristic of

plants (Clark et al., 1997; Lenhard et al., 2001).

The biology of A. thaliana is rich in temperature-

and light-dependent regulation, some of

which might be triggered by photosynthates

(see Glossary) rather than by light itself (Haydon

et al., 2013). Important work has investigated

the molecular networks that mediate environ-

mentally controlled developmental switches in

A. thaliana, as well as natural intraspecific vari-

ation in phenology (see Glossary). Examples include

the light-regulated development of seedlings

(photomorphogenesis) (Deng et al., 1992;

Nemhauser, 2008), the transition from vege-

tative to reproductive development, also termed

flowering time control (Simpson and Dean, 2002;

Valverde et al., 2004; Andres and Coupland,

2012), and seed dormancy and germination

control (Bentsink et al., 2006; Graeber et al.,

2012), as well as natural variation in these traits

(Brachi et al., 2010; Chiang et al., 2013).

The need for developmental transitions to be

timed accurately and robustly is reflected in the

emerging complex, multi-layered epigenetic

regulation of some key loci, for example the

flowering control gene Flowering Locus C (FLC)

(Simpson and Dean, 2002; Csorba et al.,

2014). Such complex regulation in A. thaliana

may have evolved in a step-wise fashion along-

side recurrent climatic fluctuations encountered

by A. thaliana during its evolutionary history.

Nevertheless, contemporary global warming

appears to proceed faster than the local

adaptation of A. thaliana populations (Wilczek

et al., 2014), based on the reproductive

fitness of plants grown at locations across the

European distribution range from stored seeds,

which were collected in different geographic

regions between 4 and 70 years earlier.

Phenotypic plasticity and utilizing limited local

resources in bare habitats for rapid and ample

reproduction appear to be characteristics of

the life history of A. thaliana. The plant also

seemingly evades periodic or episodic environ-

mental adversities, including between-plant

competition, via a rapid life cycle. Consequently,

the adjustment of developmental timing to

environmental conditions is likely to be of major

importance in the phenotypic plasticity of

A. thaliana (Martinez et al., 2004; Riboni

et al., 2014), and an apparent target of selec-

tion (Horton et al., 2012). This might also

contribute further to the observed regulatory

complexity of flowering time control (see

preceding paragraph).

Other interactions with the
environment
In contrast to the vast majority of flowering

plants, the roots of the Brassicaceae generally do

not undergo mycorrhizal or rhizobial symbiosis.

This is likely to make A. thaliana comparably

independent of specific soil microbes or micro-

biomes, which may be advantageous for a colo-

nizer of recently disturbed and exposed soils.

Additionally, it allows the plant to commit all

energy expenditure to its own growth and

reproduction, but heightens the demands on

the endogenous machinery for nutrient acqui-

sition and efficiency, and for protecting roots

from environmental stress. Some of the central

molecular components of these pathways have

been identified in A. thaliana before their

discovery in other kingdoms of life, for example,

the biosynthesis of low-molecular-weight

Figure 4. The simple anatomy of A. thaliana roots.

Longitudinal (left) and transverse (right) confocal sec-

tions of A. thaliana roots. Green fluorescence highlights

the plasma membrane of the pericycle cells of an

A. thaliana hma2hma4 double mutant line (Sinclair

et al., 2007) (accession Wassilewskija). Red fluorescence

of propidium iodide (PI) as a stain is overlaid to visualize

cell walls. The root cell layers (consecutive outward to

inward) are: epidermis (e), cortex (c), endodermis (n) and

pericycle (p). Note that the Casparian Strip surrounding

the endodermis cells forms an apoplastic diffusion

barrier (Roppolo et al., 2011) that blocks the movement

of PI further inward. Image credit: Ute Krämer and Scott

A. Sinclair.

DOI: 10.7554/eLife.06100.006
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chelators for micronutrient metal cations

through nicotianamine synthase (Trampczynska

et al., 2006; Schuler et al., 2012), and for both

micronutrient and non-essential toxic metal

cations through phytochelatin synthase (Clemens,

2006; Tennstedt et al., 2009). Moreover, the

effective and balanced acquisition of adequate

quantities of inorganic nutrients, such as phos-

phate, nitrogen and iron, and their efficient

utilization by A. thaliana plants have been

observed and characterized at the molecular

level (Abel, 2011; Hindt and Guerinot, 2012;

Araya et al., 2014). When natural accessions

of A. thaliana are cultivated under uniform

controlled conditions, genetically controlled

within-species variation is observed in leaf

nutrient concentrations (Atwell et al., 2010),

which appears to be adaptive at least in some

cases (Poormohammad Kiani et al., 2012).

Key traits of A. thaliana are the timing of

germination to coincide with favorable environ-

mental conditions, a short life cycle, and the

ability to tolerate unfavorably hot or dry con-

ditions in the form of de-hydrated seeds.

Consequently, we would expect stress tolerance

to be less elaborate in A. thaliana than in some

other plants. Indeed, despite a very wide geo-

graphic distribution range, there are no reports

of A. thaliana accessions that exhibit extreme

physiological traits, different from its sister

group of plant species. As one out of a total

of ∼500 known metal hyperaccumulator plant

species (see Glossary), A. halleri accumulates

extraordinarily high concentrations of zinc and

cadmium in leaves where these metals act as

a so-called elemental defense against biotic

stress (Boyd, 2010; Krämer, 2010). In addition,

several species in the sister clade of A. thaliana

are well-known members of plant communities

found in extreme habitats. Calamine soils rich in

zinc, cadmium and lead—commonly as a result

of anthropogenic pollution—are readily colonized

by A. halleri (Ernst, 1974; Krämer, 2010), and

occasionally by A. arenosa (Przedpełska and

Wierzbicka, 2007). In addition, there are some

natural populations of A. arenosa and A. lyrata

on nutrient-poor ultramafic soils (Holubover

serpentinite, 2002; Turner et al., 2010), which

contain high levels of nickel and magnesium

originating from the local bedrock (see Glossary).

Finally, populations of A. lyrata (Al-Shehbaz and

O’Kane, 2002) and A. croatica (Plants, 2014)

characteristically inhabit calcareous outcrops

(see Glossary).

Above-ground (Vorholt, 2012; Horton et al.,

2014) and below-ground organs of A. thaliana,

and their immediate vicinity, provide habitats for

microbial communities, which appear to be more

strongly influenced by soil type than by plant

genotype (Bulgarelli et al., 2012; Lundberg

et al., 2012; Schlaeppi et al., 2014). These

microbial communities can include commensals

(see Glossary), as well as various naturally

occurring viral, bacterial, fungal and oomycete

pathogens. Arabidopsis possesses a wealth

of general molecular pattern-triggered innate

immunity responses (Schwessinger and Ronald,

2012) and more-specific, effector-triggered

and Resistance (R) gene-dependent, defenses

against microbes (Cui et al., 2014) (see Glossary).

Their elucidation has extensively contributed

to our understanding of plant defenses against

pathogens. By comparison, we understand far

less about how pathogens shape genetic

diversity in A. thaliana natural populations

(Karasov et al., 2014) and about the establish-

ment and maintenance of beneficial interactions

of A. thaliana with microbes, such as plant

growth-promoting rhizobacteria and microbes

that trigger induced systemic resistance

(Lugtenberg and Kamilova, 2009; Pieterse

et al., 2014) (see Glossary). Once A. thaliana

has initiated reproductive development, repro-

duction is favored over defense (Winter et al.,

2011). This is consistent with the general

ecological strategy of A. thaliana towards an

escape from stress through resource allocation

that prioritizes reproduction, followed by a rapid

conclusion of the life cycle, which differs from

its longer-lived relatives. Similarities have been

noted between plant defenses and animal

innate immunity. These relate primarily to the

domain architectures of NLR (nucleotide-binding

domain leucine-rich repeat) protein receptors

(see Glossary) that function in the detection of

biotic attack, and the programmed cell death

that occurs as a host defense response

(Maekawa et al., 2011).

Arabidopsis possesses effective defenses

against herbivory, for example by insects and

snails, with an important role for secondary

metabolites. Most prominently, a class of

sulfur-rich compounds, called glucosinolates

(see Glossary), are converted to pungent and

toxic breakdown products in damaged tissues

(Halkier and Gershenzon, 2006). These com-

pounds are agronomically important determinants

of taste and are receiving much attention as

health-protective, anti-cancer components of

‘functional foods’ (Sonderby et al., 2010).

Upon leaf wounding, the systemic activation

of defenses in distant leaves involves the

Krämer. eLife 2015;4:e06100. DOI: 10.7554/eLife.06100 7 of 13
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long-distance movement of electrical surface

potential changes at velocities between 43

and 150 μm s−1 involving ionotropic glutamate

receptor (iGluR)-related membrane proteins

(Mousavi et al., 2013). Strikingly, this bears

some similarity to the role of vertebrate iGluRs

in fast excitatory synaptic transmission in the

central nervous system. The fast systemic

movement of electrical signals turns out to

be of broader importance in plant responses

to the environment. For example, upon expo-

sure of A. thaliana to salt stress, a systemic

signal moves from root to shoot in the form

of a Ca2+ wave at a velocity of 400 μm s−1,

requiring the vacuolar ion channel TPC1 (Two

Pore Ca2+ Channel protein 1) (Choi et al.,

2014). These findings underpin the central

importance of A. thaliana as a model for

obtaining molecular insights into fundamen-

tally novel aspects of plant biology.

Metabolism in the context of
natural history
Metabolic properties are noteworthy compo-

nents of natural history because they are likely

to facilitate, constrain or even prevent specific

adaptations in a given lineage sharing them. With

respect to nutrient ions, plants of the Brassica-

ceae family were classified as calciotrophic,

based on their ability to store comparably large

quantities of dissolved calcium (Ca2+) (Kinzel,

1982). This is physiologically challenging because

cytosolic free Ca2+ levels have to be maintained

at very low (<0.1 μM) resting levels continuously

in order to allow for Ca2+-mediated signaling to

occur (Choi et al., 2014). By contrast, calciopho-

bic plants contain Ca in the form of insoluble

precipitates, mostly oxalates. In calciotrophic

plants, leaf Ca concentrations are generally higher

than leaf potassium concentrations, as is common

in the Brassicaceae, Papaveraceae and Reseda-

ceae families, but rare in other plant families.

Calcium cations are stored inside cell vacuoles

alongside other solutes, including the organic

acid anions malate or citrate, which act as both

chelators and charge balance for Ca2+. The

large capacity that Brassicaceae family

members have for storing divalent cations in

their vacuoles might explain why this family

comprises ∼50% of all known metal hyperaccu-

mulator plant taxa (Krämer, 2010). Moreover, the

absence of adaptation to extreme osmotic

conditions in A. thaliana could result from its

metabolism, which appears to generally avoid

high internal osmotic potentials by storing

osmotically inactive starch instead of osmotically

active photosynthetic sugars (Streb and

Zeeman, 2012). Finally, in association with the

high sulfur content of glucosinolates, the

Brassicaceae exhibit an active sulfur metabolism

and a comparably elevated requirement for

sulfate as a nutrient in the soil (Marschner,

1995). More data are required for future com-

parisons between A. thaliana and its sister clade.

Conclusions
Arabidopsis thaliana, a well-established model in

molecular genetics and plant cell biology, is

progressively being adopted by ecologists and

evolutionary biologists, who require far more

information on the sites of origin of natural

accessions than is contained in the written

records of the earlier collections. Insights into

the molecular functions of a multitude of

individual genes, as well as the elucidation of

biosynthetic pathways and regulatory networks

in A. thaliana, have proven invaluable for

identifying the genetic basis of agronomically

Box 2. Outstanding questions

about the natural history of
A. thaliana

c To understand the genetic diversity between and
within populations of A. thaliana in the context of
their natural environments of origin, with respect
to, for example: abiotic factors (including soil
composition), plant-associated microbial communities,
disease, and herbivory.

c To investigate the natural history of the
species closely related to A. thaliana for
subsequent comparative studies in order to
identify the genetic basis of traits that cannot be
studied in A. thaliana.

c To explore the vast between- and within-species
phenotypic variation in the sister clade of A. thaliana
for the genetic dissection of these traits, and to
analyze their ecological roles and the evolutionary
history of the underlying polymorphisms. This will
additionally provide key insights into the natural
history of A. thaliana.

DOI: 10.7554/eLife.06100.007
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important traits in crops, such as plant height

and flowering time (Doebley et al., 2006; Olsen

and Wendel, 2013). The successful transfer

of more complex molecular knowledge from

A. thaliana to crops requires us to account for

between-species differences in natural history.

Future advances in several disciplines will thus

involve, for example, an improved understand-

ing of the diversity of abiotic environments

where A. thaliana grows naturally, and plant-

associated microbial communities, disease and

herbivory at these sites (see Box 2). Recently

published work highlights the ecological rele-

vance and evolutionary consequences of the

relationships between local temperature pro-

files, plant immunity and hybrid fitness in the

field (Chae et al., 2014). In contrast to some

endemic and highly specialized plant species

among its closest relatives, A. thaliana can

physiologically acclimate and evolutionarily

adapt to a broad range of environments, and

the genetic basis underlying this difference is of

major interest for future research.

However, the natural history of A. thaliana is

likely to impose some fundamental limitations on

its validity as a model for investigating agronom-

ically relevant traits related to the maintenance of

growth and survival under stress. Comparative

approaches studying A. thaliana alongside

closely related species will enable us to unravel

the molecular basis of traits that are absent

in A. thaliana, as well as the implications of

between-species differences in natural history.

Yet our knowledge of the natural history of the

species in the sister clade of A. thaliana is

sketchy at best (see Box 2). Finally, in some

cases, it may become relevant to apply the

concept of natural history not exclusively at

the species level, but also, for example, at

the broader genus scale or at the smaller

population scale.
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