RUTGERS

New Jersey Agricultural Experiment Station

Diagnostic Tips for the Problem Lawn

Richard J Buckley, Director PDL Soil Testing and Plant Diagnostic Services www.njaes.rutgers.edu/services www.plant-pest-advisory.rutgers.edu @rjbuckwheat

www.njaes.rutgers.edu/services

Plant Pathology 101

- **1.** What is a Disease?
- **2.** Disease Triangle Concept
 - a) Host Plant Condition
 - **b)** Causal Agents
 - c) Environmental Impact
- **3. Recognizing Diseases**
 - a) Symptoms
 - **b)** Signs

Plant Pathology 101

- Plant Disease:
 - any disturbance of a plant that interferes with its normal structure, function, or economic value, or
 - -any condition of a plant that is contrary to grower expectations

THE DISEASE TRIANGLE

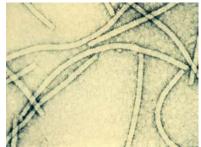
DISEASE AGENT

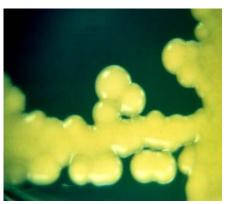
Host Plant Condition

- Most plants resist or tolerate attack
- Plant must be susceptible to attack
- Resistance and susceptibility different degrees of the same thing
 - influenced by genetics
 - influenced by environment
- Immunity is absolute

Two types of causal agents:

1. <u>Biotic</u> (infectious)


- organism (pathogen) grows, multiplies, and spreads to other plants
- 10% of plant problems reported
- 2. <u>Abiotic</u> (non-infectious)
 - environmental conditions that impact plant development (physiogens)
 - much more common: 90% of plant problems reported (injury not disease)



Biotic Causal Agents - Pathogens


- Fungi
- Bacteria
- Virus
- Viroid
- Mollicute
- Protozoa
- Algae
- Insect
- Mite
- Parasitic plant
- Nematode

Experiment Station

Causal Agent

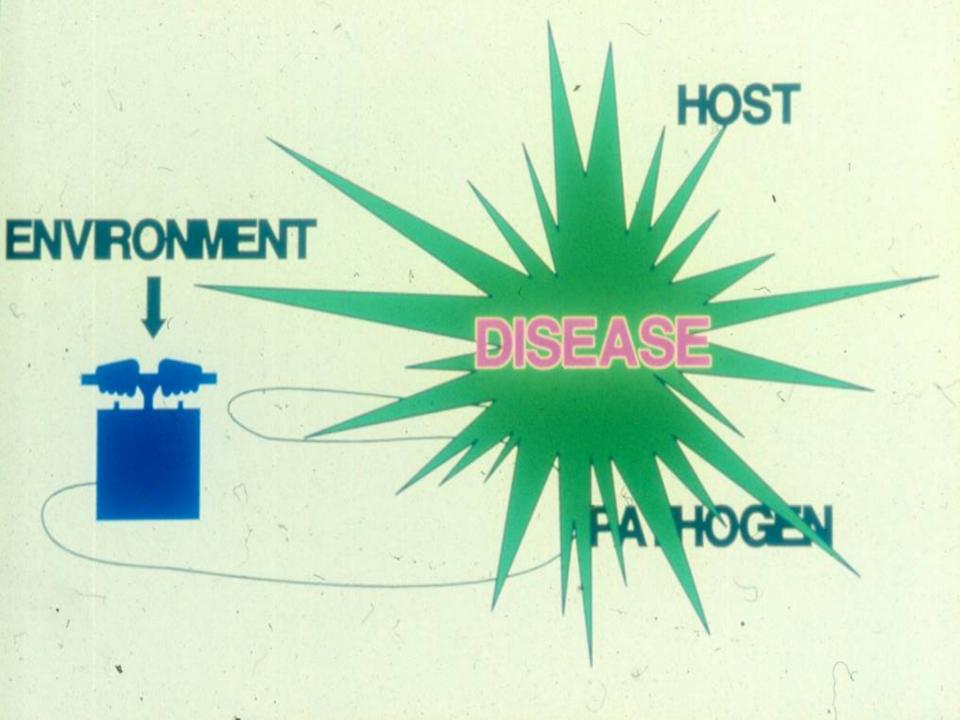
Pathogen must be present
Pathogen must be pathogenic
Pathogen must be virulent

influenced by genetics
influenced by environment

Abiotic Causal Agents - Physiogens

- Physical factors
 - ✓ Temperature
 - ✓ Moisture
- Chemical factors
 - ✓ Air pollutants
 - ✓ Pesticides
 - ✓ Fertilizers and salts
- Mechanical factors
 - ✓ Everything else

Photo: Ann Gould, NJAES


Environmental Condition

- Provides pathogen opportunities
 - influences host plant condition
 - ✓ increases pathogen virulence
- Predisposing conditions
 - ✓ site
 - ✓ weather
 - ✓ management

ENVRONMENT

PATHOGEN

Turfgrass Cultural Practices that Influence Disease Severity

- seed selection
- mowing
- fertilization
- irrigation
- aerification

Recognizing Diseases

Symptoms -

 observable condition of abnormal physiology in the plant

Signs -

 physical presence of the causal agent or clear evidence of abiotic stress factors

Symptom descriptions

leaf spot, blight, tip blight, dieback, flagging, chlorosis, necrosis, canker, wilt, root rot, witches broom, mottling, interveinal necrosis, epinasty, scorch, crown rot, defoliation, boring phyllody, leaf blotch, rust, damping off, soft rot, mummification, stem pitting, gall, shot-hole, bleeding, slime flux, blast, scald, bronzing, staghead, tumefacation, fasciation, hairy root, knots, enation, shoestring, erinos, stipple, notching, chewing, skeletonization, rugose, puckering, edema, intumescence, russet, scab, callus, leafroll, leaf curl, croziers, dwarfing, stunting, rosetting, atrophy, etiolation, spiralism, hyperelongated, bunchy, cresting, dead

New Jersey Agricultural Experiment Station

Symptoms

Caution

- ✓ Not the be all end all
- Simple starting point
- Don't jump to conclusions
- ✓ Need more information

Signs

Fruiting body, sporocarp, cliestothecia, pycnidia, mushroom, hyphae, stroma, spores, conidia, sclerotia, conidiophore, perithecia, apothecia, synnema, cyst, egg, cast skin, nematode, insect, plasmodium, sporodochia, acervulus, aecium, oospore, zoospore, cirrhus, basidiocarp, ascus, sporangium, teliospore, uredium

Signs

Caution

- ✓ Not the be all end all
- Simple starting point
- Don't jump to conclusions
- ✓ Need more information

Basic Diagnostics 101

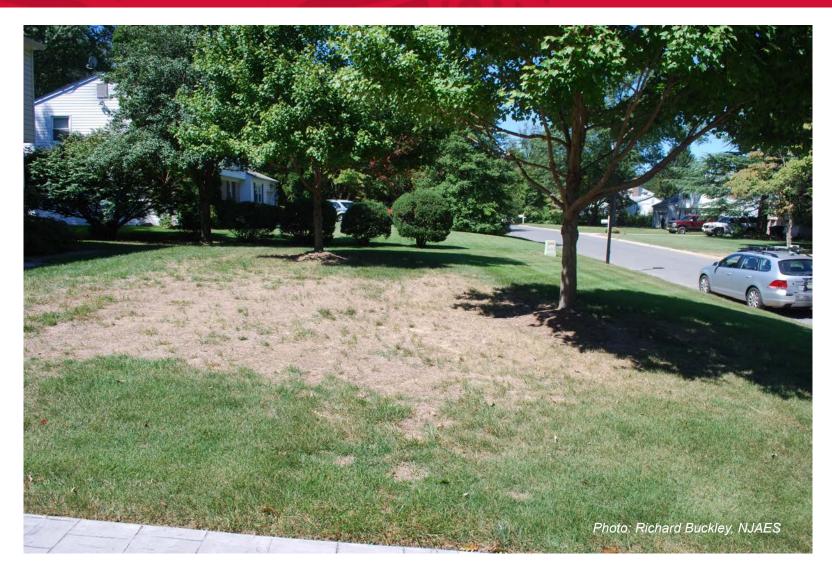
- **1. Identify the plant**
- **2.** Observe the symptoms
- **3.** Evaluate the predisposing conditions
- 4. Identify the sign
- **5.** Synthesize the information

Step 1: Identify the plant

- Understand the needs of the plant
 - What are agronomic requirements?
- Provides a list of pathogens
 - Key plant / key pest concept

New Jersey Agricultural Experiment Station

Identify the Plant



Zoysia turns brown in winter in stark contrast to the perennial ryegrass

New Jersey Agricultural Experiment Station

Identify the Plant

Perennial ryegrass suffers in the heat of the summer

RUTGERS

New Jersey Agricultural Experiment Station

Brown Patch

No disease on creepers – epidemic on colonials

New Jersey Agricultural Experiment Station

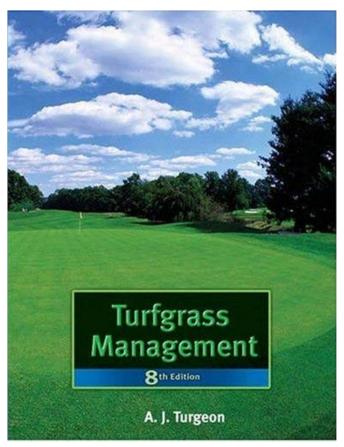
Selective thinning from rust infection on Kentucky bluegrass cultivars

Gray Leaf Spot

Genetic variation of gray leaf spot resistance in perennial ryegrass in a turf trial seeded August 17, 2001 at Adelphia, NJ.

Photo: Dr. William Meyer, NJAES

New Jersey Agricultural Experiment Station


Chinch Bug

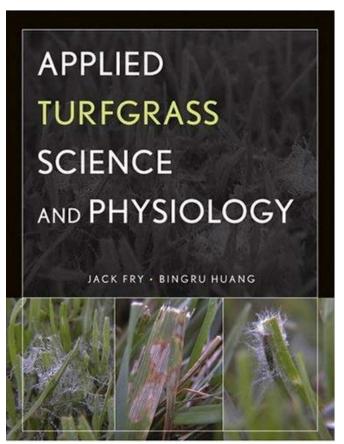

Endophyte-free cultivars badly damaged

Photo: Richard Buckley, NJAES

Know your plant materials!

- Proper identification is key
- What are the agronomic requirements for your turf?

Experiment Station

Temperature and Moisture Stress

Turfgrass	Relative Heat Resistance
Tall fescue	Very Good
Kentucky bluegrass	Good
Perennial ryegrass	Fair
Fine fescues	
Creeping bentgrass	
Annual bluegrass	Poor
Rough bluegrass	

From <u>Applied Turfgrass Science and Physiology</u>, J. Fry and B. Huang

The Diagnostic Process

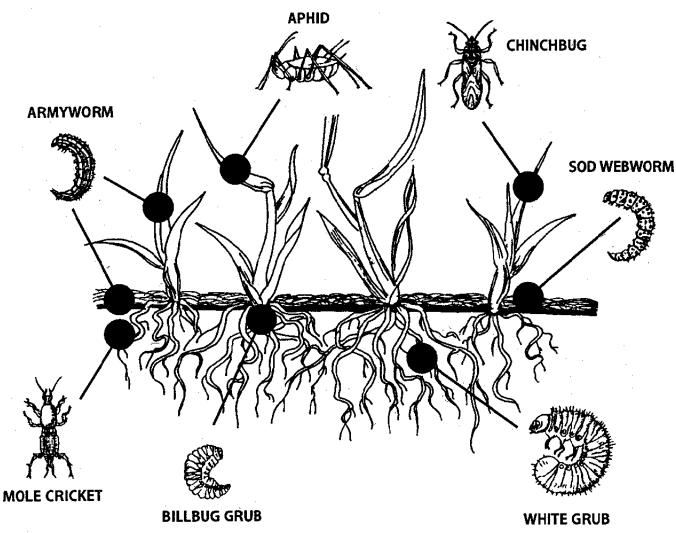
Step 2: Define the problem

- Evaluate the entire plant
 - Identify the dysfunctional plant part or system
- Evaluate the plant community
 - Each plant family has similar problems
- Look for patterns
 - Relate to environmental, site, and cultural inputs
- Look for symptom progression
 - Disease implies a life cycle
 - Sudden death or decline related to abiotic stress

The Diagnostic Process

Step 2: Observe symptoms

- Evaluate the entire plant
 - Identify the dysfunctional plant part or system
- Evaluate the plant community
 - Each plant family has similar problems
- Look for patterns
 - Relate to environmental, site, and cultural inputs
- Look for symptom progression
 - Disease implies a life cycle
 - Sudden death or decline related to abiotic stress


RUTGERS New Jersey Agricultural Experiment Station

Evaluate the Entire Plant

Target principle – turf zones

Turf zones:

Foliar/stem

Stem/thatch

Thatch/soil

RUTGERS New Jersey Agricultural Experiment Station

Septoria Leaf Blight

leaf tip blight symptom with pycnidia

Septoria macropoda pycnidia with emerging conidia

Leaf Spot and Melting Out

reddish brown rot of crown

Photo: Sabrina Tirpak, NJAES

Photo: APS Press

New Jersey Agricultural Experiment Station

Summer Patch

Photo: John Inguagiato, UCONN

New Jersey Agricultural Experiment Station

Magnaporthe poae

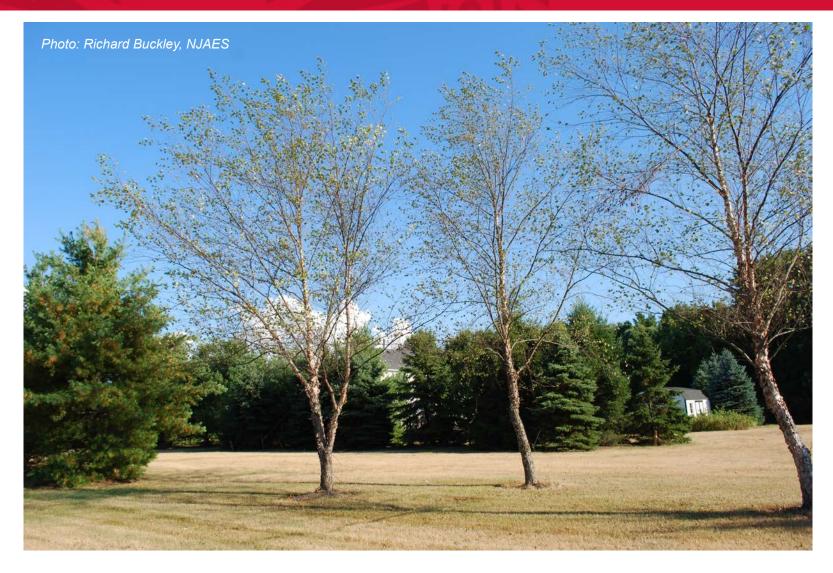
Darkly pigmented ectotrophic runner hyphae

The Diagnostic Process

Step 2: Observe symptoms

- Evaluate the entire plant
 - Identify the dysfunctional plant part or system
- Evaluate the plant community
 - Each plant family has similar problems
- Look for patterns
 - Relate to environmental, site, and cultural inputs
- Look for symptom progression
 - Disease implies a life cycle
 - Sudden death or decline related to abiotic stress

TGERS New Jersey Agricultural Experiment Station Consider the Plant Community


Similar symptoms on unrelated plants are likely due to a non-living (abiotic) cause

Similar symptoms on related plants are likely due to a living (biotic) cause

Acute Heat Stress

Large turf areas rapidly decline after a week above 100°F

RUTGERS New Jersey Agricultural Experiment Station Consider the Plant Community

All plants rapidly decline after a week above 100°F

The Diagnostic Process

Step 2: Observe symptoms

- Evaluate the entire plant
 - Identify the dysfunctional plant part or system
- Evaluate the plant community
 - Each plant family has similar problems
- Look for patterns
 - Relate to environmental, site, and cultural inputs
- Look for symptom progression
 - Disease implies a life cycle
 - Sudden death or decline related to abiotic stress

Recognize Patterns

Uniform - abiotic Random - biotic

Drop Spreader Disease

What can you say about this?

Pink Snow Mold

Random patches coalesce to kill larger irregular areas

The Diagnostic Process

Step 2: Observe symptoms

- Evaluate the entire plant
 - Identify the dysfunctional plant part or system
- Evaluate the plant community
 - Each plant family has similar problems
- Look for patterns
 - Relate to environmental, site, and cultural inputs
- Look for symptom progression
 - Disease implies a life cycle
 - Sudden death or decline related to abiotic stress

Observe symptom progression

- Progressive biotic
- Non-progressive abiotic

Gray Leaf Spot

Early leaf spot and thinning of perennial ryegrass

Gray Leaf Spot

Early symptoms appear like pythium blight or dollar spot

Gray Leaf Spot

Spots rapidly enlarge to blight larger turf areas

Photo: Dr. Peter Dernoeden, UMD

Gray Leaf Spot

Severe disease causes complete failure of turf area

Photo: Dr. Peter Dernoeden, UMD

RUTGERS

New Jersey Agricultural Experiment Station

Photo: Richard Buckley, NJAES

Glyphosate vandalism

Be nice to your crew!

Step 2: Observe symptoms

- Define the problem
 - ✓ Abiotic verses biotic cause?
 - ✓ Recognize classic symptom expression

Observe Classic Symptoms

Population

✓ spot, patch, ring, thinning, irregular area

Individual plants

✓ tip blight, leaf lesion, crown rot, root rot

Turf disease by symptom expression

Spots

- ✓ Dollar spot
- Red thread/pink patch
- Bentgrass dead spot
- ✓ Copper spot

Patches

- ✓ Brown patch
- ✓ Summer patch
- ✓ Take all patch
- Red thread/pink patch
- ✓ Snow molds

Rings

- ✓ Yellow patch
- ✓ Fairy ring
- Summer patch
- ✓ Take all patch

Thinning/irregular areas

- Gray leaf spot
- Pythium blight
- ✓ Rusts and smuts
- ✓ Anthracnose
- ✓ Powdery mildew

Dollar Spot

1 inch spots of dead creeping bentgrass

Brown Patch

RUTGERS

New Jersey Agricultural Experiment Station

Summer Patch

Classic "frog eye" in Kentucky bluegrass

thinning and yellowing from rust infection on Kentucky bluegrass

RUTGERS

New Jersey Agricultural Experiment Station

Pythium Blight

Blighted tall fescue

RUTGERS

New Jersey Agricultural Experiment Station

Sod Webworm

early webworm damage

dollar spot-like spots of chewed grass

Masked Chafer Damage

Photo: James Dall, Pine Valley Country Club

Oriental Beetle Damage

Turf disease by symptom expression

Leaf lesion

- ✓ Dollar spot
- Leaf spot and melting out
- ✓ Brown patch
- ✓ Gray leaf spot

Leaf blight

- Ascochyta leaf blight
- Septoria leaf blight
- Rusts and smuts
- ✓ Anthracnose
- Gray snow mold

Crown rot

- Leaf spot and melting out
- ✓ Anthracnose

- Root rot
 - Summer patch
 - ✓ Take all
 - Necrotic ring spot

Leaf Spot and Melting Out

small oval lesions 1/8th inch

"football"

purple border/ tan center

Ascochyta Leaf Blight

leaf tip blight symptom

RUTGERS

New Jersey Agricultural Experiment Station

Anthracnose

basal fungal stroma on crown of Poa annua

Necrotic Ring Spot

Impact of *Ophiosphaerella korrae* infection on bluegrass roots

Photos: APS Press

Annual Bluegrass Weevil

Leaf notching by adult weevils

The Diagnostic Process

Step 3: Evaluate the predisposing conditions

- Record the weather condition
 - Temperature and moisture stress are key
- Analyze the site condition
 - Look for causes or contributing factors; soil chemical status; drainage, exposure, etc.
 - Infrastructure problems clearly evident
- Evaluate the management program
 - What materials were used and how much?
 - Examine the application equipment
 - Observe other cultural practice

Step 3: Evaluate the predisposing conditions

Analyze the site

- ✓ Drainage
- Shade and exposure
- Air movement
- ✓ Contour
- Soil chemical properties
- Soil physical properties
- ✓ Other infrastructure

Damage from standing water

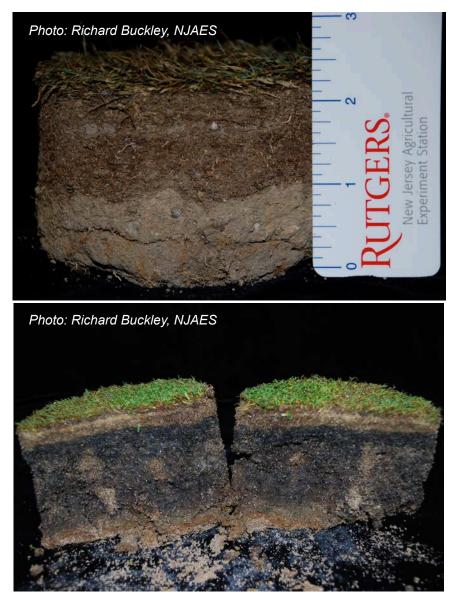
Shade

Thin turf in shade: this is a good as it gets.

Indirect Heat Stress

Site conditions (heat sink) impact dormancy

Mechanical Injury



Traffic damage to tall fescue

Root Zone Problems ✓ drainage ✓ layering ✓ anaerobiosis ✓ black layer ✓ thatch

Weed indicators of site conditions

High pH = plantain

Low pH = sorrel



Nutritional Testing

•Systematic sampling of healthy turf areas

•Estimates level of available nutrients

New Jersey Agricultural Experiment Station

Moisture Stress

Precision irrigation coverage

Step 3: Evaluate the predisposing conditions

- Record the weather condition
 - Temperature
 - Relative humidity
 - ✓ Rainfall
 - Evapotranspiration rates
 - Air quality
 - Time of year

Summer Patch

Ugly Kentucky bluegrass

New Jersey Agricultural Experiment Station

Gray Snow Mold

Shade = slow snow melt = more disease

Pythium Blight

Predictive Model

Hot weather

– optimal +85°Fday / +70°F night

- Extended leaf wetness
 - -+90%RH for >10 hours
- 160 rule

- 90%RH + 70°F = 160 for 2 days = outbreak

Brown Patch

Rhizoctonia solani Predictive Model

Warm nights

- Soil temperature >61°F
- Air temperature >59°F
- Extended leaf wetness
 - 95% RH for >10 hours
 - 0.1" rain or irrigation in preceding 36 hours

Billbug Degree Day Model

- 50°F base temp
- Start date March 1
- 155 195 DD:
 - 1rst adult activity
- 311 347 DD:
 - 30% adult activity
 - Latest effective preventive adult treatment
- 513 575 DD:
 - Larvae emerge from stems
 - Begin curative control
- 739 825 DD:
 - Damage appears

Turf disease by season

Winter Diseases

- Red thread
- ✓ Snow molds
- Yellow patch
- Spring/fall Diseases
 - ✓ Dollar spot
 - Red thread
 - ✓ Leaf spot
 - ✓ Take all patch
 - Rust and smuts
 - Septoria leaf blight
 - Ascochyta leaf blight

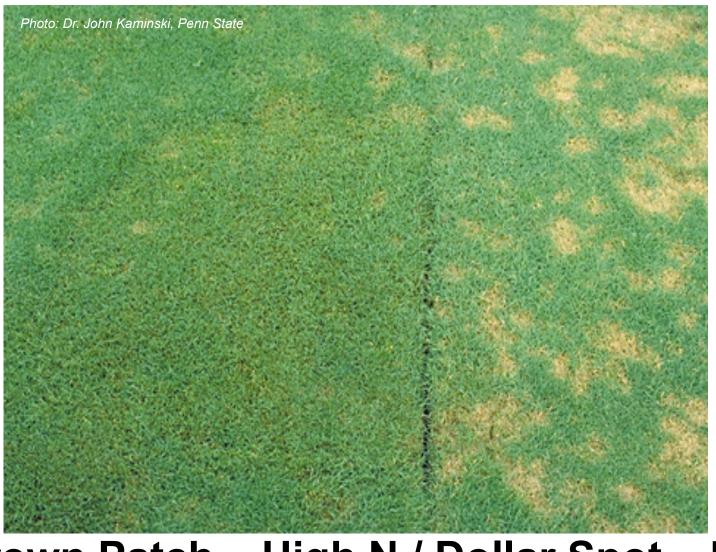
- Summer Diseases
 - ✓ Dollar spot
 - ✓ Brown patch
 - ✓ Gray leaf spot
 - Pythium blight
 - ✓ Summer patch
 - ✓ Rust
 - ✓ Fairy rings
 - ✓ Anthracnose
 - ✓ Powdery mildew
 - ✓ Slime molds

Step 3: Evaluate the predisposing conditions

- Evaluate management program
 - ✓ Pruning
 - ✓ Fertility
 - Irrigation
 - Cultivation
 - Pesticide input

New Jersey Agricultural Experiment Station

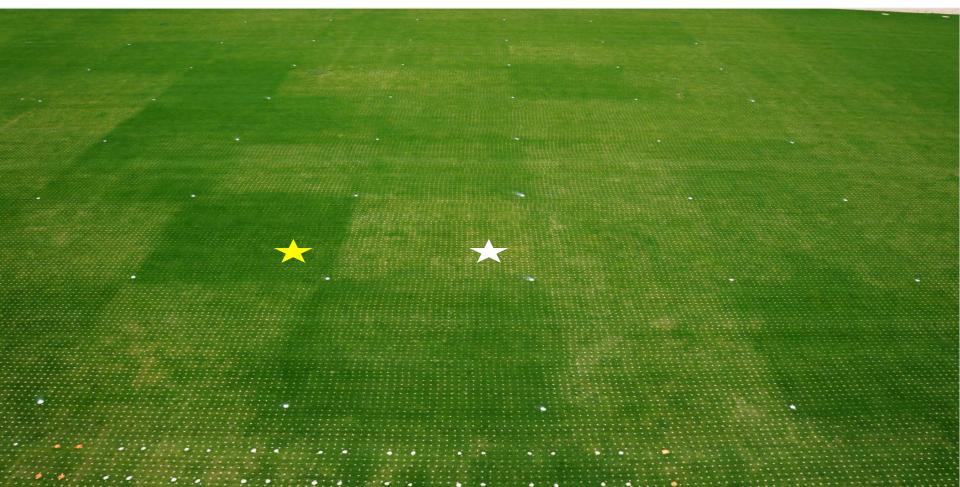
Acute Heat Stress



Injury from mowing operations – grass was mowed when too hot

New Jersey Agricultural Experiment Station

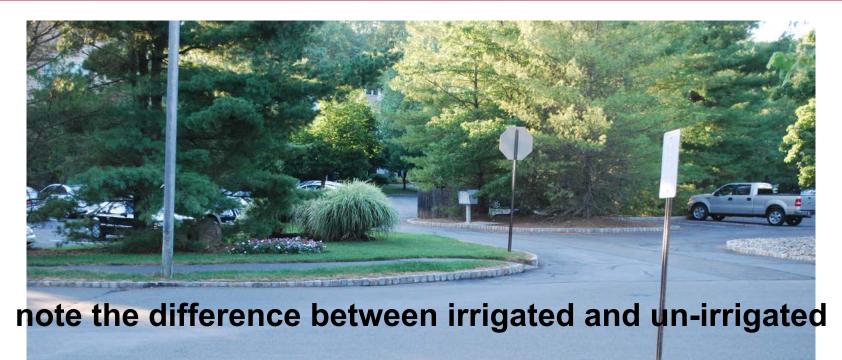
Dollar Spot



Brown Patch – High N / Dollar Spot – Low N

Soil pH Problems

Photo: Chas Schmid, NJAES



White star = Pale yellow *Poa annua* @ pH 5.3 Yellow star = Nice green *Poa annua* @ pH 6.3

New Jersey Agricultural Experiment Station

Heat stress

Rapid decline after a week above 100°F

RUTGERS

New Jersey Agricultural Experiment Station

Chemical Injury

Tank mix was phytotoxic – Why is the damage worse in taller turf?

Chemical Injury

What fertilizers, fungicides, insecticides, and herbicides were used on site?

How much and when?

How were they applied?

What else was in the tank?

Specific chemicals cause specific problems – Can the materials used cause the symptoms you see?

Photo: Richard Buckley, NJAES

Step 4: Identify the sign

- Macroscopic observation
- Microscopic observation
- Pathogen stimulation
- Pathogen isolation
- Antibody based test kits
- Special tests

Red Thread

pseudosclerotia "Red threads" form on leaf tips

Macroscope Dissecting Microscope Hand-lens

10 to- 60x Magnification

New Jersey Agricultural Experiment Station

Anthracnose

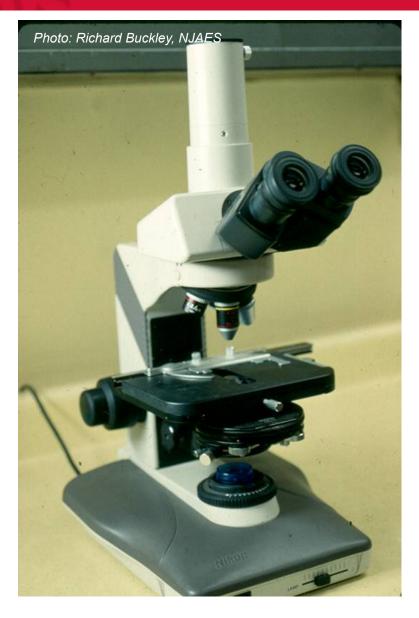
Colletotrichum is an excellent saprophyte and will exploit dead plants

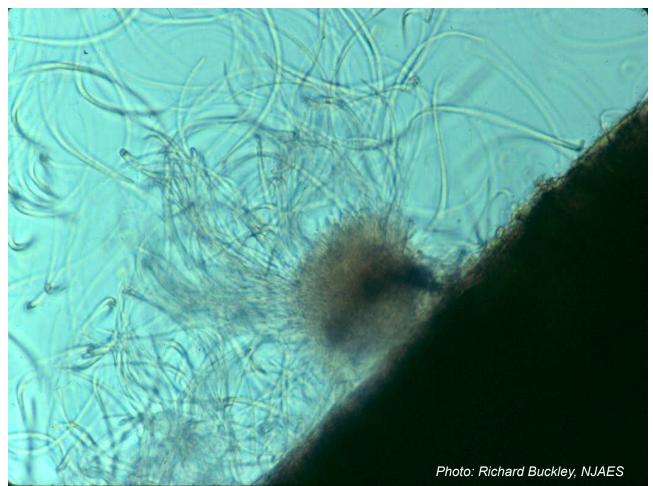
Anthracnose

Fungus hastens the senescence of stressed leaves

Annual Bluegrass Weevil and Black Turfgrass Ataenius

Dissecting scope reveals spot ID characters of insects


White Grub Raster


Compound Microscope

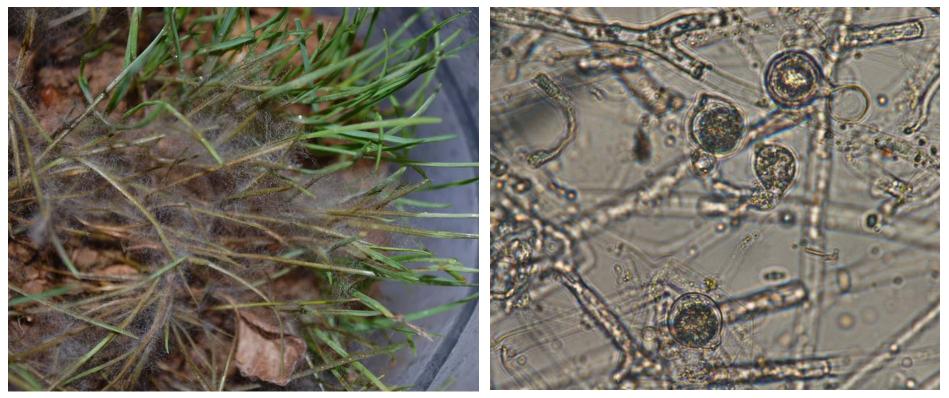
40 to- 400x Magnification

Copper Spot – Gloeocercospora sorgii

Note: sporodochia produce copious numbers of whip-like conidia

New Jersey Agricultural Experiment Station

Dollar Spot



Mass of mycelium grows overnight in moist chamber

Pythium Disease Complex

Photos: Sabrina Tirpak, NJAES

Cottony blight: active mycelium during disease outbreaks Note: fungus (brown algae) immediately reproduces!

Diagnostic Sampling

A golf course cup changer makes an effective insect sampling tool

Photos: Sabrina Tirpak, NJAES

Float the plug in a bucket of water Insects will float to the surface in a few minutes

RUTGERS

New Jersey Agricultural Experiment Station

Dollar Spot

Fungicide resistance trial shows fungal growth on amended plates

Species Detection

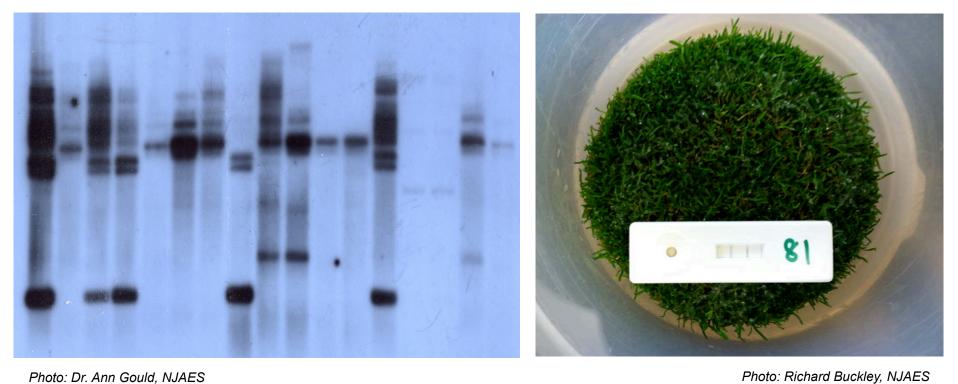
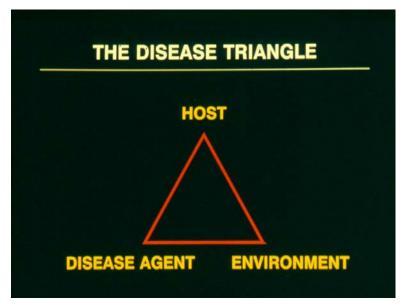


Photo: Dr. Ann Gould, NJAES



ELISA

Step 5: Synthesize the information

- Put it all together
- Evaluate the symptoms (host)
- Consider the predisposing factors (environment)
- Identify the sign (causal agent)

Questions?

www.njaes.rutgers.edu/services

OME	COMMERC	CIAL AG UPDATES	FOOD SAFETY	PLANT DIAGNOSTIC LAB	Search this website Q
GETAE	LE CROPS	FRUIT CROPS	FIELD & FORAGE CR	IOPS LANDSCAPE, ORNAMENTALS, I	NURSERY, & TURF
JUN	E 13, 2013 by <u>F</u>	ICHARD BUCKLEY			
Ne	matoda	No Antidot	ta?		
prec	pitation this	s spring have prov	ided us with exceller	ar this season. Arguably, cooler temp nt growing conditions for cool-season	turfgrass. As long as
prec	vipitation this rybody's gra	s spring have prov ss looks good, the	ided us with exceller	nt growing conditions for cool-season down (bring on some heat!). There ha	
prec	vipitation this rybody's gra	s spring have prov ss looks good, the	ided us with exceller on submissions stay	nt growing conditions for cool-season down (bring on some heat!). There ha	turfgrass. As long as
prec	vipitation this rybody's gra	s spring have prov ss looks good, the	ided us with exceller on submissions stay	nt growing conditions for cool-season down (bring on some heat!). There ha	turfgrass. As long as
prec	vipitation this rybody's gra	s spring have prov ss looks good, the	ided us with exceller on submissions stay	nt growing conditions for cool-season down (bring on some heat!). There ha	turfgrass. As long as
prec	vipitation this rybody's gra	s spring have prov ss looks good, the	ided us with exceller on submissions stay	nt growing conditions for cool-season down (bring on some heat!). There ha	turfgrass. As long as
prec	vipitation this rybody's gra	s spring have prov ss looks good, the	ided us with exceller on submissions stay	nt growing conditions for cool-season down (bring on some heat!). There ha	turfgrass. As long as

www.plant-pest-advisory.rutgers.edu