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Materials knowledge is inherently hierarchical. While high-level
descriptors such as composition and structure are valuable for con-
textualizing materials data, the data must ultimately be considered
in the context of its low-level acquisition details. Graph databases
offer an opportunity to represent hierarchical relationships among
data, organizing semantic relationships into a knowledge graph.
Herein, we establish a knowledge graph of materials experiments
whose construction encodes the complete provenance of each ma-
terial sample and its associated experimental data and metadata.
Additional relationships among materials and experiments further
encode knowledge and facilitate data exploration. We illustrate
the Materials Experiment Knowledge Graph (MEKG) using several
use cases, demonstrating the value of modern graph databases for
the enterprise of data-driven materials science.

The materials community has envisioned a new paradigm in
materials discovery wherein experiment automation and the in-
tegration of human and machine intelligence accelerate materi-
als research to enable new technologies that address a range of
societal needs.1–5 This vision is being realized in specific areas
of materials research via advancements in high throughput com-
putation, experiment automation, and artificial intelligence.6–9

Continued evolution of accelerated discovery efforts will require
methods to aggregate data and knowledge from a diverse set of
sources. Recent advancements for specific sources and domains
of materials data include integration of computational databases
via the JARVIS project10 and aggregation of perovskite solar
cell data.11 Data management projects with a broader scope in-
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clude the Materials Data Facility12,13, which enables materials
researchers to submit and annotate datasets.

Scientific knowledge and the discoveries that it provide are the
result of cyclic learning. Scientific discovery can thus be acceler-
ated by improving the quality and/or the frequency of learning
cycles. Bolstered by the availability of machine learning meth-
ods to learn from an ever-expanding dataset, the autonomous or
closed-loop approach to experiment automation focuses on in-
creasing the frequency of learning cycles. Initial examples of au-
tonomous operation of such learning cycles have been naturally
limited to optimization of performance in a low-dimensional pa-
rameters space. Bolstered by these successes, the community is
poised to broaden the purview of autonomous learning cycles,
which places new constraints on both the breadth of knowledge
that must be encoded and the speed of data exploration provided
by the in-loop data store. The inherent challenges of managing
a diverse set of data streams and establishing a performant data
store for autonomous research are compounded by the histori-
cal dearth of research in establishing materials data infrastruc-
ture.2,14,15 Herein, we describe the use of graph databases to im-
prove the management of data from materials experiments, pro-
vide scalability with respect to data diversity and quantity, and en-
able data exploration at a speed commensurate with autonomous
execution of learning cycles.

Computational materials databases can track the origin of data
entries via annotations of the code repository used to generate
the data along with specific metadata describing the computa-
tional methods. The analogue of this metadata for experimental
materials science is far more complex due to the broad range of
instruments and their settings, reagents and their purities, etc..
Perhaps most foundationally, the data resulting from materials ex-
periments is often sensitive to the order of the experimental steps.
Consequently, data management schema must encode the exper-
iment provenance to uniquely represent a piece of experimental
data. Recording experiment provenance is inherent to automated
experiment workflows that track samples and record timestamps
of experiments.16–19 Other strategies for provenance manage-
ment have been introduced for spectroscopy experiments20 and
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Fig. 1 Snapshots from an interactive data exploration spanning visualization of a) element nodes for elements Al and Pd with 10,278 sample nodes
containing these elements, b) an expanded view of select samples containing both Al and Pd, and c) graphs for 4 select samples where the relationships
to element nodes are no longer shown and each sample node has been expanded to show its processes as well as additional information for a select
process. The Element, Sample, and Process node types are labelled. Additional annotation includes the experiment provenance of 1 sample where
the 7 process nodes are linked by “Next” relationships. The user-selected chronoamperometry (CA) process of interest, of which there is an analogue
in each of the 5 sample provenance graphs, is expanded to show its data file and the “CA current” metric. The metric nodes are colored according to
the color bar in the upper-right.

The MEKG contains a total of 52,263,968 nodes and
111,430,058 edges, and herein we its utility for high through-
put electrochemistry experimentation and data exploration. We
present 4 use cases, commencing with the most general applica-
tions, i) graphical exploration of data and ii) data retrieval via
queries. We then describe specific implementation of database
queries to iii) automate design of experiments and iv) evaluate a
hypothesis from crowd-sourced data.

Human researchers possess domain expertise combined with
intuition from their aggregated prior knowledge, both of which
are unrivaled by machine learning to-date. Machine learning
thrives in its scalability to large datasets that exceed the memory
capabilities of a typical human. The MEKG can assist the human
in exploration of such large datasets through intuitive visualiza-
tions. Figure 1 shows images of the MEKG at select moments
during a graphical data exploration exercise, for which the full
video is available in the mekg- migrations repository (see Code
Availability). This interactive visualisation demo commences with
viewing all samples that contain Pd or Al (Figure 1a), focusing on
samples that contain both (Figure 1b), and then viewing their ex-
periment provenances (Figure 1c). In this last step, the sub-graph
for each sample is expanded to show the analyzed electrochemi-
cal current density, for which a color legend is assigned to demon-
strate simultaneous visualization of performance and experiment
provenance.

Another mode of exploration, applicable to equally to human
and machine users, is data exploration via queries. We developed
the following set of queries to include a synthesis-based search,
a synthesis and measurement-based search, a provenance-based
search, and a provenance-based search conditioned on analysis
results: 1) Find samples annealed at 350 ◦C; 2) Find all elec-
trochemistry measurements performed on a sample that contains
both Bi and V; 3) Find all provenances wherein a sample was
synthesized by inkjet printing and whose first 2 electrochemistry
measurements were chronopotentiometry measurements at 0.03

augmented with facile metadata management.21 Our approach to 
this challenge is to recognize the experimental events as the data 
source, resulting in the Event Sourced Architecture for Materials 
Provenance Management (ESAMP).22

To facilitate ingestion of a variety of data sources and automate 
some aspects of data validation, we implemented ESAMP with a 
Structured Query Language (SQL) database. The sequence of ex-
perimental steps is most naturally modelled as a directed graph, 
and in the present work we demonstrate a graph database that 
encodes experiment provenance along with a variety of other 
relationships. The graph approach to modelling experiment se-
quences has been primarily applied in the field of chemical syn-
thesis.23–26 The MEKG (pronounced “Mek G”) extends this con-
cept to span synthesis, processing, and characterization experi-
ments, while additionally encoding other relationships that facil-
itate knowledge representation in general, and data exploration 
in particular.

We recently published the Materials Provenance Store 
(MPS),27 a database built with the ESAMP SQL schema. In the 
present work, we ingested MPS into a neo4j database (see Code 
Availability), in which there is a node for each material “Sample”, 
for each experiment “Process”, and for “Sample-Process”, which is 
the application of a Process to a Sample. The experiment prove-
nance for a given sample is encoded through directed edges of 
type “Next” that connect Sample-Process nodes. Additional nodes 
for collections of samples, details of each process, data files pro-
duced by processes, and analysis results are linked with edges 
derived from foreign keys in the SQL-based MPS database. We 
then add additional relationships, such as edges between Element 
nodes and Sample nodes as well as between pH nodes and elec-
trochemical Process nodes. The encoded knowledge can be fur-
ther expanded via additional relationships to facilitate data explo-
ration, and relationships can extend to organizational knowledge 
such as project funding, intended research goal, and relevance to 
a publication.



and 0.1 mA, respectively, each with a duration between 7 and 15
s; and 4) Find all provenances that contain a sequence of 5 elec-
trochemistry experiments in NaOH-based electrolyte wherein the
first 4 experiments were each chronoamperometry measurements
that produced a measured current above 10−7, 10−8, 10−9, and
10−10 A, respectively, and the final electrochemistry experiment
was a cyclic voltamogram that produced a maximum measured
current above 10−6 A. The query execution times are summa-
rized in Table 1, demonstrating the excellent performance of the
graph-based query across a breadth of query types. For query
1, where the requisite data is indexed in a single SQL table, the
SQL-based query is naturally the fastest. For provenance-based
queries, the graph-based queries are several times faster than the
SQL-based queries. More drastically, the complexity of query 4
revealed a marked difference in query preparation time. While
the graph-based query was written in a matter of minutes, initial
attempts at writing the SQL query resulted in query timeout after
10 4 s. Multiple days of human effort were required to obtain a
query time within a factor of 5 of the graph-based query, which
is reflected in the relative complexity of the queries (see Support-
ing Information). Our conclusion from this exercise is not that
graph databases universally outperform the other data manage-
ment methods with respect to query execution, but rather that the
graph-based queries are sufficiently fast for real-time data explo-
ration and can be achieved with intuitive query expressions that
avoid complex query engineering.

Table 1 Comparison of execution times for representative queries of ma-
terials experiment data (MPS) when it is stored in a graph database
(MEKG), SQL database (ESAMP), and file system (MEAD). The graph
and SQL queries were performed on a t2.xlarge Ubuntu Amazon Web
Services (AWS) machine (see Supporting Information). The number of
results is shown for each query. The File System database is not appli-
cable (N/A) for query 4 because it does not contain the required infor-
mation. †Query times were in excess of 104 s prior to extension query
optimization.

Query description: Execution time (s) Num.
(type, criteria) Graph SQL File-Sys. results
sample, annealed at 350 ◦C 54 12 306 5 105

process, echem on Bi-V samples 15 36 365 9 104

provenance, process criteria 12 83 480 2 104

provenance, many criteria 108 523† N/A 2 102

As a moderately complex provenance-based query, query 3 was
chosen to characterize how query time scales with data size. To
achieve representative databases of smaller size, 3 sub-databases
were created using the earliest 1/8, 1/4, and 1/2 of the Sample-
Processes in the MPS, followed by removal of all orphaned sam-
ples, processes, analyses, etc. (see Supporting Information). Run-
ning query 3 on these databases informs us of how long the query
would have taken if it had been performed at these various points
in the lab’s sequence of experiments. The results for graph and
SQL-based version of query 3 are shown in Figure 2, which illus-
trates the excellent relative performance of the graph-based query
across all data sizes as well as a favorable power-law scaling re-
lationship for the graph-based query. Extrapolating to a database
with a billion Sample-Processes, the scaling law provides a pro-
jected query execution time of 65 s, illustrating the promise of

graph database for aggregating large swaths of materials chem-
istry data while maintaining operability for both humans and ma-
chines.

Fig. 2 Using query 3 from Table 1, the query times for the graph-
based query (MEKG) and SQL-based query (MPS) are shown using each
full database as well as 3 sub-databases with 1/8, 1/4, and 1/2 of the
Sample-Processes. The dashed line shows the scaling law from the graph-
based query determined via linear regression of the log-scaled data points,
where n is the number of Sample-Processes.

Our second use case involves the automated design of experi-
ments, where we choose a learning cycle of intermediate scope.
Sequential learning in closed-loop experimentation typically in-
volves the design of a single acquisition from a collection of avail-
able experiments, a small-scope experiment design intended to
iterate many times per day. Traditional human-executed learning
cycles have a broad scope, typically occurring over the course of
many days. Here, we consider the automated planning of experi-
ments for a single batch of high throughput experiments that can
be executed in a few hours. Electrocatalytic activity of the oxy-
gen evolution reaction (OER) varies substantial with not only the
catalyst composition and structure, but also the electrolyte, espe-
cially the electrolyte pH. While high throughput experimentation
has amassed catalyst screening data, these cover a small fraction
of all possible combinations of catalysts and electrolytes. We thus
consider a automated design of experiments for choosing which
catalysts available in the lab should be tested in a given elec-
trolyte. While machine learning models could be invoked for this
prediction, we simplify the design process to keep focus on the
role of the MEKG. We previously demonstrated a correlation of
OER activity in pH 3 and pH 7 electrolytes among metal oxide cat-
alysts,28 which helps define a simple design-of-experiments strat-
egy. We conduct 2 queries, one to establish the catalysts screened
in pH 7 but not pH 3 electrolyte, and a second to establish which
catalysts have already been synthesized but not yet electrochemi-
cally tested. Evaluating the query results provides a set of compo-
sition libraries that are candidate for pH 3 OER screening, ranked
by the expected activity based on prior pH 7 experiments. Run-
ning on the lab’s notebook server (see Supporting Information),
the initial query used criteria spanning experiment provenance,
process details, and analysis details, identifying the 69K activity
measurements of interest from the set of 2.5M electrochemistry



Fig. 3 A summary of 493 measurements of OER activity (current den-
sity at 1.56 V vs RHE) in pH 14 electrolyte is shown. Measurements
are grouped by the catalyst’s primary element and binned by the total
duration of electrochemical operation prior to the activity measurement.
For each of the 4 primary elements provided by the MEKG query, the cat-
alytic current density systematically increases with increasing duration of
electrochemical operation, revealing a universal OER catalyst condition-
ing in this electrolyte.

covery is imminent, we believe the elevation of experimental data
management to graph databases will pave the way for a new era
of artificial intelligence for materials science.

Data Availability

The MPS SQL database from which MEKG is
built and the three sub-databases are available at
https://data.caltech.edu/records/aeffy-dcr62 (doi:
10.22002/aeffy-dcr62). The MEKG neo4j database is avail-
able at https://data.caltech.edu/records/h88fq-dk449 (doi:
10.22002/h88fq-dk449).

Code Availability

The code for the query time use cases and MEKG migration
from MPS is available at https://github.com/modelyst/mekg-
migrations.

The code for the design of experiments and
hypothesis evaluation use cases is available at
https://data.caltech.edu/records/m4mpa-4mt17 (doi:
10.22002/m4mpa-4mt17)
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measurements (Sample-Processes) with a query execution time 
of 70 s. In total, the design of experiment notebook runs in un-
der 3 min, enabling human-guided, data-driven design of high 
throughput experiments.

Our final use case involves the evaluation of a  new hypothesis 
based on existing data. Trotochaud and coworkers demonstrated 
that the activity of electrocatalysts for the oxygen evolution re-
action (OER) may be enhanced due to incorporation of trace Fe 
impurities in standard electrolytes.29 Meanwhile, high through-
put experiments revealed the broad range of compositions that 
are active OER catalysts in alkaline electrolytes.28 From these 
reports we can hypothesize that catalyst conditioning, perhaps 
through Fe incorporation, improves the activity of OER catalysts 
regardless of initial catalyst composition. This would imply that 
even poor catalysts will become competent catalysts upon aging, 
which has not been evaluated in the literature. Querying the 
MEKG for experiments of the type reported in Ref.28 produces 
a dataset of catalyst activity, where we group measurements by 
the primary element of the catalyst (concentration at least 70%) 
and consider the total duration of prior electrochemistry. Figure 
3 summarizes the results, revealing that all catalysts experience 
conditioning over 10’s of seconds of electrochemical operation, 
and while transition-metal-rich catalysts exhibit the highest activ-
ity, the conditioning results in high activity for rare-earth-rich cat-
alysts that otherwise may not exhibit such activity. A similar anal-
ysis in Figure S1 shows that the same conditioning trend is ob-
served in an alternate measurement of catalytic activity (catalyst 
overpotential at 3 mA/cm2) in pH 13 electrolyte, while an oppo-
site trend is observed in pH 7 electrolyte, indicating that catalyst 
instabilities outweigh any catalyst conditioning at near-neutral 
pH and demonstrating that evalaution of the aforementioned hy-
pothesis pH-dependent. While the underlying high throughput 
experiments were not designed based on a catalyst conditioning 
hypothesis, the management of catalyst activity data in the con-
text of experiment provenance enables rapid evaluation of such 
hypotheses using the MEKG.

The MEKG extends the rich use of graph and network mod-
els in materials science. Networks have been used to model all 
known inorganic materials30 and their interrelationships estab-
lished with structural and electronic features.31 Materials knowl-
edge graphs have been established for materials properties and 
their symbolic or data-driven relationships,32 for representing in-
terrelationships among various sources of materials data,33, for 
integrating multiple data streams,34 and for encoding relation-
ships among factual knowledge, analytical models, and domain 
experts.35 Knowledge graphs for specific d omains o f materials 
science have been established for common industrial metals,36, 
nanocomposites,37 metal organic frameworks,38 and battery ma-
terials.39,40 The value proposition for expanding the purview of 
such knowledge graphs has been made,41 and the present work 
builds towards a global materials knowledge graph by establish-
ing best practices for representing experiments and their associ-
ated (meta)data in a scalable manner. With the proliferation of 
graph neural networks, causal modeling, and attention based net-
works such as transformer models in machine learning writ large, 
and the expectation that increased deployment for materials dis-
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Computational Methods10

The computational resources used to execute the use cases are as follows:11

Table S1. Resources used for each task

Task Resource Used
Extracting, transforming, and loading (ETL) the
filesystem data into the SQL database

DBgen

Hosting the SQL database PostgreSQL, AWS EC2, Docker
Migrating the SQL database to the graph database PG4J
Hosting the graph database Neo4j, AWS EC2, Docker
Querying graph database and processing data for de-
sign of experiments use cases

Python, Jupyter notebook server (local)

The extract, transform, load (ETL) process was carried out using a python library called DBgen (https://github.com/modelyst/dbgen),12

which was specifically designed to instantiate complicated, scientific data pipelines. PostgreSQL (https://www.postgresql.org/)13

was used to create the SQL database, and the Neo4j community edition (https://neo4j.com/) was used to create the graph14

database. The process of migrating the data from the SQL database to the graph database was done using a python library15

called PG4J (https://github.com/modelyst/pg4j), which is capable of migrating any PostgreSQL database to Neo4j. For query16

timing, the SQL database and the graph database were run in docker containers on AWS EC2. Specifically, the EC2 instance17

was a t2.xlarge, and the docker images were postgres:14 and neo4j:5.5 for the SQL and graph databases, respectively. Cypher18

queries and data processing for the design of experiments use cases were executed in Jupyter notebooks running on a local19

JupyterHub server (Intel i9-11900K, 64 GB RAM). The computational methods are summarized in table S1.20



Design of experiments use case21

pH 14 pH 7

Figure S1. A summary of OER activity with 4982 measurements in pH 14 electrolyte (left) and 6524 measurements in pH 7
electrolyte (right). The catalysts with at least 70% concentration of the given element (Ce, Co, Fe, or Ni) are then grouped by 5
bins of total duration of electrochemical operation prior to the activity measurement. The catalyst overpotential at 3 mA/cm2 is
shown as an inverted vertical axis so that higher activity is shown as higher position in the figure. The consistent upward trend
with increasing duration demonstrates a universal condition in pH 13 electrolyte, which is not observed in pH 7 electrolyte.
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Table S2. Candidate composition spaces proposed by automated design of experiment for measurement in pH 3 electrolyte,
sorted by 5th percentile overpotential at 10 mA/cm2 from pH 7 measurement.

Composition space Eta (V) 3 mA/cm2 Eta (V) 10 mA/cm2 plate ID sample count
Co-Fe-La-Ni 0.118 0.142 1740 1365.0
Co-Fe-La-Ni 0.118 0.142 1723 1365.0
Ce-Co-Fe-Ni 0.191 0.175 1749 30.0
Ce-Co-Fe-Ni 0.191 0.175 1751 30.0
Ce-Co-Fe-Ni 0.191 0.175 1754 30.0
Ce-Co-Fe-Ni 0.191 0.175 1755 30.0
Ce-Co-Fe-Ni 0.191 0.175 1756 30.0
Ce-Co-Fe-Ni 0.191 0.175 1762 388.0
Ce-Co-Fe-Ni 0.191 0.175 1763 388.0
Ce-Co-Fe-Ni 0.191 0.175 1774 30.0
Ce-Co-Fe-Ni 0.191 0.175 2486 388.0
Ce-Co-Fe-Ni 0.191 0.175 2487 388.0
Ce-Co-Fe-Ni 0.191 0.175 2488 388.0
Ce-Co-Fe-La-Ni 0.163 0.184 1757 1683.0
Ce-Co-La-Ni 0.435 0.483 1721 1398.0
Ce-Co-La-Ni 0.435 0.483 1720 1398.0
Ce-Co-La-Ni 0.435 0.483 2369 30.0
Ce-Co-La-Ni 0.435 0.483 2367 30.0
Ce-Co-La-Ni 0.435 0.483 1722 1398.0
Ce-Co-La-Ni 0.435 0.483 1750 30.0
Ce-Co-La-Ni 0.435 0.483 1719 1398.0
Ce-Co-La-Ni 0.435 0.483 1829 1398.0
Co-Cu-Fe-Mn-Sn-Ta 0.556 0.631 3673 3.0
Co-Cu-Fe-Mn-Sn-Ta 0.556 0.631 3859 63.0
Co-Cu-Fe-Mn-Sn-Ta 0.556 0.631 3865 63.0
Co-Cu-Fe-Mn-Sn-Ta 0.556 0.631 3866 63.0
Co-Cu-Fe-Mn-Sn-Ta 0.556 0.631 3867 63.0
Co-Cu-Fe-Mn-Sn-Ta 0.556 0.631 3870 63.0
Ce-Co-Ni-Zn 0.521 0.634 2532 1597.0
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Creation of Database Subsets22

To investigate the scaling of query times in both the SQL and graph databases, we created three smaller versions of the original23

database. The first database fragment was created by removing the last half of the rows in the sample-process table, ordered by24

their process timestamps. We then deleted all rows in other tables that were no longer linked to a sample-process. This process25

was repeated two more times to create two additional database fragments, with 3/4 and 7/8 of the rows in the sample-process26

table deleted. Each fragment was migrated to Neo4j using the tools described above, resulting in a series of MPS-style and27

MEKG-style databases that share the same information and contain 1/8, 1/4, and 1/2 of the number of Sample-Processes in the28

full MPS and MEKG databases.29
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Query 4 in Cypher and SQL30

Below is the code for Query 4 in Cypher:31

MATCH32

path=(sp1:SampleProcess)-[:NEXT]->(sp2)-[:NEXT]->(sp3)-[:NEXT]->(sp4)-[:NEXT]->(sp5),33

(a1:Analysis)<--(pda1:ProcessData)<--(sp1)-->(p1:Process)-->(pd1:ProcessDetail),34

(a2:Analysis)<--(pda2:ProcessData)<--(sp2)-->(p2:Process)-->(pd2:ProcessDetail),35

(a3:Analysis)<--(pda3:ProcessData)<--(sp3)-->(p3:Process)-->(pd3:ProcessDetail),36

(a4:Analysis)<--(pda4:ProcessData)<--(sp4)-->(p4:Process)-->(pd4:ProcessDetail),37

(a5:Analysis)<--(pda5:ProcessData)<--(sp5)-->(p5:Process)-->(pd5:ProcessDetail)38

WHERE39

pd1.technique STARTS WITH ’CA’40

AND pd2.technique STARTS WITH ’CA’41

AND pd3.technique STARTS WITH ’CA’42

AND pd4.technique STARTS WITH ’CA’43

AND pd5.technique STARTS WITH ’CV’44

AND a5.name = ’CV_FOMS_standard’45

AND apoc.convert.fromJsonMap(a1.output)[’I.A_ave’] > 1e-746

AND apoc.convert.fromJsonMap(a2.output)[’I.A_ave’] > 1e-847

AND apoc.convert.fromJsonMap(a3.output)[’I.A_ave’] > 1e-948

AND apoc.convert.fromJsonMap(a4.output)[’I.A_ave’] > 1e-1049

AND apoc.convert.fromJsonMap(a5.output)[’I.A_max’] > 1e-650

AND apoc.convert.fromJsonMap(pd1.parameters)[’electrolyte’] CONTAINS ’NaOH’51

AND apoc.convert.fromJsonMap(pd2.parameters)[’electrolyte’] CONTAINS ’NaOH’52

AND apoc.convert.fromJsonMap(pd3.parameters)[’electrolyte’] CONTAINS ’NaOH’53

AND apoc.convert.fromJsonMap(pd4.parameters)[’electrolyte’] CONTAINS ’NaOH’54

AND apoc.convert.fromJsonMap(pd5.parameters)[’electrolyte’] CONTAINS ’NaOH’55

RETURN count(path)56

Below is the code for Query 4 in SQL:57

with your_table as (58

select59

sp.sample_id,60

p1."timestamp",61

p1."ordering",62

pd1.technique,63

pd1.parameters,64

a."name",65

a."output"66

from67

sample_process sp68

join process p1 on69

sp.process_id = p1.id70

left join process_detail pd1 on71

p1.process_detail_id = pd1.id72

left join sample_process_process_data sppd on73

sppd.sample_process_id = sp.id74

left join process_data pd on75

sppd.process_data_id = pd.id76

left join process_data_analysis pda on77

pda.process_data_id = pd.id78

left join analysis a on79

pda.analysis_id = a.id80

where81

sp.sample_id in (82
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select83

sp3.sample_id84

from85

sample_process sp386

join process p3 on87

sp3.process_id = p3.id88

join process_detail pd3 on89

p3.process_detail_id = pd3.id90

where91

pd3.technique like ’CV%’92

)93

and sp.sample_id in (94

select95

sp2.sample_id96

from97

sample_process sp298

join process p2 on99

sp2.process_id = p2.id100

join process_detail pd2 on101

p2.process_detail_id = pd2.id102

where103

pd2.technique like ’CA%’104

group by105

sp2.sample_id106

having107

count(*) >= 4)108

),109

filtered_labels as (110

select111

sample_id112

from113

your_table114

group by115

sample_id116

having117

COUNT(*) >= 5118

),119

sequenced_data as (120

select121

t1.sample_id,122

t1.Timestamp,123

t1.ordering,124

t1.technique,125

t1.parameters,126

t1."name",127

t1."output",128

row_number() over (partition by t1.sample_id129

order by130

t1.Timestamp,131

t1.ordering) as RowNum132

from133

your_table t1134

inner join135

filtered_labels fl on136

t1.sample_id = fl.sample_id137
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),138

json_agg_data as (139

select140

sd1.sample_id,141

json_agg(sd1.technique) over (partition by sd1.sample_id142

order by143

sd1.RowNum rows between current row and 4 following) as technique_seq,144

json_agg(sd1.parameters) over (partition by sd1.sample_id145

order by146

sd1.RowNum rows between current row and 4 following) as parameters_seq,147

json_agg(sd1.name) over (partition by sd1.sample_id148

order by149

sd1.RowNum rows between current row and 4 following) as name_seq,150

json_agg(sd1.output) over (partition by sd1.sample_id151

order by152

sd1.RowNum rows between current row and 4 following) as output_seq,153

COUNT(*) over (partition by sd1.sample_id154

order by155

sd1.RowNum rows between current row and 4 following) as technique_seq_count156

from157

sequenced_data sd1158

)159

select160

count(*)161

-- sample_id162

-- technique_seq,163

-- parameters_seq,164

-- name_seq,165

-- output_seq166

from167

json_agg_data168

where169

technique_seq_count = 5170

and technique_seq->>0 like ’CA%’171

and technique_seq->>1 like ’CA%’172

and technique_seq->>2 like ’CA%’173

and technique_seq->>3 like ’CA%’174

and technique_seq->>4 like ’CV%’175

and name_seq->>4 = ’CV_FOMS_standard’176

and (output_seq->0->>’I.A_ave’)::float > 1e-7177

and (output_seq->1->>’I.A_ave’)::float > 1e-8178

and (output_seq->2->>’I.A_ave’)::float > 1e-9179

and (output_seq->3->>’I.A_ave’)::float > 1e-10180

and (output_seq->4->>’I.A_max’)::float > 1e-6181

and parameters_seq->0->>’electrolyte’ like ’%NaOH%’182

and parameters_seq->1->>’electrolyte’ like ’%NaOH%’183

and parameters_seq->2->>’electrolyte’ like ’%NaOH%’184

and parameters_seq->3->>’electrolyte’ like ’%NaOH%’185

and parameters_seq->4->>’electrolyte’ like ’%NaOH%’186

187
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