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Abstract 

Artificial neural networks (ANNs) are powerful tools for solving a wide range of tasks in 

fundamental and applied science. However, training and building reliable ANN models 

requires a lot of data which so far hinders their wider application in kinetic modelling where 

typically only small (experimental) datasets are available. In the present work we propose a 

method to  design ANN models for kinetic modelling that can be trained even with small data 

sets as are typically available. The key idea is to constrain the architecture of the ANN models 

by integrating kinetic and thermodynamic knowledge leading to what we call Kinetics-

Constrained Neural Ordinary Differential Equations (KCNODE). The feasibility and 

effectiveness of the approach is first demonstrated in a numerical experiment using the 

catalytic hydrogenation of CO2 to methane as example. Next, we demonstrate the approach 

for real experimental data of a more complex reaction, the hydrogenation of CO2 to higher 

hydrocarbons (CO2-FT). Finally, the ANN trained for CO2-FT is used to derive an improved 

mechanistic model for the reverse water gas shift reaction which is a key reaction in the CO2-

FT reaction network. This last step exemplifies how the opportunity to obtain reliable ANN 

models from small data opens new ways to approach kinetic model development. 

Keywords: kinetic modelling, machine learning, artificial neural networks, CO2 

hydrogenation, Kinetics-constrained Neural Ordinary Differential Equations. 
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Introduction 

The use of ordinary differential equations (ODEs) for describing dynamic systems 

plays a key role in different fields of applied science and engineering. One of these fields is 

kinetic modelling of heterogeneous catalytic reactions. Another is the development of reliable 

models for describing catalytic process for scale-up or optimizing industrial plants in 

chemical engineering [1]. Traditionally, the development of such models builds upon a 

microkinetic analysis that requires a deep knowledge about the reaction mechanism. 

Postulating rate-determining steps and equilibrium stages or a most abundant reaction 

intermediate are general approaches to simplify the model resulting in Langmuir-

Hinshelwood-Hougen-Watson (LHHW) expressions [2]. Moreover, the parameter estimation 

from experimental data is still an untrivial calculation problem [3]. 

In recent years, there has been a rapid rise in the use of machine learning (ML) and 

data science methods for solving many complex tasks in the different fields of science, 

industry, and business. These methods were successfully applied for smart discovery of high-

performance and functional materials [4], revealing the latent knowledge from the material 

science literature [5], modelling complex physicochemical processes [6, 7] etc. [8-12]. The 

modern approaches of ML are also applied for accelerating the development of kinetic models 

[13, 14].  

Artificial neural networks (ANNs) as universal approximators [15] are a frequently 

applied machine learning instrument. Their popularity is related to their flexibility to be used 

in various types of ANN architectures [16-20]. In the field of dynamic system modelling, 

Maziar Raissi et al. [7] introduced physics informed neural networks (PINN) as a kind of 

neural networks for solving forward and inverse problems involving nonlinear partial 

differential equations. They embed the knowledge about physical laws into the loss function 

and, thus, the trained ANN models satisfy the experimental data as well as the governing 

equations. Weiqi Ji et al. successfully applied PINN for solving stiff chemical problem [21]. 

Gabriel S.Gusmão et al. [22] generalized PINN for any chemical kinetics that was called 

kinetics-informed neural networks. Despite of the effectivity of the suggested approach, it still 

requires knowledge about the reaction mechanism and reaction rate expressions.  

In 2018, Ricky T. Q. Chen et al. introduced a new family of deep neural network 

models that are Neural ODEs [23]. They suggested parametrizing the derivative of the hidden 

state using a neural network: 



3 

1. 
𝑑𝑥

𝑑𝑡
= 𝐴𝑁𝑁(𝑥, 𝑡, 𝜃) 

Neural ODE is an attractive approach for data-driven modelling of dynamic systems 

including kinetic models [24, 25]. In fact, ANN can be used for approximating reaction rate 

expressions that are usually unknown. Weiqi Ji and Sili Deng [26] suggested a new type of 

neural ODE – chemical reaction neural network (CRNN) for autonomous identifying reaction 

pathways. The architecture of CRNN is based on the law of mass action and the Arrhenius 

law. Despite of successfully demonstration for numerical examples [26], in the case of 

complex dynamic system of biomass pyrolysis [27], it is difficult to interpret the developed 

CRNN model. This is caused by the fact that many chemical processes including 

heterogeneous and catalytic reactions cannot be described by simple power-law-like 

equations. 

In summary, ANNs are powerful instrument of ML for developing quantitative 

regression models and can be applied for solving a lot of tasks. The main advantage is that 

only data are required for building models, and, thus, it obviates the need to suggest (guess) 

reaction mechanism, rate-determining stage etc. in the case of kinetic modelling. However, 

one of the known disadvantages in applying neural networks is the requirement of a lot of 

data for training [28]. This so far limits the usage of ANNs in the case of small data sets 

which are typically available for experiment-driven development of kinetic models. 

Therefore, a methodology to obtain reliable ANN-based models from small data sets would 

be extremely valuable because it could significantly expand  the scope of applying ANN 

models. In the present work we investigated new approaches to apply neural ODEs for kinetic 

modelling of CO2 hydrogenation to hydrocarbons using small data sets. To solve the small 

data problem and to improve the predicting ability of the models, the architecture of ANN 

was constrained by integrating the kinetic and thermodynamic knowledge. The efficiency of 

these new ANN models was validated by carrying out numerical experiments using the 

LHHW-type model of CO2 hydrogenation to methane from literature [2]. The suggested 

approach was finally applied to a more challenging problem: the kinetics of CO2 

hydrogenation into hydrocarbons was modelled based on real measured experimental data. 
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Experimental part 

Numerical data generation 

To develop and validate the ANN models, the data from a typical fixed bed reactor are 

needed. Thus, we performed the steady-state ideal plug-flow reactor simulation using the 

kinetic model developed by Lucas Brübach et al. [2]. This model is based on two reactions: 

2. 𝐶𝑂2 + 𝐻2 = 𝐶𝑂 + 𝐻2𝑂 (RWGS) 

3. 𝐶𝑂 + 2𝐻2 = (𝐶𝐻2) + 𝐻2𝑂 (CO-FT) 

They used C4-species as a pseudo product for representing the hydrocarbons as product of 

CO-FT reaction. In the present work, to simplify the calculation, we considered only methane 

as a product of CO-FT reaction. Based on elementary reaction steps, they suggested the 

following empirical LHHW expressions for describing the rates 𝑟𝑖 of the RWGS and CO-FT 

reactions: 

4. 𝑟𝑅𝑊𝐺𝑆 =

𝑘𝑅𝑊𝐺𝑆(𝑝𝐶𝑂2 √𝑝𝐻2
  −  

𝑝𝐶𝑂 𝑝𝐻2𝑂

𝐾𝑒𝑞 √𝑝𝐻2

)

(1  +  𝑎𝑅𝑊𝐺𝑆

𝑝𝐻2𝑂

𝑝𝐻2
)

2  

5. 𝑟𝐹𝑇 =
𝑘𝐹𝑇 𝑝𝐶𝑂𝑝𝐻2

(1  +  𝑎𝐹𝑇

𝑝𝐻2𝑂

𝑝𝐻2
  +  𝑏𝐹𝑇𝑝𝐶𝑂)

2 

The temperature dependency of the rate constants is given by re-parameterized 

Arrhenius equation: 

6. 𝑘𝑖 = 𝑘𝑖,𝑟𝑒𝑓 exp (−
𝐸𝑎 ,𝑖

𝑅
(1

𝑇
−

1

𝑇𝑟𝑒𝑓

)) 

For calculation of the equilibrium constant 𝐾𝑒 of the RWGS reaction at different 

temperature the following expression was used: 

7. log 𝐾𝑒 = 3.933 −
4076

𝑇 /𝐾−39.64
   

The values of all parameters used in the simulations can be found in the Table S1. As 

reactor model, we selected the steady-state ideal plug-flow reactor model. It was assumed that 

temperature and total pressure are constant along the reactor length; axial dispersion and wall 
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effect are negligible; internal and external mass transfer limitations are also negligible. Based 

on this, the data was generated by the solving the following system of ordinary differential 

equations:  

8. 
𝑑𝐹𝑗

𝑑𝑉
= 𝜌𝑐 ∑ 𝜈𝑖,𝑗𝑖 𝑟𝑖 

For solving this stiff system of ordinary differential equations, the numerical Adams/BDF 

method with automatic stiffness detection and switching was used [29]. The developed reactor 

model was used for generating training and test data sets. A small training data set mimicking 

a typical set of catalytic experiments that could be used for creating the kinetic models in 

conventional way was used for training ANN models. The reaction conditions used for 

generating the training data set are presented in the Table 1. The catalyst volume 𝑉 was varied 

in a range from 10-4 to 10-1 cm-3. For each reaction conditions, the 7 points of 𝑉 were 

uniformly spaced in a logarithmic scale across the chosen range. In the case of training the 

baseline model (see the baseline model), the data with zero molar flows of CO2 + CO or zero 

flow of H2 were additionally added. In these cases, the molar flows are constant along the 

reactor length and equal to the molar flows at the reactor inlet. 

Table 1. Reaction conditions for generating the training data set.  

# Temperature, °C Pressure, bar 
Molar flow, mol·s-1 

CO2 CO H2 N2 

1 250 10 1.0 0 3.0 1.0 
2 300 10 1.0 0 3.0 1.0 

3 350 10 1.0 0 3.0 1.0 
4 300 15 1.0 0 3.0 1.0 
5 300 20 1.0 0 3.0 1.0 

6 300 10 1.0 0 2.0 1.0 
7 300 10 1.0 0 6.0 1.0 

8 300 10 0.5 0.5 3.0 1.0 

To make the modelling task more realistic, we added Gauss noise to the data to imitate an 

experimental error. Four training sets with 0.0, 2.5%, 5.0%, and 10% noise were generated. 

To validate the performance of the obtained neural ODE models, another larger test data set 

was generated by a full factorial design [30] using the following reaction conditions: 

• Temperature: 255, 285, 315, 345 °C. 

• Pressure: 12, 14, 16, 18 bar. 

• CO2 molar flow: 0.0, 0.5, 1.2 mol·s-1. 

• H2 molar flow: 2.5, 4.0, 5.5 mol·s-1. 
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• CO molar flow: 0.0, 0.3 mol·s-1. 

• CH4 molar flow: 0.0, 0.3 mol·s-1. 

• H2O molar flow: 0.0, 0.3 mol·s-1. 

The molar flow of N2 was set to 1.0 mol·s-1. Thus, the total amount of different 

reaction conditions was 1152 (compared to 8 in the training data set Table 1). The catalyst 

volume 𝑉 was varied in a range from 10-4 to 1 cm-3. For each reaction conditions, the 20 

points of 𝑉 were uniformly spaced in a logarithmic scale across the chosen range. 

Baseline neural ODE 

As a basic model, the following neural ODE model was used in the numerical 

experiment: 

9. 
𝑑𝐹

𝑑𝑉
= 𝐴𝑁𝑁(𝑝̅, 𝑇, 𝜃) 

where 𝐹 are molar flows of compounds, the reaction temperature 𝑇, and the vector of the 

partial pressure 𝑝̅. In such notation the inputs of neural network have partial pressure of 

components, and, thus, the partial pressure was calculated by the following formula: 

10. 𝑝𝑖 =
𝐹𝑖 ∙𝑃Σ

∑𝐹𝑗
 

where 𝐹𝑖 are molar flows of i-compound; 𝑃Σ is the total pressure. It is worth mentioning that 

there are parameters like 𝑇 or 𝑃Σ which are independent of 𝑉 and should be constant along the 

reactor length. Parameterized neural ODE (PNODE) [31] suggested by Kookjin Lee and Eric 

J.Parish is an extension of neural ODE and was developed for cases when such independent 

parameters have to be taken into account. The main idea is to use additional encoder-decoder 

neural layers. Despite of authors demonstrated the effectiveness of PNODEs on benchmark 

problems from computational physics, the suggested approach still has a disadvantage. It is 

related to the complication of the architecture of neural ODEs and an increase in number of 

learnable parameters that require more data for model training. In our work we suggest a 

simpler approach for the problem of independent parameters that does not require to use 

additional ANN learnable variables. Our approach is to return zeros values as outputs of ANN 

for such parameters. This makes them to be constant and independent of 𝑉. 
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The neural network consists of 3 layers with 8, 8, and 5 nodes per layer, and with 

activation functions: hyperbolic tangent, exponential and linear, respectively. The first layer 

consists of 6 inputs: partial pressure of compounds (for CO2, CO, H2, H2O, CH4) and 

temperature. The output of the linear layer is expanded by concatenating with 3D zeros vector 

(for temperature, total pressure and N2 molar flow). Before training, the value of total pressure 

and temperature were scaled by dividing by the maximum values. 

Kinetics-constrained neural ODE 

CO2 hydrogenation to methane 

In this part, the approach for kinetic modelling of catalytic reactions using neural ODE 

models constrained with the information about kinetic and thermodynamic knowledge is 

described. As an example, the architecture of an ANN for kinetic modeling of CO2 

hydrogenation into methane is described. Firstly, instead of using ANN for approximating 

molar flows of each component as in the baseline model, we suggest using ANN for 

approximating the reaction rates which are the feature of most interest to reaction engineers 

but also the basis for a detailed, mechanism-based kinetic modelling. In the case of the CO2 

hydrogenation to methane, the considered reactions are RWGS and CO-FT. It is worth 

mentioning that reactions pathways can be obtained by analyzing selectivity-conversion 

dependencies for any reaction networks [32-35]. So, the rates of formation/consumption of 

each compound can be calculated by using the stoichiometric matrix 𝑀𝜈 of the corresponding 

reactions: 

11. 𝑟�̅� = 𝑀𝜈𝑟�̅� , 

where 𝑟�̅�  and 𝑟�̅�  are the vectors of the compound and reaction rates. Secondly, the ANN model 

of the rate expression is split into two parts. The first part is a feedforward neural network 

where inputs are partial pressure of components, and the second one is the Arrhenius-type 

expression for temperature dependence of rates. The second part represents a neural network 

layer with exponential activation function that is applied in the CRNN [26]. ‘Arrhenius’ 

temperature 𝑇𝑚 as input for this layer was used and is defined as: 

12. 𝑇𝑚 =
1

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓

), 

where 𝑅 – the gas constant, 𝑇 – temperature,  𝑇𝑟𝑒𝑓  = 573.15 K. Thus, weights and biases for 

this layer represent the activation energies and the logarithm of rate constants, respectively. 

The next step is to integrate the information about thermodynamic of the RWGS reaction. At 
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equilibrium of partial pressure of components, the rate of RWGS reaction must be equal to 0 

and if the reaction product Π is more than 𝐾𝑒𝑞  the rate must be negative. Finally, the trivial 

information that the rates must be equal to 0 at the absence of reagents is added  (the rates 

should be zero if the partial pressure of involved reagents is zero). As summary, the rates can 

be presented as: 

13. 𝑟𝑅𝑊𝐺𝑆 = 𝑘𝑅𝑊𝐺𝑆
𝑟𝑒𝑓 exp (−

𝐸𝑎
𝑅𝑊𝐺𝑆

𝑅
(1

𝑇
−

1

𝑇𝑟𝑒𝑓

)) 𝑝𝐶𝑂2
𝑝𝐻2

(1 −
Π

𝐾𝑒𝑞

) 𝐴𝑁𝑁(𝑝̅,𝜃) 

14. 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑟𝑒𝑓

exp (−
𝐸𝑎

𝐹𝑇

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓

)) 𝑝𝐶𝑂𝑝𝐻2
𝐴𝑁𝑁(𝑝̅, 𝜃) 

where rate constants are defined by expression (3); Π – the reaction product of the RWGS that 

can be defined as: 

15. Π =
 𝑝𝐶𝑂𝑝 𝐻2𝑂

 𝑝𝐶𝑂2
𝑝𝐻2

 

We refer to such type of neural ODE a ‘kinetics-constrained neural ODE’ (KCNODE). The 

general idea and the architecture of KCNODE for kinetic modelling of CO2 hydrogenation to 

methane are presented in the Figure 1. 

 

Figure 1. Topology of kinetics-constrained neural ordinary differential equation. tanh, 

sigmoid and exp are neural layers with hyperbolic tangent, sigmoid and exponential activation 

functions, respectively; product is a layer which returns the multiplication of all the inputs; 

the sign ‘×’ expresses matrix multiplication and the sign ‘+’ is the concatenation. Fi – molar 
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flow of i-compound; PΣ – the total pressure; Pi – the partial pressure of i-compound; Π – the 

reaction product; K – the equilibrium constant. 

 It is important to emphasize that for any values of neural network parameters the following 

constraints are met: 

• Material balance. 

• The rate of RWGS reaction is 0 at equilibrium. At Π < 𝐾𝑒𝑞   the rate > 0. 

• Arrhenius dependency of the rates on temperature. 

• The rates are equal to 0 in absence of reagents. 

It is worth also noting the key difference between our approach and PINN models. In PINN, 

the knowledge about physical laws is embedded at training of ANN by using corresponding 

loss functions. In our case, the architecture of ANN is already intrinsically constrained by 

kinetic and thermodynamic knowledge. The hidden layer of the neural network with a 

hyperbolic tangent activation function consists of 8 nodes. To investigate the performance of 

KCNODE models, an analogue model with 20 nodes in the hidden layer was also constructed. 

Before training the values of pressure was scaled by dividing by the maximum total pressure. 

CO2 hydrogenation to hydrocarbons 

The suggested approach was applied for kinetic modeling of the process of CO2 

hydrogenation into hydrocarbons using real experimental data. It is generally accepted [36, 

37] that the process of CO2-FT synthesis proceeds in two stages: the RWGS reaction followed 

by CO hydrogenation via FT mechanism. Besides, an additional pathway of direct CO2 

hydrogenation to methane, also known as the Sabatier reaction, occurs over Fe-based catalysts 

that was suggested in the works [32, 35, 38, 39]. Thus, the following reaction set was used for 

building the model: 

16. 𝐶𝑂2 + 𝐻2 ⇄ 𝐶𝑂 + 𝐻2𝑂 

17. 𝐶𝑂 + (2 +
1

𝑛
) 𝐻2 →

1

𝑛
𝐶𝑛𝐻2𝑛+2 + 𝐻2𝑂 

18. 𝐶𝑂 + 2𝐻2 →
1

𝑛
𝐶𝑛𝐻2𝑛 + 𝐻2𝑂 

19. 𝐶𝑂 + 2𝐻2 →
1

𝑛
𝐶𝑛𝐻2𝑛+1 𝑂𝐻 + (1 −

1

𝑛
) 𝐻2𝑂 

20. 𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂 

The reaction of CO hydrogenation via FT mechanism has a kinetic limitation. The mass 

fraction 𝑊𝑛 (𝑛 – carbon number) of hydrocarbons (or alcohols) in the products can be 

described by the Anderson-Schulz-Flory (ASF) distribution [40-42]: 
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21. 𝑊𝑛 = 𝑛(1 − 𝛼)2𝛼𝑛−1,  

where 𝑛 is carbon number, 𝛼 is the chain growth probability that is defined as ratio between 

the rate of the chain prolongation per the sum of the chain prolongation and termination rates 

[43]. The equation allows describing the formation of each product observed using only a few 

parameters. Thus, assuming the validity of the ASF the formation rate of compound with 

carbon number 𝑛 can be defined as: 

22. 𝑟𝑛 = 𝑛𝛼𝑛−1𝑟1  

The expression (18) was also used to describe the formation of olefins and alcohols because 

they correspond to ASF except for CH3OH and C2H4 (see Figure 3, D and E). To consider 

these deviations from ASF, additional dimensionless empirical coefficients (𝛿𝑒𝑛 and 𝛿𝑂𝐻) 

were used and the rates of methanol and ethylene formation are defined as: 

23. 𝑟𝐶2𝐻4
= 2 · 𝛿𝑒𝑛 · 𝛼𝑒𝑛 · 𝑟1

𝑒𝑛  

24. 𝑟𝐶𝐻3 𝑂𝐻 = 𝛿𝑂𝐻 · 𝑟1
𝑂𝐻  

Here, it is worth mentioning that 𝑟1
𝑒𝑛  means the rate of formation of ‘hypothetical’ alkene 

with carbon number 1 which are not considered as a product of CO2 hydrogenation but used 

only to calculate the rates of alkene formation. In the case of paraffins, a non-linear 

dependence of hydrocarbon distribution in the corresponding ASF coordinates is observed 

(see Figure 3, C). Such non-linear behavior can be related to the presence of the two different 

types of active sites taking part in processes of the chain growth that was discussed in the 

work.[44] Thus, the rate of paraffin formation with carbon number n can be described as: 

25. 𝑟𝑛 = 𝜇 · 𝑛 · 𝛼𝑎𝑛1

𝑛−1 · 𝑟1
𝑎𝑛 + (1 − 𝜇) · 𝑛 · 𝛼𝑎𝑛2

𝑛−1 · 𝑟1
𝑎𝑛  

where 𝜇 and 1 − 𝜇 are the fraction of paraffin products having molecular weight distribution 

parameters 𝛼𝑎𝑛1
 and 𝛼𝑎𝑛2

 respectively. It is worth noting that the suggested parameters like 

the chain growth probability 𝛼𝑎𝑛1
, 𝛼𝑎𝑛2

, 𝛼𝑒𝑛, and 𝛼𝑂𝐻; empirical coefficients 𝛿𝑒𝑛 and 𝛿𝑂𝐻; 

fraction 𝜇 also depend on reaction conditions (partial pressure of compounds, temperature), 

and that the ANN model was used for predicting the values of these parameters.  

The inputs for the hidden layer of ANN in the case of modeling of the CO2-FT process 

are partial pressure of compounds (CO2, CO, H2, H2O), temperature, and time on stream. 

Time on stream was used because an activation-deactivation process was observed (see 

Figure S9) during the measurement of the catalyst activity in CO2 hydrogenation. The ANN 

was used for predicting the reaction rates (11) – (15) as well as the suggested parameters 



11 

(𝛼𝑎𝑛1
, 𝛼𝑎𝑛2

, 𝛼𝑒𝑛, 𝛼𝑂𝐻, 𝛿𝑒𝑛, 𝛿𝑂𝐻, and 𝜇). Thus, the number of outputs for each a node of the 

hidden layer was 12. For the hidden layer of the ANN with a hyperbolic tangent activation 

function 8 nodes were used. The model takes into consideration the formation of alkanes and 

alkenes (up to 15 carbon number), and alcohols (up to 7). Before training the value of total 

pressure was scaled by dividing by the maximum total pressure and time-on-stream was 

scaled by dividing by the maximum value of time-on-stream in the experimental data set. 

Training neural network models 

The Runge-Kutta 3/8 Method (RK4) and Runge-Kutta of order 5 of Dormand-Prince-

Shampine method (DOPRI5) method were used for the integration of neural ODE [45]. 

Training neural network models was carried out by minimization of the loss functions using 

ADAM [46] optimizer with a learning rate of 0.005. The training ended when the loss 

function flatlined. In the case of the numerical experiment, the following loss function was 

used: 

26. 𝑙𝑜𝑠𝑠 =  𝑀𝑆𝐸(𝐹𝑒𝑥𝑝 , 𝐹𝑝𝑟𝑒𝑑) 

In the case of training KCNODE using experimental data the following loss function was 

used: 

27. 𝑙𝑜𝑠𝑠 =  5 ∙ 𝑀𝑆𝐸𝑖=(𝐶𝑂2 ,𝐶𝑂,𝐶𝐻4 ) (
𝐹

𝑖
𝑒𝑥𝑝

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ,

𝐹
𝑖
𝑝𝑟𝑒𝑑

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ) +

+
1

3
(𝑀𝑆𝐸𝑖=𝑎𝑙𝑘𝑎𝑛𝑒 (

𝐹
𝑖
𝑒𝑥𝑝

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ,

𝐹
𝑖
𝑝𝑟𝑒𝑑

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ) + 𝑀𝑆𝐸𝑖=𝑎𝑙𝑘𝑒𝑛𝑒 (

𝐹
𝑖
𝑒𝑥𝑝

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ,

𝐹
𝑖
𝑝𝑟𝑒𝑑

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ) +

+ 𝑀𝑆𝐸𝑖=𝑎𝑙𝑐𝑜ℎ𝑜𝑙 (
𝐹

𝑖
𝑒𝑥𝑝

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 ,

𝐹
𝑖
𝑝𝑟𝑒𝑑

𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 )) 

where 𝐹𝑖
𝑠𝑐𝑎𝑙𝑒 – a characteristic scale for compound i that was calculated as a maximum value 

for the molar flow of i-compound in the dataset. In the work [47] Suyong Kim et al. suggested 

using such the scaling to mitigate stiffness of ODE. Another, reason for splitting the loss 

function in this way is to make the contribution of each hydrocarbon (or alcohol) in the loss 

function smaller than the contribution of CO2, CO, and CH4 because only few parameters are 

needed to describe hydrocarbon (and alcohol) distribution. L2-regularization was used for 

mitigating stiffness of neural ODE at training. The parameter of the regularization was set to 

10-6. 
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Catalyst preparation, characterization, and testing 

For measuring data for kinetic modeling of CO2 hydrogenation to hydrocarbons, a 

typical Fe-based catalyst doped by K and Cu was prepared by incipient wetness impregnation 

method using Al2O3 support. The full description of preparation method and catalyst 

characterization can be found in the supplementary material. The catalysts were tested in 

CO2-FT reaction at the following reaction conditions: 

• Temperature in a range 250-310 °C. 

• Pressure in a range 10-20 bar. 

• Modified residence time in a range 52.4-5327 kg·s·m-3.  

• CO2:H2 ratio in a range 1.5-6.0. 

• CO:CO2 ratio in a range 0.0-0.52. 

Time on stream was at least 14 hours for each reaction condition. The detailed description of 

catalytic experiments and experimental setup can be found in the supplementary material. It is 

worth noting that the catalysts were periodically tested at the same condition (baseline) during 

catalytic measurements. This allowed to follow activation-deactivation processes occurring 

under CO2 reaction conditions (see Figure S9). 

Software and hardware specifications 

Python programming language (version 3.9.12-64bit, Windows 10 Pro) was used for 

calculation [48]. Scientific libraries NumPy [49] (version 1.23.0), SciPy [50] (version 1.8.1), 

Pandas [51] (version 1.23.0), Scikit-learn [52] (version 1.1.1) were used for data analysis and 

evaluation. Pytorch [53] (version 1.12.0) and Torchdyn [45] (version 1.0.3) were used for 

building and training neural networks models. Plotly [54] (version 5.9.0) was used to visualize 

the results. All calculations were performed by using 11th Gen Intel Core i-7 11700F (no GPU 

was used). The code and data will be made available after a retention period at 

https://github.com/LIKAT-Rostock/kcnode-paper. 

 

Results and discussion 

Numerical experiment 

In this part we investigated the generalization of the neural ODE models trained by using the 

small, simulated data set. The process of training the neural ODE models represented as 

dependency between loss function and epoch number is summarized in the Figures S1. The 

https://github.com/LIKAT-Rostock/kcnode-paper
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generalization of the obtained models in predicting training and test data sets are presented in 

Figure 2. 

 

Figure 2. Comparison of the generalization capability between baseline neural ODE (top) and 

kinetics-constrained neural ODE (bottom) models. A and D: Parity plots for molar flows of 

reagents and products. B and E: Observed (dots) and fitting (line) data of dependencies 

between the molar flow of CO2 and the catalyst volume V for training data and their 

extrapolation (reaction condition: CO2:H2:N2 – 1:3:1, pressure – 10 bar). C and F: Observed 

(dots) and fitting (line) data of dependencies between the molar flow of CO2 and the catalyst 

volume V for selected test data (reaction condition: CO2:CO:H2:H2O:N2 – 0.7:0.3:4:0.2:0.5, 

pressure – 12 bar). 

One can see that the baseline model fits the training data correctly which corresponds 

to the low value of loss function (see Table 2). However, this model performs purely when it 

was used for predicting and describing data outside of the training range. This is clearly 

visible in Figure 2 (B-C) where the baseline model was used for extrapolating and fitting the 

test data set. Accordingly, a high value for the loss function was obtained for the test data test 

(Table 2). ANN models are known to require a lot of data for training, and the obtained result 

proves this. Therefore, we can conclude that the standard approach for chemical kinetics 

modelling using neural ODE cannot be applied when ANN models are trained based on small 

data set. 



14 

To improve the neural ODE models, the kinetic and thermodynamic information about 

CO2 hydrogenation to methane was added into the architecture of neural ODE model. From 

the lower row of plots in Figure 2 one can see that the suggested approach improves the 

predicting ability of ANN model significantly. With this model, the value of the loss function 

for the test data set has decreased around 2900 times compared to the baseline model (Table 

2). Moreover, the KCNODE model can describe the data outside of the training range 

correctly that is seen from the presented results. It is also worth noting that the loss function 

for the training data set in the case of the KCNODE model is lower than in the case of the 

baseline model (see Table 2). Wherein, the numbers of learnable parameters for the baseline 

and KCNODE models are 177 and 70, respectively. Thus, an increased number of parameters 

of the baseline model is not enough to achieve the same low value of the loss function for 

training data set as in the case of the KCNODE model. It is obvious that an increase in 

number of parameters for the baseline model will lead only to a further increase in the loss 

function value of the test data set. 

Table 2. Values of loss function of the obtained models for training and test data sets. 

 Loss function 

training data set test data set 

Baseline model 5.2·10-4 0.58 

KCNODE 0 % 0.4·10-4 2.0·10-4 

KCNODE 2.5 % 1.6·10-4 4.6·10-4 

KCNODE 5.0 % 3.1·10-4 4.0·10-4 

KCNODE 10 % 1.6·10-3 1.1·10-3 

KCNODE 20N* 0.4·10-4 2.1·10-4 

% means the value of Gauss noise in the training data set; *Kinetics-constrained neural ODE 

model with 20 nodes in the hidden layer and was trained by ‘no-noise’ data. 

It is well-known that real data has experimental errors that can influence the 

performance of ANN models. This can be especially critical in the case of small data sets. For 

investigating this influence, KCNODE models were obtained by using the training data sets 

with added Gauss noise (0-10 %). The loss function values for the models trained on data of 

various noise levels are presented in the Table 2 (training of the models in Figure S2, parity 

plots can be found in Figure S3). One can see an increase in the values of the loss function for 

training and test data sets with increasing noise in the training data, but the generalization of 

the obtained models is still good (see Figure S3). It is interesting to mention that the obtained 
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KCNODE models are quite resistant to overfitting. This cannot at all be said about the 

baseline model. To investigate the resistance of KCNODE model to overfitting in more detail, 

the model with an increased number of learnable parameters (the number of nodes in the 

hidden layer was increased from 8 to 20) was trained by using the same training data set (see 

Table 2). The obtained model has also high predicting ability. Wherein, the number of 

parameters of the obtained ANN model is 166 and even higher than the number of 

independent experimental data points (the number of reaction conditions × the number of 

points of V × the number of reactions = 8·7·2 = 112 < 166). It proves that the suggested 

architecture of ANN is resistant to overfitting. 

Thus, we demonstrated that neural ODE models additionally constrained by adding 

kinetic and thermodynamic knowledge can be used to successfully model the kinetics of CO2 

hydrogenation to methane using a small data set even in the presence of noise in the data. 

They described experimental data correctly, wherein, the obtained models do not show a 

tendency for overfitting during the training. The presence of chemistry knowledge in the 

architecture of KCNODE model is the reason for the resistance to overfitting. It is obvious 

that the suggested approach can be also used for kinetic modeling of other chemical reactions. 

The next part of work is devoted to applying this approach for kinetic modeling CO2 

hydrogenation to hydrocarbons using real experimental data. 

 

Modelling of CO2 hydrogenation to hydrocarbons 

The KCNODE model was applied for kinetic modeling of CO2 hydrogenation to 

hydrocarbons. To validate the generalization of KCNODE model, 10-fold cross validation 

was used. The training runs of the model are presented in Figure S4. One can see that the 

values of loss function decrease for training and test data sets with increasing the number of 

epochs and become constant after around 104 iterations. The absence of an increase in values 

of the loss function for the test data sets indicates that the ANN models are not overfitting 

during training. The mean values of the loss function are 2.5·10-3 and 1.6·10-2 for training and 

test data sets, respectively. A parity plot comparing experimental and predicted values of 

molar flows in the test data is presented in Figure 3A. The final KCNODE model was t rained 

by using all the experimental data because the ANN model was shown to be not prone to 

overfitting.  
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Figure 3. A: Parity plot of the KCNODE model for describing CO2 hydrogenation to 

hydrocarbons using 10-fold cross validation. B: Product selectivity versus CO2 conversion at 

reaction condition: CO2:H2:N2 – 1:3:1, pressure – 15 bar temperature – 270 °C. C, D, E: 

Experimental and fitting data representing products distribution for alkanes, alkenes, and 

alcohols, respectively.  

As seen in Figure 3, the obtained model correctly describes the conversion-selectivity 

profiles of CO2 hydrogenation as well as the distribution of the reaction products (alkanes, 

alkenes, and alcohols). The profiles of the reaction products and reagents at other reaction 

conditions are also correctly described (see the supplementary material, Figures S5-S8). Thus, 

the KCNODE was successfully applied for describing the kinetics of CO2 hydrogenation to 

hydrocarbons over Fe-based catalysts and was able to predict reactant consumption and 

products formation as well as the hydrocarbon (and alcohol) distribution. 

Kinetic modeling of CO2 hydrogenation over Fe-containing catalysts is usually based 

on empirical LHHW models. Riedel et al.[55] were the first who investigated the kinetics of 

CO2 hydrogenation and suggested a LHHW model based on RWGS, CO-FT, and CO2-FT 

reactions, where only propane was considered as a product of the FT synthesis. In the 

work[2], Brübach et al. suggested a new LHHW type kinetics expressions for modeling CO2 

hydrogenation, but they also considered only one organic compound (C4) for describing 

reaction products. It is noted that the development of models predicting hydrocarbon 

distribution is a difficult task for kinetic modeling of CO2 hydrogenation. Panzone et al.[56] 
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developed a semiempirical macrokinetic model to describe products of CO2 hydrogenation 

including hydrocarbon distribution using the ASF distribution. Recently, a microkinetic 

approach was applied that allowed obtaining the models successfully describing reagent 

consumption and products formation as well as hydrocarbon distribution of CO2 

hydrogenation that were demonstrated in works.[57, 58] From the presented works one can 

see the complexity of kinetic modeling of CO2 hydrogenation to hydrocarbons. In our work 

we demonstrated that neural KCNODE could be successfully applied for describing the 

kinetics of this complicated reaction. 

It is worth mentioning that the calculational and time costs for building ANN models 

are significantly lower compared to the development of a kinetics model in the traditional way 

which requires deep knowledge about mechanism of reactions and great expertise in making 

appropriate simplifying assumptions, and for the solving inverse kinetic task (Figure 4). In 

contrast, an easily obtained KCNODE model can already be used for further development, 

e.g. scale-up related modelling in chemical engineering. However, the KCNODE model can 

be also used for gaining insights into the underlying chemical processes by generating virtual 

data. It could be considered as an intermediate model helping to develop a kinetic model 

based on fundamental mechanistic principles and to elucidate the reaction mechanism.  

 

Figure 4. Comparison of traditional and KCNODE-based kinetic modeling. 

To demonstrate this procedure of using the KCNEODE as intermediate model, we 

screened the literature for kinetic models to find the kinetic expression that is best matching 

the RWGS rate obtained by the developed KCNODE model (see the supplementary material). 

Based on the results, we suggested the following LHHW expression for describing the rate of 

RWGS reaction: 
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1. 𝑟𝑅𝑊𝐺𝑆 =
𝑘 (𝑝𝐶𝑂2

𝑝𝐻2
  −  

𝑝𝐶𝑂 𝑝𝐻2𝑂

𝐾𝑒𝑞
)

√𝑝𝐻2
(1  +  𝑎·𝑝𝐶𝑂+𝑏·

𝑝𝐻2𝑂

√𝑝𝐻2

+𝑐·𝑝𝐶𝑂2
)

2 

which is a composition of the models suggested in works.[2, 59] Thus, the KCNODE model 

was useful as an intermediate model to identify a suitable rate equation for the RWGS 

reaction. In a similar way, the KCNODE model can be used to develop and test other rate 

equations that may then be based on fundamental principles. Applying this procedure for 

other parameters (like 𝑟𝐹𝑇 , 𝛼, etc.) as well as the analysis of the catalyst 

activation/deactivation of CO2-FTS was out of scope for the current investigation but would 

be great of interest. It worth mentioning that the suggested approach can be easily expanded 

and applied in the kinetic modelling of continuous stirred-tank reactor.  

Conclusions 

In summary, we have introduced the KCNODE (kinetics-constrained neural ordinary 

differential equation) approach for describing kinetics of heterogeneous catalytic reactions. 

The approach is based on constraining the architecture of neural ODE by integrating general 

knowledge about kinetics and thermodynamics of a catalytic process. A numerical experiment 

demonstrated that KCNODE model can be used for kinetic modeling of CO2 hydrogenation to 

methane using a small data set. The method does work even in presence of noise in the data. 

The developed approach could also be successfully applied for modeling the kinetics of CO2 

hydrogenation to hydrocarbons based on experimental data. The obtained KCNODE model 

was able to describe reagent consumption and product formation as well as their distribution 

correctly. Because the KCNODE models can be trained on small data sets and are resistant to 

overfitting, the approach can be recommended for the fast development of kinetic models of 

any catalytic reaction; the KCNODE model can also help in developing kinetic models based 

on fundamental principles and for elucidating reaction mechanism. Training ANN models on 

small data does not incur high computational costs which makes the development such ANN 

approachable for many researchers. The KCNODE significantly expands the scope of usage 

of neural ODE for describing, analyzing, and developing models based on ordinary 

differential equations. 
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