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Experiment planning algorithms are a required component of autonomous platforms for scientific
discovery. Selecting a suitable optimization algorithm for a novel application is an important yet
difficult choice a researcher has to make based on past empirical performance on similar tasks.
To facilitate the evaluation of various algorithms on chemistry and materials science optimization
tasks, we previously introduced Olympus (Mach. Learn.: Sci. Technol. 2, 035021, 2021), a Python
package providing a consistent and easy-to-use interface to numerous optimization algorithms and
benchmark datasets. While the original package was limited to continuous parameters and single
objectives, in this work we expand Olympus’ capabilities to include mixed (continuous, discrete,
and categorical) parameter types and multiple objectives. Several experiment planning algorithms
already contained in Olympus are extended to handle categorical and discrete parameter types, and
five additional planners are implemented (23 in total). We also provide 23 additional benchmark
datasets taken from the chemistry and materials science literature (33 in total), covering a wide
range of research areas, from chemical reaction optimization to materials manufacturing. Finally,
the visualization capabilities of Olympus are enhanced to allow for easy inspection of the results,
and the core functionality of the package is embedded in a Streamlit web application for code-
free usage. We demonstrate how Olympus enables researchers to rapidly benchmark different
optimization strategies and gain insight into their behavior by focusing on two case studies: the
optimization of a Suzuki-Miyaura cross-coupling reaction with categorical reaction conditions, and
the multi-objective optimization of redox-active materials. The updated Olympus package provides
practitioners with a large suite of tools to efficiently benchmark and analyze experiment planning
algorithms on mixed-parameter and multi-objective optimization tasks.

I. INTRODUCTION

Many challenges encountered in chemistry and mate-
rials science can be framed as optimization tasks. In
fact, due to its ubiquity in all quantitative disciplines,
optimization is a fundamental area of applied numerical
science. Solving an optimization problem involves the
systematic selection of input parameters from an allowed
set, with the goal of identifying the parameters that pro-
duce the most desirable outcome. The property being op-
timized is typically referred to as the objective function,
or figure of merit. Advances in the field of optimization
research have consistently enabled technologies with sig-
nificant societal impact. For instance, stochastic gradient
descent is the key optimization algorithm that enables
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the training of deep neural networks.1–3 Non-linear op-
timization strategies are also used heavily in molecular
modelling, which is indispensable to the fields of com-
putational chemistry, drug design, materials science, and
computational biology.4

A subset of optimization problems of particular in-
terest in the experimental sciences are global, black-box
problems, which involve objective functions whose struc-
ture is a priori unknown, and must be resolved by se-
quential (oftentimes noisy) measurement. Prevalent ex-
amples include chemical reaction optimization (the max-
imization of the yield of the desired chemical product
given a set of allowed conditions),5–16 optimization of
properties of advanced materials or functional molecules,
such as photovoltaics,17–19 nanomaterials,20–24 and cata-
lysts,25,26 among others.27–32 Model-based optimization
approaches, such as Bayesian optimization, are proving
particularly suited to black-box optimization tasks en-
countered in experimental sciences. Recently, the com-
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bination of model-based optimization with automated
laboratory equipment has shown potential for the de-
velopment of fully autonomous research platforms, also
referred to as self-driving laboratories or materials accel-
eration platforms.33–39

Although the mentioned experimental science applica-
tions are diverse in discipline, they have several charac-
teristics in common. In particular, they typically (i) are
black-box problems with no analytical gradient informa-
tion available, (ii) involve expensive-to-evaluate objec-
tives (with respect to monetary cost, time, or other re-
sources), (iii) consist of several input parameter types
(continuous, discrete, and categorical), (iv) involve mea-
surement procedures which are subject to noise, and (v)
involve multiple, potentially competing objectives that
must be optimized simultaneously.

While some optimization strategies can perform well
on a wide range of problems, selection of the best strat-
egy for a novel problem remains non-trivial.40,41 In part,
this is due to the structure of the objective function being
a priori unknown, which renders comparison to related
problems challenging. As such, the selection of strategies
for a novel problem currently relies heavily on user pref-
erence, the availability of user-friendly optimization soft-
ware, and heuristics, as opposed to empirical evidence. In
addition, benchmarking optimization strategies on real-
world experimental problems is often prohibitively ex-
pensive as a result of the cost associated with experi-
mental measurements. Thus, benchmarks continue to
be carried out using analytical functions. While these
benchmarks are convenient, given that their values can be
computed instantaneously, they often do not constitute
realistic optimization tasks encountered in real-world ap-
plications.

In the spirit of providing researchers with the ability to
benchmark optimization strategies on tasks derived from
real-world data, our group recently introduced Olym-
pus.42,43 This Python package provides users with the
ability to benchmark the performance of optimization al-
gorithms on emulated experiments from chemistry and
materials science (core classes and their interactions are
shown in Figure 1). Yet, many features of practical rel-
evance are still lacking from Olympus, preventing re-
searchers from fully capitalizing on its intended usage. In
this work, we detail several recent extensions to Olym-
pus. In summary, we contribute the following:

• Access to additional parameter types, including
discrete, categorical, and ordinal parameters.

• 5 additional Bayesian optimization algorithms are
implemented, and existing algorithms are updated
for compatibility with the above-mentioned param-
eter types.

• 23 additional real-world datasets curated from the
chemistry and materials science literature, and 10
additional analytical benchmark surfaces.

• Compatibility with multi-objective or Pareto op-
timization via an achievement scalarizing function
(ASF) module.

• Expanded functionality for plotting and analyzing
the results of optimization benchmarks, including
tools for visualizing the result of experiments with
mixed-parameters and multiple objectives.

• A Streamlit webapp providing code-free access to
Olympus.

This manuscript is organized as follows. In Section II
we review related efforts in benchmarking computational
tools in the natural sciences. Section III delineates
the updates to the Olympus package. In Section IV,
we examine two case studies, which showcase the ease
with which users can benchmark the performance of
experiment planning strategies using Olympus. First,
we compare the performance of several algorithms that
support categorical parameters on the optimization of
a Pd-catalyzed Suzuki-Miyaura cross-coupling reaction.
Second, we show how the choice of ASF affects the
multi-objective design of redox-active materials for non-
aqueous flow batteries.

II. RELATED WORK

Research in natural science disciplines has routinely
produced efforts to benchmark computational meth-
ods. The area of computational chemistry has relied
for decades on thorough bechmarking studies to cat-
alog the accuracy and expense of molecular mechani-
cal, semi-empirical and ab initio quantum mechanical
methods.44 Machine learning researchers customarily use
datasets such as MNIST45 and CIFAR-1046 to contextu-
alize the performance of novel algorithms. These bench-
marks have provided a common ground to compare dif-
ferent approaches and quantitatively measure progress.
The chemical machine learning community has thus built
similar benchmark datasets, such as MoleculeNet,47

the QMx series,48–53 and the Therapeutics Data Com-
mons,54,55 among others.56 Specialized benchmarks for
generative models and inverse molecular design have
also been developed, including GuacaMol,57 Moses,58

PMO,59 and Tartarus60.
Benchmarking of optimization algorithms has also re-

ceived significant attention, with various frameworks
having been established, like Coco61 for continuous-
parameter global optimization, OpenAI Gym62 for re-
inforcement learning, Sherpa63 and Optuna64 for
machine learning hyperparameter optimization, and
Pygmo65 for massively parallel optimization. Similar
benchmarking frameworks, yet tailored to chemistry and
materials science applications, have also been proposed.
Summit66 and EDBO+14,15 are both concerned with the
model-based optimization of chemical reactions. Olym-
pus has attempted instead to cover a broader set of op-
timization tasks and algorithms. Both Olympus and
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FIG. 1. Flow chart of dependence and inheritance for the core classes within the Olympus package.

Summit use probabilistic machine learning models to
learn continuous parameter-measurement relationships
from experimental datasets. This approach allows one to
obtain simulated experimental measurements that can be
used to benchmark optimization strategies. Without the
burden of executing actual experiments, one can collect
the necessary statistics to evaluate the expected perfor-
mance of different algorithms.

III. PACKAGE UPDATES

A. Discrete, categorical and ordinal parameter
types

The design of molecules, materials, and chemical pro-
cesses necessitates the optimization of continuous, dis-
crete, and categorical parameter types. For instance,
when optimizing a catalyzed chemical reaction, one
might want to select the catalyst ligand and solvent (cat-
egorical parameters) while also tuning the reaction time,

temperature, and molarity of each component (continu-
ous parameters).
Discrete parameters discretize a continuous interval

into a finite number of options. They are characterized
by an upper and lower bound, as well as a stride or step
size which determines the resolution of the discretization.
In Olympus, one instantiates a custom discrete parame-
ter in one of two ways: (1) by defining an interval and a
stride argument, resulting in evenly spaced options over
that interval, or (2) by explicitly providing an ordered
list of options.

from olympus.objects import ParameterDiscrete

# option #1: evenly spaced options

# over specified interval

param0 = ParameterDiscrete(

name='param0',

low=0.0,

high=1.0,

stride=0.1,

)
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# option #2: list of options

param1 = ParameterDiscrete(

name='param1',

options=[0.1, 0.3, 0.7, 0.9],

)

Categorical parameters take one of a fixed number of
possible options. The options by default have no inherent
ordering. A commonly encountered categorical param-
eter in chemical reaction optimization is the molecular
identity of the catalyst. Categorical parameters are de-
fined according to a list of string options.

from olympus.objects import ParameterCategorical

param0 = ParameterCategorical(

name='param0',

options=['option0', 'option1', 'option2'],

)

In this case, categorical parameters are encoded as one-
hot vectors. We also provide the opportunity to specify
descriptors for each categorical option as lists of floats.
Descriptors can be used to impose an ordering between
the options of a categorical variable, and have been shown
to accelerate the optimization rate of an experiment plan-
ning strategy if there exists sufficient correlation between
descriptors and the property being optimized.67

from olympus.objects import ParameterCategorical

param0 = ParameterCategorical(

name='param0',

options=['option0', 'option1', 'option2'],

descriptors=[[0.2, 0.8], [0.5, 0.5], [0.8, 0.3]],

)

As Olympus now provides continuous, discrete, and
categorical parameter types, users can define arbitrarily
complex parameter space objects using a combination of
all three parameter types via a flexible interface.

from olympus.objects import (

ParameterContinuous,

ParameterDiscrete,

ParameterCategorical

)

from olympus.campaigns import ParameterSpace

param0 = ParameterContinuous(

name='param0',

low=0.0,

high=1.0,

)

param1 = ParameterDiscrete(

name='param1',

low=0.0,

high=1.0,

stride=0.1,

)

param2 = ParameterCategorical(

name='param2',

options=['option0', 'option1', 'option2'],

descriptors=[[0.2, 0.8], [0.5, 0.5], [0.8, 0.3]],

)

param_space = ParameterSpace()

param_space.add(param0)

param_space.add(param1)

param_space.add(param2)

Finally, ordinal parameters are parameter sets with a
natural ordering but the distances between options are
unknown. Ordinal parameters are often useful to de-
scribe objective values (i.e., experimental outcomes) that
are qualitative in nature. For example, the result of a
crystallization experiment may be qualitatively charac-
terized (from least to most desirable) as providing a clear
solution, a fine powder, or crystals of small/large size.
Within Olympus, ordinal parameters are conventionally
defined by ordering the options from least to most desir-
able. Additional information on the use of ordinal pa-
rameters within Olympus can be found in SI Sec. S.3.

from olympus.objects import ParameterOrdinal

param0 = ParameterOrdinal(

name='param0',

options=['worst', 'better', 'best'],

)

B. Multi-objective optimization with achievement
scalarizing functions

The design of molecules, materials and chemical pro-
cesses often requires the simultaneous optimization of
multiple, competing objectives. Many solutions to the
problem of concurrently optimizing multiple objective
functions have been proposed.68 A common approach
is to construct a single objective function from multi-
ple ones, by considering user-provided preferences about
the optimization goal for each objective. Functions that
map multiple separate objectives into a single, aggre-
gate one are known as achievement scalarizing functions
(ASFs). Ideally, the optimal solution of ASFs should
correspond to a Pareto optimal solution of the original
multi-objective problem.

We provide wrappers for four commonly used ASFs
in the Scalarizer module of Olympus. The strategies
are Weighted Sum,69,70 Chebyshev,71,72 Chimera,73

and Hypervolume.74–77 For brevity, we omit a detailed
discussion of each ASF in the main text (details in SI
Sec. S.5), and focus instead on their usage in Olympus.
In particular, here we show an example using Chimera.
One can instantiate the Scalarizer object using the fol-
lowing code.
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from olympus.datasets import Dataset

from olympus.scalarizers import Scalarizer

dataset = Dataset(kind='suzuki_a')

scalarizer = Scalarizer(

kind='Chimera',

value_space=dataset.value_space,

goals=['max', 'max'],

tolerances=[0.8, 1.0],

absolutes=[True, True],

)

Assume an optimization problem consists of parame-
ter space X ∈ Rd with d continuous parameters and an
objective space Y ∈ Rn with n objectives, corresponding
to objective functions f = {fi}ni=1 : X 7→ Y. After the
kth optimization iteration, the scalarize method of the
Scalarizer object takes as input a set of objective mea-
surements {yi}ki=1 and applies the ASF, s : Y 7→ [0, 1],
to the current observations, returning a set of scalar-
valued merits {ỹi}ki=1. Conventionally, lower merit values
correspond to a more optimal experiment. The scalar-
ized dataset of observations D̃ = {(xi, ỹi)}ki=1 is then
passed to the experiment planning algorithm in order for
the next parameter recommendations to be computed.
Algorithm 1 shows pseudocode for multi-objective op-
timization with ASFs using the lower-level “ask-tell”
interface of Olympus. Alternatively, the higher-level
Evaluator interface for multi-objective ASF optimiza-
tion is depicted in the code snippet below. After in-
stantiating the Scalarizer object, it is passed to the
Evaluator, along with the emulator, campaign and ex-
periment planner instances. Effectively, the Evaluator
abstracts away the “ask-tell” operations associated with
an optimization experiment.

from olympus.emulators import Emulator

from olympus.scalarizers import Scalarizer

from olympus.planners import Planner

from olympus.evaluators import Evaluator

from olympus.campaigns import Campaign

emulator = Emulator(

dataset='suzuki_a', model='BayesNeuralNet',

)

campaign = Campaign()

campaign.set_param_space(emulator.param_space)

campaign.set_value_space(emulator.value_space)

planner = Planner(kind='Gryffin')

planner.set_param_space(emulator.param_space)

scalarizer = Scalarizer(

kind='Hypervolume',

value_space=emulator.value_space,

goals=['max', 'max'],

)

evaluator = Evaluator(

dataset=emulator,

campaign=campaign,

planner=planner,

scalarizer=scalarizer,

)

evaluator.optimize(num_iter=50)

Algorithm 1: Pseudocode for ask-tell
interface multi-objective optimization using ASFs

in Olympus.

Data: parameter space X ∈ Rd, objective space
Y ∈ Rn, objective functions f : X 7→ Y, ASF
s : Y 7→ [0, 1], experiment planner, optimization
budget, b

Result: dataset of observations D = {(xi,yi)}bi=1

and scalarized observations D̃ = {(xi, ỹi)}bi=1

D ← ∅ ;
D̃ ← ∅ ;
neval ← 0 ;
while neval < b do

planner ← planner.tell(D̃) ;
xnext ← planner.ask( ) ;
ynext ← f (xnext) ;
D ← D ∪ (xnext,ynext) ;

D̃ ← scalarizer.scalarize(D) ;
neval ← neval + 1 ;

end
Function scalarize(D):
{ỹi}|D|

i=1 ← s
(
{yi}yi∈D

)
;

D̃ ← {(xi, ỹi)}|D|
i=1 ;

return D̃

C. New analytical benchmark surfaces

The new version of Olympus ships with an up-
dated suite of analytic benchmark surfaces to sup-
port the new discrete and categorical parameter
types. Namely, we include 5 fully-categorical surfaces,
cat camel, cat michalewicz, cat dejong, cat slope
and cat ackley. The parameter dimensionality and
number of options per categorical variable can be user-
specified. Fully-categorical surfaces are explained in
greater detail and visualized in SI Sec. S.2 and SI Fig. S7,
respectively. Also, given the software’s extension to in-
clude multi-objective campaigns, we provide wrappers
for 5 analytical benchmark surfaces with multiple ob-
jectives. Specifically, wrappers for the mult fonseca,
mult viennet, mult zdt1, mult zdt2, mult zdt3 func-
tions are provided, which comprise 2, 3, 2, 2, and 2 ob-
jectives, respectively. The multi-objective surfaces are
described in further detail in SI Sec. S.2 and visualized
in SI Fig. S8.



6

D. New datasets

Olympus provides 23 additional datasets adapted
from the chemistry and material science literature.
Datasets (referred to by the Olympus kind keyword)
and specifications thereof are listed in Table I. We pro-
vide datasets from a diverse range of scientific disciplines,
including chemical reaction optimization, materials man-
ufacturing, organic photovoltaics, and energy storage.
New datasets consist of between 3-10 parameters and 1-3
objectives. Several datasets feature exclusively categori-
cal parameters (denoted by “cat” in the param types col-
umn). For these datasets, Olympus returns by default
noisy measurements whose mean values are the discrete
dataset values themselves. Individual measurements are
sampled from Gaussian distributions around these val-
ues parameterized by standard deviations derived from
Bayesian neural networks trained on these datasets. This
approach constitutes a heteroscedastic noise model which
intends to replicate the aleatoric uncertainty (inherent
data noise) in the original measurements. More informa-
tion on the noise model for fully-categorical datasets is
given in SI Sec. S.4. In the fully-categorical cases, the
Dataset and Emualtor objects are interchangeable, and
can both be queried for measurements using their respec-
tive run() methods. For example, consider the fully-
categorical dataset perovskites, which reports DFT
computed bandgaps for hybrid organic-inorganic per-
ovskite materials.82

from olympus.objects import ParameterVector

from olympus.datasets import Dataset

dataset = Dataset(kind='perovskites')

param = ParameterVector().from_dict(

{

'organic': 'ethylammonium',

'cation': 'Ge',

'anion': 'F',

}

)

measurement = dataset.run(param)

print(measurement)

>>> 2.7138

Several datasets, including perovskites, ship with de-
scriptors for categorical variables. Descriptors can be
used to introduce ordering between categorical variable
options. While descriptors have been shown to increase
the optimization rate of experiment planners,67 not all
experiment planning algorithms in Olympus are com-
patible with descriptor-based representations. Table II
lists the capabilities of experiment planners in Olympus.
The constructor method of descriptor-capable planners
has a use descriptors argument which allows the user
to toggle between a descriptor-based and a näıve one-hot-
encoded representation of categorical variables. The code
snippet below reuses the perovskites dataset instance.

from olympus.planners import Botorch

# print descriptors to console

descriptors = dataset.descriptors

print(descriptors.head())

>>>

param option name value

0 organic ethylammonium homo -0.4601

1 organic ethylammonium lumo -0.22398

2 organic ethylammonium dipole 1.3965

3 organic ethylammonium atomization -1.84142

4 organic ethylammonium r_gyr 1.261565

# instantiate Botorch planner with descriptor-based

# representation

planner = Botorch(

goal='minimize',

use_descriptors=True,

)

Several of the new datasets contain continuous-valued
parameters, and therefore require an emulator to return
virtual measurements at all possible parameter settings.
Among these datasets, suzuki a through suzuki d also
comprise multiple objectives. We extended the Emulator
module in Olympus to be compatible with multi-output
regression such that one neural network model provides
virtual measurements for all objectives. More informa-
tion on the implementation and performance of new em-
ulators is provided in SI Sec. S.3.

E. New and updated experiment planning
algorithms

Olympus provides several updated and new ex-
periment planning algorithms. We extend wrap-
per compatibility of the Random Search, Grid
Search, Genetic,105,120 HyperOpt,112,121 and GPy-
Opt111 planners to encompass discrete, categorical,
and mixed-parameter types. We also added wrappers
for 5 Bayesian optimization strategies, each compati-
ble with all parameter types. The new algorithms are
Gryffin,67 SMAC,116 Dragonfly,117 HEBO,119 and
BoTorch.118

Gryffin67 is an extension of the Phoenics115 al-
gorithm, which employs a kernel regression surro-
gate model, and can be applied to mixed continuous-
categorical parameter spaces. SMAC116 is a Bayesian
optimization package that uses random forests as the
surrogate model. Dragonfly117 is an open source
Python library for scalable and robust Bayesian opti-
mization using Gaussian process (GP) surrogate mod-
els. Notably, Dragonfly allows for optimization over
high-dimensional domains, optimization over structured
combinatorial spaces and methods for handling paral-
lel evaluations. The Dragonfly wrapper in Olym-
pus does not currently support multi-fidelity optimiza-
tion, parallel evaluations, or constrained optimization.
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TABLE I. New datasets available in Olympus. Datasets which have a ✓in the emulator column contain continuous parameters,
and are therefore emulated using Bayesian neural networks. Those which have an × are fully categorical datasets, and objective
measurements consists of lookup in a table plus learned noise model. Datasets with (desc) in the param types column ship
with descriptors for categorical variable options. More details on the datasets can be found in SI Sec. S.1.

Dataset Research topic # param # obj param types # data points Emulator

diffvap crystal19,78 perovskite crystallization 10 1 cat (desc), disc, cont 918 ✓
dye lasers79,80 organic photophysics 3 3 cat 3468 ×
redoxmers81 energy storage 4 3 cat (desc) 1408 ×
perovskites82 HOIP solar cells 3 1 cat (desc) 192 ×

oer plate {a,b,c,d}83,84 electrocatalysis 6 1 cont 2119-2121 ✓
p3ht85 composite blends 5 1 cont 178 ✓
agnp86 silver nanoparticles 5 1 cont 164 ✓

thin films87 thin film perovskites 3 1 cont 94 ✓
crossed barrel27 mechanical properties 4 1 cont, disc 600 ✓

autoam88 3D printed structure 4 1 cont 100 ✓
suzuki {i,ii,iii,iv}10 organic chemistry 3 2 cont, cat 89-92 ✓

suzuki edbo14,89 organic chemistry 5 1 cat (desc) 3696 ×
buchwald {a,b,c,d,e}14,90 organic chemistry 4 1 cat (desc) 792 ×

TABLE II. Capabilities of experiment planning strategies in Olympus. Planners are presented with their capabilities in terms
of parameter types (all strategies support continuous parameters), multi-objective optimization compatibility via achievement
scalarizing functions, support for descriptors of categorical variable options, and batched recommendations. For the Bayesian
class of planners, the model type used for the surrogate is indicated, where TPE=Tree of parzen estimators, GP=Gaussian
process, KDE=Kernel density estimation, and RF=Random forest. † We indicate strictly the compatibility of planners with
multi-objective optimization within the Olympus package. Incompatibility therefore does not necessarily mean there does not
exist an extension of the strategy to multi-objective problems elsewhere.

Planner Class Batched Discrete Categorical Mixed Multi-objective Descriptors
(via ASFs) †

Random Search Grid-like ✓ ✓ ✓ ✓ ✓ ×
Sobol Sequence91 Grid-like ✓ × × × ✓ N/A
Grid Search92–94 Grid-like ✓ ✓ ✓ ✓ ✓ ×

Latin Hypercube92–94 Grid-like ✓ ✓ × × ✓ N/A

Steepest Descent95,96 Gradient-based × × × × × N/A

Conjugate Gradient96,97 Gradient-based × × × × × N/A

LBFGS98–100 Gradient-based × × × × × N/A

SLSQP101 Gradient-based × × × × × N/A

Snobfit102 Heuristic × × × × × N/A

Basin Hopping103 Heuristic × × × × × N/A

Simplex104 Heuristic × × × × × N/A

Genetic105 Evolutionary ✓ ✓ ✓ ✓ ✓ ×
CMA-ES106,107 Evolutionary ✓ × × × × N/A

Particle Swarms108,109 Evolutionary ✓ × × × × N/A

Differential Evolution110 Evolutionary ✓ × × × × N/A

GPyOpt111 Bayesian (GP) ✓ ✓ ✓ ✓ ✓ ×
HyperOpt112–114 Bayesian (TPE) ✓ ✓ ✓ ✓ ✓ ×

Phoenics115 Bayesian (KDE) ✓ ✓ × × ✓ N/A

Gryffin67 Bayesian (KDE) ✓ ✓ ✓ ✓ ✓ ✓

SMAC116 Bayesian (RF) ✓ ✓ ✓ ✓ ✓ ×
Dragonfly117 Bayesian (GP) ✓ ✓ ✓ ✓ × ×
BoTorch118 Bayesian (GP) ✓ ✓ ✓ ✓ ✓ ✓

HEBO119 Bayesian (GP) ✓ ✓ ✓ ✓ ✓ ✓

HEBO119 (Heteroscedastic and Evolutionary Bayesian Optimization) is a GP-based Bayesian optimizer which
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performs non-linear input and output warping, admits
exact marginal log-likelihood optimization and is robust
to the values of learned parameters.

BoTorch is an in-house implementation of a GP-
based Bayesian optimizer that relies on the BoTorch118

and GPyTorch122 libraries. For fully continuous pa-
rameter spaces and fully categorical parameter spaces
with descriptors we use the Matern5/2 kernel. For
fully categorical parameter spaces without descriptors
we use the Hamming distance kernel, i.e., k (x,x′) =
exp [−dist (x,x′) /ℓ], where ℓ is a lengthscale parame-
ter and dist (x,x′) = 0 if x = x′ and 1 if x ̸= x′.
For mixed continuous-categorical parameter spaces, we
use a mixed kernel, which combines a categorical ker-
nel based on Hamming distances and a Matern5/2 ker-
nel, i.e., k(x, y) = kcat(xcat, ycat) × kcont(xcont, ycont) +
kcat(xcat, ycat) + kcont(xcont, ycont). Automatic relevance
detection is used for the categorical kernel, i.e., each cat-
egorical variable has an independent lengthscale param-
eter. By default, the expected improvement acquisition
function is used.

The Olympus framework is also extended to support
batched optimization, in which more than one parame-
ter recommendation may be requested at once. However,
this feature is limited to certain planners. Table II pro-
vides full details on the compatibility of Olympus plan-
ners with all new features.

F. New plotting and analysis

We made substantial updates to the analysis and plot-
ting modules of our package. Table S29 lists and de-
scribes the supported plot types which can be accessed
via the Plotter module of Olympus. In summary, we
support three main plot types: traces, boxplots, and scat-
terplots. Trace plots compare the optimization perfor-
mance of experiment planners by showing the cumulative
best objective function value, regret value, or candidate
rank achieved by an experiment planner as a function of
the number of transpired objective function evaluations.
We also provide trace plots which depict the cumulative
fraction of top-k candidates evaluated by the experiment
planner. As an example, consider an optimization using
the perovskites dataset, where the goal is to minimize
the bandgap across a dataset of hybrid organic-inorganic
perovskite materials. Upon completion of the optimiza-
tion benchmark (here comparing Random Search and
Bayesian optimization via the BoTorch planner), we
can ask Olympus to visualize the fraction of top-10 per-
ovskite materials discovered by each strategy as a func-
tion of the number of bandgap evaluations. For brevity,
we assume we already have an Olympus database in-
stance called database perovskites which contains the
benchmark results. Figure 2 shows the plot generated by
the following code snippet.

from olympus import Plotter

plotter = Plotter()

plotter.plot_from_db(

kind='traces_fraction_top_k',

database=database_perovskites,

threshold=10,

)

FIG. 2. Plot comparing the fraction of top-10 perovskite ma-
terials discovered with two experiment strategies as a func-
tion of the number of property evaluations. Solid traces show
mean values over 40 independently seeded runs. Shaded re-
gion depict the 95% confidence interval.

Boxplots summarize the results of an optimization
benchmark in a concise manner, showing the distribution
of some performance metric for a series of experiment
planning strategies over multiple executions. In partic-
ular, summarizing the relative performance of multiple
experiment planning strategies on a multi-objective opti-
mization problem (i.e., the comparison of Pareto fronts)
using a single scalar value is a valuable tool for a re-
searcher to have available at their fingertips. One such
metric is the hypervolume indicator, a set-quality indica-
tor which measures the volume of the dominated portion
of the objective space.74–77 This metric is of great interest
in multi-objective optimization research as it maintains
the desirable feature of strict Pareto compliance. We
omit a detailed introduction to the hypervolume indica-
tor, and refer the interested reader to other works,74–77

as well as SI Sec. S.5. In short, the hypervolume can
be interpreted as the “size of the dominated space” and
thus, experiment planning strategies which achieve the
largest relative hypervolume can be considered the best
performers. As an example, consider a multi-objective
optimization experiment on the mult fonseca analytic
benchmark surface. Olympus produces boxplots of the
normalized hypervolume over repeated executions of the
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experiment. Figure 3 shows the plot produced by the
following code snippet.

from olympus import Plotter

plotter = Plotter()

plotter.plot_from_db(

kind='hypervolume',

database=databse_multfonseca,

)

FIG. 3. Boxplot of hypervolume values for two experiment
planners on the mult fonseca surface. Boxplots show results
over 25 independent runs of each experiment planner.

Olympus can also produce scatterplot visualizations
of the Pareto front itself. This scatterplot can be ac-
cessed only for problems with 2 or 3 objectives. As an
example, consider a comparison of Random Search and
BoTorch on the mult fonseca surface. Both objectives
of this surface are to be minimized.

from olympus import Plotter

plotter = Plotter()

plotter.plot_from_db(

kind='pareto_front',

database=databse_multfonseca,

)

G. Olympus web application

Web-based applications allow a piece of software
to be accessed through a web-browser, removing the
need for installation and the barrier to entry for users
with limited programming experience. For example,

FIG. 4. Plot of the Pareto fronts identified by the Ran-
dom Search and BoTorch experiment planners for the 2-
dimensional Fonseca-Fleming surface (2 objectives, both with
minimization goals). Larger points outlined in black indicate
the Pareto front for each planner, connected by a line of the
corresponding color.

Chemprop123–125 is a Python package focusing on
molecular property prediction that includes a web predic-
tion interface allowing code-free access to trained mod-
els.126 Torres et al. introduced EDBO+,14,15 a package
dedicated to multi-objective optimization of chemical re-
actions that features a web-based graphical user interface
democratizing the software for non-experts.
To afford researchers with little programming experi-

ence the benefits of Olympus, we lay the foundation for
code-free access to our package by constructing a web-
based application using Streamlit. The Olympus web
application will be made publicly accessible upon publi-
cation of this manuscript in a peer-reviewed journal.
Briefly, our webapp allows users to

• Conduct full benchmark experiments using any of
the existing surfaces, datasets and planners in the
package.

• Download datasets and descriptors in convenient
csv format.

• Use the plotting and analysis modules to produce
and download visualizations and summary statis-
tics of their benchmark results.

• Upload their own datasets to be considered for ad-
dition to the Olympus package (submissions will
first be reviewed by the developers).

IV. CASE STUDIES

To demonstrate the scope of research activities acces-
sible with the updated version of Olympus, we perform
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two case studies that highlight (i) the performance of cat-
egorical Bayesian optimization, and (ii) the effect of ASF
choice on optimization outcome.

A. Categorical optimization of chemical reaction
conditions

Our first case demonstrates the ease with which one
can conduct benchmark experiments for optimization
of categorical parameter datasets using the high-level
Olympus interface. This constitutes a minimal-code ex-
ample where all operations of the benchmarking exper-
iment are handled by the highest-level Olympus core
class (Figure 1). As an expository dataset, we se-
lect the suzuki edbo dataset, which reports yields for
a Suzuki-Miyaura coupling reaction preformed on the
nanomole scale using a automated flow-based synthesis
platform.14,89 The reaction scheme, along with the search
space is presented in Figure 5a. This dataset consists of
5 categorical parmeters: the boronic acid derivative elec-
trophile, aryl halide nucleophile, base used in the depro-
tonation step, Pd catalyst ligand, and solvent. Collec-
tively, there are 3696 unique reactions.

With Olympus, one can rapidly construct a minimal
source code optimization benchmark experiment consist-
ing of experiment planning algorithms of type grid-like,
evolutionary, and Bayesian. Namely, this demonstra-
tion uses Random Search, Genetic, HyperOpt, and
BoTorch. Using the benchmark method of the main
Olympus orchestrator, one simply needs to pass the
name of the dataset, a list of experiment planner names,
an Olympus database instance to store the results, and
some specifications pertaining to the length of the bench-
mark experiment. The num ind runs argument specifies
the number of repeated executions of each planner, while
the num iter argument specifies the number of objective
function evaluations to perform in each run. Source code
for this example appears in Figure 5b.

Olympus’ plotting module then provides users with
access to a series of visualizations of benchmark re-
sults. Here, we choose the num evals top k type box-
plot, which constructs distributions of the number of
yield evaluations needed for each experiment planner to
identify a top-20 yield with respect to all 3696 measure-
ments. For this dataset, a top-20 value roughly corre-
sponds to a yield of ≥ 96%. The resulting boxplot is
shown in Figure 5c. It is immediately clear that the
Bayesian optimizers (HyperOpt and BoTorch) per-
form significantly better thanRandom Search andGe-
netic on this task. HyperOpt is able to identify a
top-20 yield on average within 79± 10 evaluations, while
BoTorch is able to do the same within only 27±2 eval-
uations. Ultimately, the insight gleaned from this case
study should inform choices of experiment planning al-
gorithm in future experiments.

B. Multi-objective design of redox-active materials

The choice of ASF can have profound effects on the
result of an optimization campaign. In fact, the Pareto
optimal solution that is recommended by an experiment
planner depends on the choice of ASF and its parame-
terization.
This case study demonstrates how one can evaluate the

behavior of different ASFs in Olympus. We consider the
redoxmers dataset, in which Agarwal et al.81 reported
a computational screen of 1408 benzothiadiazole deriva-
tives for application as redox-active materials in non-
aqueous flow batteries (Fig. 6a). The three objectives are
the DFT-computed reduction potential Ered, solvation
free energy Gsolv and maximum absorption wavelength
λabs. We optimize the three objectives simultaneously
using the BoTorch planner and each ASF supported in
Olympus. The aim is to identify candidates that (i) have
an maximum absorption wavelength as close as possible
to 375 nm, (ii) have a minimal reduction potential against
a Li/Li+ reference electrode, and (iii) provide the lowest
possible solvation free energy, understood as a proxy for
solubility.
The Weighted Sum and Chimera ASF strategies

require parameterization. Weighted Sum received
weights of 3, 2, and 1 for the λabs, Ered and Gsolv objec-
tives, respectively, indicating the preferential order of ob-
jective importance. The objective hierarchy of Chimera
was organized in the same order. Chimera also received
absolute tolerances of 25 nm for the λabs objective, and
2.04 V for the Ered objective.
Results of this experiment are shown in Fig. 6c. Sub-

plots show optimization traces over 200 evaluations cor-
responding to the redoxmer candidate objective values
with the best scalarized merit. Each ASF campaign was
repeated 40 times. Most notably, the hierarchy and ab-
solute tolerances provided to Chimera modulate which
property values are considered advantageous. Chimera
sacrifices slightly the achieved value of the first objective
compared to all other ASFs, and the value of the sec-
ond objective compared to Hypervolume. As a conse-
quence, Chimera is able to achieve a significantly lower
Gsolv than all other ASFs. Importantly, the Chimera
solutions still satisfy tolerances on the first two objec-
tives. The Weighted Sum strategy appears to suffer
from the well-known difficulties associated with choos-
ing weighting schemes that result in desired solutions69,70

and over-prioritizes minimization of λabs, in turn restrict-
ing values of the latter two objectives to be sub-optimal.
Hypervolume provides a well-balanced multi-objective
optimization of the redoxmer candidates, and, unsur-
prisingly, generates Pareto fronts which have on average
the largest dominated hypervolume (Fig. 7). The domi-
nated hypervolume facilitates assessment of Pareto fronts
by summarizing their characteristics (such as proximity
to the Pareto front, diversity and spread) with a single
scalar value.74–77

To reinforce that the choice of ASF modulates which
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a.

b. c.

FIG. 5. a) Reaction scheme of the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction reported by Perera et al.127 The fully-
categorical parameter space consists of varying nucleophile and electrophile substrates, catalyst ligand, base, and solvent. The
full Cartesian product space consists of 3696 unique reactions. b) Minimal code required for running a benchmark optimization
experiment using several planners for the reaction shown in a). c) Visualization of benchmark results using the plotting module
of Olympus. Box-and-whisker plots show the number of evaluations needed for each strategy to achieve a top-20 yield value.
Each of the 40 replicate optimization experiments are conducted for a maximum of 200 evaluations. For this dataset, a top-20
yield evaluation corresponds to a yield of ≥∼ 96%.

redoxmer candidates are deemed desirable, we discuss the
frequency at which each R-group option is featured in
high performing candidates. Fig. 6b shows the relative
frequency with which each R-group option is included
in top-20 redoxmer candidates, as ranked by each ASF.
The underpinnings of the ASFs, as well as the preference
information encoded by the user often results in stark
differences in the rate of occurrence of specific chemi-
cal substituents in candidates that are deemed desirable.
For instance, top candidates according to Chimera and
Hypervolume almost exclusively feature the ether sub-
stituent at the R1 position (R1

1), where as Weighted
Sum and Chebyshev top candidates feature both the
ether and perfluorinated substituents at roughly the same
rate. Also noteworthy is the relatively strong preference
of Chimera and Hypervolume for the dimethylamine
group at the R2 and R3 positions (R8

2,3), the preference

of Weighted Sum and Chebyshev for R8
4, and Hy-

pervolume for R11
4 .

Ultimately, this case study demonstrates how the
choice and parameterization of ASF for a multi-objective
materials discovery campaign affects the properties (and
therefore the structure) of the resulting candidates.
Olympus provides users with the means to quickly de-
velop intuition on how certain ASF choices might in-

fluence the outcome of data-driven experimental cam-
paigns.

V. CONCLUSION

This work describes an extension of the Olympus
Python package to include any combination of discrete,
categorical, or ordinal parameters. We have also allowed
for the definition and execution of multi-objective op-
timization campaigns by providing wrappers for several
achievement scalarizing functions. To promote usage of
these new features, we have provided access to 23 new
datasets derived from chemistry and materials science lit-
erature, and 10 new analytical optimization benchmark
surfaces, all of which feature either categorical param-
eters or multiple objectives. Several experiment plan-
ning algorithms have been updated to be compatible with
the new parameter types, and 5 additional Bayesian op-
timization algorithms have been added. We improved
the plotting and analysis capabilities of Olympus, en-
abling users to straightforwardly compare optimization
campaigns using various metrics. Lastly, we have laid the
foundations for programming-free access to the core func-
tionality of Olympus by designing a web-based applica-
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FIG. 6. Optimization setup and results for case study 2: multi-objective design of redox-active materials for non-aqueous
redox flow batteries. (a) Markush structure of the benzothiadiazole scaffold and all substituents considered. The entire design
space consists of 1408 candidates (2 R1 × 8 R2 × 8 R3 × 11 R4 options). (b) Relative frequency of substituent occurrence in
the top 20 redoxmer candidates ranked using each ASF. (c) Optimization traces using the BoTorch planner with different
ASFs. Traces depict the objective function values corresponding to the candidate with the best scalarized merit value at each
iteration. Shaded bands indicate the 95% interval over 40 independent repeats. The gray shaded areas indicate regions in
which the Chimera tolerance for that objective is not satisfied.

tion using Streamlit. The two case studies presented, on
the categorical optimization of chemical reaction condi-
tions and the multi-objective design of redox active ma-
terials, show how Olympus allows researchers to quickly
benchmark numerous optimization strategies and gain in-
sight into their expected behaviour on realistic tasks.

CODE AND DATA AVAILABILITY

Olympus is available in its entirety on
GitHub (https://github.com/aspuru-guzik-

group/olympus/tree/main) under an MIT license.
All the code and data needed to reproduce the computa-
tional experiments in this manuscript are also included
in this repository. Olympus is available for installation
through PyPI. The Olympus web application will be
made publicly accessible upon publication of this article
in a peer-reviewed journal.

https://github.com/aspuru-guzik-group/olympus/tree/main
https://github.com/aspuru-guzik-group/olympus/tree/main
https://pypi.org/project/olymp/
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FIG. 7. Hypervolume indicator metric used to asses the
quality and diversity of Pareto sets from the completed re-
doxmer design campaigns (i.e., after 200 optimization evalu-
ations). The common reference point is set as the worst (max-
imum) values for each objective. Values are normalized with
respect to the largest dominated hypervolume value achieved
across all campaigns.
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H.-P. Schwefel, eds.), Lecture Notes in Computer Sci-
ence, (Berlin, Heidelberg), pp. 292–301, Springer, 1998.

[75] J. Knowles, D. Corne, and M. Fleischer, “Bounded
archiving using the lebesgue measure,” in The 2003
Congress on Evolutionary Computation, 2003. CEC
’03., vol. 4, pp. 2490–2497 Vol.4, 2003.

[76] M. Li and X. Yao, “Quality evaluation of solution sets in
multiobjective optimisation: A survey,” ACM Comput.
Surv., vol. 52, mar 2019.

[77] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The
Hypervolume Indicator: Problems and Algorithms,”
ACM Computing Surveys, vol. 54, pp. 1–42, July 2021.
arXiv:2005.00515 [cs].

[78] Z. Li, P. W. Nega, M. A. N. Nellikkal, C. Dun, M. Zeller,
J. J. Urban, W. A. Saidi, J. Schrier, A. J. Norquist, and
E. M. Chan, “Dimensional Control over Metal Halide
Perovskite Crystallization Guided by Active Learning,”
Chemistry of Materials, vol. 34, pp. 756–767, Jan. 2022.
Publisher: American Chemical Society.

[79] M. Seifrid, R. J. Hickman, A. Aguilar-Granda, C. Lav-
igne, J. Vestfrid, T. C. Wu, T. Gaudin, E. J. Hopkins,
and A. Aspuru-Guzik, “Routescore: Punching the ticket
to more efficient materials development,” ACS Central
Science, vol. 8, no. 1, pp. 122–131, 2022.

[80] M. Seifrid, R. J. Hickman, A. Aguilar-Granda, C. Lav-
igne, J. Vestfrid, T. C. Wu, T. Gaudin, E. J. Hopkins,
and A. Aspuru-Guzik, “Code and Data for ”Routescore:
Punching the Ticket to More Efficient Materials Devel-
opment”,” July 2021.

[81] G. Agarwal, H. A. Doan, L. A. Robertson, L. Zhang,
and R. S. Assary, “Discovery of Energy Storage Molec-
ular Materials Using Quantum Chemistry-Guided Mul-
tiobjective Bayesian Optimization,” Chemistry of Ma-
terials, vol. 33, pp. 8133–8144, Oct. 2021.

[82] C. Kim, T. Doan Huan, S. Krishnan, and R. Ram-
prasad, “A hybrid organic-inorganic perovskite
dataset,” Scientific Data, vol. 4, no. 170057, pp. 1–11,
2017.



17

[83] E. Soedarmadji, H. S. Stein, S. K. Suram, D. Guevarra,
and J. M. Gregoire, “Tracking materials science data
lineage to manage millions of materials experiments and
analyses,” npj Computational Materials, vol. 5, pp. 1–9,
July 2019.

[84] H. S. Stein, D. Guevarra, A. Shinde, R. J. R. Jones,
J. M. Gregoire, and J. A. Haber, “Functional mapping
reveals mechanistic clusters for OER catalysis across
(Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space,”
Materials Horizons, vol. 6, pp. 1251–1258, July 2019.

[85] D. Bash, Y. Cai, V. Chellappan, S. L. Wong, X. Yang,
P. Kumar, J. D. Tan, A. Abutaha, J. J. Cheng, Y.-F.
Lim, et al., “Multi-fidelity high-throughput optimiza-
tion of electrical conductivity in p3ht-cnt composites,”
Advanced Functional Materials, p. 2102606, 2021.

[86] F. Mekki-Berrada, Z. Ren, T. Huang, W. K. Wong,
F. Zheng, J. Xie, I. P. S. Tian, S. Jayavelu, Z. Mah-
foud, D. Bash, et al., “Two-step machine learning en-
ables optimized nanoparticle synthesis,” npj Computa-
tional Materials, vol. 7, no. 1, pp. 1–10, 2021.

[87] S. Sun, A. Tiihonen, F. Oviedo, Z. Liu, J. Thapa,
Y. Zhao, N. T. P. Hartono, A. Goyal, T. Heumueller,
C. Batali, et al., “A data fusion approach to optimize
compositional stability of halide perovskites,” Matter,
vol. 4, no. 4, pp. 1305–1322, 2021.

[88] J. R. Deneault, J. Chang, J. Myung, D. Hooper,
A. Armstrong, M. Pitt, and B. Maruyama, “Toward au-
tonomous additive manufacturing: Bayesian optimiza-
tion on a 3d printer,” MRS Bulletin, pp. 1–10, 2021.

[89] A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell,
A. A. Bedermann, J. Torosian, B. Yue, K. F. Jensen,
and T. F. Jamison, “Reconfigurable system for auto-
mated optimization of diverse chemical reactions,” Sci-
ence, vol. 361, pp. 1220–1225, Sept. 2018.

[90] D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher,
and A. G. Doyle, “Predicting reaction performance in
C–N cross-coupling using machine learning,” Science,
vol. 360, no. 6385, 2018.

[91] I. M. Sobol’, “On the distribution of points in a cube and
the approximate evaluation of integrals,” Zhurnal Vy-
chislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 7,
no. 4, pp. 784–802, 1967.

[92] M. J. Anderson and P. J. Whitcomb, DOE simplified:
practical tools for effective experimentation. CRC Press,
2016.

[93] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statis-
tics for experimenters: design, innovation and discov-
ery, vol. 2. 2005.

[94] R. A. Fisher, The design of experiments. Oliver and
Boyd; Edinburgh; London, 1937.

[95] H. B. Curry, “The method of steepest descent for non-
linear minimization problems,” Quarterly of Applied
Mathematics, vol. 2, no. 3, pp. 258–261, 1944.

[96] H. Bouwmeester, A. Dougherty, and A. V. Knyazev,
“Nonsymmetric preconditioning for conjugate gradient
and steepest descent methods,” Procedia Computer Sci-
ence, vol. 51, pp. 276–285, 2015.

[97] M. R. Hestenes, E. Stiefel, et al., “Methods of conju-
gate gradients for solving linear systems,” Journal of
research of the National Bureau of Standards, vol. 49,
no. 6, pp. 409–436, 1952.

[98] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algo-
rithm 778: L-bfgs-b: Fortran subroutines for large-
scale bound-constrained optimization,” ACM Transac-

tions on Mathematical Software (TOMS), vol. 23, no. 4,
pp. 550–560, 1997.

[99] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited
memory algorithm for bound constrained optimization,”
SIAM Journal on scientific computing, vol. 16, no. 5,
pp. 1190–1208, 1995.

[100] J. Nocedal and S. J. Wright, “Sequential quadratic pro-
gramming,” Numerical optimization, pp. 529–562, 2006.

[101] D. Kraft et al., “A software package for sequential
quadratic programming,” 1988.

[102] W. Huyer and A. Neumaier, “Snobfit–stable noisy op-
timization by branch and fit,” ACM Transactions on
Mathematical Software (TOMS), vol. 35, no. 2, pp. 1–
25, 2008.

[103] D. J. Wales and J. P. Doye, “Global optimization
by basin-hopping and the lowest energy structures of
lennard-jones clusters containing up to 110 atoms,”
The Journal of Physical Chemistry A, vol. 101, no. 28,
pp. 5111–5116, 1997.

[104] J. A. Nelder and R. Mead, “A simplex method for func-
tion minimization,” The computer journal, vol. 7, no. 4,
pp. 308–313, 1965.

[105] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagné, “Deap: Evolutionary al-
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S.1. LIST OF NEW DATASETS

A. diffvap crystal

FIG. S1. Experiment setup and result classification for vapor diffusion crystallization.
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The diffvap crystal dataset reports the results for high-throughput antisolvent vapor diffusion crystallization of
metal halide perovskitoids. This dataset contains 918 experimental measurements previously described in Refs.19,78

Briefly, two glass vials were used for each reaction. The α vial, which contained a solution mixture of organoammonium
halide salt, inorganic halide (lead iodide or bromide), solvent, and formic acid, and the β vial, which contained the
volatile antisolvent (dichloromethane), were placed in a sealed chamber at an elevated temperature to allow vapor
diffusion from the β vial to the α vial. The experimental setup is depicted in Fig. S1. The experimental outcome is
a qualitative description of crystal growth. The crystal score objective has 4 options (ordered from least to most
desirable): clear solution (no solid), fine powder, small crystallites, and large (> 0.1 mm) crystallites. We train an
ordinal regression emulator on this dataset (see SI Sec. S.3 for further details).

Technically, the diffvap crystal dataset features a priori known constraints on the reagent concentration space
and the nature of the automated experiments. The α vial solution results from mixing a stock solution of organic
halide, a stock solution of organic halide and lead halide, formic acid, and the required amount of solvent to reach
the desired concentrations. Thus the composition of the α vial is constrained to the convex hull defined by the stock
solution composition, which are in turn limited by the solubility of the lead halide and organoammonium halide salts.
Although optimization over constrained domains is within the ability of several experiment planners in Olympus,130

we do not provide a known constraints module here, and reserve its implementation for future work. Instead, we
assign infeasible compositions (the compositions cannot be reached using stock solutions) with the least desirable
crystal score, clear solution.

TABLE S3. Parameter space for the diffvap crystal dataset. All concentrations and volumes were measured at the beginning
of the reaction.

Parameter Kind Range/num options Description Descriptors

organic categorical 17 organic halide identity Yes

organic molarity continuous [0.01434− 7.3935] concentration of organic halide (mol/L) N/A

solvent categorical 3 solvent identity Yes

solvent molarity continuous [1.05569− 12.79558] concentration of solvent (mol/L) N/A

inorganic molarity continuous [0.0− 2.26115] concentration of inogranic halide (mol/L) N/A

acid molarity continuous [0.0− 22.42276] concentration of formic acid (mol/L) N/A

alpha vial volume continuous [0.000149, 0.000744] volume of α vial (L) N/A

beta vial volume continuous [0.001, 0.0008] volume of β vial (L) N/A

reaction time discrete 3 vapor diffusion time (second) N/A

reaction temperature discrete 3 vapor diffusion temperature (Celsius) N/A

TABLE S4. Objectives for the diffvap crystal dataset. Note that the objective here is an ordinal variable.

Objective Description Goal

crystal score qualitative description of perovskitoid crystallization maximize

B. dye lasers

The dye lasers dataset reports computed photophysical properties for 3458 organic molecules synthesized from
three groups of molecular building blocks – A, B, and C (resulting in A-B-C-B-A pentamers).79 Three syntheses are
used: iterative Suzuki-Miyaura cross-coupling reactions, nucleophilic aromatic substitutions and Buchwald-Hartwig
aminations (depicted in Figure S2). Each molecule was subjected to a computational protocol consisting of chem-
informatic, semi-empirical and ab initio quantum chemical steps to compute absorption and emission spectra and
fluorescence rates. The objectives of this dataset, in order of decreasing importance are i) the peak score, which is a
dimensionless quantity given by the fraction of the fluorescence power spectral density that falls within the 400− 460
nm region, ii) the spectral overlap of the absorption and emission spectra, and iii) the fluorescence rate.
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FIG. S2. The three syntheses used for the symmetric A-B-C-B-A pentamers in the dye lasers dataset. a) iterative Suzuki-
Miyaura cross-coupling reaction, b) nucleophilic aromatic substitution, c) Buchwald-Hartwig amination.

TABLE S5. Parameter space for the dye lasers dataset.

Parameter Kind Range / num options Description Descriptors

A fragment categorical 14 terminal fragment None

B fragment categorical 13 bridge fragment None

C fragment categorical 19 core fragment None

TABLE S6. Objectives for the dye lasers dataset.

Objective Description Goal

Peak score fraction of fluorescence spectra in 400−460 nm region [a.u.] maximize

Spectral overlap overlap of absorption and emission spectra [a.u.] minimize

Fluorescence rate fluorescence rate constant [ns−1] maximize

FIG. S3. Markush structure of the benzothiadiazole scaffold, along with all the potential substituents in the redoxmers dataset.
The entire design space consists of 1408 candidates (2 R1 × 8 R2 × 8 R3 × 11 R4 options).

C. redoxmers

The redoxmers dataset reports maximum absorption wavelengths, reduction potentials against a Li/Li+ reference
electrode, and solvation free energies computed using DFT for a dataset of 1408 benzothiadiazole derivatives.81 The
molecules in this dataset are screened as candidates for self-reporting redox-active materials for non-aqeuous redox
flow batteries. The Markush structure of the benzothiadiazole scaffold, along with all the potential substituents are
shown in Figure S3. We provide simple physicochemical descriptors for each of the substituents.
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TABLE S7. Parameter space for the redoxmers dataset.

Parameter Kind Range / num options Description Descriptors

R1 substituent categorical 2 substituted group at R1 Yes

R2 substituent categorical 8 substituted group at R2 Yes

R3 substituent categorical 8 substituted group at R3 Yes

R4 substituent categorical 11 substituted group at R4 Yes

TABLE S8. Objectives for the redoxmers dataset.

Objective Description Goal

max absorption difference absolute difference between λmax and 375 nm [nm] minimize

reduction potential reduction potential against Li/Li+ reference electrode [V] minimize

solvation free energy computed solvation free energy (acetonitrile solvent) [eV] minimize

D. perovskites

The perovskites dataset reports simulated bandgaps (HSE06 level of theory) for 192 hybrid organic-inorganic
perovskite (HOIP) materials.82 The HOIP candidates of this dataset are designed from a set of 4 different halide
anions, 3 different group-IV cations and 16 different organic anions. Electronic and geometric descriptors of the
HOIP components are also provided. We characterize the inorganic constituents (anion and cation) by their electron
affinity, ionization energy, mass, and electronegativity. Organic components are described by their HOMO and LUMO
energies, dipole moment, atomization energy, radius of gyration, and molecular weight.

TABLE S9. Parameter space for the perovskites dataset.

Parameter Kind Range / num options Description Descriptors

organic categorical 16 organic anion Yes

cation categorical 3 group-IV cation Yes

anion categorical 4 halide anion Yes

TABLE S10. Objectives for the perovskites dataset.

Objective Description Goal

HSE06 gap bandgap from HSE06 level of theory [eV] minimize

E. oer plate a − oer plate d

The oer plate datasets comprise 4 high-thoughput screens for oxygen evolution reaction (OER) activity by sys-
tematically exploring high-dimensional chemical spaces.25,83,84 The four datasets each contain a discrete library of
2121 catalysts, comprising all unary, binary, ternary and quaternary compositions from unique 6 element sets with 10
at% intervals. The composition systems for each of the four datasets are as follows, a) Mn-Fe-Co-Ni-La-Ce, b) Mn-Fe-
Co-Ni-Cu-Ta, c) Mn-Fe-Co-Cu-Sn-Ta, and d) Ca-Mn-Co-Ni-Sn-Sb. During the optimizations, experiment planning
strategies traverse the entire standard 6-simplex of catalyst compositions. Stein et al.84 report only unary, binary,
ternary and quaternary compositions from 6 element sets with 10 at% intervals. For the compositions whose overpo-
tentials are not reported in the original dataset, i.e., the quinary and senary compositions, a probabilistic emulator is
used to produce a virtual measurement. We do not claim that these extrapolated values are quantitatively accurate
with respect to experiment, only that they are reasonable values for overpotentials with respect to measured values.
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The oer plate datasets feature an additional constraint that valid parameters must be on the 6-simplex. To enforce
this, we allow the experiment planner to operate on the standard 5-cube, and map proposals to the 6-simplex using
a deterministic transformation before they are processed by the emulator.

TABLE S11. Parameter space for the oer plate datasets.

Parameter Kind Range / num options Description Descriptors

mat 1 continuous [0.0− 1.0] fractional composition of system material 1 [a.u.] N/A

mat 2 continuous [0.0− 1.0] fractional composition of system material 2 [a.u.] N/A

mat 3 continuous [0.0− 1.0] fractional composition of system material 3 [a.u.] N/A

mat 4 continuous [0.0− 1.0] fractional composition of system material 4 [a.u.] N/A

mat 5 continuous [0.0− 1.0] fractional composition of system material 5 [a.u.] N/A

mat 6 continuous [0.0− 1.0] fractional composition of system material 6 [a.u.] N/A

TABLE S12. Objectives for the oer plate datasets.

Objective Description Goal

overpotential OER overpotential [V] minimize

F. p3ht

The p3ht dataset reports the electrical conductivity of composite thin films prepared using a machine learning-driven
automated flow mixing setup with a high-throughput drop-casting system.85 Regio-regular poly-3-hexylthiophene (rr-
P3HT) is combined with 4 types of carbon nanotubes (CNTs), leading to to different morphologies and crystaline
structures which modulate the electrical conductivity of the thin film. The types of CNTs used in the study are i)
long single wall CNTs (l-SWNTs, 5-30 µm), ii) short single wall CNTs (s-SWNTs, 1-3 µm), iii) multi-walled CNTs
(MWCNTs), and iv) double-walled CNTs (MWCNTs). The films are processed by optical and electrical diagnostics
to asses their electrical conductivity, which is meant to be maximized.

TABLE S13. Parameter space for the p3ht dataset.

Parameter Kind Range / num options Description Descriptors

p3ht content continuous [15.0− 96.27] rr-P3HT polymer content [a.u.] N/A

d1 content continuous [0.0− 60.0] l-SWNT carbon nanotube content [a.u.] N/A

d2 content continuous [0.0− 70.0] s-SWNT carbon nanotube content [a.u.] N/A

d6 content continuous [0.0− 85.0] MWCNT carbon nanotube content [a.u.] N/A

d8 content continuous [0.0− 75.0] DWCNT carbon nanotube content [a.u.] N/A

TABLE S14. Objectives for the p3ht dataset.

Objective Description Goal

conductivity electrical conductivity [S/cm] maximize

G. agnp

The agnp dataset is the result of an optimization of silver nanoparticles (AgNPs) for targeted absorbance spectra
using a machine learning-driven high-throughput microfluidic platform.86 The AgNP synthesis was carried out with
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a droplet-based platform with 5 continuous-valued parameters. Four of the parameters (QAgNO3
, QPVA, QTSC, and

Qseed) are flow rate ratios, where Qi is the ratio between the flow rate of reactant i and the total aqueous flow rate. The
fifth parameter, Qtotal, is the total flow rate. The objective of the optimization is the theoretical absorbance spectrum
of triangular prism AgNPs with 50 nm edges and 10 nm heights as calculated by plasmon resonance simulation using
discrete dipole scattering. The resulting value is termed the “spectrum score”, whose value is to be maximized.

TABLE S15. Parameter space for the agnp dataset.

Parameter Kind Range / num options Description Descriptors

QAgNO3
continuous [4.53− 42.80981595] silver nitrate flow rate ration [%] N/A

QPVA continuous [9.999518− 40.00101474] polyvinyl alcohol flow rate ratio [%] N/A

QTSC continuous [0.5− 30.5] trisodium citrate flow rate ratio [%] N/A

Qseed continuous [0.498851653− 19.5] silver seed flow rate ratio [%] N/A

Qtotal continuous [200.0− 983.0] total (oil and aqueous phases) flow rate [µL/min] N/A

TABLE S16. Objectives for the agnp dataset.

Objective Description Goal

spectrum score similarity of experimental spectra to theoretical spectra [a.u.] maximize

H. thin films

The thin films dataset reports the results of a closed-loop machine-learning driven optimization of the stability
of lead iodide perovskite materials that suffer from heat- and moisture-induced degradation.87 The material search
space is the five-element space CsxMAyFA1−x−yPbI3. Thin-film samples are spin-coated before being examined under
85% relative humidity and 85◦C. The objective of this dataset is minimization of the perovskite material’s instability
index, which is defined as the integrated color change of the films over the accelerated degradation period.

TABLE S17. Parameter space for the thin films dataset.

Parameter Kind Range / num options Description Descriptors

CsPbI continuous [0.0− 1.0] fractional composition of CsPbI N/A

FAPbI continuous [0.0− 1.0] fractional composition of FAPbI N/A

MAPbI continuous [0.0− 1.0] fractional composition of MAPbI N/A

TABLE S18. Objectives for the thin films dataset.

Objective Description Goal

instability index integrated color change over degradation period [a.u.] minimize

I. crossed barrel

The crossed barrel dataset reports the results from a data-driven optimization of 3D printed parts for their
mechanical properties (in this case, their toughness).27 A platform which combines additive manufacturing, robotics,
and mechanical testing was employed. The system prints a crossed barrel family of structures, which are supported by
n hollow columns with outer radius r and thickness t, twisted at an angle θ. After printing, the structures are subjected
to uni-axial compression. The toughness objective is then recorded as the area under the resulting force-displacement
curve, and is intended to be maximized.
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TABLE S19. Parameter space for the crossed barrel dataset.

Parameter Kind Range / num options Description Descriptors

n discrete 6− 12 number of hollow columns N/A

θ continuous [0.0− 200.0] twist angle of the columns [degrees] N/A

r continuous [1.5− 2.5] outer radius of the columns [mm] N/A

t continuous [0.7− 1.4] thickness of the hollow columns [mm] N/A

TABLE S20. Objectives for the crossed barrel dataset.

Objective Description Goal

toughness mechanical toughness [J] maximize

J. autoam

The autoam dataset reports the result of an autonomous optimization of four continuous-valued 3d printing pa-
rameters to optimize the geometry of the leading segment of printed lines to target specifications.88 The objective is
termed the “shape score”, which measures the similarity between the printed line and the target specifications, and
should be maximized.

TABLE S21. Parameter space for the autoam dataset.

Parameter Kind Range / num options Description Descriptors

prime delay continuous [0.0− 5.0] delay before deposition commencement [s] N/A

print speed continuous [0.1− 10.0] deposition rate [mm s−1] N/A

x offset correction continuous [−1.0− 1.0] x-component of offset vector [mm] N/A

y offset correction continuous [−1.0− 1.0] y-component of offset vector [mm] N/A

TABLE S22. Objectives for the autoam dataset.

Objective Description Goal

shape score similarity between printed line and target specifications [a.u.] maximize
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K. suzuki i − suzuki iv

FIG. S4. a) General scheme for Suzuki–Miyaura cross-coupling of two heterocycles in the presence of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) and THF/water. b) Structure of the substrates in each of the four Suzuki-Miyaura
case studies (corresponding to suzuki i - suzuki iv datasets).

The datasets suzuki i − suzuki iv report yeild and catalyst turnover number for flow-based Suzuki-Miyaura
cross-coupling reactions with varying substrates.131 There are three continuous parameters (temperature, residence
time, and catalyst loading) and one categorical parameter (Pd catalyst ligand). The objective is to simultaneously
maximize both the yield and catalyst turnover number.

TABLE S23. Parameter spaces for the suzuki i − suzuki iv datasets.

Parameter Kind Range / num options Description Descriptors

ligand categorical 8 Pd catalyst ligand None

res time continuous [60.0− 600.0] reaction residence time [s] N/A

temperature continuous [30.0− 110.0] reaction temperature [◦C] N/A

catalyst loading continuous [0.498− 2.515] catalyst loading fraction [a.u.] N/A

TABLE S24. Objectives for the suzuki i − suzuki iv datasets.

Objective Description Goal

yield reaction yield [%] maximize

turnover catalyst turnover number [prod/cat] maximize

L. suzuki edbo

The suzuki edbo dataset reports yields for a Suzuki-Miyaura coupling reaction preformed on the nanomole scale
using a automated flow-based synthesis platform.14,89 The reaction scheme, along with the search space is presented
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in Figure S5. This dataset consists of 5 categorical parmeters: the boronic acid derivative electrophile, aryl halide
nucleophile, base used in the deprotonation step, Pd catalyst ligand, and solvent. Collectively, there are 3696 unique
reactions.

FIG. S5. Reaction scheme for suzuki edbo dataset.

TABLE S25. Parameter space for the suzuki edbo dataset.

Parameter Kind Range / num options Description Descriptors

electrophile categorical 4 boronic acid derivative Yes

nucleophile categorical 3 aryl halide Yes

base categorical 7 base used in deprotonation step Yes

ligand categorical 11 Pd catalyst ligand Yes

solvent categorical 4 solvent Yes

TABLE S26. Objectives for the suzuki edbo dataset.

Objective Description Goal

yield reaction yield [%] maximize

M. buchwald a − buchwald e

FIG. S6. Reaction scheme for the Buchwald-Hartwig datasets.

The buchwald datasets comprise 5 datasets which each report the yield of Pd-catalyzed Buchwald-Hartwig am-
ination reactions of aryl halides with 4-methylaniline in the presence of varying isoxazole additives, Pd catalyst
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ligands, and bases obtained via ultra-high-throughput experimentation.90 Each of the 5 datasets consists of 792 yield
measurements. The reaction scheme and parameter space are shown in Fig. S6.

TABLE S27. Parameter space for the Buchwald-Hartwig datasets

Parameter Kind Range / num options Description Descriptors

aryl halide categorical 3 aryl halide substrate (with Cl, Br or I) Yes

additive categorical 22 isoxazole additive Yes

base categorical 3 base used in deprotonation step Yes

ligand categorical 4 ligand of Pd catalyst Yes

TABLE S28. Objectives for the Buchwald-Hartwig datasets

Objective Description Goal

yield yield of Buchwald-Hartwig amination reaction [%] maximize

S.2. LIST OF NEW SURFACES

A. cat camel

This surface features a degenerate and pseudo-disconnected global minimum. In 2d, it has global minima at
(x0, x1) = (7, 11) and (x0, x1) = (14, 10). The categorical Camel surface is generalized from the Camel function on
continuous domains and features a degenerate and pseudo-disconnected global minimum.

B. cat michalewicz

This surface features a sharp well where the global optimum is located. The number of psuedo-local minima scales
factorially with the number of dimensions. In 2d, it features a global minima at (x0, x1) = (14, 10). The Michalewicz
surface is generalized to categorical spaces from the continuous Michalewicz function.

C. cat dejong

The cat dejong surface is inspired by the Dejong function and, as such, represents the generalization of a parabola
to categorical spaces. We therefore refer to the Dejong functions as pseudo-convex. Similar to the Ackley surface,
the Dejong surface features a well-defined global minimum if the number of options for all dimensions is odd, and a
degenerate global minimum if at least one of the dimensions features an even number of options.

D. cat slope

The cat slope surface is constructed such that the response linearly increases with the index of the option along
each dimension in the reference ordering. It presents a generalization of a plane to categorical domains.

E. cat ackley

The cat ackley surface is inspired by the Ackley path function for continuous spaces. It features a narrow funnel
around the global minimum, which is degenerate if the number of options along one (or more) dimensions is even and
well-defined if the number of options for all dimensions is odd.
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F. mult fonseca

The mult fonseca function is defined in n parameter dimensions, where −4 ≤ xi ≤ 4 ∀ i ∈ 1, . . . , n and has two
objectives, both of which are to be minimized.

f1(x) = 1− exp

[
−

n∑
i=1

(
xi −

1√
n

)2
]
, (1)

f2(x) = 1− exp

[
−

n∑
i=1

(
xi +

1√
n

)2
]
. (2)

G. mult viennet

The mult viennet function is defined in 2 parameter dimensions where −3 ≤ x1, x2 ≤ 3 and has three objectives,
all of which are to be minimized.

f1(x) = 0.5
(
x2
1 + x2

2

)
+ sin
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x2
1 + x2
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)
, (3)
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(3x1 − 2x2 + 4)2

8
+
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27
+ 15 , (4)

f3(x) =
1

(x2
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− 1.1e−(x2

1+x2
2) . (5)

H. mult zdt1

The mult zdt1 surface is the Zitzler–Deb–Thiele’s function (N1). This surface is defined between 2 and 30 parameter
dimensions where 0 ≤ xi ≤ 1 ∀ i ∈ 1, . . . , 30. There are two objectives, both of which are to be minimized.

f1(x) = x1 , (6)

f2(x) = g(x)h (f1(x), g(x)) , (7)

where

g(x) = 1 +
9

29

30∑
i=2

xi , (8)

h (f1(x), g(x)) = 1−

√
f1(x)

g(x)
. (9)

I. mult zdt2

The mult zdt2 surface is the Zitzler–Deb–Thiele’s function (N2). This surface is defined between 2 and 30 parameter
dimensions where 0 ≤ xi ≤ 1 ∀ i ∈ 1, . . . , 30. There are two objectives, both of which are to be minimized.

f1(x) = x1 , (10)

f2(x) = g(x)h (f1(x), g(x)) , (11)

where

g(x) = 1 +
9

29

30∑
i=2

xi , (12)

h (f1(x), g(x)) = 1−
(
f1(x)

g(x)

)2

. (13)
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J. mult zdt3

The mult zdt3 surface is the Zitzler–Deb–Thiele’s function (N3). This surface is defined between 2 and 30 parameter
dimensions where 0 ≤ xi ≤ 1 ∀ i ∈ 1, . . . , 30. There are two objectives, both of which are to be minimized.

f1(x) = x1 , (14)

f2(x) = g(x)h (f1(x), g(x)) , (15)

where

g(x) = 1 +
9

29

30∑
i=2

xi , (16)

h (f1(x), g(x)) = 1−

√
f1(x)

g(x)
−
(
f1(x)

g(x)

)
sin(10πf1(x)) . (17)

high
low

FIG. S7. Visualization of the analytical categorical surfaces included in Olympus. All surfaces are depicted with two parameter
dimensions and 21 options per dimension.

S.3. DESCRIPTION AND PERFORMANCE OF NEW EMULATORS

We extended the Emualtor module of Olympus to be compatible with multi-output regression. In other words,
for the datasets which contain continuous parameters and comprise multiple objectives, we train a single Bayesian
neural network (BNN) to estimate all objectives.

We also extend the Emulator module to be compatible with optimization problems with ordinal objectives. Ordinal
variables are similar to categorical parameters, except that their options have a natural ordering, but the distances
between the options are unknown. For example, the diffvap crystal dataset in Olympus targets the optimization
of process parameters for a vapour diffusion reaction in which the resulting product is analyzed qualitatively. The
crystal score objective has 4 options (ordered from least to most desirable) : clear solution, fine powder,
small crystallites, and large crystallites. We use an ordinal regression scheme to train the emulators, following
closely the approach reported by Cheng.132 Ordinal variables with n options are encoded as binary vectors, where,
for the mth option, the target vector is y = (1, 1, 1, . . . , 0, 0), where yi = 1 if i ≤ m and 0 otherwise. This encoding is
such that the output of our neural network emualtor is related to cumulative probit model for ordinal regression and
can be interpreted as a cumulative probability distribution on the n options. The remainder of the training protocol
for the BNN emulator remains the same for ordinal regression.

BNN hyperparameters for each dataset are determined using Bayesian optimization via the HyperOpt package.121

Each optimization proceeds for 50 iterations where the objective is the 5-fold cross-validated RMSD. Parity plots of our
emulator model’s predictions for single objective datasets are shown in Figure S9. Parity plots for emulator predictions
on multi-objecitve datasets are shown in Figure S10. The ordinal regression emulator for the diffvap crystal dataset
achieves a train and test set accuracy of 86.9% and 82.1%, respectively.
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high
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FIG. S8. Visualization of the analytical multi-objective optimization surfaces included in Olympus. All surfaces are depicted
with two parameter dimensions.

S.4. ESTIMATING HETEROSCEDASTIC NOISE MODELS FOR FULLY CATEGORICAL DATASETS

Olympus’ fully-categorical datasets comprise a discrete set of possible parameter settings for which a corresponding
set of measurement(s) is available. We use Bayesian neural networks (BNNs) to capture heteroscedastic aleatoric (data-
inherent) uncertainties associated with measurements such that users of Olympus can sample noisy realizations of
previous experiments in their optimization benchmarks. The BNN models are trained with variational inference.
Variational learning finds the parameters θ of a distribution on BNN weights qθ(w) which best resembles the true
Bayesian posterior on the weights. This procedure provides the predictive distribution for the output y∗ given an
unseen input instance x∗,

q∗θ (y
∗|x∗) =

∫
qθ(w)p (y∗|Fw(x∗)) dw , (18)

where Fw(·) is the output of BNN model F with weight setting w. Under a heteroscedastic model, the the BNN
output with configuration wt is (ŷ

∗
t , σ̂t) = Fwt (x

∗), where the tth Monte Carlo weight sample is drawn from qθ(w).
After T such Monte Carlo samples, the total heteroscedastic predictive uncertainty is given by the following expression,
which can be divided into contributions from epistemic and aleatoric uncertainties.

V̂ar (y∗|x∗) =
1

T

T∑
t=1

(ŷ∗t )
2 −

(
1

T

T∑
t=1

ŷ∗t

)2

︸ ︷︷ ︸
epistemic

+
1

T

T∑
t=1

σ̂2
t︸ ︷︷ ︸

aleatoric

. (19)

Epistemic uncertainty is related to machine learning model incompleteness, and could in theory be reduced in
light of more training observations and/or additional knowledge about the correct model. Aleatoric uncertainty is
associated with noise or imprecision on measurements. The latter type better aligns with the kind of uncertainty
Olympus seeks to reproduce in optimization benchmark experiments.
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FIG. S9. Emulator parity plots for the new datasets with one single objective.

For a fully-categorical dataset D = {(xi, yi)}Ni=1, we train a BNN and record its predictive aleatoric variance for

each data instance, i.e., for the ith data instance, the aleatoric variance is σ̂2
i = 1

T

∑T
t=1 σ̂

2
t (the last summation on

the RHS expression of V̂ar (y∗i |x∗
i )). The noisy objective value, ỹi, returned to the user of Olympus when calling

dataset.run() for a specific input xi is then ỹi ∼ N
(
yi, σ̂

2
i

)
. The discussion thus far considers only scalar-valued

objectives, but can be extended to multiple objectives without loss of generality.
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FIG. S10. Emulator parity plots for the suzuki i - suzuki iv datasets.

S.5. DESCRIPTION OF ACHIEVEMENT SCALARIZING FUNCTIONS

In this section, we formally define each of the achievement scalarizing functions (ASFs) used in this work. For
the purpose of this discussion, we consider a optimization task over a compact subset of Euclidean space X ⊂ Rd.
The task features an objective space Y ⊂ Rn, corresponding to set of n objective functions, f = {fi}ni=1 : X 7→ Y,
to be minimized concurrently. For parameter setting x ∈ Rd, noiseless objective values y ∈ Rn are obtained as
y = f (x). Furthermore, we assume a dataset of input-output observations D = {(xi,yi)}Ki=1 has been collected by
our optimization procedure.

A. Weighted sum

Weighted sum ASFs maps multiple objectives onto a cumulative scalar objective using a vector of weights w ∈ Rn

to produce the weighted sum

J (y;w) =

n∑
i=1

wiyi . (20)

Here, we scale each weight wi by a scaling factor αi according to the magnitude of the ith objective.

B. Chebyshev

ParEGO71,72 was introduced to extend the EGO algorithm133 to a multi-objective optimization setting, but can
be used as a general-purpose ASF geared toward expensive-to-evaluate optimization problems. ParEGO is based
around the augmented Chebyshev scalarization function. Similar to Weighted Sum, Chebyshev converts n
objective values to a single cumulative function via a parameterized scaling weight vector, w, whose value is sampled
uniformly at each optimization iteration from the set of evenly placed vectors

W =

{
w ∈ Rn|

n∑
i=1

wi = 1 ∧ ∀ i, wi = ℓ/s, ℓ ∈ {0, . . . , s}

}
. (21)
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The parameter s modulates the number of vectors in W, i.e., |W| =
(
s+n−1
n−1

)
. The value of s defaults to 100 in

Olympus. The scalar merit of an objective function is computed using the augmented Chebyshev function

J (y;w) =
n

max
i=1

(wiyi) + ρ

n∑
i=1

wiyi , (22)

where ρ is a small positive number which defaults to 0.05 in Olympus.

C. Hypervolume indicator

The hypervolume indicator is an example of a set-quality indicator, which facilitate assessment of Pareto fronts by
summarizing their characteristics (such as proximity to the Pareto front, diversity and spread) with a single scalar
value. Owing to its ease of interpretation, hypervolume is one of the most widely employed set-quality indicators? .
The hypervolume indicator maps a set of objective values D to a measure of the region dominated by that set and

bounded above by some reference point r ∈ Rn. Intuitively, the indicator provides a notion of the size of the covered
objective space or the size of the dominated space.75,77? Formally, the hypervolume indicator H given a dataset of
objective value measurements D is

H (D; r) = Λ ({q ∈ Rn | ∃p ∈ D : p ≤ q ∧ q ≤ r}) , (23)

where Λ is the Lebesgue measure. Here, for two objective space points p ∈ Rn and q ∈ Rn, the expression p ≤ q is
used to indicate that p weakly dominates q, that is pi ≤ qi ∀ 1 ≤ i ≤ n. H can also be described as the union of
hyperrectangles

H (D; r) = Λ

 ⋃
p∈D, p≤r

[p, r]

 , (24)

where [p, r] represents the hyperrectangle fixed from above by reference point r and below by p.
In most cases (including this work), the hypervolume indicator is used as an analysis tool to asses the quality and

diversity of a Pareto set after an optimization campaign has transpired. However, it can also be used as an ASF
to which aims to find solutions which maximize the dominated hypervolume. In this case, the solutions in D are
considered one at a time, which simplifies the calculation of H to the volume of the hyperrectangle with corners at y
and r,

H (y) =

n∏
i=1

ri − yi . (25)

Importantly, using the hypervolume indicator as a ASF this way produces a constraint that y ≤ r. As such, we
update r at each iteration such that each of its elements correspond to the maximum observed value for that objective
in the optimization history D.

D. Chimera

Chimera is an achievement scalarizing function which combines a priori scalarizing with lexicographic approaches,
and is created for optimization problems where the objective is expensive to evaluate. Chimera allows users to
organize multiple objectives into a hierarchy, i.e., f = {fi}ni=1 is replaced by f = (f1, . . . , fn) ordered according to a
descending hierarchy of importance (f1 is more important than f2, f2 than f3, and so on).
User-specified tolerance values ytol are provided to Chimera which indicate objective value thresholds at which the

user is satisfied (e.g., one may want to generate a molecule with a QED of at least 0.6, before prioritizing optimizing its
solubility). Whether or not some measured value of the ith objective function yi satisfies its corresponding tolerance
can be indicated by the Heaviside function, Θ

(
ytoli − yi

)
= 0 if yi ≥ ytoli and 1 if yi < ytoli . Alternatively, discontinuities
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in the cumulative function can be avoided by utilizing a smooth logistic function approximation to Θ, parameterized
by smoothing parameter τ ,

θ
(
ytoli − yi

)
=

[
1 + exp

(
−ytoli − yi

τ

)]−1

. (26)

Chimera constructs an ASF using approximate Heaviside functions to weight objective functions f . Importantly,
the resulting ASF is sensitive to only one objective function at a time in any given parameter space region. As such,
objective values yi are shifted based on the minimum of yi−1 (the next most important objective function in f) in the
parameter space regions where yi−1 does not satisfy its corresponding tolerance ytoli . This minimum value is denoted
ymin
i−1 . Chimera, χ(D;ytol) is then formulated as

χ(D;ytol) = y1θ
+
1 +

n∏
i=1

(
y1 − ymin

i−1

)
θ−i +

n∑
i=2

(
yi − ymin

i−1

)
θ+i

i−1∏
j=0

θ−m , (27)

where θ+i and θ−i are used to abbreviate θ
(
ytoli − yi

)
and θ

(
yi − ytoli

)
, respectively. We set the smoothing parameter

τ = 0.001 in all our experiments.

S.6. PLOTTING AND ANALYSIS

TABLE S29. Supported plot types in Olympus’ plotting module. n indicates that the plot type supports an arbitrary number
of parameters or objectives. † produces a separate trace subplot for each objective. ‡ produces a scatter plot of all objective
measurements with the Pareto optimal values indicated, as well as a visualization of the Pareto front. The pareto front plot
supports only one optimization campaign with one experiment planning strategy at a time.

plot kind plot type allowed param types # allowed objs

traces traces cont, dis, cat 1

traces regret traces cont, dis, cat 1

traces rank traces cat 1

traces fraction top k traces cont, dis, cat 1

num evals top k boxplot dis, cat n

regret x evals boxplot cont, dis, cat n

hypervolume boxplot cont, dis, cat ≥ 2

moo traces † traces cont, dis, cat ≥ 2

pareto front ‡ scatterplot cont, dis, cat 2−3
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