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Abstract
Our objective is to search a large candidate set of
covalent organic frameworks (COFs) for the one
with the largest equilibrium adsorptive selectivity
for xenon (Xe) over krypton (Kr) at room tem-
perature. To predict the Xe/Kr selectivity of a
COF structure, we have access to two molecular
simulation techniques: (1) a higher-fidelity, binary
grand canonical Monte Carlo simulation and (2) a
lower-fidelity Henry coefficient calculation that (a)
approximates the adsorbed phase as dilute and,
consequently, (b) incurs a smaller computational
runtime than the higher-fidelity simulation.

To efficiently search for the COF with the largest
high-fidelity Xe/Kr selectivity, we employ a multi-
fidelity Bayesian optimization (MFBO) approach.
MFBO constitutes a sequential, automated feed-
back loop of (1) conduct a low- or high-fidelity
molecular simulation of Xe/Kr adsorption in a
COF, (2) use the simulation data gathered thus
far to train a surrogate model that cheaply pre-
dicts, with quantified uncertainty, the low- and
high-fidelity simulated Xe/Kr selectivity of COFs
from their structural/chemical features, and then
(3) plan the next simulation (i.e., choose the next
COF and fidelity) in consideration of balancing

exploration, exploitation, and cost.
We find that MFBO acquires the optimal COF

among the candidate set of 609 structures using
only 38 low-fidelity and nine high-fidelity simula-
tions, incurring only 2.5%, 5% on average, and
18% on average of the computational runtime
of an exhaustive, random, and single-fidelity BO
search, respectively.

TOC image:

Introduction
Bayesian optimization for materials discov-
ery

The discovery and development of new materials
is vital for both sustaining and technologically-
advancing our society. Computational meth-
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ods, including electronic structure calculations,
molecular simulations, and materials informatic-
s/machine learning, can predict the properties
of materials and thus be employed to optimize,
screen, and design new materials rapidly and cost-
effectively—accelerating the rate of materials op-
timization and discovery.1–5

Bayesian optimization (BO)6–9 combines super-
vised machine learning, uncertainty quantification,
and decision-making algorithms to automatically
and efficiently design a sequence of experiments,
in the lab or a computer simulation, to find ma-
terials with an optimal property for some appli-
cation.10 Given (i) a pool or space11 of candi-
date materials and (ii) an experimental protocol
(in the lab or a simulation) to measure/evalu-
ate/predict the relevant property of a material,
BO iteratively designs experiments (i.e., chooses
materials to subject to an experiment) to find the
optimal material with the fewest (costly) experi-
ments. The two ingredients of BO for automated
experiment planning are:

• a surrogate1 model, a supervised ma-
chine learning model that computationally
predicts—inexpensively, and with quantified
uncertainty—the property of any material
from its compositional, chemical, and/or
structural features.

• an acquisition function, which uses the sur-
rogate model to score each material accord-
ing to its utility for the next experiment.
The acquisition function is designed to bal-
ance (i) exploitation (”acquire a material
with the optimal predicted property”) to
greedily pursue the material we believe may
be optimal with the limited information we
currently possess and (ii) exploration (”ac-
quire a material whose predicted property is
highly uncertain”) to gather more informa-
tion about the structure-property relation-
ship.

The ”experiment-analysis-plan” feedback loop12

that constitutes BO (see Fig. 1) iterates through
(i) conduct an experiment to obtain a (material,

1“surrogate” for the experiment

Figure 1: Standard Bayesian optimization
(BO) of materials constitutes a feedback loop
of (i) conduct an experiment, (ii) analyze the data
collected thus far to construct a surrogate model
of the experiment, and (iii) plan the next experi-
ment in consideration of balancing exploration and
exploitation.

property) observation, (ii) update the surrogate
model in light of this new experimental data, then
(iii) select the next material for an experiment
by maximizing the acquisition function. Com-
pared to random search, BO leverages the surro-
gate model to make principled decisions balancing
the exploration-exploitation trade-off so as to un-
cover the optimal material early in the sequential
search. Because the acquisition function and op-
timization algorithm negate the need for humans
to design the experiments inside the experiment-
analysis-plan feedback loop, BO can orchestrate
autonomous, ”self-driving” labs12–18 that employ
automated instrumentation and/or robots to con-
duct a sequence of experiments with the goal
of resource-efficient materials discovery and op-
timization.

BO has been deployed for the optimization
and discovery of many different materials19–22

in the lab or a computer simulation, includ-
ing nanoporous materials,23–26 nanoparticles,27

light emitting diodes,28 carbon nanotubes,29 pho-
tovoltaics,30–32 additively manufactured struc-
tures,33 polymers,34–38 thermoelectrics,39 anti-
microbial active surfaces,40 quantum dots,41 lu-
minescent materials,42 catalysts,43–45 thin films,46

and solid chemical propellants.47 More, BO has
been used to optimize processes to synthesize ma-
terials and chemicals48–51,51 or to employ materials
for an industrial-scale task.52
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Multi-fidelity Bayesian optimization for ma-
terials discovery

Often, we have multiple options of different exper-
iments to measure/evaluate/predict the relevant
property of the material—experiments that trade
(1) fidelity, i.e. the extent to which the exper-
iment faithfully measures/evalautes/predicts the
property of the material, for (2) affordability. For
example, a computer simulation is usually a low-
fidelity and -cost estimation of the material prop-
erty compared to a high-fidelity and -cost mea-
surement of the material property in the labora-
tory.

Multi-fidelity Bayesian optimization
(MFBO)9,53 takes advantage of multiple
types of experiments that trade-off fidelity and
affordability to search for a material with an
optimal property while incurring the minimal
cost.54 MFBO modifies the experiment-analysis-
plan loop of standard BO in Fig. 1 by extending:
(i) the surrogate model, to (a) predict the
property of materials according to experiments
of all fidelities and (b) capture the correlations
between the material properties according to
each experimental fidelity, enabling observed
outcomes of low-fidelity experiments to inform
predicted outcomes of high-fidelity experiments,
and (ii) the acquisition function, to pick the next
material and the next experimental fidelity, while
balancing exploration, exploitation, and the cost
of the different experiments. In turn, MFBO
leverages low-fidelity experiments to cheaply
scope out which regions of materials space
contain (i) poor-performing materials, to avoid
wasting resources on high-fidelity experiments
there, and (ii) high-performing materials, to focus
high-fidelity experiments there. MFBO (or its
parent, multi-information-source BO55) has been
scarcely applied to materials discovery.54,56–58

Our contribution

In this work, we employ MFBO to search a pool of
∼600 covalent organic framework (COF) crystal
structures59 for the one with the highest simu-
lated xenon/krypton selectivity at room temper-
ature, while incurring the minimal computational

expense. We are armed with two molecular sim-
ulation methods to predict the Xe/Kr selectiv-
ity of a COF: (higher-fidelity & -cost) Markov-
chain Monte Carlo simulation of the binary grand-
canonical ensemble, where the COF hosts multiple
adsorbates (both Xe and Kr) during the simula-
tion; and, (lower-fidelity & -cost) Monte Carlo in-
tegration to calculate the Xe and Kr Henry coeffi-
cients in the COF, which makes the dilute approx-
imation, so the COF hosts only a single adsorbate
during the simulation. Our MFBO routine em-
ploys (i) a multi-fidelity Gaussian process (GP)60

surrogate model to predict the simulated Xe/Kr
selectivity of a COF from its structural and chemi-
cal features and (ii) a cost-aware, multi-fidelity ex-
pected improvement61 acquisition function to de-
sign the next simulation. MFBO acquires the COF
with the largest high-fidelity simulated Xe/Kr se-
lectivity using only 38 low- and nine high-fidelity
simulations, incurring only 2.5%, 5% on aver-
age, and 18% on average of the computational
run time of a high-fidelity exhaustive search, ran-
dom search, and single-fidelity BO, respectively.
More, MFBO robustly out-performs single-fidelity
BO, over randomly chosen COFs used to initialize
the surrogate model. Our results demonstrate the
promise of MFBO to cost-effectively discover ma-
terials for a variety of applications when in posses-
sion of multiple options of laboratory experiments
and/or computer simulations, that trade fidelity
for affordability, to measure/evaluate/predict the
property of materials.

Box 1: COFs for Xe/Kr Separations

Xe/Kr separations. The noble gases
xenon (Xe) and krypton (Kr) have many
uses/applications (e.g. lighting, insulation
in multi-pane windows, propellant for ion
thrusters, anesthesia, and imaging).62,63 The
majority of Xe and Kr production is via their
isolation from air (abundance: Xe, 0.09 ppm,
Kr, 1.1 ppm62) via distillation at cryogenic
temperatures. Particularly, the production of
pure O2 and N2 from air via cryogenic distil-
lation produces a byproduct stream enriched
with both Xe and Kr; this mixture is then
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subject to an additional cryogenic distillation
to obtain pure Xe and Kr.62,63 Note, distilla-
tion exploits the difference in boiling points of
Xe and Kr, −108.1 ◦C and −153.2 ◦C, respec-
tively, to separate them.64

COFs. Covalent organic frameworks
(COFs) are nanoporous, crystalline materials
composed of organic molecules linked by
covalent bonds to form an extended (2D
or 3D) network. COFs tend to exhibit high
internal surface areas and chemical and
thermal stability.65,66 More, the modular
nature of COF synthesis, as well as their
post-synthetic modifiability, enables a vast
number of different COF structures to be
realized.

COFs for Xe/Kr separations. As
opposed to energy-intensive cryogenic distil-
lation, nanoporous materials, such as COFs,
could be used to more efficiently separate Xe
from Kr, at room temperature, via selective
adsorption.64,67 Much research is focused
on (i) experimentally synthesizing68–70 or
(ii) computationally designing,71–82 us-
ing molecular simulations of adsorption,
nanoporous materials for Xe/Kr separations—
i.e., materials with high Xe/Kr selectivity, Xe
capacity, stability, and fast adsorption kinetics.

Illustration of an idealized COF-based Xe/Kr
separation. A column is packed with COF

adsorbent material. The Xe/Kr mixture is fed to
the column. The COF selectively adsorbs the Xe,
letting the Kr pass through the column. After the
adsorbent is saturated with Xe, heating or pulling

vacuum desorbs the Xe in the COF and
regenerates it for another cycle of adsorption.

Results

Problem setup
We possess a candidate set X of 609
experimentally-reported covalent organic frame-
works (COFs)59 for the task of Xe/Kr separations.

Our objective is to find the COF x? ∈ X
that exhibits the highest equilibrium adsorptive
Xe/Kr selectivity (:= y ) when immersed in a
20 mol%/80 mol% Xe/Kr mixture at 1 bar and
298 K.

To computationally predict the Xe/Kr selectiv-
ity of a COF, we are armed with two different
molecular simulation techniques. Each molecular
simulation employs Lennard-Jones interatomic po-
tentials (parameters from Universal Force Field83)
to describe the potential energy of a configuration
of a rigid COF hosting Xe and/or Kr adsorbate(s).
Given a COF, our choice of which simulation to
perform to predict its Xe/Kr selectivity involves a
trade-off between fidelity and computational run-
time.

High-fidelity (fidelity parameter ` := 2
3
)

simulation. Run-time: ca. 230 min.
The high-fidelity simulation constitutes a
Markov chain Monte Carlo (MC) simulation
of the COF in the binary grand-canonical
(BGC) ensemble. During the molecular sim-
ulation, generally the COF hosts both and
multiple Xe and Kr adsorbates; these ad-
sorbates enter/leave the COF from/to the
gas phase and move around in the pores
of the COF to explore configurations. The
key measurable during the BGCMC simula-
tion is the average number of adsorbates in
the COF system, 〈n〉, with n := [nXe, nKr].
Our high-fidelity prediction of the adsorp-
tive Xe/Kr selectivity of the COF is then

y (2/3) =
〈nXe〉/〈nKr〉
pXe/pKr

, (1)

with partial pressures in the gas phase pKr =

0.8 bar and pXe = 0.2 bar.

Low-fidelity (` := 1
3
) simulation.

Run-time: ca. 15 min. The low-fidelity
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prediction of the Xe/Kr selectivity of a
COF relies on the dilute approximation in
the BGC ensemble and models adsorption
in the COF with Henry’s law

〈n〉 =
[
HXe 0

0 HKr

]
p, (2)

with p := [pXe, pKr]. We compute the
Henry coefficients of Xe and Kr in the COF,
HXe and HKr, via two separate ordinary MC
integrations. The dilute approximation as-
sumes the density of adsorbed gas in the
COF is sufficiently small (i.e., small p) to
justify neglecting adsorbate-adsorbate inter-
actions; consequently, the COF hosts only
a single adsorbate during each Henry coef-
ficient simulation—making it computation-
ally cheaper than a BGCMC simulation.
Our low-fidelity prediction of the Xe/Kr se-
lectivity of the COF, then, is the ratio of
the Henry coefficients

y (1/3) =
HXe

HKr
, (3)

which follows from eqn. 1 when Henry’s law
in eqn. 2 holds.

See Methods for details about both molecular sim-
ulation techniques.

Given access to (only) these two molecular sim-
ulation techniques that trade fidelity and compu-
tational runtime, we reframe the objective as:

find the COF x? ∈ X with the highest ad-
sorptive Xe/Kr selectivity according to the high-
fidelity BGCMC simulation, y (2/3), while incurring
the minimal computational cost, measured by the
sum of run times of the (both low- and high-
fidelity) simulations we conduct to find x?.

Multi-fidelity Bayesian optimization
(MFBO) of COFs for Xe/Kr separa-
tions
We provide an overview of multi-fidelity Bayesian
optimization (MFBO) to efficiently find the COF
with the largest high-fidelity Xe/Kr selectivity.

Defining COF space (Fig. 2)

For surrogate modeling, we must define a space
in which we mathematically represent each COF
as a point in a continuous space.11 Inspired
by several computational studies revealing the
structure-property relationships of porous mate-
rials for Xe/Kr separations,71,75,79,84 we elected
to represent each COF with a vector x ∈ R14
that lies in a continuous space, listing its following
structural (computed from Zeo++85) and compo-
sitional features derived from its crystal structure:
density, gravimetric surface area, void fraction,
largest included sphere diameter, and elemental
fractions of metals, halogens, phosophorus, sul-
fur, nitrogen, silicon, hydrogen, carbon, oxygen,
and boron. See Fig. 2. We min-max normalized
the features.

An equation-free overview of MFBO (Fig. 3)

MFBO constitutes a simulation-analysis-plan
feedback loop and results in a machine-curated
sequence of high- and low-fidelity molecular sim-
ulations of Xe/Kr adsorption in candidate COFs.
Fig. 3 illustrates the feedback loop. The algo-
rithms inside the loop are designed to minimize
the computational runtime expended until we find
the COF with the largest high-fidelity simulated
Xe/Kr selectivity.

Simulation. We conduct either a low- or
high-fidelity simulation of Xe/Kr adsorption in a
COF structure to obtain its predicted Xe/Kr selec-
tivity. This generates a new data point—a COF
structure “labeled” with its simulated Xe/Kr se-
lectivity under that fidelity.

Analysis. We use this new data point to up-
date our surrogate model of the simulations. This
surrogate model is a supervised machine learn-
ing model that can, with negligible computational
runtime, predict both the low- and high-fidelity
simulated Xe/Kr selectivity of a COF not sim-
ulated before—and quantify uncertainty the un-
certainty in this prediction. The inputs to the
surrogate model for its prediction about a COF
are (cheaply computed) structural and chemi-
cal features of its crystal structure. The surro-
gate model is trained on all labeled data—i.e.,
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Figure 2: Defining COF space. We represent each COF with a vector of four structural and ten
compositional features. For example, the radar plot in (a) visualizes the raw feature vector x of the COF
whose crystal structure is in (b).

all (COF features, simulated Xe/Kr selectivity)
pairs—gathered from simulations we have con-
ducted thus far in the search. Thus, the surrogate
model summarizes our knowledge, thus far in the
search, about (i) the relationship between (a) the
structural and chemical features of the COFs and
(b) their simulated Xe/Kr selectivity and (ii) cor-
relations between the low- and high-fidelity simu-
lated Xe/Kr selectivities.

Plan. Completing the loop, we judiciously
select the (a) COF and (b) fidelity for the next
simulation. An acquisition function relies on the
surrogate model to score each (COF, fidelity) pair
according to its appeal for the next simulation;
the plan for the new simulation follows from the
(COF, fidelity) pair with the maximal score. The
acquisition function is designed to balance three
often competing desires: (i) exploitation, to select
a COF that the surrogate model predicts to have a
large high-fidelity simulated Xe/Kr selectivity; (ii)
exploration, to select a COF with a high-fidelity
simulated Xe/Kr selectivity about which the sur-
rogate model is highly uncertain; and (iii) cost re-
duction, which incentivizes choosing a low-fidelity
simulation that provides useful but incomplete in-
formation about the high-fidelity selectivity.

In practice, we cannot know for certain
when we have recovered the optimal COF. Pos-
sible strategies to terminate the iterative MFBO
search include when: (i) computational resources
are exhausted, (ii) a COF with a sufficiently large
high-fidelity Xe/Kr selectivity has been recovered,
or (iii) a large runtime has elapsed since we last
discovered a COF with an improved Xe/Kr selec-
tivity over those COFs we have acquired thus far.

The multi-fidelity surrogate model

Our multi-fidelity surrogate model treats the
fidelity-` ∈ {1

3
, 2
3
} simulated Xe/Kr selectivity of a

COF represented by x, y (`) ∈ R, as a realization of
a random variable Y (`)(x). The surrogate model
specifies a probability density for Y (`)(x). Under
this Bayesian perspective, the posterior probabil-
ity density of Y (`)(x) | D[n] at iteration n of the
MFBO search reflects our beliefs, grounded by the
simulation data collected thus far in the search,

D[n] := {([x[1], `[1]], y[1]), ..., ([x[n], `[n]], y[n])},
(4)

about the fidelity-` simulated Xe/Kr selectivity of
the COF represented by x. This density concen-
trates in the region of the line where we believe the
selectivity of the COF lies, and the spread of this
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Figure 3: Multi-fidelity Bayesian optimization of COFs for Xe/Kr separations constitutes an
iterative, machine-orchestrated feedback loop of (i) molecular simulation, (ii) updating the multi-fidelity
surrogate model of the simulations, and (iii) planning the next simulation.

density reflects our uncertainty about its selectiv-
ity. Intuitively, the mean of the posterior density
of the conditional random variable Y (`)(x) | D[n]
is a point-prediction of the fidelity-` Xe/Kr selec-
tivity of COF x, and the variance of it is a measure
of our uncertainty about the predicted selectivity.

We adopt a multi-fidelity Gaussian process
(GP)60,86,87 surrogate model:

Y (`)(x) ∼ GP (0, k([x, `], [x′, `′])) (5)

with a kernel function between two simulation se-
tups (x, `) and (x′, `′) as a scaled (by factor α, a
hyperparameter) product of a material and fidelity
kernel function:

k([x, `], [x′, `′]) = αkmat(x, x
′)kfid(`, `

′), (6)

with

kmat(x, x
′) = exp

(
−
1

2
||x− x′||2/γ2

)
(7)

kfid(`, `
′) = c + (1− `)1+δ(1− `′)1+δ. (8)

• The material kernel function kmat : R14 ×
R14 → R is a squared exponential ker-
nel with a length-scale hyperparameter γ.
Roughly, kmat quantifies the similarity be-
tween any pair of COFs. If two COFs are

nearby in COF space, they are declared to
be similar by the kernel.

• The fidelity kernel function kfid : {13 ,
2
3
} ×

{1
3
, 2
3
} → R is a down-sampling kernel60,88

with offset and power hyperparameters c
and δ. Roughly, kfid quantifies the similar-
ity between any pair of simulation fidelities.
It can take on only three distinct values—
expressing the low-low, high-high, and low-
high fidelity simulation similarities.

Empirically, GPs tend to be effective surrogate
models for Bayesian optimization of molecules in
the small-data regime.89

In Methods, we explain the meaning behind the
notation of the multi-fidelity GP in eqn. 5, fol-
lowing the Bayesian paradigm90 of (i) specifying
a prior distribution, (ii) collecting the simulation
data, then (iii) updating the prior to a posterior
distribution. The resulting posterior distribution
is Gaussian

Y (`)(x) | D[n] ∼ N (µ[n](x, `), σ2[n](x, `)) (9)

with mean

µ[n](x, `) = k
ᵀ
D[n](KD[n] + σ

2I)−1yD[n] (10)
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and variance

σ2[n](x, `) = k([x, `], [x, `])−k
ᵀ
D[n](KD[n]+σ

2I)−1kD[n]
(11)

written in terms of

• yD[n] : the vector of simulated Xe/Kr selec-
tivities of COFs we observed thus far in D[n]
(see eqn. 31)

• kD[n] : the vector giving the kernel between
(i) the COF x and fidelity ` in question and
(ii) the COFs and fidelities (x[i ], `[i ])’s in the
simulation data D[n] (see eqn. 30)

• KD[n] : the matrix giving the kernel between
the COFs and fidelities (x[i ], `[i ])’s in the
simulation data D[n] (see eqn. 29)

• σ2: the variance of the noise contaminat-
ing the outcome of our simulations (see
eqn. 26).

Intuitively:

• the mean µ[n](x, `) in eqn. 10 is a weighted
combination of the observed simulated
Xe/Kr selectivities yD[n] , with the similar-
ity between the simulation in question (x, `)
and the previously conducted simulations in
D[n] involved in forming the weights.

• the variance σ2[n](x, `) in eqn. 11 is that of
the prior reduced according to the similar-
ity between the simulation in question (x, `)
and the previously conducted simulations in
D[n].

The subscript [n] in our notation emphasizes
that the surrogate model changes with iteration
n; we expect the surrogate model to improve its
predictions as the search progresses and the sim-
ulation data D[n] grows in size.

The GP in eqn. 5 is designed to (i) incorpo-
rate our domain knowledge that COFs with similar
pore size, surface area, composition, etc. will tend
to exhibit similar Xe/Kr selectivities and (ii) learn,
from the simulation data D[n], (a) the relationship
between the structural and compositional features
of COFs in x and simulated Xe/Kr selectivity y (`)

and (b) through the fidelity kernel, correlations
between the low- and high-fidelity simulations, al-
lowing outcomes of low-fidelity simulations to in-
form us about the high-fidelity Xe/Kr selectivity
we ultimately wish to maximize. Fig. 3, middle
panel, visualizes a toy multi-fidelity GP for a one-
dimensional COF space: the dark lines show the
mean function µ(x, `); the shaded bands highlight
µ(x, `)±σ(x, `), quantifying uncertainty by show-
ing a credible interval for each predicted selectiv-
ity; and the points show the multi-fidelity data
D[n] on which the toy GP is trained.

Automated simulation planning

At the plan stage, the MFBO algorithm judi-
ciously selects the next simulation setup, complet-
ing the closed loop. This simulation plan consti-
tutes two choices: (i) the COF x[n+1] in which
to conduct simulations of Xe/Kr adsorption, and
(ii) the fidelity `[n+1] of the molecular simula-
tion. The plan is judicious because it employs (i)
the surrogate model—particularly, the posterior in
eqn. 9—and (ii) running estimates of the com-
putational runtimes of the low- and high-fidelity
simulations, {τ (1/3)[n] , τ

(2/3)
[n] }, to design the next

simulation setup, (x[n+1], `[n+1]), so as to balance
exploration, exploitation, and cost.

Particularly, we rely on an augmented, cost-
aware expected improvement acquisition function
to score the appeal of each setup (x, `) for the
next simulation. The simulation plan follows from
maximizing the acquisition function:

(x[n+1], `[n+1]) = argmax
(x,`)∈X×{ 1

3
, 2
3
}

E
[
max[0, Y (2/3)(x) | D[n] − ŷ (2/3)?[n] ]

]
· corr[Y (`)(x) | D[n], Y (2/3)(x) | D[n]] ·

(
τ
(2/3)
[n]

τ
(`)
[n]

)
.

(12)

The acquisition function being maximized is a
product of three terms:

• Expected improvement (EI): the amount
that the high-fidelity simulated Xe/Kr se-
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lectivity of COF x is expected to improve
upon the largest high-fidelity Xe/Kr selec-
tivity we observed thus far, ŷ (2/3)?[n] . Owing
to the max[0, ·] operator, the integral con-
stituting this expectation E has a contribu-
tion only for predicted high-fidelity Xe/Kr
selectivity y (2/3) greater than ŷ (2/3)?[n] . Be-
cause both (a) a large posterior variance
σ2[n](x,

2
3
) (reflecting uncertainty) and (b) a

large mean µ[n](x, 23) will contribute density
to this region, maximizing this EI term bal-
ances exploitation and exploration, by fa-
voring COFs whose predicted high-fidelity
selectivity is large and/or uncertainty.

• Correlation with the high-fidelity selectiv-
ity: the correlation between the simulated
Xe/Kr selectivity of the COF x under (i) the
fidelity-` simulation and (ii) a high-fidelity
simulation. If ` = 1/3 and this term is
small (large), this simulation setup is down-
graded (upgraded) because the outcome of
this low-fidelity simulation cannot (can) in-
form us about the high-fidelity selectivity we
ultimately wish to optimize.

• Cost ratio. The ratio of the runtime of a
high-fidelity simulation to the fidelity-` sim-
ulation, to promote low-fidelity simulations
owing to their smaller runtime.

Owing to these three components, maximizing the
acquisition function at each iteration gives a sim-
ulation plan (x[n+1], `[n+1]) for the next iteration
with a high utility per cost for our objective of find-
ing the COF with the largest high-fidelity Xe/Kr
selectivity soon.

Maximizing the acquisition function. Be-
cause (i) the acquisition function is computation-
ally cheap to evaluate and (ii) we are search-
ing over a relatively small, finite set of COFs X
(|X | = 609), we find (x[n+1], `[n+1]) at each iter-
ation via exhaustive search.

The acquired set of COFs. We refer to the
set of COFs in D[n] at iteration n, automatically
chosen by sequentially maximizing the acquisition
function, as the set of acquired COFs.

The state of MFBO performance

We judge the quality of the MFBO search at itera-
tion n by the largest high-fidelity simulated Xe/Kr
selectivity among the acquired set of COFs in D[n]:

ŷ
(2/3)?
[n] := max

1≤i≤n : `[i ]=2/3
y[i ]. (13)

Initialization

We initiate the MFBO loop at the plan stage with
a surrogate model trained on six data points D[6]:
three diverse COFs “labeled” with their simulated,
both low- and high-fidelity, Xe/Kr selectivities.
We select the initial COF as the one closest to
the center of the (normalized) COF feature space.
For the two subsequent COFs, we select (2) the
COF most distal in COF space from the initial
COF then (3) the COF with the maximal mini-
mum distance to the first two COFs.

MFBO performance
We now execute the MFBO loop in Fig. 3 to iter-
atively search for the COF with the largest high-
fidelity simulated Xe/Kr selectivity.

MFBO search efficiency curve (Fig. 4)

Fig. 4 shows the search efficiency of MBFO by
visualizing, as the MFBO search progresses, (i,
top panel) the largest high-fidelity Xe/Kr selec-
tivity among the COFs in which we’ve simulated
with high-fidelity Xe/Kr adsorption so far thus
far—ŷ (2/3)?[n] in eqn. 13, and (ii, bottom panel) the
accumulated computational runtime (see Meth-
ods for our compute hardware specifications). The
gray region highlights the n = 6 simulations used
to initialize the surrogate model.

The MFBO algorithm acquires the COF x?
(19440N2 = CuPc-pz COF91) with the largest
high-fidelity Xe/Kr selectivity y (2/3)? (18.53) after
conducting only 47 molecular simulations—nine
high-fidelity, 38 low-fidelity—incurring a compu-
tational runtime of 58 hr. Recall, there are 609
COF candidates; thus, we recovered the top COF
while circumventing many wasteful molecular sim-
ulations in non-optimal COFs.
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Figure 4: MFBO search efficiency. As the MFBO search progresses, (top) the maximum high-
fidelity Xe/Kr selectivity among the acquired COFs and (bottom) the accumulated runtime. Different
markers are used to delineate between low- and high-fidelity simulations. The gray region highlights the
initialization stage. The dashed line (top panel) indicates the maximum high-fidelity selectivity over all
COFs. For context, the histogram (top right) shows the distribution of high-fidelity selectivity over all
COFs.

For context, the distribution of high-fidelity
Xe/Kr selectivities for all COFs, shown in Fig. 4
(top right), is skewed right. This shows that
MBFO acquired the optimal COF x? from the thin
tail of the distribution.

Note the most dramatic increases in accumu-
lated runtime owe to high-fidelity simulations. De-
spite that the majority of simulations performed
were low-fidelity, the low-fidelity simulations only
account for ∼15% of the accumulated runtime to
find the optimal COF x?.

As evidence that MFBO is allocating compu-
tational resources intelligently, (1) several low-
fidelity simulations precede each high-fidelity sim-
ulation and (2) five out of six of the MFBO-

acquired COFs for high-fidelity simulations re-
sulted in an improvement of the largest high-
fidelity Xe/Kr selectivity observed.

(At the iteration preceding the acquirement of
the optimal COF, Fig. S1 shows the predictivity of
the surrogate model, and Fig. S2 shows the ob-
served correlation between low- and high-fidelity
selectivities.)

Of course, in practice, we cannot know when
we have recovered the optimal COF x?. For the
purposes of benchmarking MFBO, for this article,
we actually conducted both low- and high-fidelity
molecular simulations in all COFs, so we know
when we have acquired the optimal COF x?.
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MFBO acquisition dynamics (Fig. 5)

To gain insight into the acquisition dynamics of
MFBO, Fig. 5 visualizes the scatter of all COFs
in feature space and marks the acquired set of
COFs in D[n] at six different stages of the search.
Different marks are used for low- and high-fidelity
simulations.

We used principal component analysis (PCA) to
reduce the dimensionality of the COF feature vec-
tors {x1, ..., x609} from 14 to two, for visualiza-
tion. Each panel in Fig. 5 shows the first two
principal components of COF feature space; each
point represents a COF, colored according to its
high-fidelity Xe/Kr selectivity. Note, the COFs
with the largest high-fidelity Xe/Kr selectivities
tend to concentrate in the upper-right region of
COF PC space.

Judging by the location of the acquired set of
COFs in PC COF space, MFBO explores diverse
regions of COF space, yet concentrates its COF
acquires in the regions containing the highest per-
formers. Interestingly, each high-fidelity simula-
tion in a COF was preceded by a low-fidelity sim-
ulation in the same COF. This suggests that the
MFBO algorithm is cautious to conduct expensive
high-fidelity simulations and conservatively utilizes
the low-fidelity simulations to explore COF space.

Comparing MFBO with baseline sequential
search methods (Fig. 6)

We compare the search efficiency of MFBO with
single-fidelity (SF) BO, random search, exhaustive
search, and a two-stage screening.

Exhaustive search. An exhaustive search runs
a high-fidelity simulation of Xe/Kr adsorption in
each of the 609 COFs in X . While guaranteed to
find the optimal COF x?, an exhaustive search in-
curs a high cost because it fails to exploit (i) the
cheap, low-fidelity simulations available and (ii)
the information contained in the simulation data
D[n], about the relationship between the Xe/Kr se-
lectivity of the COFs and their structural and com-
positional features in x, as the search proceeds.

The runtime of the exhaustive search was
∼2332 hr. By comparison, MFBO incurred 2.5%

of the runtime of the exhaustive search.

Two-stage screening. A two-stage search (1)
runs a low-fidelity simulation of Xe/Kr adsorption
in each of the 609 COFs in X , then (2) (a) sorts
the COFs according to their low-fidelity simulated
Xe/Kr selectivity, in descending order, then (b)
queues this list of COFs for high-fidelity simu-
lations of Xe/Kr adsorption, working down the
list. This search strategy leverages the cheap,
low-fidelity simulations available in stage (1) to
recover the optimal COF early in the sequence
of stage (2). However, this strategy still fails to
leverage the information contained in the simula-
tion data D[n] as the search proceeds to (i) avoid
running low-fidelity simulations in every COF dur-
ing stage (1) and (ii) adjust the sequence of high-
fidelity simulations as high-fidelity simulation data
is collected in stage (2).

This two-stage search incurs a runtime of
∼189 hr to find the optimal COF x?, still more
than MFBO (58 hr).

Random search with the high-fidelity simula-
tions. A random search sequentially chooses a
COF at random (without replacement) for a high-
fidelity simulation of Xe/Kr adsorption. We con-
duct 1000 random searches and show the mean
and two standard deviations of the search effi-
ciency curves in Fig. 6a. MFBO recovers the opti-
mal COF x? with much less accumulated runtime
compared to a typical random search.

The average run time incurred during by
a random search to acquire the optimal COF is
1152 hr. By comparison MFBO incurred 5% of
the average runtime of the random search.

Single-fidelity Bayesian Optimization
(SFBO). Finally, we assess the performance
of single-fidelity (SF) BO of COFs for Xe/Kr
separations—standard Bayesian optimization with
the high-fidelity simulation of Xe/Kr adsorption
using, for a controlled comparison to MFBO,
(i) the same three COFs for initialization2, (ii)
the expected improvement acquisition function,

2Note that the initialization cost of MFBO is higher
than that of its SFBO counterpart due to the inclusion
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Figure 5: Visualizing MFBO acquisition dynamics by showing the location of COFs acquired by
MFBO in COF space as the search proceeds. Each panel shows the first two principal components of
COF space and corresponds to a different iteration of the MBFO search. Each point represents a COF,
colored according to its high-fidelity Xe/Kr selectivity. Up to that iteration, the acquired set of COFs
in D[n] are marked; COFs subject to low- vs. high-fidelity simulations are distinguished by marker type.
The arrow points to the optimal COF with largest high-fidelity Xe/Kr selectivity.

and (iii) a GP surrogate model with an identical
material kernel.

Fig. 6a shows the search efficiency curve
of SFBO compared to MFBO. SFBO incurred a
runtime of ∼315 hr, more than five times that of
MFBO (58 hr).

Robustness of MFBO performance to initial-
ization. How robust is the MFBO performance
to different initialization schemes? We conducted
100 MFBO and SFBO searches whose surrogate
model is initialized with training data from simu-
lations in three COFs: the first randomly selected
(as opposed to the COF nearest the center), the
next two chosen via max-min distance for diver-
sity. Fig. 6b shows the distribution of accumulated

of the additional low-fidelity simulations. We include the
runtime incurred for initialization.

runtimes to find the optimal COF x? over these
random initializing sets of COFs. (Each individ-
ual search efficiency trace is shown in Fig. S6.)
While there is significant variance in the runtimes
(standard deviations: 63 hr for SFBO, 25 hr for
MFBO), the distribution of the runtime of MFBO
is shifted far to the left of that of SFBO (means:
261 hr for SFBO, 58 hr for MFBO).

Conclusions
Our goal was to efficiently search a database of
∼600 COFs for the one exhibiting the largest ad-
sorptive Xe/Kr selectivity. We had access to two
molecular simulations of Xe/Kr adsorption to pre-
dict the selectivity of a COF: a high-fidelity bi-
nary grand-canonical Monte Carlo simulation and
a low-fidelity Henry coefficient calculation with
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Figure 6: Comparing the search efficiency of
MFBO to random search and single-fidelity
(SF) BO. (a) The largest high-fidelity Xe/Kr se-
lectivity among acquired COFs as a function of the
computational runtime incurred, as each search
progresses. The bands on the random search
curve show two standard deviations. (b) The dis-
tribution of computational runtimes to find the
COF with the largest high-fidelity Xe/Kr selectiv-
ity, over random selections of the COF that ini-
tializes the search. Vertical dashed lines show the
average.

a smaller runtime. We employed multi-fidelity
Bayesian optimization (MFBO) to orchestrate the
sequential search for the COF with the largest
high-fidelity Xe/Kr selectivity. MFBO constituted
an iterative feedback loop of (1) conduct a low-
or high-fidelity simulation of Xe/Kr adsorption
in a COF, (2) use the simulation data gathered
so far to train a surrogate model that predicts
the selectivity of COFs, according to both low-

and high-fidelity simulations, based on their struc-
tural and chemical features, with quantified un-
certainty, then (3) choose the COF and fidelity
for the next simulation via maximizing an ac-
quisition function that balances exploration, ex-
ploitation, and cost. MFBO acquired the opti-
mal COF among the ∼600 candidates, having the
largest high-fidelity Xe/Kr selectivity, using only
38 low-fidelity and nine high-fidelity simulations—
incurring only 5% and 22% of the average run-
time to find the top COF via random sequential
search and single-fidelity BO, respectively. Visu-
alizing the location of the acquired COFs in the
design space as the search proceeds reveals that
MFBO judiciously planned the sequence of sim-
ulations to balance exploration, exploitation, and
the cost of the two types of simulations.

Similar in spirit to multi-fidelity machine learn-
ing and two-stage search, the cheap-, low-fidelity
calculations of dilute adsorption properties could
serve as features (inputs) to a supervised machine
learning model to predict the high-fidelity adsorp-
tion property.92

Discussion
Though taking place in a computer simulation and
pertaining to the specific task of discovering COFs
for Xe/Kr separations, our study hints at the po-
tential for multi-fidelity Bayesian optimization to
reduce the time and cost to discover new mate-
rials in a variety of contexts. While the cost in
our work was computational runtime, costs will be
much more significant in the bona fide laboratory,
involving lab space, equipment/instrumentation,
reagents, salaries of operators, etc.

Generally, the performance of MFBO for ma-
terials discovery is predicated on the surrogate
model and the acquisition function. The surro-
gate model must (i) be fed features of the mate-
rials that are informative about the property (this
relies on domain knowledge) and (ii) give well-
calibrated/honest uncertainty estimates89,93 while
having a small number of training data points.
The acquisition function for experimental plan-
ning must balance exploration, exploitation, and
cost. Another factor for MFBO performance is
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the accuracy of the measurements of the material
property; a challenge in the bona fide laboratory is
that measurement noise is greater than in a com-
puter simulation3.

Future work includes (1) inventing new (a)
predictive, uncertainty-calibrated, and data-
efficient multi-fidelity surrogate models and (b)
exploration-, exploitation-, and cost-balancing
multi-fidelity acquisition functions; (2) extending
MFBO to (a) the batch setting, where experi-
ments can be done in parallel and multiple ma-
terials are selected at each iteration6,97 and (b)
the multi-objective setting,98 where we seek the
Pareto-optimal set of COFs.

Methods

The COF crystal structures
We obtained the crystal structures of the 609 COF
candidates from the Clean, Uniform, Refined with
Automatic Tracking from Experimental Database
(CURATED).59

The two molecular simulation tech-
niques to predict the Xe/Kr selectiv-
ity of a COF
The binary grand-canonical ensemble

The binary grand-canonical ensemble concerns
a crystalline COF immersed in and in thermo-
dynamic equilibrium with an 20 mol%/80 mol%
Xe/Kr gas mixture at T = 298K at P = 1 bar.
The system volume Ω comprises a replicated unit
cell of the COF that hosts Xe and Kr adsorbates.
The volume V , chemical potential of Xe and Kr
µ = [µXe, µKr ], and temperature T of the sys-
tem are fixed, whereas the number of adsorbates
n = [nXe, nKr ] hosted in the system and potential
energy E of the system fluctuate as it exchanges
adsorbates and heat with the bulk Xe/Kr gas mix-
ture.

3E.g., see Refs.94,95 pertaining to reproducibility issues
for adsorption in porous materials across labs. Self-driving
labs can alleviate reproducibility issues.96

The chemical potential µ is set by the Xe/Kr
gas mixture; the ideal gas law gives µ in terms
of the temperature T and partial pressures of Xe
and Kr, p = [pXe, pKr ]:

µg = kBT log[βpgΛ
3
g] for g ∈ {Xe,Kr}, (14)

with Λg the de Broglie wavelength of adsorbate g,
kB the Boltzmann constant, and β := (kBT )

−1.
A microstate of the system is defined by (i) the

number of adsorbates n and (ii) their positions

R(n) := [rXe,1 · · · rXe,nXe rKr,1 · · · rKr,nKr ] (15)

in the system (R(n) ∈ R3×(nXe+nKr )). Approximat-
ing the COF as rigid, the positions of the atoms
of the COF are fixed.

Let E = E(n,R(n)) be the potential energy of a
microstate (n,R(n)). Of course, E = E(n,R(n))
is COF-dependent.

In the BGC ensemble, the partition function is
a sum/integral over microstates99–101

Ξ(µ, V, T ) =∑
n∈N2≥0

eβµ·n
∏

g∈{Xe,Kr}

1

ng!Λ
3ng
g

∫
Ω

e−βE(n,R
(n))dR(n),

(16)

and the probability of a microstate is

π(n,R(n)) ∝ e−βE(n,R(n))
∏

g∈{Xe,Kr}

V ng

ng!Λ
3ng
g

eβµgng .

(17)
In each molecular simulation technique below,

the ultimate goal is to predict the expected num-
ber of adsorbates in the system under the BGC
ensemble:

〈n〉 =
(
∂ logΞ

∂(βµ)

)
β,V

, (18)

from which the Xe/Kr adsorptive selectivity fol-
lows.

The atomistic model

We model the potential energy E = E(n,R(n)) of
the system in microstate (n,R(n)) by treating the
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adsorbate-COF and adsorbate-adsorbate interac-
tions as pairwise additive and described by 12-
6 Lennard-Jones interatomic potentials (param-
eters from the Universal Force Field,83 Lorentz-
Berthelot combining rules,101 truncated to ne-
glect interactions beyond 14 Å). We apply peri-
odic boundary conditions to mimic the crystalline
COF.

Binary grand-canonical Monte Carlo simula-
tion

The high-fidelity simulation constitutes a Markov
chain Monte Carlo (MC) simulation of the sys-
tem under the BGC ensemble governed by the
probability distribution in eqn. 17. Our microstate
transition proposals include random adsorbate in-
sertions and deletions, translations, reinsertions,
and identity swaps, with acceptance rules dic-
tated by Metropolis-Hastings. Our BGCMC sim-
ulation constitutes 500 Monte Carlo cycles (de-
fined as x microstate transition proposals, with
x = max(20, nXe + nKr)) per Å3 volume of the
system. We discard the first half of the cycles for
burn-in.

Henry coefficient calculations

Henry’s law, valid under dilute conditions, follows
from eqn. 18 if we approximate the sum in Ξ
in eqn. 16 by including only the dominant terms
n ∈ {[0, 0], [1, 0], [0, 1]} at dilute conditions, giv-
ing Henry’s law in eqn. 2 with Henry coefficients

HXe = β

∫
Ω

e−βE([1,0],rXe)drXe (19)

HKr = β

∫
Ω

e−βE([0,1],rKr )drKr . (20)

For the low-fidelity prediction of Xe/Kr selec-
tivity, we compute HXe and HKr of a COF
from two ordinary Monte Carlo integrations (500
insertions/Å3), i.e. Widom particle insertions.100

Comparing runtimes

The computational cost, measured in run time, of
a high-fidelity BGCMC simulation of Xe/Kr ad-
sorption in a given COF is greater than the sum

of the costs of the two low-fidelity Henry coeffi-
cient calculations, i.e. τ (2/3) > τ (1/3). First, a
single Monte Carlo state transition tends to be
more computationally expensive for the BGCMC
simulation because, in contrast to the Henry co-
efficient calculations, generally (i) multiple adsor-
bates are present in the system and (ii) adsorbate-
adsorbate interactions are included. Second, the
high-fidelity BGCMC simulation must explore a
more voluminous state space than the Henry co-
efficient calculation in order to compute a reliable
average.

Of course, this cost comparison depends on the
number of MC cycles/insertions dedicated to each
simulation; we allocated 500 cycles/insertions per
Å3 volume of the system in an attempt to grant
each simulation with reasonably comparable errors
in the average 〈n〉.

N.b., with further approximation, the compu-
tational expense of the Henry coefficient calcula-
tions can be reduced by biasing the samples of
adsorbate configurations to lie nearby the internal
surface (pore walls) of the COF.102

Remark on high- vs. low-fidelity

We refer to the BGCMC simulation as providing
a “high-fidelity” estimate of the Xe/Kr selectivity
of a COF, but only relative to the lower -fidelity
Henry coefficient calculation. First, arguably, the
high-fidelity measurement of the adsorptive Xe/Kr
selectivity of a COF constitutes synthesizing and
characterizing it in the lab, then taking mixed-
gas adsorption measurements.103 Second, even
higher-fidelity simulations of Xe/Kr adsorption are
possible by (i) calculating the potential energy
of a configuration E = E(n,R(n)) using a ma-
chine learning model trained on energy calcula-
tions based on a higher level of theory (e.g. density
functional theory),104,105 (ii) modeling the flexibil-
ity of the COF,106 and/or (iii) modeling crystalline
defects in the COF,107 etc. If ”high-fidelity” in-
stead refers to performance in the real-world ap-
plication, we must also consider competing ad-
sorbates such as CO2 and H2O as well as other
objectives such as stability,108 thermal conductiv-
ity,109 and adsorption kinetics.110
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Software

We implemented the BGCMC and Henry coeffi-
cient calculations in PorousMaterials.jl.

Hardware

To put our reported computational runtimes in
perspective, the hardware specifications for the
compute nodes on which we ran our (serial) simu-
lations are listed in Tab. 1. We assigned each sim-
ulation to a random core based on its availability.
Though the high- and low-fidelity simulations for a
given COF are not guaranteed to run on the same
core, the specifications of each core are similar for
a reasonable comparison of runtimes.

The multi-fidelity Gaussian process
surrogate model
We explain our multi-fidelity GP in the context of
the Bayesian paradigm of (i) impose a prior distri-
bution, (ii) collect data, then (iii) in light of the
data, update the prior distribution to a posterior
distribution.

For more understanding about GPs, see
Refs.86,87

The prior distribution of Y

The prior distribution of the 2X (X = 609) ran-
dom variables of interest for our problem,

Y :=

[
Y(1/3)

Y(2/3)

]
:=



Y (1/3)(x1)
...

Y (1/3)(xX)

Y (2/3)(x1)
...

Y (2/3)(xX)


, (21)

expresses our beliefs about the simulated Xe/Kr
selectivities of the COFs under each fidelity before
any molecular simulations are conducted—i.e., be-
fore we obtain any simulation data on which to
base our beliefs.

The joint prior distribution expressed by the GP
in eqn. 5 is a Gaussian distribution with (i) a mean

of the zero-vector and (ii) a covariance matrix ex-
hibiting a block structure:

Y ∼ N
(
0, α

[
kfid(

1
3
, 1
3
)Kmat kfid(

1
3
, 2
3
)Kmat

kfid(
2
3
, 1
3
)Kmat kfid(

2
3
, 2
3
)Kmat

])
,

(22)
where Kmat,i j = kmat(xi , xj) is the COF similarity
matrix.

We elucidate the assumption behind eqn. 22 and
the intuition behind the kernel functions by in-
specting the marginal prior distribution of

• the fidelity-` simulated Xe/Kr selectivity of
a COF x,

Y (`)(x) ∼ N
(
0, α[c + (1− `)2(1+δ)]

)
.

(23)
Apparently, the hyperparameters c and δ
forming the variance express our fidelity-
dependent, COF-independent prior uncer-
tainty about the simulated Xe/Kr selectivity
of any given COF.

• a pair of simulated Xe/Kr selectivities,
Y (`)(x) and Y (`′)(x′), whose covariance is
given by the kernel function k in eqn. 6:

cov[Y (`)(x), Y (`′)(x′)] = αkmat(x, x
′)kfid(`, `

′).

(24)
With the kernel functions quantifying our
notion of ”similarity”, our prior belief is that
the simulated selectivity of two COFs will be
similar (dissimilar) for (i) two similar (dis-
similar) COFs under (ii) two similar (dis-
similar) simulation fidelities. Importantly,
the material kernel function in eqn. 7 paired
with our design of COF space captures our
domain knowledge that COFs with closeby
composition, pore size, surface area, etc.
tend to exhibit similar adsorption proper-
ties.71,75,79,84 Note, for ` 6= `′ but x = x′, it
is apparent that the hyperparameters c and
δ of the fidelity kernel function also capture
the correlation between the high- and low-
fidelity Xe/Kr selectivities for a given COF.
This allows observed low-fidelity simulated
Xe/Kr selectivities to appropriately inform
the predictions about the high-fidelity se-
lectitivies we ultimately wish to maximize.
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Table 1: Hardware specifications for the computational resources used for our simulations.

nodes 1-4
Model Dell PowerEdge R740
Processor 2x 10-core 2.20 GHz Intel Xeon Silver 4114 w/ 16896 KB cache
Memory 128 GB RAM @2666 MT/s

nodes 5-8
Model Dell PowerEdge R740
Processor 2x 22-core 2.10 GHz Intel Xeon Gold 6152 w/ 30976 KB cache
Memory 128 GB RAM @2666 MT/s

Collecting the simulation data.

At iteration n of the MFBO search, we have col-
lected simulation data

D[n] := {([x[1], `[1]], y[1]), ..., ([x[n], `[n]], y[n])}.
(25)

I.e., x[i ] is the vector representation of the COF,
`[i ] is the fidelity, and y[i ] is the observed Xe/Kr
selectivity of the simulation conducted at iteration
i . In light of this simulation data D[n], we wish to
update our prior distribution in eqn. 22.

We view each observed fidelity-` simulated
Xe/Kr selectivity y (`) of a COF represented by
x as a noisy evaluation of a black-box function
f (x, `) that represents the relationship between
the fidelity-` Xe/Kr selectivity of a COF and its
features x. Particularly, we assume

y (`) = f (x, `) + ε, (26)

where ε is a realization of un-observable noise
drawn from a Gaussian distribution E ∼
N (0, σ2). The source of this noise is the inherent
stochasticity involved in the Monte Carlo simula-
tion; however, the noise may also have a contribu-
tion from the lack of information contained about
the selectivity within the COF features x.

The posterior distribution of Y (`) | D[n]

The posterior distribution of Y (`)(x) expresses our
beliefs about the fidelity-` simulated Xe/Kr selec-
tivity of a COF with features x in light of the
simulation data D[n]. The posterior is an update
to our prior distribution, obtained by conditioning
the prior distribution in eqn. 22 on the observa-
tions {Y (`[i ])(x[i ]) = y[i ]}ni=1 in the data D[n].

We find the marginal posterior distribution of

Y (`)(x) | D[n] by first writing the marginal prior
distribution, following from eqn. 22, of (i) the
fidelity-` simulated Xe/Kr selectivity of COF rep-
resented by x and (ii) the observed (i.e., noise-
contaminated) selectivities in the simulations we
have already done in D[n]:[
Y (`)(x)

YD[n]

]
∼

N

(
0,

[
k([x, `], [x, `]) kᵀD[n]

kD[n] KD[n] + σ
2I

])
, (27)

written in terms of (1) the vector of random vari-
ables denoting the simulated Xe/Kr selectivities
of the COFs in the acquired set at those specific
fidelities:

YD[n] :=

Y[1]...
Y[n]

 , (28)

(2) the kernel matrix between the simulation se-
tups in the data D[n]

KD[n] :=k([x[1], `[1]], [x[1], `[1]]) · · · k([x[1], `[1]], [x[n], `[n]])... . . . ...
k([x[n], `[n]], [x[1], `[1]]) · · · k([x[n], `[n]], [x[n], `[n]])

 ,
(29)

and (3) the kernel vector between the simulation
setup of interest [x, `] and those in the data D[n]

kD[n] :=

k([x, `], [x[1], `[1]])...
k([x, `], [x[n], `[n]])

 . (30)

We obtain the posterior distribution of Y (`)(x)
by conditioning the prior in eqn. 27 on the ob-
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served simulated Xe/Kr selectivities of the COFs
in the data Dn:

YD[n] = yD[n] :=

y[1]...
y[n]

 . (31)

Upon conditioning, the posterior distribution of
Y (`)(x) is also a Gaussian distribution, given in
eqn. 9.

Remarks

Sources of uncertainty. Uncertainty in the
Xe/Kr selectivity of a COF may owe to (i) a lack
of simulations on COFs in the neighborhood of
COF space around x, (ii) a lack of mutual infor-
mation between outcomes of simulations of dif-
ferent fidelities, (iii) a lack of information about
the selectivity contained in the features, and/or
(iv) inherent variability/noise in the outcome of
the Monte Carlo simulation.

Centering the outputs. For the zero-mean
prior in eqn. 22 to be reasonable, we center the
simulated Xe/Kr selectivities (the y[i ]’s) in the
data D[n] at each iteration.

Hyperparameters. The kernel function in
eqn. 6 contains four hyperparameters: α, γ, c ,
and δ. And, we have the noise hyperparameter
σ from eqn. 26. At each iteration, these hyper-
parameters are tuned to maximize the marginal
likelihood of the data Dn.

Function space view of a GP. For our prob-
lem of searching a fixed pool of COFs, we are
only interested in the joint distribution of the ran-
dom variables listed in Y in eqn. 22. However, an
alternative view of the GP in eqn. 5 is that it spec-
ifies a (prior and posterior) distribution over func-
tions f (x, `) that aim to approximate the black-
box input (COF x, fidelity `) – output (simulated
Xe/Kr selectivity, y (`)) relationship under-lurking
the simulations—the black-box function f (x, `) in
eqn. 26. This perspective is illustrated in the mid-
dle panel of Fig. 3, where the dark line shows the

posterior mean function µ[n](x, `) and the bands
show a posterior credible ”interval” for these func-
tions, the region µ[n](x, `)± σ[n](x, `).

GP implementation. We use the implementa-
tion of the multi-fidelity GP in the BoTorch111 li-
brary in Python, which builds upon GPyTorch.112
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