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Abstract:
Background and Aims: Lysiloma is a Neotropical genus in the Fabaceae family that comprises eight species, six of which are widely distributed in Mexico, and 
two more that occur in the Antilles and Florida. Lysiloma is frequent in Megamexico’s dry forests. A previous phylogenetic study included three species of Lysi-
loma and Hesperalbizia occidentalis. Both genera are closely related, but their divergence has weak support. Our objectives were to test the monophyly of the 
genus, evaluate the sister relationships within the genus, and estimate the divergence times. 
Methods: A phylogenetic analysis based on morphological characters, molecular markers (ETS, matK, and trnK), as well as a combined analysis (morphology 
+ molecules) was performed. The data matrices were analyzed both individually and concatenated (total evidence approach) with Bayesian inference and 
Maximum Parsimony. In addition, molecular divergence times were estimated from the ETS dataset with a Bayesian uncorrelated lognormal relaxed clock. 
Key results: The morphological analysis supports the monophyly of Lysiloma with Hesperalbizia as sister group. However, the individual and the combined 
molecular analyses do not provide resolution to clarify the relationships between Hesperalbizia occidentalis, Lysiloma sabicu, and core Lysiloma. The total 
evidence analysis (including morphology) supports the monophyly of Lysiloma, yet with low support. According to our molecular clock model, the clade Ly-
siloma+Hesperalbizia diverged from other members of the tribe Acacieae+Ingeae about 32 million years ago, and the diversification of the core of Lysiloma 
occurred during the Miocene. 
Conclusions: Lysiloma+Hesperalbizia is an early divergent clade of tribes Acacieae+Ingeae. There are enough morphological differences to recognize both 
linages. Morphological characters informally used for taxonomic delimitation seem to have evolved homoplasiously. The clade Lysiloma and Hesperalbizia 
separated from other members of the tribe Acacieae+Ingeae in the Oligocene, but the diversification of the core of the genus coincides with the expansion of 
the dry forest at the beginning of the Miocene.
Key words: Acacieae, Hesperalbizia, Ingeae, Leguminosae, molecular clock, Neotropics. 

Resumen:
Antecedentes y Objetivos: Lysiloma es un género neotropical de la familia Fabaceae que comprende ocho especies, seis de las cuales se distribuyen 
ampliamente en México y dos más que ocurren en las Antillas y La Florida. Lysiloma es frecuente en los bosques secos de Megaméxico. Un estudio 
filogenético previo incluyó tres especies de Lysiloma y Hesperalbizia occidentalis. Ambos géneros están estrechamente relacionados, pero su diver-
gencia tiene un apoyo débil. Nuestros objetivos fueron probar la monofilia del género, evaluar las relaciones de grupo hermano dentro del género y 
estimar los tiempos de divergencia. 
Métodos: Se realizó un análisis filogenético basado en caracteres morfológicos, marcadores moleculares (ETS, matK y trnK), así como un análisis combinado 
(morfología + moléculas). Las matrices de datos se analizaron tanto individualmente como concatenadas (enfoque de evidencia total) con inferencia Bayesiana 
y máxima parsimonia. Además, los tiempos de divergencia molecular se estimaron a partir del conjunto de datos ETS con un modelo de reloj bayesiano rela-
jado lognormal no correlacionado. 
Resultados clave: El análisis morfológico respalda la monofilia del Lysiloma con Hesperalbizia como grupo hermano. Sin embargo, los análisis moleculares 
individuales y combinado no proporcionan resolución para aclarar las relaciones entre Hesperalbizia occidentalis, Lysiloma sabicu y el núcleo de Lysiloma. 
El análisis de evidencia total (incluida la morfología) respalda la monofilia de Lysiloma, pero con un bajo soporte. Según nuestro modelo de reloj molecular, 
el clado Lysiloma+Hesperalbizia se separó de otros miembros de la tribu Acacieae+Ingeae hace unos 32 millones de años y la diversificación del núcleo del 
Lysiloma se produjo a lo largo del Mioceno.
Conclusiones: Lysiloma+Hesperalbizia es un clado de divergencia temprana de las tribus Acacieae+Ingeae. Existen suficientes diferencias morfológicas para 
reconocer ambos linajes. Los caracteres morfológicos utilizados informalmente para la delimitación taxonómica parecen haber evolucionado de manera ho-
moplásica. El clado de Lysiloma y Hesperalbizia se separó de otros miembros de la tribu Acacieae+Ingeae en el Oligoceno, pero la diversificación del 
núcleo del género coincidió con la expansión del bosque seco a principios del Mioceno.
Palabras clave: Acacieae, Hesperalbizia, Ingeae, Leguminosae, Neotrópico, reloj molecular. 
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Introduction
Lysiloma Benth. (Bentham, 1844) is one of 36 genera within 
the tribe Ingeae (Brown, 2008) in the extended subfamily 
Caesalpinioideae (LPWG, 2017). Two recent phylogenetic 
analyses (Brown et al., 2008; Iganci et al., 2015) suggest 
that Lysiloma and the monotypic Hesperalbizia Barneby & 
J.W. Grimes are sister taxa. As currently understood, it is 
composed of eight tree species with a primarily Neotrop-
ical distribution, ranging from Arizona and Florida through 
Mexico, Central America, and the Antilles (Thompson, 
1980; Gale and Pennington, 2004; Andrade and Sousa, 
2012) (Table 1). 

Lysiloma acapulcense (Kunth) Benth. and L. divarica-
tum (Jacq.) J.F. Macbr. are the species with the widest dis-
tribution, ranging from northern Mexico to Central America 
(Nicaragua and Costa Rica). Both taxa include a long list of 
synonyms and broad morphological variation. These taxa 
urgently require a deeper future reassessment. The rest 
of the species have more restricted distributions (Table 1). 
The general distribution of the genus coincides in general 
terms with Megamexico 3, a biogeographic area that in-
cludes the entire Mexican territory, but also the southern 
part of the United States of America (the northern portions 
of the Chihuahuan and Sonoran deserts in California, Arizo-

na, New Mexico, and Texas) in the north, and Central Amer-
ican to Nicaragua north of the lakes, in the south (Rzedows-
ki, 1991). Two exceptions are L. latisiliquum (L.) Benth., and 
L. sabicu Benth., which are found in Florida, the Bahamas, 
and the West Indies (Thompson, 1980). In general, Lysilo-
ma species occupy a wide variety of dry forest types, being 
dominant or codominant elements in many of them (Ras-
cón-Ayala et al. 2018; Ancona et al., 2019; Ortiz-Ávila et al., 
2020).

The generic name of this group of plants derives from 
the Greek Lysis (to lose) and loma (edge), referring to the 
shedding of the legume edge at fruit maturity that allows 
for the dispersion of the seeds. This type of dehiscence has 
been referred to as craspedial (Thompson, 1980; Gale and 
Pennington, 2004). Two distinctive species of the genus lack 
this feature, Lysiloma sabicu and L. latisiliquum (Fig. 1E, F), 
where the valves remain together at maturity. An addition-
al, distinctive feature of the genus is the membranous, foli-
aceous stipule (Fig. 1C) (Bentham, 1875), a character state 
that is shared by Hesperalbizia. Thompson (1980) proposed 
an informal classification system with two subgenera based 
upon fruit dehiscence characters: Lysiloma subg. Lysiloma 
Thompson (nom. nud.), with indehiscent or late dehiscent 
legumes and Lysiloma subg. Lysivalva Thompson (nom. 

Species (according to Thompson, 1980) Distribution and elevation in m above sea level 

Lysiloma acapulcense (Kunth) Benth. Mexico, Central America to El Salvador, and Honduras. 600-2000

Lysiloma auritum (Schltdl.) Benth. Southwest Mexico to Central America except Belize. 100-2400

Lysiloma candidum Brandegee Mexico (Baja California Norte, Baja California Sur, and Sonora). 0-400

Lysiloma divaricatum (Jacq.) Macbr. Mexico (Chiapas, Oaxaca, and Veracruz), Central America to Costa Rica. 20-1700

Lysiloma latisiquum (L.) Benth. USA (Florida), southeast Mexico, Belize, Guatemala, and the Bahamas, Cuba, and Hispaniola. 0-400

Lysiloma microphyllum Benth.
Mexico (Baja California, Chihuahua, Colima, México, Morelos, Nayarit, Oaxaca, Querétaro, San Luis 

Potosí, Sonora, and Tamaulipas). 0-1600

Lysiloma sabicu Benth. The Bahamas, Cuba, and Hispaniola. 50-900

Lysiloma tergeminum Benth. Mexico (Colima, Guerrero, México, Michoacán, Morelos, Nayarit, and Puebla). 0-2000 

Lysiloma watsonii Rose USA (Arizona) and Mexico (Chihuahua, and Sinaloa). 300-1300

Table 1: General distribution of the genus Lysiloma Benth. We included L. divaricatum (Jacq.) Macbr. and L. microphyllum Benth. as two species 
following Thompson’s manuscript (1980), but Gale and Pennington (2004) considered them coespecific. Our results support Gale and Pennington’s 
point of view.
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Figure 1: General morphology of Lysiloma Benth. A. leaves, and inflorescences of Lysiloma acapulcense (Kunth) Benth.; B. inflorescence of L. 
acapulcense; C. leave and stipule of Lysiloma latisiliquum (L.) Benth.; D. inflorescence of Lysiloma latisiliquum; E. young and old fruits of L. latisiliquum; 
F. fruit of Lysiloma sabicu Benth. Pictures A, B: Claudia Ramírez; C, D, E: Rodrigo Duno de Stefano; F: Susan Ford Collins.
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nud.), where the legume is dehiscent, and the valves break 
apart at the margins. Subgenus Lysiloma is composed of 
two sections defined by inflorescence types (capitulum vs. 
raceme) and flower pedicels (sessile vs. pedicellate): Lysi-
loma subg. Lysivalva sect. Capitata Thompson (nom. nud.), 
and sect. Racemosa Thompson (nom. nud.) (Fig. 1A, B, D).

As is the case of most members of tribe Ingeae, Lysi-
loma pollen grains are arranged in polyads of 16 (28-32 in L. 
divaricatum (Jacq.) J.F. Macbr.) (Guinet and Grimes, 1997). 
In general, polyads are 46-79 µm diameter, isodiametric 
where the eight radial pollen grains are longer than wide, 
whereas the internal tetrad is composed of square pollen 
grains. The external pollen grains are dissymmetric in thick-
ness; whereas the tectum is perforated with 20-100/µm2 
ornamentation is uniform throughout, fossulate, or polygo-
nal with more or less rounded areoles (Sorsa, 1969; Guinet 
and Grimes, 1997). Hesperalbizia occidentalis (Brandegee) 
Barneby & J.W. Grimes is characterized by similar yet larg-
er, symmetrical polyads. Both Lysiloma and Hesperalbizia 
feature 2n=26 chromosomes (Thompson, 1980; Rico Arce, 
1992).

Lysiloma is known from a Tertiary (Olygocene) fos-
sil record, L. mixtecana Magallón-Puebla & Cevallos-Ferriz 
(Magallón-Puebla and Cevallos-Ferriz, 1993). This fossil 
was recovered in a sedimentary layer in Puebla, along with 
records of other members of tribe Ingeae: Pithecellobium 
grimesii Calvillo-Canadell & Cevallos-Ferriz and Pithecello-
bium barneby Calvillo-Canadell & Cevallos-Ferriz (Calvillo‐
Canadell and Cevallos‐Ferriz, 2005). 

Assessing the monophyly of Lysiloma is particularly 
relevant since two related genera studied from a molecu-
lar perspective were non-monophyletic: Abarema Pittier 
(Iganci et al., 2015), and Zygia P. Brown (Ferm et al., 2019). 
Aiming at testing the monophyly and sister-group relation-
ships of Lysiloma, we performed phylogenetic analyses 
combining morphological and molecular datasets. We em-
ployed morphological characters, plastid (trnK and matK), 
and nuclear (ETS) DNA sequence data. 

These analyses were carried out with parsimony for 
the morphological characters and parsimony and Bayesian 
inference for the molecular and total evidence approach. 
This study will allow us to test three hypotheses: 1) Lysiloma 
is monophyletic as currently circumscribed; 2) Lysiloma and 

Hesperalbizia are closely related (Brown et al., 2008; Iganci 
et al., 2015), and 3) the infrageneric relationships between 
the species as proposed by Thompson (1980). Regarding 
infrageneric relationships, the informal classification pro-
posal of Thompson (1980) was used as a null hypothesis. 
Moreover, we were interested in estimating the chronolo-
gy of the diversification under the uncorrelated lognormal 
relaxed molecular clock approach. To do so, we adopt the 
same assumption of Becerra (2005) regarding Bursera Jacq. 
ex L. (Burseraceae) and the expansion of the dry forest. In 
other words, the history and evolution of Bursera in Mexico 
mirrors the history of the dry forest in Mexico. Thus, the 
very forces that drove the range expansions and contrac-
tions of the dry forests also shaped the diversification of 
Bursera. Because Lysiloma is highly adapted to the ecolog-
ical conditions of the dry forest, we test whether the diver-
sification of this genus is related to the expansion of the dry 
forest in the Miocene (20-5 Mya (million years ago)), when 
arid environments expanded across the world.

Material and Methods

Taxon sampling
The ingroup includes the nine Lysiloma species recognized 
by Thompson (1980) and Hesperalbizia occidentalis where-
as the outgroup is composed of basal members of the 
Mimosoid clade, including Acaciella angustissima (Mill.) 
Britton & Rose, Calliandra eriophylla Benth., C. haemato-
cephala Hassk., Faidherbia albida (Delile) A. Chev., Mario-
sousa dolichostachya (S.F. Blake) Seigler & Ebinger, Senega-
lia parviceps (Speg.) Seigler & Ebinger, Vachellia farnesiana 
(L.) Wight & Arn., Zapoteca formosa (Kunth) H.M. Hern., 
and Zapoteca tetragona (Willd.) H.M. Hern. (Table 2). An 
attempt was made to include two or three accessions per 
species to sample their geographical and ecological range. 
However, some species feature wide distributions (e.g. Ly-
siloma acapulcense) and it is possible that an even broader 
sampling may be required to represent the morphological 
and distributional range of these particular species.

DNA extraction, amplifications, and sequencing
For the molecular analyses, fresh leaflet tissue collected 
in the field, in the Regional Botanical Garden Roger Orel-
lana of the Centro de Investigación Científica de Yucatán, 



Duno de Stefano et. al.: Phylogeny of Lysiloma (Fabaceae)

Acta Botanica Mexicana 128: e1782  |  2021  |  https://doi.org/10.21829/abm128.2021.1782 5

Species ETS matK trnK

Acaciella angustissima (Mill.) Britton & Rose EF638082.1 HM020733.1 E. López 1128 (CICY)
MN755794

Calliandra eriophylla Benth. E. López 1099 (CICY)
MN755770

EU025883.1 E. López 1099 (CICY)
MN755797

Calliandra haematocephala Hassk. Bot. Garden Fairchild 2007 
0163A

MN755769

MH749029.1 R. Duno 2425 (CICY)
MN755796

Faidherbia albida (Delile) A. Chev. EF638163.1 JF270778.1 AF274129

Hesperalbizia occidentalis (Brandegee) 
Barneby & J.W. Grimes

R. García Sosa 71 (MO)
MN755772

R. García Sosa 71 (MO)
MN755817

R. García Sosa 71 (MO)
MN755799

Hesperalbizia occidentalis (Brandegee) 
Barneby & J.W. Grimes

Santana and Cervantes 868 
(ZEA)

MN755773
MN755774

A. Sánchez and A. Nava 399 
(ZEA)

MN755818
MN755819

C. E. Hughes 1543 (MEXU)
MN755800
MN755801

Lysiloma acapulcense (Kunth) Benth. J. Calónico Soto 7192 (FCME)
MN755778
MN755779

O. Alcántara and M. Paniagua 
5831 (FCME)

MN755822

O. Alcántara and M. Paniagua 
5831 (FCME)

MN755803

Lysiloma acapulcense (Kunth) Benth. - E. López s.n (CICY)
MN755823

E. López s.n (CICY)
MN755804

Lysiloma auritum (Schltdl.) Benth. Bot. Garden Fairchild 62265 
MN755780
MN755781

Bot. Garden Fairchild 62265 
MN755824 

Bot. Garden Fairchild 62265 
MN755805

Lysiloma auritum (Schltdl.) Benth. - JQ587745.1 -

Lysiloma candidum Brandegee - KX302335.1 -

Lysiloma divaricatum (Jacq.) J.F. Macbr. M. Ayala et al. 918 (FCME)
MN755783
MN755784

M. Ayala et al. 918 (FCME)
MN755826

M. Ayala et al. 918 (FCME)
MN755807

Lysiloma divaricatum (Jacq.) J.F. Macbr. - - AF523088.1

Lysiloma latisiliquum (L.) Benth. P. Simá 2287 (CICY)
MN755785
MN755786
MN755787

P. Simá 2287 (CICY)
MN755827
MN755828

P. Simá 2287 (CICY)
MN755808

Lysiloma latisiliquum (L.) Benth. - - S. Villanueva s.n. (CICY)
MN755809
MN755810

Lysiloma microphyllum Benth. J. Calónico Soto 9422 (FCME)
MN755788
MN755789

I. Rosas et al. 2284 (MO)
MN755829

I. Rosas et al. 2284 (MO)
MN755811

Lysiloma microphyllum Benth. - M. Ordóñez 2 (CHIP)
MN755830

-

Table 2: Summary of the botanical material used for molecular analysis of the genus Lysiloma Benth., including accessions extracted from GenBank. 
In bold GenBank accession numbers of sequences generated in the present study.
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A. C., and herbarium material were employed. Herbarium 
specimens used in these analyses came from CICY, FCME, 
MA, MEXU, MO, UCOL, and ZEA (acronyms as in Thiers, 
2020 continuously updated). Permission was request-
ed from herbarium curators to use leaflet material for 
DNA extraction. Sixty-five new sequences were generat-
ed (17 ETS: MN755767-MN755793, 19 trnK: MN755794-
MN755815, and 14 matK: MN755816-MN755834). Ad-
ditional sequences were downloaded from GenBank 
(GenBank, 2020), particularly from datasets created by 
Miller and Bayer (2001), Miller et al. (2003), Brown et al. 
(2008), and Heil et al. (2009). For GenBank accessions see 
Supplementary Material (Table 2, 3). 

The matK gene has been among the most useful loci 
for resolving plant phylogenetic relationships at different 
evolutionary timescales (Hilu et al., 2008). It has been used 
to assess and monitor biodiversity and, via community phy-
logenetics, to investigate ecological and evolutionary pro-
cesses that may be responsible for the community struc-
ture of particular forests (DNA barcoding) (Heckenhauer et 
al. 2017). The trnK intron sequences also provide similar 
levels of phylogenetic information as matK. Combining the 
trnK with matK increases overall bootstrap support (Hilu et 
al., 2008). The external transcribed spacer (ETS) of 18S-26S 
nuclear ribosomal DNA has been used intensely in phylo-
genetic studies of the tribes Acacieae and Ingeae, generally 

Lysiloma microphyllum Benth. E. López 1134 (CICY)
MN755790

E. López 1134 (CICY)
MN755831

E. López 1134 (CICY)
MN755812
MN755813

Lysiloma sabicu Benth. Bot. Garden Fairdchild 2012-
039

MN755775

Bot. Garden Fairdchild 2012-
039 

MN755820
MN755821 

Bot. Garden Fairdchild 2012-
039

MN755802

Lysiloma sabicu Benth. J. R. Abbott 24059 (MO)
MN755776
MN755777

-

Lysiloma tergeminum Benth. S. Valencia 4058 (FCME)
MN755791
MN755792

- S. Valencia 4058 (FCME)
MN755814

Lysiloma tergeminum Benth. - - EU812062.1

Lysiloma tergeminum Benth. J. Calónico Soto 84 (FCME)
MN755793

J. Calónico Soto 84 (FCME)
MN755832
MN755833
MN755834

J. Calónico Soto 84 (FCME)
MN755815

Lysiloma watsonii Rose Regional Bot. Garden Roger 
Orellana (RD-001)

MN755782

Regional Bot. Garden Roger 
Orellana (RD-001)

MN755825

Regional Bot. Garden Roger 
Orellana (RD-001)

MN755806
Mariosousa dolichostachya (S.F. Blake) Seigler 

& Ebinger
EF638084.1 EU812056.1 AF523190.1 

Senegalia parviceps (Speg.) Seigler & Ebinger L. E. Quispe 63 (MO)
MN755767
MN755768

L. E. Quispe 63 (MO)
MN755816

L. E. Quispe 63 (MO)
MN755795

Vachellia farnesiana (L.) Wight & Arn. EF638128.1 FJ711552.1 AY574103.1 

Zapoteca formosa (Kunth) H.M. Hern. J. Peñaranda 216 (MO)
MN755771

AY125854.1 R. Duno s.n. (CICY)
MN755798

Zapoteca tetragona 	 (Willd.) H.M. 
Hern.

EF638133.1 JQ587912.1 AF523097

Table 2: Continuation.
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Taxon GenBank’s accession number

Abarema jupunba (Willd.) Britton & Killip EF638109, EF638110

Abarema piresii Barneby & J.W. Grimes KF921624

Acacia chartacea Maslin DQ029304, DQ029305

Acacia dempsteri F. Muell. DQ029300

Acacia karina Maslin & Buscumb KC796100

Acacia pyrifolia DC. DQ029293

Acacia ryaniana Maslin DQ029303

Acacia semicircinalis Maiden & Blakely KC283889

Acacia strongylophylla F. Muell. DQ029299

Acacia victoriae Benth. DQ029310, DQ029311

Acaciella angustissima (Mill.) Britton & Rose EF638082.1

Albizia adinocephala (Donn. Sm.) Britton & Rose ex Record EF638144

Albizia polycephala (Benth.) Killip, KF921625

Archidendron ellipticum (Blume) I.C. Nielsen EF638153

Archidendron hendersonii I.C. Nielsen HM800427

Archidendron kanisii R.S. Cowan EF638098

Archidendron lucyi F. Muell. HM800428

Archidendron whitei I.C. Nielsen EF638099

Blanchetiodendron blanchetii (Benth.) Barneby & J.W. Grimes KF921626

Cojoba arborea (L.) Britton & Rose EF638108, EF638095

Cojoba undulatomarginata L. Rico EF638096

Ebenopsis confinis (Standl.) Britton & Rose KF921650, EF638100

Ebenopsis ebano (Berland.) Barneby & J.W. Grimes EF638101, EF638102, KF921651

Enterolobium contortisiliquum (Vell.) Morong EF638151

Enterolobium gummiferum (Mart.) J.F. Macbr. KF921652

Enterolobium timbouva Benth. KF921654

Faidherbia albida (Delile) A. Chev. EF638163.1

Falcataria moluccana (Miq.) Barneby & J.W. Grimes HM800429, HM800430

Havardia mexicana (Rose) Britton & Rose KF921655

Havardia pallens (Benth.) Britton & Rose EF638146, EF638147, KF921656

Hydrochorea corymbosa (Rich.) Barneby & J.W. Grimes KF921657

Inga thibaudiana DC. KF921659

Leucochloron bolivianum C.E. Hughes & Atahuachi KF921660

Macrosamanea pubiramea (Steud.) Barneby & J.W. Grimes KF921665

Mariosousa dolichostachya (S.F. Blake) Seigler & Ebinger EF638084.1

Pararchidendron pruinosum (Benth.) I.C. Nielsen EF638129

Paraserianthes lophantha (Willd.) I.C. Nielsen KU727929, KU727943, HM800432

Paraserianthes toona (Bailey) I.C. Nielsen EF638106, EF638107

Pithecellobium diversifolium Benth. KF921666

Pithecellobium dulce (Roxb.) Benth. EF638142, EF638143

Samanea saman (Jacq.) Merr. KF921668

Samanea tubulosa (Benth.) Barneby & J.W. Grimes EF638135

Sphinga acatlensis (Benth.) Barneby & J.W. Grimes KF921669, EF638145

Table 3: Additional accessions for the large ETS analysis.
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together with ITS (Brown et al., 2008; Murphy et al., 2010). 
The ETS has also a high rate of sequence evolution by nu-
cleotide substitution (Baldwin and Markos, 1998).

Total DNA from leaflets (fresh or from herbarium 
material) was obtained with the DNeasy Plant Mini Kit 
(QIAGEN Inc., Valencia, California) following the provider’s 
specifications. To assess concentration and relative quality 
of DNA, 3 µl of the final volume plus 2 µl loading buffer 
were run for 30 minutes at 6 volt/cm in a 1% agarose gel 
prepared with TBE 0.5X. The resulting gel was revealed by 
immersion for 20-30 minutes in a 0.1 µg/ml ethidium bro-
mide solution and later observed in a DigiDoc-It Imaging 
System (v. 6.7.1; UVP, Inc., Cambridge, UK) transilluminator. 
Furthermore, DNA purity and concentration were quanti-
fied with a NanoDrop 2000c (Thermo Scientific™, Waltham, 
USA). Then, DNA samples were standardized at 10 ng µl-1. 
Amplifications were performed in an Applied Biosytems 
Veriti 96 Well Thermal Cycler (Applied Biosystems, Foster 
City, USA). Volumes of reagents and conditions for the am-
plifications were as follows:

ETS: 30 µl of mix containing 3 µl 10X Buffer, 2.5 µl 
MgCl2, 0.6 µl (~10 ng) primer, 4 µl Q solution, 1 µl 1.25 mM 
l-1 dNTP, 0.2 µl (1 U) TAQ polymerase, 2 µl (~10 ng) DNA, 
then completed to volume (approx. 16.1 µl) with ultra-pure 
water. PCR’s were conducted under the following protocol: 
94 °C for 3 min + 30 cycles (94 °C for 1 min + 60.5 °C for 
1 min + 72 °C for 2 min) + 72 °C for 7 min. Primers were 
18S-IGS and 26S-IGS (Baldwin and Markos, 1998).

trnK: 20 µl containing 2.0 µl 10X Buffer, 0.8 µl of MgCl2, 

1 µl (~ 10 ng) of primers, 0.8 µl MgCl2, 1 µl (~ 10 ng) primers, 
4 µl Q solution, 1.5 µl 1.25 mM l-1 of dNTP, 0.2 µl (1 U) TAQ 
polymerase, 3 µl (~10 ng) DNA, then completed to volume 
(approx. 6.5 µl) with ultra-pure water. PCR’s were conduct-
ed under the following protocol: 94 °C for 3 min + 30 cycles 
of (94 °C for 1 min + 55 °C for 1 min + 72 °C for 2 min) + 72 

°C for 7 min. Primers were trnK 3914 and Ac 283R (Johnson 
and Soltis, 1994). 

matK: We used 20 µl reaction mix composed of 2.0 µl 
Buffer 10X, 0.8 µl MgCl2, 1 µl (~ 10 ng) primers, 4 µl Q-solu-
tion, 1.5 µl 1.25 mM l-1 dNTP, 0.2 µl (1 U) TAQ polymerase, 
3 µl (~10 ng) DNA, then completed to volume (0.5 µl) with 
ultra-pure water. PCR reactions were conducted under the 
following protocol: 94 °C for 3 min + 30 cycles (94 °C for 1 
min + 55 °C for 1 min + 72 °C for 2 min) + 72 °C for 7 min. 
Primers were Ac 12F and Ac 1290R (Miller and Bayer, 2001). 

PCR products were sent for sequencing to Macrogen 
Korea. Assemblage and edition of the sequencing products 
were carried out in BioEdit v. 7.0.9 (Hall, 1999). The data 
were partitioned into three blocks according to the follow-
ing gene regions: ETS, trnK, and matK. Each of the three 
partitions was aligned independently using MAFFT (Katoh 
et al., 2002; 2017) in the online server (https://mafft.cbrc.
jp/alignment/server/). Alignments for each partition were 
generated using the default settings (gap opening penal-
ty=1.53 and offset value=0.00). Finally, visual inspection 
and refinements were performed to optimize homology of 
the alignment.

Morphological characters
We assembled a morphological matrix with information 
compiled from the studies by Thompson (1980) and Gale 
and Pennington (2004) (Table 4). These characters and 
their states were assessed for structure, homology as-
sumptions, and coding. To do so, we studied ~300 exsicca-
ta studied at or else borrowed from the following herbaria: 
CICY, CIQRO, ENCB, FCME, GH, GUADA, MEXU, MO, UADY, 
UAMIZ, UCAM, UCOL, and US (acronyms as in Thiers, 2020, 
continuously updated). Thirty-five characters (both binary 
and multistate) were coded (Table 4). Of these, 26 were 
discrete, four were discrete numerical and, five were nu-

Thailentadopsis nitida (Vahl) G.P. Lewis & Schrire KF921670

Vachellia farnesiana (L.) Wight & Arn. EF638128.1

Wallaceodendron celebicum Koord. EF638097

Zapoteca tetragona (Willd.) H.M. Hern. EF638133.1

Zygia racemosa (Ducke) Barneby & J.W. Grimes KF921671

Table 3: Continuation.

https://mafft.cbrc.jp/alignment/server/
https://mafft.cbrc.jp/alignment/server/
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merically continuous. In all cases, continuous characters 
which featured clear discontinuities in between were co-
ded as distinct character states (for example character 9, 
leaflets size: microphyll (<15 mm long) or macrophyll (>20 
mm long), character 15, corolla length: short (<5 mm long), 
or long (6.5-11 mm long), character 18, stamens length: 
short (<11 mm long), intermediate (15-20 mm long), and 
large (>25 mm long).

Phylogenetic analyses

Morphological analysis

We prepared a matrix composed by morphological data 
only (Table 4) that was analyzed with a Maximum Parsimo-
ny Analysis done with NONA v. 2.0 (Goloboff, 1993) through 
the Winclada v. 1.00.08 (Nixon, 2002) shell. Non-parsimony 

[01] Habit: 0 =tree, 1 =shrub, 2 =liana

[02] Stipule: 0 =foliaceous or subfoliaceous, 1 =espiniform

[03] Stipule, shape: 0 =ovate to widely ovate, 1 =linear (does not 
apply for the spiniform stipules)

[04] Stipules develop: 0 =absent, 1 =present

[05] Paraphyllidia: 0 =absent, 1 =present (Rico et al., 2008)

[06] Number of pinnae: 0 =1-2 pairs, 1 =3 or more pairs

[07] Number of leaflets per pinna: 0 =3-20, 1 =21 or more

[08] Mid vein: 0 =central, 1 =off center

[09] Size of leaflet: 0 =microphyll (<15 mm long), 1 =macrophyll (>20 
mm long)

[10] Leaflet, shape: 0 =narrowly oblong, 1 =elliptic to widely elliptic

[11] Inflorescence, type: 0 =capitulum, 1 =raceme, 2 =fascicle

[12] Flower: 0 =sessile, 1 =pedicellate

[13] Number of flowers per head: 0 =few (<29), 1 =intermediate (30-
35), 2 =many (>40)

[14] Bracteole, shape: 0 =spatulate, 1 =oblanceolate-linear, 2 
=triangular-rhombic, 3 =cuneate

[15] Corolla, length: 0 =short (<5 mm long), 1 =long (>6.5-11 mm 
long)

[16] Stamens, connation: 0 =free, 1=joined into a short tube

[17] Stamens, number: 0 =few (<29) 1 =intermediate, (30-35), 2 
=many (>40)

[18] Stamens, length (mm): 0 =short (<11 mm long), 1 =intermediate 
(15-20 mm long), 2 =large (>25 mm long)

[19] Fruit twisted in young state: 0 =absent, 1 =present

[20] Pod consistency: 0 =membranaceous, 1 =cartilaginous, 2 
=chartaceous to crustaceous, 3 =coriaceous 

[21] Pod, permanence: 0 =remain only one year, 1 =remains two or 
more year 

[22] Pod, lateral sutures: 0 =always joined to the valves 1 =separating

[23] Craspedial pod dehiscence: 0 =tardily, 1 =early (does not apply 
to species without lateral sutures).

[24] Stipe of the pod, length: 0 =short (0.1- 1.5 cm), 1 =long (>2 cm).

[25] Pod, base: 0 =attenuate, 1 =obtuse 2 =truncate,

[26] Pod, shape of the apex: 0 =acute to narrowly acute 1 =obtuse o 
rounded-truncate to emarginated. 

[27] Seeds leaving deep marks on the surface of the pod valves with 
ups and downs: 0 =absent, 1 =present

[28] Pod, exfoliation: 0 =absent, 1 =present

[29] Pod, venation: 0 =reticulate, 1 =parallel

[30] Funicule, shape: 0 =elongated and straight, 1 =sigmoid, 2 
=almost absent, short

[31] Seed, shape: 0 =ovate to oblong, 1 =circular to quadrangular

[32] Seed, color: 0 =yellow to light brown, 1 =dark brown to black

[33] Pleurogram, relative size regarding the surface of the seed; 0 
=less than 33, 1 =40-50%, 2 =more than 70%

[34] Seed areolate: 0 =absent, 1 =present (Rico et al., 2008)

[35] Cotyledon: 0 =not auriculate, 1 =auriculate 

MATRIX
(Polymorphism is indicated by *, and $, no apply is indicated by n).

Vachellia farnesiana 111n01*100000n0n0n10301nn0000120000

Acaciella angustissima $011131*100012300200201n00000021110

Acaciella villosa $011131*100012300200201201100021110

Hesperalbizia occidentalis 00000110111000211220301n000100011
11

Mariosousa dolichostachya 111n011110011n1n0n10101n00000
1n0100

Senegalia parviceps 211n001110000n0n0n10201n00000110010

Lysiloma acapulcense $000001110011110101121010*011001110

Lysiloma auritum 00000111100111101111210100011001110

Lysiloma candidum 00000n00001000001111210100011000110

Lysiloma divaricatum 00000011000000001011210100011000110

Lysiloma latisiliquum 000000*10000001010$1210010010000110

Lysiloma microphyllum 00000011000000001011210100011000110

Lysiloma sabicu 000001*0011010011001010011111000110 

Lysiloma tergeminum 0000010011200000100121010111100*110

Lysiloma watsonii 10000111100110101111210100011001110

Table 4: Morphological characters and character states for the 
phylogenetic analysis of the genus Lysiloma Benth. based on Thompson 
(1980). Some characters are based on previous references, which are 
indicated in each case. The morphological matrix is included below the 
table.

Table 4: Continuation.
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informative coding characters were deactivated. Informa-
tive characters were considered unordered and given the 
same weight (Fitch Parsimony). To identify maximally par-
simonious topologies, we performed a ratchet algorithm 
analysis with 5000 iterations, 10 trees held at each itera-
tion, whereas 10% of the characters were sampled in each 
iteration (mult* 10000, ho/10; max*). Clade support was 
assessed with 1000 iterations of bootstrap. The topologies 
retrieved are shown here only for morphological charac-
ters, but our complete set of results is available from the 
corresponding author upon request.

Molecular analyses

There has been much debate over the merits of different 
algorithms for phylogenetic inference (Rindal and Brow-
er, 2010). However, parametric Bayesian methods have 
become very popular in molecular phylogenetics due to 
the availability of user-friendly software implementing so-
phisticated models of evolution (Nascimento et al., 2017). 
These methods have the advantage of including nucleo-
tide evolutionary models and a solid statistical framework. 
In the present study, we use maximum parsimony as an ex-
ploratory analysis, obtaining topologies (not shown) that 
are highly congruent with those resulting from Bayesian 
analyses.

We assembled several DNA matrices, one composed 
only of rDNA-ETS sequences that included 112 taxa and ac-
count for most of the major clades in tribes Ingeae and 
Acacieae that have been identified in recent analyses (e.g. 
Brown et al., 2008, 2011, Iganci et al., 2015, Ferm, 2018). 
The analysis was carried out with MrBayes version v. 3.2.7 
(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsen-
beck, 2003) and Tracer v. 1.6 (Rambaut et al., 2014).

This analysis was designed to test the monophyly of 
Lysiloma as well as the position of the genus within Ingeae 
+ Acacieae. The matrix is available from the correspond-
ing author upon request. Except for the sequences of Ly-
siloma, Zapoteca H.M. Hern., and some members of the 
Pithecellobium alliance, most of the sequences used were 
retrieved from GenBank (GenBank, 2020; Table 2). The in-
dividual matrices were integrated with our data and com-
pleted with GenBank sequences to match the composition 
of the morphological matrix.

Combined analyses

We concatenated the three molecular alignments and mor-
phological data in a matrix and analyzed it under the Bayes-
ian Inference paradigm using MrBayes v. 3.2.7 (Huelsen-
beck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) 
and Tracer v. 1.7.1 (Rambaut et al., 2014).

Each partition was treated as independent and associ-
ated with its own model. Our analyses were performed with 
the default parameters of the software, except for the num-
ber of generations, which were five million. Two indepen-
dent threads were run. Convergence was assessed with both 
MrBayes v. 3.2.7 (Huelsenbeck and Ronquist, 2001; Ronquist 
and Huelsenbeck, 2003) and Tracer v. 1.7.1 (Rambaut et al., 
2014). Posterior Probabilities (PP) of <0.95 were considered 
weakly supported, whereas PP of 0.95-1.0 were deemed as 
strongly supported. Missing data were coded as “?” in the 
concatenated matrix. To assess the best evolutionary model 
for all the molecular matrices, we used jModelTest v. 2.1.7 
(Guindon and Gascuel, 2003; Darriba et al., 2012). In each 
case, three substitution schemes were used; the search cri-
terion was a maximum likelihood tree estimated with the 
“best” option of the software. The selected model was sug-
gested by the Akaike Information Criterion (AIC). For the larg-
er ETS matrix, the best model was GTR + G, as well as for the 
smaller matrices (matK, trnK and ETS).

Fossil calibration and diversification times

A Bayesian analysis to estimate divergence times was con-
ducted using the ETS matrix under the uncorrelated log-
normal relaxed molecular clock approach implemented in 
the program BEAST v. 1.10 (Suchard et al., 2018). The main 
reason to use this marker is the high number of accessions 
available in GenBank (Brown et al., 2008; Murphy et al., 
2010; Ferm. 2018).

In each BEAST 1-10 run, we used pure-birth (Yule) 
tree prior, and a Monte Carlo Markov chain (MCMC) of 
25,000,000 generations, sampling every 1000 generations, 
with parameters sampled every 1000 generations. For this 
matrix, the nucleotide substitution model was GTR + I + G 
using the AIC criterion with jModelTest v. 2.1.6 (Posada, 
2008).

Tracer v. 1.7.1 (Rambaut et al., 2014) was used to 
assess effective sample sizes (ESS >200) for all estimated 
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parameters. We used TreeAnnotator v. 1.8.2 (part of the 
BEAST package) to discard 10% of the saved trees as burn-
in and to combine trees. Maximum clade credibility trees 
with mean node heights were visualized using FigTree v. 
1.4.2 (Rambaud, 2014). We report highest posterior den-
sities intervals, the interval containing 95% of the sampled 
values.

Three fossils were used to calibrate the divergence 
dating analysis. The first one was Lysiloma mixtecana (Ma-
gallón-Puebla and Cevallos-Ferriz, 1993) assigned to the 
crown group of Lysiloma at 28.4 million years (myr). The 
second point was based on pollen assigned to Calliandra 
Benth. (Caccavari and Barreda, 2000), with 16 myr and re-
ferred to the core group of Calliandra, whereas the third 
one was the tree root with 45 Ma, a date taken from the 
fossil pollen of the most recent common ancestor assigned 
to Ingeae and Acacieae (Simon et al., 2009). All fossils were 
defined as minimum age constraints and implemented in 
the dating analysis as a lognormal statistical distribution. 
We choose lognormal distribution because it is appropriate 
for calibrations derived from fossils. A log normal density 
distribution to calibration points allows for uncertainty as-
sociated with a fossil representing a minimum age where 
the clade in question could have evolved earlier but not lat-
er than the age of the fossil. The maximum clade credibility 
tree (MCC) was visualized using FigTree v.1.4.2 (Rambaud, 
2014) and the means and 95% higher posterior densities 
(HPD) were obtained.

We carried out a second estimate of divergence 
times analysis intended to evaluate the origin of the genus 
without any temporal constraint. For this reason, we did 
not include the fossil of Lysiloma mixtecana, but we used 
the other two fossils plus Acaciapollenites myriosporites 
(Cookson) Mildenhall (23 Ma) (Macphail and Hill, 2001), 
which was assigned to the Acacia s.s. clade. 

For this analysis we had to implement a normal prior 
with a stdev=2 for the older date (Ingeae and Acacieae 45 
Ma) and the other fossils were assigned with a gamma pri-
or and stdev=2 distribution, because these distributions al-
lowed us to obtain the best results for the effective sample 
size (ESS). These parameters have also been implemented 
in other studies (Gustafsson et al., 2010; Chomicki et al., 
2015; Pérez-Escobar et al., 2017). 

Results

Morphology
The parsimony analysis based on morphological characters 
yielded eight most parsimonious trees (L=63, CI=69, RI=80). 
Figure 2 shows the strict consensus tree, where three nodes 
have no support and collapse. Vachellia farnesiana, upon 
which the cladograms are rooted, is followed by a poorly sup-
ported grade that includes Senegalia parviceps, Mariosousa 
dolichostachya, Acaciella spp. plus a clade containing Lysilo-
ma and Hesperalbizia. The clade including Acaciella Britton 
& Rose as a sister group of Lysiloma and Hesperalbizia has 
moderate bootstrap support (77%) and is held together by 
four synapomorphies. Acaciella has a strong bootstrap sup-
port (97%) and is supported by two synapomorphies. The 
clade Hesperalbizia and Lysiloma (clade A) also features a 
high bootstrap support (91%) and is supported by four syna-
pomorphies. Hesperalbizia is supported by one synapomor-
phy. On the other hand, Lysiloma (clade B) is monophyletic 
and has a low bootstrap support (68%); this clade features 
five morphological synapomorphies. Internally, Lysiloma is 
poorly resolved; there are three terminal taxa; L. auritum 
(Schltdl.) Benth., L. acapulcense and L. watsonii Rose and 
clade C. The last clade lacks bootstrap support, but it is held 
together by four reversions. It is composed of L. latisiliquum 
and two clades. The first, including L. divaricatum + L. micro-
phyllum Benth. with a low bootstrap support (53%), and the 
second composed of three species with moderate bootstrap 
supported (77%): L. candidum Brandegee as a sister group of 
L. tergeminum Benth., and L. sabicu.  

Clade C, which is composed by L. watsonii and the 
clade L. acapulcense and L. auritum is strongly supported by 
the bootstrap (94%). Clades D (L. candidum plus the clade L. 
sabicu + L. tergeminum), E (L. sabicu + L. tergeminum), and 
F (L. divaricatum + L. microphyllum) lacked significant boot-
strap support (<50%).

Molecular data
Figure 3 shows the result of the Bayesian analysis (rDNA-ETS). 
In this analysis, some of the genera segregated from Acacia 
Mill. such as Acaciella, Mariosousa Seigler & Ebinger, Senega-
lia Raf., and Vachellia Wight & Arn. are poorly represented. 
However, this large analysis evaluates the relationship of the 
genus Lysiloma in a more general context (see Brown et al., 
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2008, for a complete list of the genera of the Acacieae+Inge-
ae tribes). Acaciella, Senegalia, Mariosousa comprise a basal 
grade. The clade A (PP=1.0) is formed for two clade: Callian-
dra is the sister group Zapoteca and both are the sister group 
of Ingeae, including Acacia (B Clade, PP=1.0). This clade has 
two subclades: the clade Viguieranthus sensu Rodriguez de 
Souza et al. (2016) including Faidherbia A. Chev., Sanjappa 
É.R. Souza & M.V. Krishnaraj, Thailentadopsis Kosterm., and 
Viguieranthus Villiers (PP=0.95) and clade C. This clade inclu-
ded Cojoba Britton & Rose as sister group of Lysiloma and 
Hesperalbizia, and clade D (PP=0.99). This last clade includes 
four subclades whose relationships are unresolved, namely 
the New World Ingeae p.p. clade, which is strongly suppor-
ted (PP=1.0), the poorly supported (PP=0.76) Old World In-
geae clade, including Acacia, and lastly, the Pithecellobium 
clade (part of the New World Ingeae), which is strongly sup-
ported (PP=1.0).

Combined molecular and total evidence analyses
From all regions analyzed, we found ETS to be the most 
informative: 26 taxa, 482 characters, from which 44.73% 
were informative, followed by trnK, 21 taxa, 999 charac-
ters, 5.4% informative, and by matK, 18 taxa, 767 charac-
ters, 3.65% informative. The results of the combined mo-
lecular analysis and those of the total evidence analysis are 
very similar; thus, we only show the second in Figure 4. At 
the base of the tree is a polytomy conformed by Vachellia 
farnesiana (root), Acaciella, and then it follows a clade 
with all the other taxa (Clade A). This polytomy is the sis-
ter group of a grade with Senegalia parviceps, Mariosousa 
dolischotachya, and clade B. This last clade included four 
subclades without resolution among them, namely Calli-
andra spp., Faidherbia, Zapoteca spp., and finally a clade 
with Lysiloma and Hesperalbizia (Clade C). In the combi-
ned molecular analysis as well as each individual analysis 
(ETS, matK, trnK), there is no resolution for Hesperalbizia 

Figure 2: Results of parsimony analysis of the genus Lysiloma Benth. based on morphology (value below the node, bootstrap support, simbols: A, 
clade Hesperalbizia and Lysiloma; B, clade Lysiloma; C, species with inflorescence racemose; black triangle (), synapomorphy: stipule developed, 
black circle () and black square (): synapomorphies for inflorescence racemose and pod craspedial; white circle (): inflorescence capitate 
(reversion), and white square (): pod indehiscent (reversion). 
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occidentalis, Lysiloma sabicu and the core of Lysiloma. 
However, in the total evidence analysis, Hesperalbizia was 
recovered as sister group of Lysiloma with low support. 

Diversification of the genus Lysiloma
The exclusion of the Lysiloma fossil from the molecular 
clock analyses does not result in relevant differences in 
chronology. Hence, the results are not contingent upon the 

Figure 3: Results of Bayesian analysis of the genus Lysiloma Benth. based on a large molecular matrix of DNA-ETS (Clade A: core Ingeae, including 
Acacia Mill. clade B: clade A- clade Calliandra, and Zapoteca; clade C: Cojoba, sister group of Lysiloma and Hesperalbizia, and Ingeae p.p. including 
Acacia, Clade D: New World Ingeae p.p., Old World Ingeae and Acacia, and Pithecellobium alliance. Important synapomorphies: stipule developed 
for Lysiloma + Hesperalbizia, and pod craspedial for Lysiloma.



Duno de Stefano et. al.: Phylogeny of Lysiloma (Fabaceae)

Acta Botanica Mexicana 128: e1782  |  2021  |  https://doi.org/10.21829/abm128.2021.1782 14

Figure 4: Results of total Bayesian analysis the genus Lysiloma Benth. (morphology, ETS, matK and trnK). * PP >95 %.

restriction imposed by the inclusion of this fossil and asso-
ciated date.

Figure 5 shows the result molecular clock analyses. 
The divergence of Lysiloma and Hesperalbizia (L1) was es-
timated at about 28.22 myr (95% HPD: 19.5-36.25) in the 
beginning of the Oligocene. The second node (L2) corres-
ponds to the divergence of Lysiloma and was estimated 
at about 29.86 myr (95% HPD: 28.64-39.13). Node L3, the 
divergence of the Lysiloma core, was estimated at about 
22.65 myr (95% HPD: 15.78-28.33) in the beginning of the 
Miocene. 

Discussion

Phylogeny reconstruction is a crucial aim of contemporary 
systematics. The success of phylogenetic inference can be 

measured in terms of resolution, support, and accuracy 
(Wortley et al., 2005). Many studies suggest that increasing 
sequence data is a better way to improve support, reso-
lution, and accuracy of the phylogenetic trees (Rokas and 
Carroll, 2005) at any level; the ordinal level (Li et al., 2019), 
family level (Stull et al., 2015), generic level (Cardoso et al., 
2015; Stull et al., 2015), and at the species level (Nicholls et 
al., 2015). We consider that additional DNA regions must 
be explored to test and improve the resolution of topolo-
gy, particularly regarding Lysiloma and Hesperalbizia. The 
morphological analysis (maximum parsimony) confirms 
the monophyly of Lysiloma and its close relationship with 
Hesperalbizia, in concordance with two previous molecular 
analyses, which include at least one accession of each ge-
nus (Brown et al., 2008; Iganci et al., 2015). However, the 
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current morphological analysis does not allow to recover a 
complete picture of the relationships of Lysiloma and Hes-
peralbizia with other members of tribes Acacieae and In-
geae, because only a few taxa were included. 

Morphological analysis
In a previous morphological analysis that included many mem-
bers of the tribe and in which 75 characters were used (Grimes, 
1995), a different picture of the relationships of Lysiloma and 
Hesperalbizia was retrieved. Grimes (1995) found that Lysilo-
ma is most closely related to the Pithecellobium alliance, along 
with Faidherbia, Senegalia, and Vachellia. However, Hesperal-

bizia is more related to Samanea (Benth.) Merr., and Pseudosa-
manea Harms. The main explanation for this result is the unor-
thodox way of coding some characters by the abovementioned 
author (e.g. characters 51 to 58 are derived from the fruit and 
represent one or two, probably strongly correlated characters).

According to our morphological analysis, Lysiloma 
has five synapomorphies (Fig. 2, characters 16, 18, 20, 21, 
and 29). The fact that some of these characters states are 
synapomorphies may be related to the sampling strategy. 
Hence, if more taxa of the tribe were included, some would 
most likely become homoplasic. For example, the charac-
ter “fruits remaining united to the mother plant for long 

Figure 5: Chronogram of Lysiloma, and Hesperalbizia and other related taxa from the tribe Acacieae and Ingeae (Caesalpinioideae) based on ETS data. 
Divergence times are shown using the computer program BEAST v. 1.10. The calibration nodes 1 (28.4 myr), and 2 (16 myr), are marked by dots based 
on the fossil records. The root of the tree was set to no more than 45 myr.
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time” is found in Albizia Durazz. (not included in the current 
analysis). In addition, the character “prominent foliaceous 
stipules” a synapomorphy for Hesperalbizia+Lysiloma is 
present in Albizia chinensis (Osbeck) Merr.

Molecular and total evidence analyses
In a more general context, three previous phylogenetic 
analyses have been published with abundant accessions of 
ITS, and/or ETS (Brown et al., 2008; Rodriguez de Souza et 
al., 2013; Iganci et al., 2015). In concordance with those, 
our large (rDNA-ETS, Fig. 2) analysis supports a basal posi-
tion for the segregates of Acacia, namely Acaciella, Mari-
osousa, Senegalia, and Vachellia as well as for the Lysilo-
ma+Hesperalbizia clade. It also supports the monophyly of 
the Pithecellobium alliance and the clade Viguieranthus as 
a sister group of Zapoteca (Rodriguez de Souza et al., 2016). 
None of these earlier phylogenetic analyses support the re-
lationship of Lysiloma and Hesperalbizia found by Grimes 
(1995), nor support the relationship of Hesperalbizia with 
Albizia (Rico Arce et al., 2008). In the current analysis some 
clades are strongly supported (e.g. Zapoteca, Cojoba, and 
the Pithecellobium alliance (PP >98%)), but not the Lysilo-
ma+Hesperalbizia clade. The basal clade of the current tree 
(Fig. 2) is a mixture of elements restricted to the New World 
(Acaciella, Mariosousa, and Zapoteca), others from the Old 
Word (Faidherbia), as well as elements from both regions 
(Calliandra+Afrocalliandra É.R. Souza & L.P. Queiroz, and 
Senegalia). There are three clades with no resolution which 
reveal geographic coherence: The New World Ingeae (e.g. 
Abarema, Inga Mill., Samanea, Enterolobium Mart., etc.), 
the Old World Ingeae (e.g. Archidendron F. Muell., Parase-
rianthes I.C. Nielsen, Wallaceodendron Koord., etc.), plus 
Acacia s.s., and the Pithecellobium alliance from the New 
World.

Regarding the internal relationship of the genus, Lysi-
loma latisiliquum and L. sabicu, the two taxa bearing fruits 
with persistent lateral sutures are not retrieved as a clade; 
instead, the two species are nested in widely diverging 
clades, pointing to an independent evolution of this fruit 
type. Our results suggest that the distribution of L. sabicu 
in the Antilles can be explained by an old vicariance pro-
cess but in the case of L. latisiliquum, it requires long-dis-
tance dispersal (from mainland Mexico to south Florida, 

Bahamas, Turks and Caicos Islands, Cuba and Haiti). A fact 
that still has no explanation is why L. sabicu has been less 
successful in its expansion in the Antilles compared to L. 
latisiliquum, considering the long occupation time of the 
lineage in the area.

Lysiloma taxa with capitate inflorescences and those 
with racemose inflorescences constitute polyphyletic as-
semblages. In summary, we found no support for Thomp-
son’s infrageneric informal classification (1980). This was 
already proposed by Barneby and Grimes (1996), who did 
not find any reason to maintain such a classification and 
proposed that character states observed in L. latisiliquum 
and L. sabicu probably evolved independently. The evolu-
tion of fruit dehiscence in Lysiloma is of ecological interest, 
because indehiscent fruits, which are buoyant and proba-
bly an apomorphic condition, have most likely allowed the 
genus to invade the West Indies.

In our analysis, we did not find a clear biogeograph-
ical pattern with the three species distributed in the Ne-
arctic region (the southwestern coast of USA, and Mexico): 
L. candidum Brandegee, L. microphyllum (partially) and L. 
watsonii, because they are not closely related, suggesting 
the genus invaded the Nearctic region thrice. However, a 
structurally and geographically coherent clade recovered 
in both the morphological and total evidence analyses was 
found to occur along the Pacific coast of Mexico: L. can-
didum, L. tergeminum, and L. divaricatum. One of the mor-
phological features of this clade are the leaves with few 
pinnae. Therefore, diversification in Lysiloma seems to have 
followed an isolation by allopatry pattern, whereby sister 
taxa are currently allopatric and sympatric taxa are not 
closely related. Thus, Lysiloma latisiliquum and L. sabicu, 
which are sympatric in the West Indies, belong to differ-
ent clades in the genus, whereas the sister pair of L. wat-
sonii and L. auritum occur one each on one of the opposing 
drainages of Mexico, the former on the Pacific slope, the 
latter on the Gulf slope.

Lysiloma sabicu is the most distinct taxon within the 
genus. This taxon shares with Hesperalbizia leaves with few 
pinnae with a few large leaflets, which can imply a morpho-
logical transition. It is possible that additional evidence will 
eventually increase the support for a sister group relation-
ship of Hesperalbizia and Lysiloma. In the total evidence 
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analysis (Bayesian), Hesperalbizia is the sister group of Lysi-
loma, but the relationship is poorly supported (PP <0.95%). 

The advantages of including Hesperalbizia in the ge-
nus Lysiloma are similar to those of creating a monotyp-
ic genus for Lysiloma sabicu. Any decision here, regarding 
the generic boundaries of Lysiloma and Hesperalbizia, 
should be well thought-out and meet the mandatory rule 
of monophyly, as well as the secondary criteria proposed by 
Backlund and Bremer (1998): support, diagnosability, max-
imum informativity, and stability. There are morphological 
differences in the most distinctive character of Lysiloma as 
compared to Hesperalbizia; for example, the fruit in Lysilo-
ma exfoliates, eventually revealing the pale brown endo-
carp (not in Hesperalbizia). Another difference is related to 
flower number: fewer with longer petals in Hesperalbizia. 
Seeds are also different (lens-like, pale brown, and areolate 
in Hesperalbizia), as opposed to ovate, oblong to elliptic 
and dark brown to black in Lysiloma. Thus, here we argue 
that until more data become available, it is best to retain 
Lysiloma in its present circumscription.

Despite Lysiloma being a small genus, it shows a com-
plex evolutionary structure. The phylogenetic molecular 
analysis points at the homoplasic evolution of many mor-
phological characters, which strongly suggest that differ-
ent lineages were modeled by similar ecological pressures. 
Other examples of a similar pattern are the lizards of the 
genus Anolis Daudin, where in the case of Caribbean spe-
cies, the evidence strongly supports the hypothesis of re-
peated and independent development of similarly shaped 
body on each island (Losos, 2001). In the case of flowering 
plants, the genus Manihot Mill. is another good example 
of convergent evolution (in this case, growth forms) (Cer-
vantes-Alcayde et al., 2015). Both examples are of speciose 
lineages with 400 and 100 species, respectively. Because 
of this phenomenon (repeated evolutionary convergence), 
the classifications based only on morphology may be mis-
leading, being not natural (monophyletic), but polyphylet-
ic or paraphyletic. Moreover, although these two exam-
ples may suggest that repeated evolutionary convergence 
is characteristic of diverse lineages, our data of Lysiloma 
show that even small genera with more restricted distribu-
tions can also show this pattern. A similar pattern of evolu-
tion could be found in other members of the tribe Ingeae, 

involving some Old World Albizia species and New World 
Albizia species associated with flooded forests, all the spe-
cies of the genus Hydrochorea Barneby & J.W. Grimes, and 
the two species of Balizia Barneby & J.W. Grimes section 
Balizia. All these lineages are subject to environmental 
pressures (seasonally flooded environments) and present 
indehiscent, lomentiform fruit.

In addition, there is a long-standing argument on the 
position of Lysiloma microphyllum relative to L. divarica-
tum, to whose synonymy it has been relegated. Thompson 
(1980) recognized both as distinct, albeit morphologically 
very similar. However, Barneby and Grimes (1996) and Gale 
and Pennington (2004) were unable to identify consistent 
characters to separate them. Upon evaluating morpholog-
ical features in herbarium specimens, we did not find dif-
ferences in character states between both taxonomic con-
cepts. Furthermore, molecular data do not support both 
taxa as separate entities, as their ETS, matK, and trnK se-
quences are almost identical. Neither is there a geograph-
ical discontinuity in their distributional ranges (Thompson, 
1980). Thus, here we conclude that L. divaricatum and L. 
microphyllum should be treated as the same species (see 
Gale and Pennington, 2004; Andrade and Sousa, 2012). 

Lysiloma acapulcense requires special consideration. 
As presently circumscribed, this taxon includes a long list 
of synonyms, reflecting the fact that it is an extremely 
polymorphic and widely distributed species. A review of 
the fruit of the types allows us to recognize at least two 
additional morphotypes: one characterized by very long 
and thin fruits (Lysiloma jorullense Britton & Rose), and a 
second morph bearing fruits with a broad base (Lysiloma 
platycarpa Britton & Rose). Thus, this species requires a 
taxonomic re-evaluation.

Diversification of the genus Lysiloma
The divergence between Lysiloma and Hesperalbizia (Fig. 5, 
L1) was estimated at 28.2 myr at the beginning of the Oligo-
cene (Fig. 5, Table 4). This date coincides with a drastic and 
abrupt decrease in temperature and humidity at the be-
ginning of the Oligocene (Galeotti et al., 2016). The second 
node (L2) corresponds to the divergence of the Lysiloma 
estimated at 26 myr, coinciding with two important facts, a 
low global temperature and humidity as well as a proxim-
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ity between the Caribbean Arc and the American continent 
through the Yucatan peninsula during the Oligocene (Pindel 
and Kennan, 2009). An important lineage divergence oc-
curred in the upper Miocene, whereas additional minor ones 
happened below this node (N3) all along the Miocene, which 
agree with Becerra’s (2005) findings regarding the evolution 
and divergence of Bursera (Burseraceae) in the dry forests.

We can assume that the history of Lysiloma seems to 
be tightly related to the last 30 to 5 myr corresponding with 
the formation of the main orographic systems in Mexico, 
such as the Sierra Madre Occidental and later the Neovolca-
nic belt and the dry forest (Gómez-Tuena et al., 2007). The 
last uplift of the Sierra Madre Occidental occurred between 
34 and 15 myr, whereas the Neovolcanic axis was formed in 
several stages along a west-east progression that started in 
the west (Sosa et al., 2018). The uplift of these two orograph-
ic systems was presumably responsible for the climatic con-
ditions necessary (high temperature and low humidity) for 
the development and maintenance of the dry forests (Sosa 
et al., 2018). 

Conclusion

Lysiloma and Hesperalbizia are sister genera, albeit with low 
clade support, with Lysiloma often resolved as paraphyletic 
with respect to Hesperalbizia. More data are necessary to 
confirm the generic status of Lysiloma. This sister clade is ear-
ly branching within the clade comprising the rest of the tribe 
Ingeae. Indeed, we estimate the stem age of this sister clade 
to average about 32 Ma. In addition, our analysis shows that, 
although Lysiloma is a small genus, it shows a complex evo-
lutionary structure that may be modeled in different lineages 
of the genus by the same ecological pressures, suggesting 
that the phenomena of convergence and/or parallel evolu-
tion occur regardless of species richness. One consequence 
of this phenomenon (repeated evolutionary convergence) 
is that classifications based on morphology are not neces-
sarily natural (monophyletic), but instead, a conglomerate 
of polyphyletic or paraphyletic taxa. This applies not only to 
morphology, but also to patterns of geographic distribution: 
unrelated species can occupy the same distribution.

Regarding the divergence time, the history of the 
genus Lysiloma and Hesperalbizia begins in the Oligocene 
and diversifies into the beginning of the Miocene. This time 

frame coincides with low global temperatures, a proximi-
ty between the Caribbean Arc and the American continent 
through the Yucatan peninsula, and the uplift of the Sierra 
Madre Occidental and later of the Neovolcanic axis. Presum-
ably, these conditions were responsible for the climatic con-
ditions associated with the development and maintenance 
of the dry forest in Mexico (Sosa et al., 2018), the habitat in 
which Lysiloma diversified. 
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Gómez-Tuena, A., M. T. Orozco-Esquivel and L. Ferrari. 2007. Ig-

neous petrogenesis of the Trans-Mexican Volcanic Belt. 

Geological Society of America, Special Paper 422: 129-181. 

DOI: https://doi.org/10.1130/2007.2422(05)

Grimes, J. 1995. Generic Relationships of Mimosoideae tribe 

Ingeae, with emphasis on the New World Pithecellobi-

um-complex. In: Crisp, M. D. and J. J. Doyle (eds.). Advances 

in Legume Systematics, Part 7 Phylogeny. The Royal Botanic 

Gardens Kew. Richmond, UK. 371 pp.

Guindon, S. and O. Gascuel. 2003. A simple, fast and accurate 

method to estimate large phylogenies by maximum-likeli-

hood. Systematic Biology 52(5): 696-704. DOI: https://doi.

org/10.1080/10635150390235520

Guinet, P. and J. W. Grimes. 1997. A Summary of Pollen Charac-

teristic of Some New World Members of the Pithecellobi-

um-complex. Memoirs of the New York Botanical Garden 

74(2): 151-161. 

Gustafsson, A. L. S., C. F. Verola and A. Antonelli. 2010. Reassess-

ing the temporal evolution of orchids with new fossils and a 

Bayesian relaxed clock, with implications for the diversification 

of the rare South American genus Hoffmannseggella (Orchi-

daceae: Epidendroideae). BMC Evolutionary Biology 10: 177-

190. DOI: https://doi.org/10.1186/1471-2148-10-177

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence align-

ment editor and analysis program for Windows 95/98/NT. 

Nucleic Acids Symposium Series 41: 95-98. 

Heil, M., M. González-Teuberb, L. W. Clement, S. Kautz, M. Ver-

haagh and J. C. Silva Bueno. 2009. Divergent investment 

strategies of Acacia myrmecophytes and the coexistence 

of mutualists and exploiters. Proceedings of the National 

Academy of Sciences 106(43): 18091-18096. DOI: https://

doi.org/10.1073/pnas.0904304106

Heckenhauer, J. P., K. A. Salim, M. W. Chase, K. G. Dexter, R. T. Pen-

nington, S. Tan, M. E. Kaye and R. Samuel. 2017. Plant DNA 

barcodes and assessment of phylogenetic community struc-

ture of a tropical mixed dipterocarp forest in Brunei Darus-

salam (Borneo). PLOS ONE 12(10): e0185861. DOI: https://

doi.org/10.1371/journal.pone.0185861 

Hilu, K. W., C. Black, D. Diouf and J. G. Burleigh. 2008. Phyloge-

netic signal in matK vs. trnK: A case study in early diverg-

ing eudicots (angiosperms). Molecular Phylogenetics and 

Evolution 48(3): 1120-1130. DOI: https://doi.org/10.1016/j.

ympev.2008.05.021

Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian in-

ference of phylogeny. Bioinformatics 17(8): 754-755. DOI: 

https://doi.org/10.1093/bioinformatics/17.8.754 

Iganci, J. R., M. V. Soares, E. Guerra and M. P. Morim. 2015. A pre-

liminary molecular phylogeny of the Abarema alliance (Le-

guminosae) and implications for taxonomic rearrangement. 

International Journal of Plant Sciences 177(1): 34-43. DOI: 

https://doi.org/10.1086/684078

Johnson, L. A. and D. E. Soltis. 1994. matK DNA sequences and phylo-

genetic reconstruction in Saxifragaceae s. str. Systematic Bot-

any 19(1): 143-156. DOI: https://doi.org/10.2307/2419718

Katoh, K., J. Rozewicki and K. D. Yamada. 2017. MAFFT online ser-

vice: multiple sequence alignment, interactive sequence 

choice and visualization. Briefings in Bioinformatics 20(4): 

1160-1166. DOI: https://doi.org/10.1093/bib/bbx108

Katoh, K., K. Misawa, K-I. Kuma and T. Miyata. 2002. MAFFT: a nov-

el method for rapid multiple sequence alignment based on 

fast Fourier transform. Nucleic Acids Research 30(14): 3059-

3066. DOI: https://doi.org/10.1093/nar/gkf436

Li, H. T., T. S. Yi, L. M. Gao, P. F. Ma, T. Zhang, J. B. Yang, M. A. Git-

zendanner, P. W. Fritsch, J. Cai, Y. Luo, H. Wang, M. van der 

Bank, S. D. Zhang, Q.F. Wang, J. Wang, Z. R. Zhang, C. N. Fu, J. 

Yang, P. M. Hollingsworth, M. W. Chase, D. E. Soltis, P. S. Soltis 

and D. Z. Li. 2019. Origin of angiosperms and the puzzle of 

the Jurassic gap. Nature Plants 5: 461-470. DOI: https://doi.

org/10.1038/s41477-019-0421-0 

Losos, J. B. 2001. Evolution: A Lizard’s Tale. Scientific American 

284(3): 64-69. DOI: https://doi.org/10.1038/scientificameri-

can0301-64

LPWG. 2017. A new subfamily classification of the Leguminosae 

based on a taxonomically comprehensive phylogeny. Taxon 

66(1): 44-77. DOI: https://doi.org/10.12705/661.3

https://doi.org/10.1126/science.aab0669
https://doi.org/10.1126/science.aab0669
http://www.ncbi.nlm.nih.gov/genbank/
https://doi.org/10.1130/2007.2422(05)
https://doi.org/10.1080/10635150390235520
https://doi.org/10.1080/10635150390235520
https://doi.org/10.1186/1471-2148-10-177
https://doi.org/10.1073/pnas.0904304106
https://doi.org/10.1073/pnas.0904304106
https://doi.org/10.1371/journal.pone.0185861
https://doi.org/10.1371/journal.pone.0185861
https://doi.org/10.1016/j.ympev.2008.05.021
https://doi.org/10.1016/j.ympev.2008.05.021
https://doi.org/10.1093/bioinformatics/17.8.754
https://doi.org/10.1086/684078
https://doi.org/10.2307/2419718
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1038/s41477-019-0421-0
https://doi.org/10.1038/s41477-019-0421-0
https://doi.org/10.1038/scientificamerican0301-64
https://doi.org/10.1038/scientificamerican0301-64
https://doi.org/10.12705/661.3


Duno de Stefano et. al.: Phylogeny of Lysiloma (Fabaceae)

Acta Botanica Mexicana 128: e1782  |  2021  |  https://doi.org/10.21829/abm128.2021.1782 21

Macphail, M. K. and R. S. Hill. 2001. Palaeobotany of Acacia and 

related Mimosaceae. In: Australian Biological Resource Study 

(eds.). Flora of Australia, Volume 11A: Mimosaceae, Acacia 

part 1. CSIRO Publishing. Melbourne, Australia. 673 pp.

Magallón-Puebla, S. and S. Cevallos-Ferriz. 1993. Fossil legume 

fruits from tertiary strata of Puebla, Mexico. Canadi-

an Journal of Botany 72(7): 1027-1038. DOI: https://doi.

org/10.1139/b94-129

Miller, J. T. and R. J. Bayer. 2001. Molecular phylogenetics of 

Acacia (Fabaceae: Mimosoideae) based on the chloroplast 

matK coding sequence and flanking trnK intron spacer re-

gions. American Journal of Botany 84(4): 697-705. DOI: 

https://doi.org/10.2307/2657071

Miller, J. T., J. W. Grimes, D. J. Murphy, R. J. Bayer and P. Y. Ladiges. 

2003. A phylogenetic analysis of the Acacieae and Ingeae (Mi-

mosoideae: Fabaceae) based on trnK, matK, psbA-trnH, and 

trnL/trnF sequence data. Systematic Botany 28(3): 558-566. 

Murphy, D. J., G. K. Brown, J. T. Miller and P. Y. Ladiges. 2010. Mo-

lecular phylogeny of Acacia Mill. (Mimosoideae: Legumino-

sae): Evidence for major clades and informal classification. 

Taxon 59(1): 7-19. DOI: https://doi.org/10.1002/tax.591002

Nascimento, F. F., M. dos Reis and Z. Yang. 2017. A biologist’s 

guide to Bayesian phylogenetic analysis. Nature Ecology and 

Evolution 1(10): 1446-1454. DOI: https://doi.org/10.1038/

s41559-017-0280-x

Nicholls, J., R. Pennington, E. Koenen, C. E. Hughes, J. Hearn, L. 

Bunnefeld, K. Dexter, G. N. Stone and C. A. Kidner. 2015. Us-

ing targeted enrichment of nuclear genes to increase phylo-

genetic resolution in the neotropical rain forest genus Inga 

(Leguminosae: Mimosoideae). Frontiers in Plant Science 17: 

710. DOI: https://doi.org/10.3389/fpls.2015.00710 

Nixon, K. C. 2002. Winclada ver. 1.0000. Published by the author. 

Ithaca, USA. 

Ortiz-Ávila, V., G. A. Arnaud-Franco, E. Estrada-Castillón, E. A. 

Cavazos-Lozano, G. Romero and M. Mellado. 2020. Vegeta-

tion on geomorphic surfaces in the Monserrat Island in the 

Gulf of California. Ecosistemas y Recursos Agropecuarios 

7(2): e2334. 

Pérez‐Escobar, O. A., G. Chomicki, F. L. Condamine, A. P. Karre-

mans, D. Bogarín, N. J. Matzke, D. Silvestro and A. Antonelli. 

2017. Recent origin and rapid speciation of Neotropical or-

chids in the world’s richest plant biodiversity hotspot. New 

Phytologist 215(2): 891-905. DOI: https://doi.org/10.1111/

nph.14629

Pindell, J. and L. Kennan. 2009. Tectonic evolution of the Gulf of 

Mexico, Caribbean and northern South America in the mantle 

reference frame: an update. Geological Society London Spe-

cial Publications 328(1):1-55. DOI: https://doi.org/10.1144/

SP328.1

Posada, D. 2008. jModelTest: Phylogenetic model averaging. Mo-

lecular Biology and Evolution 25(7): 1253-1256. DOI: https://

doi.org/10.1093/molbev/msn083

Rambaut, A. 2014. FigTree v. 1.4.2. A Graphical Viewer of Phylo-

genetic Trees. Available from http://tree.bio.ed.ac.uk/soft-

ware/figtree/ (consulted March, 2020)

Rambaut, A., M. A. Suchard, D. Xie and A. J. Drummond. 2014. 

Tracer v. 1.6. http://beast.bio.ed.ac.uk/Tracer (consulted 

March, 2020).

Rascón-Ayala, J. M., E. Alanís-Rodríguez, A. Mora-Olivo, E. Buendía-

Rodríguez, L. Sánchez-Castillo and J. E. Silva-García. 2018. 

Differences of vegetation structure and diversity of a forest 

in an altitudinal gradient of the Sierra La Laguna Biosphere 

Reserve, Mexico. Botanical Sciences 96(4): 598-608. DOI: 

https://doi.org/10.17129/botsci.1993

Rico Arce, M. de L. 1992. New chromosome counts in neotropical 

Albizia, Havardia and Pithecellobium, and a new combination 

for Albizia (Leguminosae-Mimosoideae-Ingeae). Botanical 

Journal of the Linnean Society 108(3): 269-274. DOI: https://

doi.org/10.1111/j.1095-8339.1992.tb00243.x

Rico Arce, M. de L., S. L. Gale and N. Maxted. 2008. A taxonom-

ic study of Albizia (Leguminosae: Mimosoideae: Ingeae) 

in Mexico and Central America. Anales del Jardín Botánico 

de Madrid 65(2): 255-305. DOI: https://doi.org/10.3989/

ajbm.2008.v65.i2.294 

Rindal, E. and A. V. Z. Brower. 2010. Do model‐based phyloge-

netic analyses perform better than parsimony? A test with 

empirical data. Cladistics 27(3): 331-334. DOI: https://doi.

org/10.1111/j.1096-0031.2010.00342.x

Rodriguez de Souza, E., M. Krishnaraj and L. P. de Queiroz. 2016. 

Sanjappa, a new genus in the tribe Ingeae (Leguminosae: Mi-

mosoideae) from India. Rheedea 26(1): 1-12. 

Rodriguez de Souza, E., G. P. Lewis, F. Forest, A. S. Schnadelbach, C. 

van den Berg and L. P. de Queiroz. 2013. Phylogeny of Callian-

dra (Leguminosae: Mimosoideae) based on nuclear and plas-

https://doi.org/10.1139/b94-129
https://doi.org/10.1139/b94-129
https://doi.org/10.2307/2657071
https://doi.org/10.1002/tax.591002
https://doi.org/10.3389/fpls.2015.00710
https://doi.org/10.1111/nph.14629
https://doi.org/10.1111/nph.14629
https://doi.org/10.1144/SP328.1
https://doi.org/10.1144/SP328.1
https://doi.org/10.1093/molbev/msn083
https://doi.org/10.1093/molbev/msn083
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://beast.bio.ed.ac.uk/Tracer
https://doi.org/10.17129/botsci.1993
https://doi.org/10.1111/j.1095-8339.1992.tb00243.x
https://doi.org/10.1111/j.1095-8339.1992.tb00243.x
https://doi.org/10.3989/ajbm.2008.v65.i2.294
https://doi.org/10.3989/ajbm.2008.v65.i2.294
https://doi.org/10.1111/j.1096-0031.2010.00342.x
https://doi.org/10.1111/j.1096-0031.2010.00342.x


Duno de Stefano et. al.: Phylogeny of Lysiloma (Fabaceae)

Acta Botanica Mexicana 128: e1782  |  2021  |  https://doi.org/10.21829/abm128.2021.1782 22

tid molecular markers. Taxon 62(6): 1201-1220. DOI: https://

doi.org/10.12705/626.2

Rokas, A. and S. B. Carroll. 2005. More Genes or More Taxa? The 

Relative Contribution of Gene Number and Taxon Number 

to Phylogenetic Accuracy. Molecular Biology and Evolution 

22(5): 1337-1344. DOI: https://doi.org/10.1093/molbev/

msi121

Ronquist, F. and J. P. Huelsenbeck. 2003. MrBAYES 3: Bayesian 

phylogenetic inference under mixed models. Bioinformatics 

19(12): 1572-1574. DOI: https://doi.org/10.1093/bioinfor-

matics/btg180

Rzedowski, J. 1991. Diversidad y orígenes de la flora fanerogámica 

de México. Acta Botanica Mexicana 14: 3-21. DOI: https://

doi.org/10.21829/abm14.1991.611 

Simon, M. F., R. Grether, L. P. de Queiroz, C. Skema, R. T. Pen-

nington and C. E. Hughes. 2009. Recent assembly of the 

Cerrado, a neotropical plant diversity hotspot, by in situ 

evolution of adaptations to fire. Proceedings of the Nation-

al Academy of Sciences 106(48): 20359-20364. DOI: https://

doi.org/10.1073/pnas.0903410106

Sorsa, P. 1969. Pollen morphological studies on the Mimosaceae. 

Annales Botanici Fennici 6(1): 1-34. 

Sosa, V., J. A. De-Nova and M. Vásquez‐Cruz. 2018. Evolutionary 

history of the flora of Mexico: Dry forests cradles and mu-

seums of endemism. Journal of Sytematics and Evolution 

56(5): 523-536. DOI: https://doi.org/10.1111/jse.12416

Stull, G. W., R. Duno de Stefano, D. E. Soltis and P. S. Soltis. 2015. 

Resolving basal lamiid phylogeny and the circumscrip-

tion of Icacinaceae with a plastome-scale data set. Amer-

ican Journal Botany 102(11): 1794-1813. DOI: https://doi.

org/10.3732/ajb.1500298

Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond 

and A. Rambaut. 2018. Bayesian phylogenetic and phylo-

dynamic data integration using BEAST 1.10. Virus Evolution 

4(1): vey016. DOI: https://doi.org/10.1093/ve/vey016

Thiers, B. 2020 (continuously updated). Index Herbariorum: A 

global directory of public herbaria and associated staff. New 

York Botanical Garden’s Virtual Herbarium. New York, USA. 

http://sweetgum.nybg.org/ih/ (consulted March, 2020).

Thompson, R. 1980. A revision of the genus Lysiloma (Legumino-

sae). PhD dissertation. Southern Illinois University. Carbon-

dale, USA. 132 pp. 

Wortley, A. H., P. J. Rudall, D. J. Harris and R. W. Scotland. 2005. 

How much data are needed to resolve a difficult phylogeny? 

Case study in Lamiales. Systematic Biology 54(5): 697-709. 

DOI: https://doi.org/10.1080/10635150500221028

https://doi.org/10.12705/626.2
https://doi.org/10.12705/626.2
https://doi.org/10.1093/molbev/msi121
https://doi.org/10.1093/molbev/msi121
https://doi.org/10.1093/bioinformatics/btg180
https://doi.org/10.1093/bioinformatics/btg180
https://doi.org/10.21829/abm14.1991.611
https://doi.org/10.21829/abm14.1991.611
https://doi.org/10.1073/pnas.0903410106
https://doi.org/10.1073/pnas.0903410106
https://doi.org/10.1111/jse.12416
https://doi.org/10.3732/ajb.1500298
https://doi.org/10.3732/ajb.1500298
https://doi.org/10.1093/ve/vey016
http://sweetgum.nybg.org/ih/
https://doi.org/10.1080/10635150500221028

	Phylogeny of Lysiloma (Fabaceae), a genus restricted to Megamexico with outliers in the West Indies and Florida
	Introduction
	Material and Methods
	Taxon sampling
	DNA extraction, ampliﬁcations, and sequencing
	Morphological characters
	Phylogenetic analyses
	Morphological analysis
	Molecular analyses
	Combined analyses
	Fossil calibration and diversification times


	Results
	Morphology
	Molecular data
	Combined molecular and total evidence analyses
	Diversification of the genus Lysiloma

	Discussion
	Morphological analysis
	Molecular and total evidence analyses
	Diversification of the genus Lysiloma

	Conclusion
	Author contributions
	Funding
	Acknowledgements
	Literature cited


