

Challenges to collect and use Fungal Pathogens for Weed Biocontrol in Developing Countries

Marion Seier

www.cabi.org

KNOWLEDGE FOR LIFE

Outline

- Weed biocontrol in developed / developing countries
- Challenges to collect and export fungal pathogens for biocontrol
 - Case studies India / Brazil
- Challenges to use fungal pathogens as biocontrol agents
 - Mikania micrantha / India
 - Rottboellia cochinchinensis / Costa Rica
- Opportunities for developing countries
- Conclusions

Weed biocontrol in developed and developing countries

- The "Big Five"
 Carried out the majority of weed biocontrol programmes
- Developing countries have been the source of many agents

Developing countries as a source of fungal biocontrol agents

Brazil

- Prospodium tuberculatum against Lantana camara in AUS (2001)
- Colletotrichum gloeosporioides f. sp. miconiae against Miconia calvescens in Hawaii (1997),
 Tahiti and French Polynesia (2000)

Colombia

Septoria passiflorae against Passiflora tarminiana in Hawaii (1996)

Madagascar

Maravalia cryptostegiae against Cryptostegia grandiflora in AUS (1994)

Mexico

- Phaeoramularia eupatorii-odorati against Ageratina adenophora in SA (1987)
- Puccinia abrupta var. partheniicola (1991) / Puccinia melampodii (1999) against Parthenium hysterophorus in AUS
- > Phloeospora mimosae-pigrae (1994) / Diabole cubensis (1996) against Mimosa pigra in AUS
- Entyloma ageratinae against Ageratina riparia in Hawaii (1975), SA (1989), NZ (1998)

Turkey

- > Puccinia carduorum against Carduus nutans group in USA (1987)
- Uromyces heliotropii against Heliotropium europaeum in AUS (1991)

Julien & Griffiths (1998), Barton 2004, Ellison & Barreto (2004)

Weed biocontrol in developed and developing countries

- The majority of weed biocontrol programmes carried out by "Big Five"
- Developing countries have been the source of many agents
- Very few biocontrol programmes have been solely initiated and/or carried out for developing countries
- Biocontrol programmes are often extended from developed countries to developing countries (piggy backing, off-theshelf agents)

Developing countries as recipients of fungal biocontrol agents

Chile

- Phragmidium violaceum against Rubus constrictus / Rubus ulmifolius from Germany (1973)
- Uromyces galegae against Galega officinalis from France via Switzerland (1973)

India

- Puccinia spegazinii against Mikania micrantha ex Trinidad (2005)
 - P. spegazinii subsequently also released in China (2006), PNG (2009),
 Fiji (2009)

Argentina

Puccinia chondrillina against Chondrilla juncea from Italy via USA (1982)

Weed biocontrol in developed and developing countries

- The majority of weed biocontrol programmes carried out by "Big Five"
- Developing countries have been the source of many agents
- Very few biocontrol programmes have been solely initiated and/or carried out for developing countries
- Biocontrol programmes are often extended from developed countries to developing countries (piggy backing, off-theshelf agents)
- Many developing countries still do not have: an invasive species strategy or do not enforce it; a list of priority target weeds and / or appropriate management strategies

Challenges to collect and export fungal agents for biocontrol from developing countries

- Pre-CBD (1992): fungi (and insects) associated with noncrop plants (i.e. weeds) no value, possibility to explore and export relatively freely
 - Security issues when collecting
 - Permission to collect and export from relevant countries
- Post-CBD: awareness of value of biodiversity and need for protection; international conventions supported by national legislation
 - No legislation in place yet
 - Relevant legislation inappropriate and/or highly complex; new and not yet fully understood, "biopiracy legislation"
 - Lack of protocols for implementation
 - Responsibilities of government bodies unclear

Challenges to collect and export fungal agents for biocontrol from developing countries (cont.)

- Post-CBD: awareness of value of biodiversity and need for protection; international conventions supported by national legislation
 - Overall reluctance to make decisions by personnel (politicians) in key positions
 - Need to recognise exploration and collection for biocontrol as part of non-commercial research and to separate from profit-orientated commercial research (bioprospecting) and biopiracy (Acess and Benefit Sharing regime)

Challenges to collect / export fungal pathogens for biocontrol

Himalayan Balsam (*Impatiens glandulifera*)

Procedure for export of fungal pathogens from India

- India signing the CBD lead to the Biodiversity Act (2002) governed by the National Biodiversity Authority (NBA)
- Provisions and guidelines in this Act designed to facilitate collaborative research and sharing of genetic resources for scientific purposes
- Application by non-Indian residents to NBA to export genetic material from India against a fee; decision "yes" or "no" ultimate

OR

- Foreign scientists need in-country collaborators within a public-sector organization with legal status and approved by Central Indian Government, signed MoU
- Application for export under a "Material Transfer Agreement" which must be endorsed by an export facilitation committee
- Voucher specimen must be deposited in Indian collection/herbarium

Challenges to collect / export fungal pathogens for biocontrol

Bellyache bush (Jatropha gossypiifolia)

Photo: Kunjithapatham Dhileepan, DEEDI

Phakopsora jatrophicola

Photo: Dartanhã J. Soares Emprapa Algodão

Procedure for export of fungal pathogens from Brazil

- Previously, "illegal collection of biodiversity" was punishable with fines and potential closure of institutions involved
- Work is performed with local Brazilian collaborator as documented by specific paperwork
- Duplicates of specimens are deposited in a Brazilian collection
- Export request filed by local collaborator through the Ministerio de Meio Ambiente (IBAMA) online system
- Within a month of filing the request Brazilian collaborator receives permission document allowing to dispatch or handcarry the specimen to its destination

Challenges to use fungal agents for biocontrol in developing countries

- Poor donor record in long-term funding for BC programmes for developing world
- Lack of confidence in return on BC programmes
- Piggy-backing on existing programmes in developed world and offthe-shelf agents can give impression BC is a quick solution
- Appropriate policy and legislative frameworks and protocols need to be in place, implemented and followed
- High-grade quarantine facilities expensive to build and maintain
- Reluctance to take decision by relevant authorities/ key personnel
- Pathogens traditionally considered second to insect agents;
 "pathophobia"

Challenges to use fungal pathogens as biocontrol agents

Mile-a-minute weed (*Mikania micrantha*)

Puccinia spegazinii

Procedure for the importation and release of Puccinia spegazinii in India

- Policy frame work in place for import and release of natural enemies, but tailored towards insects
- Stakeholder workshop held in India to gain support for introduction of the rust, workshop recommendations (1999), proceedings published in 2001
- Dossier on prioritized fungal agent Puccinia spegazinii and letter stating permission from Ministry of Agriculture, Land and Marin Resources/ Trinidad & Tobago to use their genetic resources submitted to Indian Directorate of Plant Protection Quarantine and Storage (DPPQS)
- Project Directorate of Biological Control (PDBC) of the Indian Council of Agricultural Research (ICAR) entered into project framework
- National Bureau of Plant Genetic Resources (NBPGR) provided quarantine facilities for import of the rust
- Permission to import rust into quarantine after extensive consultation between DPPQS and PDBC (2002)

Procedure for the importation and release of Puccinia spegazinii in India (cont.)

- Additional host range testing of rust by Indian scientists from NBPGR and PDBC required before consideration for release (74 species/varieties, 18 repeats of species already tested) completed 2005
- Supplementary Dossier submitted to Plant Protection Adviser to the Government of India, Ministry of Agriculture (MoA) with application for limited field release
- Following extensive consultation between MoA and PDBC permit for release of *P. spegazinii* in two areas each in Kerala and Assam granted (June 2005)
 - Entire biocontrol programme: 9 years
 - Initial Research Phase: 4 years (1996-2000)
 - Consultation, importation, additional research and release of the rust: 5 years (2000-2005)

Parthenium hysterophorus

Puccinia melampodii

Puccinia melampodii on Calendula officinalis

Challenges to use fungal pathogens as biocontrol agents

Itch grass
Rottboellia cochinchinensis

Sporisorium ophiuri

Are there opportunities for developing countries?

- "Enforced" in-country collaboration to gain permission to collect and export
- Benefit-sharing through shared/joint research facilitates the engagement of local expertise and capacity building in-country, technology transfer, chance for local partners to become leaders for biocontrol in their respective country
- Developing countries can piggy-back on biocontrol programmes successfully implemented in developed world – cost-effective way of fast tracking biocontrol
- Developing countries can profit from experience of countries who have long history of implementing biocontrol, from lessons learnt regarding i.e. agent selection and release strategies

Conclusions

- Exploration for and export of organisms for biocontrol needs to be recognized as non-commercial research and to be separated from commercial research (bioprospecting) under ABS
- Biocontrol practitioners will need to comply with country rules to justify confidence placed in them with respect to non-commercial research
- Appropriate legislative frameworks and protocols and in-country knowledge and confidence how to apply these need to be established
- Some countries ahead in facilitating export of beneficials could be role models
- Piggy-backing on biocontrol programmes undertaken in developed countries offers cost-effective fast-tracking for developing countries
- Long-term donor/government funding is crucial for biocontrol programmes targeting primarily developing countries; need for realistic time frames

www.cabi.org
KNOWLEDGE FOR LIFE