The Taxonomy, Phylogeny and Impact of Mycosphaerella species on Eucalypts in South-Western Australia

By
Aaron Maxwell BSc (Hons) Murdoch University

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Biological Sciences and Biotechnology
Murdoch University
Perth, Western Australia
April 2004

Declaration

I declare that the work in this thesis is of my own research, except where reference is made, and has not previously been submitted for a degree at any institution

Aaron Maxwell

April 2004

Acknowledgements

This work forms part of a PhD project, which is funded by an Australian Postgraduate Award (Industry) grant. Integrated Tree Cropping Pty is the industry partner involved and their financial and in kind support is gratefully received.

I am indebted to my supervisors Associate Professor Bernie Dell and Dr Giles Hardy for their advice and inspiration. Also, Professor Mike Wingfield for his generosity in funding and supporting my research visit to South Africa. Dr Hardy played a great role in getting me started on this road and I cannot thank him enough for opening my eyes to the wonders of mycology and plant pathology. Professor Dell's great wit has been a welcome addition to his wealth of knowledge.

A long list of people, have helped me along the way. I thank Sarah Jackson for reviewing chapters and papers, and for extensive help with lab work and the thinking through of vexing issues. Tania Jackson for lab, field, accommodation and writing expertise. Kar-Chun Tan helped greatly with the RAPD's research. Chris Dunne and Sarah Collins for writing advice. Gordon Thomson helped with the sectioning of the Phaeophleospora pycnidia and answered my endless histological queries with great patience. Heike Neumeister-Kemp for reviewing manuscripts and conversations on the trials and tribulations of research questions and Gernot Lysek for review of the 'new species' paper. Kashia Rybach for providing data on the nutritional status of the plantations that I surveyed. Thanks to Simon Colquon for his doomed attempts to instil a sense of time management into me. Max Dawson, Ian McKernon for taking care of my glasshouse needs, which were excessive at times.

Dr Caroline Mohammed and Paul Barber generously sent isolates from eastern Australia. Other people who helped in collecting material include Dr Ros Pilbeam, Dr Emer O'Gara, and Dr Angus Carnegie. Drs Carnegie and

Mohammed, along with Dr Robert Park were also helpful in providing advice, information and expertise regarding Mycosphaerella research questions. I am thankful of Dr Pedro Crous for his advice on the identification of Phaeophleospora and sharing his enthusiasm for all things Mycosphaerella with me. People who offered advice on molecular techniques include Professor Brenda Wingfield, Dr Karin Jacobs, Bernard Slippers, Wilhelm deBeer, Dr Treena Burgess, Dr Jennie Chaplin, Dr Andre Drenth and Dr Hong Li.

A number of people from ITC have freely given up their time for me and shared information on aspects of the eucalypt plantation industry. I thank: Andrew Callister who was their with me at the start and whose intelligence continues to amaze; Andy Wright, a traveller of note for showing what were undoubtedly the best locations around Albany; Bruce Mattienson for the support he has given me throughout; Peter Young for many trees and the best travel advice for southern Africa one could hope for; Kim Sandover for saving me unnecessary effort in data collation; Ted for various forms of help; Sally Collins for providing information with a gracious smile.

My appreciation is extended to Western Australian Chip and Plantation (WACAP) for access to their plantations, and in particular to Chris Shedley and Simon Hunter. I also thank Richard Robinson from CALM for the provision of maps and help in finding native eucalypt sites. Alex George generously prepared the Latin descriptions for the newly described species.

Thanks to my parents Des and Kate, my brothers Saul and Xavier and friends (many of whom I have mentioned above, but with the notable addition of Brad Wintle) for their support and endurance. I remain eternally grateful to my wife Monique for her love and faith in me, her solid support and acceptance of my frequent absences, be they long days, late nights, weeks in the field or months away in South Africa.

Abstract

Plantation eucalypts are a recent and rapidly growing industry in Australia, and will eventually replace the logging of old-growth forests. Over 40% of these plantations have been established in south-western Australia, where more than 160000 ha of Eucalyptus globulus plantations now occur. In the early 1900's, this species was widely planted as an exotic in South Africa, but succumbed to severe pest (Gonipterus sp.) and disease (Mycosphaerella sp.) problems. Similarly, in south-western Australia E. globulus is an exotic species, but with the additional threat that it is planted adjacent to indigenous eucalypts, which increases the possibility of pests and pathogens switching between closely related eucalypt hosts. Over the past ten years, there have been anecdotal reports of increasing levels of Mycosphaerella leaf disease (MLD) in E. globulus plantations in south-western Australia. This increase in disease level is of concern to the industry. To date there have been no comprehensive studies into the taxonomy, biogeography and population genetics of MLD in south-western Australia. This thesis investigated the impact of MLD in south-western Australia with a focus on its impact, taxonomy, biogeography and population genetics. It is the first study worldwide to quantify the relative impact of different Mycosphaerella species in a regional plantation estate.

A survey of pest, disease and nutritional disorders (Chapter 2) found that MLD was the most severe and frequently occurring, single taxonomic health threat to 1 and 2-year-old E. globulus plantations in south-western Australia. For the first time, this survey identified and quantified the impact of pest and disease damage to E. globulus plantations in the region. There were differences in the disease levels between plantations and this was due to initial Mycosphaerella species composition and inoculum level, and local climatic conditions favourable for disease, rather than to the provenance planted or the nutritional status of the individual plantations.

The survey for Mycosphaerella pathogens of eucalypts (Chapter 3) identified two new species of Mycosphaerella (M. ambiphylla and M. aurantia) and extended the known geographic range of eight other species (M. cryptica, M. gregaria, M. lateralis, M. marksii, M. mexicana , M. nubilosa, M. parva and M. suberosa). Of these: M. lateralis and M. mexicana were new records for Australia; and M. gregaria, M. nubilosa and M. parva were new records for Western Australia. A new anamorph, Phaeophloeospora ambiphylla was described and linked to M. ambiphylla. The occurrence of these new species and disease records in southwestern Australia is significant for the plantation-eucalypt industry worldwide. The finding of two new species highlighted the need to quantify the disease impact of these on eucalypt plantations; and the extension of the range the remaining species raised important quarantine issues, concerned with the movement of plant material between regions and countries.

The biogeographical investigation of Mycosphaerella (Chapter 4) identified that the most widespread and serious cause of MLD in south-western Australia is M. cryptica. In addition to occurring on the exotic E. globulus, it also occurs on two of the three important indigenous forestry eucalyptus species in this region. That is, on E. diversicolor, and E. marginata, but not on Corymbia calophylla. In terms of the plantation estate of E. globulus, however, M. nubilosa is the most widespread pathogen. The current study found that MLD on E. globulus is a complex of several different species, whereas, on E. diversicolor and E. marginata it is caused by only M. cryptica. Two species, M. cryptica and M. marksii were found commonly on adult E. globulus leaves. Although M. cryptica was the most frequent and serious cause of disease on adult leaves, M. marksii levels appear to be increasing and the future epidemiology of this pathogen should be closely monitored. There is some concern that these two MLD species could become an economically important problem on adult leaves of E. globulus. At present severe levels of MLD is significantly more common on juvenile than on adult foliage.

The phylogenetic analysis (Chapter 5), based on ITS rDNA sequences from the present study and those obtained from GenBank accessions, found that

Mycosphaerella is an assemblage of largely polyphyletic anamorph genera. Ten distinct clades emerged from the analysis. With the exception of the Dissoconium and the M. recutita clade, which comprised of two and one species respectively, none were comprised entirely of one anamorph genus alone. The anamorph genera represented were often dispersed across more than one clade, indicating that these anamorphs have arisen separately in different phylogenetic lineages. Cercospora, Stenella and Uwebraunia anamorphs each occurred in more than one separate clade. Although on the basis of rDNA sequence data Mycosphaerella appeared mostly monophyletic there was some evidence that the Mycosphaerella genus may be polyphyletic. This was particularly evident from the Dissoconium clade which grouped as closely to the outgroup Botryosphaeria taxon as it did with the remaining Mycosphaerella species. It was argued that a multi-gene phylogeny, which includes sequencing many species in other genera aligned with Mycosphaerella, is required in order to satisfactorily answer the question of whether Mycosphaerella is truly monophyletic.

The phylogenetic analysis also showed that the taxonomy of Mycosphaerella based on ITS sequence data needs further clarification. Some species that are morphologically distinct, such as M. vespa and M. molleriana, shared identical ITS sequences. Other morphologically distinct species differed by as little as one or two nucleotides. Yet in other cases, the sequence variation amongst isolates from the same species differed substantially. Much of this variation in M. cryptica and other species was attributed to poorly edited sequences that had been lodged with GenBank. It was postulated that although a part of the remaining variation reflected the existence of cryptic species, some was likely to be genuine intra-species differences. It was concluded that further genes need to be sequenced, and more standardised cultural studies conducted in order to define species boundaries within Mycosphaerella.

Based on the ITS rDNA sequence data, two different molecular methods for the identification of Mycosphaerella species from eucalypts were developed (Chapter 6). The first of these was a PCR-RFLP method that enabled the identification of

Mycosphaerella species present on eucalypts in south-western Australia. A key is provided, which enabled the identification of species on a combination of PCRRFLP DNA fragment migration patterns and a small number of morphological features. This key enables the identification of Mycosphaerella species more easily than keys that rely on morphological features alone. Therefore, this has made it easier for non-Mycosphaerella specialists to identify species from this genus. The second molecular method developed for the identification of Mycosphaerella species was that of primers that selectively amplify the DNA of M. cryptica and M. nubilosa, the two most important causes of MLD (Chapter 6). This will allow the rapid identification of these two species by non-specialists in Mycosphaerella taxonomy. The primers from the current study will also enable early diagnosis of the possible causal organism of MLD in a plantation. Once the use of these primers for amplifying DNA from leaf tissue has been optimised, they will also facilitate studies into the early infection process of M cryptica and M. nubilosa. For example, the presence of the pathogen may be detected prior to the appearance of symptoms. Studies may be conducted to determine the length of a hemi-biotrophic phase, and the extent of tissue colonisation both spatially and temporally, beyond the necrotic lesion in these two Mycosphaerella species. Previously, such studies have been hampered by the slow growth rate of these fungi in culture and the lack of media that would allow their selective isolation and detection by directly plating diseased and non-diseased host tissue.

This study has clearly indicated that Mycosphaerella species are the major disease threat to E. globulus plantations in Western Australia. It has also shown that over the relatively short period of time of less than ten years the number of species recorded has increased from three to ten, and that disease severity has increased in plantations. It is therefore critical to continue the research on this genus in order to understand the biology, epidemiology and population genetics of this pathogen. This is necessary in order to inform tree selection and silvicultural practise that will minimise the future impact of MLD. This is particularly important if the industry moves towards clonal and hybrid forestry as has occurred elsewhere in the world. This study has laid the foundations for
future research on this disease through the elucidation of the taxonomy of Mycosphaerella in south-western Australia and by providing some important molecular tools for its diagnosis and further study.

Publications arising from the current thesis

Peer reviewed journals

Jackson, S.L., Maxwell, A., Neumeister-Kemp, H.G. \& Hardy, G.E.StJ. (2004). Infection, hyperparasitism and conidiogenesis of Mycosphaerella lateralis on Eucalyptus globulus in Western Australia. Australasian Plant Pathology 33: 49-53

Maxwell, A., Dell, B., Neumeister-Kemp, H. G. and Hardy, G. E. (2003) Mycosphaerella species associated with Eucalyptus in south-western Australia: new species, new records and a key. Mycological Research 107(3): 351-359.

Maxwell, A., Hardy, G.E.St.J, Wingfield, M. J. \& Dell, B. (2000). First record of Mycosphaerella lateralis on Eucalyptus in Australia. Australasian Plant Pathology. 29:279.

Maxwell, A., Hardy, G.E.St.J, \& Dell, B. (2001). First record of Mycosphaerella nubilosa in Western Australia. Australasian Plant Pathology. 30:65.

Neumeister-Kemp, H. G., Maxwell, A., Dell, B. and Hardy, G. E. St. J. (2003). An advanced slit-type-volumetric-spore sampling device for monitoring fungal spores in remote plantations. Australasian Plant Pathology (In Press).

Conference papers

Jackson, S.L., Maxwell, A., Neumeister-Kemp H. G. \& Hardy, G.E.St.J, (2001). Infection Process of Mycosphaerella species on Eucalyptus globulus in Western Australia. In Proceedings of the $13^{\text {th }}$ Biennial Conference for the Australasian Plant Pathology Society, Cairns, Qld., Australia.

Maxwell, A., Dell, B., Jackson, S. L. \& Hardy, G. E. St. J. (2003) Is Mycosphaerella a threat to the Eucalyptus estate in Western Australia? A bio-geographical perspective In Proceedings of the $8^{\text {th }}$ International Congress of Plant Pathology, New Zealand.

Maxwell, A., Hardy, G.E.St.J, \& Dell, B. (2002). New Mycosphaerella species associated with Eucalyptus in Western Australia. In Proceedings of the $40^{\text {th }}$ Congress of the Southern African Society of Plant Pathology, Pretoria, South Africa.

Maxwell, A., Hardy, G.E.St.J, \& Dell, B. (2002). Mycosphaerella nubilosa: a recent pathogen incursion into Western Australia? In Proceedings of the $40^{\text {th }}$ Congress of the Southern African Society of Plant Pathology, Pretoria, South Africa.

Maxwell, A., Hardy, G.E.St.J, \& Dell, B. (2001). Mycosphaerella species associated with Eucalyptus in Western Australia. In Proceedings of the $13^{\text {th }}$ Biennial Conference for the Australasian Plant Pathology Society, Cairns, Qld., Australia.

Maxwell, A., Hardy, G.E.St.J, \& Dell, B. (2001). Mycosphaerella nubilosa: a recent invasion into Western Australia? In Proceedings of the 13 th Biennial Conference for the Australasian Plant Pathology Society, Cairns, Qld., Australia.

Maxwell, A., Hardy, G.E.St.J., Wingfield, M.J. \& Dell, B. (1999). A New Australian Record: Mycosphaerella lateralis isolated from eucalypt host. In Proceedings of the $12^{\text {th }}$ Biennial Conference for the Australasian Plant Pathology Society, Canberra, A.C.T., Australia.

Workshop papers

Mycosphaerella Leaf Blotch: an emerging problem in West Australian eucalypt plantations. At the Tree Pathology Cooperative Program meeting. Pretoria, South Africa, April 1999.

Jackson S. L., Maxwell, A., Neumeister-Kemp, H. G., Dell, B. and Hardy, G. E. St. J. (2003). In-vitro study into the role of Dissoconium dekkeri in Mycosphaerella leaf disease of Eucalyptus globulus in Western Australia. Australasian Plant Pathology.

Recently submitted papers

Maxwell, A., Dell, B., Jackson, S. L, and Hardy, G. E. (submitted 2004). Anamorph plasticity: an obstruction to a coherent taxonomy and phylogeny of Mycosphaerella. Mycological Research (In Review).

Maxwell, A., Hardy, G. E., Jackson, S. L, and Dell, B. (submitted 2004). A PCR method for the identification of Mycosphaerella species on Eucalyptus. Mycological Research (In Review).

Statement on the formatting of the current thesis and authorities for species

The formatting of the current thesis follows that for Mycological Research where possible. The authorities of scientific names of pathogens and their plant hosts will not be presented in this thesis unless they form part of a taxonomic study. In this regard, the current thesis adopts the policy of Mycological Research (Hawksworth, 2000: 124).

List of Abbreviations

acceleration due to gravity	g
Analysis of variance	ANOVA
day	d
deoxyribonucleic acid	diam
diameter	et al.
et alia	hr
hour	ITS
Internal transcribed spacer	MEA
large subunit of DNA	nin
malt extract agar	nuv
minute	PCR
near ultra violet	RAPD
per cent	RFLP
polymerase chain reaction	SEDNA
randomly amplified polymorphic DNA	
restriction fragment polymorphism	subsp., subspp. (plural)
ribosomal DNA	scanning electron microscopy
small subunit of DNA	species
standard error of the mean	subspecies

TABLE OF CONTENTS

Declaration II
Acknowledgements III
Abstract v
Publications arising from the current thesis X
Peer reviewed journals X
Conference papers X
Workshop papers XI
Recently submitted papers XII
Statement on the formatting of the current thesis and authorities for species XIII
List of Abbreviations XIV
CHAPTER 1 INTRODUCTION 2
1.1 General introduction to the research 2
1.2 Thesis outline 3
1.3 Review of MLD on eucalypts 4
1.3.1 Eucalypts in commercial forestry 4
1.3.2 Foliage diseases occurring on eucalypts 7
1.3.3 Taxonomy and biology of Mycosphaerella 9
1.3.4 Epidemiology and pathology of Mycosphaerella species in Australia and world-wide 14
1.3.5 Species causing MLD and their distribution worldwide 15
1.3.6 Comparison of the epidemiology of M. cryptica and M. nubilosa 16
1.3.7 Control of MLD 23
CHAPTER 2 PESTS AND DISEASES OF EUCALYPTUS GLOBULUS PLANTATIONS IN SOUTH-WESTERN AUSTRALIA 26
2.1 Introduction 26
2.2 Methods 27
2.2.1 Sampling design 27
2.2.2 Plantation location and description 29
2.2.3 Sampling and disease assessment procedure 30
2.2.4 Statistical analysis 32
2.3 Results 33
2.3.1 Comparison of pest and disease incidence 33
2.3.2 Comparison of site profiles in terms of MLD impact 35
2.3.3 Interactions between MLD and other pest and disease variables 39
2.3.4 Effect of plantation age on pest and disease symptoms 40
2.4 Discussion 40
CHAPTER 3 MYCOSPHAERELLA SPECIES ASSOCIATED WITH EUCALYPTUS IN SOUTH-WESTERN AUSTRALIA: NEW SPECIES, NEW RECORDS AND A KEY 47
3.1 Introduction 47
3.2 Materials and methods 48
3.2.1 Collection of samples 48
3.2.2 Species identification 50
3.3 TAXONOMY 51
3.4 Key to Mycosphaerella species occurring on Eucalyptus globulus in Western Australia63
3.5 DISCUSSION67
CHAPTER 4 BIOGEOGRAPHY OF MYCOSPHAERELLA SPP. IN SOUTH-WESTERN
AUSTRALIA 71
4.1 Introduction 71
4.2 Materials and Methods 74
4.2.1 Experimental design 74
4.2.2 Site selection 74
4.2.3 Survey and transects 75
4.2.4 Isolation and identification 76
4.2.5 Statistical analysis 77
4.3 Results 77
4.3.1 Host range of MLD species on forestry eucalypts in WA 77
4.3.2 Leaf phase preference of MLD species on E. globulus 78
4.3.3 Geographic distribution of MLD impact and species composition of E. globulus plantations in south-western Australia 83
4.4 Discussion 90
CHAPTER 5 MOLECULAR TAXONOMY OF MYCOSPHAERELLA SPECIES ON EUCALYPTS 93
5.1 Introduction 93
5.2 Materials and Methods 94
5.2.1 Experimental design 94
5.2.2 Isolation, identification, culture and harvest of fungi 95
5.2.3 DNA extraction 97
5.2.4 DNA Amplification 97
5.2.5 DNA sequencing 98
5.2.6 Phylogenetic analysis 101
5.3 Results 102
5.3.1 Intra specific variation 102
5.3.2 Inter-specific variation of Mycosphaerella species isolated from eucalypts 108
5.3.3 Phylogenetic comparisons 118
5.4 Discussion 120
CHAPTER 6 RAPID AND RELIABLE MOLECULAR BASED IDENTIFICATION OF MYCOSPHAERELLA SPECIES 130
6.1 Introduction 130
6.2 Materials and Methods 132
6.2.1 PCR-RFLP 132
6.2.2 Species-specific primer development 136
6.3 Results 137
6.3.1 PCR-RFLP 137
6.3.2 Species specific primer development 143
6.4 Discussion 144
CHAPTER 7 PHENOTYPIC AND GENOTYPIC VARIATION WITHIN MYCOSPHAERELLA NUBILOSA IN SOUTH-WESTERN AUSTRALIA 148
7.1 Introduction 148
7.2 Materials and Methods 149
7.2.1 Experimental overview 149
7.2.2 Fungal isolates 150
7.2.3 Phenotypic variation 152
7.2.4 Genotypic variation within M. nubilosa based on RAPD's 153
7.2.5 Genotypic variation within M. nubilosa based on VCG’s 156
7.3 Results 157
7.3.1 Phenotypic variation 157
7.3.2 Genotypic variation 160
7.4 Discussion 164
CHAPTER 8 GENERAL DISCUSSION 167
8.1 Summary of research findings 167
8.2 Mycosphaerella taxonomy 168
8.3 Impact and Biogeography 173
8.4 Population genetics of M. nubilosa 175
8.5 Future research 176
8.6 Conclusion 180
APPENDICES 182
Appendix 2.1 Foliar analysis of Eucalyptus globulus plantations assessed for pests and diseases
in south-western Australia 183
Appendix 2.2 Procedures for rating pest and disease symptoms in Eucalyptus globulus
plantations 185
Appendix 5.1 Sequence alignment of Mycosphaerella nubilosa and M. cryptica 187
Appendix 5.2: Sequence alignment all Mycosphaerella species on eucalypts 199
Appendix 5.3: Sequence alignment all Mycosphaerella species irrespective of host 212
REFERENCES 214

Chapter 1

Introduction

Chapter 1 Introduction

1.1 General introduction to the research

Eucalypts are a significant and expanding resource world-wide, with 14 million ha currently planted on a commercial basis, in addition to their natural occurrence in Australia where they form 124 million ha of forest and woodland (Anonymous 1997a, Turnbull 2000). Eucalypt plantations predominantly provide pulp for the rapidly expanding paper industry and saw-logs for building (Eldridge 1993). In Australia, there are 390 thousand ha of plantations, 14 million ha of native forest managed for wood products and a further 110 million ha of native stands that serve important environmental, social and ecological functions. These functions include watershed protection, flora and fauna conservation and recreation (Turnbull 2000). The native forest estate dedicated to timber production in Australia is diminishing, as logging is restricted in response to the need to maintain the biodiversity of these habitats. Thus, the plantation eucalypt industry is becoming increasingly important in supplying Australia's demand for wood products.

One of the main threats to the successful establishment of eucalypt plantations is that of disease. Plantations are typically monocultures of even-aged, single species, provenance or even clonal trees. It is widely accepted that monocultures, whether as crop plants or tree plantations, are more susceptible to pest and disease epidemics than heterogenous crops or forest (Jones 2001, Stone 2001, Strauss 2001, Zhu et al. 2000). Worldwide, many pest and disease outbreaks have been reported in eucalypt plantations (Park et al. 2000). Amongst these, Mycosphaerella leaf disease (MLD) has caused extensive damage in Australasia, South America, Western Europe, Southern Africa and South-East Asia (Park et al. 2000). Its impact was so severe in South Africa in the 1930's, that the establishment of E. globulus plantations was discontinued there (Crous 1998). As E. globulus is the only commercially grown plantation eucalypt
in the newly emerging industry in south-western Australia, it is critical that the impact of this disease is determined there. In addition, the potential for disease inoculum to spread from exotic eucalypt plantations to native eucalypt forest needs to be examined in south-western Australia.

Previous work on the impact of MLD has been regionally based, focussing on the situation in South Africa, New Zealand and in eastern Australia. This work has been of a taxonomic and epidemiological nature. The south-west region of Australia has not yet been studied in detail, and no work has been done anywhere on the population genetics of these pathogens. This thesis investigates the impact of MLD in Western Australia with a focus on its taxonomy, biogeography and population genetics.

1.2 Thesis outline

A review of MLD on eucalypts is firstly presented (Chapter 1). Then a survey comparing the level of impact of MLD with other diseases and pests on the E. globulus plantations in the south-west of Australia is made (Chapter 2). Taxa of Mycosphaerella present in E. globulus plantations and surrounding eucalypt forest are described (Chapter 3). The impact and biogeography of the Mycosphaerella species found is then considered (Chapter 4). This includes host, geographic and leaf stage distribution as well as level of impact. Sequencing of the ITS region of rDNA is performed in order to answer questions relating to the phylogeny of Mycosphaerella, including; intra- and inter-species variation for the delimitation of taxa; and whether Mycosphaerella is polyphyletic (Chapter 5). Molecular methods for reliably and rapidly identifying species of Mycosphaerella are developed, based on the ITS rDNA sequence information (Chapter 6). The population genetics of M. nubilosa are investigated using RAPD's (Chapter 7). Finally, the main findings from each of the chapters are treated in an overall General Discussion (Chapter 8).

1.3 Review of MLD on eucalypts

1.3.1 Eucalypts in commercial forestry

Eucalypt taxa important for forestry

Eucalyptus and the related genera of Corymbia and Angophora are collectively known as eucalypts, a convention that is followed in this thesis. Although they dominate the Australian landscape and occupy many environmental niches in Australia, parts of Papua New Guinea and Indonesia, they are not endemic outside of this range. There are more than 700 species of eucalypt (Brooker \& Kleinig 1990) of which 113 belong to the genus Corymbia, 13 to Angophora and 600 to Eucalyptus (Potts \& Pederick 2000). Within Eucalyptus sensu stricto 120 species belong to the sub-genus Monocalyptus, and 300 to the sub-genus Symphomyrtus. Phylogenetic affiliations reflect some functional, ecological and geographic differences between these taxa, which are relevant to plantation forestry in terms of site suitability, growth requirements and pest and disease susceptibility. Some generalisations regarding these attributes may be made at a generic and sub-generic level.

Generally, species of Corymbia are highly tolerant of soil pathogens, species of Symphomyrtus are moderately tolerant and species of Monocalyptus are susceptible (Florence 1996). Variation in resistance to stem and foliar pathogens occurs between eucalypt genera and sub-genera (Potts \& Pederick 2000). Sporothrix pitereka causes disease only on Corymbia, the related Angophora and some Eucalyptus species within the section Adnataria (Walker \& Bertus 1971). Mycosphaerella species are pathogenic on Eucalyptus species but not on Corymbia species (Potts \& Pederick 2000), although there are some exceptions to this, such as gregaria, which occurs on C. maculata (Carnegie \& Keane 1997).

Most plantation species grown worldwide are from the Symphomyrtus subgenus (Potts \& Pederick 2000), chosen for their high growth rate and pulp or saw-log suitability. Inter-species variability of the mostly Symphomyrtus
eucalypts has been used to match species to appropriate sites on the basis of their preferred climatic conditions (Florence 1996). Of the 700 species of eucalypt only a few have been grown in plantations. The more important of these include: C. citriodora, E. camaldulensis, E. globulus, E. grandis, E. nitens, E. robusta, E. tereticornis, E. urophylla, and E. viminalis (Florence 1996).

While inter-species genetic variability may be exploited in selecting species for growth under particular conditions and sites, there is also enormous genetic variability within species of eucalypt (Moran 1992). Eldridge (1972, in Potts \& Pederick, 2000) found that the growth rate of E. regnans progeny, planted on a test site of uniform altitude, decreased with increasing altitude of parental origin. Other eucalypt species for which provenance variation has been demonstrated include E. globulus (Carnegie et al. 1994, Dungey et al. 1997) E. delegatensis (Dick \& Gadgil 1983) and E. grandis (Florence 1996).

World-wide, E. globulus is the most extensively grown plantation species in Mediterranean climates, in the absence of frost (Florence 1996). It is valued because of its superior pulping qualities and fast growth rate (Williams et al. 1995). Variation within this species has been demonstrated for desirable traits such as growth rate (Beadle et al. 1995, Turnbull et al. 1993), form, pulp yield and quality (Washusen \& Ilic 2001, Williams et al. 1995) and disease resistance (Dungey et al. 1997). Kirkpatrick (1974) identified four sub-species of E. globulus; E. globulus ssp. bicostata, E globulus ssp. globulus, E. globulus ssp. maidenii, E. globulus ssp. pseudoglobulus. Carnegie et al. 1994 found that provenances of E. globulus ssp. globulus and E. globulus ssp. bicostata were more susceptible to MLD than provenances of E. globulus ssp. maidenii and E. globulus ssp. pseudoglobulus. There were also significant differences among provenances within E. globulus ssp. globulus and E. globulus ssp. pseudoglobulus. Variation in the onset of adult foliage also occurs between provenances and families of E. globulus.

Eucalyptus globulus undergoes a heteroblastic ontogeny, where changes in leaf anatomy, morphology, surface waxes and orientation clearly differentiate the seedling, juvenile and adult stages of the tree (Brooker \& Kleinig 1990). These
differences between leaf stages have consequences for pest and disease susceptibility. Park 1988b demonstrated that M. nubilosa is able to infect juvenile, but not adult leaves of E. globulus. As a consequence, the severity of MLD on E. globulus is correlated with delayed transition from juvenile to adult foliage (Dungey et al. 1997). Heather 1967a, Heather 1967b showed that the juvenile leaves of E. globulus ssp. bicostata have a double layer of wax that confers them with increased resistance to Phaeophleospora epicoccoides (as Phaeoseptoria eucalypti. Older leaves are more susceptible to infection by P. epicoccoides because, as the leaf ages, the upper 'rod -wax layer' is eroded. In contrast to this, (Park 1988b found that younger E. globulus ssp pseudoglobulus juvenile leaves, are more susceptible to infection by M. nubilosa than older juvenile leaves, presumably because of the increased lignification of older leaves.

Eucalypt plantations in south-western Australia

In south-western Australia forestry has been pursued in native stands dominated by E. diversicolor and E. marginata since about 1880 (Anonymous 2002). There are 1.2 million ha of forest that may be subject to timber harvest, of which 44300 ha is currently dedicated to this use, and a further 1.2 million ha in forest conservation areas not available for future timber harvest (Anonymous 2002). Current silvicultural practice is to clear fell in E. diversicolor sites to a maximum of 40 ha, and to pursue a mixed regime for E. marginata, that includes cutting to gap (0.2 to 10 ha), shelter wood cutting, thinning and single tree selection (Anonymous 2002). The average annual timber yields is $182,000 \mathrm{~m}^{3}$ of sawlogs (from a cut of approximately 18000 ha) of E. marginata and 42, $000 \mathrm{~m}^{3}$ of E. diversicolor (Anonymous 2002). These levels will not be increased into the future according to the recent draft forest management plan for the region (Anonymous 2002). Hence, any increase in timber harvest will need to come from plantation timbers.

Over 40\% of the eucalypt plantation area in Australia is located in the southwestern region, which is currently planted to 152000 ha of mostly E. globulus. Eucalypt plantations were first established in the south-west in 1980, and more
than 90% of the estate has been established post 1990 (Bailey \& Dunconson 1998). The area of eucalypt plantations in Australia was over 389000 ha in 2000 (Anonymous 2000) and is projected to reach 3.3 million ha by the year 2020 (Anonymous 1997b). This is necessary in order to meet increasing demand for timber product whilst fulfilling Australia's commitments to minimise global warming (Kyoto protocols) and maintain biodiversity in native forests (Montreal summit).

The spatial distribution of eucalypt plantations in Australia differs somewhat from commercial plantations in South Africa and South America. This may also have implications for disease development. In Argentina, Brazil, Chile and South Africa eucalypt plantations occur as continuous monocultures with no other forest species present for 10's or 100's of square kilometres (Young pers. comm.). Whereas, in Australia eucalypt plantations occur as a patchwork of smaller areas of $0.2-10$ square kilometres ($50-1000 \mathrm{ha}$) amongst pasture, viticulture, and importantly, mixed native forest, heath and woodlands.

The major disease threat to forestry in south-western Australia has been that of Phytophthora cinnamomi in the E. marginata forest. Although foliar disease impacts of up to 15% have been recorded on E. marginata (Abbott et al. 1993), no major epidemics have been reported in the forests of south-western Australia.

1.3.2 Foliage diseases occurring on eucalypts

The aetiology of foliar diseases in Australia differs in some respects to that elsewhere. While eucalypts planted outside of Australasia escape many of the pests and diseases endemic to the region, they may become exposed to new pathogens, which are pre-adapted to these myrtaceous hosts and have no resistance to such pathogens (eg. P. psidii (Park et al. 2000). Also, eucalypt plantations outside of Australia may be established beyond their optimal environmental range, such as in conditions of high humidity, which may favour disease development, as has occurred with Cylindrocladium outbreaks in Brazil (Ferreira et al. 1995), and Vietnam (Old et al. 1999).

Plantation eucalypt forestry has a longer history in countries such as South Africa where exotic eucalypts have been grown in extensive monocultures since the 1930's (Poynton 1979 in Hunter 2002), than in Australia. Thus, the role of the lower genotypic diversity present in eucalypt plantations in contributing to disease has been a factor in exotic plantations for over 50 years. Up until the 1980's the predominant silvicultural practice in Australia, has been the harvest of naturally occurring eucalypt stands (Turnbull 2000). Under these conditions foliar disease outbreaks have been rare. Presumably this is because of a long association between the host and pathogens in a relatively stable ecosystem. In this situation, disease may arise if the system is disturbed through a combination of events favourable for its development, such as a flush of juvenile foliage after logging, followed by a warm wet period (Park et al. 2000).

There are two known epidemics of foliar pathogens in native eucalypt forest (Carnegie 2000). These have both been attributed to Aulographina eucalypti with other pathogens implicated in a secondary role. The first of those epidemics was a defoliation of E. nitens in Victoria in 1974 (Neuman \& Marks 1976). In this case Alternaria, Harknessia and Mycosphaerella species were also involved. The second case of severe defoliation due to A. eucalypti was that of E. obliqua in north-west Tasmania in 1973, where Vermisporium fulcatum [Sutton (Naj Raj)] [as Seimatosporium falcatum (Sutton) Shoemaker] was the secondary pathogen implicated (Palzer 1978 in Carnegie 2000).

Epidemics in plantation forestry are much more common than in native eucalypt forest (Carnegie 2000). Worldwide the following pathogens have been major causes of foliar disease of plantation eucalypts: Aulographina eucalypti (Cooke \& Masse) Arx \& E. Mül.; Puccinia psidii Winter; Phaeophleospora epicoccoides (Cooke \& Massee) Crous, F.A. Ferreira \& Sutton; Phaeophleospora eucalypti (Cooke \& Massee) Crous, F.A. Ferreira \& Sutton; Phaeophleospora destructans (M.J. Wingfield \& Crous) Crous, F.A. Ferreira \& Sutton; Cryptosporiospsis eucalypti Sankaran \& B. Sutton; and Cylindrocladium spp. Many of these pathogens, such as the guava rust, Puccinia psidii, do not occur in Australia (Park et al. 2000). The most serious foliar pathogens of eucalypt
plantations in Australia are Mycosphaerella species (Carnegie 2000, Park 1984, Park 1988a, Park et al. 2000). Prior to the commencement of this study little was known of the impact of MLD on eucalypt plantations in south-western Australia, apart from the three disease records of M. cryptica, M. marksii and M. suberosa (Carnegie, Keane \& Podger 1997).

The taxonomy and biology of Mycosphaerella have important implications in terms of understanding and managing the disease they cause.

1.3.3 Taxonomy and biology of Mycosphaerella

Taxonomically, Mycosphaerella is an extremely large genus and the subject of much debate upon the merits of splitting it into separate genera or sub-genera (Barr 1972, Crous 1998, Goodwin \& Zismann 2001). The rationale for any changes to the current taxonomic structure depends ultimately on biological and genetic aspects of species within this taxonomic scheme.

Taxonomy

The first Mycosphaerella species described on eucalypts in Australia were M. cryptica and M. nubilosa, as Sphaerella cryptica and Sphaerella nubilosa by Cooke (Park \& Keane Keane 1982a). Hansford (1952) transferred these fungi to the genus Mycosphaerella. Members of this genus are ascomycetes, a fungal division that has undergone considerable revision (Arx 1949, Arx 1983, Barr 1979).

Although the Ascomycota has been separately revised a number of times over the past 60 years, the genus Mycosphaerella is consistently placed in the family Mycosphaerellaceae within the order Dothideales (Arx 1983, Arx \& Müller 1975, Barr 1972, Barr 1979, Barr 2001, Luttrell 1955). This placement is not altered in the revised taxonomy of Barr (2001). The genus Mycosphaerella is placed within the Dothideales in the taxonomic schemes of Barr (2001) and Erikson (1999) (Table 1.1).

Table 1.1 Comparison of recent taxonomic schemes for the classification of Mycosphaerella

Phylum	Barr (2001)	Erikson (1999)
Phylum	Ascomycota	Ascomycota
Subphylum	-	Pezizomycotina
Class	Loculoascomycota	Dothideomycetes
Order	Dothideales	Dothideales
Family	Mycosphaerellaceae	Mycosphaerellaceae
Genus	Mycosphaerella	Mycosphaerella

The ascomycetes occupy a broad range of ecological habitats as: hyperparasites, lichenised fungi, parasites and saprophytes. To some extent, these different habitats or trophic levels are recognised in the taxonomies of the ascomycetes. For example, the lichenised fungi are often placed into separate orders or families (Barr 1983, Barr 2001). However, the separation of taxa at the higher ranks, such as class and sub-class, relies more on phylogenetically conserved features of a developmental nature. Barr (2001) recognises four classes of ascomycetes: Saccharomycetes; Plectomycetes; Hymenoascomycetes; and Loculoascomycetes.

Mycosphaerella falls within the Loculoascomycota based on the formation of bitunicate asci and ascocarps of an ascolocular origin Barr (2001). One important feature in separating this class from other classes of the Ascomycota is the chronology of dikaryon formation in relation to ascocarp development. The dikaryon may either precede the development of a peridium or it may occur after the formation of a parenchymous stromatic 'peridium' (Barr 1983). In the first instance, the perithecium is derived from the dikaryotic tissue and always gives rise to unitunicate or prototunicate asci ('ascohymenial'). The latter gives rise to bitunicate asci in a 'pseudothecium' ('ascolocular' - so termed because the ascocarp is not formed from the dikaryotic hyphae, but rather precedes it). Luttrell (1955) was the first to differentiate the bitunicate ascomycetes from the unitunicate Pyrenomycetes. This split was based on the recognition that this trait was linked to a fundamentally different ascostromal ontogeny.

Barr's (2001) classification of orders within the Loculoascomycetes is based on twelve different character states, the majority of which relate to ascomal development. The presence or absence of a hamathecium, and it's nature if present, are important criteria in this taxonomic scheme. This classification is based on earlier work, which recognises different types of locule development. These were first described by Luttrell (1951) as the: Elsinoe type; Dothidea type; Pleospora type. In the Elsinoe type the ascocarp is indeterminate, irregular in shape and the wall is not clearly differentiated. Asci occur singly in monoascous cavities. In the Dothidea type, the ascocarp is determinate. The asci are arranged in a layer in monoascal cavities separated by interthecial tissues or without such tissue and occurring in a layer or fascicle. The Pleospora type of ascocarp is determinate, and the asci develop in a layer amongst pseudoperiphyses, that remain at maturity. Mycosphaerella species form the Dothidea type of ascocarp.

A range of characteristics is important for delimiting families and genera such as; ascus shape, ascospore shape, pigmentation and septation, and mitosporic state. The list and nature of these are long and complex and will not be discussed further, except to describe the genus Mycosphaerella. Members of this genus are characterised by the following (Arx \& Müller 1975, Barr 1972, Sivanesan 1984). ü

> Parasitic on plants not on lichen. Ascomata brown to black, globose conic or depressed, ostiolate; immersed in host tissue, sometimes stromatic and becoming erumpent; scattered or grouped. Asci bitunicate; oblong, elongate, saccate, ovoid, rarely clavate; fasciculate, without filamentous paraphyses, few or many; 8-spored. Ascospores overlapping, biseriate or conglomerate; 'small' or 'narrow'; medianly or near-medianly one-septate; hyaline or light brown. Anamorph states may be hyphomycetous, pycnidial or acervulus. Some synonyms of Mycosphaerella include: Sphaerella (Fr.) Rabenh. (1856); Cyclodothis Syd. (1915); Didymellina Hšhnel (1918); and Cynadothea Wolf (1935). Some commonly occurring anamorph states of Mycosphaerella include: Cladosporium, Ramularia, Cercospora, Cercosporella, Passolora, Phaeoisaria, Septoria, Aschochyta, and Phoma.

Mycosphaerella was divided into three sections by Arx (1949): Eu-Mycosphaerella, with immersed non-stromatic ascomata and numerous, narrow asci on a fascicle; Didymellina, with non-stromatic ascomata and few saccate asci; and Cymadothea, with stromatic ascomata and cylindrical asci in a fascicle. Barr
(1972), later substituted the three sections with two sub-genera, namely: Mycosphaerella and Didymellina, that were differentiated on the basis of asci shape and conidial states; and nine sections, that were separated on habit and on ascospore morphology. She suggested that the sub-genera of Mycosphaerella might warrant the rank of separate genera. This suggestion has been since been revisited by Crous and other authors (Barr 1972, Crous 1998, Goodwin \& Zismann 2001).

There are 1800 published names for species of Mycosphaerella or its synonym Sphaerella (a name which had to be abandoned as it was previously assigned to an algal genus) (Corlett 1991). The taxonomy of Mycosphaerella is largely host based (Corlett 1991) and this may account for the large size of the genus. Even the cosmopolitan M. cryptica, which infects in the order of 50 Eucalyptus species, does not attack the closely related Corymbia genus (Park et al. 2000). Nonetheless, it has been suggested that the number of species in this genus is inflated (Barr 1972). One reason for this is that the same species occurring on different hosts may be assigned to different taxa. Resolution of this will come with the standardisation of traditional identification methods, such as the wider application of ascospore germination pattern as proposed in Crous (1998) and in Park \& Keane (1982a).

More importantly, molecular techniques for genome sequencing are now commonly available and affordable. Comparison of sequences for such regions as the internally transcribed spacer regions (ITS) 1 and 2 of the rRNA genes has proved very useful in delimiting and differentiating species (Beck \& Ligon 1995, Crous et al. 2001a, Crous et al. 1999, Gardes \& Bruns 1993, Goodwin \& Zismann 2001). RAPD markers were used to differentiate species of Mycosphaerella on eucalypts in south-eastern Australia (Carnegie, Ades \& Ford 2001).

Anamorph states remain important for differentiating species within the Mycosphaerella genus. Additional characters include: ascospore germination pattern; growth rates in culture; ascomatal, ascal and ascospore size and morphology; and symptomology. Ascospore germination was introduced by Park \& Keane Keane (1982a) in order to differentiate two similar species of

Mycosphaerella occurring on eucalypts. This feature has been greatly elaborated in Crous (1998) where he outlines 14 germination patterns for distinguishing species of Mycosphaerella.

Biology

Mycosphaerella is a large genus, occurring on a broad range of hosts encompassing monocotyledonous and dicotyledonous plants. A full range of trophic habits is shown in Mycosphaerella from saprotrophy, to parasitism on leaves and hyperparasitism on other fungi. The typical lifecycle of the teleomorph is simple although a number of anamorph states may occur.

Mycosphaerella species are haploid for the majority of their lifecycle with only a short dikaryotic then diploid phase, which is restricted to that part of the hyphae which develops into an ascus within a pseudothecium. This sexual cycle gives rise to haploid ascospores, however, some species of Mycosphaerella also produce haploid conidia in an asexual reproductive cycle. There are few studies into the sexual development of Mycosphaerella species. However, Barr (1958) compared the development of M. tassiana and M. typhae ascoma in culture. Although similar in many respects she found that M. tassiana forms a multinucleate ascospore whereas M. typhae from a uninucleate ascospore. Both of these species are homothallic, however, many species of Mycosphaerella, such as M. graminicola are heterothallic (McDonald et al. 1996, McDonald et al. 1995) and each species must be studied individually before conclusions can be drawn on the details of its life cycle.

Attributes, such as heterothallism versus homothallism and reproduction by an asexual state, carry important implications in terms of the epidemiology of pathogens. These may determine a pathogen's population genetic structure, which in turn is implicated in the pathogen's ability to overcome host resistance through the production of novel combinations of alleles (McDonald \& McDermott 1993, McDonald et al. 1996, McDonald et al. 1995).

Host range

Mycosphaerella species occur on monocot and dicot hosts ranging from wheat (M. tritici), banana (M. fijiensis) as well as coniferous (M. pini) and nonconiferous tree species including Eucalyptus. Mycosphaerella species attacking eucalypts display a range of degrees of host specificity. Mycosphaerella nubilosa has a relatively narrow host range and is only able to parasitise Eucalyptus species within the viminales series of the Symphomyrtus sub-genus. In contrast, M. cryptica has a broad host range and causes disease on 50 species across the Eucalyptus sub-genera Monocalyptus and Symphomyrtus, but is not recorded on the eucalypt genus Corymbia.

1.3.4 Epidemiology and pathology of Mycosphaerella species in Australia and world-wide

Symptoms and impact

The general symptoms and impact of MLD, caused by various species of Mycosphaerella are similar in many ways. Often the impact of each species cannot be separated as they occur as a disease complex, with one or a number of other species of Mycosphaerella involved. MLD causes loss in photosynthetic area and can lead to defoliation, resulting in reduced growth rates and wood volume. It may also cause poor tree form and in some cases, tree death (Carnegie 1991, Carnegie 2000, Park \& Keane 1982b). Defoliation levels of 25\% led to reductions in wood volume of Eucalyptus nitens infected with Mycosphaerella in South Africa (Lundquist \& Purnell 1987). Carnegie et al. (1994) showed that MLD causes a negative effect on growth rate in E. globulus and more recently Carnegie et al. (1998) report that levels of diseased leaf area as low as 10% result in up to a 17% reduction in height of E. globulus in plantations. Defoliation due to MLD may be substantial and sustained over long periods. Heavy defoliation has been reported on E. globulus in Victoria, Australia, with levels up to 90% being recorded (Reinoso 1992). Carnegie (1991) reported that a plantation first assessed by Marks (Marks 1979 in Carnegie 2000) as heavily defoliated in its juvenile phase and later by Park \& Keane (1982b) in
its adult phase, continues to be highly infected, with 70% of the crown area affected, 16 years after planting (Carnegie 1991, Carnegie 2000).

The symptoms of MLD range from small necrotic lesions on leaves of 1-2 mm (M. parkii) to larger blighting lesions occupying and distorting the entire leaf (M. cryptica, M. gregaria). Defoliation and shoot dieback may result, and when severe, impact on growth rate and tree form (Dick 1982). Differences in lesion form such as size, colour, texture, pseudothecial density and distribution and occurrence on the abaxial or adaxial leaf surface are helpful features for identifying the species of Mycosphaerella involved in causing disease.

1.3.5 Species causing MLD and their distribution worldwide

Outline of species and distribution

There are over 30 species of Mycosphaerella associated with diseased eucalypt foliage worldwide (Table 1.2). The origin, distribution, and impact of many of these species are poorly understood. Over 50% of these Mycosphaerella species are not recorded in Australia (Table1.2) and their origin is generally unknown. They may have moved from Australia along with eucalypt seedlings exported to these countries or they may have crossed from related Myrtaceous hosts occurring in areas where the eucalypts have been planted.

The most serious disease-causing species vary according to geographic region. Mycosphaerella molleriana was widely identified as the species causing disease in many places throughout the world (Crous 1998, Hedgecock 1926, Mirabolfathy 1990, Ruperez \& Munoz 1980, Wallace 1947; cited in Carnegie 2000,). However, it has since been confirmed only from Portugal (where it was originally described) and California in the USA (Crous 1998, Crous \& Wingfield 1997b). Mycosphaerella heimii and M. suttoniae are the most prevalent species in South America, although M. cryptica is also common in Chile (Table1.2). Mycosphaerella cryptica is the major cause of MLD in New Zealand (Beresford 1978, Cheah 1977, Cheah \& Hartill 1987, Crous \& Wingfield 1997, Dick 1982,

Dick \& Gadgil 1983), although more recently M. nubilosa has been validly recorded (Dick 1982, Dick \& Gadgil 1983). Up until recently, M. juvenis (originally misidentified as M. molleriana) was the predominant cause of MLD in South Africa (Crous 1998, Lundquist 1987, Lundquist \& Purnell 1987). However, Hunter (2002) has shown that M. nubilosa, previously not validly recorded in South Africa, is now the most widespread Mycosphaerella pathogen of eucalypts in that country. Along with M. cryptica these two species are the most serious cause of MLD in Australia (Carnegie 2000, Carnegie et al. 1998, Park 1988a, Park et al. 2000, Park \& Keane 1982b).

Comprehensive studies of the epidemiology and biology of species causing MLD on eucalypts have only been made for M. cryptica and M. nubilosa (Beresford 1978, Carnegie 2000, Carnegie et al. 1998, Cheah 1977, Cheah \& Hartill 1987, Park 1988a, Park et al. 2000, Park \& Keane 1982b). Park (1988a) showed that epidemics of M. nubilosa in south-eastern Australia are mono or bicyclic whereas those of M. cryptica are poly-cyclic. A comparison of the lifecycle and disease development of these two species is made below.

1.3.6 Comparison of the epidemiology of M. cryptica and M. nubilosa

Disease cycle

The disease cycle of M. cryptica is polycyclic and involves infection by ascospore and conidia, whereas that of M. nubilosa is mono or bicyclic and infection only occurs via ascospores. Warm wet conditions are important for disease development in terms of facilitating leaf infection, hyphal growth and ascospore release. Disease development is also dependent on the growth cycle of the tree, as flushes of new shoots that are susceptible to infection, must coincide with conditions favourable for infection.

Conditions for infection

Disease is encouraged by warm wet conditions that occur over summer in south-eastern Australia. Newly emerged or recently expanded foliage (less than 46 days-old for M. nubilosa on E. globulus) is more susceptible to infection (Park

1988b). Mycosphaerella cryptica is able to penetrate both adult and juvenile foliage, whereas M. nubilosa is only able to penetrate juvenile leaves (Park 1988b). Ascocarps surviving on necrotic lesions from the previous season's disease cycle, act as inoculum for the following epidemic cycle. Ascospore germination and subsequent leaf infection is optimal for both species under warm wet conditions of 5-7 days leaf wetness at $15-20^{\circ} \mathrm{C}$ (Park 1988b). Leaf penetration may be direct, via the formation of an appressoria, or indirect via stomata. Mycosphaerella cryptica infects both directly and indirectly on either leaf surface, whereas M. nubilosa infects only indirectly on the abaxial leaf surface (Jackson 2001, Jackson et al. 2001, Jackson et al. 2002, Park 1988b).

Following this, hyphae ramify intercellularly within the leaf tissue, behaving as a hemi-biotroph (Luttrell 1974) before causing necrotic lesions upon which fruiting structures develop. After three weeks, lesions formed on E. globulus seedlings inoculated with M. nubilosa ascospores (Park 1988b). However, in older resistant leaves the incubation period increased to 24 weeks. Spermatia are extruded onto immature lesions in the presence of free water (Ganapathi 1979) and fertilise ascogonia, eventually giving rise to asci in mature ascocarps. Alternatively, ascocarps may result from the anastomosis of hyphae within the leaf, as occurs for M. brassicicola (Dring 1961). Acervuli develop after 4-6 weeks and then ascocarps with viable ascospores at 10-12 weeks on leaves infected at any age by M. cryptica (Cheah 1977, Park 1988b). Under optimal conditions disease develops at a similar rate for M. nubilosa (Park 1988b) but without the formation of an anamorph state. Unlike M. cryptica, disease development is slower for M. nubilosa on older juvenile leaves. At low temperature or moisture conditions, disease development slows for both M. cryptica and M. nubilosa (Park 1988b).

Formation of ascocarps and acervuli occurs on both attached and abscised leaves. The tendency for M. cryptica to form ascocarps on both leaf surfaces has been attributed to its ability to penetrate the leaf both directly and indirectly and to grow between tightly packed palisade mesophyll cells of the isobilateral adult foliage (Park 1988b). On the other hand, M. nubilosa predominantly forms
ascocarps on the abaxial surface, where stomata are more numerous, due to its inability to penetrate the leaf directly (Park \& Keane 1982b). Following infection through stomata, the hyphae of M. nubilosa are restricted to the spongy mesophyll cells on the abaxial side of the juvenile leaves and hence pseudothecial development takes place there.

Ascospore release requires the presence of free water (Beresford 1978, Cheah 1977, Park 1988b). However, discharge is only triggered as lesions dry, following their immersion in free water for periods over 15 seconds (Beresford 1978). According to Beresford (1978), lesions with mature ascocarps must be soaked for at least 15 minutes for maximum ascospore discharge. In a field trial of M. cryptica on E. delegatensis in New Zealand, air-borne ascospores were released immediately after rainfall and their numbers peaked 1-2 hours after commencement of precipitation (Cheah 1977). The same study also found that exposure to high humidity for at least 5-7 days was necessary to stimulate ascospore release and is therefore a requirement for ascocarp maturation. Temperatures in the range $10-30^{\circ} \mathrm{C}$ were also needed for ascospore release. Ascospores are discharged up to 15 mm above the lesion surface (Park 1988b) and will therefore be wind dispersed over some distance. Conidia of M. cryptica however, are not actively discharged and are therefore largely splash dispersed over a shorter distance (Beresford 1978, Park 1988b). Thus, ascospores are implicated in the long-distance dispersal of propagules between trees and plantations whereas conidia are implicated in the spread of disease within a tree or between densely spaced trees.

Ascospores of M. cryptica and M. nubilosa can withstand up to 4 and 7 days, respectively, of drying after deposition (Park 1988b). Thus, infection may still take place if a second rainfall event follows that which stimulated the ascospore release within 4 days for M. cryptica and 7 days for M. nubilosa. Infection is then able to take place and the cycle repeated. The number and length of each cycle is dependent on the weather and growth conditions for that site and year.

The epidemic cycles of M. cryptica and M. nubilosa differ, and this may be explained in terms of differences in the biology of these two organisms. There is
no obligate alternation of the anamorph and teleomorph state for M. cryptica, enabling multiple disease cycles within a season in what is termed an unbranched, heterogeneous infection chain (Park 1988a). Following the initial infection, bursts of conidial release may take place in 4-week cycles and ascospore release in 10-12 week cycles that overlap. In the study at Nowa Nowa in Victoria four peaks in lesion development were recorded for M. cryptica and two were recorded for M. nubilosa over the 1980/1981 growing season (Park 1988a). Epidemic progress of M. nubilosa was bicyclic or monocyclic over the three-year period of this study (Park 1988a). Epidemic progress is slower and results in more pronounced peaks in disease expression and ascospore release for M. nubilosa because of the different biology of this species compared to M. cryptica. Lesion maturation is much slower for M. nubilosa when infection takes place on older juvenile leaves. The absence of a quickly maturing conidial state for M. nubilosa also results in a longer period for infection propagules to be released and hence initiate a new round of infection events.

Table 1.2 Distribution of Mycosphaerella species recorded on eucalypt hosts

Mycosphaerella species	Anamorph	Eucalypt host	Occurrence	Reference
africana		E. deanii, E. globulus, E. grandis, E. radiata, E. viminalis	Colombia, Portugal, South Africa, Zambia	Crous \& Wingfield 1996, Crous 1998
colombiensis	Pseudocercospora colombiensis	E. urophylla	Colombia	Crous 1998
cryptica	Colletogloeopsis nubilosum	Over 50 species from the Monocalyptus \& Symphomyrtus sub-genera	Australia, Chile, New Zealand	Crous 1998, Crous et al. 1995, Wingfield et al. 1995, Dick 1982, Ganapathi \& Corbin 1979, Park \& Keane 1982, Keane 2000
crystallina	Pseudocercospora crystallina	E. bicostata \& E. grandis x camaldulensis	South Africa	Crous \& Wingfield 1996, Crous 1998
delegatensis	Phaeophleospora delegatensis	E. delegatensis, E. obliqua	Australia	Crous 1998, Park \& Keane 1984
ellipsoidea	Uwebraunia ellipsoidea	E. cladocalyx		Crous 1998, Crous \& Wingfield 1996
endophytica	Pseudocercosporell a endophytica	Eucalyptus sp. E. grandis, E. nitens	South Africa	Crous 1998
flexuosa	Unknown	E. globulus	Colombia	Crous 1998
gracilis	Pseudocercospora gracilis	E. globulus, E. urophylla	Indonesia	Crous 1998, Crous \& Alfenas 1995
grandis	Unknown	E. grandis, E. nitens, E. globulus	Australia	Carnegie \& Keane 1994
				Milgate 2001
gregaria	Unknown	E. botryoides, E. grandis, C. maculata, E. saligna	Australia	Crous 1998, Carnegie \& Keane 1997
heimii	Pseudocercospora heimii	E. obliqua, E. urophylla, Eucalyptus sp.	Brazil, Indonesia, Madagascar	Crous 1998, Crous 1995, Park \& Keane 1984, Crous \& Swart 1995, Hunter 2002
heimioides	Pseudocercospora heimioides	Eucalyptus sp.	Indonesia	Crous 1998, Crous \& Wingfield 1997b
intermedia	Unknown	E. saligna	New Zealand	Dick \& Dobbie 2001

Table 1.2 Distribution of Mycosphaerella species recorded on eucalypt hosts

Mycosphaerella species	Anamorph	Eucalypt host	Occurrence	Reference
irregularimosa	Pseudocercospora irregularimosa	E. saligna	Indonesia, South Africa	Crous 1998, Crous \& Wingfield 1997b
juvenis	Uwebraunia juvenis	E. globulus, E. grandis, E. nitens	Kenya, South Africa, Tanzania, Zambia	Crous 1998, Crous \& Wingfield 1996, Lundquist, 1987
keniensis	Unknown	E. grandis	Kenya	Crous 1998
lateralis	Dissoconium dekkeri	E. globulus, E. saligna, E. nitens, E. grandis x saligna, E. grandis, E. maidenii	Australia, South Africa, Zambia	Crous 1998, Crous \& Wingfield 1996, Maxwell et al. 1999
longibasilis	Unknown	E. grandis	Colombia	Crous 1998,
marksii	Unknown	E. botryoides, E. fraxinoides, E. globulus, E. grandis, E. nitens, E. quadrangulata, E. saligna	Australia, Indonesia, Portugal South Africa	Crous 1998, Carnegie \& Keane 1994, Crous \& Wingfield 1996
mexicana	Unknown	Eucalyptus sp. E. globulus	Mexico, Australia	Crous 1998, Chapter 3
molleriana	Colletogloeopsis molleriana	E. globulus	USA**	Crous 1998, Crous \& Wingfield 1997a, Park \& Keane 1984
nubilosa	Unknown	E. bridgesiana, E. cypellocarpa, E. globulus, E. gunnii, E. quadrangulata, E. viminalis	Australia, New Zealand	Carnegie 1991, Dick 1982, Dick \& Gadgil 1983, Park 1984
parkii	Stenella parkii	E. grandis, E. saligna, E. globulus,	Brazil, Colombia, Indonesia	Crous 1998, Crous et al. 1993
parva	Unknown	E. globulus, E. grandis	Australia	Crous 1998, Park \& Keane 1982

Table 1.2 Distribution of Mycosphaerella species recorded on eucalypt hosts

Mycosphaerella species	Anamorph	Eucalypt host	Occurrence	Reference
suberosa	Unknown	E. dunnii, E. globulus, E. grandis, E. muelleriana, E. molluccana, E. viminalis	Australia, Brazil, Colombia, Indonesia, New Zealand	Crous 1998, Crous et al. 1993, Carnegie et al. 1997, Dick 2001
suttoniae	Phaeophleospora epicoccoides	Eucalyptus sp., E. grandis, E. smithii x grandis,	Argentina, Australia, Bhutan, Brazil, Ethiopia, Hong Kong, Indonesia, Italy, Madagascar, Malawi, New Zealand	Crous 1998, Crous \& Wingfield 1997b
* swartii	Sonderhenia eucalyptorum	E. coccifera, E. delegatensis, E. dives, E. elata, E. fastigata, E. globoidea, E. leucoxylon, E. nitens, E. obliqua,	Australia, New Zealand	Crous 1998, Park \& Keane 1984, Dick 1990
tasmaniensis	Mycovellosiella tasmaniensis	E. nitens	Australia	Crous 1998
vespa	Coniothryium ovatum	E. globulus, E. viminalis	Australia	Carnegie 2000, Carnegie \& Keane 1998, Milgate et al. 2001
walkeri	Sonderhenia eucalypticola	E. globulus	Australia, Chile, New Zealand	Crous 1998, Park \& Keane 1984, Wingfield, Crous \& Peredo 1995

[^0]
1.3.7 Control of MLD

Mycosphaerella leaf disease has been a problem for growing eucalypts in plantations since the 1930's when it caused the cessation of the planting of E. globulus in South Africa. The solution to the problem at that time was to switch to other more resistant eucalypt species. The options for disease control today are much the same as they were then, but with the benefit of a more detailed understanding of host resistance and the biology and epidemiology of the disease. Hence, in addition to exploiting host resistance, there is an increased potential for the use of cultural, biological and fungicidal methods of control. The tools of molecular biology available today enable an understanding of the population genetics of the pathogen, which can inform decisions on the best mode of disease resistance to develop, as well as assisting with issues relating to quarantine. Molecular markers may be enlisted to aid in the selection of resistant genotypes. There is also the promise of introducing disease resistance genes into trees grown in clonal forestry. In addition, increased computing power offers the exciting possibility of developing integrated control options based on modelling disease epidemiology. The costs and benefits of these potential control strategies are discussed.

Although fungicides are useful for the control of MLD on eucalypt seedlings in a nursery environment (Sanberg \& Ray 1976 in Carnegie 2000; Dick \& Gadgil 1983), they are not an economically viable option in large-scale plantations. Biological control with hypo-virulence factors could be an option if the Mycosphaerella species of interest readily anastomose, and if the appropriate viruses can be found. Hyperparasites of Mycosphaerella species could also be released to reduce the impact of MLD, but again this is reliant on discovering candidate mycoparasites. Hypo-virulence strategies have been successful against Cryphonectria parasitica (Heiniger \& Rigling 1994, Liu \& Milgroom 1996, Zhang et al. 1998). However, the most effective methods in the short term are likely to be selection for host resistance and cultural means of control, such as optimising stocking rates and fertiliser inputs.

Fast growing species are thought to resist pest and disease attack by outgrowing their impact (Stone 2001). Therefore by reducing external stress to the tree this form of resistance is optimised. Carnegie (2000) found that application of phosphorous at a rate of $200 \mathrm{~kg} \mathrm{ha}^{-1}$ reduced the severity of MLD on E. globulus over control plots with no added phosphorous. Similar reductions in MLD severity were achieved by reducing stocking densities.

Resistance to MLD has a moderate level of narrow sense heritability (Carnegie 2000, Carnegie et al. 1994, Dungey et al. 1997), and hence disease resistance can be selected for. Such selection will need to encompass resistance to a number of different species of Mycosphaerella. The biogeography of Mycosphaerella pathogens will need to be factored into any breeding programme. The scope of resistance, in terms whether resistance is effective across a range of Mycosphaerella species or is limited to one or a few, should also be considered. If resistance is limited then trees will be selected for the suite of Mycosphaerella pathogens present in a particular region.

The aim of this thesis was to determine the taxonomy and impact of Mycosphaerella species causing MLD in E. globulus plantations in south-western Australia. Phylogenetic and population genetics questions were also addressed for the taxa identified. These investigations were pursued in order to facilitate further studies into the epidemiology and population genetic structure of Mycosphaerella species on eucalypts and thereby devise strategies for its long-term control.

Chapter 2

Pests and diseases of Eucalyptus globulus plantations in south-western Australia

Chapter 2 Pests and diseases of Eucalyptus globulus plantations in south-western Australia

2.1 Introduction

Little work has been done to identify and rank the relative impact of health disorders in the E. globulus plantations of south-western Australia. Soils in southwestern Australia are often deficient in a range of micronutrients (Chamberlain 2002). These deficiencies may be widespread, or locally distributed, and are especially common in areas of high rainfall (>990 mm) and on coastal sites of highly leached sands (Chamberlain 2002). Although these plantations are often established on ex-pasture sites that have a history of regular fertiliser application for annual cropping, they may be susceptible to nutritional disorders, particularly in tree crops. This is especially the case for micronutrients, as these were often neglected in the fertilizer application to pasture sites (Chamberlain 2002). Evidence of deficiencies of copper, nitrogen, manganese, phosphorous, potassium and iron has been found at some plantations in south-western Australia (Chamberlain 2002). Such deficiencies may occur throughout a plantation, or in isolated pockets affecting as few as one or two trees in an otherwise nutritionally adequate landform. Micronutrient deficiencies such as copper or manganese impact on tree growth, form and biotic disease resistance. For example, copper deficiency in Corymbia maculata and other eucalypts, affects tree form, establishment, growth rates and wood quality through reduced lignification (Dell \& Bywaters 1989, Dell, Malajczuk \& Grove 1995). Nutrient deficiency is known to pre-dispose Eucalyptus to pest and disease attack (Ishaq 1999).

In 1998, at the time of this study, there were few studies of pest or disease problems in E. globulus plantations in south-western Australian. Published accounts of pest incidence were of a descriptive nature (Abbott 1993, CALM 1990), and the only other reference was that of Shea \& Hewitt (1990) in which the unsupported observation that 'there was no significant damage due to insects' was made. Prior to 1998, there were no published records of fungal parasites in E.
globulus plantations in south-western Australia, other than the three Mycosphaerella species described by Carnegie, Keane \& Podger (1997). Although significant in describing three Mycosphaerella species present on eucalypts in WA for the first time, the surveys were of a limited extent and intensity. Moreover, the interaction of pest, pathogen and nutritional deficiency on eucalypt plantations has not yet been studied in south-western Australia. Hence, there is a need for more comprehensive pest and disease surveys of the south-western Australian plantation estate.

The aims of this study were firstly, to compare the incidence and severity of pests and diseases of E. globulus plantations in south-western Australia with a focus on the greater Albany region. Secondly, to determine whether there were differences between sites in their pest and disease profiles. Finally, to test for interactions between Mycosphaerella leaf disease (MLD), and other diseases, pests and nutritional deficiencies.

2.2 Methods

2.2.1 Sampling design

In April 1998, one and two-year-old plantations, were assessed for pest, disease and nutritional disorders. Six plantation locations were surveyed between Albany and Manjimup (Figure 2.1). Three and six transects were made at one and two-year-old-sites, respectively. Symptoms of pest, disease and nutritional deficiencies were rated for each of 20 trees per transect. Statistical analyses were made to determine if there were significant differences between plantations in their symptom profiles, and whether there were significant interactions between symptom categories.

Figure 2.1 Location of Eucalyptus globulus plantations surveyed for incidence and severity of pest, disease and nutritional disorders in south-western Australia. One-year old \square) and two-year old (9 plantations indicated

2.2.2 Plantation location and description

The six plantations surveyed were selected on the basis of their: young ages to ensure the presence of juvenile foliage; uniform provenance planted, soil type and fertilizer history; and their geographically dispersed locations (Figure 2.1). Trees at sites 1-3 were one-year-old, and at sites 4-6 were two-years-old at the time of sampling. All trees sampled were of the same provenance (King Island = KI) except for compartments 5 and 1 of plantations 4 and 5 , respectively. The provenances in these compartments are designated (B) and (C) at Chelgiup (4) and Range-Montanna south (5), respectively. All plots sampled were located over gravely duplex soils. All sites were subject to the standard Integrated Tree Cropping (ITC) fertiliser regime: addition of NPK (rate withheld) and a micronutrient mix (3\% Cu, 5\% Mn, 12\% Fe, 3\% Zn , and 1\% Bo) at $28 \mathrm{~kg} / \mathrm{ha}$ (Chamberlain 2002).

Adequate plant nutrient levels were confirmed through foliar analysis as described by Chamberlain (2002). Briefly, at each site 5-10 trees were sampled at random from each of 4 compartments. For each tree the youngest fully expanded leaves (YFEL) were sampled from actively growing branches in the top third of the canopy and combined into 1 sample. Samples were oven-dried at $70^{\circ} \mathrm{C}$ to constant weight (3-4 days), and ground in a stainless steel mill for acid digestion. Total N was determined as outlined by Shedley, Dell \& Grove (1995) using semimicro Kjeldahl digestion (Fleck 1974) of approximately 100 mg (dry weight) plant material, followed by colorimetric determination using a modified Berthelot reaction (Searle 1984). For other elements (P, K, S, Mg, Ca, Fe, Mn, Zn, B, and Cu), samples (approximately 600 mg dry weight), were digested in nitric acid (Zarcinas, Cartwright \& Spouncer 1987), and analysed by inductively coupled plasma spectrometry (ICP-AES). In each digest a recovery test was included using standard reference material obtained from the State Chemistry Laboratory, Victoria. Values were accepted within one standard deviation of the certified values. Trees were classed as deficient if nutrient concentrations in the YFEL were within the deficient concentration range defined by Dell et al. (2001).

All plantations had adequate levels of macro and micronutrients with the exception of some compartments at Frankland and Range-Montana that were low in potassium (Appendix 2.1). One compartment was rated and sampled for pests and diseases per 1-year-old planting. In order to compare site variation, two compartments were sampled per 2-year-old planting. In each compartment, three plots of 20 plants each were sampled.

2.2.3 Sampling and disease assessment procedure

Sample plot locations for each compartment were chosen randomly, prior to visiting the site. Plots were located at least 50 metres into the plantation from any compartment boundary in order to minimise any potential 'perimeter effects'. On site, the south-west corner of each rectangular sample plot was marked and then 4 rows of 5 trees were rated for pest and disease symptoms.

Based on preliminary surveys, symptoms (Table 2.1) were identified and subsequently rated for incidence and for severity. The presence or absence of each symptom was recorded for each tree, and the severity of the more damaging health problems (Table 2.1), rated according to a log-linear scale (Figure 2.2). Ten leaves from the mid portion of a single branch were rated for each tree (detailed procedures in Appendix 2.2). Thus, comparisons between different causes of leaf damage were possible.

Insects were collected from 5 randomly selected trees at each plantation and returned to the laboratory for identification according to Naumann et al. (1991). The pattern of damage attributed to weevil and chrysomelid species was confirmed by maintaining the insects in glass jars containing E. globulus leaves, for up to 14 days. The presence of Mycosphaerella was confirmed from a random sample of ten diseased leaves from each plantation as described in detail in Chapter 3.

Figure 2.2 Rating diagrams used to assess severity of Mycosphaerella leaf disease symptoms showing logarithmic increase in lesion severity. (a) 3%; (b) 6%; (c) 12.5%; (d) 25%; (e) 50%; (f) 75%.

Table 2.1 Nutrient deficiency, pest and disease symptoms assessed in a survey of Eucalyptus globulus plantations in south-western Australia

Nature of symptom	Symptom category	Causal agent	Assessment: severity (S)
Nutrient deficiency	Stem distortion	micronutrient deficiency	S
		micronutrient	S
		deficiency \& chewing insects	
	Grazed leaves	Insects	Adult weevils

2.2.4 Statistical analysis

Data were recorded on a data logger (Psion Workabout 1 Mb Model), downloaded into an Excel spreadsheet and analysed statistically. The analyses used were a χ^{2},
log-linear, ANOVA and ANCOVA analysis in STATISTICA version 5 (1995, StatSoft). Firstly, the data obtained were screened for their fit to assumptions of normality, linearity and homogeneity of variance. Then, analyses of variance were performed to test for differences between sites, and for correlations between Mycosphaerella damage and other pest or disease symptoms.

2.3 Results

The pest and disease symptoms observed in E. globulus plantations of southwestern Australia (Illustrated in Figure 2.3) were compared in terms of frequency (Figure 2.4) and relative severity (Table 2.2). The following insect pests were identified: Ardozyga sp. (leaf tier caterpillar) Cadmus excremntarius (chrysomelids), Catasarcus sp. (weevils) Ctenarytaina eucalypti (Psyllids), Chrysophtharta sp. (chrysomelids), Gonipterus scutellatus (weevil) Mnesampela privata (autumn gum moth; AGM), Oxyopsis sp. (weevil), Paropsis sp, Phylacteophaga froggattii (leaf blister sawfly; LBSF). The following fungal disease species were identified: Aulographina (target spot), Cryphonectria (canker), Harknessia (leaf spot) and Mycosphaerella (leaf spot). The following nutritional disorders were identified: copper, phosphorous, potassium.

2.3.1 Comparison of pest and disease incidence

The most frequently occurring pests and diseases were MLD, weevil and chrysomelid grazing, psyllid damage and LBSF (Figure 2.4). The most severe health disorders were MLD (1-3\%) crown decline ($2-3 \%$ of whole tree) and leaf chewing (1-3\%) (Table 2.2). The greatest contributors to the leaf-chewing category were chrysomelid beetle and weevils (Table 2.2). Although the modal damage severity of LBSF was the lowest of the causes identified (0%) the range of damage was greatest for this disorder ($0-75 \%$). At some plantations damage caused to juvenile foliage by LBSF was uniformly high (Kelora and Chelgiup) whereas at others it was uniformly low (Cobertup and Frankland).

Figure 2.3 Signs and symptoms of pests and diseases observed in Eucalyptus globulus plantations in south-western Australia: (a) Mycosphaerella leaf spot; (b) Leaf blister sawfly; (c) Crescent shaped grazing on leaf caused by chrysomelid beetle shown; (d) Leaf chewing caused by chrysomelid larvae; (e) Uneven leaf chewing caused by the weevil species Gonipterus and Oxyops; ($\mathrm{f}-\mathrm{g}$) leaf etching caused by the weevil larvae; (h) Autumn gum moth larvae grazing the leaf surface; (i) Crown decline caused by insect defoliation or nutrient deficiency; (j) Canker caused by Cryphonectria species

Table 2.2 Severity of pests diseases and nutritional disorders in Eucalyptus globulus plantations in south-western Australia

Nature of symptom	Symptom category	Severity range	Modal severity
Nutrient deficiency	Stem distortion	$1-3^{*}$	1^{*}
	Crown decline	$0-50 \%$ (of	$7-12 \%$
Insect pest	Grazed leaves (combined insects)	$0-50 \%$	$(2-3 \%$ of whole tree)
	Unevenly grazed leaf margins (weevils)	$0-50 \%$	$1-3 \%$
	Scalloped leaf margins	$1-3 \%$	
	(chysomelids)	$0-25 \%$	$1-3 \%$
	Leaf blister saw fly	$0-75+\%$	0%

* Ranking scale: 1= not severe; 2= moderately severe; 3= very severe.

Based on the severity and incidence data, the common insect pest and fungal disease threats to E. globulus plantations are ranked in order of decreasing importance as follows: Mycosphaerella, weevils, chrysomelid beetles, LBSF, AGM and psyllids.

2.3.2 Comparison of site profiles in terms of MLD impact

Differences in the severity of MLD on different provenances were tested at the two site-age combinations where there were different provenances present. ANOVA showed a highly significant ($\mathrm{p}=0.003$) difference in severity of MLD between the KI and B provenances at Chelgiup (Table 2.3). Similarly, a highly significant ($\mathrm{p}=$ 0.001) difference was found between provenances KI and C at Range-South (Table 2.3). No difference was found between the two different compartments of the KI provenance at Cobertup (Table 2.3). Therefore, the data from Provenance B and C
at Chelgiup and Range-South, respectively, were not used in the subsequent ANCOVA's in which interactions amongst site, MLD, and other symptoms were tested (Tables $2.4 \& 2.5$). However, data from both of the compartments of the KI provenance from Cobertup were included in subsequent analyses.

Figure 2.4 Comparison of the frequency of pest and disease symptoms occurring on Eucalyptus globulus trees grown in plantations in south-western Australia. Abbreviations indicated MLD (Mycosphaerella leaf disease), LBSF (leaf blister sawfly), AGM (autumn gum moth).

Table 2.3 Summary of ANOVA comparing the effect of Mycosphaerella leaf disease damage to different provenances of 2-year-old Eucalyptus globulus trees grown in plantations in south-western Australia. Provenances indicated KI (King Island) B (provenance confidential), C (provenance confidential). DF (degrees of freedom), MS (mean square)

Provenance	Effec t	DF Effect	MS Effect	DF Error	MS Error	F	p-level
KIvB	1^{*}	1^{*}	4.52^{*}	92^{*}	0.48^{*}	9.40^{*}	0.003^{*}
KIvC	1^{*}	1^{*}	3.10^{*}	101^{*}	0.28^{*}	11.16^{*}	0.001^{*}
KIvKI	1	1	0.47	102	0.26	1.84	0.177

*significant effects at alpha $=0.01$

The ANCOVA (Table 2.4) comparing severity of MLD damage amongst sites, whilst treating leaf chewing and leaf blister sawfly symptoms as covariates, indicates that there were significant differences between sites in terms of MLD severity. Differences were highly significant ($\mathrm{p}<0.001$) amongst plantations of all ages, as are differences amongst 1-year-old plantations; differences amongst 2-year old plantations are significant $(p=0.013)$. Symptoms of MLD were most severe at Chelgiup (one-yr-old) with a mean value of 3.2% damage to juvenile leaves and damage was least at Frankland (two-yr-old) where the damage severity was 1% (Figure 2.5).

Table 2.4 Summary of all effects from ANCOVA comparing Mycosphaerella leaf disease severity amongst one and two-year old Eucalyptus globulus plantations in southwestern Australia.

Plantation age (yr)	Effect	Df Effect	MS Effect	Df Error	MS Error	F	p-level
$1 \& 2^{*}$	1^{*}	5^{*}	8.42^{*}	356^{*}	0.204^{*}	41.29^{*}	0.00^{*}
1 only*	1^{*}	2^{*}	5.6^{*}	166^{*}	0.124^{*}	46.51^{*}	0.00^{*}
2 only**	$1^{* *}$	$2^{* *}$	$1.19^{* *}$	$188^{* *}$	0.267^{*}	$4.45^{* *}$	$0.013^{* *}$
					${ }^{*}$		

** significant effects at $\mathrm{p}=0.05$

* significant effects at $\mathrm{p}=0.01$

Figure 2.5 Comparison of mean severity of Mycosphaerella leaf disease amongst one and two-year old Eucalyptus globulus plantations in south-western Australia

2.3.3 Interactions between MLD and other pest and disease variables

A comparison of beta values for the covariates in this analysis indicate that there were no significant interactions between MLD damage and either LBSF or leaf chewing symptoms where data for one and two-year-old trees were combined (Table 2.5). However, as there was a trend for one-year-old trees to be less affected than two-year old trees, the analyses of variance were repeated separately, for one and two-year-old trees. These showed that there was a significant $(p=0.012)$ interaction of MLD damage with leaf chewing for the two-year but not for the one-year-old trees. There were no significant interactions between leaf blister sawfly and MLD damage for either one or two-year-old plantations. There was a significant correlation ($\mathrm{r}^{2}=0.62$) between leaf chewing and MLD on two-year old trees.

Table 2.5 Within cells regression beta values of covariates from an ANCOVA comparing interactions amongst pest and disease symptoms with Mycosphaerella leaf disease severity at 1 and 2-year old Eucalyptus globulus plantations in south-western Australia.

Plantation ages (year)	**Covariate	B- weight	Error	beta	t(356)	p-level
$\mathbf{1 8 2}$	LBJ	-0.025	0.030	-0.043	-0.818	0.413
$\mathbf{1 \& 2}$	LC	0.052	0.038	0.072	1.356	0.175
$\mathbf{1}$	LBJ	0.077	0.054	0.114	1.411	0.160
$\mathbf{1}$	LC	0.021	0.035	0.049	0.614	0.540
$\mathbf{2}$	LBJ	-0.056	0.039	-0.101	-1.42	0.155
$\mathbf{2}^{*}$	LC* *	0.241^{*}	0.096^{*}	0.180^{*}	2.525^{*}	$\mathbf{0 . 0 1 2}$

* significant effects at $\mathrm{p}=0.05$
** Covariates are: Leaf blister sawfly on juvenile leaves (LBJ); leaf chewing (LC)

2.3.4 Effect of plantation age on pest and disease symptoms

A comparison of pest and disease symptoms affecting one and two-year-old plantations, found a higher incidence of MLD and LBSF in two-year-old plantations, than in one-yearold plantations. The converse was true for leaf curl caterpillar (Table 2.6).

Table 2.6 Pest and disease symptoms that are correlated with tree age in one and two year-old Eucalyptus globulus plantations in South-western Australia

Symptom	Tree age (years)	Pearson c 2	$\mathbf{d f}$	\mathbf{p}
Mycosphaerella leaf disease	2	45	2	0
Leaf blister sawfly juvenile leaves	2	110	5	0
Leaf curl caterpillar	1	176	3	0

2.4 Discussion

MLD is the most severe and frequently occurring, single taxonomic health threat to one and two-year-old E. globulus plantations in south-western Australia. This was recorded far more frequently than any other foliar or stem pathogen and was more ubiquitous than any of the remaining pest or nutritional problems noted. The individual Mycosphaerella species causing this disease were not treated in this chapter, but are considered in Chapter 3. Other frequently occurring health problems included leaf grazing by weevils (Gonipterus \& Oxyops spp.) and chrysomelids (Chryophtharta \& Paropsis spp.), leaf blistering (LBSF: Phylacteophaga froggatti), leaf curl (Ardozyga sp.) and crown decline due to a combination of nutrient deficiency and leaf grazing by insects. Boland et al. (1998), in a study of the Manjimup area of south-western Australia, also found MLD to be the most widespread threat to E. globulus plantations.

For the first time, this survey identified and quantified (rated) the impact of insect damage to E. globulus plantations in the region. Although Loch \& Floyd (2001)
recently ranked the importance of 21 insect pest species from E. globulus plantations in south-western Australia, they provide no data to support their assessment. The current study identified ten insect pests on E. globulus and rated their impact at a range of plantations in south-western Australia. Of the 85 species of insect pests that have been recorded on eucalypt plantations in Australia (Strauss 2001), 21 of these have been recorded in E. globulus plantations (Loch \& Floyd 2001).

There were significant variations in the impact of MLD between plantations. This variation was not due to the provenance planted, nutrient status, or general soil type. Previous studies have shown a variation in MLD susceptibility amongst E. globulus provenances (Carnegie 2000, Carnegie et al. 1994) and in the current study, between different provenances at one site. However, the effect of provenance variation was eliminated in the current study by comparing geographically dispersed sites that were planted to the same provenance on similar soil types of a nutritionally adequate landform. Similarly, nutrient status, particularly phosphorus (Carnegie 2000), may influence the susceptibility of a plantation to MLD. In the current study, micro and macronutrient levels were generally adequate across plantations as substantiated by foliar analysis. Therefore, the difference in MLD level between the plantations studied is likely to be due to initial Mycosphaerella species composition and inoculum level, and local climatic conditions favourable for disease. It is likely that with increasing volume age of the plantation estate in south-western Australia that the level of disease will increase over time. This is because more inoculum may accumulate both with the volume of susceptible species and with the length of time that these have been established in south-western Australia. Studies have been made on the optimal condition for disease development, and on disease epidemics in individual plantations in eastern Australia (Park 1988a, Park 1988b, Park \& Keane 1987). However, there are no investigations relating local weather conditions to differences in disease epidemics between plantations. Although, the optimal conditions for disease development is known for M. cryptica and M. nubilosa, interactions between these two and other Mycosphaerella species in causing disease has not been investigated.

Furthermore, the population genetic structure of M. cryptica and M. nubilosa has not been studied. The former is a heterothallic fungus with a broad host range and the latter a homothallic fungus with a narrow host range (Park 1984), therefore, they are likely to have differing population genetic structure, that will vary according to geographic region and over time. Thus, separate populations within each of these two species may behave differently in terms of their disease epidemiology. Thus, the role of host provenance, weather conditions, initial inoculum composition and level, need to be further examined across a range of plantation locations in order to develop a model that may predict epidemic outbreaks.

One factor that clearly influenced the level of disease was plantation age. Two year-old plantations were more greatly affected by MLD than one-year-old plantations. This is likely to be due to the longer period of time for disease establishment. Assessment of older plantations is required.

There were high-level interactions between some variables such as MLD, site and leaf grazing insects. One important positive correlation was that between MLD and leaf grazing. This finding is complemented by evidence from pesticide trials in E. globulus plantations, which indicate that insecticides reduce damage by leaf chewing insects and the level of MLD (Neumeister-Kemp et al. 2002). There are competing explanations for the correlation between leaf grazing and MLD damage. Firstly, the chewing insects may transmit fungal spores, which are deposited into open wounds during feeding, and thereby facilitate infection by Mycosphaerella. However, this is unlikely to be a factor as Mycosphaerella conidia and ascospores are widely splash and wind dispersed (Beresford 1978, Cheah 1977, Park 1988b, Park \& Keane 1987), and they do not require wounds for infection as they are able to infect through stomata (M. nubilosa) or epidermal cells (M. cryptica) of leaves (Jackson 2001, Jackson et al. 2002, Jackson et al. 2001) (Park 1988b). A second explanation is that stressed trees may be more susceptible to both insect and fungal attack. Thirdly, Mycopshaerella infected trees may be more palatable to leaf grazing insects. Finally, host resistance to chewing insects may be functionally related, or genetically linked, to MLD resistance. The final
explanation would mean that selection for MLD resistant trees, could also lead to trees more resistant to insect grazing by weevils and chrysomelids. Clearly therefore, it is important to determine the nature of the correlation between MLD and insect susceptibility, as this information will assist in devising control strategies in commercial forestry operations.

In the current study, estimates of leaf infection appear low in comparison with studies elsewhere, in which defoliation levels of up to 100% have been recorded (Beresford 1978, Carnegie 2000, Carnegie et al. 1998, Cheah 1977, Lundquist \& Purnell 1987). There are three reasons for this. Firstly, in selecting plantations with similar soil and provenance profiles, more severely damaged plantations with juvenile leaf defoliation levels over 75% were ignored (This study, unpublished data). Secondly, because the method of measuring MLD only accounted for the middle section of an outer branch (3-6 month old leaves), and the inner highly infected and often defoliated branches (7-18 month old leaves) were ignored, disease severity was under-estimated. Thus, it is not possible from this study to make direct comparisons with defoliation levels at plantations from studies by other authors. This also highlights the difficulty in directly comparing the severity ratings of MLD amongst different studies, given this subjective element that will vary between assessors. Thirdly, the plantation estate in south-western Australia is still relatively young with 90% of establishment occurring over the past ten years (Anonymous 2000, Bailey \& Dunconson 1998). Thus, there may be a lag period because inoculum levels are slow to increase. Nonetheless, MLD is known to reduce growth rates in plantations (Carnegie et al. 1994, Lundquist \& Purnell 1987), with defoliation events as low as 10% resulting in tree height reductions of 17\% (Carnegie et al. 1998). Severe infections disturb the dominance of the apical shoot leading to poor tree form, and have caused tree death in New Zealand (Beresford 1978, Cheah 1977). The level of leaf infection due to MLD is strongly correlated with the severity of leaf defoliation (Carnegie et al. 1994). Thus, in the future, this disease may pose a serious threat to the plantation eucalypt industry in south-western Australia.

The method used in the current study to assess pest and disease severity differs from that which has been developed by Stone et al. (2003) in terms of the amount of canopy assessed and the assessment of defoliation. In the current study only a section of a branch was chosen rather than sections of crown as has been done in the Crown Damage Index (CDI) within the National Standards for assessment set out on the Bureau of Rural Science (BRS) website. The single branch option was chosen because it is easier to reliably estimated damage levels from diagrams on this scale than on a whole crown scale. If adopted, the standard procedure set out by the BRS will help to compare studies between workers. However, it will not eliminate the subjective element in assessing crown damage that will lead to differences between individuals in their rating assessment and even variation between different days by the same individual. This is something that can be guarded against by adopting some form of calibration, which could be a set of computer-based images that the assessor could calibrate their judgement against prior to rating canopies.

The second difference between the current study and the BRS standard was that in the current study there was no specific rating scale for defoliation levels. Rather this was incorporated into the damage rating system in that severe defoliation was given the highest rank along with severe chewing or leaf infection. This was a limitation in the current study and could be improved by adopting a specific scale to rate defoliation.

Similar effects on tree form may occur from other problems noted in the plantations in these surveys. Crown decline, due to insect attack or nutrient deficiency is one such factor. This results in bushy trees (Stone, Simpson \& Eldridge 1998) that may have reduced wood volume at harvest. Therefore, the potential outcomes of MLD, leaf grazing insects and micronutrient deficiency are similar. Based on incidence and severity data from this study, MLD and leaf chewing insects are the two causes most likely to lead to this problem in WA plantations. Potential nutritional deficiencies were successfully managed in these plantations. There was little evidence of tree malformation due to nutritional
deficiency, and the problem of crown decline was likely to be caused mostly by insect attack.

Potential management options for pest and disease symptoms require a good understanding of their causes. Options include breeding for pest or disease resistance, application of fertilizer and the application of fungicide or insecticide sprays. Control of pest or disease through aerial spraying is problematic. The expense involved would require a good epidemiological model that can predict damage and economic thresholds in order to inform the optimal spray regime. Insecticides have been sprayed in plantations in south-western Australia to control outbreaks of weevils for example (Fremlin 2002, Australian Forest Grower). However, the use of insecticides is unpopular in the local community and needs to be minimised where companies are seeking to meet ISO environmental standards. Aerial spraying of fungicides may carry the additional disbenefit of reducing the effectiveness of mycorrhizal fungi associated with plantation eucalypts

Conclusion

The most widespread and potentially damaging disease of E. globulus plantations in south-western Australia is MLD. At present little is known of the taxonomy or biogeography of the organisms involved in this disease in this region. These important aspects of the disease must be considered before meaningful epidemiological studies can be conducted. Therefore, the following chapters will investigate aspects of the taxonomy and biogeography of the Mycosphaerella species involved in this disease in south-western Australia.

Chapter 3

Mycosphaerella species associated with Eucalyptus in south-western Australia: new species, new records and a key

Publications from Chapter 3

Maxwell, A., Dell, B., Neumeister-Kemp, H. G. and Hardy, G. E. (2003) Mycosphaerella species associated with Eucalyptus in south-western Australia: new species, new records and a key. Mycological Research 107(3): 351-359 .

Maxwell, A., Hardy, G.E.St.J, Wingfield, M. J. \& Dell, B. (2000). First record of Mycosphaerella lateralis on Eucalyptus in Australia. Australasian Plant Pathology. 29:279.

Maxwell, A., Hardy, G.E.St.J, \& Dell, B. (2001). First record of Mycosphaerella nubilosa in Western Australia. Australasian Plant Pathology. 30:65.

Chapter 3 Mycosphaerella species associated with Eucalyptus in south-western Australia: new species, new records and a key

3.1 Introduction

Mycosphaerella leaf disease (MLD) is a widespread disease occurring in natural Eucalyptus forests and in plantations (Crous 1998). It poses an economic threat to Eucalyptus plantations. For example, outbreaks of MLD led to the cessation of Eucalyptus globulus plantings in South Africa in the 1930's (Crous 1998). MLD causes loss in photosynthetic area and can lead to defoliation, resulting in reduced growth rates and wood volume. It may also cause poor tree form. Defoliation levels of 25% led to reductions in wood volume of Eucalyptus nitens infected with Mycosphaerella in South Africa (Lundquist \& Purnell 1987). Carnegie et al. (1994) showed that MLD causes a negative effect on growth rate in E. globulus and more recently Carnegie et al. (1998) report that levels of diseased leaf area as low as 10% result in a 17% reduction in height of E. globulus in plantations.

There are 29 Mycosphaerella species associated with eucalypts recognised in Crous (1998) and two additional species; M. vespa (Carnegie \& Keane 1998) and M. intermedia (Dick \& Dobbie 2001). The origin, distribution, and impact of many of these species are poorly understood. Many are only recorded outside of Australia in Eucalyptus plantations established as exotics (Crous 1998) but the origin of these Mycosphaerella species is unknown. In Australia, M. cryptica and M. nubilosa are the most serious disease-causing species (Carnegie et al. 1998, Park 1988a, Park \& Keane 1982) whereas in southern Africa, M. juvenis, which is not recorded elsewhere, is responsible for most disease (Crous 1998). Recent papers have extended the known geographic and host range of some Mycosphaerella spp. associated with diseased Eucalyptus foliage (Carnegie, Keane \& Podger 1997, Crous et al. 1998). Further intensive surveys of plantation and native eucalypt
forest are required in order to determine the full range and possible origin of Mycosphaerella species associated with Eucalyptus.

Investigations into Mycosphaerella on eucalypts in Australia have emphasised the south-eastern region with little consideration given to the south-western region. The 1994 survey of Carnegie et al. (1997) was the first to describe species of Mycosphaerella associated with disease on Eucalyptus in Western Australia (WA). They identified M. cryptica associated with E. globulus, E. marginata and E. patens; and M. marksii and M. suberosa associated with E. globulus. The former two fungi are common in eastern Australia and M. suberosa was previously known only from Eucalyptus in Brazil, Colombia (Crous et al. 1993, Crous 1998) and Indonesia (Crous \& Wingfield 1997b). This extension in the known range of Mycosphaerella species underscores the need for a comprehensive survey of Mycosphaerella on Eucalyptus plantations in WA.

During the period 1998-2001, the E. globulus estate in south-western Australia was systematically sampled for leaf pathogens. Additional material was opportunistically collected from Queensland (QLD), New South Wales (NSW) and Victoria (Vic.) in eastern Australia. The results of this survey for Mycosphaerella are reported here.

3.2 Materials and methods

3.2.1 Collection of samples

Diseased E. globulus leaf material was collected from 30 plantations from Esperance in the south-east of WA to Albany in the south, inland to Manjimup and north to Bunbury (Figure 3.1). Single ascospore isolations were made from lesions on 50 leaves selected randomly from each of two 100 m transects at opposite ends of each plantation. Further diseased leaves from eucalypt species were opportunistically collected from QLD, NSW and Vic. in eastern Australia. Fungi were isolated, cultured and identified.

Figure 3.1 Location of Eucalyptus globulus plantations in south-western Australia from which Mycosphaerella species were isolated. Plantation locations (\bullet), populations centres (■).

3.2.2 Species identification

Ascospores were discharged from mature lesions as described by Crous (1998), except that the Petri-dishes with adherent lesions were inverted in order to favour the attachment of actively discharged spores to the agar. Ascospore germination patterns were measured, drawn and recorded after 24 h of incubation at $20^{\circ} \mathrm{C}$, from a piece of agar that had been transferred to a slide and viewed under an Olympus BH2 light microscope.

Under a dissecting microscope (x70), single ascospore germinants were transferred to 90 mm Petri-dishes containing 20 ml of 2% Difco Malt Extract Agar (MEA) and maintained in pure culture. These plates were incubated at 25° in the dark and radial diameter of cultures measured after 4 and 8 wk . The range of growth rates from at least five different isolates was recorded for each species. After 8 wk, the plates were incubated under nuv light to induce the formation of fruiting structures. In addition, representative isolates from each species were sub-cultured onto Carnation Leaf Agar (CLA; Fisher et al. 1982) and grown at 25° under continuous $n u v$ in order to promote the formation of fruiting structures. Colony colour was recorded for the upper and lower mycelial surface after 8 wk growth on MEA at 25° in the dark with the aid of the Methuen Handbook of Colour (Kornerup \& Wanscher 1967). This was recorded as a Methuen colour name followed by the Methuen colour notation with the revised (as of 1967) Munsell renotation of hue, value and chroma in parentheses. Mycelial scrapes were made from cultures on MEA and CLA after 4, 8 and 12 wk growth under $n u v$, mounted under acidified glycerol blue (0.05 \% aniline blue (Gurr) in 50% acidified (0.1% $\mathrm{HCl})$ glycerol) and investigated under an Olympus BH2 light microscope for the formation of anamorph states. Other features recorded include the formation of pigment and crystals in the agar.

Leaf symptoms were recorded. Ascomata were described from squash mounts and hand sections of lesions from which ascospores had recently discharged. In order to relate germination patterns to ascomata characteristics, hand-sections
were made from the area of lesion corresponding to that below the spores on the Petri-plate. Sectioned ascomata were mounted, stained with acidified glycerol blue and investigated under an Olympus BH2 light microscope on normal or phase contrast settings (100-1000x). Thirty measurements were made of ascus, ascospore and conidium dimensions under phase-contrast. From these, the 95% confidence intervals were calculated and are presented with extremes in parentheses. All drawings were made with the aid of an Olympus drawing tube.

3.3 TAXONOMY

Mycosphaerella aurantia A. Maxwell, sp. nov. (Figures 3.2-3.8, 3.14-3.15)

Etym.: aurantius, Latin for orange coloured (Stearn, 1973), named for the orangegrey colouring of the culture surface on 2% MEA.

Laesiones amphigenes, brunneae, semi-circulares, $1-8 \mathrm{~mm}$ diam. Ascomata amphigena, dispersa, nigra, globosa, $87-105 \times$ 83-102 $\mu \mathrm{m}$, ostiolata; parietes brunnei, e 3-5 stratis texturae angularis compositi. Asci bitunicati, fasciculati, obovoidei ad ellipsoidei, recti ad incurvati, 8-spori, (22-) 30-49 (-85) $\times(8-) 11-13(-16) \mu \mathrm{m}$. Ascosporae bi- vel triseriatae, imbricatae, hyalinae, guttulatae, fusiformi-ellipsoideae extremitatibus rotundatis, non constrictae, per medianum 1-septatae, ad extremitatem basalem angustatae, (9-) 11-12 (-15) $\times 2-2.5(-3) \mu \mathrm{m}$. Ascosporae germinatio ab extremitatibus ambitis ad axem longum sporae parallela; ascosporae hyalinae sed post 24 horas parum constrictae et subtiliter verruculosae, tum post 36 horas ramulos laterales facientes. Culturae post octo hebdomadum in 2% MEA ad $25^{\circ} \mathrm{C}$ in tenebris, pagina supera brunneoaurantiaca, 7C6 (1.5YR: 5.7: 6.7), infera cinereo-brunnea, 7F3 (5R: 3.3: 0.9). Crystalla rufa in agaro crescentes. Velocitas incrementi post mensam unam sub $25^{\circ} \mathrm{C} 16-24 \mathrm{~mm}$. Anamorphasum non visum.

Typus: Australia: Western Australia: Bunbury, Summerlea plantation of Western Australian Chip and Pulp (WACAP) $115^{\circ} 37^{\prime} \mathrm{E}, 33^{\circ} 40^{\prime} \mathrm{S}$, on Eucalyptus globulus, 1 May 2000, A. Maxwell (PERTH 05849543 - holotypus, MURU0001 isotypus ex-type culture CBS 110500); Albany, Callistemon plantation of Integrated Tree Cropping (ITC), on E. globulus, 11 April 2000 A. Maxwell (MURU0002 paratypus). GenBank sequence ex-type AY 150331.

Lesions amphigenous, brown, sub-circular, 1-8 mm diam. Ascomata amphigenous, sparse, black, globose, $87-105 \times 83-102 \mu \mathrm{~m}$, ostiolate, walls brown comprising 3-5 layers of textura angularis. Asci bitunicate, fasciculate, obovoid to ellipsoid, straight to incurved, 8 -spored, (22-) 30-49 (-85) x (8-) 11-13 (-16) $\mu \mathrm{m}$. Ascospores bi- to
triseriate, overlapping, hyaline, guttulate, fusoid-ellipsoid, ends rounded, medianly 1 -septate not constricted, tapering toward basal end, (9-) 11-12 (-15) x 2-2.5 (-3) $\mu \mathrm{m}$. Ascospore germination from both ends parallel to the long axis of the spore, remaining hyaline but becoming slightly constricted and finely verruculose at 24 h then forming lateral branches after 36 h . Culture colour on 2% MEA after 8 wk at 25° in the dark, surface brownish orange, 7C6 (1.5YR: 5.7: 6.7); reverse greyish brown, 7F3 (5R: 3.3: 0.9). Red crystals form in agar. Growth rate 16-24 mm after 1 month at 25°. Anamorph not seen.

Habit: Host Eucalyptus globulus. Occurring on juvenile leaves only. Found throughout the south-west of Australia. Isolated alone or with M. cryptica, M. nubilosa, M. parva or M. gregaria on the same lesion.

Notes: This species can be differentiated from other similar Mycosphaerella species on the basis of a combination of characteristics. It is most clearly different from other species of Mycosphaerella isolated from Eucalyptus in culture, as its upper surface becomes greyish orange on 2% MEA. The spores are similar to those of M. cryptica in morphology except that they are smaller and not (or only rarely) constricted. The germination pattern of this species differs from that of M. cryptica, as do the cultural characteristics. Mycosphaerella aurantia is most similar to M. tasmaniensis and the M. heimii complex. However, it differs from the former as it has thick-walled not thin-walled ascospores and it does not form a Mycovellosiella anamorph in culture. M. aurantia is unlike M. heimii in ascospore shape, culture colour and it does not produce a Pseudocercospora anamorph on 2% MEA or CLA in culture under nuv. The new species also differs from the other small-spored species because it has slightly larger ascospores, and in M. keniensis the ascospores do not become constricted upon germination; M. parva has constricted ascospores which darken and become prominently verruculose upon germination; M. heimioides germinates perpendicular to the ascospore and forms a Pseudocercospora anamorph on 2% MEA under nuv.

Figures 3.2-3.6. Mycosphaerella aurantia (holotype). Figure 3.2. Lesion on adaxial surface of leaf. Figure 3.3. Lesion on abaxial surface of leaf. Figure 3.4. Distribution of ascomata on lesion. Figure 3.5. Surface of culture on MEA showing distinctive apricot colour formed after 8 wk . Figure 3.6. Reverse surface of culture on MEA. Figures 3.7-3.13. Mycosphaerella ambiphylla (holotype). Figure 3.7. Adaxial surface of juvenile leaf showing corky appearance of lesions. Figure 3.8. Abaxial surface of juvenile leaf showing lesion form. Figure 3.9. Adaxial surface of adult leaf showing corky appearance of lesions. Figure 3.10. Abaxial surface of adult leaf showing corky appearance of lesions. Figure 3.11. Lesion showing distribution of the ascomata. Figure 3.12. Surface of culture on MEA. Figure 3.13. Reverse surface of culture on MEA. Bars: Figures 3.2-3, 3.5-10, 3.12-13 = 10 mm ; Figure $3.3=5$ mm ; Figure $3.11=2 \mathrm{~mm}$.

Figures 3.14-15. Mycosphaerella aurantia (holotype). Figure 3.14. Asci containing ascospores. Figure 3.15. Germinating ascospore on MEA after 24 hours. Figures 3.16-20. Mycosphaerella ambiphylla (holotype). Figure 3.16. Asci containing ascospores. Figure 3.17. Germinating ascospores after 24 h on 2% malt extract agar. Figure 3.18. Pycnidia (anamorph Phaeophleospora) formed on CLA. Figure
3.19. Conidia produced percurrently and sympodially in pycnidia formed on CLA.

Figure 3.20. Conidia formed from pycnidia on CLA. Bars $=20 \mu \mathrm{~m}$.

Mycosphaerella ambiphylla A. Maxwell, sp. nov. (Figures 3.9-3.13, 3.16-3.20)

Etym.: ambiphyllus named for the formation of ascomata on both surfaces of the leaf, ambi (Latin) 'both' and phyllus (Latin) 'leaf'.

Anamorph: Phaeophleospora ambiphylla

Laesiones elevatae, parum subereae, amphigenes, atro-rufo-brunneae marginibus rufis, irregulares ad circulares, $1-8 \mathrm{~mm}$ diam. Ascomata amphigena, dispersa, nigra, globosa, (60-) 86-96 (-110) $\times(60-) 88-100(-120) \mu \mathrm{m}$; parietes brunnei, e $2-3$ stratis texturae angularis compositi. Asci bitunicati, fasciculati, obovoidei ad ellipsoidei, recti ad incurvati, 8 -spori, (30-) 55.5 -64.5 (-80) $\times(7-) 9-11(-16) \mu \mathrm{m}$. Ascosporae bi- vel triseriatae, imbricatae, guttulatae, fusiformes ad fusiformi-ellipsoideae apice obtuso, ad basin parum angustatae, per medianum 1-septatae, parum constrictae parietibus crassis, laevibus, hyalinae ad sub-hyalinae, (12-) $14-15(-22) \times(3.5-) 4.5-5.0(-6) \mu \mathrm{m}$. Ascosporae germinatio post 24 horas ab extremitatibus ambitis ad axem longum sporae parallela; sporae 3-septatae et gradatim constrictae, subhyalinae, parietibus laevibus. Velocitas incrementi post unam mensam ad $25^{\circ} \mathrm{C} 35-45 \mathrm{~mm}$. Culturae in 2% MEA pagina supera olivaceo-flava, 3C6 (6.5YR: 6.8: 6.8), infera olivacea, 3F6 (8.5Y: 3.4: 2.7). Pycnidia in 2 \% MEA et CLA post octo nuv hebdomadum formantia, globosa, 80-300 × $60-270 \mu \mathrm{~m}$, sine basi pulvinata, unilocularia, ostiolata; parietes brunnei, e 3 vel 4 stratis texturae angularis compositi. Conidiophora absentia. Cellulae conidiogenae ampulliformes, percurrenter et inerdum sympodialiter prolificantes, parietibus subtiliter verruculosis, pallide brunneis. Conidia holoblastica, (3-) 3.5-4.5 (-5) $\times(5-) 10-15(-20) \mu \mathrm{m}$, pallide brunnea, parietibus tenuibus, subtiliter verruculosa, recta vel parum curvata, cylindrica ad ellipsoidea, ad apicem obtuso, ad basin truncata margine segmentato.

Typus: Australia: Western Australia: Manjimup, Boorara plantation of WACAP $116^{\circ} 10^{\prime} \mathrm{E}, 34^{\circ} 45^{\prime} \mathrm{S}$, on Eucalyptus globulus, 16 Feb. 2000, A. Maxwell (PERTH 05849608 - holotypus, ex-type culture CBS 110499; MURU0003, MURU0004, MURU0005 - isotypus). GenBank sequence ex-type AY150675.

Lesions raised, slightly suberised with red margin, amphigenous, dark red-brown, irregular to rounded, 1-8 mm diam. Ascomata amphigenous, sparse, black, globose, (60-) 86-96 (-110) x (60-) 88-100 (-120) $\mu \mathrm{m}$, brown walls comprising 2-3 layers of textura angularis. Asci bitunicate, fasciculate, obovoid to ellipsoid, straight to incurved, 8-spored, (30-) 55.5-64.5 (-80) x (7-) 9-11 (-16) $\mu \mathrm{m}$. Ascospores bi- to triseriate, overlapping, guttulate; fusoid to fusoid-ellipsoid with obtuse apical end and slightly tapered basal end; medianly 1-septate slightly constricted, thickwalled, hyaline to sub-hyaline, smooth-walled (12-) 14-15 (-22) x (3.5-) 4.5-5.0 (6) $\mu \mathrm{m}$. Ascospore germination from both ends after 24 h , parallel to the long axis of
the spore, which becomes 3-septate and increasingly constricted, remaining subhyaline and smooth-walled. Culture colour on 2 \% MEA, surface olive - yellow, 3C6 (6.5Y: 6.8: 6.8); reverse olive, 3F6 (8.5Y: 3.4: 2.7). Growth rate, 35-45 mm after 1 month at 25°. Anamorph not seen on leaf. Pycnidia forming on 2% MEA and on CLA after 8 wk under $n u v$, globose, $80-300 \times 60-270 \mu \mathrm{~m}$ lacking pulvinate base, unilocular, ostiolate, wall brown, comprising 3-4 layers of textura angularis. Conidiophores absent. Conidiogenous cells ampulliform, proliferating percurrently and occasionally sympodially, walls finely verruculose, pale brown. Conidia holoblastic, pale brown, thin-walled, finely verruculose, straight or slightly curved, cylindrical to ellipsoidal, apex obtuse, base truncate with marginal frill. Conidial dimensions (3-) 3.5-4.5 (-5) x (5-) 10-15 (-20) $\mu \mathrm{m}$.

Habit: Host Eucalyptus globulus. Occurring on adult and juvenile leaves. Occurring alone or with Mycosphaerella cryptica, M. nubilosa, M. parva or M. suberosa on the same leaf. Isolated alone or along with M. cryptica, M. nubilosa, M. parva, or M. suberosa from a single lesion.

Notes: Lesions of Mycosphaerella ambiphylla are similar to those of M. suberosa in that they are suberised, although not to the same degree. In culture, M. ambiphylla is flat, olive-yellow and comparatively fast growing (40 mm month $^{-1}$) whereas M. suberosa is compact, raised, black and very slow growing ($2-5 \mathrm{~mm}$ month ${ }^{-1}$). Also, M. suberosa ascospores germinate from several germ-tubes after 24 h , and become dark, verruculose and distorted (type E; Crous 1998) whereas M. ambiphylla has only one germination-tube at each end of the ascospore (type C; Crous 1998). The ascospores of M. ambiphylla most resemble those of M. molleriana, M. nubilosa and M. vespa in terms of size, morphology and germination pattern. All of these species germinate from both ends with slight constriction of the septum. In M. ambiphylla, the ascomata are amphigenous, the ascospores are thick-walled and slightly larger and wider ($14-15 \times 4.5-5 \mu \mathrm{~m}$), whilst in M. molleriana the ascomata are mostly hypophyllous, the ascospores are thin-walled and slightly smaller and narrower (12-14 x 3-3.5 $\mu \mathrm{m}$) in length (Crous 1998). Importantly, M. molleriana forms a Colletogloeopsis anamorph, whereas M. ambiphylla forms a Phaeophleospora anamorph. M. ambiphylla occurs on juvenile and adult leaves, is fast growing (35-
$45 \mathrm{~mm}^{\text {month }}{ }^{-1}$) and readily forms the Phaeophleospora anamorph in culture, whereas M. nubilosa occurs almost exclusively on juvenile leaves, is slow growing ($10 \mathrm{~mm}_{\text {month }}{ }^{-1}$) and does not form an anamorph in culture. Mycosphaerella ambiphylla is most clearly differentiated from the recently described M. vespa on the basis of the anamorph formed. The former develops a Phaeophleospora anamorph whereas the latter develops a Coniothyrium anamorph (Milgate et al. 2001). In addition M. ambiphylla is faster growing (35-45 $\mathrm{mm} \mathrm{month}^{-1}$ compared to 20-35 mm month ${ }^{-1}$) and forms ascomata on both surfaces of the leaf as opposed to M. vespa, which is hypophyllous (Carnegie \& Keane 1998).

Phaeophleospora accommodates pycnidial fungi forming brown, rough-walled, cylindrical, holoblastic conidia with obtuse apices and truncate bases with a marginal frill. The conidia are produced from brown, ampulliform, lageniform or short cylindrical, rough-walled conidiogenous cells with several proliferations. In the neotype designation for the type species, the conidiogenous cells of Phaeophleospora eugeniae are described as percurrent (Crous, Ferreira \& Sutton 1997). However, sympodial conidiogenesis is not precluded for this genus. Similar genera to Phaeophleospora are Microsphaeropsis, Colletogloeopsis, Readeriella, and Coniothyrium. Microsphaeropsis conidia lack ornamentation and the conidiogenous cells are enteroblastic, 'phialidic' and hyaline (Sutton 1980). This differs from the present anamorph, which forms finely verruculose holoblastic conidia, from percurrent or sympodially proliferating, finely verruculose brown conidiogenous cells. In Readeriella, conidiogenesis is exclusively percurrent and the conidia produced are deltoid, thick-walled with three lateral obtuse projections (Sutton 1980) unlike the thin-walled, cylindrical to elliptical conidia of the present anamorph. Colletogloeopsis differs from the anamorph under consideration in that it forms thick-walled spores in an acervulus, not in a pycnidium. The anamorph of M. ambiphylla differs from the genus Coniothyrium in the following respects: the conidia of Coniothyrium are verruculose and the conidiogenous cells are hyaline and smooth-walled (Sutton 1980) whereas in this anamorph both the conidia and the conidiogenous cells are pale brown and finely verruculose; also, conidiogenesis in Coniothyrium is characterised by percurrent proliferation only. In
contrast, conidiogenesis in the present anamorph is both percurrent and sympodial.

Presently, all of the fungi accommodated within Phaeophleospora have septate conidia. The conidia of M. ambiphylla are aseptate, therefore this species is clearly different from previously described species within the genus Phaeophleospora. However, in a recent re-examination of the holotype of Coniothyrium ovatum, Milgate et al. (2001) disagree with the original description of the conidiogenous cells as hyaline and smooth-walled (Swart 1986), finding that they were brown and verruculose; ie similar to Phaeophleospora. Therefore, a comparison is made between C. amhadii, C. eucalypticola, C. kalgurensis, C. ovatum and M. ambiphylla (Table 1). It is evident that the conidia and pycnidia of M. ambiphylla are larger than those of the four Coniothyrium spp. on eucalypts.

Table 3.1. Comparison of the pycnidial and conidial dimensions of Coniothyrium species associated with Eucalyptus species and the Phaeophleospora anamorph of Mycopshaerella ambiphylla from Eucalyptus globulus.

Species	Pycnidia	Conidia	Source
	(diameter $\mu \mathbf{m})$	(length \times width $\mu \mathbf{m})$	
C. amhadii	Not given	$6-7 \times 3.5-4.5$	Sutton (1974)
C. eucalypticola	Very small	$8.5-10 \times 6-7.5$	Sutton (1980)
C. kallangurense	To 250	$4-7 \times 2.5-5$	Sutton (1980)
C. ovatum	To 80	$(6-) 7-9(-11) \times 3-3.5(-4)$	Crous (1998)
C. ovatum	$32-75$	$(7.5-) 9(-12) \times(2.5-) 3(-5)$	Milgate et al. (2001)
C. ovatum	$40-70(-80)$	$(6-) 7-11 \times 3-4.5(-5)$	Swart (1986)
M. ambiphylla	$80-300$	$(5-) 10-15(-20) \times(3-) 3.5-4.5(-5)$	This study

Mycosphaerella mexicana Crous, Mycologia Memoir 21: 81 (1998). (Figure 3.21)

The specimens of M. mexicana isolated in the present survey agree with that of the type description (Crous 1998) except for the following small differences: Asci were shorter and wider in the present study (52-60 $\times 16.5-19 \mu \mathrm{~m})$ than in the type description $(50-80 \times 10-15 \mu \mathrm{~m})$. Cultural features are not described in the type description; therefore these features are described here. Culture colour on 2% MEA surface olive grey, 3F2 (-: 3.5: 0.2); reverse olive grey, 3F2 (but 'darker') (-: 3.5: 0.2). Mycelia a dense, aerial form. Growth rate 12-18 mm month ${ }^{-1}$.

Habit: Host Eucalyptus globulus. Observed on older juvenile leaves, occurring alone or with a combination of Mycosphaerella cryptica, M. marksii, M. nubilosa or M. parva on the same lesion.

Specimens examined: Australia: Western Australia: Manjimup, Darling View plantation (WACAP), $116^{\circ} 00^{\prime} \mathrm{E}, 33^{\circ} 10^{\prime} \mathrm{S}$,
Eucalyptus globulus, 2 May 2000, A. Maxwell (PERTH 05849632, MURU0006, MURU0007, MURU0008). Culture CBS 110502.

Mycosphaerella gregaria Carnegie \& Keane, Mycol. Res. 101: 843 (1997). (Figure

The specimens of Mycosphaerella gregaria from the present study agreed with the type description of Carnegie \& Keane (1997) except for the following small differences. Asci were smaller in the present study $(28-32 \times 5.5-7 \mu \mathrm{~m})$ than in the type (37.5-47.5 x 6.5-8.5 $\mu \mathrm{m}$). Ascospores were smaller in the present study (9.5-11 $\times 2-2.5 \mu \mathrm{~m}$) than in the type description ($10.5-15.5 \times 2.5-3.5 \mu \mathrm{~m}$). Culture colour is described in the type but not with reference to standardised colour charts. The current study on 2 \% MEA, surface greyish rose 11B6 (10RP: 5.5: 8.5) becoming olive brown 4E4 (5Y: 4.8: 3.1) towards the margin. Reverse, brownish grey, 4F2 (-: 3.5: 0.3). Forms sclerotia, and unlike the type description, does not form a red or red-brown pigment in the agar.

Habit: Host Eucalyptus globulus. Observed on older juvenile and leaves intermediate between their juvenile and adult phase. Widespread in south-
western Australia. Occurring alone or with one or a combination of Mycosphaerella cryptica, M. marksii, M. nubilosa or M. parva on the same leaf.

Specimens examined: Australia: Western Australia: Bunbury, Summerlea plantation (WACAP) $115^{\circ} 37^{\prime} \mathrm{E}, 33^{\circ} 40^{\prime} \mathrm{S}$, Eucalyptus globulus, 1 May 2000, A. Maxwell (PERTH 05849551); Manjimup, Channeybearup plantation (WACAP), on E. globulus, 16 Feb. 2000, A. Maxwell (MURU0009); Busselton, Reid plantation (WACAP), on E. globulus, 2 May 2000, A. Maxwell (MURU0010); Esperance, Chips plantation of ITC, on E. globulus, 15 Dec. 2000, A. Maxwell (MURU0011). Culture CBS 110501.

Mycosphaerella lateralis Crous \& M.J. Wingfield, Mycologia 88: 454 (1996). (Figure 3.21)

The specimens of Mycosphaerella lateralis from the present study agreed with the type description of Crous \& Wingfield (1996) except for the following small differences. Ascomata width was 45-65 $\mu \mathrm{m}$ (not 40-60) and 60-80 $\mu \mathrm{m}(\operatorname{not} 50-70)$ high. Asci were 40-60 x 7-10 $\mu \mathrm{m}$ (not 30-50 x 6-10). The anamorph formed was Dissoconium dekkeri after 6 weeks at 25° under nuv light. This was characterised by 1-septate obclavate primary conidia, $20-30 \times 3-4 \mu \mathrm{~m}$, discharged from light brown conidiogenous cells. Cultures were fast growing, 15-25 mm per month on MEA at 25° in the dark; even or uneven edged, cream aerial mycelium, yellow to light brown reverse.

Specimens examined: Australia: Western Australia: Esperance, Chips plantation of ITC, on E. globulus, 1998, A. Maxwell (MURUAM98-147); Albany, Callistemon plantation of Integrated Tree Cropping (ITC), on E. globulus, 11 April 2000 A. Maxwell (MURUAM99-46); Queensland, Gympie, 1998 A. Maxwell (MURUAM98-163).

Mycosphaerella nubilosa (Cooke) Hansf. Proceedings of the Linnean Society of New South Wales 81: 36 (1965). (Figure 3.21)

The specimens of Mycosphaerella nubilosa from the present study agreed with the type description of Park \& Keane (1982a) except for small differences. The morphology of this species in south-western Australia is described. Lesions occurring predominantly on juvenile leaves, but also (rarely) on adult foliage. Pseudothecia mostly hypophyllous, black, becoming erumpent, globose, $60-120 \mu \mathrm{~m}$ in diameter, containing, 8 -spored, bitunicate asci 35-65 x 10-15 $\mu \mathrm{m}$. Ascospores $2-3$ seriate,
thin-walled, colourless, guttulate, straight to slightly curved, medianly 1-septate, septum slightly constricted, 11-16 x 3-4 $\mu \mathrm{m}$. Ascospores distorting and becoming increasingly constricted at germination. After 24 h at $25^{\circ} \mathrm{C}$, ascospores germinating from each end. Anamorph not seen. Cultures slow growing, $10-15 \mathrm{~mm}$ per month on MEA at $25^{\circ} \mathrm{C}$ in the dark; even edged, olivaceous grey both surfaces with sparse aerial mycelia.

[^1]Mycosphaerella parva R.F. Park \& Keane, Tran. Bri. Mycol. Soc. 79: 99 (1982a).

The specimens of Mycosphaerella parva from the present study agreed with the type description of Park \& Keane (1982a) except for the following small differences. Ascomata narrower size range in the present study $(56-68 \mu \mathrm{~m})$, than in the type $(42-91 \mu \mathrm{~m})$ diameter. Asci were smaller in the present study ($30-38 \times 8.5-10.5 \mu \mathrm{~m}$) than in the type (29-48.5 x 6-13 $\mu \mathrm{m}$). Cultural features are not given in the type description. This study: Culture colour on 2 \% MEA: Surface, olive, 3D5 (5.5Y: 5.9: 4.1); Reverse, goose-turd, 3F3 (7.5Y: 3.5: 0.6).

Habit: Host Eucalyptus globulus. Observed on older juvenile leaves. Widespread in south-western Australia. Occurring alone or with one or a combination of Mycosphaerella cryptica, M. gregaria, M. marksii, M. nubilosa or M. mexicana on the same lesion.

Specimens examined: Australia: Western Australia: Bunbury, Darling View plantation (WACAP), $116^{\circ} 00^{\prime} \mathrm{E}, 33^{\circ} 10^{\prime} \mathrm{S}$, on Eucalyptus globulus, 2 May 2000, A. Maxwell (PERTH 05849586; MURU0012); Manjimup, Woodraka plantation (WACAP) $116^{\circ} 05^{\prime} \mathrm{E}, 34^{\circ} 30^{\prime} \mathrm{S}$, 29 Feb 2000, A. Maxwell (MURU0013). Culture CBS 110503.

Other Mycosphaerella species isolated in this survey: M. cryptica, M. marksii, and M. suberosa (Figure 3.21). These have been previously recorded in south-western Australia and are therefore not discussed in this Chapter. However, they are included in the following key for the identification of Mycosphaerella species
present on E. globulus in WA. Additional foliar pathogens that were recorded on eucalypts in this study were Aulographina eucalypti, Coniochaeta sp., Harknessia spp., Microthyrium eucalypticola and Vermisporium sp. on E. globulus in south-western Australia; Dissoconium aciculare on Eucalyptus maidenii x E. grandis in Qld; and Phaeothyriolum microthyrioides on Corymbia calophylla in south-western Australia. These were not widespread causes of disease on eucalypts in this survey and are not described in this Chapter.

Figure 3.21 Cultures of Mycosphaerella spp. present in Western Australia grown on 2\% MEA in the dark. M. cryptica (a), M. gregaria (b), M. lateralis (c), M. marksii (d), M. mexicana (e), M. nubilosa (f), M. parva (g), M. suberosa (h).

Germination patterns described in the following key refer to the typical pattern seen after 24 h on 2% MEA at 20°, and reference letter where given, is according to the scheme of Crous (1998). Cultural feature such as surface colour, pigment formation and anamorph formed refer to growth on 2% MEA after 2 months under nuv. Growth rates refer to growth rate on 20 ml of 2% MEA in 90 mm plates at 25°.
3.4 Key to Mycosphaerella species occurring on Eucalyptus globulus in
Western Australia
1 Lesions corky, more prominent on one side of the leaf than the other; ascomata in concentric rings2
Lesions not corky, not more prominent on one side of the leaf than the other; ascomata not in concentric
rings 5
2(1) Ascospore germination from each end parallel to the long axis of the spore, spores becoming constricted at the median septum, not verruculose, not darkening or distorting, type C; cultures fast growing (40 mm month ${ }^{-1}$); Phaeophleospora anamorph
ambiphylla
Ascospore germination parallel or perpendicular long axis from one or both ends, constricting at the median septum, ascospores and the adjacent germ tube cells becoming darker and verruculose, slow growing (<20 mm month ${ }^{-1}$)... 3
3(2) Ascospores (6-) 8-9 (-11) $\mu \mathrm{m}$; germination from one end perpendicular to the long axis of the spore, sometimes both ends, spores distorting, ascospores and the adjacent germ tube cells becoming slightly darker and verruculose, type N or L
Ascospores (11) 12-18 (20) $\mu \mathrm{m}$; germination from one or both ends, ascospores distorting or constricting at the median septum, ascospores and the adjacent germ tube cells becoming markedly dark and verruculose, type E or H...
3.4 Key to Mycosphaerella species occurring on Eucalyptus globulus inWestern Australia
4(3) Ascospores (11-) 13-15 (-16) $\mu \mathrm{m}$; ascospore germination from several germ tubes, ascospores becoming markedly distorted; cultures very slow growing ($<5 \mathrm{~mm}$ month ${ }^{-1}$); culture surface black; mycelia raised in folded mounds and also deeply embedding into and distorting the agar suberosa
Ascospores (15-) 17-18 (-20) $\mu \mathrm{m}$; ascospore germination from each end parallel to the long axis of the spore, ascospores becoming constricted at the median septum but not markedly distorted; cultures slow growing (<18 mm month $^{-1}$); culture surface dark olivaceous grey; mycelia not raised and folding, not deeply embedding or distorting the agar. mexicana
5(1) Ascomata amphigenous or epiphyllous 6
Ascomata hypophyllous 15
6(5) Ascomata amphigenous 7
Ascomata epiphyllous 13
7(6) Ascomata densely distributed over the lesion; ascospore germination from one end, perpendicular to the long axis of the spore, not distorting or constricting, type A ; in culture forms red-brown diffusible pigment; Colletogloeopsis anamorph cryptica
Ascomata not densely distributed over the lesion; ascospore germination parallel or perpendicular, not type A; not producing a red- brown diffusible pigment on MEA; not forming a Colletogloeopsis anamorph on MEA 8

3.4 Key to Mycosphaerella species occurring on Eucalyptus globulus in Western Australia

8(7) Ascospore germination parallel or perpendicular, ascospores becoming dark and verruculose, constricted at the median septum or distorted9

Ascospore germination parallel to the long axis of
the spore, not becoming dark or verruculose,
slightly constricted at the median septum but
not distorted 10

9(8) Ascospores (6-) 8-9 (-11) $\mu \mathrm{m}$; germination from one end perpendicular to the long axis of the spore, sometimes both ends; ascospores distorting, spores and adjacent germ tube cells becoming slightly darker and verruculose, type N or L

Ascospores (15-) 17-18 (-20) $\mu \mathrm{m}$; ascospore germination from each end parallel to the long axis of the spore, ascospores constricting at the median septum but not distorting, spores and adjacent germ tube cells becoming markedly darker and verruculose, type H.

10(8) Lesions often forming along leaf margins; ascomata aggregated in clumps of 3-10; cultures forming sclerotia \& red-pink patches on MEA..
Lesions may or may not form along leaf margins; ascomata not aggregated in clumps of 3-10; not forming sclerotia or red-pink patches on MEA..
11(10) Cultures fast growing (40 mm month $^{-1}$); culture surface olive grey; Phaeophleospora anamorph...
ambiphylla
Medium growth (15-30 mm month ${ }^{-1}$), culture surface pale olive brown or orange grey; not forming Phaeophleospora anamorph12

12(11) Culture surface pale olive brown; Dissoconium anamorph

Culture surface orange grey; no anamorph. \qquad

3.4 Key to Mycosphaerella species occurring on Eucalyptus globulus in Western Australia

13(6) Ascomata sparse (1-20 per lesion); ascospores (15) 17-18 (20) $\mu \mathrm{m}$, constricted at the median septum, slightly olivaceous and verruculose; ascospore germination from each end parallel to the long axis of the spore, ascospores and adjacent germ tubes becoming darker and more verruculose
mexicana
Ascomata not sparse (>20 per lesion); ascospores $<15 \mu \mathrm{~m}$, not constricted at the median septum, not pigmented or verruculose; ascospore germination from each end parallel to the long axis of the spore but not darkening or becoming verruculose14

14(13) Ascospores with an asymmetrical apical cell; on germination ascospores not becoming constricted at the median septum, not developing lateral branches; culture surface olivaceous grey; no anamorph
marksii
Ascospores with or without an asymmetrical
apical cell; on germination ascospores becoming constricted at the median septum and developing lateral branches; culture surface olivaceous grey; Dissoconium anamorph
lateralis
15(5) Ascospores (11) 12-14 (16) $\mu \mathrm{m}$; germination from each end parallel to the long axis of the ascospore, becoming constricted at the median septum, not becoming verruculose or distorted..
nubilosa
Ascospores (6) 8-9 (11) $\mu \mathrm{m}$; germination from one
end sometimes each end, perpendicular to the
long axis of the ascospore, becoming constricted
at the median septum, verruculose and
distorted..

3.5 DISCUSSION

This survey has identified two new species of Mycosphaerella (M. ambiphylla and M. aurantia) and extended the known geographic range of five other species (M. gregaria, M. lateralis, M. mexicana, M. nubilosa and M. parva). A new anamorph, Phaeophleospora ambiphylla, is described \& Linked to M. ambiphylla. All of the three previously described species of Mycosphaerella from south-western Australia (M. cryptica, M. marksii, M. suberosa) were also identified in the current survey. Thus, this study identified the presence of ten Mycosphaerella species associated with MLD in south-western Australia. The occurrence of two new species and five new disease records in WA is significant for the plantation-eucalypt industry worldwide. The finding of two new species brings with it the need to quantify the disease impact of these and previously recorded Mycosphaerella species on eucalypt plantations; and the extension of the range of five species has quarantine implications.

The appearance of two new Mycosphaerella species increases the number of Mycosphaerella species associated with eucalypts to 33 . This includes the 29 species recognised in Crous (1998) and the newly described M. vespa (Carnegie \& Keane 1998) and M. intermedia (Dick \& Dobbie 2001).
M. ambiphylla and M. aurantia were the only Mycosphaerella species present on some lesions, suggesting that they are primary pathogens. However, they frequently occurred in association with other Mycosphaerella species. The role of these new species in causing disease needs to be examined. Epidemiological and pathogenicity studies have been conducted on M. cryptica and M. nubilosa (Park 1988a, b), some limited infection work conducted on M. parva (Park \& Keane 1982) and M. vespa (Milgate et al. 2001), but not on any of the remaining 27 species occurring on eucalypts. Infection studies and pathogenicity tests need to be conducted with these little understood species in order to understand their role in the disease syndrome.

Quarantine issues are raised by the extension of the geographic range of M. gregaria, M. lateralis, M. mexicana, M. nubilosa and M. parva. Mycosphaerella nubilosa
is a major cause of MLD in eastern Australia and New Zealand and its occurrence in south-western Australia is of considerable concern. This pathogen was not found in the survey of Carnegie et al. (1997) and so the origin and impact of this species in south-western Australia should be examined.

The rapid appearance and spread of M. nubilosa in Western Australia, since the 1994 survey of Carnegie et al. (1997), is of great interest. It is unlikely that M. nubilosa would have been missed in their survey if it had been present at the current level. There are two alternative explanations for the rapid establishment of this pathogen since 1994. Firstly, M. nubilosa may be a recent introduction from eastern Australia, probably arriving with E. globulus seedlings or seed material. Alternatively, M. nubilosa may have already existed at low levels in the indigenous eucalypt community and only recently become apparent in response to the mass planting of E. globulus which is particularly susceptible to this pathogen. The impact of M nubilosa is considered in Chapter 4, and its origin is considered in Chapter 7 of the current thesis.

The origin of species formerly known only outside of Australia is of particular relevance. Mycosphaerella mexicana, isolated in this study, was previously known only from Mexico (Crous 1998). The known geographic range of other species of Mycosphaerella such as M. suberosa have also recently been extended, from South America (Crous et al. 1993, Crous 1998) and Indonesia (Crous \& Wingfield 1997b), to now include south-western Australia (Carnegie et al. 1997). The biogeography of these and many other species occurring on eucalypts is not well known. It may be that these species occur on a range of hosts scattered across many continents. When eucalypts are established in new areas, inoculum on host trees already present in these areas may then infect these newly established trees. Alternatively, inoculum may travel with eucalypt seed or seedlings into the new areas of establishment. A third, less likely, alternative is that spores are able to travel vast distances in wind currents from their centre of origin and infect hosts where they occur in new areas. It is important to determine how these pathogens are spreading in order to inform quarantine policy decisions.

The impact of the non-Mycosphaerella foliar pathogens that were recorded on eucalypts in this study needs to be monitored. Particular attention should be paid to Aulographina eucalypti, which has previously reached epidemic levels in eastern Australia (Carnegie 2000), defoliating E. nitens in Victoria (Neuman \& Marks 1976) and E. obliqua (Palzer 1978 in Carnegie 2000). In the first of these examples a Harknessia sp. was also involved. Of the remaining species, Coniochaeta and Dissoconium aciculare have not previously been recorded from eucalypt foliage, although C. ligniaria has been recorded from E. pellita seeds (Yuan et al. 1997). Whereas, D. aciculare has been recorded from a range of non-eucalypt host plants, in association with powdery mildews (Erysiphaceae) which Dissoconium is thought to parasitise (Hoog, Oorschot and Hijwegen 1983, Hijwegen \& Buchenauer 1984). The ability of this and the other Dissoconium species (Mycosphaerella lateralis) to parasitise MLD causing species such as M. cryptica and M. nubilosa, is a future avenue of research.

Microthyrium eucalypticola, Vermisporium sp. and Phaeothyriolum microthyrioides are biotrophic pathogens generally regarded as having a minor impact on their host (Park et al. 2000).

The distribution of different Mycosphaerella species may be determined through more extensive disease surveys on eucalypts and adjacent myrtaceous hosts in areas where plantations occur. The centre of origin of a given Mycosphaerella species may be determined from population level studies using molecular markers. Work comparing the population of M. nubilosa in south-western Australia with that in eastern Australia is reported in Chapter 7. Further work of this nature needs to be made to investigate the likely origin of other Mycosphaerella species recently isolated in south-western Australia and elsewhere.

Chapter 4

Biogeography of Mycosphaerella spp. in south-western Australia

Chapter 4 Biogeography of Mycosphaerella spp. in south-western Australia

4.1 Introduction

There are 33 Mycosphaerella species reported as parasites of eucalypts (Chapter 3). The three most important disease causing species (M. cryptica, M. juvenis, M. nubilosa) are well studied in terms of their host range, epidemiology and global distribution (Carnegie et al. 1998, Crous 1998, Park 1988a, Park et al. 2000). However, comprehensive biogeographical investigations into the complex of species causing Mycosphaerella leaf disease (MLD) on a regional basis are lacking. Detailed assessments that have been made were restricted to single plantations (Carnegie 2000) or were unsupported generalisations about regional occurrence of pathogens (Crous 1998, Dick 1982, Dick 1990, Dick \& Gadgil 1983, Park 1984). The occurrence, distribution and relative impact of the many different species of Mycosphaerella that contribute to MLD is not well documented in terms of the composition of species occurring within a plantation, on a leaf or a single lesion.

Worldwide, the main focus of research into MLD has been on the epidemiology of the three major disease causing species. These investigations have been restricted to a few individual plantations either in south-eastern Australia (Carnegie et al. 1998, Park 1988a, Park \& Keane 1987), southern Africa (Crous 1998, Lundquist \& Purnell 1987) or New Zealand (Beresford 1978, Cheah 1977). In southern Africa, M. juvenis (misidentified as M. nubilosa) is the major disease causing species (Crous \& Wingfield 1996) and epidemiological data is available for this (Lundquist \& Purnell 1987). Although a comprehensive inventory of the 10 species occurring in South Africa, providing taxonomic descriptions and species distribution has been published (Crous \& Wingfield 1996), there are no studies available on the fine scale distribution and importance of those species. Similarly, in New Zealand the epidemiology of M. cryptica (misidentified as M. nubilosa) has been
investigated in detail at two sites (Beresford 1978, Cheah 1977). Although there are taxonomic descriptions that include broad scale distributions of the three predominantly occurring Mycosphaerella species in New Zealand (Dick 1990) there are no quantitative data of the fine-scale distribution and impact of these species on eucalypt plantations in New Zealand.

At the time of the present study, the recorded distribution of the eleven species of Mycosphaerella in Australia was as follows (Figure 4.1): M. cryptica, M. marksii occurred throughout southern Australia, M. tasmaniensis occurred only in Tasmania, M. gregaria, M. nubilosa, M. parva, M. suttoniae, M. swartii, M. vespa only in south-eastern Australia and M. suberosa only in south-western Australia (Park et al. 2000) (Figure 4.1). Studies in Australia have been largely restricted to Victoria and New South Wales (Carnegie et al. 1998, Park 1988a, Park \& Keane 1982a, Park \& Keane 1982b, Park \& Keane 1982c, Park et al. 2000) with only recent publications reflecting the situation in Tasmania (Milgate et al. 2001) and Western Australia (Chapter 3) (Carnegie et al. 1997). These more recent publications reflect the increasing importance and rapid expansion of the plantation eucalypt industry in these regions. A comprehensive study is required to determine the level of disease occurring across the E. globulus estate in Western Australia. This needs to identify the Mycosphaerella species, their host range, leaf phase occurrence and geographical distribution.

Aims of this study

The aims of this study were threefold. Firstly, to compare the host range and impact of different Mycosphaerella species, identified in Chapter 3, on the major forestry eucalypt species (E. globulus E. marginata, E. diversicolor, and Corymbia calophylla) in south-western Australia. Secondly, to establish whether there was a different composition in Mycosphaerella species present on juvenile and adult leaf phases of E. globulus. Thirdly, to ascertain the geographic range of Mycosphaerella species occurring in plantations of E. globulus, in south western Australia.

Figure 4.1 Distribution of Mycosphaerella species parasitising eucalypts in Australia prior to Jan 2000.

4.2 Materials and Methods

4.2.1 Experimental design

Surveys were conducted in order to satisfy the three aims of this study. Firstly, geographically dispersed E. globulus, E. marginata, and E. diversicolor, sites were selected and surveyed. Disease incidence and severity was rated in two 100 m transects at each E. globulus, and one 200 m transect at each native forest, location. Diseased leaves were randomly collected from ten trees at each site, returned to the laboratory for disease assessment and pathogen isolations. The \% composition of each MLD symptom category (Chapter 3.3) was assessed for each leaf. The causative organisms were then isolated and identified from these leaves. Statistical analyses were conducted to determine if there were significant differences in the host preferences, leaf stage preference and geographic locations of each of the Mycosphaerella species identified.

4.2.2 Site selection

The locations of E. globulus plantation and native eucalypt forest sites, were selected in the following manner. A map of south-western Australia was divided into 6 regions based on evaporation and rainfall isohyets (Figure 4.2). Each of these regions was then further divided into $400 \mathrm{~km}^{2}$ grids. Then, where possible, a 2-3 year old E. globulus and a 1-4 year old E. marginata or E. diversicolor location was randomly selected from within each grid. Thus, the full range of environmental conditions under which forestry eucalypts growing in this area, was represented. A total of 33 E. globulus plantations, 22 E. diversicolor locations and 25 E. marginata locations were surveyed (Figure 4.2). Most native forest sites were mixed stands, and where C. calophylla was present, this species was also rated and sampled at the rate of 10 trees per location. Diseased leaf material from other eucalypt species (Eucalytus jacksonii) that had symptoms of MLD, were also opportunistically collected and the causative organism isolated.

Figure 4.2 Locations of Eucalyptus globulus plantations, Eucalyptus diversicolor and Eucalyptus marginata forest sites surveyed for incidence and severity of MLD in south-western Australia. Eucalyptus globulus plantations, 1, 3-8, 20-25, 37-43, 48-58, 70-71; Eucalyptus diversicolor forest, 9-11, 26-30, 44-45, 50-61; and Eucalyptus marginata forest, 2, 12-19, 31-36, 46-47, 62-69. Mean annual rainfall isohyets 600, 900, 1200 mm indicated.

4.2.3 Survey and transects

At each E. globulus location two transects were made. Transects were randomly chosen at each plantation. Each transect was initiated at the fifth tree in from the plantation boundary, in order to minimise potential perimeter effects. Every 10th tree was rated and sampled from each transect of 50 trees.

At each native forest location, a single transect was made after walking 5 m into the canopy area. Each transect was made into the forest, perpendicular to the stand boundary. Every ten metres, the nearest sapling was rated and diseased leaf material collected, until a total of ten trees were assessed for each forestry species present.

For both plantation and native forests, trees were rated and sampled as follows. Incidence of MLD was recorded for the whole tree as either present or absent. Severity of MLD was assessed on a randomly chosen branch at a height of 1.5 m as described in Chapter 2.1. Where present, five diseased juvenile phase and five diseased adult phase leaves were collected randomly from each sample tree, placed in plastic bags, then returned to the laboratory where they were stored at 4 ${ }^{\circ} \mathrm{C}$ until being processed (4.2.4).

At all sites, general observations were made on the overall health of the stand. These included symptoms of nutritional deficiency and insect attack as well as other disease symptoms such as stem canker and Harknessia leaf disease.

4.2.4 Isolation and identification

Isolation and identification of Mycosphaerella species were made from lesions that were dissected from the leaves collected from each tree sampled. Single ascospore isolations were made onto 2% MEA according to a method modified from Crous (1998). Briefly, lesions were soaked for 2 h in sterile water, dried with paper towel, and attached with double sided adhesive tape to the lid of Petri-plates containing 2% MEA. The leaf surface upon which the ascomata occurred was directed towards the media. Where ascomata were amphigenous, then the lesion was cut in two and the adaxial side of one half and the abaxial side of the other half of the lesion, was directed towards the medium. The plates were inverted in order to reduce contamination from phyllosphere fungi that are unable to discharge spores forcibly, and incubated for 24-48 h at 24° in the dark. Ascospore germination patterns were recorded, single ascospore cultures established and fungi identified as described in Chapter 3. The species present on each of five diseased juvenile (and where present, five adult) leaves were recorded. Also, the percentages of necrotic area due to each species, was recorded for the leaves collected. This assessment was made according to the lesion-type's described in the Key in Chapter 3 and then compared to the species identification based on the complete set of morphological data.

4.2.5 Statistical analysis

Prior to analysis, data for parametric tests were screened for assumptions of homoscedasticity, normality, non-correlations of means and variances and presence of outliers (Tabachnick \& Fidell 1996). Where data did not fit these assumptions, they were transformed using accepted functions (Tabachnick \& Fidell 1996). Where the transformed data did not fit the above assumptions then both parametric and non-parametric statistical analyses were conducted. Host range data (4.3.1) was analysed via a χ^{2} statistic; leaf phase and leaf surface data (4.3.2) via ANOVA and the Mann-Whitney U test (as some assumptions required for ANOVA were not met); geographic difference in disease intensity (4.3.3) was compared via ANOVA and Kruskal-Wallis ANOVA by ranks (as some assumptions of ANOVA were violated).

4.3 Results

4.3.1 Host range of MLD species on forestry eucalypts in WA

MLD occurred on E. diversicolor, E. globulus and E. marginata, but not on C. calophylla. Of 840 trees assessed, MLD was present on 99% of E. globulus, 67% of E. diversicolor, 35% of E. marginata and 0% of C. calophylla trees (Table 4.1). Of all sites examined, 100% of E. globulus plantations, 100% of E. diversicolor locations and 80% of E. marginata locations were affected by MLD (Table 4.1). The level of disease incidence is significantly different between these host species ($\mathrm{p}<0.01$, Table 4.1).

Table 4.1 Proportion of eucalypt species locations at which MLD was present and statistical significance of difference. (Pearson Chi-square: 508, df=3, p<0.001)

Host species	\% of sites affected	\% of trees affected
Corymbia calophylla	0	0
Eucalyptus diversicolor	100	67
Eucalyptus globulus	100	99
Eucalyptus marginata	80	35

Two previously undescribed Mycosphaerella species were isolated in the course of the current Chapter. Full taxonomic descriptions of these species are not included in this thesis, but they were provisionally designated as Mycosphaerella kalima nom. prov. and Mycosphaerella kempii nom. prov. The first of these, M. kalima nom. prov. was found at one location near Esperance and is morphologically similar to M. marksii in most respects except that it forms a flatter mycelial growth in culture and a brown pigment on MEA. This has since been sequenced and found conspecific with M. marksii. The second of these, M. kempii nom. prov. is similar to M. mexicana, except that it forms larger ascospores and a very strong red diffusible pigment on MEA. Further work is required on the taxonomy of M. kempii nom. prov.
M. cryptica was isolated from E. diversicolor, E. globulus, E. marginata and E. jacksonia. The remaining 10 Mycosphaerella species (including the two provisionally new species) were only isolated from E. globulus.

4.3.2 Leaf phase preference of MLD species on E. globulus

ANOVA comparison of mean proportion of species occurrence on adult or juvenile foliage indicates that M. cryptica occurred significantly ($\mathrm{p}<0.01$) more often on diseased adult leaves than on diseased juvenile leaves (Figure 4.3). M. nubilosa, M. parva and M. marksii occurred significantly ($\mathrm{p}<0.01$) more often on
juvenile than on adult foliage (Figure 4.3). There was no significant difference in the leaf phase preference of the remaining species. M. cryptica was isolated from 38% of trees with diseased adult canopy and 15% of trees with diseased juvenile foliage, whereas, M. nubilosa was isolated from less than 1% of diseased adult foliar samples and 20% of diseased juvenile canopy trees. Both M. marksii and M. parva were isolated from 9% of diseased juvenile foliage trees, and from 3% and less than 1%, respectively, of diseased adult foliage trees (Figure 4.3). More than one species was frequently isolated from a single lesion, leaf and diseased canopy area of a tree. In some instances no Mycosphaerella species were isolated from the diseased canopy of a tree.

Non-parametric comparisons of leaf phase occurrence (Table 4.2) supported the parametric statistical findings. The Mann-Whitney U test indicated that M. cryptica occurred significantly ($\mathrm{p}<0.01$) more frequently on diseased adult than on diseased juvenile foliage (Table 4.2), whereas, M. nubilosa occurred significantly more often on juvenile foliage ($\mathrm{p}<0.01$).

Figure 4.3 Comparison of the leaf phase preference amongst 12 Mycosphaerella species on the basis of the mean percentage of diseased leaves from which each species was isolated. $\mathrm{P}<0.01$. Vertical bars denote 0.95 confidence intervals of the mean.

Table 4.2 Mann-Whitney U Test comparing occurrence of different Mycosphaerella species on adult and juvenile leaf phase of diseased Eucalyptus globulus.

| Species | Adult Rank
 Sum | Juvenile
 Rank Sum | \mathbf{U} | \mathbf{Z} | p-level | Valid N |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| M. ambiphylla | 25404 | 133925 | 18965 | 1.00 | 0.31 | 85 |
| M. aurantia | 22865 | 136465 | 19210 | -0.83 | 0.41 | 85 |
| M. cryptica | 32242 | 127087 | 11647 | 6.18 | $\mathbf{0 . 0 0}$ | 84 |
| M. gregaria | 21966 | 137364 | 18396 | -1.28 | 0.20 | 84 |
| M. lateralis | 22932 | 136398 | 19362 | -0.58 | 0.56 | 84 |
| M. marksii | 21291 | 138039 | 17721 | -1.77 | 0.077 | 84 |
| M. mexicana | 23542 | 135787 | 19972 | -0.14 | 0.9 | 84 |
| M. nubilosa | 15927 | 143402 | 12357 | -5.66 | $\mathbf{0 . 0 0}$ | 84 |
| M. parva | 20133 | 139197 | 16563 | -2.61 | $\mathbf{0 . 0 0 9}$ | 84 |
| M. suberosa | 23834 | 135495 | 20055 | 0.07 | 0.94 | 84 |
| M. kalima | 23688 | 135642 | 20118 | -0.03 | 0.97 | 84 |
| M. kempii | 23688 | 135642 | 20118 | -0.03 | 0.97 | 84 |

Tests in bold are significant at $\mathbf{p}<0.01$

ANOVA comparison of mean rank of species occurrence on abaxial or adaxial foliage indicates that M. marksii ascomata occurred significantly ($\mathrm{p}<0.01$) more often on the adaxial than the abaxial surface of diseased leaves (Figure 4.4). M. nubilosa ascomata occurred significantly ($\mathrm{p}<0.01$) more often on the abaxial than the adaxial surface of diseased foliage (Figure 4.4). There was no significant difference in the leaf surface occurrence of the remaining species. M. cryptica was isolated from the adaxial leaf surface for 18% of diseased trees and similarly from 18% of trees from the abaxial leaf surface. M. nubilosa was the species most frequently isolated from the abaxial leaf surface (37% of trees), and aside from M. cryptica, M. marksii was most frequently isolated species from the adaxial leaf surface (15% of trees).

Non-parametric comparisons of ascomata leaf surface occurrence (Tables 4.4) supported the parametric statistical findings. The Mann-Whitney U test indicated that M. marksii ascomata occurred significantly ($\mathrm{p}<0.01$) more often on the adaxial surface of diseased leaves (Table 4.3), whereas, M. nubilosa ascomata occurred significantly $(\mathrm{p}<0.01)$ more often on the abaxial surface of diseased foliage (Table 4.3).

Table 4.3 Mann-Whitney U Test comparing the rank some of different Mycosphaerella species on the abaxial and adaxial surface of diseased Eucalyptus globulus leaves

Species	Adult Rank Sum	Juvenile Rank Sum	\mathbf{U}	\mathbf{Z}	p-level	Valid N
M. ambiphylla	79514	79816	39611	-0.08	0.94	282
M. aurantia	80360	78970	39067	0.36	0.72	282
M. cryptica	79132	80197	39229	-0.27	0.78	282
M. gregaria	79987	79343	39440	0.17	0.87	282
M. lateralis	79231	80099	39328	-0.22	0.82	282
M. marksii	92834	66496	26593	6.80	$\mathbf{0 . 0 0}$	282
M. mexicana	79947	79382	39479	0.14	0.88	282
M. nubilosa	52474	106856	12571	-14.000	$\mathbf{0 . 0 0}$	282
M. parva	78046	81284	38143	-0.84	0.40	282
M. suberosa	79527	79803	39624	-0.07	0.94	282
M. kalima	79806	79524	39621	0.07	0.94	282
M. kempii	79806	79524	39621	0.07	0.94	282

Tests marked in bold are significant at $\mathbf{p}<.01$

Figure 4.4 Comparison of the leaf surface occurrence of ascomata, amongst 12 Mycosphaerella species on the basis of the mean proportion of diseased leaves from which each species was isolated.

4.3.3 Geographic distribution of MLD impact and species composition of E.

 globulus plantations in south-western AustraliaANOVA amongst E. globulus trees indicated that there were significant differences in the mean severity ranking ($\log _{10}$ transformed) amongst plantations ($\mathrm{p}<0.01$). Sites: Gerner, Henwood, Thomas, Boorara and Darling View were the most severely affected, with mean MLD ratings of $8,8,7.9,7$ and 5.5 respectively
(Figure 4.5). At each of these sites MLD frequently caused 100% defoliation of the
trees juvenile foliage. Sites: Hamilton, Wren and Lamberti were the least affected, all having a mean MLD rating of 1 (Figure 4.5). Non parametric analysis (KruskalWallis ANOVA by ranks) supported the parametric analysis in showing a significant ($\mathrm{p}<0.01$) difference amongst sites in terms of MLD severity (Table 4.4). Gerner, Henwood and Thomas were the highest ranking (most severely effected) and Lamberti, Wren and Hamilton the lowest ranking (least severely effected) plantations.

Table 4.4 Kruskal-Wallis ANOVA by ranks comparing occurrence of different Mycosphaerella species on the abaxial and adaxial surface of diseased Eucalyptus globulus leaves (Kruskal-Wallis test: $\mathrm{H}(29, \mathrm{~N}=300)=228.8 ; \mathrm{p}<0.0005)$.

Plantation	Valid N	Sum of Ranks
Gerner	10	2825
Henwood	10	2825
Thomas	10	2805
Boorrarra	10	2695.5
Darling View	10	2338
Chelgiup	10	2297
Napier Creek	10	2228
Summerlea	10	1960.5
Channeybearup	10	1858.5
Range-Montanna	10	1763
Kemp	10	1652.5
Warrenella	10	1518
Dudijup	10	1518
Cobertup	10	1518
Chips	10	1465
Detri	10	1448.5
Kelora	10	1448.5
Callistemon	10	1417
StWherberg	10	1342.5
Reid	10	1256.5
Jindalee	10	1139
Kalima	10	1072
Woodrakkarra	10	1069.5
Shedley	10	1000
Murdoch	10	727
Bentink	10	528.5
Blight	10	459
Lamberti	10	325
Wren	10	325
Hamilton	10	325

Figure 4.5 Comparison of mean Mycosphaerella leaf disease severity ratings amongst Eucalyptus globulus plantations in south-western Australia. Nontransformed data. Vertical bars denote 0.95 confidence intervals of the mean. F (32, 297) $=42, \mathrm{p}<0.05$.

On the basis of mean severity rankings (Figure 4.5) each plantation was assigned a category of severe (>5), moderate ($2-5$) or low (<2) MLD damage and plotted on a map along with rainfall and evaporative demand (Figure 4.6). The more severely affected plantations are clustered in the Denmark to Manjimup region, in the over 1000 mm rainfall area.

The distribution of each of the Mycosphaerella species isolated in south-western Australia was mapped (Figure 4.7). The geographic impact of species in decreasing order of site frequency (in parentheses) was: M. cryptica (43), M. nubilosa (32), M. parva (23), M. marksii (20), M. gregaria (8), M. aurantia (6), M. mexicana (5), M. suberosa (4), M. lateralis (3), M. ambiphylla (1), M. kalima nom. prov. (1), M. kempii nom. prov. (1). However, when E. globulus plantations only are compared, then M. nubilosa is the most widespread Mycosphaerella species.

Other leaf disease fungi isolated in the current study were Aulographina eucalypti, Coniochaeta sp., Harknessia sp., Microthyrium eucalypticola and a Vermisporium sp. These were minor and caused disease at only a limited number of locations.

Figure 4.6 Geographic variation in the severity of Mycosphaerella leaf disease on Eucalyptus globulus plantations in south-western Australia.

Figure 4.7 Distribution of Mycosphaerella species isolated from eucalypts in southwestern Australia. M. ambiphylla (a); M. aurantia (b); M. cryptica (c); M. gregaria (d); M. kalima nom. prov. (e); M. lateralis (f); continued overleaf...

...Figure 4.7 (continued) Distribution of Mycosphaerella species isolated from eucalypts in south-western Australia. M. marksii (g); M. kempii nom. prov. (h); M. mexicana (i); M. nubilosa (j); M. parva (k); M. suberosa (l).

4.4 Discussion

This study has clearly identified that the most widespread and serious cause of MLD in south-western Australia is M. cryptica. This species occurred on three of the four important forestry eucalypt species in this region. In terms of the plantation estate of E. globulus, however, M. nubilosa was the most widespread pathogen. The current study indicates that MLD on E. globulus is a complex of several different species, whereas, on E. diversicolor and E. marginata it was caused exclusively by M. cryptica.

For the first time, the leaf phase and leaf surface occurrence of those Mycosphaerella species present in south-western Australia, has been quantitatively determined. Mycosphaerella cryptica occurred on both juvenile and adult phase foliage of E. globulus. This species was the major contributor to disease on adult leaves of E. globulus, whereas M. nubilosa was responsible for the majority of disease on juvenile foliage. M. nubilosa, previously only recorded on juvenile foliage (Park et al. 2000, Park \& Keane 1982a), was isolated from adult foliage on rare occasions in the current study. The other species that contributed to disease on adult leaves were M. marksii, M. ambiphylla, M. mexicana, M. parva, and M. suberosa. However, these were minor in comparison to M. cryptica. All species were present on juvenile phase leaves.

All except two species were equally likely to be isolated from the abaxial or adaxial leaf surface. M. marksii was isolated significantly more often from the adaxial surface and M. nubilosa from the abaxial surface. Therefore, the current study has quantitatively confirmed observations from previous studies (Park 1988b, Park et al. 2000). Although Park (1984) and Park \& Keane (1982a) indicated that M. nubilosa ascomata form predominantly on the abaxial leaf surface, this observation has not been quantified or confirmed as statistically significant till now.

Two provisionally new species, M. kalima nom. prov and M. kempii nom. prov., were isolated in the current work. These species occurred at only one location each
and did not appear to be significant contributors to MLD. Sequencing of the rDNA ITS region of Mycosphaerella kalima nom. prov has since shown this species to be M. marksii. Further work is required on the taxonomy of M. kempii nom. prov. to confirm its status as new a species.

MLD is widespread in E. globulus plantations throughout south-western Australia. The level of disease impact varies considerably between plantations, from a mean severity of 1.5% necrotic leaf area up to 100% defoliation of juvenile foliage across a plantation. Geographically, the most severely diseased plantations were clustered in the region between Manjimup and Walpole. It is likely that this is due to the higher level of rainfall of the region. These rainfall conditions are more conducive for leaf infection than the drier regions of the northern and the eastern range of the plantation estate. Also, the inoculum levels of M. cryptica are higher in the surrounding E. diversicolor forests of this region, than other more northern and eastern areas of E. marginata forest.

Further work on the biogeography of Mycosphaerella in south-western Australia should compare changes in species composition with season. Work by Carnegie and Ades (2002) found a change in the relative proportions of M. cryptica and M. nubilosa between spring summer and autumn in eastern Australia. Assessments late in the season may need to take account of defoliated leaves. Plantations that are more affected by more pathogenic species may be heavily defoliated than plantations with less pathogenic species.

Chapter 5

Molecular taxonomy of Mycosphaerella species on eucalypts

Chapter 5 Molecular taxonomy of Mycosphaerella species on eucalypts

5.1 Introduction

Historically, the taxonomy of Mycosphaerella has been based on a combination of morphological traits and on the underlying assumption of restricted host ranges of Mycosphaerella species (Barr 1972; Barr 1983; Sivanesan \& Shivas 2002).

There are more than 1800 species of Mycosphaerella described (Corlett 1991) from several hundred different host species (Corlett 1991) and the taxonomy of this genus is therefore largely host based. Although it is assumed that Mycosphaerella species are very host specific few cross-inoculation experiments have been conducted to verify this (Crous 1998, Sivanesan \& Shivas 2002). Thus, the size of this genus may be artificially inflated and some species described separately from different hosts, may in fact be conspecific. Sequencing of the ITS regions of the rDNA is emerging as a reliable tool for determining phylogenetic relatedness and consequently for differentiating species (Crous et al. 2000, Crous et al. 2001a, Crous et al. 1999, Crous, Kang \& Braun 2001b, Foster et al. 1993, Myburg, Wingfield \& Wingfield 1999). The ITS rDNA region of some of the more important Mycosphaerella species have been sequenced (Crous et al. 2001a, Crous et al. 2001b, Crous \& Mourichon 2002, Stewart et al. 1999), and these data used to test hypotheses concerning the phylogeny of Mycosphaerella. There is a need for more putative species to be sequenced in order to determine whether each of the 1800 described species of Mycosphaerella are in fact distinct species, and in order to resolve phylogenetic questions.

The aims of the present study were to:

1) determine the ITS sequence for all Mycosphaerella species occurring on eucalypts in south-western Australia and thereby verify the morphology based identification;
2) compare the ITS sequences of Mycosphaerella species from eucalypts in southwestern Australia to all other available sequences of Mycosphaerella species from eucalypts in order to determine their intra and inter-specific variation at this locus; and
3) investigate broader phylogenetic concepts: a) that host is a predictor of phylogenetic closeness; b) that anamorph state reflects phylogenetic closeness; and c) that speciation is occurring in geographically separated populations of some Mycosphaerella species.

5.2 Materials and Methods

5.2.1 Experimental design

Single spore isolates of Mycosphaerella were obtained from diseased eucalypts throughout Australia. These were identified morphologically. The DNA from at least three randomly selected isolates of each morphological species (Table 5.1) was extracted and the ITS region amplified and sequenced. These sequences were aligned and compared amongst each other to measure inter and intra-species variation. The sequences were further compared with other Mycosphaerella species on databases obtained from BLAST search (Table 5.1). Phylogenetic trees were constructed with the software package Phylogenetic Analysis using Parsimony (PAUP, v. 4.1b; Swofford 1998).

5.2.2 Isolation, identification, culture and harvest of fungi

Single spore isolates of Mycosphaerella species were obtained from lesions as described in Chapter 3.2.2. These were identified on morphological characters (Chapter 3.3) and maintained on 2\% MEA. Multiple hyphal fragments of three fungal isolates from each morphological species (Table 5.1), were inoculated into 80 ml of V-8 juice broth (Stewart et al. 1999) (100ml filtered V-8 juice (Campbell's), 5 g malt extract, $1 \mathrm{~g} \mathrm{KH} \mathrm{HO}_{4}, 1 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{2} \mathrm{HPO}_{4}$; made up to 1000 ml with distilled water and adjusted to pH 5.5). Flasks were incubated for $14-21$ days at $21^{\circ} \mathrm{C}$ after which the mycelia were harvested by filtering through Whatmans (number 5) filter paper. Mycelia were transferred with a sterile scraper to petri plate, frozen at -70° for 1 h and then freeze-dried. The lyophilised mycelia were stored in sterile 1.5 ml microfuge tubes (Eppendorph) at -20° until needed for DNA extraction.

Table 5.1 Cultures and sequence accession numbers of sequences compared in the current study. Isolates sequenced as part of the current study indicated by an asterisk (*). CBS = Culture collection Centraalbureau voor Schimmelcultures. CMW = culture collection Mike Wingfield, University of Pretoria, South Africa; R \& '98' prefix = Culture collection Aaron Maxwell, Murdoch University, Australia; STEU = Culture collection Stellenbosch University, South Africa.

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. africana	STEU794	AF173314	Eucalyptus	RSA	Unknown
M. allii-cepae		AB026162	Allium cepa M. ambiphylla	*R210	
E. globulus	?	CW Aust	Phaeophleospora		
M. ambiphylla	*R221		E. globulus	SW Aust	Phaeophleospora
M. ambiphylla	*R222		E. globulus	SW Aust	Phaeophleospora
M. ambiphylla	*R211		E. globulus	SW Aust	Phaeophleospora
M. arachidis		AF297224	Arachis hypogaea	?	Cercospora
M. arbuticola	CBS355.86	AF362063	Arbutus meziesii	?	Unknown
M. asterinoides		AF222850	Solonaceae	?	Unknown
M. aurantia	*R151		E. globulus	SW Aust	Unknown
M. aurantia	*R152		E. globulus	SW Aust	Unknown
M. berberidis	CBS342.52	AF362062	Berberis sp.	Pakistan	Unknown
M. bixae	STEU2554	AF362056	?	?	Unknown
M. brassicicola	CBS228.32	AF362052	Brassicaceae	?	Asteromella
M. brassicicola	IPO95510	AF297223	Brassica olarecea	Neth.	Asteromella
M. citri		AF181703	Citrus sinensis	?	Stenella
M. colombiensis	STEU1106	AF309612	E. urophylla	Colombia	Pseudocercospora
M. confusa	CBS256.35	AF362058	?	?	Pseudocercospora
M. cruenta	CBS462.75	AF362065	Vigna sp.	?	Pseudocercospora
M. cryptica	*R089		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	*R090		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	*R091		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	*R101		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	*R110		E. globulus	SW Aust	Colletogloeopsis

...Table 5.1 Cultures and sequence accession numbers of sequences compared in the current study.

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. cryptica	*R114		E. diversicolor	SW Aust	Colletogloeopsis
M. cryptica	*R115		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	*R118		E. delegatensis	Vic Aust	Colletogloeopsis
M. cryptica	*98125		E. grandis x	Qld, Aust	Colletogloeopsis
M. cryptica	*98191		E. globulus	SW Aust	Colletogloeopsis
M. cryptica		AY045494	Eucalyptus	NZ	Colletogloeopsis
M. cryptica		AY045495	Eucalyptus	SE Aust	Colletogloeopsis
M. cryptica		AY045496	Eucalyptus	Tas, Aust	Colletogloeopsis
M. cryptica		AY045498	Eucalyptus	SE Aust	Colletogloeopsis
M. cryptica	STEU936	AF309585	Eucalyptus	Australia	Colletogloeopsis
M. cryptica	CMW2732	AF309622	Eucalyptus	Chile	Colletogloeopsis
M. cryptica	CMW3279	AF309623	Eucalyptus	SE Aust	Colletogloeopsis
M. crystallina		AF222839	Eucalyptus	?	Pseudocercospora
M. dearnessii		AF260817	Pinus sp	Nth USA	Lecanosticta
M. dearnessii	STEU3391	AF362070	Pinus sp	?	Lecanosticta
M. ellipsoidea	STEU1225	AF173303	Eucalyptus	?	Uwebraunia
M. fijiensis		AF181705	Musas sp	Fiji	Paracercopora
M. flexuosa	CMW5224	AF309603	Eucalyptus	Colombia	Uwebraunia
M. fori	CMW9095	AF468869	Eucalyptus	RSA	Pseudocercospora
M. frageriae	STEU656	AF173312	Fragaria vesca	?	Ramularia
M. graminicola	STEU658	AF362068	Triticum	?	Septoria
M. graminicola		AJ300330	Triticum	?	Septoria
M. graminicola		MGU77363	Triticum	?	Septoria
M. grandis		AY045516	Eucalyptus	Australia	Unknown
M. gregaria	*R237		E. globulus	SW Aust	Unknown
M. gregaria	*R240		E. globulus	SW Aust	Unknown
M. heimii		AF222841	Eucalyptus	?	Pseudocercospora
M. heimioides		AF222842	Eucalyptus	?	Pseudocercospora
M. intermedia		AY045517	Eucalyptus	NZ	Unknown
M. intermedia		AY045518	Eucalyptus	NZ	Unknown
M. irregulariramosa		AF222843	Eucalyptus	?	Pseudocercospora
M. juvenis	CMW4937	AF309604	Eucalyptus	RSA	Uwebraunia
M. juvenis	STEU1005	AF173299	Eucalyptus	RSA	Uwebraunia
M. keniensis	STEU 1084	AF173300	E. grandis	Kenya	Unknown
M. latebrosa	CBS183.97	AF362051	Acer	?	Unknown
M. lateralis	*R257		E. globulus	SW Aust	Dissoconium
M. lateralis	*R258		E. globulus	SW Aust	Dissoconium
M. lateralis	*98133		E. maidenii	Qld, Aust	Dissoconium
M. lateralis	*98148		E. globulus	SW Aust	Dissoconium
M. lateralis	*98149		E. globulus	SW Aust	Dissoconium
M. lateralis	*98163		E. maidenii	Qld, Aust	Dissoconium
M. lateralis	STEU1532		?	RSA	Dissoconium
M. lateralis	STEU1535	AF173309	E. grandis x saligna	RSA	Dissoconium
M. lateralis	STEU825	AF309624	E. grandis x saligna	RSA	Dissoconium
M. lupini	STEU1661	AF362050	Humulus lupulus	?	Unknown
M. macrospora		AF297231	Iris gernanica	Nth USA	Cladosporium
M. marasasii	STEU348	AF309591	Syzygium	RSA	Stenella

...Table 5.1 Cultures and sequence accession numbers of sequences compared in the current study.

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. marksii	STEU935	AF173316	Eucalyptus	?	Unknown
M. marksii	STEU982		Eucalyptus	?	Unknown
M. marksii		AF309588	Eucalyptus	?	Unknown
M. marksii		AF468873	Eucalyptus	?	Unknown
M. marksii	*R234		E. globulus	SW Aust	Unknown
M. marksii	*R242		E. globulus	SW Aust	Unknown
M. marksii	*R243		E. globulus	SW Aust	Unknown
M. marksii	*R247		E. globulus	SW Aust	Unknown
M. mexicana	*R215		E. globulus	SW Aust	Unknown
M. mexicana	*R216		E. globulus	SW Aust	Unknown
M. mexicana	*R216Y		E. globulus	SW Aust	Unknown
M. mexicana	*SJ5		E. globulus	SW Aust	Unknown
M. molleriana	STEU784	AF309619	Eucalyptus	USA	Colletogloeopsis
M. molleriana	STEU1214		Eucalyptus		Colletogloeopsis
M. musicola		AF181706	Musa	?	Pseudocercospora
M. nubilosa	*R001		E. globulus	SW Aust	Unknown
M. nubilosa		AY045506	Eucalyptus	SE Aust	Unknown
M. nubilosa		AY045507	Eucalyptus	SE Aust	Unknown
M. nubilosa		AY045508	Eucalyptus	SE Aust	Unknown
M. nubilosa		AY045509	Eucalyptus	SE Aust	Unknown
M. nubilosa	*R002		E. globulus	SW Aust	Unknown
M. nubilosa	*R004		E. globulus	SW Aust	Unknown
M. nubilosa	*R051		E. globulus	SE Aust	Unknown
M. nubilosa	*R057		E. globulus	SE Aust	Unknown
M. nubilosa	*98-099		E. globulus	SW Aust	Unknown
M. nubilosa	*98-101		E. globulus	SW Aust	Unknown
M. nubilosa	CMW6211	AF449094	E. globulus	SE Aust	Unknown
M. nubilosa	CMW6210	AF449095	E. globulus	SE Aust	Unknown
M. nubilosa	CMW9000	AF449096	E. nitens	RSA	Unknown
M. nubilosa	CMW9001	AF449097	E. nitens	RSA	Unknown
M. nubilosa	CMW9002	AF449098	E. nitens	RSA	Unknown
M. nubilosa	CMW9003	AF449099	E. nitens	RSA	Unknown
M. nubilosa	CMW3282	AF309618	E. globulus	SE Aust	Unknown
M. nubilosa	106NZ	AY045505	Eucalyptus	NZ	Unknown
M. parkii	STEU353	AF173311	E. saligna	Brazil	Stenella
M. parva	*R248		E. globulus	SW Aust	Unknown
M. parva	*R249		E. globulus	SW Aust	Unknown
M. parva	*R250		E. globulus	SW Aust	Unknown
M. parva	*R251		E. globulus	SW Aust	Unknown
M. pini		AF013227	Pinus nigra	Nth USA	Dothistroma
M. populorum		AF243392	Populus balsonifera		Unknown

...Table 5.1 Cultures and sequence accession numbers of sequences compared in the current study.

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. recutita	CBS287.49	AF362059	Festuca rubra		Unknown
M. rubella	CBS288.49	AF362060	Angellica sylvestris M. suberosa		Unknown
M. suttoniae		AY045503	Eucalyptus	Indonesia	Unknown
M. tasmaniensis	STEU1346	AF309621	Eucalyptus	Inaeophleospora	
M. tassiana		AF310107	E. nitens	Tas, Aust	Mycovellosiella
M. vespa	CBS111.82	AJ238469	Polyphagous		Cladosporium
M. vespa		AY045497	Eucalyptus		Coniothyrium
M. vespa		AY045498	Eucalyptus		Coniothyrium
M. walkeri	STEU2769	AF3095499	Eucalyptus		Coniothyrium
Dissoconium aciculare	*R262		Eucalyptus	Qld, Aust	Sonderhenia
Botryosphaeria rhodina	outgroup	AF243401	E. maidenii	?	Qlanium
Mycovellosiella eucalypti	STEU1457	AF309617	Eucalyptus	Brazil	Mycovellosiella
Dothidea insculpta	outgroup	AF027764	?		-

5.2.3 DNA extraction

Microfuge tubes containing lyophilised mycelia were immersed in liquid nitrogen and the mycelia then ground into fine powder with an electric pellet mixer (Kontess). Extraction buffer ($200 \mu \mathrm{l} ; 200 \mathrm{mmol}$ Tris $\mathrm{HCl} \mathrm{pH} 8.5,250 \mathrm{mmol} \mathrm{NaCl}, 25$ mmol EDTA and 0.5% SDS; (Raeder \& Broda 1985) was added to each microfuge tube containing up to $200 \mu \mathrm{l}$ volume of ground mycelia, and mixed with the homogenate by gentle inversion. This solution was incubated for $1-2 \mathrm{~h}$ at 65° and then centrifuged at $13200 g$ (Beckman Microfuge E) for 10 minutes The resulting supernatant was transferred into a microfuge tube containing $600 \mu \mathrm{NaI}$ solution and $7 \mu \mathrm{l}$ of silica slurry. The solution was briefly vortexed, placed on ice for 10 min in order to precipitate the DNA onto the silica matrix under conditions of high salt and low temperature. This was then centrifuged for 10 sec and the resulting supernatant removed. The pellet was washed twice; firstly, with $600 \mu \mathrm{l}$ of wash solution (50% ethanol, EDTA, Tris buffer; Bresawash) and secondly, with $600 \mu \mathrm{l}$ of 100% ethanol. Each wash involved briefly vortexing the solution, followed by centrifugation ($13200 g$ for 5 sec) with the subsequent removal of the supernatant.

After aspiration, $25 \mu \mathrm{l}$ of Tris EDTA (TE) buffer was added. The pellet was resuspended and incubated for 10 min at 50° in order to dissolve the DNA, under conditions of high temperature and low salt, into the TE buffer. The solution was centrifuged for 10 min at 13200 g to pellet the silica matrix. Supernatant containing the genomic DNA was transferred into a sterile 0.5 ml microfuge tube to which $3 \mu \mathrm{l}$ of $1 \mathrm{mg} \mathrm{ml}^{-1}$ RNAse (Boehringer Mannheim) was added and incubated for $60-90 \mathrm{~min}$ at 37° in order to digest any RNA present. The DNA concentration was determined using a Hoefer DyNA Quant 200 fluorometer according to the manufacturers instructions. The DNA was then stored at -20° until required for Polymerase Chain Reaction (PCR) amplifications.

5.2.4 DNA Amplification

The ITS1 and ITS 2 regions of the rDNA were amplified using the primers ITS1f and ITS 4 (Gardes \& Bruns 1993, White et al. 1990). Amplification solutions ($50 \mu \mathrm{l}$) were made aseptically in sterile 200μ l microfuge tubes, containing; 5 ng genomic DNA, $0.2 \mu \mathrm{M}$ primer, $2.5 \mathrm{mM} \mathrm{MgCl}_{2}$ (Biotech International), 2.5 U Tth plus polymerase (Biotech International), 1x polymerisation buffer (Biotech International) equivalent to 67 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.8,16.6 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 0.45 \%$ Triton X-100, $0.2 \mathrm{mg} \mathrm{ml}^{-1}$ gelatin, 0.2 mM dNTPs and sterile, deionised water (Astar) to make up the reaction volume of 50μ l. These solutions were vortexed for $1-2 \mathrm{~s}$, then centrifuged for 5 s at 13200 g . The PCR's were performed (Applied Biosystems Gene Amp 9600 thermocycler) according to the following parameters: Initial denaturing step of 96° for 2 min ; then 30 cycles of $94^{\circ}(30 \mathrm{~s})$ denaturing, 55 ${ }^{\circ}$ (30 s) annealing, $72^{\circ}(2 \mathrm{~min})$ extension; this was followed by a 7 min extension cycle at 72°, then a hold cycle of 10°. Products of the PCR reaction were stored at 4° prior to cleaning and sequencing.

The PCR products were electrophoresed on a 1\% agarose gel (in TAE buffer) at 90 V for 40 minutes. The size of the DNA bands was determined against a λ DNA marker (restricted with Hindiii \& EcoRi; Fisher Biotec) as the molecular weight standard. DNA fragments were visualised under UV following gel staining with ethidium bromide ($0.5 \mu \mathrm{~g} / \mathrm{ml}$) for 20 to 30 min and de-staining in 1x TAE buffer
for 10 minutes Where DNA bands were present, the remaining PCR product was purified using the silica binding method as outlined for the DNA extraction method described above, with the following modifications: The PCR product was not incubated in extraction buffer; the volumes of NaI salt, wash, and ethanol solutions were reduced from 600 to $200 \mu \mathrm{l}$; and the RNAse digestion step was omitted. The concentration of DNA in the clean PCR product was determined by comparing band intensity against a known amount of marker DNA, visualised on a 1% agarose gel stained with ethidium bromide as described previously. The DNA concentrations determined using this method, were verified by measuring a sub-set of PCR products fluorometrically (Hoefer DyNA Quant 200).

5.2.5 DNA sequencing

Double stranded ITS fragments were sequenced from each end using an ABI PRISM ${ }^{\text {TM }}$ Rhodamine Dye Terminator Ready Reaction Kit in 10μ sequence reactions according to the manufacturers instructions. Between 80 and 160 ng of purified PCR product and 1.6 pmol of primer (either ITS 1, ITS 2, ITS 3, ITS 4; (White et al. 1990) was added to each reaction. Sequencing reactions were performed according to the following parameters (Applied Biosystems GeneAmp 9600 thermocycler): Initial denaturing step of 96° for 2 min ; then 25 cycles of 94° (30 s) denaturing, $50^{\circ}(5 \mathrm{~s})$ annealing, $60^{\circ}(4$ minutes) extension; then a hold cycle of 10° until collected and precipitated. The products of the sequence reaction were ethanol precipitated. Briefly, sterile 0.5 ml microfuge tubes were prepared with 24 $\mu \mathrm{l}$ of 100% ethanol and $1 \mu \mathrm{l}$ of Sodium Acetate (10%; pH 5.2). The sequence product was added, then vortexed for 5 s and placed on ice for 20 minutes to precipitate the DNA. The tubes were centrifuged at 13200 g for 30 min in order to pellet the DNA, then the supernatant removed. The DNA pellet was washed in $250 \mu \mathrm{l}$ of 70% ethanol, centrifuged at 13200 g for 5 min , then the supernatant removed. The tubes were blotted dry, then dried under vacuum in a rotor speedvac for 10 minutes

Sequence products were electrophoresed on 5\% acrylamide gels, which were then washed for 10 minutes with 1000 ml of 20% ethanol, stained and exposed to

Kodak SB film. The DNA sequence data was read by an electronic digitizer and aligned by LaserGene version 1.60dz using the CLUSTAR V method. The sequencing of the DNA template was conducted using the software package, Sequencase v 2.0.

5.2.6 Phylogenetic analysis

The forward and reverse sequence data for each isolate were edited and aligned with SEQUED (v1.04, PE Applied Biosystems, Foster City, California) or GeneTool (Double Twist Inc., 2000) with manual adjustments where necessary. Additional Mycosphaerella sequence data, including that of Mycovellosiella eucalypti, which is presumed to have a Mycosphaerella teleomorph, were downloaded from GenBank, via a BLAST search, and saved as FASTA format in the text module of GeneTool. Sequence data from all of the different species were aligned in Clustal W, saved as Phylip format and optimised manually. Aligned sequence data were imported into PAUP (v. 4.1b; Swofford 1998) and phylogenetic trees constructed using the heuristic search option. The initial set of trees was obtained by the 'simple' option for the stepwise addition of taxa and these trees evaluated via the tree bisection reconstruction (TBR) method of branch swapping. Bootstap analysis (1000 replications) was used to evaluate the confidence of the branch nodes of the trees (Felsenstein 1985). Botryosphaeria rhodina and Dothidea insculpta were chosen as outgroups on the basis that they are sister taxa of differing degrees of affinity to Mycosphaerella, within the Dothideales. In addition, a neighbour joining tree was derived in PAUP for each analysis.

Separate analyses were performed in order to resolve: a) intra-specific variation; b) inter-specific variation; c) anamorph and host based clades. Firstly, the intraspecies diversity of M. cryptica and M. nubilosa was compared amongst isolates of each species. Secondly, the phylogenetic structure of Mycosphaerella species on eucalypts in south-western Australia was investigated through a comparison of all isolates sequenced from this region with other species occurring on eucalypts elsewhere. Thirdly, Mycosphaerella species isolated off eucalypts from southwestern Australia were compared with species from non-eucalypt hosts in order to resolve the phylogenetic issues. The analysis included all isolates of all species
from the current study, and all available isolates form the GenBank database. However, this analysis was prohibitively slow (not close to completion even after 1 week) and so two additional analyses were conducted. One that reduced the 'max trees' setting to 100 and the bootstrap replication to 100; and another that included a subset of isolates but retained the original higher bootstrap setting of 1000. The subset of isolates chosen for the final analysis included only one isolate from each species, and where species differed by less than 3 nucleotides (nt), only one of these species was retained for the analysis. The topology of both trees was similar, so only the simpler, but more stringent 1000 bootstrap version was retained in the results section of this thesis.

5.3 Results

5.3.1 Intra specific variation

ITS sequences of Mycosphaerella species from the present study show little intraspecies variation (Table 5.2). The differences ranged from as low as 0 nucleotide (nt) amongst ten M. cryptica isolates from the diverse hosts E. globulus, E. grandis, E. diversicolor and E. delegatensis in eastern, southern and south-western Australia and up to a 4 nt difference between the eastern and south-western Australian isolates of M. lateralis. There was 1 nt intra-specific variation within M. nubilosa and 1 nt intra-specific variation within M. marksii; 3 nt differences within M. parva; and 0 nt differences within the remaining species sequenced. The M. lateralis isolates from south-western Australia all shared the same sequence, and those from eastern Australia were different from the south-western population.

There was a substantial increase in intra-specific variation when sequences on GenBank were added to the analysis (Table 5.2). The greatest increase in sequence variation from this inclusion occurs for M. cryptica, for which base substitutions and indels result in a 60 nt difference between isolates. The increase in difference between M. cryptica isolates is mostly due to three isolates. One from eastern Australia (AY045496), which has a 20 nt deletion three N's and several base substitutions; another isolated off Eucalyptus urophylla from Chile (AF309622), which has three, 1-3 nt insertions and several base substitutions; and an isolate
from south-eastern Australia (AF309623), which was poorly edited on GenBank. The latter of these sequences contained two complete repeats of the ITS region, that were different from each other, on GenBank. When these three sequences were removed from the comparison, then only 2 nt differences remained within M. cryptica, a transition mutation at position 461 and a single base deletion of nucleotide 171 (Appendix 5.1).

Variation of M. nubilosa increased from 1nt to 5 nt differences as a result of four substitutions that occur predominantly in the South African population isolated from E. nitens. The inclusion of M. grandis with M. parva sequences increased the number of nt difference from 3 to 4 for this species complex. The sequences of M. molleriana and M. vespa were added to the analysis of the sequence variation in M. ambiphylla, as these two former species, although morphologically distinct from M. ambiphylla, share considerable sequence homology (Figures 5.3-5.4; Tables 5.2-5.3). There were 4 nt differences within this species complex.

Table 5.2 Comparison of intra-species variation of Mycosphaerella species on eucalypts in terms of nucleotide site differences.

Species	ITS size range (ITS1/4 inclusive: this study)	Nucleotide differences this study (N sequences)	Nucleotide differences entire database (N sequences)
M. ambiphylla	538	$0(2)$	$4(7)^{*}$
M. aurantia	534	$0(4)$	$0(4)$
M. cryptica\#	539	$0(10)$	$60(17)^{* *}$
M. cryptica\#\#	539	$0(10)$	$2(14)$
M. gregaria	$727^{* * * *}$	$0(4)$	$0(4)$
M. lateralis	564	$4(6)$	$4(9)$
M. marksii	536	$1(4)$	$1(4)$
M. mexicana	539	$1(4)$	$17(19)$
M. nubilosa	539	$1(7)$	$5(18)$
M. nubilosa****	539	$1(7)$	$4(7)^{* * * * *}$
M. parva	538	$3(4)$	
*	Inclusive of the possibly con-specific M. molleriana, and M. vespa.		
**	Includes the deletion in GenBank accession AY045496		
\#	Includes all isolates identified as M. cryptica		
\#\#	Excludes outlying isolates of M. cryptica AY045496, AF309622 and AF309623		
***	Includes 180bp insertion		
****	Excludes outlying sequence AF309618		
*****	Includes the probably conspecific M. grandis.		

Sequences from the 36 isolates included in the comparison of intra-specific variation of M. nubilosa and M. cryptica were aligned (Appendix 5.1). The 20nt deletion from isolate AY045496 was excluded from the phylogenetic analysis. Of 561 total characters: 419 characters were constant; 91 variable characters were parsimony-uninformative and 51 characters were parsimony informative. Tree length $=179$ Consistency index $(\mathrm{CI})=0.9050$; Homoplasy index $(\mathrm{HI})=0.0950 ; \mathrm{CI}$ excluding uninformative characters $=0.7952 ; \mathrm{HI}$ excluding uninformative characters $=0.2048$ Retention index $(R I)=0.9715$. Rescaled consistency index (RC) $=0.8792$, f value $=2776$, f-ratio $=0.227851$. A neighbour-joining tree (not shown) of similar topology was also derived.

Phylogenetic analysis revealed one major clade of M. cryptica, including isolates from four eucalypt species, from populations across Australia and New Zealand (Figures 5.1 and 5.2). There were three outlying isolates of M. cryptica, AY045496 from Tasmania Australia, AF309622 from Chile and AF309623 from south-eastern Australia.

Parsimony analysis revealed two major clades within M. nubilosa and one outlying isolate (Figures 5.1 and 5.2). The first major clade is comprised of isolates from Eucalyptus from New Zealand and south-eastern Australia, and E. globulus from south-western Australia. The second clade is comprised of four isolates from E. nitens in South Africa and two from E. globulus from south-eastern Australia. All of the South African isolates of M. nubilosa clustered in this second clade.

Origin

Figure 5.1 Phylogram, based on ITS rDNA sequences, indicating intra-species variation of Mycosphaerella cryptica and Mycosphaerella nubilosa. Bootstrap support from 1000 replicates indicated.

Origin

- Schanges

Figure 5.2 Phylogram, based on ITS rDNA sequences, indicating intra-species variation of Mycosphaerella cryptica and Mycosphaerella nubilosa. Branch lengths indicated.

5.3.2 Inter-specific variation of Mycosphaerella species isolated from eucalypts

The size of the ITS region of Mycosphaerella species isolated from eucalypts in south-western Australia ranged from 534 to 549 nt's except for M. lateralis and M. gregaria which were 564 and 727 nt long, respectively. Mycosphaerella gregaria contained a 180 nt insertion. Sequences from the 71 isolates included in the comparison of inter-specific variation of Mycosphaerella species isolated off eucalypts in south-western Australia were aligned (minus the 180 nt insertion of M. gregaria) (Appendix 5.2). Of 628 total characters, 322 characters were constant, 58 variable characters were parsimony-uninformative, 248 characters were parsimony informative. One most parsimonious tree was obtained after 1000 bootstrap replicates (Figures 5.3 and 5.4; Tree Length=1114 characters; CI=0.497; RI=0.851; RC=0.423; HI=0.503; G-fit=160.470). A neighbour-joining tree (not shown) of similar topology was also derived.

In the phylogenetic analysis of ITS sequences, the morphological species of Mycosphaerella isolated off eucalypts in the current study, grouped with their corresponding species, where they were available on GenBank (Figures 5.3 and 5.4). The ITS sequence variation between closely related species was typically $4-8$ nt , but was as low as 0 nt . The sequences for M. cryptica clustered in a distinct group with strong bootstrap support (Figure 5.3). The M. cryptica isolates sequenced in the current study clustered with the M. cryptica isolate from Chile, which was the least similar sequence of M. cryptica available on GenBank (Figures 5.1 and 5.2). Mycosphaerella cryptica formed in a clade that included M. ambiphylla, M. molleriana, M. vespa, M. nubilosa, M. suttoniae, M. mexicana, M. suberosa and M. tasmaniensis (Figure 5.4).

The newly described M. ambiphylla clustered with M. molleriana and M. vespa with strong bootstrap support (Figures 5.3 and 5.4; and Table 5.3). Mycosphaerella
ambiphylla, which has a Phaeophleospora anamorph state, differed by 3 nt changes from M. molleriana which has a Colletogloeopsis anamorph state. The isolates of these three species were more than 99% similar (Table 5.3). One isolate of the recently described M. vespa was identical to one isolate of M. molleriana.

Three species clustered as a small sub-group within this larger clade. This subgroup was comprised of Mycosphaerella mexicana at 30 nt changes from a node that it shared with M. suberosa (40 changes), and M. tasmaniensis (over 60 changes) (Figure 5.4).

The south-western Australian M. marksii isolates clustered with the GenBank sequence of M. marksii and with the newly described M. intermedia with strong bootstrap support (Figure 5.3). The branch lengths of this phylogenetic tree showed that the M. marksii isolates from the current study were equally distant from the M marksii and the M. intermedia sequences on GenBank (Figure 5.4). The similarity matrix (Table 5.4) shows that M. marksii isolates are more similar to each other than to M. intermedia. However, the M. intermedia sequences on GenBank were incompletely edited in that they contained a number of unresolved nt's (N 's). These three species formed in a clade that included species from M. aurantia to M. walkeri (Figures 5.3 and 5.4). The sequences of the newly described species, M. aurantia does not match any published species. However, in parsimony analysis it grouped closely to M. africana from which it differed by only 5 nt's. Mycosphaerella gregaria formed a distinct group and was most close to M. ellipsoidea. However, the placement of M. gregaria in this tree is in the absence of the 180 nt insert unique to this species. Mycosphaerella crystallina, M. irregulariramosa, M. heimii and M. heimioides, all clustered closely together, at less than 5 changes from their common node (Figure 5.4). This cluster has strong bootstrap support (Figure 5.3).

Mycosphaerella parva from the current study clustered with the published sequence for M. grandis with strong bootstrap support (Figure 5.3). There was greater than 99% similarity between all M. parva and M. grandis isolates (Table 5.5). These species formed a distinct clade, as did two of the species, which have an Uwebraunia anamorph, M. flexuosa and M. juvenis.

There were two non-Mycosphaerella teleomorphs available as out groups in this analysis and Dothidea insculpta proved most distant to the Mycosphaerella species. In fact, the Dissoconium clade grouped more closely to Botryosphaeria rhodina than to the other Mycosphaerella species in the current analysis. In this phylogram, M. lateralis, which has a Dissoconium anamorph state, clustered near Dissoconium aciculare (Figures 5.3 and 5.4).

In addition to D. dekkeri isolates from eastern and south-western Australia, D. aciculare was also sequenced in the current study. Although the species of D. aciculare sequenced in the current study was isolated from E. grandis in eastern Australia, it was more than 99% similar to GenBank sequences of D. aciculare from non-eucalypt hosts (data not shown).

Figure 5.3 Phylogram based on ITS rDNA sequences of Mycosphaerella species, indicating the degree of closeness between isolates of Mycosphaerella from eucalypts in south-western Australia and those from eucalypts elsewhere. Bootstrap support from 1000 replicates indicated. Sequences from GenBank in bold.

Figure 5.4 Phylogram based on ITS rDNA sequences of Mycosphaerella species, indicating the degree of closeness between isolates of Mycosphaerella from eucalypts in south-western Australia and those from eucalypts elsewhere. Branch lengths indicated. Sequences from GenBank in bold.

Table 5.3 Similarity matrix (\%) between ITS rDNA sequences of Mycosphaerella ambiphylla and closely related Mycosphaerella species. $1-2=$ M. ambiphylla; 3-4 $=$ M. molleriana; 5-7 = M. vespa. ($1=$ R210, $2=$ R211, $3=$ STEU784, $4=$ STEU1214, $5=$ AY045497, 6 = AY045499, 7 = AY045498).

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$		100	99.8	99.4	99.8	99.8	99.8
$\mathbf{2}$	100		99.8	99.4	99.8	99.8	99.8
$\mathbf{3}$	99.8	99.8		99.6	100	100	100
$\mathbf{4}$	99.4	99.4	99.6		99.6	99.6	99.6
$\mathbf{5}$	99.8	99.8	100	99.6		100	100
$\mathbf{6}$	99.8	99.8	100	99.6	100		100
$\mathbf{7}$	99.8	99.8	100	99.6	100	100	

Table 5.4 Mycosphaerella marksii and M. intermedia multiple ITS rDNA sequence alignment \% identity matrix. 1-8 = M. marksii; 9-10 = M. intermedia. (1=98-004, 2=98129, 3=R234, 4=R247, 5=STEU 982, 6= AF173316, 7=AF309588, 8=AF468873, 9=AY045517, 10=AY045518).

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$		99.8	99.8	99.8	99.6	99	99.4	99.8	94.5	94.5
$\mathbf{2}$	99.8		100	100	99.8	99.2	99.6	100	94.7	94.7
$\mathbf{3}$	99.8	100		100	99.8	99.2	99.6	100	94.7	94.7
$\mathbf{4}$	99.8	100	100		99.8	99.2	99.6	100	97.4	94.7
$\mathbf{5}$	99.6	99.8	99.8	99.8		98.6	99.4	99.8	90	90
$\mathbf{6}$	99	99.2	99.2	99.4	98.6		99.6	99.2	89.4	89.4
$\mathbf{7}$	99.4	99.6	99.6	99.6	99.47	99.6		99.6	89.6	89.6
$\mathbf{8}$	99.8	100	100	100	99.8	99.2	99.6		90	90
$\mathbf{9}$	94.5	94.7	94.7	94.7	90	89.4	89.6	90		100
$\mathbf{1 0}$	94.5	94.7	94.7	94.7	90	89.4	89.6	90	100	

Table 5.5 Mycosphaerella parva and M. grandis multiple ITS rDNA sequence alignment \% identity matrix. 1-4 = M. parva; 5-7 = M. grandis. (1=R248, 2=R249, 3=R250, 4=R251, 5=AY045516, 6= AY045514, 7= AY045513).

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$		100	100	99.6	99.3	99.3	99.3
$\mathbf{2}$	100		100	99.6	99.4	99.4	99.4
$\mathbf{3}$	100	100		99.6	99.4	99.4	99.4
$\mathbf{4}$	99.6	99.6	99.6		99.1	99.1	99.1
$\mathbf{5}$	99.3	99.4	99.4	99.1		100	100
$\mathbf{6}$	99.3	99.4	99.4	99.1	100		100
$\mathbf{7}$	99.3	99.4	99.4	99.1	100	100	

Table 5.6 Similarity matrix of ITS rDNA sequences of Mycosphaerella lateralis isolates from south-western and south-eastern Australia ($1=98-133,2=98-148,3=98-149$, 4=98-163, 5=R257, 6=R258, 7=STEU825, 8=STEU1232, 9=STEU1235).

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$		99.3	99.3	100	99.3	99.3	100	100	100
$\mathbf{2}$	99.3		100	99.3	100	100	99.2	99.2	99.2
$\mathbf{3}$	99.3	100		99.3	100	100	99.2	99.2	99.2
$\mathbf{4}$	100	99.3	99.3		99.3	99.3	100	100	100
$\mathbf{5}$	99.3	100	100	99.3		100	99.2	99.2	99.2
$\mathbf{6}$	99.3	100	100	99.3	100		99.2	99.2	99.2
$\mathbf{7}$	100	99.2	99.2	100	99.2	99.2		100	100
$\mathbf{8}$	100	99.2	99.2	100	99.2	99.2	100		100
$\mathbf{9}$	100	99.2	99.2	100	99.2	99.2	100	100	

Figure 5.5 Phylogram indicating the relationship between Mycosphaerella species sequenced in the current study and all Mycosphaerella species sequences available on GenBank, irrespective of host. Branch lengths indicated. Bootstrap values as indicated in Figures 5.6 and 5.7. Anamorph species with an unknown Mycosphaerella teleomorph are not italicised; Mycvl. = Mycovellosiella; D. = Dissoconium.

Figure 5.6 Phylogram indicating the relationship between clades of Mycosphaerella species and their anamorph state. Bootstrap values as indicated. Branch lengths as indicated in Figure 5.5. Anamorph species with an unknown Mycosphaerella teleomorph are not italicised; Mycvl. = Mycovellosiella; D. = Dissoconium.

Figure 5.7 Phylogram indicating the relationship between Mycosphaerella species sequenced and host of origin. Bootstrap values as indicated. Branch lengths as indicated in Figure 5.5. Anamorph species with an unknown Mycosphaerella teleomorph are not italicised; Mycvl. = Mycovellosiella; D. = Dissoconium.

5.3.3 Phylogenetic comparisons

The ITS region of fifty Mycosphaerella taxa and Botryosphaeria rhodina that was used as an out-group, were trimmed and aligned (Appendix 5.3). These were subject to parsimony analysis. Of a total of 586 characters, 186 characters were constant, 102 variable characters were parsimony-uninformative and 298 characters were parsimony-informative. One most parsimonious tree (Figure 5.5) was obtained after 1000 bootstrap replications (Length=2224; CI=0.407; RI=0.606; RC=0.247; $\mathrm{HI}=0.593$; G-fit=-149.890). A tree of similar topology was also obtained from an analysis of reduced stringency (100 bootstrap replications) involving all unique sequences from all of the species listed in Table 5.1. The phylogram, derived from the lower stringency but more isolate and species inclusive analysis, is not presented due to page space limitations. However, where relevant, aspects of that tree are referred to in the text of the results section 5.3.3 and in the discussion section 5.4 that follows. A neighbour-joining tree (not shown) of similar topology was also derived. Four species omitted from the phylogenies presented were: M. molleriana and M. vespa which clustered with the M. ambiphylla presented; M. grandis which clustered with the M. parva presented; M. intermedia which clustered with the M. marksii presented;

The species resolved into 10 distinct clades (Figures 5.5-5.7), with total branch lengths ranging from: 80 changes for the M. lupini cluster to 200 changes for the M. asteroides cluster; and 220 changes for Mycosphaerella recutita which resolved on a branch independent of all other species (Figure 5.5). The number of species represented in each clade ranged from one (M. recutita) to 15 (the clade including M. cruenta to M. walkeri). Bootstrap support for each of these clades was strong (Figure 5.6). The branch lengths separating species was as low as the one nt that separated Mycosphaerella macrospora and M. tassiana (Figure 5.5). In the lower stringency tree (not shown), isolates of M. molleriana and M. vespa were identical and clustered closely with M. ambiphylla at a distance of 3-5 nt changes, as is shown from earlier analyses in Figures 5.3 and 5.4. Therefore, only M. ambiphylla was retained in Figures 5.5-5.7.

There was no correlation between anamorph state and the clade into which a Mycosphaerella species clustered (Figure 5.6). Cercosporoid (Cercospora, Paracercospora and Pseudocercospora) anamorphs were present in two of the ten clades. They occurred along with non-cercosporoid anamorphs in each of the two clades. The three species with a Stenella anamorph, M. citri, M. marasasii and M. parkii, fell into two separate clades. Similarly, the three species with Uwebraunia anamorphs fell into two separate clades; and the Mycovellosiella species resolved into a separate clade. The three species, M ambiphylla, M. molleriana and M. vespa with Phaeophleospora, Colletogloeopsis and Coniothyrium anamorphs respectively, all clustered closely together in the same clade in the lower stringency tree (not shown) and in Figures 5.3 and 5.4.

There was no clear relationship between host genera and clade. Mycosphaerella species off eucalypts were present in 7 out of 10 of the clades that formed, usually along with species off other hosts (Figure 5.7, Table 5.1). Often, species that clustered very closely and were separated by few nt changes, were from the same host. This was true for: M. aurantia, M. africana and M. keniensis which were all isolated from eucalypts; M. ambiphylla, M. molleriana and M. nubilosa which were all from eucalypts; and M. fijiensis and M. musicola from bananas. However, in some cases Mycosphaerella species from widely different host genera clustered equally close together. For example: M. pini and M. lupini, which were isolated from Pinus and Humulus species, respectively; and M. brassicicola and M. latebrosa from Brassica and Acer hosts, respectively.

The Mycosphaerella recutita sequence from GenBank was significantly different from the other Mycosphaerella species compared in this analysis. In a subsequent blast search of the M. recutita sequence, it matched species of Phaeosphaeria more closely than it did species of Mycosphaerella. The closest match was with the Phaeosphaeria triglochinicola isolate CBS 600.86 (gi|17017220|gb|AF439507.1).

5.4 Discussion

The current study is the first to compare the intra-species variation in ITS rDNA sequences of M. cryptica and M. nubilosa, the two most important causes of MLD on eucalypts. It was also the first study to determine the ITS rDNA sequences of M. ambiphylla, M. aurantia, M. gregaria, M. mexicana and M. parva; and the first to compare the sequences of south-western Australian isolates of these species and of M. lateralis with sequences of isolates from elsewhere.

Ten M. cryptica and six M. nubilosa isolates off different host species from throughout Australia were sequenced in the current study in order to determine their intra-species variation. The intra-species variation for these was 0 for M. cryptica and 1 for M. nubilosa. The M. cryptica sequence from the current study, was also the one most commonly present on the GenBank database. The amount of intra-species variation of M. cryptica isolates from other studies lodged with GenBank was much greater (up to 60 nt changes more) than that from those sequenced in the current study alone. It is likely that those present on the GenBank database that had several base substitutions are different species within a M. cryptica species complex. However, as some of these differences were clearly due to errors in the editing of sequences, it is possible that these isolates do not represent cryptic species, but rather are the erroneous product of further undetected sequencing errors.

Although the sequence variation within M. nubilosa also increased when those sequences lodged with GenBank were added to the analysis, this variation did not increase to the same extent as occurred with M. cryptica. The most common M. nubilosa genotype sequenced in the current study was also the most frequently occurring on GenBank. Isolates with this sequence were present in NZ, southeastern Australia and south-western Australia. The other common genotype of M. nubilosa on GenBank differed by 4-5 nt from those in the current study, and mostly were isolated off E. nitens in South Africa. This sequence was highly conserved in the South African population of M. nubilosa. This is likely due to founder effects in the South African population of M. nubilosa. The fact that this genotype was also present on E. globulus from south-eastern Australia may indicate that populations
of M. nubilosa are disjunct within Australia. This is explained by the limited host range and homothallic lifecycle of M. nubilosa, that leads to more isolated divergent populations of this species; than of M. cryptica which is heterothallic and present on a wide range of eucalypt hosts throughout Australia. Population level studies using variable neutral molecular markers are required to determine the population structure of these two pathogens. The population genetics of M. nubilosa is considered further in Chapter 7.

On the basis of the entire Mycosphaerella sequence database, the degree of nucleotide divergence necessary to define species boundaries within Mycosphaerella was unclear. The intra-specific variation within Mycosphaerella species diverged considerably. Some species appeared to have substantial intraspecies variation, much greater than the 1-2 nt suggested as typical of Mycosphaerella by Goodwin et al. (2001). The high intra-species variation may be explained by the inclusion of some indels and poorly edited sequences in the database. However, even with the removal of the questionable sequences and indels, the sequence variation of M. cryptica, M. lateralis, M. marksii, M. nubilosa and M. parva remained at $2,4,9,5$ and 3 nt , respectively. It may be that some of these species represent complexes of more than one species. On the other hand some closely related species diverged by only a few nt, and in some cases were probably conspecific.

Phylogenetic analysis and sequence comparison detected some species that have been described as distinct, that may be conspecific. These species include the recently described M. vespa and the earlier recorded M. molleriana, for which identical sequences were present on GenBank. Mycosphaerella ambiphylla may also form part of this species, as sequences varied by only 2-3 nt from those of M. molleriana and M. vespa. On the basis of this evidence it is likely that M. vespa is synonymous with M. molleriana. However, further work is required to fully determine the status of these two species and the closely related M. ambiphylla. Each of these three species is described as having a different anamorph state; Colletogloeopsis molleriana for M. molleriana, Coniothyrium ovatum for M. vespa and Phaeophleospora ambiphylla for M. ambiphylla. Although they are all recognised as
coelomycetes, conidia are formed in an acervulus for Colletogloeopsis, and in a pycnidium for Coniothyrium and Phaeophleospora. Pycnidial and conidial dimensions of P. ambiphylla and C. ovatum were significantly different, as was their mode of conidiogenesis (Chapter 3). However, it is possible that the size and morphology of conidia and pycnidia and conidiogenesis itself are plastic in these species. The formation of an acervulus as opposed to a pycnidium may depend on substrate and environmental conditions. There are examples of this from other fungi, where conidia may form on a loose assemblage of conidiogenous cells, a sporodochia or an acervulus depending on the environmental conditions under which they occur (Crous et al. 2000, Verkley \& Priest 2000, Verkley 1998). These three species must be grown on the same substrate and under the same conditions, in order to compare the morphology of the anamorph state between these three species. In addition further isolates of all these species should be sequenced in order to determine the species boundaries, if and where they occur, for this complex. Multi-gene sequence data would also be useful in clarifying the phylogeny of these taxa.

Another pair of species that may be conspecific is M. grandis and M. parva. Although Carnegie and Keane (1994) show small morphological differences between M. grandis and M. parva, Crous (1998) claimed that these species could not be differentiated on morphological grounds. Although type material was not examined in the current study, their descriptions from the literature overlap and the major criteria for differentiating these species appear to be that M. grandis is a pathogen and M. parva a saprophyte on old M. nubilosa lesions (Carnegie and Keane 1994). Evidence from Chapter 4 indicates that M. parva can be found on lesions without other species present (although typically it occurs as part of a disease complex), further blurring the separation of these two species. The molecular evidence from the current study supports the combination of M. grandis under M. parva. Alternatively, the sequence similarity between M. parva and M. grandis could also be explained if M. parva isolates have been mistakenly identified as M. grandis. Sequencing of DNA from type specimens of each of these two species could help clarify their status as separate species.

However, further work investigating the ability of M. parva ascospores to infect leaves and cause disease under controlled glasshouse conditions are required.

The sequences of M. tassiana and M. macrospora were identical. Both of these species have a Cladosporium anamorph and conidia and ascospores of similar dimensions. Therefore, it is likely that they are conspecific. Previously, (Crous et al. 2001b) have proposed that M. heimii, M. heimioides and M. crystallina may be conspecific. The phylogenetic data of the present study supports this proposal. Further work comparing several and diverse isolates of these species in culture should be made to clarify the status of this group.

Mycosphaerella lateralis was characterised by two distinct genotypes that differed at 4 nt sites. These were separated along geographic lines, with one genotype being restricted to eastern Australia and the other to south-western Australia. The eastern Australian genotype isolated off E. grandis and E. maidenii was identical to those lodged with GenBank. It is likely that these are two distinct populations of the same species, however, further work comparing their morphology under the same conditions is required to determine this.

Mycosphaerella lateralis clustered with the other Dissoconium anamorph species in this study, namely D. aciculare that was isolated off E. grandis and E. maidenii from Qld, Australia. These clustered separately from the other similar anamorph genus Uwebraunia. Dissoconium was first erected as a separate Genus from Cordana, based on the forcible discharge of macro and micro conidia in a droplet of fluid for Dissoconium. Crous \& Wingfield (1996) later erected the Genus Uwebraunia, which accommodates fungi morphologically similar to Dissoconium. These two genera were separated on two criteria. Firstly, that Uwebraunia species are pathogens of eucalypts, whereas Dissoconium species are hyperparasites. Secondly, that conidiogenesis is percurrent in Uwebraunia, whereas it is sympodial in Dissoconium. Recently, Jackson et al. (2003) have shown that D. dekkeri is able to infect E. globulus leaves and that the conidiogenesis of D. dekkeri is both sympodial and percurrent. Therefore, the separation of these two anamorph genera based on morphological criteria needs to be reviewed. Studies on the molecular taxonomy of this group indicate that the anamorph Uwebraunia has arisen separately, at least
twice within the teleomorph genus Mycosphaerella (Crous et al. 2001a, Crous et al. 1999). Also, according to the sequence homology of the large subunit (28s) of the ribosomal RNA operon, D. dekkeri is more closely aligned with Uwebraunia ellipsoidea than U. ellipoidea is with U. juvenis (Crous et al. 2001a). Further morphological and molecular studies on Dissoconium, Uwebraunia and the related genera Cordana and Dactylaria are required to clarify the differentiation of these taxa

The phylogenetic data suggests that Mycosphaerella is an assemblage of largely polyphyletic anamorph genera. Ten distinct clades emerged from the analysis, none of which was comprised entirely of one anamorph genus alone. The anamorph genera represented were often dispersed across more than one clade, indicating that these anamorphs have arisen separately in different phylogenetic lineages. Thus the anamorph genera share derived (or apomorphic) traits, such as conidium morphology, that have arisen separately in different phylogenetic lineages. These anamorphs are therefore polyphyletic in their origin.

Cercosporoid (Cercospora, Paracercospora and Pseudocercospora), Stenella and Uwebraunia anamorphs each occurred in more than one separate clade. The largest clade contained Pseudocercospora, Paracercospora, Mycovellosiella and Sonderheinia anamorphs. It could be argued that this clade is dominated by the Pseudocercospora species. However, both Pseudocercospora and Mycovellosiella also occurred in at least one other clade. Furthermore, with the exception of Pseudocercospora and Paracercospora, these anamorphs are considered taxonomically distinct (Crous et al. 2000, Stewart et al. 1999).

Nonetheless, species that clustered closely together sometimes shared the same or a similar anamorph genus. These include: M. ambiphylla, M. molleriana, M. cryptica and M. suttoniae which have a Colletogloeopsis or the similar Phaeophleospora anamorph state; M. macrospora, M. tassiana, M. alii-cepae which all share a Cladosporium anamorph; M. flexuosa and M. juvenis, that share an Uwebraunia anamorph; M. cruenta, M. fori, M. musicola and M. fijiensis that all share a Pseudocercospora or Paracercospora anamorph; and the M. heimii complex that also share a Pseudocercospora anamorph. However, the expression of a particular
anamorph state did not predict phylogenetic closeness, as the same anamorph genus may occur on widely divergent branches of the phylogenetic tree. Thus, although anamorph state remains a useful feature in differentiating Mycosphaerella taxa, it cannot be claimed that anamorphs underpin monophyletic lineages within Mycosphaerella, nor that the anamorph genera considered in this study are monophyletic.

The question remains however, as to whether the Mycosphaerella teleomorph genus is monophyletic. There is some evidence from the current study that Mycosphaerella may be polyphyletic. There are two arguments that support this conclusion. The first relates to the placement of the Dissoconium clade in this and previous studies, and the second relates to branch lengths within Mycosphaerella clades. This latter argument reflects on the philosophical underpinnings of molecular phylogeny.

In the current analysis of Mycosphaerella species from eucalypts, M. lateralis, which has a Dissoconium anamorph, clustered more closely to the non-Mycosphaerella taxon Botryosphaereia rhodina, where two non-Mycosphaerella outgroup taxa were included. This suggests that some derived (apomorphic) characters that define Mycosphaerella may have arisen separately. If this is the case, then Mycosphaerella is polyphyletic. There are previous studies in which the Dissoconium clade grouped separately from the remaining Mycosphaerella species (Crous et al. 1999, Crous et al. 2001a, Crous et al. 2001b) as occurred in the current study. For example, the most parsimonious tree of Crous et al. (2001b) showed that the Dissoconium clade grouped more closely to the non-Mycosphaerella teleomorph Didymella than to the other Mycosphaerella species in their study.

Similarly, the M. recutita sequence was very different from the other Mycosphaerella species in the current study. In a blast search, this species was more closely aligned with Phaeosphaeria species than with Mycosphaerella. It may be that this species was incorrectly identified as a species of Mycosphaerella, however it could also be evidence that Mycosphaella is polyphyletic.

The second piece of evidence that suggests Mycosphaerella may be polyphyletic relates to the branch lengths that separate the clades within Mycosphaerella. In the current study, the ten clades are well supported by bootstrap analysis, and branch lengths are long in comparison to those separating teleomorph genera, such as between Leptosphaereia, Phaeosphaeria and Ophiosphaeria (Goodwin \& Zismann 2001). These branch lengths indicate a long evolutionary divergence of taxa within Mycosphaerella sensu stricto and provide evidence that clades within Mycosphaerella are evolutionarily equivalent to entire genera in other groups. Although these phylogenetic lineages remain difficult to differentiate on the basis of one easily discernable morphological feature, such as anamorph affiliation, they are nonetheless evolutionarily distinct groups. Strictly speaking, this does not mean that Mycosphaerella is polyphyletic, but rather that it is a monophyletic lineage composed of more than one genus in evolutionarily genetic terms. It then remains a philosophical question as to whether these clades warrant the status of separate genera or sub-genera. More studies are required that compare Mycosphaerella with closely related genera using sequence information from other genes, before firm conclusions on the phylogeny of Mycosphaerella can be drawn.

Attempts to date to differentiate lineages within Mycosphaerella on the basis of molecular and traditional taxonomy have relied upon trying to fit the old schema to the molecular data. What is required is a new approach that defines the different groups according to the molecular data. This database must contain information from a number of non-linked, neutral, and appropriately informative genes, such as intron containing regions of beta-tubulin, histone, actin and other such loci. Such multi-gene phylogenies have been used successfully to redefine Fusarium (Geiser, Pitt \& Taylor 1998). The clades derived from this type of study should then be compared against the stable well-documented morphological features of each species, in a correspondence type analysis, in order to determine which features are the most powerful in predicting group membership of the molecular based clades.

The placement of the Dissoconium clade in the current study (and in the previous studies mentioned above) was not always consistent. In the analysis of the full

Mycosphaerella data set, which included only one non-Mycosphaerella outgroup Botryosphaereia rhodina, Dissoconium did not cluster any closer to this outgroup than any of the other Mycosphaerella clades. It should be noted that all clades in this tree were equally distinct in terms of the arrangement of their nodes. However, in this tree, the presence of the highly variable sequence of M. recutita may have altered the topology of this tree significantly. The sequence of M. recutita was very different from that of the other Mycosphaerella species, and indeed this isolate may have been misidentified as a Mycosphaerella species. Also, the presence of only one out-group taxon may have forced an incorrect placement of the Dissoconium clade in this tree.

The selection of outgroup taxa must be carefully considered in answering phylogenetic questions, and this is a process that may be refined as more is known about the phylogeny of Mycosphaerella and related genera. For example, the use of Cladosporium as an outgroup by Crous et al. (2001a) may not have been the best choice in determining whether Mycosphaerella is polyphyletic, given that this anamorph is linked with Mycosphaerella and also that it is probably a polyphyletic genus itself (Crous et al. 2000, Crous et al. 2001b). Another aspect that has not been sufficiently covered in answering the question of whether Mycosphaerella is polyphyletic is that few isolates of species from related teleomorph genera have been sequenced and analysed in conjunction with Mycosphaerella species. If Mycosphaerella is polyphyletic, then different clades within Mycosphaerella will cluster more closely with morphologically different species from other teleomorph genera. If this hypothesis is to be adequately tested then many more species from related teleomorph genera must be included in phylogenetic studies that attempt to determine whether Mycosphaerella is polyphyletic in origin.

Previous authors have reached differing conclusions on the question of Mycosphaerella phylogeny. Crous et al. (2001b) in a study of Mycosphaerella on Myrtaceae concluded that this was a monophyletic assemblage of species within the Mycosphaerella section Plaga (as defined in Barr 1972 and in Crous et al. 2001a), and that this was comprised of two clades of Pseudocercospora species. The cladograms in their study did not indicate branch lengths and therefore it is not
possible to examine the degree of closeness between species and clades. However, where the species compared in that study are the same as the current investigation, the pattern of clustering was similar.

Goodwin, Dunkle \& Zismann (2001) found that Mycosphaerella is a monophyletic assemblage of polyphyletic anamorph genera. The current study agrees with their finding that the anamorph genera within Mycosphaerella are polyphyletic. However, (Goodwin et al. 2001) have ignored the issue of the Dissoconium clade, and rely on the common node for all of the remaining species in reaching their conclusion. They do not believe that the long branch lengths between Mycosphaerella clades indicates that these clades are phylogenetically distinct lineages.

The current study provides strong evidence that there is no correlation between Mycosphaerella host and clade. Mycosphaerella species off eucalypts clustered with those from a range of other hosts. For example, M. aurantia off E. globulus clustered alongside M. pini off Pinus. Although the evidence for this is available in previous molecular studies of Mycosphaerella this is the first time that this hypothesis has been explicitly tested. Analogous to the pattern for anamorph affiliation, closely related fungi were often isolated from the same host genus, but this was not a predictor of phylogenetic closeness.

The ITS rDNA region was useful the resolution of species of Mycosphaerella on eucalypts in south-western Australia, in that they confirmed morphological separation of these species. Of all ten species found here, each formed a distinct group in the phylogenetic trees derived. The identification of the species also agreed with that of published species. Sequence data from the ITS rDNA region may be useful in developing rapid molecular based methods for the identification of species. This approach is developed in Chapter 6.

Chapter 6

Rapid and reliable molecular based identification of Mycosphaerella species

Chapter 6 Rapid and reliable molecular based identification of Mycosphaerella species

6.1 Introduction

Surveys of E. globulus plantations in south-western Australia have revealed two previously undescribed species and five new records of Mycosphaerella (Chapter 3). These findings are based on the morphological traits of these fungi on diseased foliage and in culture. However, the taxonomy of Mycosphaerella based on morphological features is difficult, in that species are differentiated on the basis of small differences in ascospore size, shape and germination pattern (Crous 1998). The formation of an anamorph state is also important in differentiating Mycosphaerella species, and these may not form readily in culture, or may require weeks or months of growth on specific media under specific conditions in order to develop.

There are numerous examples of mis-identification of Mycosphaerella species from eucalypts, such as studies on what was thought to be M. nubilosa in New Zealand (Beresford 1978, Cheah 1977) that was later identified as M. cryptica (Park \& Keane 1982a). The naming of the anamorph state of M. cryptica, Colletogloeopsis nubilosum, was based on the misapprehension that this anamorph was connected to the teleomorph M. nubilosa. Early records have attributed MLD outbreaks to M. molleriana, when in fact other Mycosphaerella species were the cause (Crous 1998). Sequence information (Chapter 5) has revealed three examples of conspecificity of separately described Mycosphaerella species of eucalypts. These include M. molleriana, M. parva and M. tassiana. The species M. ambiphylla and M. vespa are conspecific with M. molleriana; M. grandis is conspecific with M. parva; and M. macrospora is conspecific with M. tassiana. These examples highlight the difficulty in the conventional taxonomy of this genus. Molecular-based methods therefore, provide an additional tool that can make species identification more certain.

Comparison of sequences for such regions as the internally transcribed spacer regions (ITS) 1 and 2 of the rRNA genes has proved very usefull in delimiting and differentiating species (Berbee et al. 1995, Chillali et al. 1998, Crous et al. 1999, Faris et al. 1996, Guo, Hyde \& Liew 2000). Sequence comparison of this region has enabled a more secure differentiation of the species of Mycosphaerella on eucalypts in south-western Australia (Chapter 5). However DNA sequencing is a relatively expensive and time-consuming technique for identifying species. The data obtained from ITS sequences may be utilised to develop less expensive and more rapid molecular means for the identification of Mycosphaerella species. These include PCR-based restriction fragment length polymorphic DNA (PCR-RFLP's) and species-specific primers for DNA amplification and visualisation via agarose gel electrophoresis.

PCR-RFLP's have been utilized for the identification of eucalypt pathogens such as Cryphonectria cubensis and related species (Myburg et al. 1999) and Mycosphaerella species on other hosts (Ueng et al. 1998). Species -specific primers for the detection of Mycosphaerella fijiensis and M. musicola on banana (Johanson 1995, Johanson et al. 1994, Johanson \& Jeger 1993) have also been developed. There is a need to develop fast molecular methods for identifying Mycosphaerella species associated with diseases of eucalypts.

Therefore, the aims of the present study were to:

1) Generate a PCR-RFLP based technique to identify species of Mycosphaerella from eucalypts.
2) Develop species specific primers for the detection of M. cryptica and M. nubilosa.

6.2 Materials and Methods

6.2.1 PCR-RFLP

ITS rDNA sequence data for Mycosphaerella species (Chapter 5) were analysed for potential restriction sites using the sequence editor module of Genetool. The consensus sequences of each of the 10 species of Mycosphaerella from eucalypts in south-western Australia were imported, along with all other available Mycosphaerella species on the National Centre for Biotechnology Information (NCBI) GenBank database, into Genetool (Table 6.1). These sequences were screened against the list of 'commercially available' enzymes in Genetool. A matrix of enzymes and the restriction sites for each of the 10 species most commonly causing disease in Australia was derived. From this list, the restriction enzymes that were potentially most informative for the greatest number of fungi were tested against the PCR products from the ITS1f and ITS4 primers (Gardes \& Bruns 1993, White et al. 1990) for the rDNA region (ITS1f/4 rDNA).

Table 6.1 List of isolate sequences screened for restriction digestion of ITS rDNA PCR products and for the species specific primers MC2F/MC2R and MN1F/MN1R

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. ambiphylla	R210		E. globulus	SW Aust	Phaeophleospora
M. ambiphylla	R221		E. globulus	SW Aust	Phaeophleospora
M. ambiphylla	R222		E. globulus	SW Aust	Phaeophleospora
M. ambiphylla	R211		E. globulus	SW Aust	Phaeophleospora
M. aurantia	R151		E. globulus	SW Aust	Unknown
M. aurantia	R152		E. globulus	SW Aust	Unknown
M. cryptica	R089		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	R090		E.globulus	SW Aust	Colletogloeopsis
M. cryptica	R091		E.globulus	SW Aust	Colletogloeopsis
M. cryptica	R101		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	R110		E.globulus	SW Aust	Colletogloeopsis
M. cryptica	R114		E. diversicolor	SW Aust	Colletogloeopsis
M. cryptica	R115		E. globulus	SW Aust	Colletogloeopsis
M. cryptica	R118		E. delegatensis	Vic Aust	Colletogloeopsis
M. cryptica	98125		E. grandis x	Qld, Aust	Colletogloeopsis
M. cryptica	98191		E. globulus	SW Aust	Colletogloeopsis
M. cryptica		AY045494	Eucalyptus	NZ	Colletogloeopsis
M. cryptica		AY045495	Eucalyptus	SE Aust	Colletogloeopsis

...Table 6.1 List of isolate sequences screened for restriction digestion of ITS rDNA PCR products and for the species specific primers MC2F/MC2R and MN1F/MN1R

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. cryptica		AY045496	Eucalyptus	Tas, Aust	Colletogloeopsis
M. cryptica		AY045498	Eucalyptus	SE Aust	Colletogloeopsis
M. cryptica	STEU936	AF309585	Eucalyptus	Australia	Colletogloeopsis
M. cryptica	CMW2732	AF309622	Eucalyptus	Chile	Colletogloeopsis
M. cryptica	CMW3279	AF309623	Eucalyptus	SE Aust	Colletogloeopsis
M. crystallina		AF222839	Eucalyptus		Pseudocercospora
M. ellipsoidea	STEU1225	AF173303			Uwebraunia
M. flexuosa	CMW5224	AF309603	Eucalyptus	Colombia	Uwebraunia
M. fori	CMW9095	AF468869	Eucalyptus	RSA	Pseudocercospora
M. grandis		AY045516	Eucalyptus	Australia	Unknown
M. gregaria	R237		E. globulus	SW Aust	Unknown
M. gregaria	R240		E. globulus	SW Aust	Unknown
M. heimii		AF222841	Eucalyptus		Pseudocercospora
M. heimioides		AF222842	Eucalyptus		Pseudocercospora
M. intermedia		AY045517	Eucalyptus	NZ	Unknown
M. irregulariramosa		AF222843	Eucalyptus		Pseudocercospora
M. juvenis	CMW4937	AF309604	Eucalyptus	RSA	Uwebraunia
M. juvenis	STEU1005	AF173299	Eucalyptus	RSA	Uwebraunia
M. keniensis	STEU 084	AF173300	E. grandis	Kenya	Unknown
M. lateralis	R257		E. globulus	SW Aust	Dissoconium
M. lateralis	R258		E. globulus	SW Aust	Dissoconium
M. lateralis	98133		E. maidenii	Qld, Aust	Dissoconium
M. lateralis	98148		E. globulus	SW Aust	Dissoconium
M. lateralis	98149		E. globulus	SW Aust	Dissoconium
M. lateralis	98163		E. maidenii	Qld, Aust	Dissoconium
M. lateralis	STEU1535	AF173309	Eucalyptus		Dissoconium
M. lateralis	STEU825	AF309624	Eucalyptus	RSA	Dissoconium
M. marasasii	STEU348	AF309591	Syzygium	RSA	Stenella
M. marksii	STEU935	AF173316	Eucalyptus		Unknown
M. mexicana	R216		E. globulus	SW Aust	Unknown
M. molleriana	STEU784	AF309619	Eucalyptus	Nth USA	Colletogloeopsis
M. nubilosa	R001		E. globulus	SW Aust	Unknown
M. nubilosa		AY045506		SE Aust	Unknown
M. nubilosa		AY045507		SE Aust	Unknown
M. nubilosa		AY045508		SE Aust	Unknown
M. nubilosa		AY045509		SE Aust	Unknown
M. nubilosa	R002		E. globulus	SW Aust	Unknown
M. nubilosa	R004		E. globulus	SW Aust	Unknown
M. nubilosa	R051		E. globulus	SE Aust	Unknown
M. nubilosa	R057		E. globulus	SE Aust	Unknown
M. nubilosa	98-099		E. globulus	SW Aust	Unknown
M. nubilosa	98-101		E. globulus	SW Aust	Unknown
M. nubilosa	CMW6211	AF449094	E. globulus	SE Aust	Unknown
M. nubilosa	CMW6210	AF449095	E. globulus	SE Aust	Unknown
M. nubilosa	CMW9000	AF449096	E. nitens	RSA	Unknown

...Table 6.1 List of isolate sequences screened for restriction digestion of ITS rDNA PCR products and for the species specific primers MC2F/MC2R and MN1F/MN1R

Species	Isolate number	GenBank accession	Host	Origin	Anamorph
M. nubilosa	CMW9001	AF449097	E. nitens	RSA	Unknown
M. nubilosa	CMW9002	AF449098	E. nitens	RSA	Unknown
M. nubilosa	CMW9003	AF449099	E. nitens	RSA	Unknown
M. nubilosa	CMW3282	AF309618	E. globulus	SE Aust	Unknown
M. nubilosa		AY045505		NZ	Unknown
M. parkii M. parva	STEU353	AF173311	E. saligna	Brazil	Stenella
M. parva	R250		E. globulus	SW Aust	Unknown
M. suberosa M. suttoniae	R251		E. globulus	SW Aust	Unknown
M. tasmaniensis M. vespa	STEU1346	AF309621	Eucalyptus	Indonesia	Unknown
M. walkeri Dissoconium aciculare		AF310107	E. nitens	Tas, Aust	Mycovelloosiella
	STEU2769	AF045497	AF309616	Eucalyptus	
R262		E. maidenii	Qld, Aust	Coniothyrium Dissorhenia aciculare	

Single ascospore isolates of ten Mycosphaerella species were obtained from lesions as described in Chapter 4.2. These were identified on morphological characters (Chapter 4.3) and maintained on 2\% MEA. Axenic mycelia, were obtained and DNA extracted as described in Chapter 5.2. The extracted DNA was stored at -20 ${ }^{\circ} \mathrm{C}$ until required for PCR's prior to restriction digestion or for the testing of species-specific primers. PCR reactions using the primer ITS1f and ITS 4 (Gardes \& Bruns 1993, White et al. 1990) were conducted as described in Chapter 5.2, and the product then restricted. The isolates and species tested for PCR RFLP's and species specific primers are listed (Table 6.2).

Table 6.2 List of isolate sequences tested for restriction digestion of ITS rDNA PCR products and for the species-specific primers MC2F/MC2R and MN1F/MN1R

Species	Isolate number	Host	Origin	Anamorph
M. lateralis	R257	E. globulus	SW Aust	Dissoconium
M. lateralis	R258	E. globulus	SW Aust	Dissoconium
M. lateralis	98133	E. maidenii	Qld, Aust	Dissoconium
M. lateralis	98148	E. globulus	SW Aust	Dissoconium
M. lateralis	98149	E. globulus	SW Aust	Dissoconium
M. lateralis	98163	E. maidenii	Qld, Aust	Dissoconium
M. mexicana	R216	E. globulus	SW Aust	Unknown
M. nubilosa	R001	E. globulus	SW Aust	Unknown
M. nubilosa	R002	E. globulus	SW Aust	Unknown
M. nubilosa	R004	E. globulus	SW Aust	Unknown
M. nubilosa	R051	E. globulus	SE Aust	Unknown
M. nubilosa	R057	E. globulus	SE Aust	Unknown
M. nubilosa	$98-099$	E. globulus	SW Aust	Unknown
M. nubilosa	$98-101$	E. globulus	SW Aust	Unknown
M. parva	R250	E. globulus	SW Aust	Unknown
M. parva	R251	E. globulus	SW Aust	Unknown
M. suberosa	R237	E. globulus	SW Aust	Unknown
Dissoconium aciculare	R262	E. maidenii	Qld, Aust	

ITS1f/4 rDNA PCR products were restricted in $20 \mu \mathrm{l}$ aliquots for $2-4 \mathrm{~h}$ at 37° according to the manufacturer's instructions (Promega Corporation, Australia). Restriction digests were performed for each species isolate combination as: 1) a single digest with HaeII; 2) a single digest with ApaI; 3) a double digest with both HaeII and ApaI present. Restriction products were electrophoresed on a 2% agarose gel (in TAE buffer) at 90 V for 75 min using a mini sub-cell system (Biorad, Australia). The size of the DNA bands was determined against a 100 bp DNA marker (Gibco, Australia) as molecular weight standard. DNA fragments were visualised under UV following gel staining with ethidium bromide ($0.5 \mu \mathrm{~g} / \mathrm{ml}$) for 20 to 30 min and de-staining in $1 \times$ TAE buffer for 10 minutes

A dichotomous key for the identification of the Mycosphaerella species based on restriction enzyme digest profiles was developed, based on the response of species tested in this study.

6.2.2 Species-specific primer development

The consensus sequences for the ITS1f/4 rDNA region for each of the 10 species of Mycosphaerella from eucalypts in south-western Australia were imported, along with all other available Mycosphaerella species on the NCBI GenBank database, into Genetool (Table 6.1). These sequences were assessed for forward and reverse primers in the ITS region of the rDNA, in the 'sequence editor' module of Genetool. Primer sites were chosen from the variable (ITS1 or ITS2) regions of the rDNA that were within the size range 17-23 nt and with a Tm of 55-65 ${ }^{\circ}$, that were free of structural impediments to annealing, and that would amplify a product of 200-400 nt. All other Mycosphaerella species on the database were then searched for matches to those primer sites to ensure species specificity. A BLAST search was also conducted to ensure that the primer sites were not present on other fungal species associated with eucalypts, or in the host plant DNA. Forward and reverse primers specific to M. cryptica (MC2F and MC2R) and M. nubilosa (MN1F and MN1R) (Table 6.3) were chosen and tested against DNA extracts of each of these species. PCR reactions were performed on DNA from 15 isolates of M. cryptica and 15 isolates of M. nubilosa from locations throughout Australia. The isolates of M. cryptica were off one of four different hosts, E. globulus, E. diversicolor, E. grandis and E. maidenii. Isolates of M. nubilosa were off either E. globulus or E. nitens. To ensure against 'false-positive' amplification of closely related species, the primer pairs, MC2F/MC2R and MN1F/MN1R were tested against three isolates of M. nubilosa and of M. cryptica, respectively. False positive amplification was also tested against DNA extracts from three isolates of each of the remaining eight species for each of the primer pairs (Table 6.2).

PCR reactions were performed as described in Chapter 5.2 with the exception that the primer pairs used were MC2F/MC2R, and MN1f/MN1R, respectively, and the annealing temperature was increased from 55° to 58°. To confirm the presence and size of the PCR products, they were electrophoresed on a 1\% agarose gel (in TAE buffer) at 90 V for 40 minutes. The size of the DNA bands was determined against a λ DNA marker (restricted with Hindiii \& EcoRi; Fisher Biotec) or a 100 bp DNA marker (Gibco) as molecular weight standard. DNA fragments were
visualised under UV following gel staining with ethidium bromide ($0.5 \mu \mathrm{~g} / \mathrm{ml}$) for 20 to 30 min and de-staining in 1 x TAE buffer for 10 minutes

Table 6.3 List of species-specific primers developed for Mycosphaerella cryptica and Mycosphaerella nubilosa

Species	Direction	Sequence (5' - 3' $\left.^{\prime}\right)$	Length (nt)	Tm (${ }^{\circ}$ C)
M. cryptica	Forward	cccgcccgacctccaacc	18	58
M. cryptica	Reverse	cggtcccggaagcgaaacag	20	58
M. nubilosa	Forward	gcgccagcccgacctcc	17	57
M. nubilosa	Reverse	ggtccccgtcagcgaaacagt	21	56

6.3 Results

6.3.1 PCR-RFLP

Based on the matrix of restriction enzymes versus the restriction size fragments obtained for each of ten Mycosphaerella species, the combination of HaeII and ApaI gave the greatest resolving power. The restriction sites for these enzymes on the ITS1f/4 rDNA region for each Mycosphaerella species (Figure 6.1) resulted in the following size fragments (Table 6.4).

Table 6.4 Predicted fragmented sizes for the restriction digest of ITS rDNA PCR products of Mycosphaerella species using the enzymes Hae II and ApaI.

Species	Non-restricted PCR product	HaeII	ApaI	HaeII+ApaI
M. ambiphylla	573	$177+396$	$150+423$	$150+177+246$
M. aurantia	569	$152+417$	569	$152+417$
M. cryptica	574	$79+495$	$150+425$	$71+79+425$
M. gregaria	763	$338+425$	763	$338+425$
M. lateralis	599	$92+507$	$165+434$	$93+165+339$
M. marksii	571	$152+419$	571	$152+419$
M. mexicana	577	$177+400$	$78+497$	$78+177+320$
M. nubilosa	574	574	$150+424$	$150+424$
M. parva	574	$171+403$	$157+417$	$157+171+246$
M. suberosa	577	$175+402$	$89+488$	$89+175+313$

Figure 6.1 Predicted restriction sites for HaeII and ApaI enzymes for the PCR product of the ITS rDNA of ten Mycosphaerella species isolated from eucalypts.

Restriction digestion of the ITS1f/4 rDNA region of nine of the ten species tested gave the expected fragment size pattern (Figure 6.2, M. lateralis profile not shown). However, ApaI failed to restrict the PCR product of M. suberosa, thus giving a restriction digest profile similar to that of M. marksii. HaeII restricted all species except M. nubilosa, resulting in four identifiable banding profiles. Firstly, that of one 565-585 bp band (M. nubilosa); secondly that of 330-350 +415-435 bp (M. gregaria); thirdly that of 150-175 + 400-420 bp (M. ambiphylla, M aurantia, M. marksii, M. mexicana, M. parva and M. suberosa); fourthly that of 80-100 + 490-510 bp (M. cryptica and M. lateralis).

Restriction with ApaI gave four identifiable profiles: Firstly, one band of 765 bp (M. gregaria); Secondly, one band of 570 bp (M. aurantia, M. marksii and M. suberosa); Thirdly, two bands of 150-170 + 420-440 bp (M. ambiphylla, M. cryptica, M. lateralis, M. nubilosa and M. parva); Fourthly, two bands of $80+500 \mathrm{bp}$ (M. mexicana).

Restriction with both enzymes simultaneously gave four unique banding profiles. Firstly, two bands 150-180 + 240-260 bp (M. ambiphylla and M. parva); Secondly, two bands of $150+420 \mathrm{bp}$ (M. aurantia, M. marksii, M. nubilosa and M. suberosa); Thirdly, two bands 70-80 + 415-435 bp (M. cryptica); Fourthly, two bands 330-350 + 235-255 bp (M. gregaria); Fifthly, three bands 80-100 + 160-180 + 320-340 bp (M. lateralis, and M. mexicana,).

Figure 6.2 Restriction digest of Mycosphaerella species off eucalypts in south-western Australia. Gel A: L1 100 bp marker, L2-5 M. ambiphylla, L6-9 M. aurantia, L10-13 M. cryptica, L14-17 M. gregaria, L18 100bp marker. Gel B: L1 100bp marker, L2-5 M. nubilosa, L6-9 M. marksii, L10-13 M. mexicana, L14-17 M. nubilosa, L18 100bp marker. Gel C: L1 100bp marker, L2-5 M. parva, L6-9 M. suberosa, L10 100bp marker. Lane order of enzyme digests for each species, $1^{\text {st }}$ uncut, $2^{\text {nd }} H a e I I, 3^{\text {rd }}$ APAI, $4^{\text {th }} \mathrm{HaeII}$ and APAI simultaneously.

A dichotomous key for the identification of Mycosphaerella species based on restriction digest profiles of ITS1f/4 rDNA using HaeII and ApaI was developed (Table 6.5).

Table 6.5 Key to Mycosphaerella species occurring on Eucalyptus globulus in southwestern Australia based on restriction digest profiles of PCR product (ITSif/4 primer pair) of the ITS region of the rDNA using HaeII and ApaI
1 Non restricted band and ApaI digestion gives one band > 700 bp , HaeII restriction and combined HaeII + ApaI restriction give 2 bands $330-350+420-440 \mathrm{bp}$,
gregaria
Non-restricted band < 700 bp....................................... 2
2(1) HaeII restriction gives 1 band 550-600 bp, ApaI restriction and combined HaeII + ApaI restriction give 2 bands 140-160 + 420-440 bp.
nubilosa
HaeII restriction gives 2 bands.
3
3(2) HaeII restriction gives 2 bands $80-100+490-510 \mathrm{bp}$
ApaI restriction gives 2 bands $150-170+420-$
440...
HaeII restriction gives 2 bands 150-180 + 400-420 bp ...
5
4(3) Combined HaeII and ApaI restriction gives 2 bands $70-90+420-440 \mathrm{bp}$.
Combined HaeII and ApaI restriction gives 3 bands 80-$100+160-180,330-350 \mathrm{bp}$
lateralis

5(3) ApaI restriction gives a band of 560-580 bp, combined HaeII and ApaI restriction gives 2 bands 140-160 + 410-430 bp.
ApaI restriction gives 2 bands
...Table 6.5 Key to Mycosphaerella species occurring on Eucalyptus globulus in southwestern Australia based on restriction digest profiles of PCR product (ITSif/4 primer pair) of the ITS region of the rDNA using HaeII and ApaI

6(5) Culture growth $>15 \mathrm{~mm} /$ month, mycelia orange coloured after 2 months at $20^{\circ} \mathrm{C}$ on 2% MEA

aurantia

Culture growth $>15 \mathrm{~mm} /$ month, mycelia olivaceous (not orange-coloured) after 2 months at $20^{\circ} \mathrm{C}$ on 2% MEA
marksii
Culture very slow growing ($<5 \mathrm{~mm} /$ month), mycelia black, embedding in agar after 2 months at $20 \quad{ }^{\circ} \mathrm{C}$ on 2% MEA
suberosa

7(5) ApaI restriction gives 2 bands 80-100 $+490-$ 510 bp, combined HaeII and ApaI restriction gives 3 bands 70-90 $+170-190$ and 310-330 bp
mexicana
ApaI restriction gives 2 bands $140-160+420-$ 440 bp , combined HaeII and ApaI restriction gives 2 bands 150-180 $+240-260$

8

8(7) Ascospores > $12 \mu \mathrm{~m}$ long, cultures fast growing (40 mm month $^{-1}$); Phaeophleospora anamorph
Ascospores (6-) 8-9 (-11) $\mu \mathrm{m}$, type N or L germination pattern; cultures growth rate <20 mm month ${ }^{-1}$, no anamorph
parva

6.3.2 Species specific primer development

A BLAST search for the sequence sites for each of the primer pairs MC2F/ MC2R and MN1F/MN1R found no exact matches with non-target fungal or plant DNA, including closely related Mycosphaerella species.

PCR reactions resulted in a 400 bp product for the MC2 primer pair in the presence of M. cryptica DNA but not in the presence of any other of the nine Mycosphaerella species present (including M. nubilosa DNA). Similarly, the primer pair MN1 amplified a 400 bp product in the presence of M. nubilosa DNA, but not in the presence of DNA from the remaining nine species (Figure 6.3). Their corresponding species-specific primer pair amplified each of the 15 isolates of M. cryptica and M. nubilosa. None of the DNA from the three isolates each of the nontarget Mycosphaerella species gave a product in the PCR reactions.

Figure $6.3 \quad 1 \%$ agarose Gel of PCR product from Mycosphaerella DNA using primers specific for either M. cryptica or M. nubilosa. Lanes 1-8 M. nubilosa amplified with MN1F and MN1R primers; L1 R001, L2 R002, L3 R004, L4 R051, L6 R055, L7 R056, L8 R057. Lanes 9-15 M. cryptica amplified with MN2F and MN2R primers; L9 R120, L10 R089, L11 R090, L12 R114, L13 R102, 14 R115, L15 R118. Lane 16 HindIII/EcoRI Lamba DNA marker. L17 M. ambiphylla, M. aurantia, M. gregaria, M. lateralis, M. marksii, M. mexicana, M. nubilosa, M. parva, M. suberosa combined with MC2F, MC2R primers; L18 M. ambiphylla, M. aurantia, M. cryptica, M. gregaria, M. lateralis, M. marksii, M. mexicana, M. parva, M. suberosa combined with MN1F, MN1R primers.

6.4 Discussion

Primers that selectively amplify DNA from M. cryptica and M. nubilosa, the two most important causes of MLD were successfully developed in the current study. This will allow non-Mycosphaerella -specialists with access to basic molecular laboratory facilities to identify of these two species. Although these primers were not tested for the amplification of M. cryptica and M. nubilosa DNA from infected host plant tissue, methods for detecting Mycosphaerella and other fungal DNA in plant tissue are well established (Beck \& Ligon 1995, Johanson 1995, Johanson et al. 1994, Johanson \& Jeger 1993, Dunstan et al. 2000). The primers from the current study will enable early diagnosis of the causal organism of MLD in a plantation, once a protocol for the direct amplification of Mycosphaerella DNA from host tissue has been finalised. The development of these primers will also facilitate studies into the early infection process of M. cryptica and M. nubilosa, in that the presence of the pathogen may be detected prior to the appearance of symptoms. Studies may be conducted to determine the length of a hemi-biotrophic phase, and the extent of tissue colonisation both spatially and temporally, beyond the necrotic lesion in these Mycosphaerella species. Previously, such studies have been hampered by the slow growth rate of these fungi in culture and the lack of media that would allow their selective isolation and detection by directly plating diseased and non-diseased host tissue.

Primers for the detection of other Mycosphaerella species are currently being tested (Jackson, S. pers. comm.) and will be utilised to investigate the disease aetiology of the MLD disease complex. Although M. cryptica and M. nubilosa are well studied, the role of other species in the MLD disease complex is not well understood. For example, M. marksii and M. parva are often isolated from diseased eucalypts but their ability to infect leaves and cause disease has not been proven (Park 1984, Park et al. 2000, Park \& Keane 1982a). This is because these pathogens are often isolated from lesions that are also colonised by other Mycosphaerella species, and hence it is difficult to obtain pure ascospore suspensions of M. parva and M. marksii for pathogenicity studies (Chapter 4.3). The development of speciesspecific primers will enable the order and pattern of species colonisation of a leaf
to be established. It may be that some of the less commonly isolated species, or those that sporulate on older senescing leaves, infect and cause disease on healthy young leaves, but are slower than other Mycosphaerella species to sporulate. Hence, they may appear to be saprophytes, but are in fact slowly maturing pathogens.

This specific PCR technique offers advantages over randomly amplified polymorphic DNA (RAPDs), the previously published molecular method for the identification of Mycosphaerella species from eucalypts (Carnegie et al. 2001). The use of species-specific primers is more reliable and robust than RAPDs, which are often not reproducible between different labs (Brown 1996, McDonald \& McDermott 1993). At present however, only two primers have been tested for the identification of Mycosphaerella species on eucalypts. Further primers need to be tested for the remaining species. These should be designed to give a different size PCR product for each species in order to enable multiplexing of the amplification mix so that the presence a number of Mycosphaerella species can be tested simultaneously in one PCR reaction. For the present, however, the PCR-RFLP method for discriminating between Mycosphaerella species on eucalypts will prove useful.

The PCR-RFLP system developed in the current study will make it easier to identify Mycospaherella species isolated off eucalypts. Also, it will facilitate the comparison of species between laboratories. These restriction profiles are consistent and reproducible, and will enable workers to confirm if their identification of a particular species on morphological traits, is the same as those of workers elsewhere.

Some possible discrepancies in Mycosphaerella identification that are apparent from the present study are those for M. gregaria and M. suberosa. The ITS rDNA PCR product from M. gregaria in the present study is 180 nt larger than all other species of Mycosphaerella identified from eucalypts, due to a large insertion. However, Hunter (2002) also amplified the ITS region of this species in South Africa, and does not mention this increased fragment size. Thus, one of these two species must have been misidentified as M. gregaria. Type material must be re-examined and the original type culture sequenced, in order to resolve this discrepancy.

The actual restriction profile for M. suberosa differed from that which was predicted on the basis of sequences downloaded from GenBank. The GenBank sequence was used to screen for restriction sites because isolates in the current study were incompletely sequenced. Therefore, the sequence of M. suberosa from the current study must differ from that on GenBank. Thus, it may be that M. suberosa is variable at the ApaI restriction site, or that M. suberosa is a species complex. It is difficult to envisage that this species could have been misidentified, as it is the most distinctive species to occur on eucalypts, in terms of its suberised lesion, unique germination pattern, very slow growth rate and unique black, folded colony appearance.

The restriction site based key for identifying Mycosphaerella species developed in the current study, is simpler and requires less steps than the morphology based key presented in Chapter 3. However, morphological and cultural observations are still required to arrive at a species determination. Further restriction digests could be introduced to help discriminate between species without the need to refer to cultural and morphological descriptions. The enzymes Alu, RsaI, and AccIII could be used to discriminate between M. marksii and M. aurantia; M marksii and M. suberosa; M. ambiphylla and M. parva respectively. A restriction based system to identify all 33 species of Mycosphaerella from eucalypts would become large and procedurally clumsy, and the simplest method is likely to be one based on conserved and reliable morphological characters, with restriction site profiles used to discriminate between morphologically similar species.

These techniques for the identification and differentiation of Mycosphaerella species have important functions in helping to manage MLD. Different species may have differing climatic requirements for disease development and therefore it is important that the particular complex of species present in a plantation is known. These techniques may help in identifying spore loads of different species in epidemiological studies. It may be possible to utilise real-time PCR techniques to quantify the level of disease caused by particular species at different times of the season.

Chapter 7

Phenotypic and genotypic variation within

 Mycosphaerella nubilosa in south-westernAustralia

Chapter 7 Phenotypic and genotypic variation within Mycosphaerella nubilosa in south-western Australia

7.1 Introduction

Mycosphaerella cryptica and M. nubilosa are regarded as the most serious causes of MLD on eucalypts (Carnegie 2000, Park 1988a, Park \& Keane 1987, Park \& Keane 1982b). Although M. nubilosa is widespread in south-eastern Australia, (Carnegie 2000, Park 1988a, Park \& Keane 1982b), it was only recently isolated in southwestern Australia (Maxwell, Hardy \& Dell 2001). M. nubilosa has been associated with a limited number of eucalypt hosts (E. bridgesiana, E. cypellocarpa, E. globulus, E. gunii, E. quadrangulata, E. viminalis) all within the series Viminalis (Park \& Keane 1984, Park et al. 2000). In south-western Australia, M. nubilosa has only been isolated from the exotically planted E. globulus (Maxwell et al. 2001) and its origin here is not known. It may have spread from endemic eucalypts, or have been recently introduced from south-eastern Australia with infected E. globulus seedlings.

No work has been published on the population genetics of M. nubilosa in Australia or elsewhere. An investigation into the population genetic structure of M. nubilosa will help answer questions such as those pertaining to the origin of this pathogen in south-western Australia.

Two techniques that have been used to estimate genotypic diversity in pathogen populations are vegetative compatibility groupings (VCG's) and randomly amplified polymorphic DNA (RAPD's). VCG typing is a conventional method that has been successfully used to estimate genotypic diversity of fungal pathogens on eucalypts and other hosts (Heerden 2001, Powell 1995). The attraction of this method is that it is cheap, technically simple and is usually relatively quick. RAPD's analysis is a molecular approach that has been used to measure genotypic diversity in Mycosphaerella (Czembor \& Arseniuk 1999, Hirst et al. 1999, Huang,

Smalley \& Guries 1995, Yi et al. 2000) as well as other plant pathogenic fungi. The advantages of RAPD over other commonly used molecular-based markers such as random fragment length polymorphism (RFLP $^{\prime}$), amplified fragment length polymorphism (AFLP's) and Microsatellite DNA, is that it is relatively cheap and quick to perform. Although it is a dominant marker system, this is not a major concern when the primary goal of a study is to identify clones from a haploid fungal population, such as Mycosphaerella nubilosa.

The current study investigates the phenotypic and genotypic variation of M. nubilosa in south-western Australia. The phenotypic variation was measured through a comparison of growth rate at different temperatures. The genotypic variation was determined on the basis of VCG and RAPD analyses.

7.2 Materials and Methods

7.2.1 Experimental overview

Phenotypic variation was compared amongst Mycosphaerella nubilosa populations from south-western Australia. This included a comparison of growth rate at three different temperatures.

The genotypic diversity $\left(\mathrm{G}^{\wedge}\right)$ amongst isolates of M. nubilosa from south-western Australia was measured using two different methods; firstly with RAPD's and secondly via VCG's. The value of G^{\wedge} obtained from the RAPD experiment was compared with that from a south-eastern Australian sample of M. nubilosa, based on data of Carnegie et al. (2001) that were re-analysed for the present study. Carnegie et al. (2001) indicated the number of unique banding profiles (genotypes) associated with M. nubilosa in a UPGMA tree derived from his study. This information was used to calculate the genotypic diversity of M. nubilosa from the eastern Australian sample.

The value of G^{\wedge} from the VCG data was compared with a value obtained from isolates of M. nubilosa from south-eastern Australia that were also tested in the current study. Similarly, VCG tests were made amongst M. cryptica isolates from south-western Australia and south-eastern Australia in order to determine the
genotypic diversity of M. cryptica. Details of the VCG methodology and calculations are given in section 7.2.5.

7.2.2 Fungal isolates

Single ascospore isolates of M. nubilosa were obtained from diseased E. globulus leaves as described previously (Chapter 4.2). Fungal cultures were maintained on 2% malt extract agar (MEA, Difco) at $25^{\circ} \mathrm{C}$ in the dark. The identity of the isolates and their origin are outlined in Table 7.1.

Table 7.1a Identity of Mycosphaerella isolates, used in the present study.

Isolate MURU number	Species	Geographical origin	Experimental use (Growth [G], VCG [V], RAPD's [R])
40	M. nubilosa	Tasmania	V
41	M. nubilosa	Tasmania	V
42	M. nubilosa	Tasmania	V
43	M. nubilosa	Tasmania	V
44	M. nubilosa	Tasmania	V
45	M. nubilosa	Tasmania	V
46	M. nubilosa	Tasmania	V
47	M. nubilosa	Tasmania	V
51	M. nubilosa	Victoria	V
52	M. nubilosa	Victoria	V
53	M. nubilosa	Victoria	V
54	M. nubilosa	Victoria	V
55	M. nubilosa	Victoria	V
56	M. nubilosa	Victoria	V
57	M. nubilosa	Victoria	V
58	M. nubilosa	Victoria	V
59	M. nubilosa	Victoria	V
61	M. nubilosa	Victoria	V
62	M. nubilosa	Victoria	V
63	M. nubilosa	Victoria	V
64	M. nubilosa	Victoria	V
65	M. nubilosa	Victoria	V
66	M. nubilosa	Victoria	V
67	M. nubilosa	Victoria	V
68	M. nubilosa	Victoria	V
69	M. nubilosa	Victoria	V
71	M. nubilosa	Victoria	V
72	M. nubilosa	Victoria	V
76	M. nubilosa	Victoria	V
70	M. nubilosa	Victoria	V
71	M. nubilosa	Victoria	V
72	M. nubilosa	Victoria	V
73	M. nubilosa	Victoria	V
74	M. nubilosa	Victoria	V

...Table 7.1a Identity of Mycosphaerella isolates, used in the present study.

Isolate MURU number	Species	Geographical origin	Experimental use (Growth [G], VCG [V], RAPD's [R])
75	M. nubilosa	Victoria	V
76	M. nubilosa	Victoria	V
77	M. nubilosa	Victoria	V
155	M. nubilosa	Western Australia	V
156	M. nubilosa	Western Australia	V
157	M. nubilosa	Western Australia	V
158	M. nubilosa	Western Australia	V
160	M. nubilosa	Western Australia	V
161	M. nubilosa	Western Australia	V
162	M. nubilosa	Western Australia	V
163	M. nubilosa	Western Australia	V
164	M. nubilosa	Western Australia	V
165	M. nubilosa	Western Australia	V
166	M. nubilosa	Western Australia	V
167	M. nubilosa	Western Australia	V
301	M. nubilosa	Western Australia	G, V, R
302	M. nubilosa	Western Australia	G, V, R
303	M. nubilosa	Western Australia	G, V, R
304	M. nubilosa	Western Australia	G, V, R
305	M. nubilosa	Western Australia	G, V, R
306	M. nubilosa	Western Australia	G, V, R
307	M. nubilosa	Western Australia	G, V, R
308	M. nubilosa	Western Australia	V, R
309	M. nubilosa	Western Australia	G, V, R
310	M. nubilosa	Western Australia	G, V, R
311	M. nubilosa	Western Australia	G, V, R
312	M. nubilosa	Western Australia	G, V, R
313	M. nubilosa	Western Australia	V, R
314	M. nubilosa	Western Australia	G, V, R
315	M. nubilosa	Western Australia	G, V, R
316	M. nubilosa	Western Australia	G, V, R
317	M. nubilosa	Western Australia	G, V, R
318	M. nubilosa	Western Australia	G, V, R
319	M. nubilosa	Western Australia	G, V, R
320	M. nubilosa	Western Australia	G, V, R
321	M. nubilosa	Western Australia	G, V, R
323	M. nubilosa	Western Australia	V, R
325	M. nubilosa	Western Australia	G, V, R
85	M. cryptica	Queensland	V
86	M. cryptica	Queensland	V
101	M. cryptica	Western Australia	V
102	M. cryptica	Western Australia	V
103	M. cryptica	Western Australia	V
104	M. cryptica	Western Australia	V
105	M. cryptica	Western Australia	V
106	M. cryptica	Western Australia	V
107	M. cryptica	Western Australia	V
109	M. cryptica	Western Australia	V
110	M. cryptica	Western Australia	V
111	M. cryptica	Western Australia	V
112	M. cryptica	Western Australia	V
113	M. cryptica	Western Australia	V
114	M. cryptica	Western Australia	V
115	M. cryptica	Western Australia	V
116	M. cryptica	Western Australia	V
117	M. cryptica	Western Australia	V

...Table 7.1a Identity of Mycosphaerella isolates, used in the present study.

Isolate MURU number	Species	Geographical origin	Experimental use (Growth [G], VCG [V], RAPD's [R])
118	M. cryptica	Victoria	V
119	M. cryptica	Victoria	V
120	M. cryptica	Victoria	V
121	M. cryptica	Western Australia	V
122	M. cryptica	Western Australia	V
123	M. cryptica	Western Australia	V
124	M. cryptica	Western Australia	V
126	M. cryptica	Western Australia	V
127	M. cryptica	Western Australia	V
128	M. cryptica	Western Australia	V
129	M. cryptica	Western Australia	V
130	M. cryptica	Western Australia	V
132	M. cryptica	Western Australia	V
133	M. cryptica	Western Australia	V
134	M. cryptica	Western Australia	V
135	M. cryptica	Western Australia	V
136	M. cryptica	Western Australia	V
137	M. cryptica	Western Australia	V
141	M. cryptica	Victoria	V
142	M. cryptica	Victoria	V
143	M. cryptica	Tasmania	V
144	M. cryptica	Tasmania	V
145	M. cryptica	Western Australia	V

Table 7.1b Identity of Cryphonectria isolates, used in the present study.

Isolate number	Species	Geographical origin	Experimental use (Growth [G], VCG [V], RAPD's [R])
E 2	C. eucalypti	Western Australia	V
E3	C. eucalypti	Western Australia	V
E4	C. eucalypti	Western Australia	V
E5	C. eucalypti	Western Australia	V
C1	Cryphonectria cubensis	South Africa	V

7.2.3 Phenotypic variation

Growth rate

The growth rate of twenty isolates of Mycosphaerella nubilosa was determined at three different temperatures $\left(15,25\right.$ and $\left.28^{\circ}\right)$ with three replicate plates per isolatetemperature treatment. Inoculum plugs of 5 mm diam were dissected with a sterile cork borer from the margin of an actively growing colony on MEA, and placed mycelial side down at the centre of a Petri-dish of MEA (20 ml ; Difco).

These plates were sealed with Parafilm M (American National Can., Chicago, USA) incubated in the dark and the radial diam of the cultures measured after 4, 6 and 8 wk .

In addition to radial diameter, the dry weight of 15 M . nubilosa isolates was recorded after 8 wk growth at 18,25 and 28°. These isolates were grown on a sterile cellophane membrane over the MEA plates, in order to facilitate the removal and assessment of mycelial weight. Prior to placing over the MEA, the cellophane was cut into 90 mm discs, and softened by boiling for 2 h in 1 L of water, amended with 1 g of EDTA. This was followed by boiling for 2 h in water, the water changed and boiled again for 2 h . The discs were then placed into a glass Petri-dish, sealed with aluminium foil, and sterilised by autoclaving for 20 min at $121^{\circ} \mathrm{C}$ on three consecutive days. After the radial growth of the colonies was recorded, the mycelia was scraped from each plate and placed into a 1.5 ml microfuge tube. The mycelia were air dried at $60^{\circ} \mathrm{C}$ for 2 d until there was no further reduction in dry weight.

Statistical analysis

Prior to analysis, data for parametric tests were screened for assumptions of homoscedasticity, normality, non-correlations of means and variances and presence of outliers (Tabachnick \& Fidell 1996) using STATISTICA (v. 6). Where data did not fit these assumptions, they were transformed using accepted functions (Tabachnick \& Fidell 1996). Significant main effects and interactions were compared with the Least Significant Difference (LSD) test.

7.2.4 Genotypic variation within M. nubilosa based on RAPD's

DNA extraction.

Multiple hyphal fragments of the M. nubilosa isolates (Table 7.1) were inoculated into 80 ml of V-8 juice broth (Stewart et al. 1999). Flasks were incubated for 14-21 d at 21° in the dark, after which the mycelia were harvested and DNA extracted using the silica binding method described previously (Chapter 5.2). The DNA concentration was determined using a Hoefer DyNA Quant 200 fluorometer
according to the manufacturer's instructions. The DNA was then stored at -20° until RAPD-PCR amplifications.

PCR amplification and gel electrophoresis.
Twelve different 10-mer oligonucleotide primers were used in this study (Table 7.2). All RAPD-PCR reactions were performed aseptically in sterile $200 \mu \mathrm{l}$ microfuge tubes with a reaction volume of $25 \mu \mathrm{l}$, containing; 5 ng genomic DNA, 0.2 mM primer, 2.5 mM MgCl 2 (Biotech International), 1.1 U Tth plus polymerase (Biotech International), 1x polymerisation buffer (Biotech International) equivalent to 67 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.8,16.6 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 0.45 \%$ Triton X-100, $0.2 \mathrm{mg} \mathrm{ml}^{-1}$ gelatin, 0.2 mM dNTPs and sterile, deionised water (Astar) to make up the reaction volume. PCRs were performed in an Applied Biosystems GeneAmp 9600 thermocycler programmed for $94^{\circ}(2 \mathrm{~min})$ followed by forty cycles of $94^{\circ}(1 \mathrm{~min})$, $36^{\circ}(1 \mathrm{~min})$ and $72^{\circ}(2 \mathrm{~min})$. A water control was run with each series of PCR reactions to check for DNA contamination of reagents. The PCR products were electrophoresed on 1.5% agarose in $1 \times$ TAE buffer at 80 V for 1 hr and 20 min using 100 bp ladder (Fisher Biotec) as the molecular weight standard. Visualisation of DNA fragments was performed under UV lights following gel staining with ethidium bromide ($0.5 \mathrm{\mu g} \mathrm{ml}^{-1}$) for 15-30 min and de-staining in 1x TAE buffer for 10-15 minutes All PCR reactions were repeated to validate against false positive and negative bands.

Table 7.2 Sequence and source of RAPD primers.

Primer*	Sequence (5' - 3')
OPE-15	ACGCACAACC
OPI-2	GGAGGAGAGG
OPI-6	AAGGCGGCAG
OPI-9	TGGAGAGCAG
OPI-14	TGACGGCGGT
OPI-17	GGTGGTGATG
OPI-20	AAAGTGCGGG
OPV-8	GGACGGCGTT
OPV-18	TGGTGGCGTT
OPV-19	GGGTGTGCAG
OPX-1	CTGGGCACGA
OFW-6	AGGCCCGATG

*Primer reference numbers based on primer kits available from Operon Technologies, Inc., Alameda, California, USA

Genotypic data analysis

Reproducible DNA bands generated from agarose gel electrophoresis were scored either as present (1) or absent (0) in a binary matrix. These data were used for the estimation of genotypic diversity in the sample population. The genotypic diversity $\left(\mathrm{G}^{\wedge}\right)$ and its variance $\left(\operatorname{Var}\left(\mathrm{G}^{\wedge}\right)\right.$ were calculated from the frequency of M. nubilosa isolates occurring in each of the genotype groups using the following formulas (Stoddard \& Taylor 1988): $\mathrm{G}^{\wedge}=1 / \Sigma \mathrm{p}_{\mathrm{i}}{ }^{2} ; \operatorname{Var}\left(\mathrm{G}^{\wedge}\right)=4 / \mathrm{N}\left(\mathrm{G}^{2}\right)\left[\mathrm{G}^{2 \wedge} \mathrm{p}_{\mathrm{i}}{ }^{3}-1\right]$. Where p_{i} is the observed frequency of the i th of R genotypes, N is the sample size, G is the sample population genotypic diversity. The standard deviation of the sample genotypic diversity was calculated from the square root of the variance. The percentage of maximum diversity of the M. nubilosa sample population was calculated ((G/N)*100; (McDonald \& McDermott 1993).

In addition the value of G for the south-western Australia population of M. nubilosa from the current study was compared with that from an eastern Australian population of M. nubilosa from a previous study (Carnegie et al. 2001). The data from the previous work of Carnegie (et al. 2001) utilised a subset of 10-
mer primers from the current study in order to differentiate Mycosphaerella species. Thus in the current study, Carnegies data was re-analysed for the purpose of determining the genotypic diversity in the eastern Australian sample of M. nubilosa.

7.2.5 Genotypic variation within M. nubilosa based on VCG's

VCG design

Twenty-seven M. nubilosa and thirty-two M. cryptica isolates from south-western Australia, and thirty four and nine isolates of each species respectively, from eastern Australia, were used to investigate the existence of VCG's in these two species (Table 7.1). At least three replicates for each of six isolates were inoculated per agar plate in a design, which ensured that there were three interactions between each isolate on a plate (Figure 7.2). All possible permutations of the isolates were tested against one another. Three replicate plates were inoculated for each of the permutations.

VCG media

The VCG tests were established on 45 mm Petri-plates containing one of the following media (7 ml), the first three of which have previously been used for the purpose of determining VCG's. These were oatmeal agar (OA) without bromecresol green and the following three media, each amended with the pH indicator bromocresol green, at $50 \mathrm{mg} \mathrm{L}^{-1}$: MEAg ($24 \mathrm{~g} \mathrm{~L}{ }^{-1}$ Difco malt extract, 2 g L ${ }^{1}$ yeast extract, $200 \mathrm{mg} \mathrm{L}^{-1}$ tannic acid, $100 \mathrm{mg} \mathrm{L}^{-1}$ methionine, $2 \mathrm{mg} \mathrm{L}^{-1}$ biotin, 2 mg L^{-1} thiamine, and $20 \mathrm{~g} \mathrm{~L}^{-1}$ agar) (Heerden 2001)), Potato dextrose agar G (PDAg: Difco potato dextrose agar supplemented with $7 \mathrm{~g} \mathrm{~L}^{-1}$ malt extract, $2 \mathrm{~g} \mathrm{~L}^{-1}$ yeast extract, $800 \mathrm{mg} \mathrm{L}^{-1}$ tannic acid, $100 \mathrm{mg} \mathrm{L}^{-1}$ methionine, $2 \mathrm{mg} \mathrm{L}^{-1}$ biotin, $2 \mathrm{mg} \mathrm{L}^{-1}$ thiamine, and $5 \mathrm{~g} \mathrm{~L}^{-1}$ agar) (Powell 1995); K-C agar (1 g . L^{-1} casamino acids, 1 g . L^{-1} yeast extract, $1 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{Ca}\left(\mathrm{NO}_{3}\right) 2$, $200 \mathrm{mg} \mathrm{L}^{-1} \mathrm{KH} 2 \mathrm{PO} 4,250 \mathrm{mg} \mathrm{L}^{-1} \mathrm{MgSO} 4,150 \mathrm{mg} \mathrm{L}^{-1}$ $\mathrm{NaCl}, \mathrm{Tan}$, pers. comm.).

The OA was prepared by simmering 100 g of oats in 1 L of water (stirring occasionally) for 1 h . After the porridge had cooled it was sieved through a single
layer of cheesecloth. This extract was then made up to 1 L with distilled water and 30 g agar, then autoclaved at 121° for 20 minutes As a positive control, six isolates of Cryphonectria eucalypti from different VCG's (Jackson, T. pers. comm., Venter et al. 2001) were tested against each other on three replicate plates of each of the preceding media.

VCG identification and data analysis

VCG's were identified according to whether they had merged, forming a confluent mycelium (compatible), or whether they developed a barrage reaction at the point of mycelial contact (Anagnostakis 1977). On media incorporated with the pH indicator bromocresol green, incompatible reactions were further characterised by the formation of a dark coloured line along the area of mycelial contact (Powell 1995) where cell death had resulted in leakage of acidic cellular contents and altered the pH of the media.

VCG's were tabulated for each species. Each VCG was considered a distinct genotype and the Genotypic diversity was calculated as described above for the RAPD data.

7.3 Results

7.3.1 Phenotypic variation

Growth rates

There was a strong correlation between growth rates of each isolate as determined by mycelial mass and radial diameter ($\mathrm{r}^{2}=0.96, \mathrm{p}<0.05$), therefore only the analysis of radial growth is presented because this involved more isolates. There were significant differences in growth rate amongst isolates of M. nubilosa ($\mathrm{p}<0.01$) (Figure 7.1) at each of the three temperatures. The growth rate was fastest for all isolates at 25° and slowest at 15° (Figure 7.1). According to its growth at 25° each isolate was classified as fast ($>14 \mathrm{~mm} / \mathrm{mnth}$), moderate ($12-14 \mathrm{~mm} / \mathrm{mnth}$) or slow ($<12 \mathrm{~mm} / \mathrm{mnth}$). The occurrence of these growth rate phenotypes was compared amongst region of isolation. However, there was no obvious relationship between
region of origin and growth rate (Table 7.3) with isolates from each region ranging from slow to fast, except for Esperance which had only one isolate and that grew at a 'moderate' rate.

Table 7.3 Tabulation of isolate growth rates against their region of origin.

Isolate (MURU)	Region of origin	Growth rate
1 (301)	Esperance (Kalima)	Moderate
2 (302)	Albany (Napier Creek)	Moderate
3 (303)	Manjimup (Woodrakara)	Moderate
4 (304)	Albany (Cobertup)	Fast
5 (305)	Manjimup (Wren)	Moderate
6 (306)	Manjimup (Channeybearup)	Slow
7 (307)	Manjimup (Shedley)	Moderate
8 (309)	Manjimup (Boorara)	Moderate
9 (310)	Manjimup (Dudijup)	Fast
10 (311)	Denmark-Walpole (Gerner)	Moderate
11 (312)	Denmark-Walpole (Thomas)	Fast
12 (314)	Denmark-Walpole (Hamilton)	Fast
13 (315)	Denmark-Walpole (Bentink)	Slow
14 (316)	Bunbury - Augusta (Warranella)	Moderate
15 (317)	Bunbury - Augusta (Lamberti)	Fast
16 (318)	Bunbury - Augusta (Summerlea)	Moderate
17 (319)	Bunbury - Augusta (Kemp)	Slow
18 (320)	Bunbury-Augusta (Darling View)	Moderate
19 (321)	Denmark-Walpole (Blight)	Moderate
20 (325)	Bunbury - Augusta (Summerlea)	Fast

Figure 7.1 Comparison of radial growth (mm/month) amongst isolates of Mycosphaerella nubilosa at 15,25 and $28{ }^{\circ} \mathrm{C}$.

7.3.2 Genotypic variation

VCG data
No barrages formed between any combinations of M. nubilosa isolates on any of the four media tested and a confluent hyphal zone occurred between all isolates (Figure 7.2). However, on the positive control plates, C. eucalypti isolates of different VCG's did form barrages (Figure 7.2). The formation of barrage zones was evident after 2 wk growth of the C. eucalypti isolates. The barrage zones were most clear on OA, followed in order of clarity by PDAg, MEAg, K-CAg. The formation of confluent zones occurred after 3-6 months for M. nubilosa isolates. Many plates became contaminated with Penicillium and other species during this extended incubation time.

Tests between M. cryptica isolates also failed to induce barrage reactions. However, growth was extremely slow and mycelial contact only resulted from 10% of isolate pairings after 6 months of incubation. Therefore the genotypic diversity of M. cryptica was not calculated.

The genotypic diversity of the south-western Australian M. nubilosa population, as calculated from VCG data was 1 (Table 7.4). G^{\wedge} for the south-eastern Australia population was also 1.

Table 7.4 Genotypic diversity of a Mycosphaerella nubilosa population from southwestern Australia based on VCG data

Population	Genotype	Count	Frequency	$*^{*} \mathbf{G}^{\wedge}$
south-western Australia	1	1	$27 / 27$	1
south-eastern	1	1	$34 / 34$	1
Australia Combined east and west	1	1	$61 / 61$	1
$\mathrm{G}^{\wedge=\text { genotypic diversity; Var = variance; }}$ * Terms explained in text				

Eighty-two distinct, reproducible DNA bands were scored from all 12 primers, of which 3 (3.6\%) were polymorphic. The DNA banding pattern was identical for all isolates, with all primers tested, except for isolate R4 (Figure 1, lane 5). OPE-15 was the only primer to reveal genetic polymorphism (Figure 7.3).

The genotypic diversity of M. nubilosa based on RAPD's data was greater than that obtained from VCG data. The \mathbf{G}^{\wedge}, \% maximum diversity and variance values for the Western Australian population $(1.1,5.5,0.01)$ were smaller than the eastern Australian population (6.3, 48, 1.06) (Table 7.5).

Table 7.5 Comparison of the genotypic diversity of a Mycosphaerella nubilosa population from south-western Australia with that from south eastern Australia based on randomly amplified polymorphic deoxyribonucleic acid primer sites

Population	Genotype	Count	Frequency	\mathbf{G}^{\wedge}	\% Maximum diversity	$\operatorname{Var}\left(\mathrm{G}^{\wedge}\right)$
*Western	1	1	1/20	1.1	5.5	0.01
Australia						
	1	19	19/20			
*Eastern Australia	5	1	1/13	6.3	48	1.06
	1	2	2/13			
	2	3	3/13			

Figure 7.2 Vegetative compatibility reactions in Mycosphaerella nubilosa (a-c), M. cryptica(d-f) and Cryphonectria (g-h).Reactions are all compatible (comp) between different isolates of M. nubilosa and between different isolates of M. cryptica as no barrage zones are apparent. Some reactions are compatible and some reactions are incompatible (incomp) between isolates of Cryphonectria. Barrage zones are apparent between isolates from different VCG groups of Cryphonectria. The mycelia at the margins of the Mycosphaerella colonies is less dense than at the centre of the colonies due to nutrient depletion with time. Media was oatmeal agar (a, c, d, f, g, h), K-C (b), MEAg (e).

Figure 7.3 RAPD profile of Mycosphaerella nubilosa isolates obtained from primer OPE-15. Lane 1-20: 100 bp molecular weight ladder, R1, R2, R3, R4, R5, R6, R7, R9, R10, R11, R12, R14, R16, R17, R18, R19, R20, R22, negative control, 100bp ladder.

7.4 Discussion

The low level of genetic variation detected in the sample population suggests that M. nubilosa has spread from south-eastern Australia into Western Australia recently. Although M. nubilosa is widespread in south-eastern Australia, (Carnegie 2000, Park 1988a, Park \& Keane 1982b), it was only recently isolated in southwestern Australia (south-western Australia) (Maxwell et al. 2001). M. nubilosa has been associated with a limited number of eucalypt hosts (E. bridgesiana, E. cypellocarpa, E. globulus, E. gunii, E. quadrangulata, E. viminalis) all within the series Viminales (Dick \& Gadgil 1983, Park \& Keane 1984, Park et al. 2000). Of the eucalypts in WA that are within this series, none are forestry species or grow in high rainfall areas where MLD is likely to develop. Although there are now forestry eucalypts indigenous to south-western Australia that belong to the Viminales series, E. diversicolor is a closely related species in the same sub-genus, Symphomyrtus. Due to their phylogenetic closeness to the Viminales, these species may be potential hosts for M. nubilosa. Over time genetic mutation or sexual recombination in M. nubilosa could more easily result in adaptation to such related hosts than to less related hosts such as E. marginata.

Although Carnegie et al. (2001) concluded that a sample of M. nubilosa isolates from eastern Australia had a low degree of genetic variation with the unweighted pair-group mean method using arithmetic means (UPGMA) this was in comparison to M. cryptica. They calculated that 13 M. nubilosa isolates from diverse hosts in eastern Australia clustered at a simple matching distance of less than 0.115 , compared with M. cryptica isolates which clustered at the greater distance of 0.3 (although M. cryptica was reduced to 0.064 when an outlying isolate from Tasmania was excluded). The genotypic diversity of M. nubilosa of this same sample (current study) is much lower than that for sample from south-western Australia. In the Carnegie et al (2001) study not more than three isolates shared an identical RAPD profile, whereas in the current study up 19 isolates shared the same identical RAPD profile.

VCG data indicated that there is no genotypic diversity in either the eastern or the western populations of M. nubilosa. This conclusion is contradicted by the RAPD data, which detected some degree of diversity in both populations. Therefore it is likely that M. nubilosa forms few or no compatibility groupings, or that the media utilised were inappropriate for detecting incompatibility reactions in this species. This technique was a slow and inconclusive way to measure genotypic diversity in the two Mycosphaerella species tested. RAPD's were far superior for this purpose. This conclusion is particularly evident when considering the even more slowgrowing M. cryptica, for which mycelial contact had not occurred between 90% of isolates tested, even after 6 months of growth. Thus, although VCG groups is a rapid and technically simple way of assessing genotypic diversity in relatively fast growing fungi such as Cryphonectria (Heerden 2001), it is inappropriate for studying large populations of slow growing species such as M. nubilosa or M. cryptica.

There were significant differences in growth rates amongst M. nubilosa isolates and this could have implications for the identification of species. It is important that the range of growth rate is clearly established when this is used as a criteria to help in the identification of taxa. The growth rate of isolates from diverse hosts from throughout the species occurrence should be used in order to establish reliable estimates of this parameter. Also, there were large differences in growth rates for the same isolates at different temperatures. An increase from 25 to 28 resulted in a large decrease in growth rate. This emphasises the importance of maintaining constant and accurate temperatures when conducting experiments to compare the growth rate between isolates, especially if this is used as a criteria to identify the isolate in question.

It is puzzling that although all isolates in south-western Australia are genotypically identical according to RAPD's data, they varied phenotypically in terms of their growth rates. This is an indication that the RAPD's method may not be sensitive to detect all of the genotypic variation of M. nubilosa in south-western Australia.

Chapter 8

General Discussion

Chapter 8 General Discussion

8.1 Summary of research findings

The key findings of this thesis were:
o MLD is the most widespread and severe disease in eucalypt plantations in south-western Australia
o The number of species associated with MLD in south-western Australia has increased from three to ten since 1994
o Importantly, M. nubilosa, which was absent in 1994 is now the greatest cause of MLD on young E. globulus in south-western Australia
o M. cryptica is the most significant cause of MLD on forestry eucalypts in general and on adult E. globulus foliage in particular
o The relative severity of MLD disease has increased in E. globulus plantations over the past ten years to the extent that it is now more severe in plantations than in traditional forestry areas in south-western Australia
o Phylogenetic evidence based on the ITS region of the rDNA is that anamorph genera associated with Mycosphaerella are polyphyletic
o Mycosphaerella as a teleomorph genus is probably mostly monophyletic, with the exception of the 'Dissoconium' clade which may have a separate evolutionary origin from the remaining species within Mycosphaerella, however, further work is required to resolve this issue
o Novel tools for the identification of Mycosphaerella species pathogenic on eucalypts, including species-specific primers for M. cryptica and M. nubilosa have been developed
o The genotypic diversity of the south-western Australian population of M. nubilosa was significantly lower than that of south-eastern Australia,
indicating that this pathogen was recently introduced into south-western Australia

The implications of these research findings are discussed below.

8.2 Mycosphaerella taxonomy

The study of MLD must be underpinned by a reliable and definitive taxonomy of the species that comprise this genus. Epidemiological work may be weakened or lead to erroneous conclusions if it is based on incorrect taxonomic assumptions. The work in the current thesis has led to a clearer understanding of the taxonomy of Mycosphaerella on eucalypts. Species, which were previously thought to be separate, have been demonstrated to probably be conspecific on the basis of ITS rDNA sequence comparison. Rapid methods for the reliable differentiation of Mycosphaerella species have been developed that will enable forest pathologists working in different laboratories and on separate continents to compare species amongst each other, with confidence. Using and extending the techniques outlined within, the taxonomic mistakes that have been made in some previous epidemiological studies of Mycosphaerella (Beresford 1978, Cheah 1977) need not be repeated.

Ideally, the taxonomic placement of Mycosphaerella at all levels from genus through to class should reflect its natural phylogeny. The phylogenetic evidence from the current study is that Mycosphaerella is an assemblage of polyphyletic anamorph genera. However, although Mycosphaerella as a teleomorph genus is probably mostly monophyletic, this is not entirely clear from the current study, or from previous similar work. There is some evidence that the 'Dissoconium' clade may be of a separate origin from other clades within Mycosphaerella. The Dissoconium clade may be phylogenetically closer to other genera within the Dothideales, such as Botryosphaeria or Dothidea, than to other lineages within Mycosphaerella. This conclusion is based on a tree that compared the ITS rDNA sequences of the sub-set of Mycosphaerella species occurring on eucalypts, and using more than one out group taxa (Botryosphaeria and Dothidea). Also, there are well-differentiated lineages within Mycosphaerella that may be phylogenetically
equivalent to genera within the Dothideales, in terms of the degree of ITS rDNA sequence divergence that they exhibit.

The separation of the Dissoconium anamorph clade of Mycosphaerella from the remaining Mycosphaerella species off eucalypts has also been discussed in earlier studies (Crous et al. 1999, Crous et al. 2000, Crous et al. 2001a). Their tree derived from the ITS rDNA regions indicated that the Dissoconium clade is distinctly separate from Mycosphaerella sensu-stricto (Crous et al. 2001a). Whereas, their cladogram inferred from the large sub-unit (LSU) of the rDNA, indicates that Dissoconium clusters within Mycosphaerella sensu-stricto. However, the latter of these cladograms, uses Cladosporium as an out-group. As this anamorph genus is known to have a Mycosphaerella teleomorph, it was inappropriate for the comparison of divergence within Mycosphaerella. Therefore, the topology of the LSU tree probably reflected a similarity between the Colletogloeopsis clade and the Cladosporium outgroup, not a similarity between the Dissoconium and the larger cercosporoid clade within Mycosphaerella. The advantage of the LSU tree however, is that this region is more conserved than the ITS rDNA, and the former is therefore more suited to resolving differences at higher taxonomic levels.

The remaining lineages outlined in the current study may represent phylogenetic sections within Mycosphaerella. Attempts so far to relate the molecular phylogeny of Mycosphaerella to its currently accepted taxonomic sections (Barr 1972, Crous et al. 2000) have been inconsistent. This is due to a number of reasons. Firstly, the criteria for differentiating these sections are artificial and based on characters that are not necessarily phylogenetically conserved. Secondly, many species of Mycosphaerella may not be readily or accurately ascribed to a particular section.

The criteria that are used to differentiate sections within Mycosphaerella include the arrangement and shape of asci and ascospores, ecology (for example parasitic v . saprobic), and anamorph affiliation (Barr 1972, Crous et al. 2000). There is no good evidence to suggest that these are phylogenetically conserved characters. The character states of parasitic versus saprobic ecology are correlated with climatic zone (Crous et al. 2000), and hence are homoplasious rather than homologous states. Anamorph states appear to be mostly polyphyletic, and did not correlate
strongly with the clades that emerge from molecular phylogenetic trees within Mycosphaerella in the current study and in previous work (Crous et al. 2001a, Crous, Kang \& Braun 2001b, Goodwin \& Zismann 2001, Stewart et al. 1999). Furthermore, molecular studies have not indicated whether the characters used to delineate Mycosphaerella from morphologically similar genera, are phylogenetically conserved. Characters such as ascal arrangement, ascospore pigmentation or number of septa, although convenient for classification, may not reflect phylogenetic differentiation of genera within the Dothideaceae. Although deeper level studies placing the Dothideales within the Dothidideomycetes are available (Guo, Hyde \& Liew 2000, Liu et al. 1999, Reynolds 1998, Silva-Hanlin \& Hanlin 1999, Winka, Eriksson \& Bang 1998), there have been no comprehensive studies considering the molecular phylogeny within the family Dothideaceae that may help delimit Mycosphaerella and other closely related genera. Until such studies are conducted, the status of the Dissoconium clade and even other clades within Mycosphaerella will remain ambiguous. The need for such studies is emphasised by the observation that the Dothideaceae, and at least one other family within the Dothideales (Phaeotrichaceae), appear to be polyphyletic (Liu et al. 1999, Lumbsch, Lindemuth \& Schmitt 2000). More genes need to be sequenced and a multi-gene based phylogeny worked out for Mycosphaerella and other genera within the Dothideales.

Mycosphaerella is a large genus comprising more than 1800 species (Corlett 1991). The present study supports the hypothesis, raised previously (Barr 1972, Corlett 1991, Crous et al. 2000), that this number may be artificially high, due to such factors as the separate naming of the same species on different hosts. An example of species synonymy revealed in the current study was that of M. molleriana. This species has been recorded on eucalypt hosts from a number of countries and has some reasonably distinctive morphological features, including an acervular anamorph state, Colletogloeopsis. Yet, on the basis of ITS rDNA sequence data a synonym for this species has recently been described as M. vespa (Carnegie \& Keane 1998, Milgate et al. 2001), with an apparently different anamorph state (Coniothyrium ovatum). The anamorph state for this species is therefore variable, probably according to environmental conditions, although it could also be strain
related; with some strains expressing the acervular form and others the pycnidial form.

Variability in the expression of features such as conidiogenesis and mitospore pigmentation has clouded the distinction of some anamorph genera connected with Mycosphaerella. The above example from the current thesis is a case in point. Colletogloeopsis forms thick-walled conidia in an acervulus, not in a pycnidium (Crous 1998); the conidia of Coniothyrium are formed in a pycnidium (Carnegie \& Keane 1998, Milgate et al. 2001). Therefore, the character of fruiting structure (acervular v. pycnidial) is influenced by strain or environmental conditions. As this character is not stable, it makes the taxonomy of these anamorph genera very difficult. Similar kinds of variability have been recorded in other anamorph genera, including Septoria (Verkley 1998, Verkley \& Priest 2000). Further work is required in determining which characters are stable, under what conditions, for the delimitation of anamorph taxa.

Such a study is needed for M. molleriana, which along with M. vespa should also consider the recently described M. ambiphylla (Chapter 3) that shares a similar ITS rDNA sequence to M. molleriana, but has a different anamorph state. These taxa have different anamorphs: Phaeophleospora ambiphylla in the case of M. ambiphylla; Colletogloeopsis in the case of M. molleriana; and Coniothyrium in the case of M. vespa. In P. ambiphylla the conidia and the conidiogenous cells are pale brown and finely verruculose, and conidiogenesis is both percurrent and sympodial (Chapter 3). Whereas, the conidia of Coniothyrium are verruculose and the conidiogenous cells are hyaline and smooth-walled, conidiogenesis is by percurrent proliferation only (Carnegie \& Keane 1998, Milgate et al. 2001). Therefore, numerous isolates of each of these three species should be grown on the same kind of substrate under the same conditions in order to compare conidiogenesis, conidia and fruiting structure. In the same study, the sequence from a range of neutral, appropriately variable non-coding areas of genes should be compared for each of these three species.

Molecular information has aided in the identification of synonymous taxa within Mycosphaerella in the current study. This has been possible through the comparison
of ITS rDNA sequences, which were identical or at least 99% similar between some species. Sequences obtained directly in the current study, indicated that intraspecies variation of the ITS rDNA was in the order of 1-2 nt, a figure which agrees with that of Goodwin \& Zismann (2001) for the 25 Mycosphaerella species that they considered. However, when sequences from the NCBI GenBank database are added to those from the current study, the degree of intra-specific variation increases somewhat. It is likely that most of this increase in intra-specific variation was due to incompletely edited sequences, or misidentified species lodged with GenBank. Considering these errors, it was argued in the current thesis, that intraspecies variation within Mycosphaerella may be up to 5 nt within the ITS 1 and 2 regions of the rDNA (discounting large insertions). Taxa that vary by 1-2 nt are likely to be conspecific. Those that vary by 3-6 nt may be more difficult to circumscribe with certainty. Taxonomic conclusions for these species must be based on sequences from large collections of isolates (20-30) from throughout their host and geographic range. If the differences are conserved as two distinct genotypes, with no gradation between them, then it is likely that the taxa are different species. However, if there is a gradation between the genotypes then they are conspecific.

On the basis of sequence information and morphological evidence the current study proposes that M. grandis is probably synonymous with M. parva and M. vespa is probably synonymous with M. molleriana. Other closely related taxa, such as the M. heimii complex, remain cryptic and further work is required on these. One species considered in the current study, M. lateralis, has two distinct genotypes that are different at 4 nt sites. These genotypes appear to be geographically separate. However, as this species is polyphagous, occurring on several host genera including Eucalyptus (Crous et al. 1999, Hoog, Hijwegen \& Batenburg-van der Vegte 1991), it is unlikely that populations would become geographically isolated on the same continent. Further work describing and sequencing more isolates of this species is required to ascertain if it is in fact two separate species, or whether they are simply two geographically isolated populations with limited gene flow.

8.3 Impact and Biogeography

The current study has determined that MLD is more severe and widespread in E. globulus plantations in south-western Australia, than in indigenous forest areas. This is in contrast with previous studies (Abbott et al. 1993, Carnegie et al. 1997), which found the disease to be low in plantations and generally higher at selected regrowth locations of endemic eucalypt forest of E. diversicolor or E. marginata. This shift in relative severity of the disease may be due to the increased area of plantation estate and the increased time that that estate has now been exposed to Mycosphaerella species. Close to 10 years has elapsed since those earlier studies, allowing for an increase in inoculum load within the E. globulus estate. Also, the studies of Abbott et al. (1993) may have been selective and only considered areas of indigenous forest where disease was known to occur, whereas the sampling in the current study was random.

The current thesis has shown that MLD of E. globulus in south-western Australia is a disease complex. The number of species associated with the disease there has increased from the three recorded in 1994 (Carnegie et al. 1997), to ten in 2001 (Maxwell et al. 2003, Maxwell et al. 2001, Maxwell et al. 2000) including two new species and five new records. Significantly, M. nubilosa, previously not recorded in south-western Australia, was found to be the most widespread and damaging foliar pathogen of E. globulus plantations there.

The increase in the number of records of Mycosphaerella species associated with MLD in south-western Australia is due to the rapidly expanding E. globulus estate in the region. The plantation estate in south-western Australia has grown from 5000 ha in 1988 (Bailey \& Dunconson 1998, Loch \& Floyd 2001) to over 150000 ha by 2001 (Anonymous 2000). This rapid expansion has resulted in a large area of even aged, closely spaced E. globulus in the higher rainfall regions of the state. The juvenile foliage of this eucalypt species is particularly susceptible to Mycosphaerella. As the size of the plantation estate has grown, so too has the inoculum load. Thus the likelihood of finding more species has increased along with the impact of the disease. However, except for M. nubilosa, the origin of these Mycosphaerella species on the exotically planted E. globulus remains uncertain.

Apart from M. cryptica and M. marksii, the Mycosphaerella species present in southwestern Australia have only been recorded on E. globulus, although recently more species have been recorded on E. diversicolor (Jackson et al. In prep.). These include M. marksii and M. parva along with new species not previously described. Mycosphaerella cryptica and M. nubilosa were the most severe and frequent causes of MLD on E. globulus. Similarly these two species are the major cause of MLD in south-eastern Australia (Carnegie et al. 1998, Park 1988a, Park et al. 2000). However, unlike south-eastern Australia, M. marksii was a widely recorded primary cause of disease at many plantations in south-western Australia. This pathogen frequently caused disease on adult foliage, and so like M. cryptica presents a threat for the entire life of the plantation. Consequently, more work needs to be conducted on the importance of this pathogen, including testing its pathogenicity.

The current study quantified the leaf phase and leaf surface occurrence of Mycosphaerella species on E. globulus. Although observations of this nature have been recorded previously, this is the first time that quantitative data have been assembled. It was found, for the first time, that M. nubilosa caused disease on adult as well as juvenile foliage. However, disease on adult foliage was rare, and the quantitative assessment of leaf phase preference supports previous work, in that M. nubilosa predominantly infects juvenile foliage. Over time, it will be interesting to observe whether the ability of M. nubilosa to infect adult foliage increases, a result of selection pressure. Mycosphaerella nubilosa was the most frequently occurring pathogen across the E. globulus estate. However, M. cryptica and M. nubilosa caused similar intensity of disease on juvenile foliage, and M. cryptica was the dominant cause of disease on adult leaves.

In the indigenous eucalypt forest of south-western Australia, MLD was present on E. diversicolor, E. jacksonii and E. marginata but absent on the more distantly related eucalypt, Corymbia calophylla. Disease severity was most pronounced on E. diversicolor, in contrast to earlier work which found disease on south-western Australian eucalypts to be greatest on E. rudis and E. marginata (Abbott et al. 1993, Carnegie et al. 1997). It was apparent from the current thesis that the major cause
of disease on E. diversicolor, E. jacksonii and E. marginata was M. cryptica. The reason for the absence of the remaining Mycosphaerella species on indigenous eucalypts, is unknown. Further work is required to determine the potential of host switching of Mycosphaerella species between indigenous eucalypts and the exotic E. globulus.

There is evidence that M. nubilosa, which has only been isolated from eucalypts within the series Viminales, is able to infect E. diversicolor but it is not yet clear if it can cause disease on this host (Jackson et al. 2001, Jackson et al. 2002). Infection studies and pathogenicity trials are required to determine the host range of Mycosphaerella species. Such studies have been hampered by the difficulty of obtaining sufficient quantities of pure ascospore suspensions, of the later sporulating species in particular. Obtaining pure ascospore suspensions from fresh material is compromised by the common occurrence of more that one Mycosphaerella species on a lesion and reliable methods for inducing ascospores in culture have not been developed for these pathogens.

8.4 Population genetics of M . nubilosa

The population of M. nubilosa in south-western Australia was found to be genetically uniform on the basis of RAPD analysis, in contrast to that of eastern Australia which was significantly more variable. Also, no variation in the rDNA was detected in the population in south-western Australia, as opposed to eastern Australia where there was some sequence variation at this locus. This pathogen was first detected in south-western Australia in 1998 (Chapter 3), twenty years after the first E. globulus plantations were established in the region. By 1998 M. nubilosa was present at every E. globulus plantation surveyed in south-western Australia (Chapter 4). In contrast, four years earlier it was not found at any of the plantations visited by Carnegie et al. (1997). The low population diversity of M. nubilosa suggests that it was recently introduced to south-western Australia and has spread rapidly from this limited introduction. The host range of M. nubilosa is thought to be narrow as it has only been isolated from eucalypts from the series Viminales, of the Symphomyrtus sub-genus. There are no representatives of this series in south-western Australia, therefore, it is unlikely that inoculum was
present on indigenous eucalypts and infected the introduced E. globulus. However, there are numerous eucalypts from the Symphomyrtus in this region that could possibly be hosts of M. nubilosa. Further surveys and pathogenicity testing of these hosts, such as E. diversicolor, needs to be conducted to be certain of the host range of M. nubilosa in south-western Australia.

The introduction of M. nubilosa into south-western Australia indicates the need to improve quarantine measures to reduce gene flow between pathogen populations of south-eastern and south-western Australia. Previously, eucalypt seed and seedling material has been moved amongst Australian states (Young, pers. comm.). Seedlings are sprayed with fungicide, however, this may act to mask the presence of MLD rather than to exclude it. A better approach would be to more closely monitor for disease symptoms before and after the transport of seedling material. This highlights the importance of good hygiene and quarantine strategies in controlling the spread of disease in the plantation eucalypt industry. It provides a warning of the ease with which a potentially more serious disease such as the guava rust (Puccinia psidii) could be introduced and spread within Australia via the plantation eucalypt industry.

8.5 Future research

There are five major directions that research in MLD needs to take. Firstly, a better understanding of the phylogeny of this genus should be pursued. Secondly, the role of different species that make up the disease complex needs to be understood, particularly in terms of disease epidemiology at a regional level. Thirdly, the population genetics of the more important Mycosphaerella pathogens should be elucidated. Fourthly, the mode of disease resistance in the host must be investigated. Fifthly, the economic impact of MLD should be monitored.

Research into the phylogeny of Mycosphaerella should involve a multi-gene approach, such as that of Geiser et al. (1998) that utilises some slower and faster evolving loci, in order to get good resolution at the intra- and inter-genus level. The possibility that Mycosphaerella may be polyphyletic, and that some lineages
within Mycosphaerella may be aligned with lineages in other generic taxa of the Dothideales, should not be ignored.

The role of the different species that comprise the MLD complex in south-western Australia needs to be investigated. This is in relation to host-range, and disease epidemiology. Is the host range of species greater than that suggested by results from the current thesis? Importantly, the disease epidemiology can now be investigated with a greater understanding of the Mycosphaerella species present in the region. The species specific primers developed in the current study could be used to verify the identification of ascospores counted in spore capturing devices. Alternatively, polyclonal antibodies could be developed against species of Mycosphaerella to accurately measure ascospore release of particular species, using techniques developed for M. brassicicola (Kennedy, Wakeham \& Cullington 1999, Wakeham 2000).

The population genetics of M. cryptica, M. marksii and M. nubilosa should be investigated. For M. cryptica the question of whether there are differences amongst populations on different hosts needs to be addressed, as does the degree of sexual recombination in this heterothallic species. For M. nubilosa the structure of populations in eastern Australia must be compared with that in south-western Australia. This is a homothallic fungus with a limited host range, and so more divergence between populations might be expected than that between populations of M. cryptica. These questions could be addressed using the RAPD markers tested in the current study, or with more powerful markers such as those targeting microsatellite DNA.

Disease resistance should be assessed in the field against multiple species of MLD. The species specific primers developed in the current study could be used to determine which species are responsible for the disease present in provenance trials. It is important in breeding resistance that it is known what taxa resistance is being selected against. The type of resistance that works for M. nubilosa may not correspond to that which works for M. cryptica. For example, a more rapid switch to the juvenile leaf phase may affect resistance to M. nubilosa, however, this may have little effect on M. cryptica which attacks adult foliage as readily as juvenile
foliage. Dungey et al (1997) found significant juvenile adult correlations in provenance susceptibility to MLD and Carnegie and Ades (2002) quantified the Mycosphaerella species involved. Although Carnegie (2000) found a correlation between provenances resistant to MLD in their juvenile foliage and those resistant in their adult foliage, a study by Maxwell, Hardy \& Dell (1998) found that there was no correlation between provenances that were resistant in their juvenile foliage and those resistant in their adult foliage. These differing conclusions may be due to differing suites of Mycosphaerella species at the two study sites. Therefore, more work needs to be conducted comparing the correlation between provenances resistant in their juvenile phase foliage and those resistant in their adult phase foliage. This needs to be done with the knowledge of the specific Mycosphaerella species involved in causing the disease. Again, species-specific primers would facilitate these objectives.

In terms of the eucalypt plantation industry it is important that strategies for the early detection of new Mycosphaerella species are established. Such strategies need to ascertain, what these species are, where they occur and the degree of threat that they pose. Also, changes in the distribution and impact of currently described species, needs to be monitored. A coordinated approach of plantation managers throughout Australia is needed to facilitate this. Staff, with skill in identifying Mycosphaerella and other disease causing species in eucalypt plantations need to be employed to measure and monitor disease throughout the plantation growing regions. Currently, plantations in Western Australia are routinely assessed at regular intervals in order to measure increases in wood volume and thereby determine the optimal time for harvest (Young pers. comm.). The assessment of pest and disease problems should become part of this inventory practice, such that plantation managers have a measure of current and past disease levels in their plantations. Currently, formal forest health surveillance units conduct annual detailed pest and disease surveys of plantations in eastern Australia (Carnegie pers. comm.) but my research into plantation managers records in WA indicate that pest and disease assessment is conducted in an ad hoc and uncoordinated way in Western Australia. With good quantitative pest and disease data, changes in disease level across geographic locations and over time could be measured. This
would help in targeting important areas for future research and in assessing the effectiveness of silvicultural methods in controlling disease. This work needs to occur in addition to basic research aimed at understanding and reducing the impact of MLD.

Further areas of research, which are important for the plantation industry, include the determination of Mycosphaerella species present in native eucalypt forests. This is an area of real concern in Australia where plantations are established alongside diverse areas of closely related eucalypt forest. This presents the opportunity of host switching of disease causing organisms, or the exposure of plantation eucalypts to a pathogen pre-adapted to that species. Another aspect of the close proximity of diverse eucalypt habitats is the potentially greater degree of genetic diversity in the pathogen population that may lead to novel combinations of alleles and consequently increased pathogenicity. This is particularly a problem if the industry moves towards clonal forestry in order to increase wood volume, harvesting and processing efficiencies and wood quality, as has occurred elsewhere. Where plantations are clonal, there is the potential for catastrophic losses to disease, if that particular genotype is susceptible.

There are also potential negative environmental impacts of plantations in close proximity to indigenous eucalypt forests. This is because disease levels may reach epidemic proportions in the monoculture conditions of the plantation, and thereby become a massive inoculum load for nearby forest. Thus high levels of disease could result in native forest because of disease epidemics in plantations. Also, there is the potential for Mycosphaerella species to be transported to new areas with seed or seedling material as has occurred with M. nubilosa on E. globulus (Chapter $3,4 \& 7$). If such disease causing species are moved to new areas and are able to infect a newly encountered host, then this could be a serious issue. Particularly, if the level of pathogenicity is high on the non-adapted host, as has occurred for some new encounter host pathogen interactions such as the well known example of potato and Phytophthora infestans (Fry \& Goodwin 1997).

Related to the new encounter interaction, is the potential for host switching of pathogens that are not pre-adapted to the newly encountered host. Mycosphaerella
species that move with plantation material into new areas may not initially be able to cause disease on newly encountered hosts. However, if the inoculum loads from plantations remain high, and there is mutation or sexual recombination in the pathogen population, over time evolution may occur in the pathogen population such that it is able to switch hosts to indigenous eucalypt species.

The impact of MLD on growth rates of E. globulus was not considered in the current study. However, work by Carnegie et al. (1998) found that MLD leaf infection levels as low as 10% resulted in a 17% reduction in height of E. globulus. Similar impacts have been observed in chemical exclusion trials of pests and diseases of E. globulus in south-western Australia (Neumiester-Kemp et al. 2003). This work is on-going in south-western Australia and similar trials should be repeated elsewhere in order to gauge the economic impact of MLD on this industry. Particularly as this impact is likely to increase as inoculum levels rise over time and the industry plants a narrower genetic base of trees (possibly clonal), selected primarily for growth rate properties.

8.6 Conclusion

The differentiation of Mycosphaerella species on morphological characters is difficult and has led to erroneous placement of taxa in the past. The current study has shown that sequence variation of the ITS rDNA is suitable for the differentiation of Mycosphaerella species, but that more genes need to be sequenced to adequately answer phylogenetic questions pertaining to this and related genera. Molecular techniques were developed, that are more reliable than conventional means, for the identification of Mycosphaerella species occurring on eucalypts. These techniques include a PCR based method that will enable more a powerful resolution of important ecological and epidemiological questions regarding MLD. These are areas of research that must be pursued to effectively control MLD in eucalypt plantations into the future.

The increase in the level of MLD in plantations in south-western Australia has been marked over the past ten years. This is such that levels of disease were low
compared with native eucalypt forestry stands. Significantly, M. nubilosa the most important pathogen of juvenile E. globulus, which was absent from plantations in south-western Australia ten years ago, is now the most widespread cause of disease in this region. In addition, the number of species associated with this disease in south-western Australia has increased from 3 to at least 10 over this same time period. The presence of M. nubilosa in particular can be attributed to the movement of plantation material and its impact underscores the need for improved quarantine in this industry. It is likely that disease levels will continue to increase in plantation forestry due to inoculum build up, the movement of pathogen species and genotypes and the reduction in genetic diversity in eucalypts planted. It remains important for the eucalypt plantation industry that research continues into MLD.

Appendices

Appendix 2.1a Foliar analysis of Eucalyptus globulus plantations assessed for pests and diseases in south-western Australia

Sample	$\begin{aligned} & \mathrm{N} \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[P] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{K}] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{S}] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{Ca}] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{Mg}] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{Fe}] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{Zn}] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & {[\mathrm{Mn}]} \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & {[\mathrm{Cu}]} \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[B] \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$
frankland R. plot 1	16.1	1.1	1.0	11.0	3.8	2.2	8.1	21.8	45.7	19.3	17.4
frankland R. plot 2	17.3	1.3	1.0	9.1	3.3	2.1	9.5	28.4	175	16.9	14.9
frankland R. plot 3	18.3	1.4	1.1	11.5	3.5	2.0	10.9	24.9	66.4	20.3	15.7
frankland R. plot 4	14.4	1.1	1.0	12.0	3.5	2.2	7.1	19.2	64.2	17.6	15.2
range Montana97 P1	32.8	2.4	2.0	15.0	3.4	2.3	10.1	37.4	39.7	27.6	22.2
range Montana97 P2	31.4	2.4	1.7	15.4	4.4	1.9	6.0	32.7	72.9	35.1	24.4
range Montana97 P3	17.2	1.2	1.1	12.8	4.6	1.8	6.5	23.2	75.1	25.1	18.2
range Montana97 P4	18.1	1.1	1.0	10.2	5.7	2.4	5.0	16.2	86.6	19.3	16.0
Kelora 8/2/00 P2 R1	18.8	1.7	12.0	1.5	3.7	2.0	12.6	23.4	37.5	9.5	16.8
Kelora 8/2/00 P2 R2	19.1	1.6	10.0	1.4	6.0	2.4	11.5	20.9	29.9	8.4	20.8
Kelora 8/2/00 P2 R3	18.2	1.7	10.9	1.3	4.5	2.4	14.9	21.2	25.7	8.4	19.2
Kelora 8/2/00 P3 R1	17.8	1.4	7.5	1.2	5.1	2.4	21.3	17.7	48.2	5.8	17.7
Kelora 8/2/00 P3 R2	20.0	1.6	11.2	1.5	4.3	2.4	13.3	24.6	28.0	7.9	20.2
Kelora 8/2/00 P3 R3	19.6	1.4	9.0	1.3	5.8	2.6	20.4	20.0	34.4	7.0	18.8
Kelora 8/2/00 P4 R1	20.6	1.6	10.3	1.5	5.6	2.5	20.4	24.1	78.2	7.3	22.7
Kelora 8/2/00 P4 R2	25.8	1.9	12.9	1.6	5.1	2.5	12.2	26.4	82.0	8.5	20.5
Kelora 8/2/00 P4 R3	23.2	1.6	10.4	1.6	6.0	2.6	23.2	20.9	74.2	6.7	20.3
deficient	17	0.9	7	1.2			15	11	19	2.6	10
adequate	25	1.3	9	1.3	3	0.8	33	15	100	5	12

Appendix 2.1b Foliar analysis of Eucalyptus globulus plantations assessed for pests and diseases in south-western Australia

| Sample | $[\mathbf{C u}]$ | $[\mathbf{F e}]$ | $[\mathbf{Z n}]$ | $[\mathbf{M n}]$ | $[\mathbf{B}]$ | $[\mathbf{P}]$ | $[\mathbf{S}]$ | $[\mathbf{K}]$ | $[\mathbf{M g}]$ | $[\mathbf{C a}]$ | $[\mathbf{N a}]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$[\mathbf{N}]$

Appendix 2.1c Foliar analysis of Eucalyptus globulus plantations assessed for pests and diseases in south-western Australia

Sample	$\begin{aligned} & {[\mathrm{N}]} \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline[\mathrm{P}] \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { [S] } \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$	$\begin{aligned} & {[\mathrm{K}]} \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$	[Ca] mg / g	$\begin{aligned} & {[\mathrm{Mg}]} \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$	$\begin{aligned} & {[\mathrm{Cu}]} \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \hline[\mathrm{Zn}] \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$	[Mn] mg / g	[Fe] mg / g	$\begin{aligned} & {[\mathrm{B}]} \\ & \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$
Kelora 97, C3 P2	1.8	1.2	1.2	5.8	9.8	2.3	5.0	25.1	167.9	62.7	25.1
Kelora 97, C2 P3	1.8	1.0	1.1	4.3	9.1	1.8	5.0	27.5	127.3	44.9	22.5
Kelora 97, C2 P4	2.1	1.1	1.3	4.2	8.8	2.1	5.0	17.7	254.7	25.2	22.7
$\begin{aligned} & \text { Range Montana 97, } \\ & \text { C4 P1 } \end{aligned}$	1.8	1.3	1.4	6.6	7.4	1.5	4.9	17.3	315.7	46.9	22.2
Range Montana 97, C5 P2	2.1	1.5	1.3	6.4	10.1	2.1	2.5	22.7	1283.7	32.8	37.8
$\begin{aligned} & \text { Range Montana 97, } \\ & \text { C6 P3 } \end{aligned}$	2.7	1.7	1.4	8.1	10.1	1.7	4.9	17.3	530.2	49.3	29.6
Range Montana 97, C14 P4	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Frankland River, C7 spl1	2.0	1.4	1.3	6.2	5.8	2.0	7.6	20.2	57.9	22.7	20.2
Frankland River, C1 spl2	2.5	2.0	1.6	6.6	5.9	1.6	10.0	32.3	947.8	14.9	19.9
Frankland River, C2 spl3	2.4	1.9	1.6	9.3	5.2	1.5	9.9	27.2	108.8	22.2	14.8
Frankland River, C3 spl4	2.0	1.5	1.2	9.6	6.1	1.9	7.5	17.5	147.1	10.0	17.5

Appendix 2.2 Procedures for rating pest and disease symptoms in

Eucalyptus globulus plantations

Nutrient disorders. Crown decline and stem distortion are two symptoms associated with micronutrient deficiency. Stem distortion was given a rating from 1 to 3 with 1 being non-distorted and 3 being severely distorted. Trees were rated for crown decline according to the $\%$ loss of leaves in the upper 25% of the tree canopy. The rating scale was log-linear following the increments: $0-6,7-12,13-$ $25,26-50$ and $>51 \%$ loss of leaves to crown area.

MLD and LBSF rating procedure Leaf disease symptoms on juvenile and adult leaves were rated separately according to the log rating scale (Figure 2.2).

Firstly, the presence or absence of lesions due to Mycosphaerella on the entire tree was recorded. Then juvenile foliage was rated on a branch at 1.5m high for 1996 plantings and on a branch at 0.75 m high for 1997 plantings. The branch most at right angles to the row of trees was selected. Juvenile foliage was rated as two separate categories: (a) recent flush; and (b) previous flush (season) of growth. Previous season's growth was assessed on a secondary branch occurring $1 / 3$ of the branch distance from the trunk. The middle ten leaves from this secondary branch (Figure 2.3) were rated by comparing with diagrams representing a loglinear increase in leaf area affected (Figure 2.2). New season's growth was assessed on the final ten leaves of the above-mentioned primary branch. Where adult foliage was affected, damage was assessed according to the log-linear scale for the lower 25% of adult foliage.
Fungal canker rating Canker symptoms included cracking and darkening of the bark, formation of callus tissue, gummosis or bleeding from wounds, the formation of a distinct lesion front where healthy 'green' tissue met unhealthy brown tissue. Five categories were awarded to the canker status of a tree (Figure 2.3).

C1 if no canker greater than 20% of tree circumference in any direction.
C2 if greater than 20% of circumference but not encircling the entire trunk, pycnidia present
C3 if encircling the entire trunk and pycnidia present
A category of C5 was for trees that had canker symptoms of a C3 but no pycnidia.
Where signs were present but symptoms did not exceed those required for a C2 then a C6 category was assigned to the tree.

For the purpose of statistical analysis the C6 was combined with the C2 category and the C3 with the C5 category.
Fungi causing cankers were identified in the field with the aid of a 10x hand lens. Cryphonectria pycnidia were clearly visible as orange pycnidia on cankers. Pieces
of tissue from three cankers at each site were collected and plated out to confirm the presence of Cryphonectria or other canker causing species, Botryosphaeria, Cryphonectria. and Pestalotiopsis

Leaf chewing insect damage Leaf damage due to insects was rated according to a \log scale (Figure 2.2) using the following increments: $0,1-3,4-6,7-12,13-25$, $26-50,51-75,76+\%$ damaged leaf area for entire canopy, unless otherwise stated. A single all encompassing chewing category was firstly rated according to the log-linear scale, followed by specific sub-categories.

Adult weevil damage was rated according to the percentage of canopy with unevenly chewed leaf margins (Figure 2.3) using the log-linear system described.
Chrysomelid beetles were assessed according to a scalloping symptom on leaves Figure 2.3), which was simply rated as present or absent on each tree.

Larval symptoms for weevils were irregularly grazed portions of the leaf (Figure 2.3).

Larval symptoms for beetles were evenly trimmed portions of the leaf (Figure 2.3).
Larval symptoms for weevils and chrysomelid beetles were simply rated as present or absent as were the following categories of damage: leaf miner ('shothole'), leaf and stem galls, small chlorotic lesions due to psyllids and other sapsucking insects, leaf skeletalisation, AGM symptoms (Figure 2.3). Damage caused by leaf blister sawfly was rated in terms of the percentage of blistered leaf (Figure 2.3) area within the juvenile and adult portion of canopy separately, according to the log-linear scale described.

Tip damage caused by psyllids was rated by randomly selecting 10 leaves and assessing the number of tips that were damaged. This was expressed as a percentage along a linear scale: $0,1-10,11-20,21-30,31-40,41-50,51-60$, $61-70,71-80,81-90,91-100 \%$.

Where insects were present on trees this was also recorded.

Appendix $5.1 \quad$ Sequence alignment of Mycosphaerella nubilosa and M.

cryptica

1 10 20 30 40 50
'98-125' TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C

TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGCCCG--C TCCGTAGGTG AACCTGCGTA GGGATCATTA CCGAGTGAGG GCCTCCGGGT TCCGTAGGTG AACCTGCGGA GGGATCATTA CTGAGTGCGG GCGCCAG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CCGAGTGAGG GCGGCAG--C TCCGTAGGTG AACCTGCGGA GGGATCATTA CTGAGTGCGG G--GCCAG--C TCCGTAGGTG AACCTGCGGA AGGATCATTA CCGAGTTCTCG GCTTCGGC
..... 60 70 . 80 .. 90 .. 100
'98-125' CCGAC-CTCC AACCCCATGT TTTCCAACC- ATGTTGCCTC GGGGGCGACC AYO45496 CCGAC-CTCC AACCCCATGC TTTCCAACC- ATGTTGCCTC GGGGGCGACC
'98-191'
R089
AYO45494
AYO45495
R090
AYO45498
AF309623
R091
R101
R110
R114
R115
R118
AF309622
AYO45507
AYO45508
AY045505
AY045506 AY045509
R051
R004
R002
R001
'98-101'
'98-099'
R057
AF449097
AF449098
AF449094
AF449096
AF449099
AF309618
AF449095
AF243401 CCGAC-CTCC AACCCCATGT TTTCCAACC- ATGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCAACC- ATGTTGCCTC GGGGGCGACC CCGAC-CTCC AACCCCATGT TTTCCAACC- ATGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCAACC- ATGTTGCCTC GGGGGCGACC CCGAC-CTCC AACCCTTTGT GAACGCATC- CCGTTGCGTC GGGGCCGACC CCGAC-CTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-CTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-CTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCССACC- ACGTTGCCTC GGGGGCGACC CCGAC-CTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-CTCC AACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-СTCС TACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC CCGAC-CTCC TACCCCATGT TTTCCCACC- ACGTTGCCTC GGGGGCGACC TCGACTCTCC CACCCTTTGT GAACGTACC TCTGTTGCTT TGGCGGC--TC
...... 110 120 130 140 150
'98-125' CGGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG
AYO45496 CGGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG
'98-191'
R089
AYO45494
AYO45495
R090
AYO45498
AF309623
R091
R101
R110
R114
R115
R118
AF309622
AYO45507
AYO45508
AY045505
AY045506 AY045509
R051
R004
R002
R001 '98-101'
'98-099'
R057
AF449097
AF449098
AF449094
AF449096
AF449099
AF309618
AF449095
AF243401 CGGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC ССTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC ССTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC ССTCAACT-C TGCATCTTTG CGGCCGCCGT GCCGGGGCCC CCGGCGGACC ССTCAACT-C TGCATCTTTG CTGCCGCCGT GCCGGGGCCC CCGGCGGACC CCTCAACT-C TGCATCTTTG CGGCCACCGC GCCGGGGCCC TCGCAGGACG CCTCAACG-C TGCATCTGTG CGGCCCCCGC GCCGGGGCCC TCGCAGGACC CCTCAACG-C TGCATCTGTG CGGCCCCCGC GCCGGGGCCC TCGCAGAACC CCTCAACGGC TGGATCTGTG CGGCCCCCGC GCCGGGGCCC TCGCAGGACC CCTCAACG-CT GCATCTGTG CGGCCGCCA--- -AAGGCCTTC AAA-----CTCCA GTCAGTAAAC GCAGA
'98-125' CGTCTGAGTG ATAACGAAAA ATCAATCAAA ACTTTCAACA ACGGATCTCT

AYO45496
'98-191
R089
AYO45494
AYO45495
R090
AYO45498
AF309623
R091
R101
R110
R114
R115
R118
AF309622
AYO45507
AYO45508
AY045505
AY045506 AY045509
R051
R004
R002
R001
'98-101'
'98-099'
R057 AF449097 AF449098 AF449094 AF449096 AF449099 AF309618 AF449095 AF243401

CGTCTGAGTG ATAACGAAAA ATCAATCAAA ACTTTCAACA ACGGATCTCT CGTCTGAGTG ATAACGAAAA - TCAATCAAA ACTTTCAACA ACGGATCTCT CGTCTGAGTG ATAACGAAAA ATCAATCAAA ACTTTCAACA ACGGATCTCT CGTCTGAGTG ATAACGAAAA -TCAATCAAA ACTTTCAACA ACGGATCTCT CGTCGGAGTA ATA-CAACCA ATCAATTAAA ACTTTCAACA ACGGATCTCT CGT-GGAGTA ATA-CAACCA ATCAATTAAA ACTTTCAACA ACGGATCTCT CGTCGGAGTA ATA-CAACCA ATCAATTAAA ACTTTCAACAACGGATCTCT CGTCTGA-TA ACA-AGTTAAT AAACT- -AAA ACTTTCAACAACGGATCTCT
'98-125' TGGTTCTGGC ATCGATGAAG AACGCAGCGA AATGCGATAA GTAATGTGAA AYO45496
'98-191'
R089
AYO45494
AYO45495
R090
AYO45498
AF309623
R091
R101
R110
R114
R115
R118
AF309622
AYO45507
AYO45508
AY045505
AY045506 AY045509
R051
R004
R002
R001
'98-101'
'98-099'
R057
AF449097
AF449098
AF449094
AF449096
AF449099
AF309618
AF449095
AF243401

TGGTTCTGGC ATCGATGAAG AACGCAGCGA AATGCGATAA GTAATGTGAA TGGTTCTGGC ATCGATGAAG AACGCAGCGA AATGCGATAA GTAATGTGAA
'98-125' TTGCAGAATT CAGTGAATCA TCGAATCTTT GAACGCACAT TGCGCCCTCT

AYO45496
'98-191'
R089
AYO45494
AYO45495
R090
AYO45498
AF309623
R091
R101
R110
R114
R115
R118
AF309622
AYO45507
AYO45508
AY045505
AY045506
AY045509
R051
R004
R002
R001
'98-101'
'98-099'
R057
AF449097
AF449098
AF449094
AF449096
AF449099
AF309618
AF449095
AF243401 TTGCAGAATT CAGTGAATCA TCGAATCTTT GAACGCACAT TGCGCCCTCT TTGCAGAATT CAGTGAATCA TCGAATCTTT GAACGCACAT TGCGCCCCCT TTGCAGAATT CAGTGAATCA TCGAATCTTT GAACGCACAT TGCGCCCTCT TTGCAGAATT CAGTGAATCA TCGAATCTTT GAACGCACAT TGCGCCCCTT GGTATTCCNG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC CCTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССАGССТ GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC CCTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC CCTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC CCTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC CCTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССАGССТ GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC CCTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ССТССAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTACACC ACTCCAGCCT GGTATTCCGG AGGGCATGCC TGTTCGAGCG TCATTTCACC ACTCCAGCCC GGTATTCCGG GGGGCATGCC TGTTCGAGCG TCATTACAAC ССTCAAGCTC

CGCTGGGTGT TGGGCATCGC GGTCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTGT TGGGCATCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTGT TGGGCATCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTGT TGGGCATCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTGT TGGGCATCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTGT TGGGCATCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTGT TGGGCATCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTAT TGGGCGTCTC GG- CTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG TGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTTGGTAT TGGGCGCCGC GGCCTCCGCG -----CGCCTC AATGTCTCCG CGCTGGGTCT TGGGCGCCGC GGCCTCCGCG ----CGCCTC AATGTCTCCG TGCTTGGAAT TGGGCACCGT CCTCACTGCG GACGCGCCTC AAAGACCTCG GCCG-AGCCG ACCGTCTCT- AAGCGTTGTG GCACAACTGT TTCGCTATCC GCCG-AGCCG ACCGTCTCT- AAGCGTTGTG GCACAACTGT TTCGCT-TCC GCCG-AGCCG ACCGTCTCT- CAGCGTTGTG GCACCACTGT TTCGCTGACG GCCG-AGCCG ACCGTCTCT- CAGCGTTGTG GCACTACTGT TTCGCTGACG GCGGTGGCTG TTCAGCCCT CAAGCGTAGT AGAATA-CAC CTCGCT---T GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT------TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC--GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT------TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT------TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC--GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT------TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TTA AACCCTT------TCACCAAA GGGACCGGTC TGGCG-CGC- -GCCG--TTA AACCCTT-----TCACCAAA GGGACCGGTC TGGCGGCGC- -GCCG--TT AAACCCTT-----TCACCAAA TGGAGCGGT- TGGCGTCGCC CGCCGGAC GAACCTTCTGAACTTTTCTCAA

	510	520	530	540
'98-125'	GGT	ATC	GAT-	CTG
AYO45496	GGT	ATC	GAT	CTG
'98-191'	GGT	ATC	GAT-	CTG
R089	GGT	TC	GAT	GCT
AYO45494	GGT	ATC	GAT-	CTG
AYO45495	GGT	ATC	GAT	CTG
R090	GGT	ATC	GAT-	CTG
AYO45498	GGT	ATC	GAT	
AF309623	GGT	ATC	GA	
R091	GGT	ATC	GAT-	
R101	GGT	ATC	GAT-	GCTG
R110	GGT	ATC	GAT-	GCTG
R114	GGT	ATC	GAT	GCT
R115	GGT	ATC	GAT-	GCTG
R118	GGT	ATC	GAT-	
AF309622	GGT	ATC	GGAT-	
AYO45507	GGT	ATC	GAT-	GCT
AYO45508	GGT	ATC	GAT-	CT
AY045505	GGT	ATC	GAT-	GCTG
AY045506	GGT	ATC	GAT-	GCTG
AY045509	GGT	ATC	GAT-	GCTG
R051	GGT	ATC	GAT-	GCTG
R004	GGT	ATC	GAT-	GCTG
R002	GGT	ATC	GAT-	GCTG
R001	GGT	ATC	GAT-	GCTG
'98-101'	GGT	ATC	GAT-	GCTG
'98-099'	GGT	ATC	GGAT-	GCTG
R057	GGT	ATC	GGAT-	GCTC
AF449097	GGT	ATC	GGAT-	
AF449098	GGT	ATC	GGAT-	
AF449094	GGT	ATC	GGAT	
AF449096	GGT	ATC	GGAT-	
AF449099	GGT	ATC	GGAT-	
AF309618	GGT	ATC	GGAT-	
AF449095	GGT	ATC	GGAT	
AF243401				

'98-125' TAAGCGGAGG A AYO45496 '98-191'
R089
AYO45494 AYO45495 R090
AYO45498 AF309623
R091
R101
R110
R114
R115
R118
AF309622
AYO45507
AYO45508
AY045505
AY045506
AY045509
R051
R004
R002
R001
'98-101
'98-099'
R057
AF449097
AF449098
AF449094
AF449096
AF449099
AF309618
AF449095
AF243401

TAAGCG-----
TAAGCGGAGG A
TAAGCGGAGG A
TAAGC------
TAAGC------
TAAGCGGAGG A
TAAGC------
TAAGCGGAGG A
TAAGCGGAGG A
TAAGCGGAGG A
TAAGCGGAGG A TAAGCGGAGG A TAAGCGGAGG A

TAAGCG-----
TAAGCG----
TAAGCG-----
TAAGCG-----
TAAGCG-----
TAAGCGGAGG A
TAAGCGGAGG A
TAAGCGGAGG A TAAGCGGAGG A TAAGCGGAGG A TAAGCGGAGG A TAAGCGGAGG A
\qquad
\qquad
\qquad
\qquad
TAAGCGGAGG A

Appendix 5.2: Sequence alignment all Mycosphaerella species on eucalypts

	$60 \quad 70$ 80 90100
R115	C------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R118	C------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R114	C-----------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R110	C------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R101	C--------- ----G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R091	C------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R090	C--------- ----G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
R089	C------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
'98-191'	C--------- ----G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
'98-125'	C------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CAAC
AF309622	C------------GGGTC CGACCTCCAAC CCTTT-GTG AAC---GCAT
R210	A------------G-CCC GACCTCCAAC CCCAT-GTT TCC---AAAC
R211	A------------G-CCC GACCTCCAAC CCCAT-GTT TCC---AAAC
AY045497	A------------G-CCC GACCTCCAAC CCCAT-GTT TCC---AAAC
784	A--------- ----G-CCC GACCTCCAAC CCCAT-GTT TCC---AAAC
'98-099'	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
'98-101'	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
R001	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
R002	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
R004	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
R051	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
AY045505	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
R057	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
AF449097	A------------G-CCC GACCTCCAAC CCCAT-GTT TTC---CCAC
sutton1346	A--------- ----GG-CCC GACCTCCGAC CCTTTT-GTG TCCT--ACAC
R215	C--------- -----GGCCC GACCTCCTAC CCCAT-GTG ACC---TCAC
SJ5	C--------- -----GGCCC GACCTCCTAC CCCAT-GTG ACC---TCAC
R216	C--------- -----GGCCC GACCTCCTAC CCCAT-GTG ACC---TCAC
R216Y	C--------- -----GGCCC GACCTCCTAC CCCAT-GTG ACC---TCAC
AY045503	TT----------CGGGGCCC GTCCTCCAAC CCCTT-GT ATAC---CAAC
AF310107	C------------GGGCTCG ACCTCCAACC CCATGTTTGTG TC--GAAC
'98-133'	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
'98-163'	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
dekk	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
'98-148'	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
'98-149'	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
R257	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
R258	GCGGAA---A CGCCGGGGCC TTCGTCCAAC CCTTT-GTGA ACG--TATC
R262	GCCGCA---A CGCCGGCGCC TTCGCCCAAC ССTTT-GTGA ATT--ACGC
AF243401	G--------G CTTCGGCTCG ACTCTCCCAC CСTTT-GTGA ACG--TACC
R234	-TCG-GCCCG ACCTCCAACC CTTT-GTGA AT--CA-AA
R243	--- -TCG-GCCCG ACCTCCAAC CCTTT-GTGA AT--CA-AA
R247	-- TCG-GCCCG ACCTCCAAC CCTTT-GTGA AT--CA-AA
R242	TCG-GCCCG ACCTCCAAC CCTTT-GTGA AT--CA-AA
AY045517	-- TCG-GCCCG ACCTCCAAC CCTTT-GTGA AT--CA-AA
AF173316	--- TCG-GGCCG ACCTCCAAC CCTTT-GTGA AT--CA-AA
parkii353	-TCACCGCCC GACCTCCAAC CCTTT-GTGA AC--CACAA
R151	- CTC ACGCCC GACCTCCAAC ССTTT-GTGA AC--CA-AC
R152	CTC ACGCCC GACCTCCAAC CCTTT-GTGA AC--CA-AC
R221	- CTCACGCCC GACCTCCAAC ССTTT-GTGA AC--CA-AC
R222	CTCACGCCC GACCTCCAAC CCTTT-GTGA AC--CA-AC
AF173314	----------- CTCACGCCC GACCTCCAAC CCTTT-GTGA AC--CA-AC
ken	--- -CGCAAGCC CGACCTCCAAC CCTTT-GTGA AC--CA-AC
R237	TCCGCCTGGC ACTGTTGCCC A-TTCTAAC CCTTT-GTG AACTACA-AC
R246	TCCGCCTGGC ACTGTTGCCC A-TTCTAAC CCTTT-GTG AACTACA-AC
R240	TCCGCCTGGC ACTGTTGCCC A-TTCTAAC ССTTT-GTG AACTACA-AC
AF173303	---------- --TCACGCCC A-TTCTAAC ССТTT-GTG AACTACA-AC
AF468869	-- -CTCACGCCC GACCTCCAAC CCTTT-GTG AAC-ACA-TC
AF222839	------------TTCGGTCC GACCTCCAAC CCTTT-GTG AAC--CA-AA
AF222843	----------TTCGGTCC GACCTCCAAC CCTTT-GTG AAC--CA-AA
AF222841	---------- --CTAGGTCC GACCTCCAAC CCTTT-GTG AAC--CA-AA
AF222842	-------- --TTCGGTCC GACCTCCAAC CCTTT-GTG AAC--CA-AA
colomb	------------TCCGGTCC GACCTCCAAC CCTTT-GTG AAC--CA-AT
AF309616	---- --CCCGGCCC GACCTCCAAC CCTTT-GTG GAC--CC-AA
AF309603	G--------------GCCC GACCTCCAAC CCTTT-GTG AATT-CGACC
cmw4937	G--------------GCCC GACCTCCAAC CCCAT-GTG AATC-TCACC
R248	G--------------GGCTC GACCTCCAAC CCCATT-GTA TTCC-GACCT
R251	C-------------GGGCTC GACCTCCAAC CCCAT---TG TATCCGACCT
R250	C-------------GGGCTC GACCTCCAAC CCCATT-GTA TTCC-GACCT
R249	C--------- ----GGGCTC GACCTCCAAC CССАTT-GTA TTCC-GACCT
AY045516	C--------- ----GGGCTC GACCTCCAAC CCCATT-GTA TTCC-GACCT
Dothidea	T-------- AACCGTCC TCCGACTTCC AACCCTCTG-TTG TTATAACTAC

	110120
R115	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG---------
R118	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
R114	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG--
R110	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
R101	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
R091	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
R090	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
R089	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
'98-191'	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG-
'98-125'	CATGTTGCCTCGG--GGGCGACCCGGCCG-CCGTGCCGGG
AF309622	CCCGTTGCGTCGG--GGCCGACCCTGCCG-CCGTGCCGGG-
R210	CACGTTGCCTCGG--GGGCGACCCGGCCG-CCGCGCCGGG---------
R211	CACGTTGCCTCGG--GGGCGACCCGGCCG-CCGCGCCGGG
AY045497	7 CACGTTGCCTCGG--GGGCGACCCGGCCG-CCGCGCCGGG----------
784	CACGTTGCCTCGG--GGGCGACCCGGCCG-CCGCGCCGGG--------- -- - - - - - -
'98-099'	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG--
'98-101'	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG-
R001	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG---------
R002	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG
R004	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG-
R051	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG---------
AY045505	5 CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG----------
R057	CACGTTGCCTCGG--GGGCGACCCGGCCA-CCGCGCCGGG---------
AF449097	CACGTTGCCTCGG--GGGCGACCCGGCCC-CCGCGCCGGG---------
sutton1346	CCTGTTGCCTCGG--GGGCGACCCGGCCG-CCGCGTCGGG---------
R215	TATGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCTGTTT---------
SJ5	TATGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCTGTTT-
R216	TATGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCTGTTT---------
R216Y	TATGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCTGTTT---------
AY045503	3 CATGTTGCCTCGG--GGGCGACCCGGCCG-TCCGGCCGATC---------
AF310107	ATTGTTGCTTCGG--GGGCGACCCGGCCGTCCGGGCCGCCG--------
'98-133'	TCTATTGCCCCGG--GGGAACCCCGCCTGTCATGGGCGTGG---------
'98-163'	TCTATTGCCCCGG--GGGAACCCCGCCTGTCATGGGCGTGG--------
dekk	TCTATTGCCCCGG--GGGAACCCCGCCTGTCATGGGCGTGG-
'98-148'	TCTATTGCCCCGG--GGGAACCCCGCCTGTCACGGGCGTGG--------
'98-149'	TCTATTGCCCCGG--GGGAACCCCGCCTGTCACGGGCGTGG--------
R257	TCTATTGCCCCGG--GGGAACCCCGCCTGTCACGGGCGTGG---------
R258	TCTATTGCCCCGG--GGGAACCCCGCCTGTCACGGGCGTGG-------- -- - - - - -
R262	CCGATTTCCCCGG--GGGGACCGCCTGCCCTGCGCGCGCGG--------
AF243401	TCTGTTGCTTTGG--CGGCTCCGGCCGCCAAAGGCCTTCAA---------
R234	CCTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GCGGCGC---------
R243	CCTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GCGGCGC---------
R247	CCTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GCGGCGC---------
R242	CCTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GCGGCGC---------
AY045517	17 CCTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GCGGCGC-
AF173316	CCTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GGCGCGC-
parkii353	CTTGTTGCTTCGG--GGGCGACCCTGCCGTTC--GCGGCAT--
R151	TCTGTTGCTTCGG--GGGCGACCCCGCCGTTTCGGCGACGG--------
R152	TCTGTTGCTTCGG--GGGCGACCCCGCCGTTTCGGCGACGG--------
R221	TCTGTTGCTTCGG--GGGCGACCCCGCCGTTTCGGCGACGG--------
R222	TCTGTTGCTTCGG--GGGCGACCCCGCCGTTTCGGCGACGG--------
AF173314	TCTGTTGCTTCGG--GGGCGACCCCGCCGTTTCGGCGACGG--------
ken	TCTGTTGCTTCGG--GGGCGACCCCGCCGTTTCGGCGACGGG--
R237	TCTGTTGCTTCGG--GGGCGACCCCGCCGTCTCGGCGGTGG--------
R246	TCTGTTGCTTCGG--GGGCGACCCCGCCGTCTCGGCGGTGG--------
R240	TCTGTTGCTTCGG--GGGCGACCCCGCCGTCTCGGCGGTGG--------
AF173303	TCTGTTGCTTCGG--GGGCGACCCCGCCGTCTCGGCGGTGG---------
AF468869	T-TGTTGCTTCGG--GGGCGACCCTGCCGGCCCTGCGTCGCC--------
AF222839	CTTGTTGCTTCGG--GGGCGACCCTGCCGCTTTGGCGGTGC---------
AF222843	CTTGTTGCTTCGG--GGGCGACCCTGCCGCTTCGGCGGTGC---------
AF222841	CTTGTTGCTTCGG--GGGCGACCCTGCCGCTTGGGCGGTGC---------
AF222842	CTTGTTGCTTCGG--GGGCGACCCTGCCGCTTCGGCGGTGC---------
colomb	CTTGTTGCTTCGG--GGGCGACCCTGCCGCTTCGGCGGTGC---------
AF309616	CTTGTTGCTTCGG--GGGCGACCCTGCCGTCTCGGCGGCGC---------
AF309603	TCTGTTGCCTCGG--GGGCGACCCGGCCCTCTGGGTGCCGG--------
cmw4937	TCTGTTGCCTCGG--GGGTGACCCGGCCCTCTGGGTGCCGG--------
R248	CTTGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCGTCGG--------
R251	CTTGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCGTCGG--------
R250	CTTGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCGTCGG--------
R249	CTTGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCGTCGG--------
AY045516	6 CTTGTTGCCTCGG--GGGCGACCCGGCCT-TCGGGCGTCGG--------
Dothidea	

GTCTGAGTGATAA-CGAA-AAATCAATCAAAACTTTCAACAACGGATCTC GTCTGAGTGATAA-CGAA-AA-TCAATCAAAACTTTCAACAACGGATCTC GTCTGAGTCACA--AAAT-AAATCAATCAAAACTTTCAACAACGGATCTC GTCTGAGTCACA--AAAT-AAATCAATCAAAACTTTCAACAACGGATCTC GTCTGAGTCACA--AAAT-CAATCAATCAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTAATA--CAAC-CAATCAATTAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--TGAT-AAATCAATCAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--TGAT-AAATCAATCAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--TGAT-AAATCAATCAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--TGAT-AAATCAATCAAAACTTTCAACAACGGATCTC GTCTAGTCTTTGATTATTGAATTGAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCTGAGTAACA---AACAAATCAAAACAAAACTTTCAACAACGGATCTC GTCCGAGTCTTAT--GAGAAATCAAACAAAAACTTTCAACAACGGATCTC GTCGGAGTA--C--TTGTTAATA-A-ACAAAACTTTCAACAACGGATCTC GTCGGAGTA--C--TTGTTAATA-A-ACAAAACTTTCAACAACGGATCTC GTCGGAGTA--C--TTGTTAATA-A-ACAAAACTTTCAACAACGGATCTC GTCGGAGTA--C--TTGTTAATA-A-ACAAAACTTTCAACAACGGATCTC -GTCGGAGTAATT--TTATTAATA-ACATAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAGTAAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAGTAAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAGTAAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAGTAAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAGTAAATT-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAG-AAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAG-AAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAG-AAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTCTTA--AAG-AAATTTAAACAAAACTTTCAACAACGGATCTC GTCGGAGTTT----AAACAAATT-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTTA----AAGTAAATT-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTTA----AAGTAAATT-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTAA----AAGTAAATT-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTAA----AAGTAAATT-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTAA----AAGTAAATG-AAACAAAACTTTCAACAACGGATCTC GTCGGAGTCT----CAGTAAATG-AAACAAAACTTTCAACAACGGATCTC GTCTGAGTATGAT-ATTTGAATCAA-TCAAAACTTTCAACAACGGATCTC GTCTGAGTA-AAT-ATTTGAATCAAATCAAAACTTTCAACAACGGATCTC GTCTGAGTAAAT----ATTGAATCAATCAAAACTTTTAACAACGGATCTC GTCTGAGTAAAT----ATTGAATCAATCAAAACTTTTAACAACGGATCTC GTCTGAGTATAAA-ATTTTAATTAAATTAAAACTTTCAACAACGGATCTC

R115
R118
R114
R110
R101
R091
R090
R089
'98-191'
'98-125' AF309622
R210
R211
784
'98-099'
'98-101'
R001
R002
R004
R051
AY045505
R057
AF449097
sutton1346
R215
SJ5
R216
R216Y
AY045503
AF310107
'98-133'
'98-163'
dekk
'98-148'
'98-149'
R257
R258
R262
AF243401
R234
R243
R247
R242
AY045517
AF173316
parkii353
R151
R152
R221
R222
AF173314
ken
R237
R246
R240
AF173303
AF468869
AF222839
AF222843
AF222841
AF222842
colomb
AF309616
AF309603
cmw4937
R248
251
2250 TTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGA
TTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGA
R249 TTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGA
AY045516 TTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGA
Dothidea TTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGA

R115
R118
R114
R110
R101
R091
R090
R089
'98-191'
'98-125' AF309622
R210
R211
784
'98-099'
'98-101'
R001
R002
R004
R051
AY045505
R057
AF449097
sutton1346
R215
SJ5
R216
R216Y
AY045503
AF310107
'98-133'
'98-163'
dekk
'98-148'
'98-149'
R257
R258
R262
AF243401
R234
R243
R247
R242
AY045517
AF173316
parkii353
R151
R152
R221
R222
AF173314
ken
R237
R246
R240
AF173303
AF468869
AF222839
AF222843
AF222841
AF222842
colomb
AF309616
AF309603
cmw4937
R248
R251 ATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC-
R250 ATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC-
R249 ATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC-
AY045516 ATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC-
Dothidea ATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC-

R115
R118
R114
R110
R101
R091
R090
R089
'98-191'
'98-125' AF309622
R210
R211
784
'98-099'
'98-101'
R001
R002
R004
R051
AY045505
R057
AF449097
sutton1346
R215
SJ5
R216
R216Y
AY045503
AF310107
'98-133'
'98-163'
dekk
'98-148'
'98-149'
R257
R258
R262
AF243401
R234
R243
R247
R242
AY045517
AF173316
parkii353
R151
R152
R221
R222
AF173314
ken
R237
R246
R240
AF173303
AF468869
AF222839
AF222843
AF222841
AF222842
colomb
AF309616
AF309603
cmw4937
R248
R251 TTGG--TATTCC----GAGGGGCATGCCTGTTCGAGCG-TCATTTCACC-A
R250 TTGG--TATTCC---GAGGGGCATGCCTGTTCGAGCG-TCATTTCACC-A
R249 TTGG--TATTCC---GAGGGGCATGCCTGTTCGAGCG-TCATTTCACC-A
AY045516 TCGG--TATTCC----GAGGGGCATGCCTGTTCGAGCG-TCATTTCACC-A
Dothidea TTGG--TATTCC---GAGGGGCATGCCTGTTCGAGCG-TCATTACACC-A

R115
R118
R114
R110
R101
R091
R090
R089
'98-191'
'98-125'
AF309622
R210
R21

R001
R002
R004
R051
AY045505
R057
AF449097
sutton1346
R215
SJ5
R216
R216Y
AY045503
AF310107
'98-133'
'98-163'
dekk
'98-148'
'98-149'
R257
R258
R262
AF243401
R234
R243
R247
R242
AY045517
AF173316
parkii353
R151
R152
R221
R222
AF173314
ken
R237
R246
R240
AF173303
AF468869
AF222839
AF222843
AF222841
AF222842
colomb
AF309616
AF309603
cmw4937
R248
R251
R250 R249

CTC-AAGCCTGGCTTGGTATTGGGCGCCGCGGTT-----TGCC-GCGCGC Dothidea CTC-AAGCACTGCTTGGTATTGGGCATCGTCCGTCGAAAGGCGGGCGTGC
R250

CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA СTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTAA-GCGTTGTGGCA-CA CTCGAAGTCT-CCGGCCGAGCC-GACCGTCTCCAA-GCGTTGTGGCA-CA CTCGAAGTCT-CCGGCCGAGCC-GACCGTCTCCAA-GCGTTGTGGCA-CA CTCGAAGTCT-CCGGCCGAGCC-GACCGTCTCCAA-GCGTTGTGGCA-CA CTCGAAGTCT-CCGGCCGAGCC-GACCGTCTCCAA-GCGTTGTGGCA-CA CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGTGGCA-CC CTCAATGTCT-CCGGCCGAGCC-GACCGTCTCTCA-GCGTTGIGGCA-CT CCCAATGTCT-CCGGCTGAGCC-ATCTATCTCAGA-GCGTTGTGGTA -CCCAATGTCT-CCGGCTGAGCC-ATCTATCTCAGA-GCGTTGTGGTA---
CCCAATGTCT-CCGGCTGAGCC-ATCTATCTCAGA-GCGTTGTGGTA---CCCAATGTCT-CCGGCTGAGCC-ATCTATCTCAGA-GCGTTGTGGTA----CCCAATGTCT-CCGGCTCAGCCCAACGTCCTCGAA-GCGATTTGATT--CTCAAAGTCT-TCGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT CTCAAAGTCT-TCGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT CTCAAAGTCT-TCGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT
CTCAAAGTCT-ACGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT CTCAAAGTCT-ACGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT CTCAAAGTCT-ACGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT CTCAAAGTCT-ACGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGACACAT CTCAAAGTCT-TCGGCGGAAGCCGCCCGTTCCTCT-GCGTGATGCATCGT CTTAAAGTTT-CCGGCTGGACC-GTCCGTCTCCGA-GCGTTGTGG--CAT CTTAAAGTTT-CCGGCTGGACC-GTCCGTCTCCGA-GCGTTGTGG--CAT CTTAAAGTTT-CCGGCTGGACC-GTCCGTCTCCGA-GCGTTGTGG--CAT CTTAAAGTTT-CCGGCTGGACC-GTCCGTCTCCGA-GCGTTGTGG--CAT CTTAAAGTTT-CCGGCTGGACC-GTCCGTCTCCGA-GCGTTGTGG--CAT CTCAAAGTCT-CCGGCTGGGCA-GCCCGTCTCCGA-GCGTTGTGG--CAT CTTAAAGTCT-CCGGCTGAGCA-GTTCGTCTCTAA-GCGTTGTGG--CAT CTTAAAGTCT-CCGGCTGAGCA-GTTCGTCTCTAA-GCGTTGTGG--CAT CTTAAAGTCT-CCGGCTGAGCA-GTTCGTCTCTAA-GCGTTGTGG--CAT CTTAAAGTCT-CCGGCTGAGCA-GTTCGTCTCTAA-GCGTTGTGG--CAT CTTAAAGTCT-CCGGCTGAGCA-GTTCGTCTCTAA-GCGTTGTGG---CAT CTTAAAGTCT-CCGGCTGAGCA-GTCTGTCTCCGA-GCGTTGTGA--TAC CTTAAAGTCT-CCGGCTGAGCA-GTCTGTCTCCGA-GCGTTGTGA--TAC CTTAAAGTCT-CCGGCTGAGCA-GTCTGTCTCCGA-GCGTTGTGA--TAC CTTAAAGTCT-CCGGCTGAGCA-GTGTGTCTCCGA-GCGTTGTGA--TAC CTTAAAGTCT-CCGGCTGAGCC-ATTCGTCTCTAA-GCGTTGTGGATTTT CTTAAAGTCTTCCGGCTGAGCT-GTCCGTCTCTAA-GCGTTGTGG--CAA CTTAAAGTCTTCCGGCTGAGCT-GTCCGTCTCTAA-GCGTTGTGG--CAA CTTAAAGTCTTCCGGCTGAGCT-GTCCGTCTCTAA-GCGTTGTGG--CAA CTTAAAGTCTTCCGGCTGAGCT-GTCCGTCTCTAA-GCGATGTGG--CAA CTTAAAGTCTTCCGGCTGAGCT-GTCCGTCTCTAA-GCGTTGTGG--CAA CTCAAAGTCTTCCGGCTGAGCT-GCCCGTCTCCAA-GCGTTGTGG--CGA -TCAAAGTCT-CCG-CTGGACC-GACCGTCTCTAA-GCGTTGTGAC---T CTCAAAGTCT-CCGGCTGGACG-GATCGTCTCTAA-GCGTTGTGAC---T CTCAAAGTCT-CCGGCTGAGCC-AACTGTCTCTAA-GCGTTGTGGTTTAA CTCAAAGTCT-CCGGCTGAGCC-AACTGTCTCTAA-GCGTTGTGGTTCAA CTCAAAGTCT-CCGGCTGAGCC-AACTGTCTCTAA-GCGTTGTGGTTTAA CTCAAAGTCT-CCGGCTGAGCC-AACTGTCTCTAA-GCGTTGTGGTTTAA CTCAAAGTCT-CCGGCTGAGCC-AACTGTCTCTAA-GCGTTGTGGTTTAA CTCGAAGACC-TCGGCGGGGTTTCTCCAACTTCGG-GCGTAGTAGA--GT

R115 --CTCTCTCACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTG
R118 --CTCTCTCACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA
R114 --CTCTCTCACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA
R110 --СTCTCTCACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA
R101 --CTCTCTCACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA
R091
R090
R089
'98-191'
'98-125'
AF309622
R210
--СТСТСТСACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --CTCTCTCACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --СТСТСТСACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA ---СТСТСТСACAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA
--TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA IICACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA --TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA AY045505
R057
sutton1346 TTTCACCAAAG-GTTGACCTCGGATCA-GGTAGGG-AT-ACCCGCTGA

	560 570 578
R115	ACTTAA-GCATAT-CAATAAGCGGAGGA
R118	ACTTAA-GCATAT-CAATAAGCGGAGGA
R114	ACTTAA-GCATAT-CAATAAGCGGAGGA
R110	ACTTAA-GCATAT-CAATAAGCGGAGGA
R101	ACTTAA-GCATAT-CAATAAGCGGAGGA
R091	ACTTAA-GCATAT-CAATAAGCGGAGGA
R090	ACTTAA-GCATAT-CAATAAGCGGAGGA
R089	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-191'	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-125'	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF309622	ACTTAA-GCATAT-CAATAAGCGGAGGA
R210	ACTTAA-GCATAT-CAATAAGCGGAGGA
R211	ACTTAA-GCATAT-CAATAAGCGGAGGA
AY045497	ACTTAA-GCATAT-CAATAAGCGGAGGA
784	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-099'	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-101'	ACTTAA-GCATAT-CAATAAGCGGAGGA
R001	ACTTAA-GCATAT-CAATAAGCGGAGGA
R002	ACTTAA-GCATAT-CAATAAGCGGAGGA
R004	ACTTAA-GCATAT-CAATAAGCGGAGGA
R051	ACTTAA-GCATAT-CAATAAGCGGAGGA
AY045505	ACTTAA-GCATAT-CAATAAGCGGAGGA
R057	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF449097	ACTTAA-GCATAT-CAATAAGCGGAGGA
sutton1346	ACTTAA-GCATAT-CAATAAGCGGAGGA
R215	ACTTAA-GCATAT-CAATAAGCGGAGGA
SJ5	ACTTAA-GCATAT-CAATAAGCGGAGGA
R216	ACTTAA-GCATAT-CAATAAGCGGAGGA
R216Y	ACTTAA-GCATAT-CAATAAGCGGAGGA
AY045503	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF310107	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-133'	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-163'	ACTTAA-GCATAT-CAATAAGCGGAGGA
dekk	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-148'	ACTTAA-GCATAT-CAATAAGCGGAGGA
'98-149'	ACTTAA-GCATAT-CAATAAGCGGAGGA
R257	ACTTAA-GCATAT-CAATAAGCGGAGGA
R258	ACTTAA-GCATAT-CAATAAGCGGAGGA
R262	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF243401	ACTTAA-GCATAT-CAATAAGCGGAGGA
R234	ACTTAA-GCATAT-CAATAAGCGGAGGA
R243	ACTTAA-GCATAT-CAATAAGCGGAGGA
R247	ACTTAA-GCATAT-CAATAAGCGGAGGA
R242	ACTTAA-GCATAT-CAATAAGCGGAGGA
AY045517	AСTTAAAGCATATTCAATAAGCGGAGGA
AF173316	ACTTAA-GCATAT-CAATAAGCGGAGGA
parkii353	ACTTAA-GCATAT-CAATAAGCGGAGGA
R151	ACTTAA-GCATAT-CAATAAGCGGAGGA
R152	ACTTAA-GCATAT-CAATAAGCGGAGGA
R221	ACTTAA-GCATAT-CAATAAGCGGAGGA
R222	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF173314	ACTTAA-GCATAT-CAATAAGCGGAGGA
ken	ACTTAA-GCATAT-CAATAAGCGGAGGA
R237	ACTTAA-GCATAT-CAATAAGCGGAGGA
R246	ACTTAA-GCATAT-CAATAAGCGGAGGA
R240	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF173303	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF468869	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF222839	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF222843	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF222841	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF222842	ACTTAA-GCATAT-CAATAAGCGGAGGA
colomb	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF309616	ACTTAA-GCATAT-CAATAAGCGGAGGA
AF309603	ACTTAA-GCATAT-CAATAAGCGGAGGA
cmw4937	ACTTAA-GCATAT-CAATAAGCGGAGGA
R248	ACTTAA-GCATAT-CAATAAGCGGAGGA
R251	ACTTAA-GCATAT-CAATAAGCGGAGGA
R250	ACTTAA-GCATAT-CAATAAGCGGAGGA
R249	ACTTAA-GCATAT-CAATAAGCGGAGGA
AY045516	ACTTAA-GCATAT-CAATAAGCGGAGGA

Appendix 5.3: Sequence alignment all Mycosphaerella species irrespective of host

This alignment is available on GenBank at:
http://www.ncbi.nlm.nih.gov/Genbank/index.html

References

References

Abbott, I. (1993). Insect pest problems of eucalypt plantations in Australia 6 Western Australia. Australian Forestry 56: 381-384.

Abbott, I., Heurck, P.V., Burbidge, T., Williams, M. \& Van Heurck, P. (1993). Damage caused by insects and fungi to eucalypt foliage: spatial and temporal patterns in Mediterranean forest of Western Australia. Forest Ecology and Management 58: 85-110.

Anagnostakis, S.L. (1977). Vegetative incompatibility in Endothia parasitica. Experimental Mycology. 71: 179-205.

Anonymous (1997a). Australian Forest Products Statistics June Quarter 1997. ABARE Project 1116. Canberra Australian Bureau of Agricultural and Resource Economics.

Anonymous (1997b). National Forest Inventory. Canberra Australia, National Plantation Inventory of Australia, Bureau of Resource Sciences.

Anonymous (2000). National Forest Inventory: March 2000 tabular report. Canberra National Plantation Inventory of Australia, Bureau of Resource Sciences.

Anonymous (2002). Draft forest management plan. Perth Conservation Commission of Western Australia: 247.

Arx, J.A.V. (1949). Beitrage zur Kenntnis der gattung Mycosphaerella. Sydowia 3: 28100.

Arx, J.A.V. (1983). Mycosphaerella and its anamorphs. Mycology 86: 15-58.

Arx, J.A.V. \& Müller, E. (1975). A re-evaluation of the bitunicate Ascomycetes with keys to families and genera. Studies in Mycology 71: 935-954.

Bailey, C. \& Dunconson, T. (1998). From blue sky to blue chip. Landscope 14: 35-42.

Barr, M.E. (1958). Life history studies of Mycosphaerella tassiana and M. typhae. Mycologia 50: 501-513.

Barr, M.E. (1972). On the Dothideales in temperate North America. Contributions from the University of Michigan Herbarium 9: 523-638.

Barr, M.E. (1979). A classification of the loculoascomycetes. Mycologia 71: 935-957.

Barr, M.E. (1983). The ascomycete connection. Mycologia 75: 1-13.

Barr, M.E. (2001). Ascomycota. The Mycota VII Part A. McLaughlin/Lemke, M. Berlin, Springer-Verlag. VII Part A: 161-174.

Beadle, C.L., Honeysett, J.L., Turnbull, C.R.A. \& White, D.A. (1995). Site limits to achieving genetic potential. IUFRO conference on Eucalypt Plantations: Improving Fibre Yield and Quality, Hobart, Australia, IUFRO.

Beck, J.J. \& Ligon, J.M. (1995). Polymerase chain reaction assays for the detection of Stagonospora nodorum and Septoria tritici in wheat. Phytopathology 85: 319-324.

Berbee, M.L., Yoshimura, A., Sugiyama, J. \& Taylor, J.W. (1995). Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87: 210-222.

Beresford, R.M. (1978). Mycosphaerella nubilosa (Cooke). Hansf. on Eucalyptus delegatensis R.T. Baker: Further studies of epidemiology in the North island of New Zealand. MSc. Thesis Botany Department, University of Auckland, New Zealand.

Boland, J., Davison, E., Dyer, R., Floyd, R., Lawrence, S., Maddern, L., Mutzig, S., Shedley, C. \& Speijers, J. (1998). Surveillance and monitoring of Eucalyptus globulus plantations in the south west of Western Australia. Perth, Western Australia, Curtin Consultancy Services, Curtin University.

Brooker, M.I.H. \& Kleinig, D.A. (1990). Field guide to Eucalypts. Inkata, Sydney Australia.

Brown, J.K.M. (1996). The choice of molecular marker methods for population genetic studies of plant pathogens. New Phytologist 133: 183-195.

BRS website (Bureau of Rural Sciences in the department of Agriculture Fisheries and Forestry Australia): http://www.affa.gov.au/index.cfm.

CALM (1990). CALM Insect Manual. Perth, Australia, CALM.

Carnegie, A.J. (1991). The susceptibility of certain Eucalyptus species and provenances to infection by Mycosphaerella species and other leaf parasites. Forestry. Honours Thesis, La Trobe University, Melbourne, Australia.

Carnegie, A.J. (2000). A study of species of Mycosphaerella on eucalypts in Australia and the impact of Mycosphaerella leaf disease on Eucalyptus globulus Labill. PhD Thesis School of Forestry, University of Melbourne, Australia.

Carnegie, A.J., Ades, P.K. \& Ford, R. (2001). The use of RAPD-PCR analysis for the differentiation of Mycosphaerella species from Eucalyptus in Australia. Mycological Research 105: 1313-1320.

Carnegie, A.J., Ades, P.K., Keane, P.J. \& Smith, I.W. (1998). Mycosphaerella diseases of juvenile foliage in a eucalypt species and provenance trial in Victoria, Australia. Australian Forestry 61: 190-194.

Carnegie, A.J. \& Keane, P.J. (1994). Further Mycosphaerella species associated with leaf diseases of Eucalyptus. Mycological Research 98: 413-418.

Carnegie, A.J. \& Keane, P.J. (1997). A revised Mycosphaerella gregaria nom. nov. for M. aggregata on Eucalyptus. Mycological Research 102: 843-844.

Carnegie, A.J. \& Keane, P.J. (1998). Mycosphaerella vespa sp. nov. from diseased Eucalyptus leaves in Australia. Mycological Research 102: 1274-1276.

Carnegie, A.J., Keane, P.J., Ades, P.K. \& Smith, I.W. (1994). Variation in susceptibility of Eucalyptus globulus provenances to Mycosphaerella leaf disease. Canadian Journal of Forest Research 24: 1751-1757.

Carnegie, A.J., Keane, P.J. \& Podger, F.D. (1997). The impact of three species of Mycosphaerella newly recorded on Eucalyptus in Western Australia. Australasian Plant Pathology 26: 71-77.

Chamberlain, C. (2002). Impact of nutrient deficiency on Eucalyptus globulus plantations in south-western Australia. Ph. D. Thesis, School of Biotechnology and Biological Science, Murdoch University, Australia.

Cheah, L.H. (1977). Aerobiology and epidemiology of Mycosphaerella nubilosa (CKE). Hansf. in Eucalyptus spp. MSc. Thesis, Botany Dept., University of Auckland, New Zealand.

Cheah, L.H. \& Hartill, W.F.T. (1987). Ascospore release in Mycosphaerella cryptica (Cke). Hansf. European Journal of Forest Pathology 17: 129-141.

Chillali, M., Wipf, D., Guillaumin, J.J., Mohammed, C. \& Botton, B. (1998). Delineation of the European Armillaria species based on the sequences of the internal transcribed spacer (ITS) of ribosomal DNA. New Phytologist 138: 553-561.

Corlett, M. (1991). An annotated list of published names in Mycosphaerella and Sphaerella. Berlin, New York Botanical Garden \& The Mycological Society of America.

Crous, P.W., Aptroot, A., Kang J.C., Braun, U. \& Wingfield M.J. (2000). The genus Mycosphaerella and its anamorphs. Studies in Mycology 45: 107-121.

Crous, P.W., Ferreira, F.A., Alfenas, A., Wingfield, M.J. (1993). Mycosphaerella suberosa associated with corky leaf spots on Eucalyptus in Brazil. Mycologia 85: 705710.

Crous, P. W., Ferreira, F. A. \& Sutton, B.C. (1997).A comparison of the fungal genera Phaeophleospora and Kirramyces (coelomycetes). South African Journal of Botany 63: 111-115.

Crous, P.W., Hong, L., Wingfield, B.D. \& Wingfield, M.J. (2001a). ITS rDNA phylogeny of selected Mycosphaerella species and their anamorphs occurring on Myrtaceae. Mycological Research 105: 425-431.

Crous, P.W., Hong, L., Wingfield M.J., Wingfield B.D. \& Kang, J.C. (1999). Uwebraunia and Dissoconium, two morphologically similar anamorph genera with different teleomorph affinity. Sydowia 51: 155-166.

Crous, P.W. (1998). Mycosphaerella spp. and their anamorphs associated with leaf spot diseases of Eucalyptus. St. Paul, Minn., USA, APS Press.

Crous, P.W., Kang, J.C. \& Braun, U. (2001b). A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequence and morphology. Mycologia 93: 1081-1101.

Crous, P.W. \& Mourichon, X. (2002). Mycosphaerella eumusae and its anamorph Pseudocercospora eumusae spp. nov.: Causal agent of eumusae leaf spot disease of banana. Sydowia 54: 35-43.

Crous, P.W. \& Wingfield, M.J. (1996). Species of Mycosphaerella and their anamorphs associated with leaf blotch disease of Eucalyptus in South Africa. Mycologia 88: 441-458.

Crous, P.W. \& Wingfield, M.J. (1997a). Colletogloeopsis, a new coelomycete genus to accommodate anamorphs of two species of Mycosphaerella on Eucalyptus. Canadian Journal of Botany 75: 667-674.

Crous, P.W. \& Wingfield, M.J. (1997b). New species of Mycosphaerella occurring on Eucalyptus leaves in Indonesia and Africa. Canadian Journal of Botany 75: 781-790.

Czembor, P.C. \& Arseniuk, E. (1999). Study of genetic variability among monopycnidial and monopycnidiospore isolates derived from single pycnidia of Stagonospora spp. and Septoria tritici with the use of RAPD-PCR, MP-PCR and repPCR techniques. Journal of Phytopathology 147: 539-546.

Dell, B. \& Bywaters, T. (1989). Copper deficiency in young Eucalyptus maculata plantations. Canadian Journal of Forest Research 19: 427-431.

Dell, B., Malajczuk, N., Xu, D. \& Grove, T.S. (2001). Nutrient Disorders in Plantation Eucalypts. ACIAR. Canberra, Australia,

Dick, M. (1982). Habiting fungi of eucalypts in New Zealand. New Zealand Journal of Forestry Science 12: 525-537.

Dick, M. (1990). Leaf-inhabiting fungi of eucalypts in New Zealand II. New Zealand Journal of Forestry Science 20: 65-74.

Dick, M. A. \& Dobbie, K. (2001). Mycosphaerella suberosa and M. intermedia sp. nov. on Eucalyptus in New Zealand. New Zealand Journal of Botany 39: 269-276.

Dick, M. \& Gadgil, P.D. (1983). Eucalyptus leaf spots. New Zealand Forest Service, Forest Research Institute, Rotorua. Forest Pathology in New Zealand 1: 1-7.

Dring, D.M. (1961). Studies on Mycosphaerella brassicicola (Duby). Oudem. Transactions of the British Mycological Society 44: 253-364.

Dungey, H.S., Potts, B.M., Carnegie, A.J. \& Ades, P.K. (1997). Mycosphaerella leaf disease: genetic variation in damage to Eucalyptus nitens, Eucalyptus globulus, and their F1 hybrid. Canadian Journal of Forest Research 27: 750-759.

Dunstan, W.A., Dell, B., Malajczuk, N. \& Iwase, K. (2000). Detection of ectomycorrhizal fungas Tricholoma matsutake and some related species with specific ITS primers. Mycoscience 41: 33-37.

Eldridge, K.G. (1972). Genetic variation in the growth of Eucalyptus regnans from an altitudinal transect of Mount Erica, Victoria, Forestry and Timber Bureau, Victoria.

Eldridge, K.G. (1993). Eucalypt Domestication and Breeding. Clarendon Press, Oxford.

Erikson, O.E. (1999). Outline of Ascomycota. Myconet 3: 1-88.

Faris, M.S., Boccara, M., Denis, J.B., Derrien, A. \& Spire, D. (1996). Differentiation of the "Ascochyta complex" fungi of pea by biochemical and molecular markers. Current Genetics 29: 182-190.

Felsenstein, J. (1985). Confidence intervals on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

Ferreira, F.A., Alfenas, A.C., Moreira, A.M. \& Demuner, N.L. (1995). A foliar eucalypt disease in tropical regions of Brazil caused by Cylindrocladium pteridis. Fitopatologia Brasileira 20: 107-110.

Fisher, N.L., Burgess, L.W., Toussoun, T.A. \& Nelson, P.E. (1982). Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72: 151-153.

Fleck, A. (1974). Micro-determination of nitrogen. CRC Critical Reviews in Analytical Chemistry: 141-154.

Florence, R.G. (1996). Ecology and Silviculture of Eucalypt Forests. CSIRO Publishing, Melbourne, Victoria.

Foster, L.M., Kozak, K.R., Loftus, M.G., Stevens, J.J. \& Ross, I.K. (1993). The polymerase chain reaction and its application to filamentous fungi. Mycological Research 97: 769-781.

Fremlin, R. (2002). New Trails for aerial spraying being blazed out west. Australian Forest Grower Spring 2002: 13-14.

Fry, E. \& Goodwin, S.B. (1997). Resurgence of the Irish Potato Famine Fungus. Bioscience 47: 363-372

Ganapathi, A. (1979). Studies on the etiology of the leaf spot disease of Eucalyptus spp. caused by Mycosphaerella nubilosa (Cke.). Hansf. MSc. Thesis, School of Forestry, University of Auckland, New Zealand.

Gardes, M. \& Bruns, T.D. (1993). ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhiza and rusts. Molecular Ecology 2: 113-118.

Geiser, D.M., Pitt, J.I. \& Taylor, J.W. (1998). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences of the United States of America 95: 388-393.

Goodwin, S.B., Dunkle, L.D. \& Zismann, V.L. (2001). Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology 91: 648-658.

Goodwin, S.B. \& Zismann, V.L. (2001). Phylogenetic analyses of the ITS region of ribosomal DNA reveal that Septoria passerinii from barley is closely related to the wheat pathogen Mycosphaerella graminicola. Mycologia 93: 934-946.

Guo, L.D., Hyde, K.D. \& Liew, E.C.Y. (2000). Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist 147: 617-630.

Hawksworth, D.L. (2000) Mycological Research: Instructions and guidelines for authors. Mycological Research 104: 119-127.

Hansford, G.C. (1952). Australian fungi. New records and revisions. Proceedings of the Linnean Society of New South Wales.

Heather, W.A. (1967a). Leaf characteristics of Eucalyptus bicostata Maiden et al. seedlings affecting the deposition and germination of spores of Pheoseptoria eucalypti (Hansf.). Walker. Australian Journal of Biological Sciences 20: 1155-1160.

Heather, W.A. (1967b). Susceptibility of the juvenile leaves of Eucalyptus bicostata Maiden et al. to infection by Pheoseptoria eucalypti (Hansf.). Walker. Australian Journal of Biological Sciences 20: 769-775.

Hedgecock, G. (1926). Report on fungi and fungous diseases occurring in trees of Eucalyptus in North America and elsewhere. Washington, USA, US Government Printing Office: 1-61.

Heerden, S.W.V. (2001). Genetic diversity of Cryphonectria cubensis isolates in South Africa. Mycological Research 105: 94-99.

Heiniger, U. \& Rigling, D. (1994). Biological control of chestnut blight in Europe. Annual Review of Phytopathology 32: 581-599.

Hijwegen, T. \& Buchenauer, H. (1984). Isolation and identification of hyperparasitic fungi associated with Erysiphaceae. Netherlands Journal of Plant Pathology 90: 79-84.

Hirst, P., Richardson, T.E., Carson, S.D. \& Bradshaw, R.E. (1999). Dothistroma pini genetic diversity is low in New Zealand. New Zealand Journal of Forestry Science 29: 459-472.

Hoog, G.S.de, Hijwegen, T. \& Batenburg-van der Vegte, W.H. (1991). A new species of Dissoconium. Mycological Research 95: 697-682.

Hoog, G.S.de, Oorschot, C.A.N.van and Hijwegen, T. (1983). Taxonomy of the Dactylaria complex. ii Dissoconium gen. nov. and Cordana Preuss. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. 86: 196-206.

Huang, Z.Y., Smalley, E.B. \& Guries, R.P. (1995). Differentiation of Mycosphaerella dearnessii by cultural characters and RAPD analysis. Phytopathology 85: 522-527.

Hunter, G.C. (2002). Mycosphaerella causing leaf blotch on Eucalyptus species in South Africa. MSc. Thesis, Natural and Agricultural Science, University of Pretoria, South Africa.

Ishaq, L.F. (1999). Copper efficiency and canker disease development in Eucalyptus globulus. MSc. Thesis, School of Biotechnology and Biological Science Murdoch University, Australia.

Jackson, S.L. (Personal Communication). School of Biological Science and Biotechnology Murdoch University, Perth, Western Australia, Australia.

Jackson, S.L. (2001). Infection of Eucalyptus globulus, E. diversicolor, E. marginata and Corymbia calophylla by Mycosphaerella species. Honours Thesis, School of Biological Science and Biotechnology Murdoch University, Australia.

Jackson, S.L., Maxwell, A., Dell, B. \& Hardy, G.E.StJ. (In Prep.). Further new species of Mycosphaerella associated with Eucalyptus in south-western Australia.

Jackson, S.L., Maxwell, A., Neumeister-Kemp, H.G. \& Hardy, G.E.StJ. (2002). Infection of Eucalyptus globulus leaves by Mycosphaerella. The 40th Congress of the Southern African Society of Plant Pathology, Pretoria, South Africa.

Jackson, S.L., Maxwell, A., Neumeister-Kemp, H.G. \& Hardy, G.E.StJ. (In Press). Infection, hyperparasitism and conidiogenesis of Mycosphaerella lateralis on Eucalyptus globulus in Western Australia. Australasian Plant Pathology.

Jackson, S.L., Maxwell, A., Neumeister-Kemp, H.G. \& J., H.G.E.S. (2001). Infection of Eucalyptus globulus leaves by Mycosphaerella. The 13th Biennial Plant Pathology Conference, Australasian Plant Pathology, Cairns, Australia.

Jackson, T.J. (Personal Communication). School of Biological Science and Biotechnology, Murdoch University, Perth, Western Australia, Australia.

Johanson, A. (1995). Detection of banana leaf spot pathogens by PCR. EPPO conference on new methods of diagnosis in plant protection, Wageningen, Netherlands 25: 99-107.

Johanson, A., Crowhurst, R.N., Rikkerink, E.H.A., Fullerton, R.A. \& Templeton, M.D. (1994). The use of species-specific DNA probes for the identification of Mycosphaerella fijiensis and M. musicola, the causal agents of Sigatoka disease of banana. Plant Pathology 43: 701-707.

Johanson, A. \& Jeger, M.J. (1993). Use of PCR for detection of Mycosphaerella fijiensis and M. musicola, the causal agents of Sigatoka leaf spots in banana and plantain. Mycological Research 97: 670-674.

Jones, R.E. (2001). Mechanisms for locating resources in space and time: Impacts on the abundance of insect herbivores. Austral Ecology 26: 518-524.

Kennedy, R., Wakeham, A.J. \& Cullington, J.E. (1999). Production and immunodetection of ascospores of Mycosphaerella brassicicola ringspot of vegetable crucifers. Plant Pathology 48: 297-307.

Kirkpatrick, J.B. (1974). The numerical intra-specific taxonomy of Eucalyptus globulus Labill. (Myrtaceae). Botanical Journal of the Linnean Society 69: 89-104.

Kornerup, A., \& Wanscher, J.H (1967). Methuen Handbook of Colour. 2nd edn., Methuen \& Co., London.

Liu, Y. \& Milgroom, M.G. (1996). Correlation between hypovirus transmission and the number of negative incompatible (vic). genes different among isolates from a natural population of Cryphonectria parasitica. Phytopathology 86: 79-86.

Liu, Y., Whelen, S., Hall, B.D. \& Liu, Y.J.J. (1999). Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799-1808.

Loch, A.D. \& Floyd, R.B. (2001). Insect pests of Tasmanian blue gum, Eucalyptus globulus globulus, in south-western Australia: History, current perspectives and future prospects. Austral Ecology 26: 458-466.

Lumbsch, H.T., Lindemuth, R. \& Schmitt, I. (2000). Evolution of filamentous ascomycetes inferred from LSU rDNA sequence data. Plant Biology 2: 525-529.

Lundquist, J.E. (1987). A history of five forest diseases in South Africa. South African Forestry Journal 140: 51-59.

Lundquist, J.E. \& Purnell, R.C. (1987). Effects of Mycosphaerella leaf spot on growth of Eucalyptus nitens. Plant Disease 71: 1025-1029.

Luttrell, E.S. (1951). Taxonomy of the pyrenomycetes. University of Missouri Studies 24: 1-120.

Luttrell, E.S. (1955). The ascostromatic ascomycetes. Mycologia 47: 511-532.

Luttrell, E.S. (1974). Parasitism of fungi on vascular plants. Mycologia 66: 1-15.

Marks, G.C. (1979). Forest tree diseases in Victoria. Australasian Plant Pathology Society Newletter 5: 51.

Maxwell, A., Dell, B., Neumeister-Kemp, H.G. and Hardy, G.E.StJ. (2003). Mycosphaerella species associated with Eucalyptus in south-western Australia: new species, new records and a key. Mycological Research 107: 351-359.

Maxwell, A., Hardy, G.E.StJ. \& Dell, B. (1998). Towards healthy Eucalyptus globulus plantations. Perth, Murdoch University.

Maxwell, A., Hardy, G.E.StJ. \& Dell, B. (2001). First record of Mycosphaerella nubilosa in Western Australia. Australasian Plant Pathology 30: 65.

Maxwell, A., Hardy, G.E.StJ., Wingfield, M.J. \& Dell, B. (2000). First record of Mycosphaerella lateralis on Eucalyptus in Australia. Australasian Plant Pathology 29: 279.

McDonald, B.A. \& McDermott, J. (1993). Population genetics of plant pathogenetic fungi. Bioscience 43: 311-319.

McDonald, B.A., Mundt, C.C., Chen, R., Chen, R.S. \& Tigerstedt, P.M.A. (1996). The role of selection on the genetic structure of pathogen populations: evidence from field experiments with Mycosphaerella graminicola on wheat. XIV EUCARPIA Congress on Adaptation in Plant Breeding, held on 31 July 4 August, 1995, Jyvaskyla, Finland 92: 73-80.

McDonald, B.A., Pettway, R.E., Chen, R.S., Boeger, J.M. \& Martinez, J.P. (1995). The population genetics of Septoria tritici (teleomorph Mycosphaerella graminicola). Canadian Journal of Botany 73: 292-301.

Milgate, A.W., Yuan, Z.Q., Vaillancourt, R.E. \& Mohammed, C. (2001). Mycosphaerella species occurring on Eucalyptus globulus and Eucalyptus nitens plantations of Tasmania, Australia. Forest Pathology 31: 53-63.

Mirabolfathy, M. (1990). Occurrence of Mycosphaerella leaf spot of Eucalyptus in Iran. Iranian Journal of Plant Pathology 26: 42-43.

Moran, G.F. (1992). Patterns of genetic diversity in Australian tree species. New Forests 6: 49-66.

Myburg, H., Wingfield, B.D. \& Wingfield, M.J. (1999). Phylogeny of Cryphonectria cubensis and allied species inferred from DNA analysis. Mycologia 91: 243-250.

Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradbery JP, Taylor RW, Whitten MJ, Littlejohn MJ. 1991. (eds). The insects of Australia. CSIRO, Australia

Neuman, F.G. \& Marks, G.C. (1976). A synopsis of important pests and diseases in Australian forests and forest nurseries. Australian Forestry 39: 83-102.

Neumeister-Kemp, H.G., Jackson, S.L., Hardy, G.E.S. \& Dell, B. (2003). MLD reduces growth rate of Eucalyptus globulus. Proceedings of the $8^{\text {th }}$ International Congress of Plant Pathology, Christchurch, New Zealand. 2-7 February 2003. Old, K.M., Thu, P.Q., Dudzinski, M.J. \& Gibbs, R.J. (1999). 'Eucalyptus pathology in Vietnam'. Minimising Disease Impacts on Eucalypts in South East Asia. Workshop, Ho Chi Minh City, Vietnam.

Palzer, C. (1978). Defoliation and death in Eucalyptus obliqua forest. Australian Forest Research Newletter 5: 171.

Park, R.F. (1984). The taxonomy, pathology and epidemiology of Mycosphaerella species associated with leaf diseases of Eucalyptus in Australia. PhD Thesis, School of Biological Sciences, La Trobe University, Australia.

Park, R.F. (1988a). Epidemiology of Mycosphaerella nubilosa and M. cryptica on Eucalyptus spp. in South-Eastern Australia. Transactions of the British Mycological Society 91: 261-266.

Park, R.F. (1988b). Effect of certain host, inoculum, and environmental factors on infection of Eucalyptus species by two Mycosphaerella species. Transactions of the British Mycological Society 90: 221-228.

Park, R.F. \& Keane, P.J. (1984). Further Mycosphaerella species causing leaf diseases on Eucalyptus. Transactions of the British Mycological Society 83: 93-105.

Park, R.F. \& Keane, P.J. (1987). Spore production by Mycosphaerella species causing leaf diseases of Eucalyptus. Transactions of the British Mycological Society 89: 461-470.

Park, R.F., Keane, P.J., Wingfield, M.J. \& Crous, P.W. (2000). Fungal diseases of eucalypt foliage. In: Diseases and pathogens of eucalypts. Eds Keane, P.J., Kile, G.A., Podger, F.D. and Brown, B.N.: 153-239. CSIRO publishers, Australia

Park, R.F. \& Keane, P.J. (1982a). Three Mycosphaerella species from leaf diseases of Eucalyptus. Transactions of the British Mycological Society 79: 95-100.

Park, R.F. \& Keane, P.J. (1982b). Leaf diseases of Eucalyptus associated with Mycosphaerella species. Transactions of the British Mycological Society 79: 101-115.

Park, R.F. \& Keane, P.J. (1982c). Fungi associated with leaf spots of Eucalyptus in Victoria. Australasian Plant Pathology 11: 33-35.

Potts, B.M. \& Pederick, L.A. (2000). Morphology, phylogeny, origin, distribution and genetic diversity of eucalypts. In Diseases and pathogens of eucalypts. Eds Keane, P.J., Kile, G.A., Podger, F.D. and Brown, B.N. CSIRO publishers, Australia Powell, W.A. (1995). Vegetative incompatibility and mycelial death of Cryphonectria parasitica detected with a pH indicator. Mycologia 87: 738-741.

Poynton, R.J. (1979). Tree Planting in Southern Africa. Pretoria, South Africa, Department of Forestry.

Raeder, U. \& Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1: 17-20.

Reinoso, C. (1992). Variation in Eucalyptus globulus in susceptibility to Mycosphaerella leaf diseases. Honours thesis, School of Forestry, University of Melbourne, Australia.

Reynolds, D.R. (1998). Capnodiaceous sooty mold phylogeny. Canadian Journal of Botany 76: 2125-2130.

Ruperez, A. \& Munoz, C. (1980). Enfermedades de los eucalyptos en Espana. Boletin del Servicia de Defensa contra Plagus e Inspeccion Fitopatologica 6: 193-217.

Sanberg, R.J. \& Ray, J.W. (1976). Testing of different fungicides for the control of Mycosphaerella on Eucalyptus delegatensis seedlings. New Zealand Forest Research Institute, New Zealand.

Searle, P.L. (1984). The Berthelot or indolphenol reaction and its use in the analytical chemistry of nitrogen: A review. Analyst 109: 549-568.

Shea, S.R. \& Hewitt, P.N. (1990). Plantation Forestry in Western Australia. Acheivements and Prospects. Perth, Australia, CALM.

Shedley, E., Dell, B. \& Grove, T. (1995). Diagnosis of nitrogen deficiency and toxicity of Eucalyptus globulus seedlings by foliar analysis. Plant Soil 177: 183-189.

Silva-Hanlin, D.M.W. \& Hanlin, R.T. (1999). Small subunit ribosomal RNA gene phylogeny of several loculoascomycetes and its taxonomic implications. Mycological Research 103: 153-160.

Sivanesan, A. (1984). The Bitunicate Ascomycetes and their Anamorphs. Germany, J. Cramer.

Sivanesan, A. \& Shivas, R.G. (2002). Studies on Mycosphaerella species in Queensland, Australia. Mycological Research 106: 355-364.

Stearn, W.T. (1973). Botanical Latin. History, grammar, syntax, terminology and vocabulary. 2nd edn., David \& Charles, Newton Abbot.

Stewart, E.L., Liu, Z., Crous, P.W., Szabo, L.J. \& Liu, Z.W. (1999). Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycological Research 103: 1491-1499.

Stoddard, J.A. \& Taylor, J.F. (1988). Genotypic Diversity: estimation and prediction in samples. Genetics 118: 705-711.

Stone, C. (2001). Reducing the impact of insect herbivory in eucalypt plantations through management of extrinsic influences on tree vigour. Austral Ecology 26: 482-488.

Stone, C., Matsuki, M. and Carnegie, A, (2003). Pest and disease assessment in young eucalypt plantations: field manual for using the Crown Damage Index, ed. Parsons, M., National Forest Inventory, Bureau of Rural Sciences, Canberra.

Stone, C., Simpson, J.A. \& Eldridge, R.H. (1998). Insect and fungal damage to young eucalypt trial plantings in northern New South Wales. Australian Forestry 61: 7-20.

Strauss, S.Y. (2001). Benefits and risks of biotic exchange between Eucalyptus plantations and native Australian forests. Austral Ecology 26: 447-457.

Sutton, B.C. (1980). The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stomata. CMI, England.

Swofford, D.L. (1998). PAUP (Phylogenetic analysis using parsimony) Version 4.01. Sinauer associates, Sunderland, MA.

Tabachnick, B.G. \& Fidell, L.S. (1996). Using multivariate statistics. NY, Harper Collins.

Tan, K-C, (Personal communication). School of Biological Science and Biotechnology Murdoch University, Perth, Western Australia, Australia.

Turnbull, C.R.A., McLeod, D.E., Beadle, C.L., Ratkowsky, D.A., Mummery, D.C. \& Bird, T. (1993). Comparative early growth of Eucalyptus species of the subgenera Monocalyptus and Symphomyrtus in intensively-managed plantations in southern Tasmania. Australian Forestry 56: 276-286.

Turnbull, J.W. (2000). Economic and social importance of eucalypts. In: Diseases and pathogens of eucalypts. Eds Keane, P.J., Kile, G.A., Podger, F.D. and Brown, B.N. CSIRO publishers, Australia

Ueng, P.P., Subramaniam, K., Chen, W., Arseniuk, E., Wang, L., Cheung, A.M., Hoffmann, G.M., Bergstrom, G.C. \& Wang, L.X. (1998). Intra-specific genetic variation of Stagonospora avenae and its differentiation from S. nodorum. Mycological Research 102: 607-614.

Venter, M., Wingfield, M.J., Coutinho, T.A. \& Wingfield, B.D. (2001). Molecular characterisation of Endothia gyrosa isolates from Eucalyptus in South Africa and Australia. Plant Pathology 50: 211-217.

Verkley, G. \& Priest, M. (2000). Septoria-like anamorphs of Mycosphaerella. Studies in Mycology 45: 123-128.

Verkley, G.J.M. (1998). Ultrastructural evidence for two types of proliferation in a single conidiogenous cell of Septoria chrysanthemella. Mycological Research 102: 368372.

Wakeham, A.J., Kennedy, R., Byrne, K.G., Keane, G. \& Dewey, F.M. (2000). Immunomonitoring air-borne fungal plant pathogens: Mycosphaerella brassicicola. Bulletin OEPP. 30: 475-480.

Walker, J. \& Bertus, A.L. (1971). Shoot blight of Eucalyptus spp., caused by an undescribed species of Ramularia. Proceedings of the Linnean Society of New South Wales 96: 108-115.

Wallace (1947). Annual report of plant pathologists. Tanganyika, Department of Agriculture.

Washusen, R. \& Ilic, J. (2001). Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill. Holz als Roh und Werkstoff 59: 85-93.

White, T.J., Bruns, T., Lee, S. \& Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications. Eds Innis, M.A., Gelfand, D.H., Sninski, J.J. and White, T.J. Academic Press, San Diego, USA.

Williams, M.D., Beadle, C.L., Turnbull, C.R.A., Dean, G.H. \& French, J. (1995). Papermaking potential of plantation eucalypts. IUFRO Conference, Eucalypt Plantations: Improving Fibre Yield and Quality, Hobart, Australia, IUFRO.

Winka, K., Eriksson, O.E. \& Bang, A. (1998). Molecular evidence for recognising the Chaetothyriales. Mycologia 90: 822-830.

Yi, N., Hang, Z., Yin, T., Huang, M., Cao, H., Yi, N.J., Hang, Z.M., Yin, T.M., Huang, M.R. \& Cao, H.Y. (2000). Genetic variation of RAPD markers in a disease resistant seed orchard of Pinus elliottii Engelm. Special issue of Silviculture 36: 51-55.

Young, P. (Personal Communication). Integrated Tree cropping, Albany, Western Australia.

Yuan, Z.Q., Old, K.M., Midgley, S.J. and Solomon, D. (1997). Mycoflora and pathogenicity of fungi present on stored seeds from provenances of Eucalyptus pellita. Australasian Plant Pathology 26: 195-202.

Zarcinas, B.A., Cartwright, B. \& Spouncer, L.R. (1987). Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Community Soil Science Plant Analysis 18: 131-146.

Zhang, L., Baasiri, R.A., Alfen, N.K.V., Zhang, L. \& Van Alfen, N.K. (1998). Viral repression of fungal pheromone precursor gene expression. Molecular and Cellular Biology 18: 953-959.

Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., Mew, T., Teng, P., Wang, Z. \& Mundt, C. (2000). Genetic diversity and disease control in rice. Nature 406: 718-722.

[^0]: * Includes hosts for the teleomorph only. There are several more species reported as hosts for the anamorph of M. swartii.
 ** Recorded elsewhere but only validly recorded in this region.

[^1]: Specimens examined: Australia: Western Australia: Bunbury, Summerlea plantation (WACAP) $115^{\circ} 37^{\prime} \mathrm{E}, 33^{\circ} 40^{\prime} \mathrm{S}$, Eucalyptus globulus, 1 May 2000, A. Maxwell (CBS 110500, MURU0002; GenBank AY 150331); Manjimup, Woodraka plantation (WACAP) $116^{\circ} 05^{\prime} \mathrm{E}, 34^{\circ} 30^{\prime} \mathrm{S}$, 29 Feb 2000, A. Maxwell (MURU0103); Manjimup, Channeybearup plantation (WACAP), on E. globulus, 16 Feb. 2000, A. Maxwell (MURU0127); Busselton, Reid plantation (WACAP), on E. globulus, 2 May 2000, A. Maxwell (MURU0122); Esperance, Chips plantation of ITC, on E. globulus, 15 Dec. 2000, A. Maxwell (MURU0101).

