
Racket on the Playstation 3? It’s not what you
think...

Dan Liebgold

Naughty Dog, Inc.
Santa Monica, CA

RacketCon 2013





Motivation

I In games, programmers create code; artists, designers,
animators, sound designers create data

I We often want to create data like we create code
I Effect definitions, animation states & blend trees, event &

gameplay scripting/tuning, sound metadata
I We want powerful abstractions, flexible syntax, and

language well matched to each domain
I Domain Specific Languages to the rescue!



Motivation

I In games, programmers create code; artists, designers,
animators, sound designers create data

I We often want to create data like we create code
I Effect definitions, animation states & blend trees, event &

gameplay scripting/tuning, sound metadata
I We want powerful abstractions, flexible syntax, and

language well matched to each domain
I Domain Specific Languages to the rescue!



Motivation

I In games, programmers create code; artists, designers,
animators, sound designers create data

I We often want to create data like we create code
I Effect definitions, animation states & blend trees, event &

gameplay scripting/tuning, sound metadata
I We want powerful abstractions, flexible syntax, and

language well matched to each domain
I Domain Specific Languages to the rescue!



Motivation

I In games, programmers create code; artists, designers,
animators, sound designers create data

I We often want to create data like we create code
I Effect definitions, animation states & blend trees, event &

gameplay scripting/tuning, sound metadata
I We want powerful abstractions, flexible syntax, and

language well matched to each domain
I Domain Specific Languages to the rescue!



Motivation

I In games, programmers create code; artists, designers,
animators, sound designers create data

I We often want to create data like we create code
I Effect definitions, animation states & blend trees, event &

gameplay scripting/tuning, sound metadata
I We want powerful abstractions, flexible syntax, and

language well matched to each domain
I Domain Specific Languages to the rescue!



Scheme

I We had experience using Common Lisp before to create
our own implementation language (GOAL)

I Lisp supports creating data like code
I We built DC in Racket

I Used Racket (MzScheme initially) because it’s a good Lisp,
is open source, and has quality libraries and
implementation



Scheme

I We had experience using Common Lisp before to create
our own implementation language (GOAL)

I Lisp supports creating data like code
I We built DC in Racket

I Used Racket (MzScheme initially) because it’s a good Lisp,
is open source, and has quality libraries and
implementation



Scheme

I We had experience using Common Lisp before to create
our own implementation language (GOAL)

I Lisp supports creating data like code
I We built DC in Racket

I Used Racket (MzScheme initially) because it’s a good Lisp,
is open source, and has quality libraries and
implementation



Scheme

I We had experience using Common Lisp before to create
our own implementation language (GOAL)

I Lisp supports creating data like code
I We built DC in Racket

I Used Racket (MzScheme initially) because it’s a good Lisp,
is open source, and has quality libraries and
implementation



How?

I Racket program that evaluated typed “Racket-ish” code
that generates data usable by C++ runtime.

I Usage of syntax was the prime enabler of rapid DSL
development, but also a source of much inefficiency and
confusion.

I Error reporting was slow to develop, since it required
careful usage of syntax info, which was difficult and
confusing.



How?

I Racket program that evaluated typed “Racket-ish” code
that generates data usable by C++ runtime.

I Usage of syntax was the prime enabler of rapid DSL
development, but also a source of much inefficiency and
confusion.

I Error reporting was slow to develop, since it required
careful usage of syntax info, which was difficult and
confusing.



How?

I Racket program that evaluated typed “Racket-ish” code
that generates data usable by C++ runtime.

I Usage of syntax was the prime enabler of rapid DSL
development, but also a source of much inefficiency and
confusion.

I Error reporting was slow to develop, since it required
careful usage of syntax info, which was difficult and
confusing.



Architecture



Example

Let’s define a player start position:
(define-export *player-start*
(new locator

:trans *origin*
:rot (axis-angle->quaternion *y-axis* 45)
))



Start with some types

(deftype vec4 (:align 16)
((x float)
(y float)
(z float)
(w float :default 0)
))



Start with some types

(deftype vec4 (:align 16)
((x float)
(y float)
(z float)
(w float :default 0)
))

struct Vec4
{
float m_x;
float m_y;
float m_z;
float m_w;

};



Types continued

(deftype quaternion (:parent vec4)
())

(deftype point (:parent vec4)
((w float :default 1)
))

(deftype locator ()
((trans point :inline #t)
(rot quaternion :inline #t)
))



Types continued

(deftype quaternion (:parent vec4)
())

(deftype point (:parent vec4)
((w float :default 1)
))

(deftype locator ()
((trans point :inline #t)
(rot quaternion :inline #t)
))



Types continued

(deftype quaternion (:parent vec4)
())

(deftype point (:parent vec4)
((w float :default 1)
))

struct Locator
{
Point m_trans;
Quaternion m_rot;

};



Define a function

(define (axis-angle->quat axis angle)
(let ((sin-angle/2 (sin (* 0.5 angle))))
(new quaternion

:x (* (-> axis x) sin-angle/2)
:y (* (-> axis y) sin-angle/2)
:z (* (-> axis z) sin-angle/2)
:w (cos (* 0.5 angle))
)))



Define some instances

(define *y-axis* (new vec4 :x 0 :y 1 :z 0))
(define *origin* (new point :x 0 :y 0 :z 0))

(define-export *player-start*
(new locator

:trans *origin*
:rot (axis-angle->quaternion *y-axis* 45)
))



Define some instances

(define *y-axis* (new vec4 :x 0 :y 1 :z 0))
(define *origin* (new point :x 0 :y 0 :z 0))

(define-export *player-start*
(new locator

:trans *origin*
:rot (axis-angle->quaternion *y-axis* 45)
))



How we use these definitions in C++ code

...
#include "dc-types.h"
...
const Locator * pLoc =
DcLookupSymbol("*player-start*");

Point pos = pLoc->m_trans;
...





The Last of Us on the Playstation 3

I 16 programmers on the game project
I 20 designers
I 100 artists & animators
I 6000 DC files
I 120Mb of DC source, 45Mb of DC target binary files

I Dynamically loaded into about 5Mb of managed heap
space



The Last of Us on the Playstation 3

I 16 programmers on the game project
I 20 designers
I 100 artists & animators
I 6000 DC files
I 120Mb of DC source, 45Mb of DC target binary files

I Dynamically loaded into about 5Mb of managed heap
space



The Last of Us on the Playstation 3

I 16 programmers on the game project
I 20 designers
I 100 artists & animators
I 6000 DC files
I 120Mb of DC source, 45Mb of DC target binary files

I Dynamically loaded into about 5Mb of managed heap
space



The Last of Us on the Playstation 3

I 16 programmers on the game project
I 20 designers
I 100 artists & animators
I 6000 DC files
I 120Mb of DC source, 45Mb of DC target binary files

I Dynamically loaded into about 5Mb of managed heap
space



The Last of Us on the Playstation 3

I 16 programmers on the game project
I 20 designers
I 100 artists & animators
I 6000 DC files
I 120Mb of DC source, 45Mb of DC target binary files

I Dynamically loaded into about 5Mb of managed heap
space



The Last of Us on the Playstation 3

I 16 programmers on the game project
I 20 designers
I 100 artists & animators
I 6000 DC files
I 120Mb of DC source, 45Mb of DC target binary files

I Dynamically loaded into about 5Mb of managed heap
space



Experience

I Racket power, library support a big win
I Syntax transformation source location and performance

hindered us
I S-expression based language a tough sell to industry

programmers, as well as designers, and non-technical
types

I ...especially when paired up with Emacs as the editing
platform.

I Although once learnt many programmers and designers
were expand and extend the language effectively

I Functional nature of the system is a big win, allowing data
to be flexibly transformed to just the right runtime
representation



Experience

I Racket power, library support a big win
I Syntax transformation source location and performance

hindered us
I S-expression based language a tough sell to industry

programmers, as well as designers, and non-technical
types

I ...especially when paired up with Emacs as the editing
platform.

I Although once learnt many programmers and designers
were expand and extend the language effectively

I Functional nature of the system is a big win, allowing data
to be flexibly transformed to just the right runtime
representation



Experience

I Racket power, library support a big win
I Syntax transformation source location and performance

hindered us
I S-expression based language a tough sell to industry

programmers, as well as designers, and non-technical
types

I ...especially when paired up with Emacs as the editing
platform.

I Although once learnt many programmers and designers
were expand and extend the language effectively

I Functional nature of the system is a big win, allowing data
to be flexibly transformed to just the right runtime
representation



Experience

I Racket power, library support a big win
I Syntax transformation source location and performance

hindered us
I S-expression based language a tough sell to industry

programmers, as well as designers, and non-technical
types

I ...especially when paired up with Emacs as the editing
platform.

I Although once learnt many programmers and designers
were expand and extend the language effectively

I Functional nature of the system is a big win, allowing data
to be flexibly transformed to just the right runtime
representation



Experience

I Racket power, library support a big win
I Syntax transformation source location and performance

hindered us
I S-expression based language a tough sell to industry

programmers, as well as designers, and non-technical
types

I ...especially when paired up with Emacs as the editing
platform.

I Although once learnt many programmers and designers
were expand and extend the language effectively

I Functional nature of the system is a big win, allowing data
to be flexibly transformed to just the right runtime
representation



Experience

I Racket power, library support a big win
I Syntax transformation source location and performance

hindered us
I S-expression based language a tough sell to industry

programmers, as well as designers, and non-technical
types

I ...especially when paired up with Emacs as the editing
platform.

I Although once learnt many programmers and designers
were expand and extend the language effectively

I Functional nature of the system is a big win, allowing data
to be flexibly transformed to just the right runtime
representation



Questions?


	What is it, and why did we build it?
	A crash course with examples

