

Jonathan Davies

Faculty of Science
Department of Botany

- 1. Woody plants, minimum height of 2 m
- 2. Permanent trunk
- 3. Habits: tree, shrub, palm, cycad, tree fern, bamboo, arborescent succulent, climber

Origins of savanna

Climate the usual explanation for changing vegetation – but does not match to time of savanna spread.

Pushing back the forest

'underground trees'

Geoxylic growth form evolved in response to frequent fires and high precipitation. As such, geoxyles may be markers of firemaintained savannas

Underground forests

Cussonia arborea

south-central Africa

Cussonia corbisieri

Zambia-DRC

Elephantorrhiza goetzei Elephantorrhiza elephantina southern Africa

south-central Africa

Erythrina abyssinica

south-central Africa

Erythrina acanthocarpa

Eastern Cape

Gardenia ternifolia

southern Africa

Gardenia subacaulis

Zambia-DRC

Underground forests

Pushing back the forest

'underground trees' geoxyles as markers of fire-maintained savannas

Underground forests

'underground trees' geoxyles as markers of fire-maintained savannas – evolved around 2-10 million years ago

Pushing back the forest

Number of spiny plants started increasing 10-20 million years ago

herbivore-adapted savannas evolved several million years before fire-maintained savannas, and probably in different environmental conditions.

Our results suggest that savannas first appeared in the tropics and extended more recently to lower latitudes.

More species more functions

More phylogenetic diversity more functions

Hector & Bagchi 2007

firewood and charcoal, carving, building and structural, spiritual, cultural, food (for humans), ornamental, forage and fodder, shade, chemical compounds, and medicinal

Scientific name	APG Family	IUCN	Firewood & Charcoal	Building structural	Carving	Cultural	Spiritual	Food (humans)	Forage & Fodder	Ornamental	Shade	Chemical Compounds	Medicinal	
Abutilon angulatum	Malvaceae	LC	0	1	0	1	0	1	0	0	0	0	1	
Abutilon sonneratium	Malvaceae	LC	0	0	0	0	0	0	1	0	0	1	0	
Acacia adenocalyx	Fabaceae	NE	0	1	0	0	0	0	0	0	0	0	1	
Acacia amythethophylla	Fabaceae	NE	0	1	0	0	0	1	1	1	0	1	1	
Acacia arenaria	Fabaceae	NE	0	1	0	1	0	0	1	1	0	0	1	
Acacia ataxacantha	Fabaceae	LC	0	1	1	1	1	0	1	1	0	0	1	

Tree phylogenetic diversity

Coefficient	Estimate (s.e.)	t-value	P-value
PSR	0.10 (0.002)	55.79	< 0.001
PSV	-16.15 (2.75)	2.75	< 0.001

Model P-value <0.001, $r_{adjusted}^2 = 0.74$

- Human population density correlates with tree species diversity in sub-Saharan Africa.
- However, it is not just the number of species that is important, but also how evolutionarily distinct they are from one another.
- A greater phylogenetic diversity of trees provides a greater diversity of ecosystem goods.

• The correlation between human population and plant species richness generates a conflict between humans and biodiversity conservation.

