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i

Less than one hundred years ago, computation was limited to centralized and large scale ma-
chines that could barely fit in a single room, and could only be accessed by the scientists and
engineers that worked on them. That world is hard to imagine today. Enabled by incredible techno-
logical advancement, and necessitated by ever increasing demand for its benefits, computing has
become ubiquitous in the modern era. Modern life is filled with mobile and embedded computing
devices. Additionally, the large, room sized computers have remained relevant, as powerful com-
puters in data centers are accessible over the web, providing invaluable computational resources.

However, as computing has spread into ever more domains, the challenges associated in ar-
chitecting these computing systems have increased. Computers no longer simply exist in stable,
controlled environments, and they must be designed to handle any and all unique challenges im-
posed by their surroundings. The challenges involved vary wildly by location, and include operating
under extreme power restriction, tolerating intermittent power supply, avoiding corruption due to
radiation, and maintaining correctness across wide temperature ranges, to only name a few. Sur-
prisingly, these challenges are not exclusive to mobile or embedded devices. Even computers in
data centers are facing new challenges, as new, more advanced devices are becoming ever more
sensitive to noise which was previously of no concern. Notably, computers which can exploit quan-
tum mechanics now must deal with new forms of noise which can not be mitigated by traditional
means. Hence, even computers in the middle of data centers can be considered to exist in “harsh”
environments, and must adapt to the conditions they impose.

All of these additional challenges, along with increasing demands for performance, have caused
a diversification of computer architectures. The “one size fits all” mindset of the microchip of the
past few decades no longer universally applies. While initially these challenges seem like a bur-
den, they have highlighted unique strengths and weaknesses of the available hardware technology
and provided insight into potential new designs and computing paradigms. Hence, these new
challenges are opportunities to explore alternative approaches and new architectures which may
provide improved performance, energy efficiency, and robustness. These new architectures often
benefit from extreme specialization, becoming exceedingly good at their niche task. Hence, these
new architectures are moreso accelerators than traditional computers.

This thesis covers architectures which have been designed to handle the unique challenges
of their environment and the analysis of how the corresponding challenges have impacted perfor-
mance, efficiency, accuracy, or total lifetime of the device. We cover architectures in a wide range of
environments, from at the core of data centers, to “beyond the edge” batteryless devices, and even
to off-earth space applications. A common theme among all the chapters in this thesis is exploiting
unique proprieties of the hardware or application in order to design a system which is particularly
well suited for its environment. Prominently, we have shown that processing-in-memory architec-
tures provide a promising alternative to traditional computing systems, and that these architectures
are surprisingly robust and adaptable to harsh operating conditions. We show that architectures can
be built on this technology which are resilient to power outages, robust to wide temperature ranges,
and nearly immune to soft errors from radiation, all while providing high performance and energy
efficiency. We also explore the limitations of these architectures, such as their finite endurance
and limitations of their electrical properties, and provide insight on how these limitations can be
mitigated. This thesis also covers accelerators which exploit the power of quantum mechanics,
which can potentially solve problems that were previously believed to be impossible. These accel-
erators are highly susceptible to noise, and are fragile even in the most secure environments it is
possible to construct. This is currently the limiting factor and it renders them impractical for useful
applications. While noise in traditional computing systems is a highly manageable and well-studied
problem, these new architectures face a whole new class of noise which much harder to overcome.
We analyze the impacts of this noise, and we propose strategies which can be used to mitigate it
in the near term and potentially over come it in the long term.
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Chapter 1

Introduction

1.1 Motivation

Computational power has increased dramatically over the previous decades. However, the demand
for computational power has grown even faster. Additionally, the number of computing domains has
exploded as ever more potential uses of computation have been discovered. Today, no single tech-
nology or architecture is capable of adequately supplying the computational resources for every
application. Each domain has its own requirements and unique challenges, which requires com-
puting systems to be thoughtfully and specifically tailored in order to satisfy all constraints and be
an effective solution to a given problem.

The increasing energy efficiency of computing systems has enabled them to move off the power
grid and rely solely on batteries. This has enabled mobile and embedded applications, which op-
erate on “edge” devices - those which are on the periphery of the power grid. However, operating
on batteries has its own limitations. Batteries must be re-charged or replaced, requiring periodic
human intervention. This is not suitable for devices which operate in remote or difficult to access lo-
cations. Hence, the concept of “beyond-edge” computing has been introduced. Beyond-edge refers
to devices which do not even use a battery, and obtain energy exclusively from the environment by
performing energy harvesting. This includes collecting energy from sunlight, heat, or ambient RF
radiation. This enables devices to operate almost anywhere conceivable, operating autonomously
for long periods of time. However, this introduces significant new challenges. Harvesting energy is
not reliable, and such devices will need to frequently power off when there is not sufficient power
available. As traditional computers are designed assuming a continuous power supply, re-starting
a computer unexpectedly will likely corrupt the architectural state and cause undefined behavior.
Hence, the architecture of beyond edge devices must be modified to efficiently and correctly handle
a power outage. An obvious solution is to perform checkpointing, where the architectural state is
repeatedly saved to non-volatile memory, allowing it to be restored on restart. Unfortunately, this
introduces many additional write operations and significant energy overhead. As power is already
extremely limited on such devices, energy costly checkpointing is not a viable solution.

The situation only gets worse when we consider that these devices are much more likely to
be subjected to harsh conditions than their embedded and mobile counter parts. For example,
beyond edge devices show great potential in the use of high earth atmosphere or satellite appli-
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cations. In such an environment, they will be exposed not only to extremely hot and extremely
cold temperatures, but increased levels of radiation. Wide temperature ranges and radiation create
further threats to correctness, and providing hardware resilience to both imposes additional energy
efficiency overheads. Designing devices which tolerate frequent power outages, wide temperature
ranges, and high radiation while also maintaining good performance and extreme energy efficiency
is a considerable challenge. Traditional architectures will be hard pressed to meet all of these
criteria.

Beyond edge devices also introduce security risks. They are intended for deployment in a wide
variety of locations, some of which may not be secure. If an application operates on sensitive
data, encryption will be required. However, computing with encrypted data introduces extreme
energy overheads, making it highly impractical. Hence, security beyond the edge remains an open
problem.

Computers have not only expanded into new domains via improvements in their energy effi-
ciency, they have also expanded by being reinvented at the most fundamental level. Within the last
30 years it has been realized that an entirely new class of computers can exist. By harnessing the
power of quantum mechanics, computers can perform calculations that would otherwise be impos-
sible. Such machines are referred to as quantum computers. However, the name is misleading
as they are not intended for general purpose computation and are only useful for a narrow range
of applications. Hence, they would be more appropriately called quantum accelerators. This new
quantum domain has revolutionary potential, and is the only known potential solution to important
scientific and industrial applications. However, it comes with a corresponding and daunting new set
of challenges.

Surprisingly, despite some significant differences, quantum computers experience problems that
are highly similar to traditional computers. The development of quantum computers will benefit from
the previous development of traditional computers. It is likely that many insights and techniques de-
veloped for traditional computers will be applicable to designing quantum computers. However, as
quantum computers are more complicated, such insights and techniques will need to be adapted.

Quantum computers are extremely fragile by nature, and need near perfect isolation from their
environment in order to function. Hence, even the most controlled environment at the center of
a data center represents a harsh and extreme environment for quantum computers. Traditional
computers also experience noise and solve the problem with error correcting codes. Unfortunately,
applying error correction for quantum computers is not easy, and currently is beyond the capability
of modern systems. If quantum computers are to be of practical use, we must discover more
efficient methods of mitigating and correcting noise.

In this thesis, we demonstrate how processing-in-memory architectures are well suited to solve
the problems of beyond edge devices. We design unique architectures to handle each of the spe-
cific challenges. We also perform analysis of the challenges of quantum computers, and propose
methods to overcome the limitations of noise. We show how techniques such as statistical fault
injection and approximate computing can be re-applied to quantum computers.
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1.2 Thesis Contributions

This thesis proposes application specific architectures and methodologies which overcome the
unique challenges of the target domains, i.e. accelerators in extreme environments. We exploit
both unique properties of hardware devices and characteristics of specific applications to reduce
overhead and increase robustness. As such, we show thatunconventional architectures can be
highly effective where more traditional architectures fail. Our work spans many domains, including
high-cost specialized hardware within data centers, remote beyond edge embedded devices, and
even off-earth satellites.

Prior work on beyond edge devices has struggled with the high complexity and low energy effi-
ciency of traditional computing systems, typically in the form of a microcontroller [120, 121]. Such
traditional systems have been a challenge to adapt to the harsh and unpredictable environments
as they are susceptible to power outages, wide temperature ranges, and radiation. Adding re-
silience via hardware or software comes with considerable energy overheads [406], which is not
acceptable for energy-constrained devices. We utilize non-volatile processing-in-memory (NV-PIM)
[62]and design an unconventional accelerator architectures which have an inherent resilience to the
challenges imposed by beyond edge domains. We show how NV-PIM architectures can achieve
extremely low checkpointing overhead, operate over a wide range of temperatures with little mod-
ification to the operating semantics, and can be made resilient to radiation with minor hardware
improvements. Due to NV-PIMs extreme energy efficiency, we also investigate it as a potential
accelerator in cryogenic applications, where low power consumption is critical.

Also in the cryogenic environment are quantum accelerators. Such machines are capable of
solving problems which are believed to be impossible by any other means [331]. However, these
accelerators are extremely fragile and are often rendered useless due to excessive noise coming
from their environment [45, 238]. Hence, it is of critical important to accuracy characterize and
mitigate the noise. Unfortunately, as of this writing there has been no successful demonstration of
non-trivial useful computation performed by a quantum accelerator. Our work analyzes the nature
of this quantum noise and provides a perspective for engineers in how to overcome it. We also
have recognized that the large body of work on traditional computer architecture research may
prove useful, if properly adapted to quantum contexts. Consequently, our work borrows methods
such as statistical fault injection and approximate computing concepts from the field of computer
architecture and applies it to quantum accelerators. We show that these techniques can both
improve the reliability of noisy, small quantum computers in the near term and help achieve large,
fault-tolerant quantum computers in the future.

The contributions of this these is as follows:

• In Chapter 2, we show that using processing-in-memory architectures with non-volatile mem-
ory devices provides simple and effective solutions to tolerating frequent power outages when
operating beyond the edge. When processing in the memory, data is effectively being con-
stantly backed up. Hence, there is never an inconsistency between the processor and the
data storage. As the memory is non-volatile, this constant backup process is persistent across
power outages. We demonstrate that non-volatile processing-in-memory architectures effec-
tively perform constant checkpointing, allowing for extremely fine-grained and low overhead
restoration on restart. We design a full architecture exploiting this advantage by designing the
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necessary support circuitry and rigorously covering all corner cases providing correctness
guarantees.

• Given the extreme energy efficiency of PIM, we consider it as a supporting accelerator in
cryogenic systems in Chapter 3. Cryogenic computing is gaining traction as it enables a sig-
nificant increase in the performance of CMOS transistors and it creates an environment where
quantum computing becomes possible. Hence, it is the environment where the most powerful
traditional and quantum computing systems can exist. However, cryogenic environments re-
quire extreme energy efficiency, as consuming power will increase the temperature. PIM is a
promising candidate to supply both supplemental memory and computation while introducing
very little heat. We evaluate the efficacy of different PIM technologies in this domain.

• We further the develop the architecture from Chapter 2 in Chapter 4, where we make it more
programmable by extending the instruction set and adapting the architecture to be more ro-
bust and suitable for use as low-earth orbit satellite. We show how a large instruction set
can be made tolerant to power interruptions with simple correctness guarantees and minimal
hardware. We exploit the fact that non-volatile memory is inherently resilient to radiation and
design an entire architecture which can tolerate large degrees of radiation with relatively low
hardware and energy efficiency overhead. We also demonstrate the in-memory logic of PIM
can function properly across a wide temperature range.

• We make progress on solving the correctness problem for beyond edge devices in Chapter
5. We again adapt the accelerator designed in Chapter 2 to act as a mini-server operating
beyond the edge. We find that the extreme energy efficiency of NV-PIM enables it to perform
fully encrypted computing, despite the large overhead it imposes. Tailoring the algorithm
to increase efficiency allows our accelerator to finish computation within a competitive time
frame. Hence, it can act as a secure server which other beyond edge devices can off load
computation to. We demonstrate how this system can accelerate applications under certain
power constrained circumstances and make progress towards fully-encrypted computation
beyond the edge.

• We analyze one of the most concerning limitations of non-volatile PIM in Chapter 6. Non-
volatile devices have a limited endurance, meaning they can only be written a finite number of
times before failure. When used for PIM, such devices can fail within a relatively short amount
of time due to the large number of write operations required. Our analysis highlights the need
for further device level research, and we show the limits of the mitigation techniques available.

• We analyze the limitations of PIM cross-bar architectures in Chapter 7. We show how funda-
mental electrical limitations of such architectures make the unscalable. We propose that two
transistors per cell should be used, and that this represents an ideal location in the design
space. Such a configuration has sufficient density for nearly all applications, and it completely
eliminates the electrical limitations of cross-bar architectures, making large scale designs en-
tirely feasible.

• Chapter 8 contains an overview and analysis of quantum noise and a characterization of how
different noise types impact different quantum programs. We test noise mitigation strategies
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and show how and when they apply. Our analysis provides a roadmap for engineers in how
to tolerate noise and provide warning against common pitfalls and fallacies.

• We apply the computer architecture strategy of statistical fault injection to quantum computing
in Chapter 9. We show that such a strategy can reveal regions of varying sensitivity in quan-
tum programs which can be exploited to improve reliability. This work shows how quantum
software sensitivity can be matched to quantum hardware reliability in order to reduce the
impact of noise.

• In Chapter 10 we again use statistical fault injection along with the concept of approximate
computing to lower the overhead of quantum error correction and increase the performance of
quantum hardware. Statistical fault injection enables us to know regions of the program which
are relatively less sensitive, where errors will be less likely to affect the output. This allows us
to selectively apply lower strength error correction to these regions. The lower strength error
correction has less overhead, which speeds up computation. The downside is that these
regions have an increased risk of error. However, since we know they are less sensitive, the
impact of these errors will be minimized. We show that this trade-off leads to a net win in
performance and reliability for a wide range error rates.



Chapter 2

Non-Volatile Inference for Energy
Harvesting Applications

2.1 Introduction

Machine learning is desirable for low-power, edge devices as it provides the capability to solve a
wide variety of problems. As a result, much research has been devoted to optimizing hardware for
machine learning inference on such devices [75, 216]. Going even further, energy harvesting tech-
niques [181] remove the need for a battery, enabling the placement of such devices into almost any
conceivable environment. There are many exciting possible applications, such as low power sensor
networks [241], wearable tech, or even implants [133]. Previous work has already experimentally
demonstrated machine learning capability on energy harvesting devices using commercially avail-
able hardware [120].

Energy harvesting applications present numerous and unique challenges. The energy har-
vested from the environment may be less than what can be supplied by a battery, making energy
efficiency even more critical than in mobile applications. Significantly, the process of energy har-
vesting also introduces the requirement for intermittent processing. Energy sources (such as sun-
light, heat, movement) may be unreliable, and a device will have to shut down when the power
source goes away. Additionally, even when available, the power source may be insufficient to run
the device continually. In order to operate within the power budget, the device must acquire energy
over time and consume it in bursts [55].

Intermittent processing introduces new considerations and metrics for performance [219]. Sig-
nificantly, correctness has to be guaranteed over shut down and restart operations. If the state is
not properly stored – a process known as checkpointing – restarting a device can lead to mem-
ory inconsistencies and incorrect operation [68]. Additionally, the efficiency of these shut down
and restart operations becomes critical, as they take away precious energy from operations that
enable forward progress. Also critical, it has to be ensured that forward progress can be made
during phases of power-on time. If the energy required between two checkpoints is too large, the
device will be unable to complete the computation. This results in a program getting stuck, which
is referred to as non-termination. Thus, effective energy harvesting devices must have efficient
techniques which enable correctness and forward progress, all while remaining within a modest

6
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hardware budget.
A recently proposed spintronic processing in memory (PIM) substrate, CRAM [62], is uniquely

well suited for energy harvesting applications. Operations on CRAM are highly energy efficient,
enabling a low power budget. Further, as it is a PIM solution, it removes the need for energy hungry
data transfers between processor logic and (volatile) memories. The main advantage, however, is
that progress is automatically saved after every operation. CRAM consists entirely of non-volatile
devices and the results of all computation are immediately stored in permanent memory. As there
are very few variables required to maintain the architectural state, these can also be saved after
each operation with minimal energy cost. Effectively, checkpointing occurs after every operation.

Checkpointing after each operation is not a new idea [231], and for most systems this would
generally be considered inefficient [68]. However, as CRAM is a non-volatile PIM substrate and
all of the computation occurs within the memory array, data backup for checkpointing happens
automatically, i.e., non-volatile PIM is always performing data backup. Hence, CRAM can restart
a program from the very last operation with fast and efficient shut down and restart. Additionally,
CRAM is always in a state that can be recovered from. The power can be cut instantly and un-
expectedly, and it will still restart correctly. The maximum penalty is repeating the last instruction.
We refer to this capability as instant restartability. This provides a significant advantage, as shut
down and restart procedures for more conventional energy harvesting devices introduce additional
latency and energy, and significant complexity.

In this chapter, we introduce MOUSE (Minimal Overhead Accelerator Utilizing Spintronic RAM
for Energy Harvesting Applications) which is built using CRAM [62]. While based on CRAM,
MOUSE has a different cell design which reduces energy consumption during computation. For
our applications, we implement support vector machines (SVM) and binary neural networks (BNN),
which are widely used machine learning algorithms, especially promising in the energy harvesting
domain due to their small footprint. We demonstrate how MOUSE can provide high performance
and energy efficiency on such applications while also having efficient shut down and restart pro-
cedures. Additionally, we consider how another modification to the CRAM cell, the addition of a
spin-hall effect (SHE) channel [401], can further increase energy efficiency – by enabling indepen-
dent optimization of the read and writes, which otherwise come with conflicting requirements.

The contributions of this chapter are as follows:

• We demonstrate that logic operations performed with magnetic tunnel junctions (MTJs) are
inherently idempotent.

• We utilize this property with processing-in-memory to create an energy-efficient and intermittent-
safe machine-learning inference accelerator.

2.2 Spintronic PIM

Spintronic memory in the form of STT-MRAM is an emerging technology, with a few products al-
ready commercially available [1]. Due to its non-volatility, high density, speed, and endurance,
STT-MRAM is being considered as a universal memory replacement [91]. STT-MRAM arrays use
one magnetic tunnel junction (MTJ) and one access transistor per cell. Being based on CRAM [62],
MOUSE maintains the same basic cell structure. By making light modifications to the array, CRAM
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is able to connect MTJs in such a way to enable logic operations to be implemented within the
array. Therefore, MOUSE is capable of being used as both a standard STT-MRAM array and as
a computational substrate. CRAM is unique in that the computation does not require any external
logic circuits or the use of sense amplifiers, making the computation contained entirely within the
array. In the following, we explain MTJ basics and show how they can be used in logic operations.
Then we demonstrate how these operations can be performed within the array structure.

2.2.1 Magnetic Tunnel Junction (MTJ) Basics

STT-MRAM arrays are built with magnetic tunnel junctions (MTJ). The MTJ is a resistive memory
device which consists of two magnetic layers (fixed layer and free layer) which are separated by an
insulator. The polarity of the free layer can change but the fixed cannot. When the fixed and free
layers are aligned, the MTJ is in the parallel (P) state, which has a low resistance and corresponds
to logic value 0. When the layers are opposing, the MTJ is in the anti-parallel (AP) state, which has
a high resistance and corresponds to logic value 1.

The state can be determined by applying a voltage across the device and sensing the amount
of current that travels through it. If a sufficient amount of current is driven through the device, it will
change state. Importantly, the state it changes to depends on the direction of the current. This is
key to our ability to ensure correctness in spite of power outages. When current flows from the free
layer (fixed layer) to the fixed layer (free layer), it switches the MTJ to the AP (P) state.

2.2.2 Implementing Logic Gates in Memory

Before showing how logic can be implemented in the MOUSE array, we demonstrate how CRAM
performs logic gates on MTJs in principle. The configuration for a two-input logic gate is shown in
Figure 6.1. The two MTJs in parallel are the inputs to the logic gate, and the MTJ in series with
them is the output. The output must be preset to a known value. For example, the output is preset
to 0 (low resistance) for a NAND gate. To implement a NAND gate, a voltage is applied across the
two terminals, V1 and V2, such that current flows from the input MTJs to the output MTJ. If either of
the input MTJs is 0 (low resistance) there will be sufficient current to switch the output MTJ to 1. If
both input MTJs are 1 (high resistance), there will be insufficient current to change the state of the
output MTJ, and it will remain at 0. Therefore, the state of the output MTJ follows the truth table
for a NAND gate, it is 0 only if both inputs are 1. Most importantly, per basic MTJ physics, current
flowing in the supplied direction can only cause the output MTJ to switch to 1; it cannot cause it to
switch to 0.

Many other common gates –including universal ones– can be implemented similarly, such as
AND and (N)OR. In order to implement other gates, we can change the number of inputs, the preset
value of the output, or the direction of the current.

More complex operations are broken down into these basic logic operations. For example, to
perform a full-add in MOUSE, we can perform 9 NAND gates sequentially and use spare MTJs to
hold 7 temporary bits. Using full-adds, full-subtracts, and other primitive operations we can perform
integer or fixed-point arithmetic, thus enabling us to implement our benchmarks. Naturally, the
latency for each complex operation is quite high, as it must be broken down into its constituent
gates which are then performed sequentially. However, as we will show in later sections, this
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Figure 2.1: MTJs connected to implement a 2-input logic gate. The preset value of the output MTJ
and the polarity and magnitude of the voltage applied between V1 and V2 determines the type of
logic gate. The fixed layer is colored in grey and the free layer in light blue.

can be easily compensated for by performing many data independent operations in parallel, under
intermittent power constraints. Due to space limitations, we will focus on MOUSE-specific CRAM
adaptations next, but numerous papers[398, 401, 62] cover the details of using MTJs to perform
more complex logic based on this basic CRAM principle.

Figure 2.2: 4 cells in 2 columns and 2 rows in 1T1M (one access transistor, one MTJ) STT config-
uration.

2.2.3 MOUSE Array Architecture

Based on CRAM, MOUSE essentially is an STT-MRAM array with some additional hardware. As an
example, four cells located in adjacent rows and columns are shown in Figure 2.2. Each memory
cell consists of one MTJ and one access transistor. In each column there are two bit lines, bit line
even (BLE) and bit line odd (BLO), and a logic line (LL). In each row there is a wordline (WL) that
controls the access transistor. Each MTJ is connected to the LL through the access transistor and
to one of the two bit lines. Cells in even rows are connected to BLE and cells in odd rows are
connected to BLO. We now describe how memory and logic operations are performed in the array.

Memory Operation: To read or write from row n, activate WLn and apply a voltage differential
across LL and the bitlines. Current will only travel through the bitline with the same parity as n.
Current can be sensed on the bitlines to perform a read, or a large current can be driven through
the MTJ to perform a write.

Logic Operation: To perform a logic operation with inputs in rows n1, n2 and with output in row
m, preset row m by performing a write operation. n1 and n2 must have the same parity (i.e., both
even or both odd) and m the opposite. Activate WLn1, WLn2 and WLm. Apply a voltage differential
across BLE and BLO. Due to the parity requirement, in Figure 6.1, if V1 is connected to BLE, V2

must be connected to BLO, and vice versa. In this case, the junction connecting the free layers (in
light blue) of the inputs and the ouput corresponds to LL. Current travels from one bit line (be it BLO
or BLE, depending on the parity of the input cells), through the MTJs in rows n1 and n2, through the
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Figure 2.3: Demonstration of how a (2-input) NAND gate is performed within the array.

Figure 2.4: 4 cells in 2 columns and 2 rows in 2T1M SHE configuration.

LL, through the MTJ in row m, and back to the other bitline. Depending on the states of the MTJs in
rows n1 and n2, the state of the MTJ in row m will either change or not. As an illustrative example,
Figure 2.3 demonstrates the formation of a NAND gate.

Voltage which drives the operation is applied to every column (over the respective bitlines) in
which the specified operation should take place. The peripheral circuitry determines which columns
these are, which can be specified by dedicated instructions as will be described in Section 4.3.4.
Hence, while only one operation can be performed in a column at a time, an operation can be
performed in many columns simultaneously. This gives MOUSE column level parallelism, which
bears some resemblance to bit-serial architectures.

2.2.4 Alternative Memory Cell Architecture

Augmenting each MTJ in the MOUSE cell with a Spin Hall Effect (SHE) channel can further improve
energy efficiency. This is the same technology as Spin-Orbit Torque (SOT) MRAM [269, 114], which
will likely replace STT-MRAM. The SHE channel provides separate paths for reads and writes
(where optimization targets conflict), allowing for separate optimization, thereby better energy-
efficiency. SHE channels are CMOS/MTJ-compatible and fabricated prototypes exist [114]. Tech-
nology details of SHE integration in CRAM is covered in [401]. Four augmented cells in two rows
and two columns are shown in Figure 2.4.

In this case, there are two word lines per row, word line for read (WLR) and word line for write
(WLW). WLR connects the cell to the read path, via tread. WLW connects the cell to the write path,
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via twrite. When twrite is activated, current only passes through the SHE channel (and not the
respective MTJ). This current, while not affected by the state of the MTJ, can still change its state.
This configuration is used when writing to the MTJ or when the MTJ is the target output of a logic
operation. When tread is activated, on the other hand, current passes through the SHE channel and
the MTJ. This allows the MTJ state to affect the current that travels through it. This is used when
reading the MTJ state and when the MTJ is used as an input to a logic operation.

The SHE channel has important benefits. Due to the separation of read and write paths, the
required current density to induce switching is lower, allowing for a reduction in the energy of write
and logic operations. This increased energy efficiency can provide a decrease in the overall exe-
cution time in energy harvesting scenarios, as will be shown in our evaluation. Additionally, as the
output MTJ resistance no longer is in series with the input MTJ resistances in a logic operation,
different input values become easier to distinguish, increasing the robustness of logic operations.

Figure 2.5: Overview of MOUSE. Each tile contains an array of MTJs along with a row and column
decoder. Sense amplifiers are required for read/writes but aren’t used in computation. Shown here
is the STT (1T1M) configuration.

2.3 Case Studies

To show the capability of MOUSE, we implement Support Vector Machines (SVM) and Binary
Neural Networks (BNN). Both are widely used machine learning algorithms. Generally speaking,
whether SVMs or neural networks are a superior choice depends on the target problem, but appli-
cations overlap considerably and both are applicable in the energy harvesting domain, where both
the energy and the area budget is stringent.

SVMs are effective and simple classifiers for typically smaller data sets. Particularly, we found
SVMs to perform well on MNIST image recognition and human activity recognition. However, there
is a trade-off, as SVMs can struggle with some problems. For example, we were unable to achieve
reasonable accuracy on the speech recognition data set, which neural networks have performed
well on [120].

For all SVM benchmarks we use a polynomial kernel with a degree of 2. For inference, the
main computation is effectively performing the dot product between an input vector and each of
the support vectors. The results of these dot products are then squared, multiplied by a set of
coefficients, and finally summed together. By design, SVMs have two class outputs, where the sign
of the output value is the classification.
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In this work, we opt for the simplest extension to multi-class problems: we train a separate
SVM for each possible output class. Each SVM has the task of identifying its assigned class. For
example, MNIST has 10 different classes for digits 0-9. We train 10 SVMs each identifying each
digit. The output is 10 scores for “how similar” the input is to each digit. We take the highest-score
output of the 10 classifiers to be the final classification. We perform training offline in software and
only consider inference acceleration on MOUSE.

BNNs are neural networks that have neurons and weights represented by a single bit each
[76]. This enables multiplications to be replaced by XNOR operations and addition is simplified to a
popcount operation. As a result, BNNs are much more energy efficient than full- or fixed-precision
networks. They have been implemented efficiently in FPGAs in FINN [362] and FP-BNN [211].
We mimic their network configurations, modified only in transforming them to run on our PIM sub-
strate. Hence, our accuracy is identical. Neural networks [390, 59] and BNNs [349, 396] have been
previously mapped to PIM substrates for acceleration, including on CRAM [301]. However, those
designs rely on continuous power and have not considered correctness in intermittent computing
and thus are not capable of functioning in the targeted energy harvesting domain.

2.4 MOUSE Design

Energy harvesting systems are powered by their environment. If the environment does not provide
enough power, the system will have to accumulate energy over time and consume it in bursts [120].
Therefore, such devices must consume as little energy as possible and be capable of tolerating
power outages while maintaining program correctness. MOUSE is a natural fit for such a paradigm
as logic operations are highly energy efficient and the memory is entirely non-volatile. Additionally,
all computation occurs within the memory so progress is effectively saved after each operation.
This greatly simplifies strategies to maintain correctness. In this section, we detail a basic MOUSE
design which is tightly tailored to energy harvesting applications.

2.4.1 Hardware Organization

MOUSE has a tiled architecture. Certain MOUSE tiles are dedicated for instructions, while all others
are dedicated for data and computation, as shown in Figure 4.1. MOUSE has a larger storage
capacity than is typical for energy harvesting devices. This is due to two reasons. First, MRAM is
dense and has extremely low standby power, giving the memory a low area and energy impact. For
example, NVSIM [92] reports the size of 64MB STT-MRAM array –which is nearly twice the size
of our largest configuration– as 15.12mm2. 256MB and 1GB STT-MRAM memory manufactured
by Everspin [1, 2] comes in a package that is 130mm2. For reference, just the MSP430FR5994
micro-controller itself, commonly used as a sub-component of energy harvesting systems [120, 70,
153, 154, 155, 311], consumes over 100mm2. Second, as there is no need for external processor
logic or area costly volatile memory (such as SRAM), and due to minimal peripheral circuitry, nearly
the entire area budget of MOUSE is available for memory arrays. That said, the SHE configuration
has more area overhead than the STT configuration due to the presence of a 2nd transistor, which
we expand upon in Section 7.5. However, the area budget still remains modest.

There are only five components of MOUSE that are not memory arrays:
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1) A memory controller that reads instructions from the instruction tiles and issues all instructions;

2) An 128B memory buffer that facilitates reads and writes to the tiles;

3) A non-volatile register for Program Counter (PC);

4) A non-volatile register for buffering a single instruction;

5) Voltage sensing circuitry for monitoring the power source.

The memory controller only needs to differentiate between three instruction types as will be de-
scribed in Section 4.3.4. All computation and memory operations are performed in the tiles, hence
the controller need only broadcast the appropriate command to the tiles. The memory buffer is
the same size as one row of the MOUSE tiles and is used for intermediate storage when trans-
ferring data to and from the tiles. The non-volatile registers are used for maintaining correctness
during power outages, as will be described in Section 2.4.4. Finally, the voltage sensing circuitry is
standard for energy harvesting systems, and is as described in [219].

2.4.2 Instructions

Instructions for MOUSE are 64-bit and the formats are shown in Figure 4.2. There are three types
of instructions, logic operations, memory operations, and column activation. Memory operations
are the same as standard read and write operations for MRAM. Instructions for logic operations
specify the type of operation (which determines the applied voltage level) and the rows on which
input and output cells reside. When a logic instruction is issued, it will be applied to every column
that is currently active. Columns are activated by the Activate Columns instruction, which provides
a list of column addresses to a column decoder. Once columns are activated they are held active
by a latching mechanism as proposed by [209]. This allows columns to remain active over multiple
instructions. As columns need to be changed infrequently, typically staying active for many instruc-
tions, the peripheral cost for activation is amortized. This cost is further reduced by modifying the
encoding to allow for bulk addressing, similar to the procedure in [326].

Figure 2.6: MOUSE instruction formats. There are three types of instructions, logic, memory, and
an additional activate columns instruction for configuration. Opcodes are 4 bits; tile addresses, 9
bits; and row and column addresses, 10 bits each. Dashed items are optional.

Compiling instructions for MOUSE requires some knowledge of the hardware to make efficient
use of potential parallelism. This situation is analogous to compiling for GPU architectures from
Open-CL or CUDA code. Unfortunately there is no generic equivalent for PIM. In the following we
will provide pointers for efficient compilation, but inevitably leave detailed exploration of this rich
design space to future work. Otherwise, architecture and data layout for MOUSE is similar to a
number of other works which have mapped applications to PIM substrates [209, 326], including
BNN implementations [301].
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While operations can occur in multiple tiles simultaneously, tiles do not operate autonomously.
All operations are triggered by the memory controller (discussed in more detail in Section 4.4).
Effectively, there is a single controlling “thread”, and hence there are no concurrency concerns
between individual tiles.

A subset of the tiles are dedicated to store the instructions. In the prototype MOUSE imple-
mentation, instruction and data tiles are homogeneous in design. The instructions are written into
these tiles before deployment. Once active, the memory controller fetches each instruction from
the instruction tiles, decodes it, and then broadcasts it to the tiles storing data. Instructions vary in
the amount of time they take to complete. This is because specifying row and column addresses
has an associated latency, and different instructions have different numbers of addresses. Logic
operations can use 2 or 3 rows and column activation can specify up to 5 columns at a time. To
ensure that every instruction finishes in time, the memory controller waits longer than the longest
taking instruction needs before issuing the next. This time lapse forms a cycle. While this conser-
vative approach comes at some cost of performance (more complex techniques could potentially
issue instructions faster, in an event-driven fashion), MOUSE already is capable of extreme per-
formance relative to other devices in this domain, as shown in Section 7.5. Additionally, energy
efficiency (rather than throughput) is the limiting factor for energy harvesting devices. Hence, we
opt for simplicity at the cost of some performance loss.

Finally, as we are only performing inference in MOUSE, the sequence of instructions performed
doesn’t change as a function of inputs at runtime. Instructions are performed in sequential order
one by one until the program repeats.

2.4.3 Power Draw

Most energy harvesting devices utilize an energy buffer (capacitor), rather than having the power
source directly attached [225]. This prevents the need to match the power consumption with the
power source. A switched-capacitor voltage converter can be used to apply the all appropriate
voltages to the device [148, 173, 289], including the voltages required to perform all logic gates
(explained further in Section 7.5). MOUSE performs a single type of operation in each cycle. A
portion of each cycle must be dedicated to changing the output voltage of the converter, if consec-
utive operations require different voltage levels. The converter may have an efficiency anywhere
between 35-80%, hence the energy harvesting power source will have to provide energy in addition
to that which MOUSE consumes.

By utilizing an energy buffer, MOUSE acquires energy over time and then consumes it in bursts.
Hence, MOUSE could consume more power during power-on time than the energy-harvesting
power source provides. However, we note that it is possible to reconfigure MOUSE to consume
a specified power (to stay within a specified power budget), if this is known prior to deployment.
By adjusting the amount of parallelism in the computation, the power consumption of MOUSE can
be finely tuned. This enables a trade-off between latency and power draw. However, this can
place strict limitations on potential parallelism. For example, if the power source can only deliver
low power, e.g., 60µW (an efficiency of 35% from a 171µW power source), MOUSE would only
be able to perform logic operations in 4 columns simultaneously (using the least energy efficient
configuration described in Section 7.5).
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Table 2.1: Four possible cases for re-performing an interrupted AND gate. The output MTJ either
should or should not switch for correct operation, and it either did or did not prior to the power being
cut.

Output did not switch before interrupt Output did switch before interrupt
Output should not switch Repeating the operation is the same as per-

forming it for the first time; no switching will oc-
cur (correct output).

Not possible. There cannot be sufficient current
to induce switching at any point of the operation
(be it before of after the interrupt). Repetition
cannot induce switching by construction.

Output should switch Repeating the operation is the same as per-
forming it for the first time, and will now result
in switching (correct output).

The output has already switched to 0 (correct
output). Repetition, i.e., re-applying the same
voltage will result in a larger current. Due to
the direction of the current, however, staying the
same (as before the interrupt), the output will
remain at 0 (and cannot switch back to 1).

2.4.4 Intermittent Processing

As energy harvesting systems frequently experience power outages, they must be designed to
perform intermittent processing. This involves addressing the challenge of maintaining correct state
while repeatedly shutting down and restarting. The mechanism for maintaining correct state also
needs to be efficient, as to avoid consuming the precious energy available for program execution. A
number of techniques have been designed to ensure correctness [68, 305, 233, 119]. These studies
have devised sophisticated techniques to ensure correctness while introducing minimal backup
and restart overhead. In contrast, MOUSE maintains correctness with just a program counter
(PC) and an additional non-volatile status bit. While extremely simple, and would be crude for
other architectures, it is a natural fit for MOUSE. The simplicity of this technique is enabled by our
novel architecture. More sophisticated techniques are unsuitable and unnecessary as MOUSE has
no volatile data to backup. As MOUSE performs all computation within the non-volatile memory,
progress is saved after each operation. This makes restarting after the last instruction possible and
ideal.

When MOUSE restarts, only two pieces of information are required: the last instruction that was
performed and the columns that were active. In order to restart from the last instruction, MOUSE
writes; i.e., checkpoints, the PC into a non-volatile register after each instruction. When MOUSE
gains sufficient power to restart, it simply reads the next instruction from the address in the PC.
In the worst case, the power is cut after the last instruction is issued and performed, but before
the update to the PC register. This does not break correctness as the same result is obtained if a
single instruction is repeated multiple times, i.e., each such repetition is idempotent [369, 157] as
will be shown in Section 2.5.1. The only requirement is that the PC checkpoint happens strictly
after each instruction is performed. Restarting after the very last instruction not only minimizes the
amount of work potentially lost on shutdown, but it also simplifies the restart process. The simple
correctness guarantee, an operation being idempotent, does not hold if we were to repeat multiple
instructions. This is because over the course of multiple instructions, temporary values can be
created. These temporary values may be used later in the computation or periodically overwritten.
Repeating multiple instructions on startup would require some method for ensuring correctness
of these temporary values, such as performing additional presetting operations. This is certainly
possible to do, but it introduces additional (and unnecessary, as we will see shortly) complexity.

The second requirement is to restore the previously active columns, for which we use a sim-
ilar procedure. Whenever an Activate Columns instruction is issued, it is stored in an additional
instruction register. Reissuing this last Activate Columns instruction is the first action on restart.
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This scheme gives MOUSE minimal backup and restart overhead. To summarize, the cost
is 1) continuous checkpointing of the program counter and Activate Columns registers and 2) an
additional issue of an Activate Columns instruction on every restart. Both of these actions incur far
less energy than a typical logic instruction. We make sure that operations happen in the correct
order by performing them sequentially; updates to architectural state occur only after the current
instruction is performed. It is noteworthy that MOUSE is always in a state which is safe to shut
down in. Hence, MOUSE maintains correctness even if power is cut unexpectedly. We provide
more detail on maintaining correct state in Section 4.4.2.

There is an efficiency trade-off in the frequency of checkpointing [231]. Doing so more often
results in less work potentially lost on shut-down, however this also increases the checkpointing
overhead. The optimal approach will depend on the power source. MOUSE consumes energy
on every cycle to perform checkpointing. If energy-harvesting is able to supply sufficient power,
making power interruptions less frequent, it is possible that MOUSE would be more energy efficient
performing checkpointing less often. However, we opt to checkpoint on every cycle as this keeps the
design complexity minimal, which is enabled by the energy efficiency of MOUSE’s checkpointing.

2.4.5 System Integration

During inference, MOUSE itself holds all static data required and performs all the computation. To
be integrated into an energy harvesting system, MOUSE needs to receive energy from an energy
harvester, receive input from a sensor, and send output to a transmitter. In this work, we assume
input data is stored in a non-volatile buffer in the sensor prior to inference. The sensor’s buffer
is assigned a tile address and is treated as one of the tiles. Additionally, the buffer contains a
non-volatile valid bit indicating that new input is ready. When MOUSE is ready for new input, the
memory controller can check the valid bit and trigger a memory transfer. The memory transfer then
consists of reads from the buffer and writes to the MOUSE data tiles. These reads and writes can
be controlled by instructions at the beginning of the program. When MOUSE finishes inference, the
memory controller reads out the data from the tiles. This data is then available to be transferred to
the transmitter. In this work, we focus only on the accelerator and do not consider any overhead for
the sensor or transmitter.

MOUSE can also handle potential sensor data corruption due to power outage. A dedicated
non-volatile register along with an instruction to orchestrate sensor reads achieves this. When
sensor read begins, this instruction stores current PC in a dedicated register. If power goes out
during reading sensor data, on restart, MOUSE checks the valid bit in the sensor buffer (which
stays zero under corruption). If zero, MOUSE goes back to first instruction handling sensor read
(getting PC from the dedicated register). MOUSE can checkpoint such PC at any code location. As
an alternative design point, MOUSE can offload this orchestration to software, as well. Otherwise,
if power outage happens during computation, MOUSE does go back in time, but at most by one
operation. Going further back is unnecessary. The most recent checkpoint is guaranteed to be
correct. Idempotency ensures that neither following operation nor following checkpoint can corrupt
it. All data remains consistent, hence there cannot be corruption on reboot.
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2.5 Correctness Guarantee

We show that correctness is guaranteed in spite of power outages, even when unexpected. There
are two components, the correctness of individual operations when interrupted or re-performed
(Section 2.5.1) and correctness of state variables in transitions between states (Section 4.4.2).

2.5.1 Operation Level Correctness

In this section we show that correctness is maintained if a single operation is repeated, i.e., that
repeating any single operation is idempotent [369, 157]. Given that the power may be cut at
any moment, we must consider what happens when an operation is interrupted in all its possi-
ble stages. Since all operations in MOUSE are threshold operations, the two stages are pre- and
post-switching. Additionally, switching of the output MTJ either should or should not occur depend-
ing on the inputs. To be explicit, we use AND as an example, however, our observations here apply
to all gates.

The preset value for the output of an AND gate is 1, meaning the MTJ has a high resistance.
During operation, current is applied in a direction that could change the output state to 0. If either
of the two inputs is 0, there will be a sufficient current to change the state, otherwise it will remain
at 1. We show the four possible cases in Table 2.1: If, due to the inputs, the output is not supposed
to switch, the output MTJ will not switch before the power is cut or after the power is restored. On
the other hand, if the output is supposed to switch, it does not matter if it switches before the power
outage or after.

If the output MTJ does not switch before the power outage, it will switch once power is restored
and the operation is re-performed. If the output MTJ does switch to 0 before the power outage,
re-performing the operation once the power is restored will leave the output at 0. This is because
the direction of the current can only change the output to 0, it cannot revert it back to 1 due to basic
MTJ physics.

The catch here is that repeating a logic gate is effectively the same as performing the gate
for a longer duration. Doing so results in an identical outcome, regardless of whether the output
MTJ switched before interruption (i.e., power outage) or not. The case for writes is even simpler.
The result of a write operation does not depend on the preset value, hence repeating a write is
effectively writing the value twice. Such power interruptions can lead to wasted energy (as we may
end up re-performing unnecessary work) but cannot result in corruption of logical values.

We do not require idempotency beyond a single logic gate as we perform only one logic gate
per cycle (per column). More complex operations (such as additions or multiplications) are broken
down into individual gate operations, which are then performed sequentially in consecutive cycles
(hence separated by checkpoints, as will be explained in Section 4.4.2). Our Boolean gate set is
universal, allowing arbitrary computation.

2.5.2 Maintaining Correct State

It must also be ensured that the memory controller can tolerate unexpected interruptions and that
MOUSE can maintain correctness as it transitions from one operation to the next during program
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Figure 2.7: Memory controller’s state transitions to ensure correctness of the program counter as
MOUSE transitions from one instruction to the next. Effect of interrupts are dashed and highlighted
in red, corrective measures in blue, and forward progress (guaranteed completion of an instruction)
in green.

execution. Here, we describe how correctness of the architectural state variables and data is guar-
anteed during this process.

Architectural State

The memory controller reads instructions from the address held in the non-volatile program counter
(PC), decodes them, and broadcasts them to the data tiles. It then updates the PC. If power is cut
during a write operation to the PC, the value may be corrupt. We solve this by using two PC
registers and maintaining a parity bit. We refer to these two registers as PC-A and PC-B. If the
parity bit is 0 then PC-A is valid and if the parity bit is 1 then PC-B is valid. The valid PC register
points to the instruction currently being executed.

After an instruction is completed, the value stored in the valid PC register is read, updated (to
point to the next instruction), and the new value is then written into the invalid PC register. At this
point the invalid (valid) PC register keeps the address of the next (current) instruction that is to
be executed (completed). After the PC register update, the parity bit is flipped. This process is
depicted in Figure 2.7.

With this scheme, a write is never performed on the currently valid PC, hence, a valid copy
of the PC is maintained at all times. If power is cut after the update to the invalid PC but before
the parity bit is flipped, the memory controller will consider the old PC to be valid on restart. This
results in the previous instruction being re-performed, and cannot introduce errors (since individual
instructions are idempotent), as explained in Section 2.5.1. The register holding the last Activate
Columns instruction is also duplicated, and is handled in an identical fashion to the PC. Hence,
power can be cut at any point during the execution of an instruction and the memory controller can
always guarantee correct operation upon restart.
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Data

The broadcast from the memory controller –which initiates an operation in the data tiles, and is
depicted as Command(s) in Figure 4.1– is not atomic, and thus can be interrupted at any stage.
However, this cannot cause corruption as the broadcast itself is idempotent. There are two cases
to consider, 1) a broadcast initiating memory and logic instructions and 2) a broadcast initiating
Activate Columns instructions.

As explained in Section 2.5.1, data in the MOUSE tile cannot be corrupted by an interruption
during memory and logic operations –no matter what stage in its progression the operation gets
interrupted. As a direct result, the broadcast cannot cause corruption as it’s only effect is the
initiation of the operation. Power can be cut before the broadcast reaches a tile, while the operation
is being performed, or after the operation has finished –none of these cases can introduce error.
The second case of Activate Columns instructions cannot result in any corruption either, as the
peripheral circuitry is always re-configured after restart, which overwrites the action of the previous
Activate Columns instruction. More fundamentally, no corruption can be the case if power was cut
during an Activate Columns instruction, simply because no logic or memory operation can take
place as an Activate Columns is in progress in the same tile.

2.6 Putting It All Together

Energy-harvesting devices need energy efficient execution and checkpointing capabilities. MOUSE
uses non-volatile PIM to provide both.

A high-level program can be converted to computational blocks, such as multiplications or ad-
ditions. These blocks can be broken into individual gates. For example, n-bit addition can be im-
plemented by performing n full-adds, each of which can be performed with 9 NAND gates. These
individual gates can be performed in the columns of MOUSE’s tiles. The gates are highly energy-
efficient, and applications can exploit high-degrees of paralellism available in the MOUSE tiles to
achieve performance.

Scheduling these gates in the tiles is a two-dimensional problem in space and time, where we
leave the rich design space for automation and optimization for future work. A multi-dimensional
trade-off exists between parallelism, data-transfer, area consumption, and energy efficiency. Map-
ping computation to use more columns can increase parallelism, as computation can proceed in
each column simultaneously. However, not only does this increase memory usage, but it also in-
curs a potential data-transfer overhead. Intermediate values will have to be transferred between
columns, via reads and writes, in order to produce the final result. This decreases the energy effi-
ciency. Without loss of generality, in this paper we stick to greedy scheduling in minimizing energy
consumption and area usage by using the minimal number of columns; at a cost of latency.

For example, vector dot-products constitute the majority of SVM classification. We place as
many as possible bits of the elements of two vectors into a single column, with extra rows available
for scratch bits. The elements that do not fit are placed (aligned) into other columns. The vectors
are next element-wise multiplied and then summed together with a sequence of gates. Finally,
the partial sums are moved, via reads and writes, to a single column, where they are summed to
produce the end result. By using many columns and multiple tiles, this can be performed for many
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vectors simultaneously.
Hence, a program on MOUSE consists of a sequence of logic gates in-memory, along with

reads and writes to perform I/O and transfer data between tiles. These operations can be fully
specified by instructions shown in Fig. 4.2. Memory instructions are either read or write. Logic
instructions correspond directly to logic gates, such as NAND, NOT, etc. Activate Columns is a
single instruction. Instructions of this format are stored in MOUSE’s instruction tiles.

A simple memory-controller is responsible for reading the instructions, decoding the opcode,
and then broadcasting the instruction (and necessary addresses) to the data tiles. After waiting
a sufficient period of time (for instruction completion), the memory-controller updates the PC and
“commits” the instruction by flipping the parity bit. The memory-controller needs only basic logic
circuitry (for decoding) and a clock to keep track of time. Its functionality is analogous to the 1st,
2nd, and 5th stages of the classic 5-stage pipeline. It performs 1-Instruction Read, 2-Instruction
Decode, and 5-Write Back (setting parity bit). The memory handles 3-Execution and 4-Memory
Access.

MOUSE’s strength is in its simplicity. All operations performed in-memory are inherently idem-
potent and automatically stored in non-volatile memory. Hence, MOUSE can be made intermittent-
safe with lightweight additions to the memory controller. This includes duplicated, non-volatile
copies of the PC and active columns registers.

2.7 Application Mapping

We next provide a basic illustrative example for application mapping: 2-bit addition. Figure 2.8
shows the stages of converting high-level code to MOUSE instructions. The first step is conversion
from high-level to intermediate-level, i.e., functional translation to required logic and memory oper-
ations for the underlying computation along with basic spatio-temporal optimization. Next, all of the
specified operations get converted directly into MOUSE format instructions.

In Figure 2.8 two 2-bit integers are added to form a 3-bit integer. We can perform these additions
in parallel, and choose for these to occur in columns 0 and 1 of tile 1. The first addends (a and
c) are assigned to rows 0 and 2, and the second addends (b and d) are placed in rows 4 and 6.
The sums (x and y) are chosen to be placed in rows 8, 10, and 12. The computation will require
additional scratch bits (workspace), for which we assign the odd rows between the addends and
sum, and some additional even and odd rows at higher row addresses, picked based on availability.

Given the location of the addends, sum, and workspace, the ADD function will generate the
sequence of gates required to compute the sum. It does this by performing a half-add, and then
as many full-adds required to complete the addition; in this case just 1. Note that all gates have
inputs and outputs on opposite parity rows. The parallelism of these gates is determined by the
active columns, which are set by the Activate Columns instruction. Since the operands are in
columns 0 and 1, a single Activate Columns instruction is issued to activate these two columns for
computation. Prior to this computation, the preset value for outputs for gates will need to be written
into the respective columns. For simplicity we do not show this step, but it consists only of write
instructions. After finishing all instructions, the sums reside in rows 8, 10, and 12, with x in column
0 and y in column 1.

Once the sequence of gates has been fully specified, it gets converted directly to instructions
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by replacing the gate with the corresponding opcode and inserting the tile and row addresses. The
opcode specifies how many row or column addresses are required. As all instructions are 64-bit, a
number of bits remain as don’t care.

Figure 2.8: An application mapping example of parallel 2-bit integer addition. Variables are as-
signed to rows and columns. Independent operations are mapped to separate columns for parallel
execution. Computation is broken down into individual logic gates, which directly correspond to
individual MOUSE instructions. During operation the memory controller issues each instruction in
sequence. The MOUSE instructions shown are in the formats specified in Figure 4.2.

2.8 Evaluation Setup

Benchmarks: Energy harvesting systems are ideal for applications in which the system is difficult
or inconvenient to power directly or with batteries. Examples include remote sensors and wearable
tech. We choose benchmarks which are representative of different possible use cases, along with
an additional standard benchmark.

MNIST [198], as an example small-scale image recognition for sensor networks, is a digit recog-
nition data set, where there are 10 classes for digits 0-9. The input is a grey scale 28 × 28 pixel
image with 8-bit precision. We use both BNNs and SVMs on this benchmark. For the SVM, the
pixels are placed row wise into a 784 element vector. We also use a binarized version, where pix-
els that are greater than a threshold value are set to 1 and others to 0. This allows us to replace
multiplications with AND gates for most parts of the computation. For BNNs, we tailor the network
configuration of FPGA-based FINN [362] and FP-BNN [211] to function properly on MOUSE, by
converting it to sequences of logic gates. Our logical configuration is exactly the same. Hence, our
accuracy is identical. The FINN configuration only uses binarized input. It has three hidden layers
of 1024 neurons (bits) each, and an output layer of 10 neurons with 10-bit precision. The FP-BNN
configuration only uses 8-bit inputs. It has three hidden layers of 2048 neurons and the output layer
has 10 neurons with 16-bit precision.

Human Activity Recognition (HAR) [14], as an example for wearable tech, is a data set con-
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Table 2.2: Parameters for MTJ devices.
Parameter Modern Projected

P State Resistance 3.15 kΩ 7.34 kΩ
AP State Resistance 7.34 kΩ 76.39 kΩ

Switching Time 3 ns [307, 268] 1 ns [398, 167]
Switching Current 40µA [307] 3µA [398]

taining measurements from an accelerometer and gyroscope embedded in a smartphone, which is
carried by participants performing a variety of activities. The task is to classify each set of readings
to which activity is being performed. We represent the input with fixed point integer format with 8-bit
precision. Each input is a vector of 561 elements.

ADULT [188] is a commonly used benchmark for SVMs that contains census information and
the task is to classify whether an individual makes greater than $50K per year or not. We use a
reformatted version of the data set from libSVM [57]. Each input is a 15 element vector where each
element is an 8-bit integer.

Our SVMs are trained and tested in R [288]. They are custom designed, however we do com-
pare our results with libSVM [57] with the same inputs and obtain similar accuracy. In our custom
implementation we do not use any operations that would be inefficient in MOUSE; all programs
consist of bit-wise and integer arithmetic.
Performance and Energy Model: We simulate the benchmarks on MOUSE with an in-house sim-
ulator, also implemented in R. MOUSE has a tiled architecture. We set each tile to have a capacity
of 128KB, which is an 1024x1024 array. We chose this size as it is a commonly recommended
subarray size for non-volatile memories from NVSIM [92]. While only one logic gate can be per-
formed in one column in each cycle, the gate can be performed in all 1024 columns simultaneously
(column-parallelism) and in each tile simultaneously (tile-parallelism). Note that operating 1024
columns in parallel would require approximately 15mW (on the least energy-efficient MOUSE con-
figuration), which may exceed available energy. Additionally, high levels of parallelism can increase
the restart cost during intermittent computing. This is because re-performing the last instruction on
restart would cost more energy if it is highly parallel.

We experiment with both modern MTJ parameters [308] and projections of MTJ parameters in
the next few years [398, 401]. Projected improvements in MTJ devices are expected to significantly
increase energy efficiency. The MTJ parameters we use are shown in Table 7.1. For projected
MTJs, two techniques enable a reduction in the switching current, 1) decreasing the damping
constant of ferromagnetic materials [315, 252, 97] and 2) using a dual-reference layer structure
[161, 89]. To be conservative, we assume 3µA, however, switching currents as low as 1µA are
possible. For projected MTJs, we test with both the STT and SHE based architectures. The main
benefit of SHE is providing a write path through the SHE channel, rather than through the MTJ
itself. To capture this effect, we assume a 1 kΩ resistance for the SHE channel, which is in series
with the input MTJs in logic operations. This provides a conservative estimate of the SHE energy
efficiency.

For Modern MTJs MOUSE operates at 30.3MHz and for projected MTJs MOUSE operates at
90.9MHz. This enables sufficient time for MTJ switching and peripheral circuitry latency.

To estimate latency and energy cost due to peripheral circuitry, we take data from NVSIM [92]
which reports results for modern MRAM memories. We set our peripheral circuitry costs so that
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they consume the same percentage share of the total latency and energy as reported by NVSIM.
In addition to the latency and energy required for performing the instructions, we also account
for the overhead involved in reading the instructions from the tiles, updating the program counter
and valid bits, specification of row and column addresses, storing the most recent Activate Columns
instruction, and the re-issuing of the last Activate Columns instruction whenever the system restarts.

We first evaluate the performance of MOUSE under continuous power. Then, we evaluate
MOUSE under energy harvesting conditions. We model our energy harvester as a constant power
source which is filling an energy buffer (capacitor). MOUSE will start executing when the voltage
on the capacitor is sufficiently high, and will shutdown when the voltage drops to a pre-determined
level.

For Modern MTJs, the voltage on the capacitor fluctuates between 320mV and 340mV, and
for Projected MTJs the range is 100mV to 120mV. We use switched-capacitor converters for up-
conversion and downconversion [148] to supply the required voltage for the operations. By using
conversion ratios of 0.75, 1, 1.5, and 1.75 [173, 289], we can supply all voltages required. We
evaluate MOUSE on the power supplied by the converter, the evaluation does not include regulator
efficiency overhead. The converter may have an efficiency anywhere between 35-80%, hence the
energy harvester may need to provide roughly 1.25-2.85× the energy that MOUSE consumes.

While energy harvesters can fluctuate in the amount of power they provide (e.g., amount of
sunlight), this model captures a representative operation. We sweep the power source over a wide
range, from levels well below the operating power of MOUSE, incurring numerous power outages,
up to levels where MOUSE can nearly be continuously powered. Additionally, MOUSE assumes
no knowledge when power will run out or when it will be restored. Effectively all outages are
“unexpected”.

Following metrics provided in [312], we report energy dedicated to different components. In
addition to total energy, we report Backup energy, Dead energy, and Restore energy. Backup
captures operations performed prior to shut down to save state. For us, this is the continual writing
of the PC, parity bit, and storing each Activate Columns instruction in an additional instruction
register. Dead energy is energy spent re-performing work that was lost during shut down, which in
this case is repeating the last instruction on restart. Restore energy includes any operation needed
to prepare MOUSE for computation on restart. For us, this is issuing the most recent Activate
Columns instruction.

We also report Dead latency, which is the latency associated with re-performing instructions,
and Restore latency, which is the time it takes to re-activate the columns on restart. There is no
Backup latency, as backup operations occur during the same cycle as each instruction.
Area Overhead: MOUSE tiles have a similar area overhead to MRAM arrays. MOUSE has an extra
bit line per column for the STT configuration. For the SHE configuration, it has an extra transistor
and a SHE channel for each cell. The impact of the additional bit line is minor but the additional
transistor has significant overhead. To estimate area overhead for MOUSE, we create estimates for
cell size keeping access transistor resistance less than 1 kΩ. The access transistors dominate the
area overhead. This is for two reasons: 1) the MTJs and SHE channel can be placed on a separate
layer from the access transistors and 2) the access transistors are much larger. As the SHE design
has twice as many access transistors, the cell area is approximately twice as large. To estimate
peripheral circuitry area overhead, we take NVSIM [92] results for area efficiency for the same sized
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Table 2.3: Area required for MOUSE for different benchmarks and configurations. Units are in mm2.
Total Modern Projected SHE

Benchmark Memory STT[400] STT [400]
SVM MNIST 64MB 50.98 38.67 77.35

Binarized 8MB 5.43 4.13 8.24
SVM HAR 16MB 10.86 8.24 16.48

SVM ADULT 1MB 0.71 0.53 1.06
BNN FINN MNIST 8MB 5.43 4.13 8.24

BNN FPBNN MNIST 16MB 10.86 8.24 16.48

Table 2.4: Continuously powered MOUSE (using STT design and modern MTJ devices) and related
work under continuous power. The CPU does not benefit from MNIST binarization as it still performs
64-bit integer multiplication.

Benchmark Latency (µs ) Energy (µJ ) #SV I/D Mem (MB) Area (mm2) Accuracy
SVM (CPU)

MNIST 169,824 5,094,702 11,813 - - 97.55
MNIST (Binarized) 192,370 5,771,085 12,214 - - 97.37

HAR (integer) [14, 360] 127,494 3,824,822 2,809 - 95.96
ADULT 4,368 131,052 1,909 - - 76.12

MOUSE SVM (Modern STT)
MNIST 23,936 1,384 11,813 4.5 / 30.0 50.98 97.55

MNIST (Binarized) 6,575 65.49 12,214 1.25 / 6.0 5.43 97.37
HAR (integer) [14, 360] 11,805 468.6 2,809 2.25 / 10.0 10.86 94.57

ADULT 1,189 7.24 1,909 0.25 / 0.5 0.71 76.12
MOUSE BNN (Modern STT)

MNIST (Binarized) FINN 1,485 14.33 NA 3.15/1.71 5.43 98.4
MNIST FP-BNN 2,007 99.9 NA 4.20 / 8.00 10.86 98.24

libSVM [57]
MNIST 7,830 234,900 8,652 - - 98.05

MNIST (Binarized) 19,037 571,116 23,672 - - 92.49
HAR (integer) 1,701 51,042 2,632 - - 93.69

ADULT 379 11,370 15,792 - - 78.62
SONIC [120]

MNIST 2,740,000 27,000 NA 0.256 > 100 99
HAR 1,100,000 12,500 NA 0.256 > 100 88

arrays and adjust our estimates by the same ratio. As NVSIM only works with memory capacities
that are a power of 2, we assign the smallest memory size for which the entire benchmark will fit.
For example, SVM MNIST requires only 34.5MB yet we assume MOUSE will consume 64MB of
memory to perform this benchmark. Our conservative area estimates are shown in Table 4.3.

2.9 Evaluation

Continuous Power: Results for MOUSE under continuous power are summarized in Table 4.4.
Also reported are results for the same benchmarks using both our custom SVM and libSVM on a
CPU, and a representative energy harvesting system SONIC [120] under continuous power. The
CPU implementations are run on a supercomputing cluster using Intel Haswell 5-2680v3 proces-
sors. To be conservative, we account only for the processor power consumption and assume it
operates at its idle power. SONIC uses a TI-MSP430FR5994 microcontroller and is powered by a
Powercast P2210B energy harvester.

Overall, MOUSE shows significant energy efficiency advantages over other implementations,
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(a) Modern STT (b) Projected STT (c) SHE

Figure 2.9: Latency (µs) vs. Power Source (W) for each MOUSE configuration and SONIC [120].

and competitive latencies. MOUSE does require more memory than SONIC, however, we believe
this to be reasonable given that MOUSE is implemented in high density MRAM and does not need
external processing logic or area costly volatile memory. MOUSE benefits greatly from binarizing
the MNIST input. One bit inputs enable us to replace multiplications with AND gates, which signif-
icantly reduces the amount of computation required. This comes at a small cost in accuracy. The
libSVM implementation struggles on the binarized MNIST inputs, and attempts to increase accuracy
by adding many more support vectors. This increases the latency and energy of inference.

Let us next look into the significant difference in performance between MOUSE and SONIC
[120]. SONIC is implemented on a conventional, low performance microprocessor. That design is
highly economical, makes use of very scarce memory capacity, uses currently commercially avail-
able hardware, and has been proven experimentally. Additionally, the authors note that there is
room for significant improvement in the efficiency. While we are reporting a significant latency and
energy advantage, MOUSE is not fabricated yet. However, MTJ based logic has been experimen-
tally demonstrated [378]. That said, MOUSE uses roughly the same area budget –that SONIC
allocates for energy-hungry volatile memory and relatively complex logic– for more non-volatile
memory (within which computation can be performed)1.
Energy Harvesting: Now we consider MOUSE in a more realistic energy harvesting scenario. We
test MOUSE with a range of power sources, from 60µW, approximately what can be harvested
from a 1cm2 thermal energy harvester running on body heat [202, 181], up to 5mW, the power
harvested by SONIC [120]. The power source charges an energy buffer (capacitor) on chip. We
allow the voltage to fluctuate between 320mV and 340mV when using Modern MTJs and between
100mV and 120mV when using Projected MTJs. When the voltage drops below the desired range,
MOUSE shuts down and waits until the voltage reaches the upper end of the range. We assume
that MOUSE starts with a capacitor with less charge than what would correspond to the shutdown
voltage. Hence, all benchmarks begin with an initial charging time. We use a 100µF capacitor
(energy buffer) with Modern MTJs and a 10µF capacitor for Projected MTJs. The optimal capacitor
size depends on the technology and the program being executed. When deployed, a system such
as Capybara [71] could be used to tune the parameters of the energy buffer.

Results for latency are plotted and compared to SONIC for Modern STT, Projected STT, and
SHE in Figure 4.7. Consistent with and as noted by [120], the latency is mostly determined by

1Our largest configuration uses 35MB (fits in an 64MB array). Everspin’s commercially available 64MB STT-MRAM
device (similarly sized) is 130mm2 [1]. Everspin’s new 1GB product is the same (package) size [2]. In comparison, SONIC’s
microcontroller takes 100mm2, which is only a sub-component.
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(a) Latency (b) Energy

Figure 2.10: Latency/Energy Breakdown: Modern STT.

energy efficiency. This is because the majority of the latency is spent powered off, waiting for the
capacitor to charge. The fewer recharges required, the lower the latency. Hence, latency increases
significantly as the power source is reduced. Because the SHE design is more energy efficient,
it draws significantly less power and thus drains the capacitor less often. This results in fewer
power outages, fewer shutdown and restart operations, and hence also requires fewer operations
to complete the program. This gives SHE a latency advantage over STT while in energy harvesting
conditions. However, with all configurations, MOUSE achieves a significantly lower latency than
SONIC, even with a much lower power budget.

(a) Latency (b) Energy

Figure 2.11: Latency/Energy Breakdown: Projected STT.

The dependency of latency on energy efficiency results in a cross-over of the latency between
FP-BNN and SVM MNIST (Bin) benchmarks. FP-BNN costs more total energy, and hence has a
higher latency at lower power sources. However, due to a higher degree of exploited parallelism,
FP-BNN has a lower latency if sufficient power can be supplied.

As MOUSE spends negligible amounts of energy while powered off, the energy consumption
is nearly independent of the power supply. The total energy is plotted in Figure 4.5(b) for Modern
STT; in Figure 4.6(b) for Projected STT; and in Figure 4.7(b) for SHE; assuming a 60µW power
source.

Also of interest, as noted by [312], is the Backup, Restore, and Dead latency and energy. These
are also reported in Figure 4.5 for Modern STT; in Figure 4.6, for Projected STT; and in Figure
4.7, for SHE. Note that the y-axis is log scale. The total energy encapsulates all energy used for
computation, as well as Backup, Restore, and Dead energy. An efficient intermittent computing
system will have low Backup, Restore, and Dead energy relative to the total energy, which can be
seen is the case for MOUSE. Also note the total latency is provided for all architectures in Figure
4.4 – where the breakdown figures capture the data for the 60µW power source.

Dead latency and energy is due to the possible re-execution of the previous instruction on
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(a) Latency (b) Energy

Figure 2.12: Latency/Energy Breakdown: SHE.

restart. Dead latency and energy also increase with the number of restarts required and is also
variable on when the interrupt occurred. The best case is if an interrupt occurred immediately after
the parity bit is flipped (indicating the completion of an instruction per Section 4.4.2 and Figure 2.7).
In this case, there is effectively no penalty. The worst case is if the interrupt happened just before the
flipping of the parity bit, where the current instruction has been fully performed but not considered
complete. In this case, the entire instruction will be re-performed on restart.

As Modern STT is the least energy efficient, it must restart the most and hence has the largest
relative Dead energy. At the extremely low power of 60µW, on average, across all benchmarks,
Dead energy is 7.4% of the total energy. Higher energy efficiencies reduce this significantly, where
Dead energy (on average) becomes 2.52% of the energy for Projected STT and 0.61% of the total
for SHE. Dead latency, on the other hand, is 0.47% of the total for Modern STT, 0.09% of the total
for Projected STT, and 0.044% of the total for SHE.

Restore is the time and energy required to re-activate the columns every time MOUSE restarts.
Restore latency and energy naturally increase with the number of restarts required, but is also
variable depending on where in the program an interrupt occurred. The more columns that were
active at the time of an interrupt, the higher the respective Restore cost of re-activating them will
be. However, overall, as the restore process is fast and energy efficient, the Restore latency and
energy remain a small fraction of the total. On average across all benchmarks, Restore is only
0.91% of the latency and 0.50% of the energy for Modern STT; 0.14% of the latency and 0.13%
of the energy for Projected STT; and 0.04% of the latency and 0.13% of the energy for SHE. As
Restore latency and energy is due to peripheral circuitry, SHE has no advantage over STT for an
individual restart. However, SHE still requires fewer restart operations due to its overall increased
energy efficiency.

Backup energy entails the continual writing of architectural state variables (PC and parity bit).
Backup energy corresponds to writing only a few bits on every cycle. An interrupt can cause at
most a single additional write. Hence, Backup energy is not significantly affected by interrupts
and is determined mostly by the length of the program. Backup energy is, on average across all
benchmarks, 0.24% for Modern STT; 0.27% for Projected STT; and 0.007% for SHE. Backup has
no associated latency as it is performed at the same time as each instruction on every cycle.

Restore and Dead latency and energy are all zero for the case of a continuously powered
system. This is because there are no power outages and, hence, never a need to restart the
system or re-perform any potentially unfinished instructions.
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2.10 Related Work

Non-volatile processors (NVP) [231, 219] are uniquely designed for intermittent computing by inte-
grating non-volatile memory near the compute units. Unlike MOUSE, these devices have a struc-
ture similar to traditional CPUs. MOUSE has three advantages over these architectures. Due to
PIM, it is capable of high degrees of parallelism in order to achieve performance. Additionally,
MOUSE doesn’t need to perform energy-hungry loads and stores in order to operate on data. Fi-
nally, MOUSE doesn’t perform additional backup operations prior to shut-down, making it effectively
immune to unexpected power outages. The authors of [219] propose a system using a THU1010N
non-volatile processor for energy harvesting applications. They describe trade-offs in designing
such a system and demonstrate its capability on a number of benchmarks. There is follow up work
in [230, 229] which makes the NVPs more resistant to power interruptions. The NVP in [229] can
complete the FFT benchmark from MiBench [142] in 4.2ms. A recent paper [80] has evaluated FFT
implementations on CRAM, the same substrate which MOUSE uses. Performing a similarly sized
problem, the best latency they were able to achieve is 1.63ms. Naturally, adapting this implemen-
tation to be intermittent safe in the same manner in MOUSE would introduce a latency penalty.
Another non-volatile processor is presented in [340] which features PIM components. There is a
controlling CPU that performs logic and control. A few RRAM arrays are used to accelerate com-
puting in neural networks. In this case, the PIM is a sub-component of the system, which also
contains more traditional logic circuitry and an external processor. Due to this complexity, this
implementation cannot make use of the same checkpointing strategy used in MOUSE.

A recent paper, ResiRCA, proposes an adaptable RRAM crossbar accelerator for MAC (multi-
ply+accumulate) operations for CNNs in energy harvesting environments. It proposes clever meth-
ods to adapt the power consumption to varying power sources. While the crossbar is powered by
an energy harvester, it assumes a battery powered host processor. Unlike MOUSE, computation
also occurs outside the memory array (only MACs are processed by the memory). Hence, the auto-
matic check-pointing mechanism we use is not applicable to this design. A number of RRAM PIM
technologies also exist [396, 390, 350, 342]. However, the RRAM array is used as an accelerator
as a sub-component of the system. Hence, there is much additional circuitry and logic that occurs
outside the memory. This significantly increases the difficulty to adapt to intermittent processing.
Additionally, many RRAM accelerators rely heavily on ADCs (analog to digital converters), which
have a significant area and energy overhead. RRAM typically suffers from a lower endurance, as
well.

Capybara uses a re-configurable hardware energy storage mechanism and a software interface
that allows the specification of energy needs for different tasks. This gives the system more flexibility
in satisfying the requirements of different kinds of tasks. While we do not focus on the power
delivery system in this work, systems such as Capybara could be used to optimally supply MOUSE
with power. Hibernus [23], on the other hand, is a system that reactively hibernates and wakes up.
This is a similar shutdown policy to MOUSE. However, Hibernus performs an additional back-up
operation before shutting down, whereas MOUSE does not need to.

A number of techniques have been developed to enable intermittent computation on more tra-
ditional hardware. For example, CleanCut [68] works with LLVM to compile programs with check-
points, and uses a statistical energy model to find potential non-terminating paths. Chinchilla [233]
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uses adaptive checkpointing, where the frequency of checkpoints is a function of the number of
interrupts. Coati [305] developed methods to ensure correctness in the presence of interrupts
for intermittent systems. The What’s Next Intermittent Architecture [112] uses approximation to
improve performance. Rather than following an all-or-nothing approach, What’s Next computes
approximate results and continually improves the output. If an acceptable output is achieved it will
skip to processing the next input. This enables the device to process more inputs as it does not
waste time and energy achieving unnecessary accuracy.

The EH model [312] facilitates early design space exploration for energy harvesting architec-
tures. It helps finding a good balance to achieve minimal overhead for allowing maximal forward
progress. As noted by the authors of [312], energy harvesting systems can generally be divided into
two types, multi-backup, which perform many backups between power outages, and single back-up,
which only save state once before a power outage. Multi-backup systems include Mementos, [290],
DINO [227], Chain [67], Alpaca [232], Mayfly [156], Ratchet [369], and Clank [157]. Single-backup
systems include Hibernus [22], QuickRecall [170], and many others [15, 21, 31, 218, 228]. Accord-
ing to this categorization, MOUSE fits under a multi-backup system as we are constantly saving the
architectural state.

PIM has been studied for non-volatile memories with Pinatubo [209], for DRAM with Ambit [326],
and for SRAM with Neural Cache [98]. These technologies are meant to be integrated into the mem-
ory hierarchy of traditional CPUs and have not been considered for energy harvesting applications.
Ambit and Neural Cache are not suitable for energy harvesting as they are volatile technologies.
Pinatubo could be adapted and used similarly as CRAM in MOUSE. However, Pinatubo uses logic
external to the memory array for some operations. This adds complexity as these circuits would
need to be protected against errors in intermittent computing. Additionally, Pinatubo uses sense
amplifiers to perform computation, which is less energy efficient than the logic operations in CRAM.

The Phoenix processor [324] is an extremely low power processor with a sophisticated sleep
strategy. However, it is not designed to be safe for intermittent processing. Similarly, while not
safe for intermittent computing (and where adding this functionality would likely incur a significant
performance and efficiency cost), a number of accelerators have demonstrated high performance
and energy efficiency on inference. PuDianNao [216] is an ASIC accelerator which also targets
SVM. A microcontroller based system was used as a BNN accelerator in [75]. An in/near memory
SRAM substrate is proposed in [379], which performs bit-serial arithmetic, and which was shown to
have high performance and efficiency on the AlexNet [190] network. A few analog PIM accelerators
also exist. For example, the accelerator in [172] uses BNN to perform Cifar-10 image classification.
The accelerator in [403] uses SRAM cells and analog computation to achieve high energy efficiency
while classifying MNIST. Another example is [366] for MNIST and Cifar-10 recognition. Generally,
adapting such accelerators to support safe intermittent computing is not straight-forward and would
likely come –if at all possible– at significant performance and efficiency cost.

Orthogonal to our work, recent papers have made progress on problems relevant in the energy
harvesting domain. Low power and accurate time keeping was developed in [84]. SRAM was used
as a an efficient check-pointing memory, being able to maintain state for short periods of power off
time [385]. A new platform for intermittent computing is proposed in [189] which simplifies the task
of adapting pre-existing embedded applications to work in intermittent environments.
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2.11 Conclusion

In this paper we presented MOUSE, a machine learning accelerator in (non-volatile) memory for
energy harvesting applications. The requirements for energy harvesting applications are extreme
energy efficiency, efficient shut down and restart procedures, and correctness during intermittent
execution. MOUSE provides all of these by having highly energy efficient logic operations with sim-
ple and effective shut down and restart procedures. The non-volatility combined with processing
in memory provides a natural progress saving mechanism which demands very little overhead. By
simulation, we demonstrated that such a device would provide significant latency and energy effi-
ciency advantages over state of the art approaches, and is a promising candidate to bring machine
learning to new domains.



Chapter 3

Cryogenic PIM: Challenges &
Opportunities

3.1 Introduction

While Moore’s Law has lasted longer than expected, nothing lasts forever. Transistor scaling will
continue to become more challenging as the years go on. This limitation makes it difficult for
computer architects to continue designing systems with higher performance. A possible solution to
this problem is cryogenic computing, where the processor and supporting memory structures are
cooled to very low temperatures. The boiling point of liquid nitrogen (77K) is a common temperature
target. This may seem like an extreme solution, but it offers some very attractive advantages.
Electrical circuits operate faster and more energy efficiently than at room temperature, enabling
further increases in computer performance.

However, a challenge for cryogenic systems is cooling cost. Heat dissipation can result in inor-
dinate cooling costs, unless the architecture is re-designed to reduce power consumption [50]. This
raises the question if Processing-in-Memory (PIM) architectures –specifically, architectures which
fuse logic and memory functions within an array– are ideal candidates for cryogenic operation.
PIM architectures exhibit extreme energy efficiency, due to avoiding energy-costly data transfers
between the CPU and memory [257, 83]. Hence, PIM can operate within a very low power budget,
which can significantly lower the cooling cost.

PIM can also provide performance improvement. A current limitation for computer performance
is the memory wall. As CPU performance has increased over recent decades, memory demand
has outgrown the increases in memory performance [152]. Combined with recent trends of in-
creased data usage, modern applications are typically memory bound, meaning their performance
is limited by the memory latency. PIM architectures alleviate the memory wall by performing com-
putation where the data resides, avoiding much of the latency due to data transfer. Cryogenic
operation will actually reduce the impact of the memory wall, as cold temperatures significantly
improve the performance of memory - DRAM latency is reduced by a factor of 4× at 77K [200].
However, increases in logic frequency, roughly 30-40% [276], and the corresponding increase in
CPU frequency at cryogenic temperature, will increase the memory request rate, counteracting
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some of the benefit. Hence, it likely that cryogenic architectures (consisting of a CPU with sup-
porting memory hierarchy) will still suffer performance loss due the memory wall, leaving room for
potential performance increases by utilizing PIM.

Yet another benefit of PIM is that the architecture is easier to adapt to cryogenic temperatures.
As they use predominately (slightly modified) memory structures, they are highly homogeneous
and simple relative to more traditional systems. This makes any redesign required much easier
than for more complex architectures where logic, memory, and their interface need to be optimized
separately.

Numerous PIM substrates exist, including in SRAM [9, 8] and DRAM [325]. There is also a num-
ber of non-volatile PIM (NV PIM) substrates, including PCRAM [210], RRAM [110], and STT-MRAM
[62], which use resistive memory devices. All are suitable candidates for cryogenic operation. More
detail is provided in Section 3.3, but generally speaking SRAM and DRAM will stand to improve the
most at cryogenic temperatures, relative to their room temperature performance. However, non-
volatile PIM substrates have shown high performance and extreme energy efficiency [210, 298] at
room temperature, which makes them even more promising candidates. Here, we discuss how
cryogenic operation can improve the performance of PIM. As a case study, we evaluate an STT-
MRAM based architecture at room temperature and cryogenic operation.

It is noteworthy that even if the performance benefit from cryogenic operation by itself is in-
sufficient to justify the development of cryogenic architectures, such architectures will be required
in order to support emerging technologies. Emerging cryogenic technologies include single flux
quantum [240] and quantum computing [258], both of which will require classical hardware support
[109].

3.2 PIM Substrates

Cell designs for different PIM-capable memory technologies are shown in Fig.3.1. Each technology
follows similar operating semantics when it comes to memory access to perform reads and writes1.
Each technology contains bitlines (BL), which are used to access the memory cell to perform oper-
ations. The cells are connected to the BLs via access transistors, which are controlled by rowlines
(RL). A second bitline, bitline bar (BLB) is used in SRAM and NV technologies, which is set to the
opposite value as BL during write operations. The memory storage device for each technology is
different. SRAM uses a latch which is constructed with transistors, shown in Figure 3.1a. Due to a
circuit feedback loop, there is a stable state when M1 and M4 are ON and M2 and M3 are OFF, and
vice versa. To read a state, the access transistors (M5 and M6) connect Q to BL and Q’ to BLB. If Q
is 1 (0), the cell with pull BL (BLB) up and BLB (BL) down. To write, the same process is performed,
except the voltage on the bitline is set by the bitline drivers, which will be strong enough to switch
the state the of cell. Shown in Fig.3.1a is a 6T cell, however 8T is another common design. DRAM
cells, shown in Figure 3.1b, use capacitors to hold the state. The presence of a charge indicates
“1” and the absence indicates “0”. The access transistor connects the capacitor to the bitline, al-
lowing the charge on the capacitor to be read or to be overwritten. RRAM and STT-MRAM both
use resistive memory devices, which are devices which can have varying levels of resistance. For

1Non-volatile devices are also commonly used in cross-bar architectures, which have significantly different characteris-
tics. We omit their consideration as they are not random access memory.
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(a) SRAM [8] (b) DRAM [325] (c) NV [210] (d) NV [301]

Figure 3.1: Representative PIM technologies considered.

example, a high resistance can be logic “1” and a low resistance be can logic “0”. For both devices,
driving a current of sufficient magnitude will set the state. The direction of the current determines
which state it is set to. A typical NV memory cell, such as used in [210], is shown in Fig.3.1c. A
voltage across BL and BLB will drive a current through the resistive memory device.

The most common method of performing PIM in SRAM and DRAM uses the sense amplifiers
and logic in the array periphery. Multiple rows are activated simultaneously, connecting multiple
cells to the bitline. The sense amplifiers are then used to sense the voltage and differentiate be-
tween different inputs. Immediately after, basic logic circuitry operates on the output of the sense
amps, and the result is written back into the array. If a NV PIM substrate uses the cell in Fig.3.1c,
it must also use this same approach. A voltage applied on BL will drive a current through multiple
resistive devices (in parallel) and onto the BLB, which can then be sensed. However, the NV cell
in Fig.3.1d uses a double bitline, bitline even (BLE) and bitline odd (BLO), to enable computation
in the array itself [301], bypassing the sense amps. This technology is called computational RAM
(CRAM) [301, 62]. BLE connectes to even rows and BLO connects to odd rows (not shown). In this
case, voltage is applied across BLE and BLO. Current flows through input memory cells (in parallel)
which are in series with an output memory cell (connected over BLB)[301]. The current will set the
state of the output cell, depending on the states of the input cells.

3.3 Adaptation to Cryogenic Temperatures

Cryogenic operation affects how the memory devices and supporting circuitry perform. In this
section, we go over each of these changes and how they impact the performance of PIM. We
highlight the differences between NV PIM and the more traditional PIM based on SRAM and DRAM.

3.3.1 Low level impact of Cryogenic Temperatures

Wire resistance and capacitance both decrease. Specifically, wire resistance is a linear function
of temperature [200]. As this has the most impact on the bitline, which all technologies share, this
provides a universal benefit to all PIM. For SRAM and DRAM, the benefit is reduced latency for
the bitline pre-charge [325, 9, 8]. This will significantly reduce latency for both memory and logic
operations, as wire latency dominates memory access time [200]. The main benefit for NV PIM is
energy savings. When performing a read, write or logic operation, the wire resistance is in series
with the resistance of the memory devices. A low bitline resistance will decrease unwanted energy
dissipation. An additional benefit for NV PIM is increased reliability. This is because NV PIM uses
resistive memory devices. To perform operations, a specified voltage needs to be applied across a
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connected set of resistive memory devices [301, 399]. Some of the applied voltage will drop over
the bitline, which reduces the margin of error. Hence, cryogenic NV PIM will be more resilient to
voltage fluctuations and process variation.

CMOS transistors perform better at 77K in a number of ways. The one drawback is that the
threshold voltage increases slightly with decreasing temperature [29]. Otherwise, an increase in
the charge carrier mobility results in a higher ON current [393], and both the transconductance and
the sub-threshold slope are higher [329]. The steep sub-threshold slope drastically lowers leakage
current. Logic built from transistors has a lower latency, roughly 30-40% [276]. These improvements
benefit every aspect of SRAM and DRAM PIM. Logic performed by CMOS in the array periphery
will be faster and more energy efficient. The reduction in leakage current will nearly eliminate static
power for SRAM and reduce the refresh overhead for DRAM [377]. The benefits are less for NV
PIM, which already has near zero leakage current and no refresh overhead. The main benefit
for NV PIM will be the impact on the row-decoder, which is CMOS based. The row-decoder has
considerable latency overhead, as it needs to be activated 1-3 times for every operation [298, 210].
Hence, superior transistor performance will have a lesser, but noticeable positive impact on NV
PIM.

Resistive memory devices: apply only to NV PIM, and have a number of changes at cryogenic
temperature, some positive and others negative. Magnetic Tunnel Junctions (MTJs) are widely used
and are the basis of STT-MRAM. MTJs have a higher endurance at cryogenic temperature [196].
As noted in Section 3.2, resistive memory devices store logic values in their resistivity, having both
a high and low resistance state. The resistance ratio is the relative difference of resistance of the
two states. MTJs have a higher ratio at cryogenic temperatures [392, 397]. This increase can be
quite significant, greater than 30% relative to room temperature in some cases [397]. A high ratio is
desirable, as it makes them easier to discern during read operations. The high ratio also increases
the robustness of logic operations, making them less susceptible to process variation and voltage
fluctuations [301]. A negative impact is that the absolute resistance for both states increases with
lower temperature as well [392, 397]. Different fabrication processes can be used to create MTJs
with varying parameters. The increase in resistance can be different for different types of MTJs
and can also be different for each state of the MTJ. The resistance can increase anywhere from
approximately 10% up to 40% [397]. This is undesirable, as a higher resistance requires a higher
voltage to perform the same write or logic operation [196], leading to more energy consumption.
RRAM is an alternative resistive technology which has a significantly higher ratio than MTJs but also
a lower endurance. RRAM will also function properly at 77K [365], however it will have a further
reduced endurance [380]. For example, an endurance of 1010 write cycles at 298K was reduced
to 108 at 100K [163]. Additionally, it was demonstrated that they have a slightly higher operating

Table 3.1: Positive and negative effects of cryogenic operation on different technologies. + = in-
creased, - = decreased, L=Latency, E=Energy, R=ResistanceEffect DRAM SRAM MTJ RRAM

Positive (-)Bitline R (-)Bitline R (-)Bitline R (-)Bitline R
(-)Peripheral L (-)Peripheral L (-)Peripheral L (-)Peripheral L

(-)CMOS Logic L (-)CMOS Logic L (+)Logic Robustness (-)CMOS Logic L
(-)Refresh Overhead (-)Static Power (+)Endurance

Negative Timing Changes Timing Changes (+)Write E (-)Logic Robustness
(-)Endurance
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voltage and a narrower switching voltage window [365], making them more susceptible to voltage
fluctuations.

3.3.2 System Level Impact and New Challenges

Overall, the impact of cryogenic conditions is generally positive for PIM technologies, as summa-
rized in Table 3.1. That said, cryogenic operation also introduces correctness concerns which must
be addressed.
SRAM and DRAM PIM: Both off the shelf DRAM [353, 377] and SRAM [250] have been demon-
strated to work at cryogenic temperatures. However, these did not consider PIM. The change in
relative transistor strengths and timing of the analog circuitry may affect the correctness of logic
operations. The impact will depend heavily on the specific architecture, but we provide a few il-
lustrative examples. An example of 8T SRAM PIM is X-SRAM [9], where logic is performed by
pre-charging the read bitline and then connecting multiple cells to the read path simultaneously.
Depending on the value stored in the SRAM cells, the voltage on the bitline decays at a known rate.
At a specified time, a logic buffer reads the value of the read bitline and then writes it to the write
bitline. The delay between the read and the write determines the type of logic that is implemented.
Cryogenic temperatures change this timing. Compute Cache [8] uses a similar approach, but with
6T SRAM cells. 6T introduces the concern that SRAM cells may destructively interact, since the
read and write paths share the same bitlines. This can be avoided by lowering the wordline voltage
[171, 8] at room temperature. However, at cryogenic temperatures the transistors connecting the
bitline to both the supply voltage and ground will be stronger, and this may increase the susceptibil-
ity. Ambit [325] uses a sense amplifier to read multiple DRAM cells simultaneously to differentiate
between different input combinations. The amount of current that is drawn from each DRAM cell
through the access transistor could be significantly different from that at room temperature.
NV PIM: While NV PIM has some correctness concerns as well, these are easier to account for. The
voltages applied to perform writes and logic operations change, due changes in the MTJ resistance,
and the peripheral circuitry latency decreases. Changing the supply voltage and the frequency can
account for this, no circuit re-design is required. The main disadvantages for cryogenic NV PIM are
the non-ideal device characteristics, reduced energy efficiency for MTJs and reduced endurance
for RRAM. A reduction in energy efficiency may be tolerable, given NV PIM demonstrates extreme
energy efficiency at room temperature.

3.4 Quantitative Analysis

To determine the efficacy of cryogenic PIM we evaluate SRAM, DRAM, and NV-PIM both at 300K
and at 77K. To estimate the performance of SRAM PIM we take data from Min et.al. [250] and
for DRAM PIM we take data from Lee et.al [200]. These studies provide the latency and energy
of memory accesses at 77K relative to 300K. We assume that a single memory access and logic
operation have the same overhead. For NV PIM, we use MTJs as a representative case study, as
they have a higher endurance at cryogenic temperatures. We take peripheral circuitry estimates
from NVSIM [90] and match them with MTJ parameters from [399]. This provides the latency and
energy for each PIM operation at 300K. To estimate performance at cryogenic temperatures, we
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(a) Latency (b) Energy

Figure 3.2: Benchmark characterization at room temperature (RT) vs. cryogenic temperature
(Cryo). Values are normalized relative to the RT performance.

modify the peripheral circuitry latency and energy based on experimental data for CMOS operation
[393], and MTJ latency and energy based on experimental data from [392, 397]. The peripheral
circuitry and CMOS logic latency reduces by 35% and the MTJ write energy increases by 15% at
77K relative to 300K.

Machine-learning inference has been demonstrated efficiently in memory [172, 366, 301]. It
is also ubiquitous in the cloud/server environment, making it a notable candidate for cryogenic
acceleration. Hence, we use neural network inference as a case study with the CIFAR-10 image
recognition dataset as the input. We take the network configurations provided by [211] and map
them by hand to run on the PIM substrate.

We assume the PIM substrates consist of 1024x1024 memory arrays. Each memory array can
perform logic operations within the columns, i.e., they have column-level parallelism. Such PIM
architectures have been used with SRAM [9], DRAM [325], and NV technologies [210, 301]. Oper-
ations are driven by an external controller. We use a data layout similar to that used in PIMBALL
[301]. Multiplications, additions, and subtractions are performed in a bit-serial manner within the
columns of the memory arrays. Data is moved between columns and arrays with read and write
operations (orchestrated by the external controller). All network parameters, including weights and
thresholds, are stored in the memory prior to inference and kept constant. Input data (images) and
the neurons of hidden layers are moved between memory arrays as needed throughout the run of
the program.

To estimate the total latency and energy, we sum the latency and energy of all logic opera-
tions, reads, and writes required to perform the program. For every operation, we account for the
overhead due to the peripheral circuitry and row decoder activation, which vary depending on the
operations and the sequence they are performed in.

Results are shown for latency in Figure 4.4 and for energy in Figure 5.12. The energy consump-
tion reported does not include cooling costs, which can be significant [50]. Cryogenic operation
provides a latency advantage for all technologies due to improvements of the peripheral circuitry.
Latency is reduced to 50% of the room temperature counterpart for SRAM, to 32% for DRAM, and
to 89% for NV PIM, respectively. NV PIM’s latency does not improve as much because the MTJ
write latency remains the same at cryogenic temperatures. SRAM and DRAM PIM feature signifi-
cantly reduced energy consumption, as well, down to 38% for SRAM and to 48% for DRAM PIM,
respectively, of the room temperature counterparts. This is largely due to a reduction in leakage
current, which enables a lower operating voltage. NV PIM actually is less efficient at cryogenic
temperatures, with an energy consumption of 109% relative to the room temperature counterpart.
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This is due to the increase in the MTJ write energy, which dominates energy consumption. Addi-
tionally, NV PIM already has near zero leakage current at room temperature, and hence this is not
an added benefit at cryogenic temperatures. While the energy increase relative to room tempera-
ture is a detriment, it may be tolerable. At room temperature, NV PIM has demonstrated superior
energy efficiency to more traditional architectures. For example, a Xeon E5-2640 CPU consumes
129 J to perform the CIFAR-10 benchmark [211], where an NV PIM solution only consumes 31.9µJ

[301], superior even to specialized FPGAs consuming 299µJ [211]. Hence, a reasonable increase
in its energy consumption will still result in an overall energy efficient operation. Note that MTJs op-
timized for room temperature were used in this analysis; MTJs designed specifically for cryogenic
temperatures may display superior efficiency.

3.5 Conclusion

PIM technologies are well suited for the cryogenic domain. Their modular architectures facilitate
ease of transition and their energy efficiency should enable lower cooling budgets. SRAM and
DRAM based PIM show significant improvements in both performance and energy efficiency (when
compared to their room temperature counterparts). NV PIM also exhibits increased performance
but suffer from reduced energy efficiency when compared to its room temperature counterpart. This
does not rule out NV technologies at cryogenic temperatures, however, as at room temperatures
NV PIM tends to be typically much more energy efficient than SRAM or DRAM based PIM.



Chapter 4

Reliable Inference Under Extreme
Operating Conditions

4.1 Introduction

In this Chapter, we expand the architecture presented in Chapter 2 to handle a wider temperature
range and tolerate radiation. The goal of this is to enable such a device to operate as a satellite,
where it serves a cheap alternative to more traditional space-based systems. We also increase the
programmability of the architecture by extending the instruction set, and re-designing the architec-
ture to be more efficient.

Beyond edge devices collect energy from the environment, allowing them to operate off the grid
and without a battery [56, 180]. This enables them to function in environments that were previously
considered as impossible, such as in the remote wilderness [241], within the human body [133],
and out in space [225]. This capability opens up many opportunities for new applications. Running
machine-learning algorithms on beyond edge devices is particularly attractive due its versatility
[120]. Utilizing neural networks (NN) or support vector machines (SVM), a wide variety of problems
can be solved.

However, engineering devices to operate beyond the edge is difficult. As they must collect
energy from their environment, the power source by construction is unreliable. The devices must
frequently power off, turning back on when energy is available. This is referred to as intermittent
computing, which comes with performance and energy efficiency overheads. In order to prevent
total loss of information during intermittent operation, beyond edge devices must do additional work
in 3 categories [113]: 1) Backup refers to saving data and the current architectural state (which often
entails writes to non-volatile memory); 2) Dead corresponds to re-performing work which couldn’t
be saved on the last shutdown; and 3) Restore encapsulates all work associated with re-starting
the device after a shutdown. Beyond the additional latency and energy overheads, intermittency
also makes it a challenge to guarantee correctness of a program. Power interuptions can introduce
memory inconsistencies which can easily lead to incorrect operation [225, 69]. For conventional
embedded systems, sophisticated software strategies are required to ensure that an interruption at
any point during operation does not induce corruption [306, 120].

38
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Previous work has shown that non-volatile processing-in-memory (PIM) architectures are promis-
ing for use in beyond edge devices. As a representative example, MOUSE [298] is a PIM architec-
ture which delivers high performance and extreme energy efficiency using low complexity check-
pointing mechanisms. It has 3 advantages over traditional architectures:

1. Inherently intermittent safe logic operations;

2. Automatic and instantaneous data backup;

3. Highly energy efficient and highly parallel operations.

Advantage (1) enables MOUSE to simplify its checkpointing strategies. Operations performed in
the memory can be interrupted or performed multiple times without introducing corruption. Hence,
data remains consistent as long as operations are performed sequentially. Advantage (2) comes
from processing in non-volatile memory, and directly reduces the overhead for checkpointing. Typ-
ically a device has to write volatile data back to memory to save progress before shutdown. Since
MOUSE does all its computation in non-volatile memory, progress is saved automatically after every
operation. Finally, Advantage (3) enables high performance within low power budgets.

Recently, there has been much excitement about the use of beyond edge devices as nano-
satellites [226] deployed in low earth orbit (LEO). Such devices can provide valuable services
such as security along with agricultural [370], environmental or structural monitoring [226]. Nano-
satellites can be much more cost effective than traditional monolithic satellites. However, orbital
deployment for use as a satellite further challenges engineering such devices. For example, the
cost of communication now becomes much greater than the cost of computation (even more so
than for terrestrial deployment) [226, 120]. This shifts emphasis towards performing more compu-
tation and holding more data on the device, and away from frequent communication [86]. MOUSE
is well-suited for this challenge as it has a large memory capacity (due to consisting nearly entirely
of high density non-volatile memory), enabling it to potentially go long periods of time and store
many results before data transmission becomes necessary.

An additional challenge for beyond edge devices deployed in LEO is that they must operate in a
wide range of temperatures. Satellites can get both very cold (-170◦C) and very hot (123◦C) [201].
Large scale satellites can be engineered to perform temperature modulation [25]. However, small,
cheap beyond edge devices can typically not use such strategies. Fortunately, CMOS can perform
well across this wide temperature range, and the performance of CMOS circuits actually tends to
increase with decreasing temperature [393, 329]. However, cold operation can have an adverse
effect on non-volatile memory, where the energy efficiency degrades [296, 163, 196, 392, 397].

Another complication of orbital deployment is radiation. Even in terrestrial deployment, radiation
can induce soft errors in CMOS circuits [26], potentially corrupting the architectural state. Without
the earth’s atmosphere to shield radiation from space, satellites are exposed to much higher levels
of radiation. Non-volatile memory is at an advantage in this domain, as the memory devices it
uses are highly resistant to radiation [255]. However, non-volatile memory still relies on CMOS
circuitry for memory access and external control, which also applies to non-volatile PIM. Circuit
level strategies can be used to mitigate the impact of radiation on CMOS hardware [317], which
can incur significant power, latency, and area overheads.

In this work, we extend the design of MOUSE [298] to be suitable for orbital deployment. We
demonstrate that MOUSE can operate over a wide temperature range (despite non-ideal impacts
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on non-volatile memory) and evaluate its performance at the extremes. MOUSE has an inherent
resilience to radiation due to ideal properties of the non-volatile memory it uses [116, 186], but still
requires CMOS circuitry to drive operations. We show that even in the presence of the overhead
for the hardening of CMOS circuitry to radiation [406], MOUSE remains highly energy efficient and
performant. We also extend the MOUSE PIM instruction set [298] and add architectural support for
branch instructions, which increases the programmability of the device. Finally, we introduce more
hardware efficient column activation mechanisms for enabling logic in the memory. The result is
a programmable, high performance, and extremely energy efficient beyond edge device which is
suitable for deployment in space. In summary, using MOUSE [298] as a representative case study,
our contributions are as follows:

1. Demonstration that the non-volatile in-memory logic works under a wide operating tempera-
ture range and evaluation of the impact on performance.

2. Evaluation of the overhead in adapting all PIM circuitry to withstand high radiation.

3. Extension of the MOUSE instruction set for enhanced programmability.

4. Addition of more efficient hardware mechanisms for enabling logic in the memory.

4.2 Type of Operations Supported

Read: To read from row n, activate WLn. Apply a voltage differential, Vread, across LL and the
BLE/BLO. Current can be sensed on the bitlines. Vread should be lower than Vswitch.
Write: To write to row n, activate WLn. Apply a voltage differential, Vwrite, across LL and the
BLE/BLO. To write 0 (1), the voltage on BLE/BLO should be higher (lower) than on LL. Vwrite

should be larger than Vswitch.

Logic Operation: To perform a logic gate with two inputs in rows n1 and n2, and the output in row
m, preset row m by performing a write1. n1 and n2 must have the same parity (i.e., both even or
both odd), and m, the opposite. Activate WLn1, WLn2 and WLm. Apply a voltage differential, Vlogic,
across BLE and BLO. Due to the parity requirement, in Figure 6.1, if V1 is connected to BLE, V2

must be connected to BLO, and vice versa. LL connects the free layers (in light blue) of the input
and the output MTJs. Current travels from one bit line (either BLO or BLE, depending on the parity
of the input cells), through the MTJs in rows n1 and n2, through the LL, through the MTJ in row m,
and back to the other bitline. Depending on the states of the MTJs in rows n1 and n2, the state of
the MTJ in row m will either change or not. Figure 2.3 shows how a NAND gate can be performed
inside the array. Vlogic must be within a specified range for each type of logic operation [301, 400].

Only one operation (read, write, or logic) can be performed in each column at a time. However,
operations can proceed in many columns simultaneously. The restriction is that (within a single
array) it should be the same operation (i.e., type of logic gate) on the same row designation for
inputs and outputs. For example, a NAND gate can be performed in all columns with the inputs in
rows n1 and n2 and the output in row m.

1This write needs only to be performed if the initial state is different than the corresponding preset value.
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It may be desirable to perform computation in all columns, or in just a subset of columns. The
peripheral circuitry determines which columns participate in every operation. The mechanism for
activating columns is covered in Section 4.3.3, and the instructions which control column activation,
in Section 4.3.4.

Effectively, each column acts as an independent thread that has access to the memory cells
within the column. This is highly analogous to the SIMD lanes of a GPU architecture, where each
lane (column) performs the same operation on different data. The active columns act like the
bitmask in a GPU, where only the active subset columns perform the operation. However, each
column can only perform Boolean logic gates (whereas a GPU has full access to an ALU). Complex
arithmetic/logic translates into performing a sequence of Boolean gates in each column, where each
gate operation can proceed in parallel, in a lock-step fashion. Hence, computations in each column
are relatively slow, but performance is achieved via a high degree of parallelism.

Figure 4.1: Overview of modified MOUSE. Each memory array contains an array of MTJs, a row
and column decoder, and a non-volatile register storing the column bitmask. Sense amplifiers are
required for reads but are not used in computation. The memory controller contains non-volatile
registers to maintain the architectural state.

4.3 Revised MOUSE Design

In this section, we describe the architecture of MOUSE and show how it is uniquely well suited
for beyond edge deployment. MOUSE utilizes CRAM arrays and minimal support circuitry. The
computations performed in MOUSE are energy efficient, highly parallel, and have an inherent ro-
bustness to intermittent operation. The basic architecture and operation semantics are the same as
our previous work [298]. However, we expand the instruction set, improve the method of activating
memory to perform computation, and add hardware support for branch instructions.

4.3.1 Hardware Organization

The hardware remains highly similar to MOUSE with a few modifications. Most notably is additional
hardware in the memory controller and additional registers in each CRAM array. Figure 4.1 shows
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the architecture of MOUSE. It consists predominantly of CRAM arrays.2 MOUSE can afford to
have a large number of arrays (and hence more memory than is typical for a beyond edge device)
due to the ideal properties of MRAM. Each CRAM array contains 1024 rows and 1024 columns.
In addition to the arrays, MOUSE requires the following minimal hardware to drive operations and
maintain the architectural state:

1) A memory controller that reads, decodes, and issues instructions;

2) A non-volatile register for the Program Counter (PC);

3) A 128 byte data register (DR) that facilitates reads and writes;

4) Two non-volatile registers, BR1 and BR2, for branch evaluation;

5) Voltage sensing circuitry for monitoring the power source.

Minimal hardware is required for the memory controller.3 With the exception of resolving branches
(covered in Section 4.3.4) and updating architectural variables, its sole responsibility is repeatedly
reading instructions, decoding them, and broadcasting them to the CRAM arrays. We use a highly
simplified instruction set, covered in Section 4.3.4, hence decoding requires very little computation.
The DR is the same size as one row of the MOUSE arrays and is used for intermediate storage
when transferring data to and from different arrays. BR1 and BR2 hold data near the memory con-
troller, enabling quick comparison tests for branch resolution. Finally, the voltage sensing circuitry
is standard in beyond edge devices and is as described in [219].

4.3.2 Row Activation

In standard memory, a row decoder activates wordlines for read and write operations. As depicted in
Figure 2.3, logic operations require the activation of multiple rows (up to 3) simultaneously. To avoid
increasing complexity of the row decoder, we use a latching mechanism which holds wordlines high
after a row activation [209]. In this manner, the row decoder can activate rows sequentially with
normal operation. The hardware cost is two transistors per row. Additionally, each logic operation
must wait for the three sequential activations, which increases latency.

4.3.3 One-Hot Column Decoder

Typically it is desirable to drive logic operations in every column simultaneously. However, it is
frequently preferable to perform computation only in a subset of the columns, leaving data in other
columns unperturbed. Hence, in addition to a row decoder, we also need a column decoder which
will select which columns participate in each operation.

Column activation patterns are different than for rows. With rows, 1-3 rows are activated for
every instruction, and the rows which are activated are typically different for each consecutive in-
struction. When it comes to column activation, typically many columns are activated simultaneously
(commonly all columns or a large subset). Additionally, columns tend to remain active for long pe-
riods of time – (de)activating columns is a rare event.

2Each array also contains a row decoder and column decoder.
3Our memory controller is a standard memory controller which has been augmented with the capability to read, decode,

and issue PIM instructions. We simply refer to it as the memory controller for the remainder of the paper.
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The original MOUSE design relies on a decoder which allows bulk addressing [298, 326]. Acti-
vation for the column decoder follows the same semantics as for the row decoder, except that there
are reserved addresses which correspond to groups of columns, and up to 5 column addresses can
be specified simultaneously [298]. In this work, we propose One-Hot bitmask decoding to reduce
the complexity of the decoder.

Rather than an address, a bitmask is supplied to the column decoder. In a 1:1 bit to column
scheme, each bit indicates whether a specific column should be activated or not. The bitmask is
stored in a 1024-bit non-volatile register (corresponding to the 1024 columns in each array) within
each CRAM array. We call this register the column bitmask register (CBR). The CBR can be written
with a standard write operation. The advantage of One-Hot bitmask activation is that the column
decoder complexity is low: no addresses need to be resolved. The activation signal of each bit can
be supplied directly to the columns. The disadvantage is that each activation of the columns (if the
column addresses are changing) must be preceded by a write operation to CBR.

It is possible to use different bit-to-column ratios. Fore example, a 1:32 scheme could be used,
where each bit activates a consecutive set of 32 columns. This would allow a 32-bit mask to activate
all 1024 columns. The drawback is reduced flexibility as such a bitmask cannot activate less than
32 columns at a time. If computation requires less than 32 columns, additional (and unnecessary)
operations will be performed in all 32 columns. This wastes energy. As a 1024-bit bitmask is easily
handled by the CBR, we maintain a 1:1 ratio.

4.3.4 Instructions

Instructions for MOUSE are 64-bit and have the formats shown in Figure 4.2. The expanded in-
struction set has four categories of instructions, which we explain here.

Memory Instructions

Reads and writes are the standard memory operations, but have additional overhead due to support
for intermittent operation. The data register (DR) is a non-volatile register the same size as the
rows of the CRAM arrays (128B) that holds data between read and write instructions. A read
instruction reads from a CRAM array (at the specified address) and writes the data into the DR. A
write instruction reads data from the DR and writes it into a CRAM array (at the specified address).
Hence, if there is a power interruption between consecutive reads and writes, the DR will maintain
the data being transferred – circumventing the need to re-perform the prior read operation. In
addition to memory operations which use the DR, there is also a write immediate instruction, which
allows instructions to write data directly into memory.

Logic Instructions

Logic instructions correspond 1:1 with logic gates (as covered in Section 2.2.2). For example,
NOT, (N)AND, and (N)OR are all individual instructions. The instruction specifies the CRAM array
address the operation is to be performed in and the row addresses of the logic gate (which rows
the inputs and outputs reside in). NOT requires two row addresses (1 input, 1 output) and all others
require three row addresses (2 inputs, 1 output). For example, a NAND instruction may specify
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that it is to be performed in CRAM array 15, with inputs in rows 7 and 9, and the output in row
12. We restrict logic operations to at most two inputs, which are shown to be reliable [301, 400].
As COPY, XOR, and XNOR gates are not natively supported in CRAM, there are only 5 unique
logic instructions. Analogous to vector instructions, many logic gates can be performed in parallel
(triggered by a single instruction), as long as their inputs and output reside in the same rows. The
number of parallel gates depends on which columns are active, discussed in Section 4.3.4.

The CRAM array address can specify a single array, or multiple arrays with bulk addressing
[326]. There are reserved memory addresses which correspond to groups of memory arrays. For
example, it may be desirable to trigger an operation in all CRAM arrays. We designate array address
111111111 as a reserved address, to send an instruction to all arrays.

Activate Columns Instruction

It is necessary to specify which columns should participate in each operation. As noted in Section
4.3.3, consecutive operations typically use the same columns. Hence, which columns to activate
changes infrequently. To take advantage of this, we use a strategy where columns are activated
and then held active. All following logic operations will be performed in the columns which are held
active. To (de)activate columns we use a dedicated instruction, the activate columns (AC) instruc-
tion. As described in Section 4.3.3, the column decoder simply activates the columns depending
on the values in CBR. Hence, a column activation consists of two components:

1. A write to the CBR (set);

2. Triggering of the column decoder to activate the corresponding columns (activate).

Typically an AC instruction handles both components. However, when restarting the device it is
only necessary to do the second. Hence there are two variants of the AC instruction, one which
does both parts (set and activate) and one which only does the second (activate).

The write to CBR acts like a standard write. As noted in Section 4.3.4, a write can use the value
in the DR or an immediate field in the instruction. Hence, there are a total of 3 unique versions of
the AC instruction:

1. Re-activate: Activate using pre-existing value in CBR;

2. Set and Activate: Use data in DR to set CBR and then activate;

3. Set and Activate (Immediate): Use data in the immediate field of instruction to set CBR and
then activate.

Branch Instructions

Branch instructions involve an update to the program counter (PC) in the event a logical condition
holds true. As the logic required to evaluate the condition (e.g., checking equality of two numbers)
is not complex, it can be implemented efficiently within the memory controller.

Non-volatile registers, BR1 and BR2, reside in the memory controller and are used for condition
evaluation. We support simple standard branches based on BR1 and BR2:

1. beq BR1 BR2: branch if BR1 and BR2 contents are equal;
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2. bge BR1 BR2: branch if BR1 is equal or greater than BR2;

3. beqz BR1: if BR1 equal to 0.

Hence, the memory controller evaluates a simple condition based on BR1 and/or BR2 and updates
the PC accordingly. Additional instructions are required to write values to BR1 and BR2. This
follows the same semantics as writing to the CBR. A dedicated instruction writes to BR1 or BR2,
and the value can come either from the DR or an immediate field in the instruction.

Branch instructions increase programmability by enabling function calls, repetitions of computa-
tional blocks, and handling I/O events. However, as the computation for branch instructions happens
in the memory controller, it cannot capitalize on the extreme energy efficiency and the high degree
of parallelism provided by the CRAM arrays. Therefore, efficiency tends to decrease with larger
share of branch instructions in the instruction mix. 4

Figure 4.2: MOUSE instruction formats. There are three types of instructions, logic, memory,
and an additional activate columns instruction for configuration. Opcodes are 5 bits; array (tile)
addresses, 9 bits; and row addresses 10 bits each. Branch offset is 20 bits. Remaining bits are
used by instructions which use an optional immediate value.

Compilation

Compiling high-level code to MOUSE instructions (or any PIM substrate) requires knowledge of the
PIM hardware in order to make efficient use of available parallelism. This is similar to compiling
Open-CL or CUDA code for GPU architectures. Unfortunately, no equivalent standard software
compiler exists for PIM. There is a rich design space, where a multi-dimensional trade-off exists
between efficiency, area, power, and performance. Higher degrees of parallelism are possible by
spreading computation out over more columns. However, this increases power, consumes more
area, and adds communication overhead which reduces energy efficiency. Our strategy rather is to
minimize area by using as few columns as possible, to maximize energy efficiency. Our data layout
is similar to a number of other works which have mapped applications to PIM substrates [209, 326],
including machine learning algorithms [301].

Issuing Instructions

While operations can occur in multiple arrays simultaneously, arrays do not operate autonomously.
All operations are triggered by the memory controller (discussed in more detail in Section 4.4).
Effectively, there is a single controlling “thread”, and hence there are no concurrency concerns
between individual arrays. CRAM arrays in MOUSE hold both data and the instructions. For clarity,

4Avoiding branch instructions is easy for machine learning applications. For our benchmarks, we do not need any branch
instructions during a single inference pass. Branches are used only to repeat inference or to handle I/O.
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we categorize arrays into instruction arrays and data arrays based on their contents. However, as
all arrays have identical hardware, arrays can be re-categorized to fit the programmer’s needs.

Instructions and required data are written into the arrays prior to deployment. During operation,
the memory controller repeatedly fetches an instruction from the instruction arrays, decodes it, and
then broadcasts it to the data arrays. Instructions are performed entirely sequentially. The next
instruction does not start until the previous has finished. This is to guarantee correctness, which
we will cover further in Section 2.4.4 and Section 4.4.

Generally, different instructions can take different time to complete. This is mainly because
instructions can activate different numbers of rows. To guarantee that all instructions complete
in time, for each instruction, the memory controller conservatively allocates as much time as the
the longest instruction takes before starting the next instruction. This time lapse forms a cycle.
This conservative approach to issuing instructions comes with a performance cost, as opposed to
a more complex event-driven strategy. We opt for the conservative approach for three reasons:
(1) MOUSE already delivers higher performance than representative alternatives for beyond edge
computing (as we cover in Section 7.5), hence aggressive optimization is unnecessary. (2) Complex
issue logic would be less energy efficient and make it more difficult to guarantee correctness under
intermittent operation. (3) Simplicity is a strength for beyond edge devices. In the end, energy
efficiency (rather than high performance hardware) is the limiting factor for performance beyond the
edge [121]. Designs consuming less energy complete programs faster because they spend less
time waiting for the harvested energy to reach sufficient levels for forward progress in computation.

4.4 Intermittent Correctness Guarantee

Beyond edge devices need to ensure program correctness in the presence of power outages. If
not handled carefully, interruption due to power outage can corrupt the architectural state. In this
section we show how MOUSE remains correct, even in the presence of unexpected power out-
ages. There are two crucial components: the correctness of individual in-memory operations when
interrupted or re-performed (Section 2.5.1) and the correctness of architectural state variables in
transitions between states (Section 4.4.2). As MOUSE checkpoints after every instruction, we need
to only show that each instruction and the transitions between instructions remain correct when in-
terrupted. In the following, we show that all instructions and transitions are idempotent [369, 157],
which means that they produce the same results, even if repeated multiple times. The key to re-
maining idempotent is not over-writing data that is required on restart (or if the data gets overwritten,
it should be in a manner that does not change the computation outcome). The architectural state
variables and their protection mechanisms are listed in Table 4.1. Note that the correctness guar-
antee covered in this section applies only to interruptions and power outages. It does not cover
errors in the computation itself or perturbations due to soft errors from radiation.

4.4.1 Operation Level Correctness

In this section we cover the correctness of individual operations performed in the memory when
interrupted and re-performed. We assume the most general case, where the power can be cut
at any moment (unexpectedly). Hence, we need to consider all possibilities for when (during its
processing) an operation can get interrupted.
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Table 4.1: Architectural state variables and how they are protected under power interruptions.Variable Volatility Protection Mechanism
Program Counter Non-Volatile Duplicated, valid copy is read only

Parity Bit Non-Volatile Only flipped after instruction has finished. Flip is an atomic operation
BR1 and BR2 Non-Volatile Write operation guarantee (Section 4.4.1)

CBR Non-Volatile Write operation guarantee (Section 4.4.1)
DR Non-Volatile Read and Write operation guarantee (Section 4.4.1)

Active Columns Volatile Bitmask stored in CBR. Re-actived on restart with AC instruction (Section 4.3.4)
Active Rows Volatile Activated by every instruction

Data Non-Volatile Idempotent logic operations (Section 2.5.1), Read and Write operation guarantee (Section 4.4.1)

Logic Operations

Logic operation correctness is identical to MOUSE, and is exactly as described in Section 2.5.1.
There are no changes introduced in this chapter.

Memory Operations

Re-performing a read operation has no effect on the read data, reading it a second time will produce
the same results. Re-performing a write will overwrite whatever was written the first time. If the
write was not successful the first time (due to interruption), it will be successful the second time.
If the write was successful the first time, the same value will be written twice. As noted in Section
4.3.4, read (write) instructions can involve a write to (read from) the DR. These are protected by
the idempotency of both read and write operations - a memory operation does not write to any
address/register that it also reads.

Column Activation

Column activation involves a write to the CBR in a data array and then a triggering of the column
decoder. The write to the CBR is kept correct by the same semantics as memory operations (a
write can be performed multiple times). The column activation by the column decoder does not
change any non-volatile data and hence cannot introduce corruption. The volatile state is entirely
lost on shutdown and will be overwritten on restart.

Summary

Power interruptions can waste energy (due to re-performing instructions) but cannot corrupt the
data in memory. Idempotency of all instructions guarantees that they produce the same results,
even if performed multiple times. Moreoever, idempotency is not required beyond a single instruc-
tion as only one instruction is performed between each checkpoint.

4.4.2 Maintaining Correct State

The previous section showed that the individual operations performed in the memory are idem-
potent. This is necessary but not sufficient for correctness. MOUSE has to guarantee that the
memory controller can drive the operations and maintain the architectural state in an intermittent
safe fashion. This extended architecture of MOUSE has more instructions and more considerations
due to radiation.
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Memory Controller

The memory controller repeatedly reads instructions from the instruction arrays, decodes them,
and broadcasts them to the data arrays. The memory controller waits for a sufficient time for each
instruction to complete before updating the program counter (PC). The PC must be stored in a
non-volatile register to prevent loss on shutdown. However, concern remains if the update to the
PC gets interrupted. If power is lost during a write to the PC register, it can be corrupted - resulting
in incorrect behavior on startup.

We circumvent this issue by maintaining two PC registers, PC0 and PC1, and an additional non-
volatile parity bit. If the parity bit is 0, PC0 is valid, and if the parity bit is 1, PC1 is valid. When the
memory controller updates the PC, it takes the value in the valid PC register, updates it accordingly,
and stores it into the invalid PC register. Then it flips the parity bit, indicating the advancement to
the next instruction. Therefore, the memory controller never writes to the valid PC register, and
there is no risk of corruption.

The setting of the parity bit is analogous to the committing of an instruction in traditional archi-
tectures. As the parity is a single bit, the operation is atomic and cannot be interrupted mid-way
through. The parity bit either is set or not. If an interruption occurs before the parity bit is set, the
memory controller re-issues the same instruction on restart, which is safe to do (Section 4.4.2).
If the interruption occurs after the parity bit is set, the instruction is completed and the memory
controller issues the next instruction on restart, as depicted in Figure 2.7.

There are other non-volatile registers that hold the architectural state. These include the data
register (DR), branch registers (BR1 and BR2), and the column bitmask registers (CBR) in each
array. These registers are protected by the same semantics as in Section 4.4.1. Updates (i.e.,
writes) to these registers are guaranteed to be completed before the memory controller commits
the corresponding instruction. No register is both read and written by the same instruction, so no
required data can be corrupted.

Active columns is part of the architectural state. When MOUSE restarts, these columns need to
be re-activated. The non-volatile CBR in each memory array maintains the currently valid bitmask
for active columns. All that is required is for the column decoders to re-activate these columns. To
achieve this, the memory controller issues a re-activate columns instruction to all arrays on restart
(Section 4.3.4).

Data in Arrays

The previous section showed that the memory controller itself remains correct during intermittent
operation. We must also ensure that the memory controller does not generate any signals which
corrupt the data residing in the memory arrays.

The memory controller broadcasts instructions to the data arrays. This broadcast is not atomic,
and thus can be interrupted at any stage. However, all the operations that it can trigger are idem-
potent (Section 2.5.1), meaning they can safely be interrupted at any point in their progression.
As a direct result, the broadcast cannot cause corruption as its only effect is the initiation of the
operation. Power can be cut before the broadcast reaches a memory array, while the operation is
being performed, or after the operation has finished –none of these cases can introduce error.
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4.5 Impact of Orbital Deployment

An exciting domain for beyond edge devices is low earth orbit (LEO) where they can act as nano-
satellites [226]. One aspect of LEO deployment is that the cost of communication becomes much
greater than computation (even more so than for terrestrial deployment) [226, 120]. MOUSE is
especially well suited for LEO deployment as it has a much larger memory capacity relative to other
beyond edge devices as MOUSE nearly entirely entails high density non-volatile memory. Due to
the large memory capacity, MOUSE can go long periods of time without offloading data. However,
orbital deployment also introduces challenges related to operating temperature and radiation. We
discuss here how MOUSE can tolerate such conditions.

4.5.1 Temperature

Satellites in LEO can experience a wide range of temperatures, from -170◦C to 123◦C [201]. Main-
taining the proper temperature on large scale satellites is an important engineering challenge [25].
Nano-satellites, on the other hand, typically do not have sufficient resources for any temperature
modulation yet they need to operate properly across a wide range of temperatures. Non-volatile
memory characteristics are very sensitive to temperature [296], which further challenges this situ-
ation for MOUSE.

MTJ resistance increases with decreasing temperature, to the extent that the resistance at -
170◦C can be 30% higher than at room temperature [393, 196]. This increases the voltage required
to write MTJs, and consequently, energy consumption. The SHE architecture is less sensitive
than STT, as the SHE channel is metallic (to be more specific, the resistance does not increase
with decreasing temperature). Therefore, write operations with SHE remain largely unaffected.
However, SHE still requires current to travel through the body of input MTJs for read and logic
operations. Hence, the overall energy efficiency of SHE still decreases. As a result, PIM using
MTJs (or other non-volatile technologies, as well) is less energy efficient at cold temperatures [296].
However, the change is modest, within approximately 10% more energy consumption (relative to
room temperature), even at cryogenic (77K) temperatures [296]. Given that MTJs are extremely
energy efficient [398, 401], this increase in energy consumption remains tolerable. Additionally,
there is a benefit of cold temperature. The ratio between the high and low resistance state increases
[397, 196]. This leads to more robust logic gates which are less susceptible to voltage fluctuations
[400, 301].

The inverse is true at high temperatures. The overall MTJ resistance and the ratio between
the high and low resistance states are both lower. MTJ resistance at 123◦C is roughly 86% of its
resistance at room temperature. This translates into more energy efficient MTJ logic gates, which at
the same time are more susceptible to voltage fluctuations. The latter challenges the power delivery
system. Power systems such as Capybara [71] become necessary to ensure that the proper voltage
is applied across a variety of temperatures. Switched-capacitor voltage converters [173, 289, 289]
can generate necessary voltages to facilitate correct operation. We cover the overhead of voltage
generation/conversion in Section 7.5.

In contrast to the resistive memory, the peripheral circuitry in MOUSE benefits from cold temper-
atures. At colder temperatures CMOS transistors have higher ON current [393], switch faster [276],
feature a higher trans-conductance, and incur a lower leakage current due to a steeper subthresh-
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Figure 4.3: Voltage ranges for correct operation of each logic gate at different temperatures, room
temperature (27◦C), Cold (-170◦C), and hot (123◦C).

old slope [329]. However, MOUSE does not benefit significantly from these characteristics. This is
because the non-volatile memory already has extremely low static power, and the latency is limited
by the switching time of the MTJs. CMOS performance can degrade with increasing temperature
due to increased leakage current, while typical CMOS devices can operate well up to 175◦C [176].
Radiation hardened bulk CMOS technology can increase this range further to 250◦C [224, 176].
Hence, CMOS technology is well suited to operate within the expected temperature range of LEO
satellites. We discuss the overhead of our CMOS components further in Section 7.5.

Voltage Margins

Logic operations with MTJs discussed in Section 2.2.2 require proper voltages to be applied across
the inputs and output. Correct operation can only be the case if each gate-specific voltage is
within a specified range [398, 301]. The required voltage depends on the logic operation (which
determines the number of inputs and the output preset), the resistances of the MTJs (RP and
RAP ), and the switching current (Iswitch). Because the MTJ resistance changes as a function of
the temperature, the proper voltage ranges do, as well. Figure 4.3 shows the voltage ranges for
different logic operations at different temperatures. MTJ resistance is higher at cold temperatures,
making the required voltages higher. At high temperatures, the MTJ resistance is lower. In addition
to the voltages being lower, the ranges are also smaller. This reduces the margin for error in the
voltage supply. MOUSE relies on a power delivery system which can reliably supply the appropriate
voltage. This becomes an even more challenging task considering temperature fluctuations.

4.5.2 Radiation

Radiation can cause errors in electrical circuits. When a stray energetic particle strikes the hard-
ware, it induces a voltage spike which can travel along the circuit and potentially alter output volt-
ages or flip logical values [317]. Corrupted logic values give rise to soft errors. Technology scaling
already makes any circuit ever more susceptible to soft errors[391]. However, when deployed in
orbit, beyond edge devices are exposed to significantly higher levels of radiation which translates
into frequent particle strikes.

CMOS components of MOUSE (the memory controller and peripheral circuitry, respectively) are
susceptible to soft errors. Radiation can disrupt the CMOS logic in the memory controller or the
voltage supplied by the power delivery circuitry (required to drive logic operations in memory). The
consequences vary greatly depending on the location. The impact of soft errors in computation will
likely be minor due to the resilience of machine learning to noise. Hirtzlin et. al. [159] showed that
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frequent bitflips in binary neural networks implemented in STT-MRAM result in negligible degrada-
tions in accuracy. However, a bit flip in the memory controller (corrupting the architectural state) can
lead to undefined behavior. For example, if the memory controller experiences an error where it
incorrectly updates the program counter, the device could attempt to read instructions from invalid
addresses. Such an error could permanently disable the device. Hence, hardening MOUSE to
radiation is imperative.

Many mitigation techniques exist for soft errors, which can be categorized into-system level,
device-level, or circuit-level [317, 319, 316]. As MOUSE must stay correct in transitions from each
instruction to the next (due to check-pointing after each instruction), and as increasing complexity
also increases the overhead for correctness guarantees, system-level mitigation is less appropriate
– i.e., soft errors should be caught before they manifest themselves at the system (architecture)
level. Additionally, MOUSE relies on pre-existing CMOS devices, making device-level mitigation
impossible.5 Hence, circuit-level mitigation is the most suitable approach.

MOUSE relies on switched-capacitor circuits to supply appropriate voltages to the memory,
which can be particularly susceptible to radiation. Circuit-level techniques can be especially helpful
in this case, e.g., in the form of additional feedback paths to counteract the impact of particle
strikes [106]. Thereby, if a single path experiences a voltage spike (or drop), an alternate path can
take over in order to compensate. When properly designed, the impact on the final output can be
minimized even if a large disturbance is experienced at the input of a circuit. This comes at a cost
in area and energy efficiency due to the larger number of transistors per circuit.

MOUSE also relies on CMOS logic circuits within the memory controller to decode instructions
and send commands to the memory. CMOS logic can be hardened to soft errors with a variety
of circuit-level techniques. Redundancy can be added, either in space [270] (with area overhead)
or time [244, 263] (with latency overhead), where outputs are checked for consistency. Increasing
the node capacitance and transistor drive current (at a cost of area and energy) can also reduce
the electrical susceptibility to particle strikes [406]. More sophisticated strategies of lower area
overhead involve creating “transmission gates” between stages of a circuit, filtering out pulses from
particle strikes [194, 405, 318].

While MOUSE does critically rely on CMOS circuitry, the vast majority of MOUSE’s computation
and all of its memory involve MTJs. Fortunately, MTJs are considerably more robust to soft errors
than alternative technologies While short-lived voltage pulses suffice to change the state of CMOS
circuits, MTJs require a significant current (a few microamps) for a sustained period of time (a few
nanoseconds) in order to switch states. Hence, particle strikes are highly unlikely to flip MTJ states.
In fact, MTJs are shown to be highly resilient to radiation from heavy ions [74, 187], neutrons [293],
protons [164], and gamma rays [293, 164]. Recently, Montoya et. al. [255] demonstrated that MTJs
are even resilient to radiation that is 100× greater than what is observed on particularly harsh inter-
planetary travel [402, 27]. Therefore, MTJs represent leading candidates for space applications
[116, 186]. Since MOUSE consists mostly of MTJs, it is less susceptible to radiation than traditional
architectures. As only minimal CMOS circuitry is required external to the memory arrays, circuit
level strategies to increase CMOS resilience to radiation [406] incurs a relatively low overhead.

5A major exception is pre-existing properties of MTJ devices, discussed later.
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4.6 Evaluation Setup

Benchmarks: The exact use case of beyond edge devices can vary significantly, applications in-
clude agricultural monitoring [226, 370], security, and structural and environmental monitoring [86].
However, general sensor processing algorithms can be used to solve a wide variety of problems.
We use benchmarks which are representative for many possible use cases - machine learning in-
ference on data sets which are tenable for beyond edge devices. The specific input problem will
vary depending on the user, however, the computation involved should remain highly similar.

We implement two machine learning algorithms, Support Vector Machines (SVM) and Binary
Neural Networks (BNN). Both are widely used and light weight, which makes them highly suitable
for the beyond edge domain. For both, we used only operations that are efficient in MOUSE, all
bit-wise and integer arithmetic. Machine learning applications are well-suited for integer arithmetic
as they remain robust under approximation. Fixed-point representation using integer arithmetic
is sufficient to achieve high accuracy [165]. We designed customized SVM implementations and
trained and tested them in R [288]. We were able to achieve similar accuracy as standard SVM
implementations from libSVM [57]. For inference, the main computation is effectively performing
the dot product between an input vector and each of the support vectors. The results of these dot
products are then squared, multiplied by a set of coefficients, and finally summed together. By
construction, SVMs have two class outputs, where the sign of the output value is the classification.
We extend to multi-class classification by training a separate SVM for each possible output class,
where each has the task of identifying a single class. BNNs are neural networks that use neurons
and weights represented by a single bit each [76]. This enables multiplications to be replaced by
XNOR operations and addition is simplified to a popcount operation. This gives BNNs extreme
energy efficiency. Previous work has efficiently mapped BNNs onto FPGAs, including FINN [362]
and FP-BNN [211]. We copy their network configurations exactly. We modify the algorithms only in
transforming them to run on our PIM substrate. Hence, our accuracy is identical.
Data Sets: For small scale image recognition we use MNIST [198]. The task is digit recognition,
where a 28×28 pixel image with 8-bit precision is to be classified into one of ten digits (0-9). We use
both BNNs and SVMs on this benchmark. With SVM, the pixels are a 784 element vector. We also
create a binarized version, where pixels that have a value below 255/4 ≈ 63 are assigned 0 and
those above are assigned 1. This allows us to replace multiplications with AND gates, significantly
reducing the time, energy, and area overhead. For BNNs, we use the network configurations of
FPGA-based FINN [362] and FP-BNN [211]. FINN [362] uses binarized input, has three hidden
layers of 1024 neurons (bits) each, and the output layer has 10 neurons with 10-bit precision. FP-
BNN [211] 8-bit inputs, has three hidden layers of 2048 neurons each, and the output layer is 10
neurons with 16-bit precision.

Human Activity Recognition (HAR) [14] is a data set which has accelerometer and gyroscope
measurements from a smartphone, which is carried by participants performing a variety of activities.
The problem is to classify the physical activity the individual is performing. Each input is a vector of
561 elements. We convert the input to fixed point representation with 8-bit precision.

ADULT [188] contains census information. The problem is to classify whether an individual
makes greater than $50K per year or not. We use a reformatted version of the data set from
libSVM [57]. Each input is a 15 element vector where each element is an 8-bit integer.
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Table 4.2: Parameters for MTJ devices.Parameter Modern Projected
P State Resistance 3.15 kΩ 7.34 kΩ

AP State Resistance 7.34 kΩ 76.39 kΩ
Switching Time 3 ns [307, 268] 1 ns [398, 167]

Switching Current 40µA [307] 3µA [398]

Performance and Energy Model: We use an in-house simulator to evaluate MOUSE. We set each
array in MOUSE to 1024x1024, which is a recommended subarray size for non-volatile memories
from NVSIM [92]. Our simulator tracks all instructions issued by the memory controller and accounts
for the time and energy consumed by each. An instruction can consume energy by performing the
following actions:

1. Reading the instruction from the instruction array.

2. Sending the instruction to the data arrays.

3. The activation of rows for computation.

4. The activation of columns for computation.

5. The switching energy of the MTJs in memory.

6. Update of the program counter and parity bit

Items 1 and 6 always occur, while the remaining items occur depending on the instruction type.
All energy consumption comes either from the MTJ devices or from the peripheral circuitry. The
models for both are discussed below.

We simulate with both modern MTJ parameters [308] and with projections of MTJ parameters
expected to be possible within a few years [398, 401]. MTJs are expected to be significantly more
energy efficient as the technology matures. Two techniques will enable a reduction in the switching
current, 1) decreasing the damping constant of ferromagnetic materials [315, 252, 97] and 2) using
a dual-reference layer structure [161, 89]. It is possible switching currents will be as low as 1µA,
however, we assume 3µA to be conservative. The parameters we use are shown in Table 7.1. For
Modern MTJs we use only the STT architecture, for projected MTJs we use both the STT and SHE
architectures. The benefit of SHE is providing a more efficient write mechanism. We model the
SHE channel as a 1 kΩ resistance. This provides a conservative estimate of SHE energy efficiency.

Due to the different switching times of modern and projected MTJs, we clock MOUSE at different
speeds for each. With Modern MTJs MOUSE operates at 30.3MHz clock rate (33ns per cycle) and
for projected MTJs MOUSE operates at 90.9MHz clock rate (11ns per cycle). This enables sufficient
time for instruction read, decode, and the peripheral circuitry latency and MTJ switching time.

For modeling peripheral circuitry, we take data from NVSIM [92] which reports the relative over-
head of peripheral circuitry for modern MRAM memory. We set the overhead of MOUSE so that it
consumes the same relative share of total latency and energy as reported by NVSIM.

We first evaluate MOUSE with continuous power (using a power source which can supply as
much power as MOUSE desires). Then, we evaluate with an energy harvesting power source where
MOUSE will have to operate intermittently. We model the energy harvester as a (small) constant
power source which is filling an energy buffer (capacitor). When MOUSE is off, the power source
charges the capacitor and the voltage will rise. When MOUSE is on, it will consume the energy
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and the voltage will drop. MOUSE will shut off when the voltage hits a pre-defined minimum value,
hence the voltage on the capacitor will fluctuate within a specified range. When the voltage hits the
lower end of the range, power is instantaneously cut - MOUSE does not do any preparation for the
shutdown. We start all benchmarks with a capacitor that has voltage just below the cutoff, hence all
benchmarks begin with an initial charging time. Modern MTJs and Projected MTJs have different
operating voltages [398], so we use a different voltage range for each technology. We let the voltage
fluctuate between between 400mV and 420mV when using Modern MTJs and between 100mV and
120mV when using Projected MTJs. Switched-capacitor converters are used for upconversion and
downconversion [148] to supply the required voltages for all operations. All required voltages can
be acquired by using conversion ratios of 0.75, 1, 1.5, and 1.75 [173, 289]. We evaluate MOUSE on
the power supplied by the converter, the evaluation does not include regulator efficiency overhead.
The converter may have an efficiency anywhere between 35-80%, hence the energy harvester
may need to provide roughly 1.25-2.85× the energy that MOUSE consumes. As noted in Section
4.3.4, a single instruction is performed in every cycle. A portion of the cycle must be dedicated
to changing the output voltage of the converter (if consecutive operations require different voltage
levels). The time overhead can be overlapped with the row activations.

It is desirable to match the capacitor size to the expected energy consumption. Hence, we also
use different capacitor sizes for modern and project MTJs. We use a 100µF capacitor (energy
buffer) with Modern MTJs and a 10µF capacitor for Projected MTJs. The optimal capacitor size
depends on the technology and the program being executed. When deployed, a system such as
Capybara [71] could be used to tune the parameters of the energy buffer.

Given that energy harvesting power sources can vary significantly in how much power they can
provide, we sweep the power source over a wide range. At the low end, we test from 60µW which
is approximately what can be harvested from a 1cm2 thermal energy harvester running on body
heat [202, 181]. This is well below the operating power of MOUSE. At the high end we use 5mW,
which is the same power harvested by the beyond edge device SONIC [120]. This can nearly
power MOUSE continuously. Beyond edge devices deployed as satellites will likely use solar cells
as power sources [226]. The amount of power which can be harvested will depend on the size of
the cells (typically very small) and their orientation which is likely to change over time.
Area Overhead: The CRAM arrays used in MOUSE have a similar area overhead as MRAM arrays.
The extra overhead of STT CRAM is an extra bit line per column, which is a minor impact. For SHE
CRAM, a second transistor and SHE channel is required in each cell, which has a significant impact.

We base our cell area estimates on Zabihi et. al. [400]. We use configurations where the access
transistors have a resistance less than 1 kΩ and give an extra 10% to account for spacing and layout
issues. The access transistors and MTJs can be placed on separate layers. As the transistors
are much larger, they dominate the area overhead. As the SHE architecture has twice as many
transistors, it is approximately twice as large. We use NVSIM [92] to estimate the area overhead
of peripheral circuitry. NVSIM reports the percentage of chip area which much be dedicated to the
peripheral circuitry for different memory sizes. We increase the area overhead for each benchmark
accordingly. Our conservative area estimates are shown in Table 4.3.
Impact of Temperature: MTJs have been demonstrated to function over a wide range of tem-
peratures [397, 196]. However, the MTJ resistance increases at colder temperatures, which will
increase energy consumption. We test MOUSE both at -170◦C (cold) and 123◦C (hot). To model
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Table 4.3: Area required for MOUSE for different benchmarks and configurations. Units are in mm2.
Total Modern Projected SHE

Benchmark Memory STT[400] STT [400]
SVM MNIST 64MB 28.04 21.27 42.54

Binarized 8MB 2.99 2.27 4.53
SVM HAR 16MB 5.97 4.53 9.06

SVM ADULT 1MB 0.39 0.29 0.58
BNN FINN MNIST 8MB 2.99 2.27 4.53

BNN FPBNN MNIST 16MB 5.97 4.53 9.06

the impact on MTJs we take data from Yuan et. al. [397]. For cold temperatures, we conservatively
estimate the MTJ resistance increases by 30%. For the STT architecture, this increases the write,
read, and logic energy consumption by 30%. For SHE, the write energy remains unaffected as
the SHE channel (which is metallic) is use for write operations. However, energy consumption still
increases for read and logic operations. The CMOS circuitry will generally perform better at cold
temperatures, having a lower latency and potentially lower energy [329, 276, 393]. However, to be
conservative, we assume no additional efficiency of the peripheral circuitry. The latency improve-
ment of CMOS does not benefit MOUSE as we choose to maintain the same clock rate across
temperature ranges. Hence, the latency of each instruction remains the same. At hot tempera-
tures, the MTJ resistance drops by approximately 13% [397]. We model this in an identical fashion
to cold temperatures, where we change the energy efficiency of each operation.
Impact of Radiation: As noted in Section 4.5.2, MTJs have an inherent resilience to radiation.
However, the CMOS components of MOUSE remain vulnerable. Errors in the CMOS circuits can
lead to undefined behavior. Hence, in order for MOUSE to work in orbital deployment, these errors
must be suppressed. Circuit-level strategies can make CMOS circuits resistant to soft errors [406,
317]. These strategies come with a power and delay cost. We choose to be conservative and
assume a large overhead. We assume a 60% increase in CMOS energy and a 10% increase in
CMOS latency, one of the largest overheads reported by Zhou et. al. [406]. Hence, the performance
and efficiency of an orbitally deployed MOUSE will be reduced, relative to that of its counterpart
designed for terrestrial deployment.
Baseline for Comparison: We compare MOUSE with SONIC [120], a beyond edge device which
performs machine learning inference on the same benchmarks we use. As SONIC was evaluated
at room temperature, we must estimate its performance at different temperature ranges. To be con-
servative, we assume SONIC can fully exploit the benefit of CMOS operation at cold temperatures,
increasing performance by 30% [276]. We also assume it suffers no negative consequences of
varying temperature (hot or cold) and it pays no overhead resilience to radiation. We also compare
against estimates of the vector architecture MANIC [121]. We also give MANIC overly optimistic
assumptions, a 30% boost in performance and no overhead for temperature or radiation. MANIC
was not evaluated on end-to-end inference, rather on computational kernels required for inference
(i.e. convolution). Hence, we rely on rough estimates of its performance on the same benchmarks.
We follow the authors’ statement, that MANIC 9.6× more energy efficient than SONIC [121].

4.7 Evaluation

Continuous Power: Continuously powered MOUSE at room temperature and related work is re-
ported in Table 4.4. MOUSE implements both BNNs and SVMs. SONIC [120] is beyond edge
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Table 4.4: Continuously powered MOUSE at room temperature (using STT design and modern
MTJ devices) and related work under continuous power. The CPU does not benefit from MNIST
binarization as it still performs 64-bit integer multiplication.

Benchmark Latency (µs ) Energy (µJ ) #SV I/D Mem (MB) Area (mm2) Accuracy
SVM (CPU)

MNIST 169,824 5,094,702 11,813 - - 97.55
MNIST (Binarized) 192,370 5,771,085 12,214 - - 97.37

HAR (integer) [14, 360] 127,494 3,824,822 2,809 - 95.96
ADULT 4,368 131,052 1,909 - - 76.12

MOUSE SVM (Modern STT)
MNIST 23,116 1,700 11,813 4.5 / 30.0 28.04 97.55

MNIST (Binarized) 6,071 81.43 12,214 1.25 / 6.0 2.99 97.37
HAR (integer) [14, 360] 11,312 575.8 2,809 2.25 / 10.0 5.97 94.57

ADULT 1,104 9.06 1,909 0.25 / 0.5 0.39 76.12
MOUSE BNN (Modern STT)

MNIST (Binarized) FINN 1,605 18.04 NA 3.15/1.71 2.99 98.4
MNIST FP-BNN 2,150 125.4 NA 4.20 / 8.00 5.97 98.24

libSVM [57]
MNIST 7,830 234,900 8,652 - - 98.05

MNIST (Binarized) 19,037 571,116 23,672 - - 92.49
HAR (integer) 1,701 51,042 2,632 - - 93.69

ADULT 379 11,370 15,792 - - 78.62
SONIC [120]

MNIST 2,740,000 27,000 NA 0.256 > 100 99
HAR 1,100,000 12,500 NA 0.256 > 100 88

device which uses TI-MSP430FR5994 microcontroller to run neural networks on the same bench-
marks. For reference, our custom SVM implementation and optimized SVMs from libSVM [57] are
run on a Intel Haswell 5-2680v3 processor. To be conservative, we account only for the processor
power consumption and assume it operates at its idle power. Overall, MOUSE has a significant
energy efficiency advantage and a competitive latency. Notably, MOUSE consumes more mem-
ory than SONIC. However, this is reasonable as MOUSE consists nearly entirely of non-volatile
memory, which has high density. MOUSE does not require external logic or area costly volatile
memory.
Intermittent Operation: We now evaluate MOUSE with intermittent computation, where a small
power source is charging a capacitor that MOUSE can draw energy from. The latency (including
time powered off) of all benchmarks with each MTJ device (and different operating temperatures)
over the range of power sources (60µW - 5mW) is plotted in Figure 4.4, along with a comparison
to SONIC [120] and MANIC [121]. All MOUSE configurations are able to significantly outperform
SONIC for the same power budget. Despite conservative estimates of MTJ performance, conser-
vative estimates of peripheral circuitry, and very optimistic estimation of MANIC across the temper-
ature range (30% boost in performance and no overhead for temperature or radiation) MOUSE has
a similar performance with MANIC. On the MNIST data set, if MOUSE uses 8-bit inputs, its latency
is 0.91× (1.15×) that of MANIC at hot (cold) temperatures. On the HAR data set, MOUSE has a
latency that is 0.66× (0.83×) that of MANIC at hot (cold) temperatures. Hence, MOUSE has better
performance on average, with better results at warmer temperatures.

At cold temperatures MOUSE has a higher latency than when hot. At 60µW, overall cold is
23.4% slower on average. While MOUSE has the same clock rate and issues instructions at the
same rate, the instructions consume more energy when cold. Hence, MOUSE will run out of energy
and have to power off more frequently. Temperature has a varying level of impact on each MTJ
technology. Modern STT has a 33.3% higher latency and Projected STT has 28.5% higher latency
at cold temperature, across all benchmarks. SHE is less effected by temperature because write
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(a) Modern STT (b) Projected STT

(c) SHE

Figure 4.4: Latency (µs) vs. Power Source (W) for each MOUSE configuration and SONIC [120].
MOUSE at hot temperature is shown in Red/Filled shapes and at cold temperature is shown in
Blue/empty shapes.

and logic operations use the SHE channel, which is not only more energy efficient but less affected
by temperature. SHE has an 8.6% higher latency across all benchmarks at cold temperature.

Independent of temperature, SHE is the most energy efficient. Because of this it drains the
capacitor less often, and hence has fewer power outages leading to the overall lowest latency.
Projected STT has a lower latency than Modern STT, as it can operate at higher frequency (11ns
per instruction vs. 33ns) and it is more energy efficient.

MOUSE spends negligible amounts of energy while powered off. Hence, the energy consump-
tion is nearly independent of the power supply. The vast majority of the energy is dedicated to
normal program execution. A small portion is dedicated to overhead for intermittent execution,
which will vary depending on the number of interruptions (which is determined by energy efficiency
and the capacitor size). The total energy is plotted in Figure 4.5(b) for Modern STT; in Figure 4.6(b)
for Projected STT; and in Figure 4.7(b) for SHE; assuming a 60µW power source.

There are metrics specific to beyond edge devices which indicate how efficient the checkpointing
strategy is [312]. In addition to the total energy, we report the Backup energy, Dead energy, and
the Restore energy. Backup refers to any actions required prior to shutdown to save the state. For
more traditional architectures, this involves writing data back to non-volatile memory. For MOUSE,
the only backup operations are saving the PC, flipping the parity bit, and writing values into the
CBR (to indicate which columns are active). MOUSE does the first two on every instruction, and
the second only AC instructions. Dead refers to any computation that must be re-performed after
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(a) Latency (b) Energy

Figure 4.5: Latency/Energy Breakdown: Modern STT.

(a) Latency (b) Energy

Figure 4.6: Latency/Energy Breakdown: Projected STT.

restart (which was lost due to the shutdown). For MOUSE, this is at most re-performing the very
last instruction. Restart is any actions required to put the device back into operating condition after
a shutdown. For MOUSE, this is the re-activation of columns with an AC instruction.

Backup has no associated latency, as MOUSE’s backup operations are overlapped with normal
program execution. However, we do report Dead latency, which is the time it takes to re-perform
the last instruction, and the Restore latency, which is the time it takes to re-activate columns. To
remain efficient, the Backup, Restore, and Dead latency and energy should be low.

Overhead for Backup, Restore, and Dead are reported in Figure 4.5 for Modern STT; in Figure
4.6, for Projected STT; and in Figure 4.7, for SHE. Note that the y-axis is log scale. The total energy
encapsulates all energy used for computation, as well as Backup, Restore, and Dead energy. Also
note the total latency is provided for all architectures in Figure 4.4 – where the breakdown figures
capture the data for the 60µW power source.

The overheads for Backup, Dead, and Restore increase with cold temperature. This is for
two reasons. The first is that the actions required for each will cost more energy due to the MTJ
characteristics. For exampling, writing the PC value or re-performing the last instruction will involve
MTJ operations, which will take more energy at cold temperatures. The second reason is that
the overall lower energy efficiency at cold temperatures leads to more power outages. At cold
temperature, across all benchmarks and technologies, MOUSE restarts 24.4% more often than at
hot temperatures. This increases the number of instructions that need to be re-performed and the
number of times architectural state variables will be saved.

Modern STT is the least energy efficient, which means it must restart the most. Because of this
it has the largest relative Dead energy. At the extremely low power of 60µW, on average, across
all benchmarks, Dead energy is 0.98% (1.09%) of the total energy at hot (cold) temperature. The
projected MTJs have lower overhead, where Dead energy (on average) becomes 0.796% (0.804%)
of the energy for Projected STT and 0.194% (0.323) of the total for SHE at hot (cold) temperatures.
Dead latency, on the other hand, is 0.068% (0.084%) of the total for Modern STT, 0.040% (0.050%)
of the total for Projected STT, and 0.020% (0.020%) of the total for SHE with hot (cold) temperatures.
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(a) Latency (b) Energy

Figure 4.7: Latency/Energy Breakdown: SHE.

Restore is only 0.013% (0.016%) of the latency and 0.066% (0.069%) of the energy for Modern
STT; 0.008% (0.010%) of the latency and 0.048% (0.049%) of the energy for Projected STT; and
0.0037% (0.0040%)of the latency and 0.0436% (0.0436%) of the energy for SHE with hot (cold)
temperatures. As Restore latency and energy is due to peripheral circuitry, SHE has no advantage
over STT for an individual restart. However, SHE still requires fewer restart operations due to its
overall increased energy efficiency. Backup energy is, on average across all benchmarks, 0.304%
(0.337%) for Modern STT; 0.350% (0.340%) for Projected STT; and 0.009% (0.009%) for SHE.
Backup has no associated latency as it is performed at the same time as each instruction on
every cycle. Overall the Backup, Dead, and Restore overheads increase only modestly at cold
temperatures. Hence, the checkpointing mechanisms remain efficient across the wide temperature
range and MOUSE is suitable for use as an intermittent accelerator in the harsh environments of
LEO.

Restore and Dead latency and energy are all zero for the case of a continuously powered
system. This is because there are no power outages and, hence, never a need to restart the
system or re-perform any potentially unfinished instructions.

CMOS hardening decreases efficiency due the peripheral circuitry consuming more energy.
The overhead varies across benchmarks and technologies, but tends to be higher at lower power
(due to requiring more restarts, which incurs re-activation of the peripheral circuitry) and higher
temperature (due to peripheral circuitry having a larger percentage share of the total energy). At
60µW, the lowest power tested, CMOS hardening increases energy consumption by 26.9% on
average (44.8% at worst) in cold and by 32.3% on average (49.2% at worst) at hot temperature.

4.8 Conclusion

In this paper we improve the hardware efficiency and programmability of MOUSE [298], a non-
volatile processing-in-memory (PIM) accelerator for beyond edge computing to to enable orbital de-
ployment. Specifically, we expand the PIM instruction set and add architectural support for branch
instructions for enhanced programmability. We develop more efficient mechanisms for column acti-
vation, reducing the complexity of the peripheral circuitry. We show that MTJ devices and support-
ing CMOS circuitry operate correctly across a wide temperature range. Even accounting for the
overhead to maintain resilience against radiation, this advanced architecture features high perfor-
mance and extreme energy efficiency. Combined with the guarantee for intermittent safe operation
and inherent low-cost checkpointing mechanisms, the final result is a design well suited for use as
a nanosatellite in low earth orbit.



Chapter 5

Towards Homomorphic Inference
Beyond the Edge

5.1 Introduction

Devices are now being built which can operate without batteries or other constant power sources
[120]. This allows these devices to be deployed in a wide variety of environments, where traditional
power sources are typically unavailable. Such environments are referred to as beyond the edge,
and can reside inside the structures of buildings [242], in the remote wilderness [120], in outer
space [226], inside the human body [134], or simply scattered throughout a city. The extreme
deployment capability opens up many new applications.

A significant limitation of these devices, however, is the very strict power budget. Available power
sources range from less than 1µW from RF energy [180, 394, 279], to 60µW from thermal energy
harvesters [239, 180], up to 100mW per square centimeter from solar panels [81, 73, 129, 166, 180].
Depending on the specific deployment location, devices could be limited to only the weakest power
sources. For example, if embedded within the walls of a building, a device will have no access to
sunlight and will have to rely on either RF or thermal energy. Hence, beyond edge devices have to
operate effectively while consuming minimal power. Energy efficiency determines the performance
[120], as typically most time is spent waiting for sufficient energy.

A potential solution to this power limitation is to perform the computation in a remote server,
rather than on the device itself. Beyond edge devices can collect sensor data and then send
it to a server to be processed, rather than performing computation locally. This can provide a
benefit if intense processing is required. This approach can even make use of un-trusted servers
by leveraging homomorphic encryption, where the device can encrypt data and the untrusted server
can process it without decrypting [368].

Unfortunately, even the this data transmission itself can be excessively costly for beyond edge
devices. If the server is a few kilometers away, the cost can be as much as 400µJ per bit [40]. Even
sending a minimal amount of unencrypted data can consume unreasonable amounts of energy. For
example a single sample of the MNIST data set [199] would consume 2.5 J. The situation is much
worse or encrypted data, where, for most practical purposes, the smallest homomorphic encryption
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configuration will consume approximately 400,000 bits [321]. In this case, transmission would cost
160 J, well beyond what is practically obtainable by beyond edge devices.

However, the severe limitation of transmission cost can be dramatically decreased by reducing
the distance. Within tens of meters Bluetooth Low Energy (BLE) can consume as little as 158 pJ

per bit [303]. Hence, offloading computation remains feasible if the server is nearby.
However, it is clearly impossible to deploy a typical server (eg. a cloud computing data center)

within tens of meters of all beyond edge devices. Hence, to enable secure beyond edge computing,
an entirely different type of server will be required. has previously been noted that beyond edge
devices can operate as fleets, where large collections of individual devices act together to solve
a single problem [86]. We leverage this idea, and note that different beyond edge devices will
have different power budgets. Hence, different classes of beyond edge devices can be specifically
engineered for different tasks. In this work, we propose a beyond edge accelerator which can act as
a local “mini-server”. It is designed to operate in an environment with relatively higher power, such
as on the rooftop where sunlight can be collected (milliWatt power budget). Using this (relatively)
large power budget, it can perform computational work for nearby beyond edge devices which are
more power constrained. For example, a device located within the walls of a building and operating
under an extremely low power budget will be able to offload its computation to the mini-server
with low-distance, low-power communication. While the mini-server will have significantly reduced
performance relative to a standard cloud-based server, it has extreme deployment capabilities,
allowing it to exist close to other beyond edge devices.

While the proposed mini-server can be considered a trusted device, it does still introduce se-
curity concerns. Being deployed beyond edge, in potentially insecure environments, the device
itself may be compromised or stolen. Hence, unencrypted data transmitted to or stored on the
mini-server (such as machine learning models) is vulnerable. In order to maintain security, the
mini-server must work with encrypted data. Hence, it must perform homomorphic computation,
which allows data to remain completely encrypted. Unfortunately, this introduces a significant chal-
lenge, as homomorphic computation is orders of magnitude slower and more energy costly than
standard computation. In this chapter we investigate how to avoid much of this overhead with two
approaches.

First, we perform only linear operations on the mini-server, such as multiplication and addition,
which have a much lower homomorphic overhead (leaving the few remaining non-linear operations
to be performed on the original device). If most required operations are linear, such as in support
vector machine (SVM) inference used in this work, this process remains efficient. Second, we
are able to keep the computational depth low, which minimizes the amount of noise. This allows
us to avoid the process of bootstrapping, which is the most costly component of homomorphic
computation. Despite these advantages, homomorphic computation remains highly energy costly.
Consequently, the mini-server must be extremely energy efficient in order to compensate.

An additional challenge of beyond edge deployment is that the mini-server must also be able
to tolerate power outages. Checkpointing and guaranteeing correctness has significant overhead
for energy efficiency and complexity [225]. We design the mini-server to make use of non-volatile
processing-in-memory (PIM), which not only provides high energy efficiency, but inherent resilience
to interruptions and low-cost checkpointing mechanisms [298].
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Figure 5.1: The FLY can transmit data to nearby RAT to offload computation. Final destination of
results is the distant TURTLE.

5.2 Problem Statement and Definitions

In this section we cover the basic scenario covered and the assumptions made about the problem.
We assume that there are three types of devices in play: the FLY (in the wall), the RAT (on the roof),
and the remote TURTLE.

The TURTLE is a distant and secure server in a secure environment with no power restrictions.
It is the control center and is the intended destination for all results of interest.

The FLY is a beyond edge device running on harvested energy. It acquires data with sensors,
with the intention of reporting interesting results back to the TURTLE. The FLY is in an concealed
environment, where the device itself is secure. For example, it may be embedded within the walls
of a building at the time of construction, where it can monitor vibrations and act as a warning
mechanism for structural integrity. Hence, it can operate on secure (un-encrypted) data. Due to its
environment, it is limited to RF or thermal energy, which is in the microwatt range [180]. Hence, it
must operate under a very low power budget.

The RAT (“mini-server”) also operates beyond the edge and relies on harvested energy. How-
ever, it is deployed in a less concealed environment, such as on the roof of the same building. An
advantage of this location is that is has access to a higher power budget. During daylight hours it
can harvest sunlight, which can provide a power budget of tens of milliwatts [180]. However, due
to being exposed, RAT cannot be fully trusted. Data stored on RAT, such as propriety machine
learning models, is vulnerable. Homomorphic encryption and computing overcomes this obstacle
by allowing data to remain encrypted at all times [43, 102], covered in Section 5.3.1.

The relative placements of the devices are shown in Figure 5.1. TURTLE is dFT meters from
FLY, and it takes EFT µJ per bit to transmit from FLY to TURTLE. RAT is dFR meters away from FLY
and it takes EFR µJ per bit to transmit from FLY to RAT. In this scenario, dFT >> dFR because RAT
can be deployed into similar environments as FLY. Hence, FLY can much more easily communicate
with RAT than with TURTLE.

If the FLY wishes to report back to the TURTLE, it has 3 options.

(1) Send all sensor readings to the distant TURTLE. TURTLE will be in charge of all computation.

(2) Perform processing (inference) locally and only send TURTLE the meaningful results.

(3) Offload processing (inference) to the nearby RAT and then only send the meaningful results
to TURTLE.
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Option 1 is the simplest, however, it is also typically inefficient. Communication has a higher
energy cost per bit than computation. Meaningful sensor data (capturing relevant information) is
rare, hence transmitting all data is wasteful [120]. Assume that (non-homomorphic) inference on
FLY takes EF µJ and the probability that a sample contains results of interest is α. Then, performing
inference locally is more efficient if

EF + α× EFT < EFT (5.1)

This equation almost always holds as long distance communication (beyond 3km) with low-
power long-range (LoRa) hardware is relatively energy costly, consuming up to 400µJ per bit [40].
For example, sending data samples (such as an MNIST image sample[199]) would consumeEFT =

2.5 J per sample. Alternatively, the energy required for local inference (with standard beyond edge
hardware) is in the range of EF =27mJ [120]. In this case, local inference will be more efficient if
α < 98.9%. Given results of interest are relatively rare, this is likely to be the case.

Option 3 replaces local inference (consuming EF µJ) on FLY with

(1) (Optional) Encoding and encrypting sensor data (consuming Eencrypt)

(2) Transmitting data to RAT

(3) Homomorphic inference on RAT (consuming ER)

(4) Transmission of results back to FLY (consuming ERF )

(5) Decrypting results on FLY (consuming Edecrypt)

For option 3 to be superior to option 2, the following equation must hold:

Eencrypt + EFR + ERF + Edecrypt < EF (5.2)

In words, it must be more efficient for FLY to transmit to RAT and receive the results than it is to
process the data itself. If the input data collected by FLY is considered sensitive, FLY must encrypt
the data before transmission, in order to maintain security in un-trusted environments. Eencrypt

and Edecrypt can be done with 0.06mJ (using the same parameters as this paper) with specialized
hardware for homomorphic encryption on edge devices [368]. If the inputs are not sensitive, then
they can be sent as raw data and Eencrypt can be dropped from Equation 5.2. However, RAT will
still return encrypted data in order to protect its ML model, hence Edecrypt is still required. Due
to the close proximity of FLY and RAT (in the order of meters), communication cost is significantly
reduced. Technologies such as Bluetooth Low Energy (BLE) can be used, with some configurations
offering as little as 158 pJ per bit [303]. At such efficiency, (un)encrypted data can be sent to RAT
(EFR) and encrypted results can be transmitted from RAT to FLY (ERF ) with less than (1µJ) 80µJ.
Hence, BLE can provide communication which will cost FLY less energy than local processing. FLY
will require both BLE (for communication with RAT) and LoRa (for communication with the distant
TURTLE).

The other condition required for option 3 to be viable is that the homomorphic computation
energy on RAT (ER) must be reasonable. While operating beyond edge, RAT has a higher energy
budget than FLY. However, homomorphic computing has a very large overhead that can easily
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become excessive. RAT must be sufficiently efficient in order to return results to FLY promptly. For
RAT to provide any benefit, the following equation must hold:

EFR

PF
+
ER

PR
+
ERF

PR
<
EF

PF
(5.3)

where PF is the power available to FLY and PR is the power available to RAT. In words, RAT must
have sufficient efficiency to homomorphically compute and return data within its power budget faster
than FLY can non-homomorphically compute within its power budget. In this paper, we design RAT
to perform such computations within a reasonable energy budget.

5.3 Background

5.3.1 Homomorphic Computing

Homomorphic encryption allows computation to occur on encrypted data, typically with a significant
time and energy overhead [43, 102]. However, some operations are more efficient than others. For
example, linear operations tend to have the least overhead. The vast majority of the operations per-
formed in SVMs are linear multiplications and additions, explained in Section 5.3.2. We choose to
perform only these linear operations on RAT, leaving the final, non-linear operations to be performed
after decryption on FLY.

We use the BFV scheme [43, 102], which provides integer arithmetic and is available on both
Microsoft SEAL [321] and PALISADE [280]. First, a vector of data is encoded into a plaintext,
which is a set of coefficients for a polynomial. Then, the plaintext is encrypted into a ciphertext.
The length of the input vector is equal to the number of coefficients in both the plaintext and cipher-
text (also called the degree of polynomial modulus). The length of the vector sets a noise budget,
where larger vectors have larger noise budgets. All homomorphic computations consume some of
the noise budget, and if the budget is exceeded, the data can no longer be successfully decrypted.
Testing with Microsoft SEAL [321], we found 4,096 was the minimum vector size that could suc-
cessfully complete the SVM computations. The coefficient modulus is the maximum value of the
ciphertext coefficients, which is represented in a residue number system consisting of three 36-bit
prime numbers. A ciphertext consists of two such polynomials. Hence, the total memory required
by our ciphertexts is

2× 3× 36× 4096 = 110KB (5.4)

Homomorphic addition is relatively straightforward, consisting of element-wise additions of the
vectors involved. Modulus operations must be performed routinely to prevent the coefficients from
growing excessively large. Given that the coefficient modulus is known ahead of time, modulus can
be implemented with efficient (virtual) shift, add, and subtract operations in the memory [259].

Homomorphic multiplication is significantly more complicated and consists of multiple steps.
The primary components are the number theoretic transform (NTT), which is an integer variant of
the FFT, and scales and base conversions [359]. We follow the computation steps laid out by Özerk
et. al. [273] for NTT and by Al Badawi et. al. [10] for all other steps.
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5.3.2 Support Vector Machines

Support vector machines (SVM) are popular machine learning (ML) algorithms which perform well
on small problems. The advantages of SVMs are a strong theoretical foundation and proven per-
formance on a wide variety of problems [267]. SVMs are trained by inspecting input samples to a
problem, where samples which are indicative of each classification are identified. After training is
complete, these samples are referred to as support vectors, and are used to compare to new inputs.
The new inputs are classified based on how similar they are to support vectors from each class.
By construction, a standard SVM model produces a binary classification, producing a classification
of ±1. We use a simple extension to enable multi-class classification, where a separate SVM is
trained to identify each class (the one-versus-all method [94]). For example, to classify MNIST, 10
SVMs are used where each identifies one digit 0-9.

A specific advantage for SVMs is that they consist mostly of linear operations, which can be
implemented relatively efficiently in homomorphic computing. This provides an advantage over
neural networks, for which sophisticated strategies must be invoked to reduce the overhead of
frequent non-linear operations [292, 58]. SVM inference involves finding the dot product of the
input sample with each of the support vectors. This involves purely multiplications and additions. At
the very end, the dot products are squared (multiplication by self), summed, and finally compared,
which represents a non-linear operation. While complete SVM training and inference has been
successfully demonstrated using homomorphic operations [275], we opt to perform only the initial
multiplication and summations on RAT. We leave the final squaring and sum to be performed on FLY.
This prevents us from exceeding the computational depth allowed by our homomorphic encryption
(without performing bootstrapping) and avoids the high overhead incurred by the final sum (which
requires highly expensive rotation operations to sum elements in the same ciphertext [292]).

5.3.3 (Digital) Computing with Magnetic Tunnel Junctions

Magnetic Tunnel Junctions (MTJ) are resisistive memory devices consisting of two magnetic layers,
a free layer and a fixed layer. The polarity of the free layer can change but the fixed cannot. When
the magnetic layers are (not) aligned, the MTJ is in the parallel RP (anti-parallel RAP ) state and
has a low (high) resistance. Passing a sufficient amount of current (Iswitch) through the MTJ from
the free (fixed) layer to the fixed (free) layer will set the MTJ into the RP (RAP ) state.

Logic can be performed with MTJs via thresholding [62, 222], where input MTJs (in parallel) are
in series with an output MTJ, as shown in Figure 6.1. For example, a NAND can be peformed by
presetting the output MTJ to logic 0 (RP ). A (gate-specific) voltage is applied such that electrons
flow from the inputs to the output. If both input MTJs are logic 1 (RAP , high resistance) the current
through the output will be less than Iswitch, and it will remain 0. However, if either input MTJ is
logic 0 (RP , low resistance) the current will be greater than Iswitch and the output will switch to
1. In a nutshell, under the fixed gate-specific voltage the current through the output changes as a
function of the input states, and only incurs switching (a change in the output state from the preset)
according to the truth table of the corresponding gate. Different logic operations, including NOT,
AND, and (N)OR can be performed in identical fashion, with different output preset values and
gate-specific voltages, respectively.
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Figure 5.2: Circuit for logic with MTJs. Input MTJs (in parallel) are connected in series with an output
MTJ. A gate-specific voltage applied across Vin and Vout drives a current which will switch the output
MTJ depending on the state of the input MTJs, following the truth table of the corresponding gate.
Fixed (free) layer of MTJ is shown in light (dark).

Figure 5.3: RAT architecture containing non-volatile computation arrays and instruction memory
along with volatile circuitry for driving operations. Only the first column of computation arrays has
sense amplifiers, allowing the peripheral circuitry to both read and write from them. Data transfer
for all other computation arrays occurs with logic operations. As proposed by Gupta et. al.[140]
transistors between neighboring arrays enables them to participate in the same logic operation.

5.4 Architecture Design

RAT must perform homomorphic computation while both remaining within a low power budget and
being resilient to intermittent operation. We design an accelerator using a non-volatile processing-
in-memory (PIM) substrate which is shown to be both highly energy efficient and inherently inter-
mittent resistant [298]. We augment the PIM capability with simple, intermittent safe protocols and
hardware for reception, transmission, and encoding. The architecture is shown in Figure 5.3. First,
in Section 5.4.1 we describe the hardware contained within RAT, then in Section 5.4.2 we cover
how different system components interact with each other, and tolerate intermittent operation.

5.4.1 Hardware

Computation Arrays

The primary component of RAT are arrays of MTJ devices used for computation. We call these
computation arrays. These arrays both hold data and perform all homomorphic computation on
it. The array architecture and cell design is shown in Figure 5.4, which uses two transistors. This
architecture allows for the logic operations discussed in Section 5.3.3 to occur in either the rows or
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Figure 5.4: The 2T-1M cross-bar array architecture. Logic operations can be driven in memory by
applying voltages either along bitlines (BL) or wordlines (WL). The access transistors, activated by
the signal column activate (CA) and row activate (RA), remove sneak paths.

(a) Row Logic (b) Column Logic

Figure 5.5: Computation arrays can perform row logic or column logic. Inputs are in green/light and
outputs are in blue/dark.

columns of the memory array by applying voltages along the bitlines (BL) or the wordlines (WL).
The access transistors, controlled by row activate (RA) and column activate (CA), remove potential
sneak paths from the array. An example of row-logic is shown in Figure 5.6, where voltages Vin
and Vout are applied to the bitlines, implementing the logic circuit shown in Figure 6.1. Many
logic operations can be performed in parallel in each row (column) simultaneously, as long as the
inputs and output reside in the same columns (rows) as shown in Figure 6.3. Having both row-
and column-wise logic allows data to be moved efficiently within each array, removing the need for
energy costly read and write operations. This computational capability is equivalent to digital cross-
bar arrays [348, 32], but without the sneak paths which waste energy and introduce correctness
concerns [206]. In row- (column-) logic, for each operation the column (row) addresses of the
input(s) and output must be specified, along with which rows (columns) are participating in the
operation. When rows or columns are performing computation we refer to them as active.

Using two transistors per cell significantly increases the area per cell from 0.0012µm2 [254]
to 0.038 15µm2 [400]. However, two transistors are essential for removing cross-bar sneak paths
[207], which would significantly increase energy consumption. As energy efficiency is paramount
for beyond edge devices [121], this cost in area is necessary. Due to the very large amount of data
required by homomorphic computing, the area overhead for computation arrays can become sub-
stantial. For the smallest benchmark, ADULT, the computation arrays consume 6.72mm2. For the
largest benchmark, MNIST, the area is 377mm2. For reference, the TI-MSP430FR5994, commonly
used as a sub-component of beyond edge systems [120], consumes roughly 100mm2.

As described in Section 5.3.1, we use ciphertexts with 4,096 elements. Hence, it is ideal to
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Figure 5.6: Voltages Vin and Vout are applied to the bitlines to drive logic operations. Row Activate
(RA) and Column Activate (CA) set on which rows and columns the operations occur. Shown is a
row-logic operation, which implements the same functionality as the circuit shown in Figure 6.1.

have 4,096 rows in order to store all elements and enable parallel element-wise homomorphic
multiplications and additions. However, due to parasitic bitline/rowline resistance and capacitance,
arrays are limited to 1024x1024 [400]. Hence, we use 16 rows of computation arrays, where each
array is 512x512. Similar to Gupta et. al. [140], a row of transistors are used to conditionally
connect to the bitlines of neighboring computation arrays. This allows logic operations to transfer
bits between the neighboring arrays.

Each row of the computation arrays must store all required data for its given computation. The
most space intensive subroutine of the homomorphic SVM is the initial multiplication, which can
be between two ciphertexts or between a ciphertext and a plaintext. A single element of each
polynomial is assigned to each row. Hence, each row requires 2 × 2 × 3 × 36 = 432 bits for the
ciphertexts, 36 bits for twiddle factors for NTT operations [273], plus additional bits for temporary
workspace. This easily fits within two columns of computation arrays (1024 bits). However, a third
column of computation arrays is required to store additional twiddle factors required for different
stages of the NTT algorithm. In total, log2(4096) = 12 twiddle factors are required in each row.

Since logic operations can be used to transfer data within and between computation arrays, only
the cells which store the final results (which are sent to the Bluetooth transmitter) need to be read.
Hence, the vast majority of the computation arrays do not require sense amplifiers. As shown in
Figure 5.3, only the first column of computation arrays contain sense amplifiers, which allows them
to be used as a non-volatile buffer for the BLE transmitter/receiver and the encoder. Hence, input
and output is passed through the first column on computation arrays.

In addition to the memory data, computation arrays must also maintain which rows or columns
are currently active. For this purpose, we could use two dedicated non-volatile registers in each
computation array - with as many bits in the registers as there are rows and columns in the compu-
tation array. Such registers can act as a bitmask for logic operations. However, rather than creating
an additional hardware register, we can embed the registers into the memory itself, by dedicating a
single row and column for each register. This allows registers to be written with standard logic and
write operations. Dedicated instructions use the registers to activate the peripheral circuitry. For
correctness guarantees which will be discussed in Section 5.4.2, two copies of the registers are
required for both rows and columns, as shown in Figure 5.7.

Drivers and Instruction Memory

Signals must be sent into the computation arrays to perform logic gates. For every operation in
each array, we need to specify which logic gate is being performed (what voltage to apply) and the
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Figure 5.7: Two rows and columns of each computation array is dedicated to hold bitmasks for the
active rows and columns. Standard logic and write operations can set the bitmask and dedicated
instructions apply the bitmask to the peripheral circuitry. Two bitmasks are required for each in order
to prevent corruption when modifying the bitmask. Parity bits, row parity (rp) and column parity (cp)
indicate which bitmask is valid.

addresses of the input(s) and the output. Just as in prior work [298], the input and output addresses
are specified with each instruction. Additionally, as noted in the previous paragraph, we must known
which rows (or columns) are currently active. The currently active rows (or columns) are specified
by the bitmask column and row within each computation array.

As each array could perform computation independently, many different gates, inputs, and out-
puts may need to be specified simultaneously. To efficiently distribute these signals, computation
arrays are grouped into columns. Computation arrays in the same column act as a single unit
and are driven by the same control signals. For each column of computation arrays, there is an
associated driver and non-volatile instruction memory buffer.

The instruction memory arrays store the operations that each column of computation arrays is
to perform (NOT, (N)AND, (N)OR) along with the row/column indices of the input(s) and the output
of every operation. Each instruction requires the following information.

i. Opcode specifying the logic operation (3 bits)

ii. Up to three addresses for input(s) and output (12 bits each)

iii. Whether it is a row or column operation (1 bit)

To be specific, a driver is a CMOS circuitry that initiates the logic within the computation ar-
rays. On command from the controller, each driver reads an instruction from the specified address
and decodes it. Then it sends the input and output addresses to the row/column decoders and
drives the appropriate voltage along the bit/row lines of the computation arrays. All drivers operate
synchronously, executing the instructions at the same address (specified by the controller) in their
corresponding instruction memories.

Encoder

RAT operates on encrypted data in order to keep the ML model secure (encrypted at all times).
If the input is also considered sensitive, it should be encrypted on FLY (into a ciphertext) prior to
transmission to RAT, in which case RAT can immediately begin processing and does not require an
encoder. However, if the inputs are not considered sensitive, it will be more efficient to transmit the
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Figure 5.8: RAT follows a simple state transition diagram. The controller is responsible for main-
taining architectural state variables and ensuring correctness of state transitions. RAT has efficient
checkpointing mechanisms in the compute phase, where it spends the vast majority of the time,
due to ideal properties of MTJ devices.

raw data. In which case the input, once transmitted to RAT, must be encoded (into a plaintext) in
order to properly interact with the encrypted ML model. Homomorphic encoders for edge devices
have previously been developed [368]. We assume RAT contains such a hardware chip for this
purpose.

Receiver and Transmitter

RAT uses Bluetooth Low Power (BLE) to communicate with the nearby FLY. BLE devices can offer
extremely energy efficient communication at short distances [332, 124, 175, 341, 215]. We assume
a configuration that enables particularly low power, down to 158 pJ per bit [303]. BLE will allow
communication within a few tens of meters.

Controller

The controller comprises CMOS circuitry which orchestrates the operation of RAT. It does not di-
rectly orchestrate the operation of the other components, rather it simply turns them off or on, and
triggers their operation. It maintains a status register (SR), program counter (PC), activates the
BLE transmitter/receiver and encoder, and sends trigger signals to the drivers to perform logic in
the computation arrays.

5.4.2 Operating Semantics

Now that we have described the hardware components of RAT, we describe how they work to-
gether and how they tolerate intermittency. The state transition diagram is shown in Figure 5.8.
RAT has efficient and fine-grain checkpointing mechanisms in the computation phase, due to the
inherent resilience of non-volatile MTJ based memory to power interruptions. RAT has less efficient
checkpointing mechanism in the other phases, where more progress will be lost in the event of a
restart.
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Data Reception and Transmission (I/O)

Due to intermittent power, RAT cannot rely on continuous communication. To avoid complexity, we
chose for RAT to operate under a simple protocol. When RAT is not busy (there is no input being
processed), it is open to new input. RAT will wait for new input from FLY. After fully receiving input
data, RAT enters the encoding phase and will no longer check for or acknowledge new inputs. Only
once computation is complete will RAT re-activate BLE in order to transmit outputs.

When receiving inputs, the data is stored into a dedicated non-volatile buffer, as shown in Figure
5.3. The size of the input data is set, so RAT will know the number of packets it needs to receive.
There is a dedicated region of memory for each packet, and there is a valid bit for each packet.
RAT will set all valid bits to 0 prior to reception. The valid bit for each packet is set strictly after the
packet has been written into memory. If RAT looses power after the packet is written but prior to
setting of the valid bit, the packet is considered invalid and will need to be re-transmitted . Once
all valid bits are set (all packets have been received), RAT will set a completed bit, which acts as a
signal to RAT’s controller to move to the next stage.

During reception and transmission, no other components of RAT are in use. The controller will
stall all operation until data transfer is complete.

Encoding

RAT uses specialized hardware accelerators for encoding [368]. To make the encoding process
intermittent safe, we require it to be atomic. It reads input from the dedicated non-volatile buffer,
performs encoding in full, and then writes output into the first column of computation arrays, shown
in Figure 5.3. Due to being atomic, if it is interrupted at any stage it restarts from the beginning.
This guarantees correctness on restart, as none of the inputs have been overwritten, however it can
waste energy. There is significant room for optimization (i.e., adding efficient checkpointing mech-
anisms for the encoder), however, we do not focus on the encoder in this work. The vast majority
of time and energy is spent on homomorphic computation, where we optimize the checkpointing
process.

Since the data is written directly into the computation arrays, it will be ready immediately for
processing once encoding has completed. Computation arrays can transfer the data where it is
required via logic operations during the computation stage.

Computation

Computation takes the most time and energy, therefore it is critical to make it resilient to intermittent
operation and energy efficient. Prior work has demonstrated that in-memory logic performed with
MTJs is inherently intermittent safe [298]. We exploit this same property to enable high frequency
and light-weight checkpointing during computation. However, unlike prior work, we do not need
to maintain standard memory functionality. This enables us to remove much energy-inefficient
hardware, including most of the sense amplifiers.

During computation, the controller will broadcast the PC value to all drivers. Each driver reads
the corresponding instruction in its instruction memory, decodes it, then drives the appropriate sig-
nals to the computation arrays in the same column. A sufficient amount of time is allotted between
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broadcasts of the PC value such that every instruction is guaranteed to have completed. This
process repeats until the program has finished or RAT runs out of power.

Write and logic operations with MTJs [222, 62, 399] remain correct when interrupted or per-
formed multiple times [298]. This means that if the driver triggers a logic operation in the computa-
tion arrays, it can be interrupted

i. Before the operation begins

ii. In the middle of the operation

iii. After the operation has finished

and correctness will be maintained. The same logic operation (instruction) can be triggered again,
and the output will be as if no interruption had occurred [298]. Hence, a single instruction repre-
sents an idempotent operation. This means that, after RAT has restarted, the controller can safely
send the same PC value to the drivers and the instruction will be performed (or re-performed) and
produce the correct output.

Due to this inherent resilience, correctness of data in the memory is easy to guarantee as long
as we progress in program order by only a single instruction at a time. This means we need to
checkpoint after every instruction, and not start the next instruction until the previous has been
completed. Such frequent checkpointing may be inefficient for more traditional architectures [180,
219], however RAT can do this with ease. As the computation is occurring in (non-volatile) memory,
all data backup happens automatically. All results are permanently stored after every instruction,
regardless of the checkpointing strategy. Hence, RAT can perform frequent checkpointing with low
overhead by simply tracking architectural state variables in the controller. For computation, the
controller only needs to keep track of the valid PC value.

As noted in Section 5.4.1, which rows or columns are active is part of the architectural state.
A single row and column from each computation array is dedicated to hold the bitmask for active
columns and rows. Hence, the active rows and columns are protected by the same mechanism
as all other data in memory. Being non-volatile, the bitmasks persist through power interruptions.
However, the peripheral circuitry will need to be re-activated on restart. Dedicated instructions,
activate rows and activate columns, restore the peripheral circuitry based on the bitmask values.
These instructions are issued whenever the bitmask changes, the instructions switch between row-
wise or column-wise, and on re-start.

An advantage of storing the active row/column bitmasks in the computation arrays themselves
is that they can be set with standard write and logic operations. A disadvantage is that it introduces
potential incorrectness. If a row- (column-) parallel instruction modifies the row (column) bitmask,
the instruction relies on the current value of the bitmask. If this operation gets interrupted prior
to completion of the instruction, some of the values in the bitmask may have changed. When the
instruction is re-performed on startup, the modified value of the bitmask will be used instead. Our
solution is to duplicate the bitmasks and maintain parity bits, row parity (RP) and column parity
(CP), which indicate which bitmask is valid. Hence, two columns and two rows are dedicated
for bitmasks. Instructions are only allowed to modify the currently invalid bitmask, leaving the
currently valid bitmask unperturbed. After the invalid bitmask has been successfully modified, the
corresponding parity bit can be flipped and the rows or columns re-activated.
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Controller

RAT’s controller is responsible for maintaining the state transitions depicted in Figure 5.8 and it
holds the architectural state variables required for driving computation. It maintains a status register
(SR), which indicates whether RAT is in the reception, encoding, computing, or transmission state.
Additionally, it maintains the program counter (PC) which is sent to the drivers to initiate instructions
during the computation state.

Given the relatively little information the controller must maintain, simple checkpointing strate-
gies are sufficient. Both the SR and the PC are duplicated and have an ancillary non-volatile parity
bit. The parity bit indicates which copy is valid, and it is flipped strictly after each variable is updated.
Hence, a currently valid copy of either the SR and PC is never written to, which prevents potential
corruption due to an interrupted write operation. Setting the parity bit is an atomic operation, the
non-volatile MTJ holding the bit will either be successfully flipped or will remain in its old value (if
interrupted during the write operation). If RAT restarts without flipping the parity bit, the old value of
the SR and PC will be used. As explained below, this will waste energy but not introduce incorrect-
ness. If RAT restarts after flipping the parity bit, effectively all progress has been saved and RAT
will start where it left off. To ensure correctness of these mechanisms, RAT performs the states
and instructions sequentially and strictly in order. There is no overlap of instructions, states of the
controller, or updates of the architectural state variables.

During the transmission and reception phases, the controller hands control over to the BLE
transmitter/receiver. An efficient protocol for intermittent safe transmission/reception is beyond the
scope of this work – see Section 5.6 for a discussion. However, we note that strategies for noisy
transmission with large amounts of packet loss [16] could likely be adapted for handling intermit-
tency. RAT’s controller will hand over control and the simply wait for the completed signal, in which
case it will transition to the next phase. If interrupted prior to the arrival of the complete signal,
RAT will again hand control over to the transmitter/receiver on restart. In the worst case, an entire
data packet will need to be re-transmitted or received. Additionally, if transmission/reception have
completed, but the completion signal was not sent prior to shut down, the controller will have to
re-check the signal before progressing to the next stage.

The encoding process follows a similar strategy. During the encoding processes there are no
checkpoints. Introducing checkpoints can guard against progress loss on restart, however, for this
work we assume the encoding process must not be interrupted. Hence, if there is a restart in the
encoding state, the controller will instruct the encoder to start from the beginning.

RAT has efficient and finely-grained checkpointing mechanisms in the compute phase. Due to
the ideal properties of MTJ based memory arrays discussed in Section 5.4.1, RAT can easily check-
point after every instruction [298]. The controller sends the instruction address to the drivers, which
load the instruction and trigger it in the computation arrays. The controller waits a sufficiently long
time to guarantee the completion of the instruction, after which it updates the PC and commits the
instruction by flipping the non-volatile parity bit. As this checkpoint occurs after each instruction, at
most one instruction needs to be re-performed in the case of a power outage. The logic operations
performed in the memory are inherently idempotent [298], (meaning that they can be performed
multiple times) and will produce the same result. Hence, the instruction can be interrupted at any
stage in its progressing and we can safely restart it when the power is restored.
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Table 5.1: SVM benchmarks used in this work and parameters used in RAT. The number of support
vectors does not impact latency and energy as they are padded to 4096. For comparison, the
accuracy of full-precision SVMs from libSVM [57] with unlimited support vectors is reported.

Benchmark Input Bit Dimension (D) # Support RAT LIBsvm
Precision Vectors Accuracy Accuracy [57]

MNIST 3 784 3841 93.85% 98.05%
HAR 3 561 2466 94.64% 94.1%

ADULT 3 14 596 76.00% 78.62%

5.5 Evaluation

We evaluate RAT performing one homomorphic SVM inference to assess the feasiblity. We can
then compare the net impact on FLY, to see if the presence of RAT provides an improvement
in performance. We analyze the scenario where inputs are not sensitive, however, the machine
learning models that process them are proprietary, and are therefore sensitive. This means that
FLY can transmit non-encrypted sensor data to RAT, however RAT must perform homomorphic
inference and return encrypted results to keep the model secure.

For benchmarks, we use MNIST [199], Human Activity Recognition [14, 360], and ADULT [188].
These datasets are representative of the input sizes that will be expected for beyond edge devices.
When performing homomorphic inference, the data size is determined by D, the dimension of the
input sample sizes, and N , the length of our homomorphic ciphertexts. The D individual elements
from each sample must be in separate ciphertexts, as each element must be summed together
(elements within the same ciphertext cannot be added without expensive rotation operations [292]).
As described in Section 5.3.1, our ciphertexts are fixed atN = 4096. The number of support vectors
required for each benchmark fill the 4096 element ciphertexts, with the remaining elements padded
with dummy data. Hence, regardless of the number of support vectors, each benchmark uses 4096
element ciphertexts. MNIST contains 784 elements (representing a 28× 28 image), HAR contains
561 elements, and ADULT contains 14 elements. For all benchmarks, we normalized the input to
fit within 3-bit integers (values 0-7). This lowers transmission cost and prevents arithmetic overflow
during computation. We use customized SVM models which use only integer arithmetic and limited
the number of support vectors to 4096. Despite these limitations, we were still able to achieve
reasonable accuracy relative to full-precision SVMs provided by libSVM [57], which we accessed
through R [288] with the ‘e1071’ package [249]. The SVM parameters and accuracies are listed in
Table 5.1. Using integers allows us to use the BFV homomorphic scheme for integer arithmetic [43,
102], which has a lower overhead. We validated that homomorphic operation produces identical
output by using Microsoft SEAL [321] to perform the multiplications and additions within the SVM.

MTJ based memory technology is already commercially available [1, 2], however, the devices
are expected to significantly improve over the next few years. Hence, we evaluate RAT with two
different MTJs models. A modern model, which uses parameters of MTJs which have already been
demonstrated, and a projected model, which estimates MTJ performance within 3-5 years. These
parameters are listed in Table 7.1.

We model the energy harvester as a constant power source, which fills a 1mF capacitor (energy
buffer) on the chip. In practice, tunable energy buffering systems such as Capybara [72] can be
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Table 5.2: Parameters for MTJ devices.
Parameter Modern Projected

RP 3.15 kΩ 7.34 kΩ
RAP 7.34 kΩ 76.39 kΩ

Switching Time 3 ns [307, 268] 1 ns [399, 167]
Switching Current 40µA [307] 3µA [399]

used. The power source increases the voltage on the capacitor up to a specified value, at which
point RAT turns on and consumes energy until the minimum voltage on the capacitor is reached.
RAT then shuts down and waits for the capacitor to recharge. We assume that RAT has access
to sunlight, which can provide a relatively large amount of power for beyond edge devices. We
test from 2mW (0.02 cm2 solar panel [180]) up to 100mW (1 cm2 solar panel [180]). It is desirable
to match the voltage level on the capacitor to the MTJ technology used. Projected MTJs have a
lower operating voltage and power draw than modern MTJs. For modern MTJs, the voltage fluc-
tuates between 400mV and 700mV and for projected MTJs the voltage fluctuates between 100mV

and 575mV. As noted in Section 5.3.3, different logic operations require different voltages. We
use switched-capacitor converters for upconversion and downconversion to provide all required
voltages [173, 289, 148].

We generate latency and energy estimates of RAT with an in house simulator which accounts
for the overhead due to MTJs (as listed in Tabe 7.1) and peripheral circuitry, which we extrapolate
from NVSIM [90]. NVSIM gives us the relative share of latency and energy that peripheral circuitry
will consume for non-volatile memories with the same size as our computation arrays. We clock
RAT at 30.3MHz with modern MTJs and at 90.9MHz with projected MTJs. This gives more than
sufficient time for the controller to broadcast the PC and for the drivers to finish logic operations
in the memory. This clock rate is conservative, which leaves potential performance improvements
on the table. However, since the performance of beyond edge devices will be limited by energy
efficiency rather than performance [120, 121] ensuring completion of all instructions far outweighs
any potential performance gains.

As discussed in Section 5.4.2, the logic operations in the memory are inherently resilient to
interruption and we can checkpoint after every instruction with low overhead [298]. However, the
reception, transmission, and encoding process do not have this benefit. For transmission and
reception, we assume that a power interruption results in the re-transmission or reception of a
single element of data. Elements transmitted prior would have been saved in non-volatile memory.
For encoding, we assume that the entire encoding process must be restarted if interrupted. If
interrupted once, RAT will re-attempt on restart. At this point, the capacitor will be fully charged
and RAT will have sufficient energy to complete the process. For transmission cost, we assume
158 pJ/bit [303] and for encoding we take latency and energy directly from Van der Hagen et. al.
[368] who developed an encoder/encryptor which operates on ciphertexts of the same size as in
this work – 0.3ms and 60µJ.

The latency of one inference (including transmission and encoding) is shown in Figure 5.9 for
modern MTJs and in Figure 5.10 for projected MTJs. Due to high energy cost of homomorphic
computation, the latency is quite high and increases dramatically as the power source reduces. For
RAT to still demonstrate improvement, the latency on RAT must be less than the latency of local
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Table 5.3: As described in Section 5.2, a beyond edge device can (1) Report all results to a remote
server, (2) Perform processing locally, or (3) Offload computation to the nearby RAT. If FLY has
the energy efficiency of the beyond-edge device SONIC [120] and is operating on a reasonable
60µW (which can be harvested with thermal energy [180, 239]), options (1) and (2) result in the
reported latencies. The energy per bit for transmission to the distant server is assumed to be 400µJ
[40]. Also shown is the power required by RAT to achieve the fastest solution with option (3). Due
to being more exposed, RAT should have access to tens of milliWatts of power [180]. *Results
extrapolated.

Option 1: Option 2: Option 3:
Remote Server Local Processing RAT

Benchmark Latency (s) Latency (s) Minimum power for RAT to
= EFT /PF = EF /PF provide fastest solution (mW)

MNIST 15,680 450 3.36
HAR 11,220 208 4.28

ADULT 280 8.03* 11.29

processing on FLY and transmitting to a high-power distance server. For local processing, FLY can
perform non-homomorphic inference, since FLY is in a secure location and can use non-encrypted
ML models. SONIC [120], a beyond edge ML accelerator, requires 27mJ to perform MNIST and
12.5mJ to perform HAR. If FLY is operating on thermal energy (due to its deployment within the
walls of a building, e.g.), we can assume that its power budget is roughly 60µW [180, 239]. If FLY
is as efficient as SONIC, it will take 450 s to complete MNIST, 208 s to complete HAR, and 8.03 s to
complete ADULT. Hence, we can see that RAT can provide a faster solution than local processing
on MNIST/HAR/ADULT if its power budget is 3.36mW/4.28mW/11.29mW, even with modern MTJs.
For sending data to a distant server, the cost of transmission is approximately 400µJ per bit. To
acquire enough energy to transmit inputs to the server, FLY will take 15,680 seconds for MNIST,
11,220 seconds for HAR, and 280 seconds for ADULT – much higher than the alternatives. These
results are summarized in Table 5.3.

Consistent with prior work [120, 298], latency is mostly determined by energy efficiency as
the device is energy constrained. Consequently, projected MTJs, which are much more energy
efficient, enable a significantly reduced latency. Due to the significant overhead of homomorphic
computation, despite our lack of bootstrapping, RAT requires a substantial power budget to remain
within reasonable latency constraints. Due to the efficiency of our checkpointing mechanisms,
energy consumption is determined mostly by the length of the program, rather than the number of
interruptions. The absolute energy consumption of SVM inference on RAT (evaluated at 2mW) is
listed in Table 5.4. To evaluate the efficiency of RAT relative to prior work, we compare polynomial
multiplication (the core of homomorphic multiplication and the most energy intensive component
of our benchmarks) with an X86 CPU, FPGA implementation [260], and a processing-in-memory
solution, CryptoPim [259]. The comparison is listed in Table 5.5. As expected, RAT provides
a significant advantage over the CPU and provides a better (yet comparable) efficiency to the
FPGA and CryptoPim. It should be noted that both the FPGA and CryptoPim are optimized for
performance, rather than energy efficiency. However, energy efficiency is the most important metric
in the beyond edge domain [121], largely because performance is limited by energy efficiency [120].
Additionally, neither the FPGA or CryptoPim have been designed to guarantee correctness during
intermittency. Adding tolerance to intermittent operation will come with a performance and efficiency
overhead.

The impact of intermittent operation can be evaluated by examining the dead, restore, and
backup overheads, for both latency and energy [312]. Dead refers to latency and energy dedicated
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Figure 5.9: Latency of homomorphic SVM inference with modern MTJs using different power
sources.

Figure 5.10: Latency of homomorphic SVM inference with projected MTJs using different power
sources.

Table 5.4: Energy consumption of homomorphic SVM inference on RAT for different benchmarks.
Benchmark Energy (µJ)

MNIST 1,188,716
HAR 851,282

ADULT 31,736

Table 5.5: Energy consumption of polynomial multiplication (developed by Nejatollahi et. al [260])
on RAT and related work. N is the polynomial size and b is the bitwidth.

Architecture (N,b) Energy (µJ)
X86 (1K,16) [259] 2483.77
X86 (4K,32) [259] 10864.64

FPGA (1K,16) [260] 12.52
CryptoPIM (1K,16) [259] 11.04
CryptoPIM (4K,32) [259] 178.62

RAT (1K,16) 9.68
RAT (4K,32) 54.65



CHAPTER 5. TOWARDS HOMOMORPHIC INFERENCE BEYOND THE EDGE 78

(a) Modern MTJs

(b) Projected MTJs

Figure 5.11: Latency overhead for correctness during intermittent operation.

to re-performing operations after restart which were already performed before shutdown. This
accounts for wasted operations – which completed but the results of which cannot be used. For
RAT, this comes from re-performing that last in-memory instruction, re-transmitting or receiving a
packet of data, and re-encoding input. Restore refers to overhead associated with restarting the
device, getting it back into working order after a power outage. For RAT, this is the re-activation
of rows and columns of the memory arrays. Backup is any operation performed in order to save
state prior to shutdown. This typically involves saving the architectural state and storing volatile
data to non-volatile memory. As RAT performs all computation in the memory, data backup occurs
automatically. Hence, the only backup cost for RAT is saving the architectural state, setting the SR,
PC, and parity bit. The latency overhead for each of these is shown in Figure 5.11 and the energy
overhead is shown in Figure 5.12. The shown overheads are evaluated at 20mW, the lowest
power considered, which results in the maximum number of restarts, and therefore, the maximum
overhead.

Overheads for projected MTJs are less because RAT will have to restart less often due to their
greater energy efficiency. Dead energy involves re-performing instructions (which typically involve
performing many parallel logic operations). Overall, projected MTJs are much more efficient than
modern MTJs. Dead energy is 0.2889% of the total for modern MTJs and 0.0040% for projected
MTJs. The restore energy is also much lower for projected MTJs, as it is also incurred by only
restarts where the peripheral circuitry needs to be reset. Restore energy is 0.0185% of the total
for modern MTJs and 0.0002% of the total for projected MTJs. As it involves only updates to
architectural state variables, the backup energy tends to be much lower. The backup energy is
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(a) Modern MTJs

(b) Projected MTJs

Figure 5.12: Energy overhead for correctness during intermittent operation.

0.0187% of the total for modern MTJs and 0.0147% of the total for projected MTJs. Backup energy
is incurred on every instruction, so it is not largely impacted by the number of restarts.

Backup has no associated additional latency as it occurs during the execution of each instruc-
tion. The dead and restore latency are functions of the number of restarts. Dead (restore) latency
is 0.0006716% (0.0001209%) of the total compute latency for modern MTJs. For projected MTJs
the dead (restore) latency is a negligible 0.0000028% (0.0000006%).

5.6 Limitations and Potential Improvements

In this section we discuss the limitations of RAT and potential improvements. While relevant, these
extensions are beyond the scope of this paper or are left for future work.

5.6.1 Communication Protocol

In this work we use a simplified communication scheme, where FLY and RAT transfer data back
and forth. There are a number of complicating factors which can disrupt proper operation. FLY
may begin transmission but then loose power for an extended period of time. In this case, RAT
would remain in reception mode, spending its entire time waiting for input that does not come. RAT
should contain some method of cancelling a reception and revert to an idle and available mode.
While a variant of watchdog timer can be deployed to this end, data transfers during intermittent
operation pose a considerable challenge. Additionally, if RAT goes without power for an extended
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period of time, it may work on input which is old and no longer relevant. Keeping beyond edge
devices working on relevant tasks across time is an important problem [344].

5.6.2 Communication Energy and Deployment

Communication between FLY and RAT will only be efficient if they can be deployed in close prox-
imity. Bluetooth Low Energy (BLE) only allows for communication within tens of meters. At further
distances, they must resort to long-range (LoRa) technology [40], which can undo the benefit RAT
provides.

5.6.3 Power Limitations

Homomorphic computation, even without bootstrapping, remains an energy costly process. Even
with the efficient computation enabled by RAT, collecting enough energy beyond edge remains a
challenge. Even simple computations will take a long time, which may be insufficient for a number
of applications. Additionally, as solar power is the only power source which reaches the required
levels, devices such as RAT would struggle to function at night. Further methods to increase energy
efficiency may be necessary for practical implementation. A possible solution is implementing fleets
of beyond edge devices [85, 86]. As such, each individual device could compute slowly, but a high
throughput could be achieved with their combined effort.

5.7 Related Work

Power delivery is particularly challenging for beyond edge devices. Tunable systems like Capybara
[72] have been designed to optimally store and deliver energy. We assume RAT relies on such a
system.

Many low power processors and ML accelerators exist [324, 216, 75, 379, 172, 403, 366], how-
ever, these architectures do not guarantee correctness during intermittent operation. Adding such
guarantees adds a large performance and efficiency overhead. Numerous beyond edge devices
have been designed to function correctly in intermittent contexts [219, 231], including ML accel-
erators [120]. These devices have more traditional architectures, which have been augmented
with nearby non-volatile memory for fast backup operations. Much research has been dedicated
to tolerating intermittency for more general purpose architectures, including lowering checkpoint-
ing overheads and clever methods of detecting power outages [68, 305, 113, 290, 67, 232, 156,
369, 157, 22, 170, 15, 21, 31, 218, 228] along with modifications of software [233, 227]. RAT’s
advantage over these designs is significantly more energy efficient in-memory logic and simplified
checkpointing mechanisms.

Resch et. al. [298] have proposed an in-memory intermittent safe accelerator. However, the
architecture maintains standard memory format, which adds unnecessary space and energy over-
head, and is capable only of 1D computations (only along rows or only along columns). In contrast,
RAT’s architecture is capable of 2D computations (similar to a crossbar, along rows and columns,
but digital) and is tightly tailored to homomorphic SVM inference. Mapping homomorphic inference
onto [298] would incur a large communication (read/write) overhead due to the required intra-array
data movement. ResiRCA [287] uses in-memory computation to accelerate parts of ML inference
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and adapts the amount of parallelism to match the amount of harvested energy. However, they rely
on a battery to maintain a controlling CPU.

Significantly, none of the prior work mentioned thus far has accelerated homomorphic inference,
which is necessary to maintain security in un-trusted environments. To the best of the author’s
knowledge, no beyond edge homomorphic accelerator exists. However, much prior work has been
done on accelerating homomorphic computation with continuous power. This includes software
optimization [292], FPGA implementations [260, 359] and processing-in-memory implementations
like CryptoPim [259]. CryptoPim developed strategies to minimize latency and energy overhead for
NTT operations, the core of homomorphic multiplication. While CryptoPim is not designed to handle
intermittent operation, we do use strategies they developed, such as efficient modulus operations,
in our work.

Efficient encoding and encryption is required to make homomorphic computation feasible in
edge or beyond edge domains. Van Der Hagen et. al. [368] developed energy efficient accelerators
to this end.

5.8 Conclusion

Beyond edge devices operate on harvested energy, significantly increasing deployment capabilities
and widening the potential applications. However, these devices are by construction extremely lim-
ited by the power available. In this paper we propose a beyond edge, intermittent safe accelerator
which can compute homomorphically, and which can be used as a local server to offload computa-
tion. The deployment capability of this accelerator can significantly reduce the communication cost
for other beyond edge devices to offload computation. The accelerator is capable of maintaining
security by performing homomorphic computation and its unique architecture enables this to be
done within a reasonable power budget.



Chapter 6

On Endurance of Processing in
(Nonvolatile) Memory

6.1 Introduction

The performance of modern computing systems is limited by the performance of the memory. This
is because CPU performance has increased more rapidly than the performance of memory for
the past few decades [152]. This limitation is referred to as the memory wall, and it has created
the search for new architectures which do not suffer from this problem. A promising candidate is
processing-in-memory (PIM) which can perform computation directly in memory. PIM architectures
can enhance both performance and energy efficiency of numerous emerging applications signifi-
cantly [325]. Non-volatile PIM architectures are of particular interest due to their extreme energy
efficiency [210, 195, 62] and high density [301, 399].

Unfortunately, nonvolatile memory (NVM) devices suffer from a low endurance. The devices can
only be written a certain number of times before failing. The endurance varies significantly between
technologies, but all are at risk of pre-mature failure which would render them impractical. Hence,
there has been much research into performing load-balancing (i.e., evenly distributing write opera-
tions across NV memory cells), when being used for standard memory purposes [146]. However,
PIM significantly changes the access patterns and drastically increases the number of write oper-
ations. For example, an in-memory multiplication can result in over 150 × more write operations
than it would in a standard architecture. Hence, strategies which are sufficient for NVM have to be
revisited for nonvolatile PIM (NVPIM).

In this work, we investigate the write operation cost of PIM applications and estimate the cor-
responding expected lifetime of PIM arrays. We test basic strategies to mitigate this problem and
show their effectiveness. Our findings suggest that NVPIM will still be significantly limited by en-
durance, emphasizing the need for progress at the technology level.

82
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6.2 Background

In this section we cover NV devices used for PIM, how logic operations are performed in memory,
and how we can synthesize complex computations using these logic operations.

6.2.1 Nonvolatile Devices

In this paper, we consider nonvolatile memories which hold their state in their resistance. The state
of a device can be determined by applying a voltage and sensing the current that flows through
it, which constitutes a read. The specifics for changing the state, i.e., the write operation, varies
between technologies. We will next briefly cover most promising representatives.

Magnetic RAM (MRAM) is based on Magnetic Tunnel Junctions (MTJs) which have two mag-
netic layers, a fixed layer and a free layer. If the layers are aligned, the MTJ has low resistance
(parallel state); if not aligned; high resistance (anti-parallel state). The state can be changed by
driving a current of sufficiently high magnitude through the MTJ, where the direction of the current
determines the state. When electrons flow from the free (fixed) layer to the fixed (free) layer, the
MTJ is put into the anti-parallel (parallel) state. The main advantages of MTJs are relatively high
density and high endurance with respect to other nonvolatile technologies. Specifically, when it
comes to endurance, MTJs can switch as many as 1012 times [251, 330] until permanent failure.
A disadvantage of MTJs is that the resistance difference in the anti-parallel and parallel states is
relatively low, which makes them more sensitive to noise such as voltage fluctuations.

Resistive RAM (RRAM) consists of a metal-insulator-metal stack [136]. Applying a voltage
differential causes the formation of a conductive filament, creating a low resistance state. Apply
a voltage differential in the opposite direction removes this filament and creates a high resistance
state [12]. RRAM has more than 2 possible states, as it can take on a range of resistance values
between the two extremes. However, it is common in practice to use only the highest and lowest
resistance states to reduce noise. An advantage of RRAM is the high ratio between the high and low
resistance states, reducing sensitivity to noise. However, a major drawback is limited endurance,
with approximately 108 writes possible before failure [347].

Phase-Change Memory (PCM) has a state based on the structure of the atoms within the chan-
nel for electric current [387]. The write operation involves heating up the device by passing an
electrical current through it. Quickly reducing the current causes the device to cool rapidly into an
amorphous state, which has high resistance. Cooling the device slowly allows it to form a more uni-
form structure, which has low resistance. PCM also suffers from a very limited endurance, currently
ranging from 106 - 109 writes before failure [179].

6.2.2 PIM Architectures

PIM architectures modify traditional memory hardware to enable logic operations to occur either
within or very near the memory. In this work, we consider architectures which perform Boolean (dig-
ital) logic directly in memory1, where the input and output bits of every operation are memory cells in

1In contrast to analog architectures which are specialized accelerators, and typically do not maintain standard memory
operation.
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the array. Such architectures maintain the basic memory hardware and operating semantics, allow-
ing them to replace standard memory structures with little modification to the overall architecture.
Additionally, hardware modification to the memory array itself is relatively modest. Typical solu-
tions involve adding additional bitlines [301, 298], row-decoders which support multi-row activation
[210, 325], or extra transistors in each cell [62, 399]. These architectures have demonstrated high
performance and energy efficiency both for use in traditional computing systems [210, 325, 301]
and in embedded systems [298, 300] for commercially relevant applications, including machine
learning inference.

Regardless of the specific approach, the operations on the memory devices themselves are
nearly identical. Current is passed through one or two input memory devices, and a single output
memory device is written to. As this paper discusses the endurance of PIM architectures, we can
abstract out the specific cell design. In the remainder of this section, we discuss PIM operating
semantics accordingly.

Basic Logic Operations (Gates)

PIM architectures enable logic at the bit level in the memory. Basic logic operations –such as NOT,
(N)AND, or (N)OR)– take one or two memory bit cells as input, compute the output, and store the
result in another bit cell, which is typically in the same row or column as the input bit(s). Depending
on the architecture, this can be done with or without the involvement of sense amplifiers. For
architectures using sense amplifiers [210], the procedure is:

1. Read multiple input cells simultaneously.

2. To calculate the output according to the underlying truth table, perform thresholding using the
sense amplifier.

3. Write back the result to the designated output cell.

For architectures which do not use sense amplifiers [301], the procedure is:

1. Apply a voltage differential on the bitlines connecting the inputs and outputs.

2. Current travels through the inputs to outputs, conditionally switching the output according to
the truth table of the operation being performed.

Both approaches are shown in Fig. 6.1, for column based computations without loss of generality.
Regardless of the approach, the input cells effectively go through read operations and the output
cell goes through a write operation. If the possible logic operations form a universal set, any com-
putation can be carried out in the respective row or column, limited by the number of memory cells
available.

More Complex Logic Operations

In traditional architectures, an arithmetic logic unit (ALU) can be used to perform complex logic
operations relatively quickly. For example, addition and multiplication can be performed within a
few cycles of the system clock. In contrast, PIM architectures require a series of logic gates to
perform such operations.



CHAPTER 6. ON ENDURANCE OF PROCESSING IN (NONVOLATILE) MEMORY 85

(a) With SA (b) W/o
SA

Figure 6.1: Column based PIM logic approaches. Input are shown in green; the output, in red
respectively.

Figure 6.2: Full-Adder circuit and equivalent in-memory implementation.

The operation must be decomposed into a set of gates the architecture is capable of (e.g., NOT,
AND, NAND). Each of these gates must then be scheduled within the array. When processing
within a single column (or row), only a single logic gate can be performed at a time due to structural
hazards – the hardware used to perform logic is shared by all cells in the column (or row). Hence,
even if gates are logically independent (i.e., no data hazard applies) they must still be performed
sequentially2. For example, a full-adder can be implemented with 9 NAND gates, taking 9 time
steps, as shown in Fig. 6.2. Hence, optimizing both the latency and energy of a PIM computation
(within a single row or column) involves finding the decomposition which requires the fewest logic
gates in time and space.

b-bit addition can be done with a ripple-carry adder with b − 1 full-adds and 1 half-add. Note
that, while it is slow in traditional digital circuitry, a ripple-carry adder is optimal for PIM as it uses
the fewest gates (which must be performed sequentially). A DADDA multiplier [358], on the other
hand, can perform b bit multiplication with b2 − 2b full-adds, b half-adds, and b2 AND gates.

While specifics vary across architectures, our discussion so far covers much prior and state of
the art work, as listed in Table 6.1. Here we list each design with the original memory technology
used, but for most of these architectures, different memory technologies (MRAM, RRAM, PCM) can
be exchanged for one another and the basic operating principles would remain the same.

2There are PIM architectures that are exceptions to this [140], however, they require additional transistors which signifi-
cantly increase complexity.
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Name Parallelism Memory Technology
Pinatubo [210] Column PCM
MAGIC [195] Row and Column RRAM
MAGIC [223] Column MTJ

Felix [140] Row and Column RRAM
CRAM 2T [62, 399] Row MTJ

CRAM 1T [301, 298, 65, 300] Column MTJ
CRAM [63, 401, 150] Row SOT-MTJ

Table 6.1: Architectures which perform logic gates in memory and follow the operation principle
considered in this paper.

(a) Row-Parallel (b) Column-Parallel

Figure 6.3: Parallel two-input logic gates in row- and column-parallel architectures. Inputs shown in
green (light) and the output in blue (dark).

Parallelism

The sequential nature of logic operations described in Section 6.2.2 leads to a high latency for any
single operation. However, it is compensated for by high degrees of parallelism. PIM architectures
are capable of much higher degrees of parallelism than other architectures, including GPUs. Po-
tentially as many operations as the number of rows (or columns) within an array can be performed
at the same time. This is because while a row- (column-) parallel PIM architecture can only perform
one operation in each row (column) at a time, the same operation can be performed in many rows
(columns) simultaneously. Whether parallelism comes from the rows or the columns depends on
the architecture, both kinds are shown in Fig. 6.3. Within a single array of a row- (column-) parallel
architecture, operations can be performed at the same time if:

1. They are the very same logic operation.

2. The input(s) and the output are in the same columns (rows).

For example, a common memory array dimension is 512×512, which would allow for 512 parallel
operations. Additionally, PIM architectures allow for array level parallelism, as independent logic
operations can be performed in different arrays. Hence, the limiting factor for PIM performance at
scale is the number of arrays, the energy efficiency of the operations, and the overhead for any
communication between arrays.

Row-parallel and column-parallel architectures are logically equivalent, except that in row- (column-
) parallel architectures the logic operations run in parallel with (perpendicular to) the read and write
operations. While these differences can largely be accounted for with different data layout optimiza-
tions, row- and column-parallel architectures place different constraints on the possible optimiza-
tions.

In the following, we will use the word lane to refer to the collection of cells (either in a row or a
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Figure 6.4: Cells within a lane of a PIM array are dedicated to inputs (A, B), outputs (C), and
temporary workspace for the multiplication of two 3-bit integers.

column) which can work together to perform computation. For column-parallel architectures, a lane
is a single column; and for row-parallel architectures, a single row.

6.3 PIM Data Layout and Operation

In this section we provide an overview of PIM operation, the additional challenges it introduces for
performance in the face of endurance, and potential mitigation strategies.

6.3.1 Data Layout for Computation

Data layout design is a critical task for PIM architectures. It has a significant impact on the latency
and energy of the application and the endurance requirements of the memory devices. Lanes
within a PIM architecture can only compute on values contained within them, thus all data needed
for each computation must be written first. Any data which cannot fit into the lane contributes to
additional communication (read and write) cost.

Typically, a single, primitive operation is mapped onto a single lane. Data is aligned in many
lanes, allowing many independent operations to proceed in parallel. Each lane must then contain
cells dedicated to the following:

1. Input Data

2. Output Data

3. Temporary Workspace

For example, a single integer multiplication, A×B = C can be mapped to each lane as follows.
Initially, space for the bits for A and B are allocated and the corresponding values written into the
lanes. Commonly, one of the operands is static (e.g., the weights of a neural network) and the other
is not (e.g., new inputs to a neural network layer). A number of logic gates are then performed in
order to produce the product (output). These intermediate logic operations require storage for their
outputs and temporary scratch bits. We call this storage the workspace. The minimum size for the
workspace depends on the algorithm. However, when fully consumed, the workspace needx to be
reset (overwritten or re-used) to enable further computation. Once computation is complete, the
product C becomes ready in some set of cells, where they are available to be read out or used in
further computation. This layout is shown in Fig. 6.4.

Effectively, all PIM architectures with the compute capability discussed in Section 6.2.2 follow
this format. Large scale applications, such as convolutional or fully-connected neural networks, are
decomposed into multiplications, additions, and subtractions which are performed within the lanes
of the array. Different applications will result only in different data layouts and transfers between the
computations.
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6.3.2 Large Application Mapping

Embarrassingly parallel operations can easily be mapped onto lanes. A PIM architecture can map
independent operations to each lane, and use all lanes performing the same logic gates on different
data. For example, element-wise multiplication of vectors can be mapped in this way: N -element
vectors can be multiplied with N multiplications performed in N lanes3.

However, many applications are not so easily mapped. For example, an N -element dot-product
initially requires the same N parallel multiplications. But then all products must be added together
to produce the final sum. This requires read and write operations to move bits scattered across
parallel lanes into the very same lanes. This mapping process is the subject of much prior work
[301, 210], and it typically involves complex optimization. A wide range of applications can be
effectively mapped to PIM , and only those which can exploit a high degree of parallelism will be
performant [301].

6.4 Endurance Limitations

While nonvolatile PIM architectures provide high performance and extreme energy efficiency, a
major problem they face is limited endurance. The memory devices used will break down after a
certain number of write operations. While this is a well studied problem for nonvolatile memory, it
has not been addressed for nonvolatile PIM.

PIM architectures have a significantly different access pattern on the memory cells than stan-
dard memory architectures. Hence, they come with different demands on the memory technology.
First, PIM uses many more reads and writes to perform the same computation than a traditional
architecture (featuring separate memory and logic blocks), which taxes the devices much more.
For example, a 32-bit multiplication on a standard architecture would involve reading two 32-bit
numbers, performing the multiplication using an ALU, and then writing a 64-bit (to maintain the full
result) number back to memory. In total, there are 64 cell reads and 64 cell writes. Assuming 1024
NVM cells are available to facilitate this computation, this is an average of 0.0625 reads and writes
per cell. In a PIM architecture, using an in-memory DADDA multiplier [358] as a representative
example, the same multiplication requires 9,824 in-memory gates, which incurs 9,824 cell writes
and 19,616 cell reads. This produces an average of 19.16 reads/cell and 9.59 writes/cell. Hence,
PIM architectures tend to burn through the endurance of NVM much quicker.

An upper limit on the lifetime of a memory array can be quickly calculated. Let us assume that
each memory cell is capable of 1012 writes before failure [251, 330], which is optimistic for MTJs
and well beyond what RRAM can support. A 1024× 1024 array is capable of a total of 10242 × 1012

writes before failure. Using the previous multiplication example, under perfect load balancing the
array can perform a total of:

10242 × 1012

9824
= 1.07× 1014 (6.1)

32-bit multiplications before total failure of all cells. At full utilization, all 1024 columns computing in
parallel, and operating at a reasonable switching time per gate of 3ns [301, 309], total failure (until

3Assuming there is a sufficient number of bits in each lane to complete computation. Practical array sizes (256×256,
512×512, 1024×1024) can easily accommodate multiplication of 64-bit operands.
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(a) Write Count (b) Read Count

Figure 6.5: The read and write operations per cell in a row is heavily imbalanced. Workspace cells
are used many times in order to produce a single result.

every device breaks down) takes:
10242 × 1012

1024× 1
3×10−9

= 3, 072, 000 seconds = 35.56 days (6.2)

Under practical conditions, a small percentage of failed devices will cause incorrect operation,
so effective failure will occur much sooner. Using RRAM endurance of approximately 108 writes,
failure occurs in just over 5 minutes. Hence, physical properties of devices are currently limiting
practical usage. Device properties will undoubtedly improve, and, clearly load balancing strategies
are going to be critical in order to extend lifetime as much as possible.

Standard memory architectures may have an imbalance in reads and writes by writing or reading
some rows more than others. PIM architectures introduce another opportunity for such imbalance
by performing logic gates in some columns more than others. Returning to the 32-bit multiplication
example, we can stick to a constant data layout similar to that shown in Fig. 6.4. This approach
particularly leads to a large imbalance in the usage of each cell within the lane, as shown in Fig.
6.5. Specifically, the cells dedicated to workspace are used much more frequently, resulting in a
significant load imbalance. This imbalance can result in some cells failing significantly sooner than
others. Hence, load balancing is even more critical in maximizing the lifetime in this case.

6.5 Load Balancing

Given that PIM puts higher demand on the endurance of nonvolatile memory, it is essential to
mitigate this problem. In this section, we cover basic load balancing strategies to increase the
lifetime of PIM arrays.

The imbalance of cell usage noted in Section 6.4 will cause some memory cells to fail much
more quickly than others. Load balancing is a well-known strategy to extend the lifetime of non-
volatile memories [146]. Load balancing, which can use either hardware or software, involves
distributing the write operations as evenly as possible to all memory cells. This attempts to prevent
some cells from failing prematurely due to excessive use.

Load balancing strategies can also be applied to PIM. However, balancing the logic operations
is much more critical than balancing the standard memory write operations. Hence, designing
effective load balancing for PIM architectures is inherently a different challenge, and prior strategies
(targeting memory functionality only) will not be effective.

6.5.1 Software Load Balancing

Software load balancing refers to changes made to the program in order to evenly distribute the
write operations. The benefit of software approaches is that they do not require any hardware mod-
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Figure 6.6: Logical to physical mapping of bits via software can arbitrarily remap logic operations.

ifications to the architecture, which can cost extra energy and increase latency for every operation.
Significantly, software strategies have a greater ability to re-distribute write operations by arbitrarily
modifying the program. However, a significant drawback of software approaches is that they require
either knowledge from the programmer or compiler support. Additionally, software strategies may
require periodic re-mapping (re-compilation) in order to be effective, which will consume energy
and latency.

Balancing Logic within Lanes

Fig. 6.5 shows that some cells within a lane are used more often than others in a single computa-
tion. Notably, cells which hold the input and output are used much more frequently than cells that
are used for temporary workspace. If this imbalance of usage persists for long periods of time, the
workspace cells will fail much sooner. Hence, it is desirable to allow cells holding inputs and outputs
to also be used as workspace.

An optimized operation (e.g., multiplication or addition) uses the same number of gates with
the same inputs and outputs each time; it is constant. However, the individual logic gates that
the operation is composed of can have the inputs and the output anywhere within a lane, i.e., the
operations can be re-mapped by modifying their (e.g., row) addresses, while leaving the logical
result unmodified. Hence, the gates can be arbitrarily rearranged to balance writes within the
lanes (e.g., columns). It is conceptually easy to implement fine-grained re-mapping in software
by maintaining a logical to physical mapping for each bit. A program operates on logical bits and
remains constant. However, the logical to physical mapping can be changed periodically, arbitrarily
re-mapping the operations. This process is shown in Fig. 6.6. The logical to physical mapping can
be changed periodically, which can level the write distribution.

Changing the logical to physical mapping at random is highly effective at load balancing. Un-
fortunately, this solution has a significant drawback for row-parallel architectures, where the lane is
orthogonal to the read/write operations. For example, originally, a 32-bit variable may reside in con-
secutive bits in the first 4 bytes of a row (lane). A row parallel architecture can access this variable
in a single cycle with a standard read or write operation. However, re-arranging the logic operations
causes the bits of the variable to be spread out in different bytes across the lane. Hence, many
more bytes may need to be accessed in order to read or write the variable. Additionally, when the
bits are read out of the array, they can be in any permutation. Hence, external hardware must re-
order the bits before being used. Hence, re-ordering bits within the memory array for load balancing
can add complexity to the hardware external to the array. This limitation is not as much of an issue
for column-parallel architectures, where the lane is in parallel with the memory access operations.
Hence, the bits of all variables must be read and written sequentially, regardless of their location.
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Figure 6.7: Re-arranging the bits of an operand within a PIM lane can disrupt memory operations.
For row-parallel architectures, bits of the operand can be read in parallel, but they will be out of
order and potentially in different bytes. Column-parallel architectures must read bits out of the lane
sequentially, hence they are less impacted by such re-arrangement.

Figure 6.8: Representative placement of a 32-bit operand within a lane for different re-mapping
strategies. Mapping takes place at compile time.

Hence, re-ordering does not significantly impact the read/write efficiency of column-parallel archi-
tectures. This property is shown in Fig. 6.7.

A strategy to utilize logical to physical re-mapping, while also maintaining ideal memory access
patterns, is to simply periodically shift the address. To maintain proper read and write operations,
the shift should be by an integer number of bytes (for byte-addressable memory), hence we refer
to this strategy as byte shift.

Re-mapping logical to physical addresses, whether randomized or shifted, has the advantage
of no overhead during execution of the program. However, both require periodic re-compilation in
order to balance load. ByteShift is more friendly towards memory operations, as it maintains the
order and coherency of bits in the memory. The different re-mapping strategies are depicted in Fig.
6.8.

Balancing Logic Between Lanes

Just as with in-lane usage, usage across lanes can vary as well. However, the causes of imbalance
are different. Imbalance in lanes comes from the mapping of individual logic operations, which can
be re-mapped at a fine granularity. In contrast, imbalance between lanes is more a function of the
application, and usage in different lanes cannot be re-mapped at a fine granularity.

Imbalance between lanes typically appears when results from many lanes need to be combined.
For example, an N -element dot-product initially requires N parallel multiplications, which can be
balanced on N lanes. But then all products must be added together to produce the final sum. A
series of memory operations must be performed to move data onto the same lanes, where they
can be combined with addition. Hence, parallelism decreases as the application continues. By
construction, such an application tends to use some lanes more than others. Lanes which perform
the extra additions will wear out sooner.
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Despite differences in the character of the imbalance, it can still be mitigated in software in the
same way the imbalance within the lanes. Bit addresses can be periodically changed over time. A
complete randomization of addresses is likely to produce the most optimal load balancing. However,
a byte shift may be more desirable due to keeping addresses aligned for memory accesses.

6.5.2 Hardware Load Balancing

Hardware based balancing is also possible. In standard nonvolatile memory architectures, hard-
ware based load balancing strategies typically involve estimating write counts and re-directing
memory accesses accordingly [146]. However, such complexity is not feasible to implement at the
level of a single PIM array. The main benefit of nonvolatile PIM is extreme energy efficiency. Hard-
ware dedicated to balancing may easily become the bottleneck if it is not exceedingly lightweight.
Maintaining counters to track writes at the bit-level within the array is unreasonable. Luckily, simple,
albeit less effective, strategies do exist.

Hardware Balancing Within Lanes

We propose that the well-known practice of register renaming in traditional CPU architectures can
be used to perform lightweight hardware load balancing. This process is similar to the software
based logical to physical re-mapping, however it requires logical to physical translation at execution
time. Additionally, it cannot arbitrarily re-map bits.

Hardware re-mapping requires a spare bit which can be used to swap logical addresses. For a
lane with N physical bits, there are N − 1 logical bit addresses and 1 free bit address. re-mapping
can be applied whenever there is a write or a logic operation in all lanes. When a write operation is
performed to bit address A in all lanes, the hardware re-directs the write to the free address, over-
writing its contents. It then marks the free address as A, and sets the previous physical address
of A as the free address. It is necessary that the operation writes to all lanes to fully transfer the
intended contents of A to the new physical address. If not all lanes are in operation, the unmodified
contents of A will be left at the previous address.

For architectures like Pinatubo [210] which perform computation with sense amplifiers, the out-
put memory cell does not need to be preset. Re-mapping can occur entirely in-place. Bit re-
mapping does not require any additional data transfers as the output of an operation is simply
re-directed. Both writes and logic operations can be renamed without complication. However, for
architectures like CRAM [62] which use device thresholding for logic, the output cell needs to be
preset. For this architecture, an additional write operation will be required.

Hardware Balancing Between Lanes

In theory, the same re-mapping scheme could be applied between lanes, as well. However, this may
not be possible depending on the architecture. For row-parallel architectures, memory operations
can access the entire lane (row) at once. This makes lane re-mapping feasible by swapping row
addresses on write operations. However, for column-parallel architectures, memory accesses can
only access 1 bit from each lane at a time. Reading and writing an entire lane requires accessing
each bit sequentially. Since a write operation only overwrites 1 bit in a lane at a time, a lane cannot
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Figure 6.9: Additional COPY gates can be used to arbitrarily shuffle operands and output during
execution. Initially, only A and B contain real data and need to be shuffled. After computation, only
C contains necessary data and needs to be unshuffled. can make A, B, C... smaller to save space

be renamed with a single operation. A brute force approach could be applied, where a logical lane
(column) is copied from one physical column to another over many sequential accesses. However,
this is a complex and time consuming operation, and it not feasible to be implemented in hardware.

6.5.3 Memory Optimized Re-mapping

The load balancing strategies discussed so far will impact memory operations (read and write). It is
possible to re-map computations but return data to the original addresses afterwards. This prevents
any required changes to the read and write patterns. Prior to a computation, the input operands can
be shuffled arbitrarily by performing COPY (or two sequential NOT4 ) gates. Then, the computation
can proceed as normal, only with different column addresses for each gate. After the computation
is finished, COPY gates can again be used to re-order the output to the expected location. This
process is depicted for a multiplication operation in Fig. 6.9.

The significant drawback of this approach, contrary to previously discussed strategies, is that
is requires additional logic gates to implement the shuffling. The relative overhead for this shuf-
fling process depends on the operations being performed in memory. For a bit precision of b bits,
shuffling will require 2 × b COPY gates (or 4 × b NOT gates) to move the two operands to their
new locations. Note that the output and workspace do not need to be physically shuffled as they
do not yet contain data, however, write operations may be required to pre-set them. The number
of gates required to unshuffle the output depends on the output size. For multiplication, if roll-over
is ignored, the output will have the same number of bits as the inputs. However, in some applica-
tions, it is useful to allow the output to expand to a higher bit precision. The is easily supported in
PIM, so we consider that case here. For multiplication, the output has twice as many bits, so 2× b

COPY (or 4 × b NOT) gates will be required to move it back to the original location. In total, this
additional overhead requires 4 × b COPY (or 8 × b NOT) gates. This overhead is small relative to
the number of gates required for computation. A DADDA multiplier [358, 52, 291] requires b2 − 2b

full-adds, b half-adds, and b2 AND gates. Using 2-input logic gates, full-add requires a minimum
of 5 gates and half-adds require 2 gates. Hence, a multiplication requires 6b2 − 8b gates in total,
and the relative overhead (additional number of gates) for shuffling becomes 1/( 32b− 2). For 32-bit
numbers, this equates to an extra 2.17%. The relative overhead for addition is much higher, due to
the significantly lower complexity of the algorithm. Ripple-Carry addition (optimal for PIM) requires
b − 1 full-adds and 1 half-add. The output is 1 bit longer, hence the shuffling cost is 3 ∗ b + 1. The
relative overhead is 1/( 5b−3

3b+1 ). For 32-bit numbers, this equates to an extra overhead of 61.78%.
Overheads for different levels of bit precision are listed in Table 6.2.

4Some PIM architectures do not natively support COPY [298] and will use NOT gates instead.
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Table 6.2: Percentage of extra gates required by randomizing during execution. Overhead corre-
sponds directly to extra latency and energy as all gates must be performed sequentially. Overhead
doubles if using two NOTs instead of COPY.

Dadda Ripple-Carry
Bit Multiplication Addition

Precision Overhead (%) Overhead (%)
4 25 76.47
8 10 67.57
16 4.55 63.64
32 2.17 61.78
64 1.06 60.88

An additional drawback of this approach is that it is requires more complex software support.
It still requires periodic changes to bit addresses. However, these changes cannot be performed
by simply modifying a logical to physical mapping. Additional logic operations must be inserted
into the program to perform the shuffling. This requires modification to the original program and
full re-compilation. In summary, this approach can load balance without perturbing read and write
operations, but it can add a significant logic gate count for some operations and requires more
software support.

6.6 Using PIM Arrays with Failed Cells

Given that nonvolatile cells are subject to failure, it is natural to ask if it is possible to effectively
continue processing despite failed cells, aka graceful degradation. This is a possible solution,
but due to unfortunate hardware and typical software characteristics of PIM computation, this is
challenging to implement in practice.

PIM applications need to exploit parallelism to achieve high performance. This means that most
of the lanes need to be in use simultaneously. PIM architectures require the input cells be in the
same addresses within each lane. Hence, if a single cell fails in a single lane, all cells at the same
address in other lanes cannot be used in parallel with this lane, as shown in Fig. 6.10a. In an N×N
PIM array, there are N2 cells which can fail, but only N cells in each lane. Hence, available space
quickly reduces with failed cells, as shown in Figure 6.10b. The number of available cells quickly
hits a point where multiplication is not possible at all due to insufficient space.

A workaround solution is to divide lanes into different sets, and to only use lanes in the same set
in parallel. This does extend lifetime, by increasing the number of usable cells. However, it comes
at a quickly increasing cost in latency, as different sets must run sequentially. Hence, even a few
cell failures in a PIM array can significantly disrupt operation.

6.7 Evaluation Setup

PIM arrays are used to accelerate computational kernels where parallelism can be exploited. If
located in an embedded device, the device will only function as long as the arrays persist. If located
in a server, the accelerator needs to be replaced once a sufficient number of arrays have failed.
Hence, we need to analyze how long a PIM array can function in order to estimate costs.
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(a) A single cell
failure removes
bits from all lanes

(b) Percentage of bits in lane that can
be used versus percentage of bits in
array that have failed.

Figure 6.10: Failed cells quickly reduce the number of bits available in each lane. A single failed
cell prevents the use of bits in all lanes with the same address.

6.7.1 Benchmarks

To be useful, PIM must be effective on application level computations. Large-scale applications
must be broken down into computations that can be performed within the arrays of the memory.
Memory arrays can process data independently, after which results are read out or combined with
read and write operations.

Our analysis focuses on computations that can be performed within a single array, with the as-
sumption that many such arrays perform similar work in parallel. Without loss of generality, we
use three representative case studies which cover extreme ends of potential computations: 1) Em-
barrassingly parallel multiplications, 2) Neural network (NN) inference, and 3) Vector dot-products.
Embarrassingly parallel multiplication represents an ideal application for PIM. Each column of the
PIM array can operate independently without any intermediate communication. Dot-products, on
the other hand, represent the least ideal case. Results from all active columns must eventually be
combined into a single output, which leads to maximum data communication. NN inference is a
middle ground, where independent computations are too large to map to a single column, but do
not require all columns to compute.

Clearly, we could choose more trivial or more complex computations. However, computations
less complex than multiplication become trivial. Computations more complex than dot-product,
on the other hand, require many more arrays than one, otherwise they are not suitable for PIM.
Applications which do not have large degrees of parallelism or incur a high data communication
traffic perform poorly on PIM architectures.

Embarrassingly Parallel Multiplication

The first benchmark is a simple parallel integer multiplication of 32-bit operands. A single multipli-
cation is performed within each column (lane). There is no communication between lanes, and all
lanes are utilized. Hence, there should be no imbalance between lanes. However, the multiplication
algorithm (DADDA multiplier) may have imbalanced usage within each lane.

Dot-Product

A dot-product of two vectors A and B consists of an element-wise multiplication followed by a
summation. If the vectors each have N elements, the final output can be written as:

C =

N−1∑
i=0

Ai ×Bi (6.3)
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(a) Sequential (b) Parallel

Figure 6.11: Vector dot-product mapped to a PIM array. a) Computation on elements stored in a
single row can only proceed sequentially. b) Computation on elements stored in different rows can
be done in parallel, but requires data transfer to extract the final result.

Figure 6.12: 2-dimensional convolution in a PIM array.
The dot-product can be performed using the multiplication and addition operations described in

Section 6.3.1. Figure 6.11 shows two examples of a dot-product of two-element vectors performed
in memory. Here, A0 is multiplied with B0 and A1 with B1, after which, the results are added. Fig.
6.11a shows a sequential computation within a single row; Fig. 6.11b, a parallel computation spread
over two rows. In the parallel version the multiplications proceed simultaneously in separate rows.
However, this requires an intermediate read and write data transfer to bring the results to the same
row so that they can be added. In general, anN element dot-product having 2×M elements in each
row uses ceiling(N

M ) rows. With large numbers of rows, a large number of reads and writes may be
required to move intermediate results to the same rows. However, the logic operations dominate
the latency, energy, and endurance cost. A single data transfer takes 2 sequential operations
(read/write) and at most 1 read and 1 write per cell in a row. A multiplication takes over 20,000
sequential operations (logic gates) and requires roughly 40 reads and writes per cell (Section 6.4).
Hence, regardless of the specific data layout chosen, the performance of dot-products within the
memory is dominated by the latency and efficiency of the underlying technology’s logic operations.
For our benchmark we use 1024 element vectors with 32-bit operands.

Convolution

Inference applies a filter to a set of input neurons. The filter consists of a set of weights. The
number of weights is typically small relative to the number of input neurons. The filter is “slid” over
the neurons. At each location the weights of the filter are element-wise multiplied with the neurons
they overlap with. The results of these multiplications are then summed together and finally become
subject to some non-linear transformation (such as threshold, sigmoid, or htan). The neurons and
filter can be 1-, 2-, or 3-dimensional. Typically they have the same depth (z dimension), and the
filter is slid over the neurons in the x and y dimensions. Fig. 6.12 covers a 2-dimensional example,
along with the corresponding data placement in a PIM array.

A filter with K rows and L columns requires K × L multiplications. Each multiplication requires
the corresponding input neuron and filter weight. Fig. 6.12 shows all K×L multiplications occurring
on the same lane, hence, each lane contains 4 neurons and 4 weights. However, they may also be
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distributed to multiple lanes. For example, a single multiplication can be performed in each lane. In
which case each lane will have a single neuron and weight. Following the the layout in Fig. 6.12,
the 4 multiplications in each lane proceed sequentially (using the techniques described in Section
6.3.1). All 4 lanes can perform this computation in parallel. After multiplication, the results all reside
within the same lane. Then, the sum can be generated using addition. For typical NNs, the sum
is read out from each row, and external circuitry performs the non-linear transformation. However,
for binary NNs (BNNs) [76], a simple comparison operation (Section 6.3.1) can perform a logical
threshold operation [301], producing the single bit output. In the case where neurons and weights
for a single filter location are placed in separate rows, the results of each multiplication cannot be
directly summed (as they reside in different rows). Read and write operations become inevitable
after the multiplication to move results to a single row.

In summary, regardless of the specific data layout, convolution in a PIM array consists entirely
of multiplications, additions, intermediate reads and writes, and (potentially) a non-linear operation.
For our benchmark, we perform two-dimensional convolution with a 4 × 3 filter on a set of 16 × 16

neurons with 8-bit precision, using a comparison as the non-linear operation. Three multiplications
are performed sequentially and the products are added into a partial sum within each lane. Then
the partial sums from 4 lanes are moved to a single lane to compute the final sum and output.

(a) StxSt (b) RaxSt (c) BsxSt (d) StxRa (e) RaxRa (f) BsxRa (g) StxBs (h) RaxBs (i) BsxBs
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Figure 6.13: Normalized multiplication write distribution heatmaps (1 indicates maximum utilization)
with re-compilation every 100 iterations. Each map captures a different row strategy×column strat-
egy

6.7.2 Parameters

We choose a PIM array size of 1024×1024, which is a typical subarray size used for NVM [90], large
enough to perform non-trivial computations, yet small enough to maintain electrical properties to
feasibly enable PIM [400]. We evaluate a column-parallel architecture as a more realistic hardware
implementation, requiring few modifications to existing NVM designs [210]. We also account for
the overhead for pre-setting the output memory cell of logic operations, as is required by CRAM
architectures [301, 399, 62, 65, 298].

Due to temporally fine-grained hardware based re-mapping, each iteration of a benchmark can
have a different write distribution. Hence, it is necessary to fully simulate a large number of it-
erations. We simulate each benchmark 100,000 times to obtain an estimate of the overall write
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Figure 6.14: Normalized convolution write distribution heatmaps (1 indicates maximum utilization)
with re-compilation every 100 iterations. Each map captures a different row strategy×column strat-
egy.

distribution over time. We find write distributions for all combinations of load balancing strategies.
Specifically, we experiment with two strategies in software, random shuffling of addresses and
byte-shifting of addresses, respectively, which we refer to as Ra and Bs. We also include a static
strategy, St, which excludes any re-mapping. Each of these strategies can be used for either rows
or columns, giving rise to a total of 9 different load balancing configurations (3 row strategies × 3
column strategies). Hardware re-mapping, Hw, on the other hand, as detailed in Section 6.5, is
applied only within the lane (within columns and across rows) and can be turned on or off. Hence,
there is a total of 18 load balancing configurations per benchmark overall.

Software re-mapping can be invoked every time the program is recompiled. Recompiling does
not come for free, hence cannot be performed very frequently. However, more frequent re-mapping
(hence recompilation) is more effective at balancing load. Accordingly we sweep the re-mapping
frequency (i.e., every 10, 100, 1000, and 10000 iterations of the application) to characterize this
trade-off space. Hardware re-mapping, on the other hand, does not incur any recompilation over-
head. In this case we experiment with the most extreme case of re-mapping on every gate that uses
all lanes. For all types of re-mapping, we assume oracular operation, as our focus is finding the
theoretical limit for the benefits of re-mapping5. Otherwise latency and energy efficiency overheads
are architecture specific.

We use write distributions to estimate the lifetime of the PIM array by finding when the first
memory cell fails. We consider this as the failure of the entire array, because at this point the array
can produce incorrect results. Additionally, the analysis in Section 6.6 shows that even a few failed
cells can significantly disrupt operation. The lifetime of the array hence corresponds to:

Lifetime =
Cell Endurance

max(WriteCount)
×Application Latency (6.4)

We assume the same endurance for each cell, which makes our analysis more pessimistic as
the actual endurance is more likely to vary across cells (our approach can be thought of as using the
average endurance for the expected lifetime). Specifically, we base our analysis on MTJs (ReRAM
has a much worse endurance as detailed in Section 6.2) and assume an endurance of 1012 writes
[251, 330]. Application latency is the time it takes to complete each benchmark. We compute

5As we are going to show in Section 7.5, even in their idealized form with no overhead, these techniques cannot be of
much help due to fundamental physical limitations.
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latency by summing the time it takes to do all operations (read, write, and logic). We assume 3ns
per operation [309, 298].

We assume that the PIM array performs each benchmark repeatedly, i.e., as soon as it com-
putes the final results a new set of inputs is loaded and the process repeats. This is indicative
of typical operation, as PIM arrays (whether used in embedded applications or high performance
servers) serve as accelerators for computational kernels. For example, an embedded device which
performs machine learning will likely only offload dot-products (used for matrix-vector multiplication)
or convolution operations to the PIM array. Hence, the PIM array is likely to see many repetitions of
the same computation on different data.

(a) StxSt (b) RnxSt (c) BSxSt (d) StxRn (e) RnxRn (f) BSxRn (g) StxBS (h) RnxBS (i) BSxBS
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(r)
BSxBS+H

Figure 6.15: Dot-product write heatmaps (1 indicates maximum utilization) with re-compilation ev-
ery 100 iterations. Each map captures a different row strategy×column strategy.

(a) Multiplication (b) Convolution (c) Dot-Product

Figure 6.16: Lifetime improvement with each strategy combination, in terms of operations possible
before failure. Strategies include Static (St), Randomized (Ra), and Byte Shift (Bs) in software,
along with remapping in hardware (Hw).

6.8 Evaluation

We start by inspecting the write distributions within the PIM array. The more uniform the write
distribution, the better. Even distributions make better use of all cells, increasing the expected time
to failure. We use heatmaps to visualize write density as shown in Fig. 6.13 for embarrassingly-
parallel multiplication; Fig. 6.14, for convolution; and Fig. 6.15, for dot-product. Results are labeled
by row mapping strategy×column mapping strategy, along with a +Hw if hardware re-mapping
applies. As detailed in Section 6.7, the three options for row mapping strategy and column mapping
strategy are: Static St, Randomized Ra, and ByteShift Bs.
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Table 6.3: Lifetime in days of a 1024 × 1024 PIM array performing each benchmark continuously.
Load balancing significantly improves lifetime, but not to practical levels.

Benchmark Lifetime (Days) Load Balanced
Lifetime (Days)

Multiplication 31.57 39.32
Convolution 31.76 47.93
Dot-Product 30.43 62.63

For multiplication (Fig. 6.13), the inputs are only written once, where workspace cells are used
many times. Hence, there is a large imbalance across rows when the row mapping is static. On the
other hand, as this benchmark uses all columns for computation, there is no imbalance between
columns. Row mapping strategies of randomization (Ra) and byte shift (Bs) are sufficient to sig-
nificantly balance the writes even over rows. Hardware re-mapping (Hw) on top of this produces a
nearly even write distribution.

The convolution benchmark performs 3× 4 convolution, with each neuron-filter product mapped
onto four columns. One of the four columns is used for the final sum. Hence, convolution (Fig. 6.14)
over uses one-fourth of the columns, hence under-utilizes three-fourths of the columns. Convolution
also uses an initial parallel multiplication, and hence also shows an imbalance across rows. Row
re-mapping strategies are generally effective at balancing out the row usage. For columns, byte-
shift (Bs) proves ineffective as highly used columns still overlap when shifted an integer number of
bytes.

Dot-product (Fig. 6.15) heavily uses columns at low addresses, as partial sums are repeatedly
moved to lower addresses to perform the reduction sum. Hence, there is a significant imbalance
across columns. Both randomization (Ra) and byte shifting (Bs) manage to overcome this.

Considering the write distributions, we compute the lifetime of the PIM array with Equation
6.4. Assuming 3ns per operation [309, 301], and and endurance of 1012 writes [251, 330], the
lifetime in days for a PIM array performing each benchmark non-stop is reported in Table 6.3.
Also reported is the maximum lifetime achieved with load balancing strategies. It should be noted
that imbalance impacts lifetime in multiple ways. For example, the large imbalance in dot-product
causes some cells to fail sooner, which reduces lifetime. However, the imbalance also means that
many columns are inactive for a large percentage of the time (dot-product exploits less parallelism
then embarrassingly parallel multiplication, and therefore has fewer writes per unit time). If the pre-
mature failures resulting from imbalance can be removed, dot-product is less demanding on the
PIM array, and hence will last longer.

Lifetime for PIM arrays for all load-balancing strategies relative to no re-mapping (i.e., St×St) is
shown in Fig. 6.16a for multiplication; Fig. 6.16b, for convolution; and Fig. 6.16c, for dot-product.
Notably, dot-product, which has the most imbalance, benefits the most from load balancing. Mul-
tiplication with the least imbalance benefits the least. As multiplication only has imbalance in the
lanes, only strategies which perform in-lane load balancing provide benefit. Specifically, Sta×Ra
and Sta×Bs do not provide any benefit. For convolution, strategies which only re-map rows do
not significantly improve lifetime. This is because the lifetime is limited by the imbalance across
columns.

For software strategies, we found that the frequency of re-compiling does not need to be high.
Over 100,000 total iterations of the benchmarks, we tested re-mapping every 10000, 1000, 500,
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100, 50, and 10 iterations. We found that the expected lifetime saturates at approximately every 50
iterations. Over all the benchmarks and configurations that improved from 50 to 10 iterations, the
improvement was on average only 0.93%. Hence, re-compiling every 50 iterations over 100,000
iterations (after every 0.05% of the total iterations) provides nearly optimal write distributions. As
the PIM array is expected to perform many more than 100,000 iterations, the frequency of re-
compilation can be significantly reduced. For benchmarks that were re-compiled every 0.05% of
the iterations, the expected lifetime was on average 2.59 × 1011 iterations. Hence, re-compilation
on average would only need to be performed approximately every 129,000,000 iterations. This
infrequent re-compilation would incur relatively low overhead.

Unfortunately, despite significant improvements in lifetime due to re-mapping strategies shown
in Fig. 6.16, the limitations imposed by endurance remain, as highlighted in Table 6.3. Even with
aggressive load balancing strategies and optimistic endurance for modern devices, non-volatile PIM
arrays can only be expected to function for approximately 1-2 months. This emphasizes the need
for higher endurance in non-volatile memory devices and motivates device-level research.

6.9 Conclusion

In this work we showed that PIM operation requires many more writes to memory cells than stan-
dard memory operation. Considering realistic endurance of current non-volatile memory technolo-
gies, non-volatile PIM architectures would not function long with typical usage. Load balancing is
the main method by which the lifetime of PIM architectures could be extended. We considered
oracular versions of PIM specific load balancing techniques and found that, while effective, they are
not sufficient to overcome the strict endurance limitations. This highlights the need for device level
research to further increase endurance in order to make non-volatile PIM a reasonable solution.



Chapter 7

A Scalable Cross-Bar Architecture

7.1 Introduction

Due to the increasing performance of CPUs relative to memory over the past decades, the per-
formance of modern architectures is limited by data movement. This is referred to as the memory
wall. This means that, independent of the computing power available, an application’s speed will
be mostly determined by the amount of data it consumes and the bandwidth at which data be
transferred between the CPU and the memory. This is a particularly unfortunate reality, as modern
applications are using ever more data. Scientific applications and machine learning are notorious
for their large memory budgets. Hence, overcoming the memory wall is one of the most critical
challenges facing computing today. The response to the memory wall thus far has mostly come in
the form of diversifying and specializing hardware. Much work has optimized GPUs, FPGAs, and
ASICs for optimal data usage in order maximize performance.

Processing-in-Memory (PIM) architectures are most extreme response to the memory wall, and
circumvent the bottleneck by performing the computation within the memory itself. This completely
removes the need for expensive data transfers between memory and the centralized processing
unit. Numerous PIM architectures exist which can perform basic logic either within the rows or
within the columns of the memory arrays [210, 62]. Most significantly, PIM architectures which use
non-volatile resistive memory elements, such as RRAM [163] or magnetic tunnel junctions (MTJs)
[309], provide high density and energy efficiency. Extremely large numbers of logical operations
(thousands to millions) can be performed in parallel inside the memory arrays, without any data
transfer to compute units.

Unfortunately, and perhaps surprisingly, data movement still remains a significant limitation for
these architectures. While data does not need to be transferred to a central processing unit, it
does need to be transferred within and between the memory arrays. A PIM architecture which is
capable of column (row) logic operations can use logic operations to move data between different
rows (columns), but not between columns (rows). This necessitates intermediate read and write
operations to move data, which introduce complexity and additional energy overhead. This puts a
significant limitation on the scalability of PIM architectures.

Digital1 cross-bar architectures [348, 32, 356] circumvent this limitation by enabling both column
1Digital PIM architectures perform Boolean logic within the array. This is in contrast to analog architectures, which perform
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Figure 7.1: Latency of in-memory matrix-vector multiplication with different data transfer capabili-
ties. Communication becomes the limiting factor for performance.

Figure 7.2: A two-input logic gate performed in an idealized cross-bar by applying voltage on the
bitlines.

and row logic operations. This 2D compute capability allows data to be moved arbitrarily within the
array via logic operations, remaining inside the array at all times. Basic logic gates can be performed
by apply voltages along bitlines or wordlines. An example two-input logic operation in the rows from
voltage applied on the bitlines is shown in Figure 7.2. This reduces communication overhead
by eliminating the need for sense amplifiers and external circuitry to transfer data between rows
or columns. Additionally, such functionality can be extended to enable logic operations between
neighboring cross-bar arrays. This allows inter-array data transfer directly via logic operations,
rather over an interconnection network. The logic operations can operate in a highly parallel fashion
and there is less contention for shared hardware resources, resulting in high data transfer rates.
Figure 7.1 shows how this enables scalable PIM implementations of matrix-vector multiplication,
the cornerstone of machine learning inference and many other scientific applications.

However, a critical limitation of cross-bar architectures is the existence of sneak paths within
the array [206]. The rows and columns of cross-bars are electrically connected together over the
resistive memory devices in the array. Standard cross-bars have no additional hardware dedicated
to isolating rows or columns from each other. The large number of connections results in many,
unintended (sneak) paths for current. This inability to completely isolate the memory cells allows
unwanted current to travel between different rows and columns during operations, which adds noise
and consumes additional energy. If the noise is large enough, it can lead to incorrectness and make
the device unusable. As a result, digital cross-bars have been limited to small dimensions and the

weighted-sum operations. The data movement advantage discussed here does not apply to analog cross-bars.
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use of RRAM devices, which are resilient to noise due to their large resistance [348]. Still, such
architectures have only limited practical use. RRAM devices have low endurance (1010 cycles [163])
and slow operations [222]. Being restricted to small cross-bars can make application mapping more
challenging [32] and adds complexity to the peripheral circuitry.

Many strategies have been proposed to mitigate sneak paths [206], such as including a single
transistor [217], diode [404], or selector [364] within each memory cell. However, none of these
strategies can eliminate the sneak path issue for both dimensions of computation. In order to com-
pletely eliminate the sneak path issue, two transistors must be added to each cell. Unfortunately,
this greatly increases the area overhead. For this reason, cross-bar architectures with more than
one transistor in each cell have not been considered. However, we argue that a two transistor cell
design, due to its ability to eliminate noise and energy from sneak paths, is the optimal architecture
for the following:

1. Faster and more energy efficient memory devices (which are more susceptible to noise) can
be used.

2. Arrays can be made larger, which enables lower complexity peripheral circuitry and applica-
tion mapping.

3. Increasing energy efficiency is more important than decreasing area (PIM architectures al-
ready provide sufficient density).

The price paid in area overhead is more than compensated for by boosts in performance, energy
efficiency, and correctness. By eliminating sneak paths, RRAM can be replaced with Magnetic
Tunnel Junctions (MTJs), which have much higher endurance, and faster, more energy efficient
operations [309]. Cross-bars of MTJs can be built up to standard memory array sizes, decreasing
complexity of the peripheral circuitry. The extra transistors consume additional energy, but less than
what would be incurred by sneak paths.

7.2 Background

Many resistive memory technologies and PIM architectures have been developed in recent years,
promising high performance, energy efficiency, and density. In this paper, we focus on true in-
memory computing architectures, where computation occurs entirely inside the memory. In these
architectures, voltage signals are applied to wordlines and bitlines and logic occurs via a threshold-
ing mechanism inside the memory elements themselves [348, 62]. This is in contrast to digital PIM
architectures which require sense amplifiers to perform logic.

7.2.1 Magnetic Tunnel Junctions

Memristors are non-volatile circuit elements which have a variable electrical resistance. The state
of a memristor determines the level of resistance. Many memristor technologies exist, including
RRAM, phase-change (PC) RAM, and magnetic tunnel junctions (MTJ). In this paper, we consider
MTJs due to their superior endurance, performance, and efficiency [309]. A disadvantage of MTJs
is a low ratio of resistance between their two states (high resistance and low resistance). This
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(a) Ideal circuit for logic. (b) With Viso sneakpaths.

Figure 7.3: The presence of sneak paths allows Viso to disrupt logic circuits within cross-bar arrays.
Req is the resistance of all sneak paths to Viso, and is determined by the resistances of the MTJs
and the size of the cross-bar.

makes them more susceptible to voltage fluctuations, and are particularly challenging to use within
cross-bars.

MTJs consist of two magnetic layers, the fixed layer and free layer. The polarity of the fixed (free)
layer can (not) change. When the layers are aligned (anti-aligned), the MTJ is in the low-resistance
parallel state with resistance RP (high-resistance anti-parallel state with resistance RAP ). Passing
a sufficient amount of current, Iswitch, from the fixed (free) layer to the free (fixed) will set the MTJ
to the parallel (anti-parallel) state.

7.2.2 Logic with MTJs

Logic can be performed with MTJs via thresholding. Using the circuit shown in Figure 7.3a, input
MTJs are connected in parallel, which are then in series with an output MTJ. The output MTJ is
preset to a known value. Voltages Vin and Vout are applied to drive current through the MTJs.
The output MTJ will either change or not depending on the value of the input MTJs. This thresh-
olding enables efficient logic within memory arrays, and is the key mechanism used in digital PIM
architectures [348, 222, 62, 400].

The specific logic operation to be implemented determines the preset value and the magnitude
and direction of the applied voltage. For example, the universal NAND gate requires the output to
be preset to 0. Voltage is applied so that the output will switch to 1 if either of the inputs is 0. The
appropriate level of voltage can be solved for, given the constraints imposed by the circuit. In this
perfectly isolated circuit there are two contraints. First, the output MTJ should switch if at least one
of the input MTJs is 0 (in the P state).2

Vout − Vin
(RAP ∥ RP ) +RP

≥ Iswitch (7.1)

Second, the output MTJ should not switch if both input MTJs are 1 (in the AP state).

Vout − Vin
(RAP ∥ RAP ) +RP

< Iswitch (7.2)

These two conditions provide a range voltages for Vin − Vout for which the circuit will correctly
2∥ denotes “in parallel with”. R1 ∥ R2 = 1/(1/R1 + 1/R2)
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perform a NAND gate. However, this range will change in the presence of sneak paths in the
cross-bar. Note that Vin is negative because electrons flow in the opposite of the direction of the
current.

7.3 Cross-Bar Constraints and Sneak Paths

Prior work has considered RRAM in cross-bars [348] and MTJs in one-dimensional PIM architec-
tures [222, 62]. We now analyze the limitations of implementing a cross-bar with MTJs, which have
a low ratio between their high and low resistance states - making them more susceptible to voltage
fluctuations and sneak paths. There are two major challenges to consider, 1) enabling logic within a
subset of the rows or columns while leaving other rows or columns unperturbed, and 2) preventing
logic operations in multiple rows or columns from interfering with each other. An architecture will
have to reliably perform both in order to be viable.

7.3.1 Performing Logic in a Subset of the Rows or Columns

A standard cross-bar does not contain transistors (or any selective device). Hence, a voltage
applied on wordlines (bitlines) to drive a logic operation will cause the same operation to occur
in all columns (rows). While performing computation in all rows is useful for some computations,
many algorithms mapped onto cross-bars call for computation only within a subset of the rows [32].
Otherwise, data may be unintionally overwritten and corrupted. A method to enable computation
on only a subset of the rows is to apply an isolation voltage, Viso to the corresponding bitlines
(wordlines) [348]. This strategy works, but it perturbs the desired logic operation, significantly
reducing the voltage margins for correctness.

For concreteness, we show an explicit example of a row-wise NAND gate on a 3 × 5 cross-bar
(N = 3 and M = 5). However, the analysis here extends to larger arrays, different gates, and
column-wise operations as well. Figure 7.4 shows the implementation of a NAND gate in Row
0, with inputs in columns 0 and 1 and the output in column 2. Wordline 0 connects the inputs to
the output. Vin (applied to bitline 0 and bitline 1) and Vout (applied to bitline 2) supply the voltage
differential to drive the NAND gate. Viso is applied to all wordlines (except wordline 0) to prevent
the operation from being performed in any of the other rows. This leaves the data in all other rows
intact.

Viso has two potential impacts on correctess. First, through sneak paths in the cross-bar, it
affects the voltage between the input and output MTJs. Second, it drives a voltage differential
across MTJs in the other rows, risking an unwanted write operation. We must ensure that neither
condition occurs, while still guaranteeing proper operation of the logic operations.

Sneak Paths

For ease of analysis, assume initially that all MTJs have the same resistance R, regardless of state.
First consider the sneak paths from all rows which reach wordline 0 through bitline 3. The source
of Viso is connected to bitline 3 through N − 1 parallel MTJs. Bitline 3 is then connected to wordline
0 through a single MTJ. Hence, the resistance between the source of Viso on all wordlines (except
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Figure 7.4: Viso prevents logic on rows, but perturbs the gate operation via sneak paths and risks
writing MTJs on other rows. Larger cross-bars have more sneak paths and, hence, lower voltage
margins.

for wordline 0) through bitline 3 is
R

N − 1
+R (7.3)

As there are M − 3 bitlines for sneak paths (all except for bitlines 0, 1, and 2), there are M − 3 such
resistances in parallel between Viso and wordline 0. Hence the total resistance between the source
of Viso and wordline 0 is

R
N−1 +R

M − 3
= Req (7.4)

Hence, the original threshold circuit in Figure 7.3a, becomes the circuit in Figure 7.3b, where Viso is
connected to the MTJs in the logic gate via Req. With large cross-bars Req is considerably smaller
than RP , and most of the current will travel through Req. In practice, the MTJs constituting Req will
be in unknown states, but to guarantee correctness the worst case should be assumed. In this
case R = RP is the worst case as RP < RAP , and a lower resistance will allow for a larger sneak
current.

In order to maintain the conditions required for NAND in Equations 7.1 and 7.2, |Vin − Vout| must
be increased to compensate for the leakage through Req. The voltage on the node connecting the
inputs to the outputs Vc can be solved for using standard nodal analysis.

Vin

RIN
+ Viso

Req
+ Vout

RP

1
RIN

+ 1
Req

+ 1
RP

= Vc (7.5)

where RIN is the parallel resistance of the two input MTJs. This provides a new set of constraints
in place of Equations 7.1 and 7.2.

RIN = RAP ∥ RP −→ −Vc
RP

≥ Iswitch (7.6)

RIN = RAP ∥ RAP −→ −Vc
RP

< Iswitch (7.7)
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Vc should have a large enough (negative) magnitude to induce switching on the output MTJ when
at least one of the input MTJs is in the RP state (RIN = RAP ∥ RP ), and it should be too small to
induce switching if both input MTJs are in the RAP state (RIN = RAP ∥ RAP ). The output MTJ is
guaranteed to be in the RP state.

Unintentional Writes

The second impact of Viso is a potential write operation to MTJs not involved in the logic gate. MTJs
in the same columns as the inputs are exposed to a voltage differential of Vin−Viso. This can cause
cause a write 0 (due to current direction). This provides an additional condition

Viso − Vin
RAP

< Iswitch (7.8)

Note, again, that Vin is negative. MTJs in the same column as the output MTJ are exposed to a
differential of Viso − Vout. If Viso is more negative than Vout this can induce a write 1 (due to current
direction). This provides the additional condition:

Vout − Viso
RP

< Iswitch (7.9)

Viso can also, potentially, be more positive than Vout, in which case it can induce a write 0. This
provides a condition:

Viso − Vin
RAP

< Iswitch (7.10)

Values of Vin, Vout, and Viso which satisfy the conditions in Equations 7.6, 7.7, 7.8, 7.9 and 7.10
will properly drive NAND gates in the cross-bar array. An example for a 4×4 cross-bar is shown
in Figure 7.5, where Vin,Viso combinations within the polygon represent solutions. However, the
margins for these values will be small for large arrays. Assuming Vout is held at a constant 0V, the
maximum allowable fluctuation of voltage on Vin and Viso is shown in Figure 7.6. Even at modest
array sizes, the margin becomes too small to operate reliably.

7.3.2 Multiple Logic Operations

The second major consideration is preventing different, independent logic gates from interfering with
each other. Even without the application of Viso, sneak paths exist which can cause incorrectness.
When logic is performed in rows (columns), bitlines (wordlines) which are not connected to inputs
or the output carry current between wordlines (bitlines) of different logic operations. Due the large
number of nodes in the circuit, an analytical description is untenable and we use HSPICE to solve
for the voltage margins. The margin of Vin when performing NAND gates in all rows is shown in
Figure 7.7.

7.3.3 Satisfying Both Constraints

Section 7.3.1 covered the challenges involved in performing computation in some rows (or columns)
while leaving others unperturbed and Section 7.3.2 covered the challenges in performing computa-
tion in multiple rows (or columns). Generally, both challenges need to be addressed simultaneously.
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Figure 7.5: Only certain combinations of Vin and Viso will work. The colored regions represent
different constraints being broken for an 4×4 cross-bar. Assuming RP = 7 kΩ and RAP = 70 kΩ. Vin
is negative as electrons must flow from the inputs to the output.

Figure 7.6: Voltage margin of Vin and Viso when performing a NAND in one row for cross-bars of
different sizes. Assuming RP = 7 kΩ and RAP = 70 kΩ.

Figure 7.7: Voltage margin of Vin when performing a NAND in all rows for cross-bars of different
sizes. When all rows participate, Viso is not required. Assuming RP = 7 kΩ and RAP = 70 kΩ.
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The optimal values of Vin and Viso change depending on the number of rows (or columns) that are
performing logic. figures// 7.8a-7.8c show how the constraints change as the number of rows per-
forming computation increases. Figure 7.8d shows all constraints simultaneously. Either, constant
values of Vin and Viso must be chosen within the white polygon in Figure 7.8d, or the values of Vin
and Viso must be changed depending on the number of active rows.

(a) NAND in 1 row (b) NAND in half of rows

(c) NAND in all rows (d) NAND in any number of
rows

Figure 7.8: The required voltage of Vin and Viso change depending on the number of logic oper-
ations being performed. The white polygon represents acceptable solutions in each case. Even
for an 4 × 4 cross-bar shown here, the margins are very small. The optimal operation point, which
maximizes the margins, is shown with an x.

7.4 2T1-R Architecture and Advantages

Given the limitations of cross-bars discussed in Section 7.3, we argue that a two-transistor one-
resistor (2T-1R) cell is an optimal cross-bar design. Two transistors are required to remove all sneak
paths, while simultaneously enabling two-dimensional digital computation. Cross-bars with only
one-transistor or selector per cell can only remove sneak paths for one dimension of computation.

PimCity is shown in Figure 7.9. The architecture is identical to a standard cross-bar, except a
transistor can isolate each MTJ from the BL and WL. One of the transistors in each cell is activated
row-wise, via the Row Activation (RA) control line. The other transistor is activated column-wise,
with the Column Activation (CA) control line. When both transistors are enabled in a cell, current
is allowed to pass through the MTJ. Due to being able to specify both row and column activation,
the cells which have both transistors activated can be specified exactly, without any half-selects or
sneak paths.
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Figure 7.9: A 2T-1R crossbar enables both row-wise and column-wise selection of cells.

(a) 2D logic without duplication

(b) Duplication for 1D row logic [301]

Figure 7.10: Two-dimensional computing reduces data duplication requirements for application
mapping. Computation requires temporary values and multiple steps (not shown).

Given that scalable two-dimensional computation comes at a large area cost, it should also
provide large benefits. Two-dimensional architectures provide two major benefits. The first is supe-
rior intra-array communication, which simplifies data transfer and reduces data duplication require-
ments. The second is superior inter-array communication, which enables scalable architectures.

Many 1D PIM architectures exist [301, 210, 62] which perform computation in either the rows
or the columns of memory arrays. Architectures which perform computation in the columns (rows)
cannot transfer data between different columns (rows) with logic operations. They require interme-
diate read and write operations to move data within the array, which has high latency, energy, and
complexity. Data must frequently be permuted [301], requiring hardware external to the array to
perform this processing.

Overhead for this data movement can be mitigated with data duplication techniques [301]. For
example, binary neural network convolution requires the element-wise dot product of a filter with a
collection of neurons. The filter must be slid over the neurons, with the output computed at every
location. A one-dimensional PIM architecture can make this operation more efficient by duplicating
neurons and filters, placing the required bits into each row as shown in Figure 7.10b [301]. However,
this comes at a large data duplication cost. In 2D convolution, if the block of input neurons is N×M ,
and the filter is f × g, 2×N ×M × f × g cells (plus work space) are required.
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Table 7.1: MTJ parameters
Parameter Value

RP 7 kΩ [158]
RAP 70 kΩ [158]
Iswitch 3.9µA [399]

Two-dimensional architectures can perform logic in both rows and columns, where the locations
of the inputs and output are arbitrary. This enables them to perform all data transfers directly, with-
out read and write operations. Effectively, data movement and logic operations are indistinguishable
and use the exact same mechanisms, enabling efficiency. Additionally, data duplication is not fun-
damentally required to achieve performance as the data can be operated on in-place. Figure 7.10a
shows a data layout for two-dimensional computation. Using a combination of row and column
logic, neurons and filters can be used without duplication, requiring N ×M + f × g cells (plus work
space).

The second major advantage is the possibility of transferring data between neighboring cross-
bar arrays. If the wordlines and bitlines of neighboring arrays can be conditionally connected (at the
cost of 1 additional transistor per row and column), logic operations can transfer bits between them.
These data transfers can be highly parallel, and obviate the need for an interconnection network.
Such transfers can be highly parallel and scalable, such as indicated in Figure 7.1.

7.5 Evaluation

In this section we compare the area, latency, and energy overhead of PimCity (2T-1R cross-bar)
with the standard cross-bar architecture. We use HSPICE simulation using 7-nm FinFETs from
the ASAP PDK [66]. We model MTJs as resistors, using the parameters listed in Table 7.1. The
advantage of PimCity over a standard cross-bar will decrease with more ideal MTJ performance. To
be overly generous to the standard cross-bar, we assume MTJ parameters which will be possible
within the next few years. Larger RAP /RP ratios will be possible, and Iswitch will reduce due to a
decrease of the damping constant of ferromagnetic materials [96] and using a dual-reference layer
structure [88]. As PimCity is logically equivalent to a cross-bar architecture, application mapping
remains identical. Automated compilers, such as Contra [32], can be used.

7.5.1 Area

The most significant limitation of a 2T-1R cell design is the area it consumes. Transistors are much
larger than MTJs, hence their size determines the cell area [253]. To model the access transistors,
we use FinFETs from the ASAP 7-nm Predictive PDK [66]. The size of the transistors depends
on the number of fins required, which is determined by the amount of drive current required to
write MTJ devices. Hence, the transistors need to be large enough to supply a few microamps of
current. We estimate the area of PimCity based on previous cell designs for MTJ based PIM archi-
tectures [400], which use two transistors per cell. A suitable cell of PimCity will have dimensions of
109 nm×350 nm [400]. Standard cross-bars, without transistors, have a cell area of approximately
35 nm×35 nm [254].
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Figure 7.11: Power consumption of Cross-Bar and PimCity architectures for increasing array sizes.
Power consumption varies by number of active rows and the number active rows which occur in
switching of output MTJs. The cross-bar cannot successfully perform Based on HSPICE simulation
using 7-nm FinFET devices from ASAP Predictive PDK [66].

The increased area, while significantly larger than standard cross-bars, remains well below
conventional alternatives. For IoT applications, PIM implementations of neural network inference
require less than 35MB of memory [298]. 35MB of PimCity, accounting for a 10% overhead for
peripheral circuitry, would consume 11.7mm2. In contrast, a conventional hardware solution for the
same applications with the widely used MSP430FR5994 microcontroller consumes over 100mm2

[120]. Hence, PimCity still offers a large density improvement over alternative architectures. Ad-
ditionally standard cross-bars are restricted to small array sizes (due to voltage margin limitations)
which will require a higher relative area overhead for peripheral circuitry.

7.5.2 Power Consumption

Using transistors to isolate memory cells also has energy efficiency benefits over standard cross-
bar architectures. While the transistors themselves consume energy, they eliminate energy costly
sneak paths. The power consumed by a standard cross-bar and 2T-1R PimCity when perform-
ing NAND gates is shown in Figure 7.11. There are three variables which determine the energy
consumption, the size of the array, the number of active rows (which perform logic), and the num-
ber of logic operations which result in switching of the output. Power consumption for PimCity
only increases with increasing numbers of active rows or switching outputs. Power consumption
of the standard cross-bar increases with array size, regardless of the number of active rows. The
presence of sneak paths and the application of Viso to non-active rows results in large amounts of
wasted energy.

7.5.3 Voltage Margins

Sneak paths cause voltage margins of cross-bars to quickly decay with increasing array size, as
shown previously in Figures 7.6 and 7.7. As PimCity uses transistors to completely isolate the
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transistors, voltage margins are not affected by sneak paths. The voltage margin is determined
entirely by equations 7.1 and 7.2, with the addition of transistor resistances in series with each MTJ.
For the given parameters, the voltage margin for Vin is a constant 107mV. However, it is possible to
lower Vin (reducing the margin) to increase energy efficiency. For the power consumption reported
in Figure 7.11, we maintained a minimum margin of 30mV. While PimCity is immune to sneak
paths, larger arrays will still have have larger bitline and wordline resistances, limiting array size to
1024× 1024 [400].

7.6 Related Work

Analog cross-bar architectures [261, 351] can provide high density and highly energy efficient com-
putation. Such architectures do not require any transistors within the cell, maximizing density.
However, all such analog cross-bars require expensive analog to digital converters at the array pe-
riphery to perform computation. A number of cross-bar architectures perform digital computation
via thresholding within the array itself [32, 356]. Such architectures require 0-1 transistors per cell,
enabling high density, but suffer from significant noise due to sneak paths.

7.7 Conclusion

Cross-bars provide high density and two-dimensional logic, which can provide efficient application
mapping and scalable architectures. Such designs are promising architectures to help over come
the memory wall and further increase performance and energy efficiency. However, they suffer
from sneak paths which make them infeasible at large sizes. We claim that a 2T-1R design is in fact
necessary to solve all sneak path limitations and enable scaling to larger array sizes. We showed
that such an architecture consumes reasonable area and provides more energy efficient in-memory
computation.



Chapter 8

Quantum Benchmarking and Impact
of Quantum Noise

8.1 Introduction

There are many ways to measure the performance of a computer1. Common ways have been
measuring operations per second (OPS) or floating-point operations per second (FLOPS). These
are intuitive and easy to understand, however, they are generally poor metrics. The problem is
that hardware could be designed to have a very high OPS/FLOPS but could perform poorly on real
world applications, which do not consist of monolithic blocks of arithmetic operations. A way to
improve upon this is to measure the progress of a program rather than the number of operations it
performs. For example, the HINT benchmark measures quality improvements per second (QUIPS),
which measures the numerical accuracy improvement of the output in a given time [141]. While this
can be insightful, again the main concern is that this does not accurately represent the real-world
programs that will be run on the hardware.

Generally, the best metric is the wall-time required to complete a program [212], if the program
is representative of real-world applications. This concept has led to the creation of benchmarks
which are samples of larger, industrially useful applications. SpecCPU [336] and Parsec [33] are
popular suites in this vein. While this is a clear improvement, it is not without its issues. For one, the
reduced size of the programs introduces estimation error on the performance. There are other, less
obvious complications. For example, academic work commonly reports performance on Parsec
for system evaluation. Now, the human made choices of which benchmarks to include in Parsec
determine what the academic community considers to be important. This makes these choices
critical, because if the selection is not representative these results can be misleading. Even further,
having established benchmarks would allow for a hardware designer to “cheat” by making a system
particularly good on only the specific applications.

The takeaway is that benchmarking is possible and useful, yet is tricky and can be misleading.
It is difficult to create useful benchmarks, and it may be impossible to create universal ones. This
same construct applies to quantum computing, except it is much more intricate. There are a number

1For clarification, we note benchmarks are operations that the system is asked to perform (programs) and metrics are
measurable characteristics of the system when performing the benchmark.
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of complicating factors:

1) Quantum hardware is more diverse than classical hardware;

2) Quantum hardware is less developed, most systems have only a few qubits and cannot perform
useful applications;

3) Quantum algorithms are still being developed and it is unknown what applications will be the
most useful;

4) Quantum noise is not well understood and difficult to simulate, making characterization particu-
larly challenging.

The dissimilarity of quantum hardware makes it hard to compare them to each other. This is not as
much of an issue for classical hardware. While there has been a trend towards more diversified and
specialized hardware in recent years, such as application specific integrated circuits (ASIC), there is
a general framework and almost all hardware is silicon CMOS based. This makes metrics, bench-
marks, and general intuition portable across different devices. Currently, there are many different
hardware approaches competing in quantum computing. Each is based on a different physical
system with entirely different dynamics. For example, quantum computing can be performed in su-
perconducting circuits, ions isolated in a vacuum, or in atoms embedded in silicon. These systems
look very different from each other and each have unique advantages and deficiencies. Is it fair to
compare them directly?

As quantum computing is early on in its development, there are only small-to-medium sized
quantum computers in existence. Most systems are not capable of performing useful programs.
This makes it difficult to create benchmarks for these systems that are representative of future
real-world applications. Scaling to larger sizes is particularly difficult for quantum computers, hence
benchmarks that can be run on these smaller systems are less likely to accurately represent the
performance of scaled-up versions. This is where one would normally turn to simulation. Unfortu-
nately, as the states in quantum computers are highly complex, they are not able to be efficiently
simulated by classical computers. Hence, benchmarks must be tied to a physical experiment.

On a more fundamental level, it is even unsure what quantum applications will be useful. As the
field of quantum computing is largely unexplored, and not well understood, it is believed that many
of its advantages and potential are currently unknown. Exploration of quantum potential is not well
captured by benchmarking [37].

Quantum computing faces many hardware challenges. Information is easily lost due to quan-
tum noise, which causes decoherence of quantum states. The physical devices need near absolute
isolation from the environment, making the systems large and difficult to scale. Due to this fragility,
benchmarking begins much lower in the system stack. Benchmarks even for 1-bit operations have
been developed [185, 82, 99]. Even at this level, performance has been difficult to quantify. Accu-
rately modeling quantum noise and determining the robustness of quantum operations has become
the subject of much research [376, 100, 185, 285]. Noise can affect quantum programs differently,
depending on their length and structure. Hence, noise is a significant complicating factor.

Thus, quantum computing inherits all the benchmarking complexity of classical computing, but
introduces many additional complications. This makes it quite unclear what the best way is to
evaluate a quantum system. In fact, the authors of [37] argue that it is too early to develop a
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standard approach. They warn that quantum research is currently exploratory in nature and that
benchmarks are inappropriate for this kind of work. In fact, it could even be detrimental due to the
possibility of misguiding research efforts.

In this chapter we provide a quantitative comparison for different quantum strategies from a
benchmarking perspective, in the presence of quantum noise, to pinpoint pitfalls and fallacies.

8.2 Quantum Primer

In this section we introduce background and context for quantum computing. Necessarily brief, this
clearly cannot do it justice. Quantum mechanics is highly complex and defies intuition. To quote
Richard Feynman, “If you think you understand quantum mechanics, you don’t understand quantum
mechanics.” This seems even more applicable if one views quantum mechanics from the perspec-
tive of computer architecture [152]. But in an attempt to “understand quantum mechanics”, we will
attempt to cover key concepts. We recommend [135] as an introduction to quantum mechanics and
[221] as an introduction to quantum computing.

Quantum mechanics describes the nature of the physical world. High temperatures and large
sizes causes quantum mechanical effects to become less noticeable, and classical physics acts as
a good approximation. But when one creates a system that is very small or very cold, only quantum
mechanics can accurately describe the system and how it evolves in time. Under these conditions,
states are noticeably quantized (take on discrete values), such as the discrete possible energy
levels of electrons around the nucleus of atoms. We can assign logical values to these distinct
states, which are then called qudits. Transitions between these states correspond to quantum
logical operations. Qudits can have many possible values, for example there are many possible
non-degenerate energy levels for an electron. However, it is often convenient to use only two of
the possible states, such as the ground and first excited states, as these become analogous to
classical bits and are less susceptible to noise [266]. These two-level qudits are called qubits.
Qubits can be in both of their states simultaneously (superposition) and multiple qubits can have
their states intertwined (entanglement). Hence, there is not only information in each qubit, but
between each qubit. As a direct consequence, quantum states can store an amount of information
that is exponential in the number of qubits. This enables extreme compute capabilities if one is able
to create a complex quantum state and reliably transform it in a meaningful way. Unfortunately, this
is a difficult task. Pure 2 quantum states are extremely fragile and need near perfect isolation from
the environment to exist. At the same time, we need to be able to interact with the quantum state
in order to transform it.

Large scale quantum computing, despite the fragility of quantum states, remains a possibility
due to quantum error correction (QEC). By encoding quantum information for a single qubit using
multiple qubits, the quantum state can be restored if only a subset of the qubits become corrupted.
Encoded qubits are called logical qubits, which are composed of multiple physical qubits. QEC is
a rich field [127], and there is much work devoted to studying how QEC works under different error
models [143, 145, 45, 132, 238]. However, modern quantum computers do not yet have sufficient
numbers of qubits or required qubit quality to practically implement QEC. Hence, modern quantum
applications operate on physical qubits and try to make use of limited resources. Therefore, it is of

2Pure states are quantum states which can be completely specified by state vectors.
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Figure 8.1: Bloch Sphere representation of a single qubit.

interest not only how quantum error affects QEC, but also how it affects algorithms running without
QEC.

If a quantum state is completely isolated, it is called a pure state. Quantum pure states can be
represented by kets, which are column vectors of complex numbers. The elements of the kets are
called the amplitudes. For example, a single qubit can be represented by a ket of length 2

α0 + β1 =

[
α

β

]
(8.1)

where α is the amplitude associated with state 0 and β with state 1. The amplitudes determine
probabilities when performing measurements, |α|2 is the probability of measuring this single qubit
in the state 0 and |β|2 is the probability of measuring the qubit in the 1 state. The probabilities must
sum to 1 for pure states. A single qubit can be visualized as a vector from the origin to a point on
the Bloch Sphere, shown in Figure 8.1, where a pair of angles, θ and ϕ, can be used to specify the
state of the qubit, related to the amplitudes by the equations

α = cos(θ/2) (8.2)

β = eiϕsin(θ/2) (8.3)

Operations on qubits are called gates, which are represented by matrices. Common gates are
the Pauli I (identity), X (NOT), Z (phase-flip), and Y (NOT and phase flip) gates, shown in Equation
8.4.

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]
(8.4)

Single qubit gates represent rotations on the Bloch sphere. Performing a gate is logically equivalent
to multiplying the ket column vector by the matrix of the gate. The I gate leaves the qubit unmodified.
The X gate rotates the qubit by π around the X-axis, which flips the amplitudes for the 0 and 1 states.
Similarly, the Z gate rotates the qubit around the Z-axis and the Y gate rotates the qubit around the
Y-axis. Other common gates include the Hadamard (H) gate and phase gates S and T, shown in
Equation 8.5.

H =
1√
2

[
1 1

1 −1

]
S =

[
1 0

0 i

]
T =

[
1 0

0 eiπ/4

]
(8.5)
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The S gate is a rotation around the Z-axis by π/2 and the T gate is a rotation around the Z-axis by
π/4. Performing two T gates back to back is equivalent to an S gate, and two S gates back to back
is equivalent to a Z gate. The H gate is commonly used at the beginning of quantum algorithms to
put qubits into a perfect superposition state.

Two-qubit gates commonly involve a control qubit and a target qubit. In this case, a gate is
performed on the target qubit if the control qubit is in the 1 state. For example, the controlled-NOT,
CNOT gate is a controlled-X gate. Two-qubit gates are used to create entanglement between the
qubits.

Quantum gates must be unitary. This means they must be linear, reversible, and preserve the
magnitude of the column vector. E.g., the X gate is its own inverse, and if two X gates are applied
sequentially, the qubit returns to the original state. In other words, unitary operations coherently
transform the quantum state. Conversely, measurements are non-unitary and irreversible. If a qubit
in a superposition of 0 and 1 is measured and found to be 0, it is then entirely in the state 0. This
is an incoherent process, as the quantum state has effectively been destroyed, containing only
classical information. Whether operations are unitary or not is important not only for quantum gates
and measurements, but also for the noise that affects the quantum state.

Quantum states that are not pure are called mixed states. These states are combinations of pure
states, each with an associated classical probability. Mixed states occur as the result of imperfect
isolation and manipulation of the quantum state, which applies to all physically realizable quantum
states. Density matrices are the equivalent of kets for mixed states. Density matrices can represent
all pure and mixed states. A ket representation can be converted to a density matrix by taking the
outer product of the ket with its conjugate transpose (adjoint)[

α

β

]
−→

[
αα∗ αβ∗

βα∗ ββ∗

]
(8.6)

where ∗ denotes the complex-conjugate. A common metric to quantify the “quality” of a quantum
state is the fidelity [105], which is defined as

Tr[ρσ] (8.7)

where the density matrix ρ represents the “correct” quantum state; σ, the actual quantum state; and
Tr, the trace (diagonal sum) of the matrices multiplied. Simulating with density matrices allows one
to keep track of classical probabilities and possible errors, in addition to the quantum transforma-
tions. This can be convenient in many cases [144], however the computational resources required
increase significantly [28].

8.3 Quantum Noise

Noise is present in all computing systems. However, it is quite a force to be reckoned with for
quantum systems. In fact, noise is so pervasive that it is impossible to have a meaningful discus-
sion about practical quantum computing without an in-depth consideration of its effects. Clearly,
no benchmarking approach can succeed without considering noise and the resulting impact on
measured or simulated results. This has been unfortunate, as quantum noise is difficult to charac-
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terize and, in many cases, its effects are not well understood. Here, we provide a brief overview of
quantum noise and the models used to represent it.

8.3.1 Physical Sources of Noise

Quantum noise can come from a variety of sources. There is never only a single source of noise in
any given quantum system. Determining what the sources are and what their relative contributions
are is a hard problem. Possible sources are unwanted interaction with the environment (both distinct
events and inevitable decay of quantum states), unwanted interaction between qubits, or imperfect
control operations. Each of these introduce error with significantly different characteristics, giving
rise to different models. Here, we go over different common sources and discuss their physical
impact. A summary of physical noise sources is provided in Table 8.1.

Interaction with the Environment

Qubits need to be perfectly isolated from the environment to maintain their state. If such a system
could be constructed, there would be no quantum noise. But no real system can be perfect, hence
there is inevitably some interaction. This can be seen as a “measurement” of the system [24], as
information is leaving the quantum state. As measurements are non-unitary, this kind of noise is
also non-unitary. The expected amount of time a system can remain unperturbed is called the
coherence time. Commonly reported are the T1 and T2 times. T1 measures the expected loss of
energy from the system; if a qubit is put into an excited 1 state, T1 is a measure of how long it
takes to collapse to the 0 state. This is also called the qubit relaxation time [357]. T2 measures the
dephasing time; if a qubit is placed in the superposition state 0+1, T2 determines how long it takes to
polarize either to 0 or 1 [266]. Risk of interaction with the environment is increased when performing
operations on the qubits, as the driving force of the operation comes from an external input. This
is an unfortunate situation as two critical requirements have conflicting needs. The quantum state
needs near perfect isolation to remain intact, yet also must interact with control mechanisms in
order to perform useful computation. This is referred to as the coherence-controllability trade-off
[395].

Interaction with the environment can also produce unitary errors, such as global external fields
which act on the qubits [132, 20, 192, 374, 373]. Such interactions can cause unitary rotations of
the quantum state.

Interaction with Other Qubits

As previously mentioned, qubits can become entangled with each other. This means their states
become correlated. While this is a frequently used tool in quantum computation, it needs to occur
only when desired. If qubits interact accidentally, this can lead to a mixture of their quantum states
or decoherence [46, 283, 313]. This is referred to as cross-talk. This type of error has been
particular difficult to characterize.

If left in perfect isolation, cross-talk between qubits would lead to a unitary evolution of the state.
Hence, all the information is still contained in the quantum state. However, the quantum state
would be different than the one desired, which destroys the ability to manipulate it in a meaningful
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way. For example, we may wish to have two qubits that are far apart and highly entangled, in
order to perform quantum teleportation 3. However, if they interact with other, nearby qubits, this
will disperse and decay the entanglement [283]. If not in perfect isolation, cross-talk can cause
increased degradation of the quantum state. Say one is performing error correction, which involves
interacting extra (ancilla) qubits with the qubits that store the data, and then measuring the ancilla
to extract error information (syndromes). Cross-talk may cause the unintentional interaction of a
data qubit with an ancilla qubit. Thereby some of the quantum information in the data qubit can
get transferred into the ancilla. As a result, when the ancilla is measured, the computer would
unknowingly extract information from the data qubit, corrupting its quantum state.

Imperfect Operations

Imperfect application of quantum gates can generate incorrect quantum states. Often, these are
slight over- or under- rotations which are the result of imperfect calibration [45]. These kinds of
errors do not directly destroy the quantum state but lead to coherent evolution of the quantum state
into an undesired state [24]. This type of noise is predominantly seen in modern experiments [376]
and its potentially catastrophic impact on the ability to perform error correction has been a concern
in recent years [45].

Leakage

Many quantum systems that are used as qubits actually have more than two possible states. In
this case, two of the possible states are selected to represent 0 and 1. In other words, the qubit
is encoded in a subspace of a larger quantum system [388]. This subspace is called the compu-
tational subspace. It is assumed that the quantum systems remain in these two states (though
other states may be used temporarily, such as in the implementation of two-qubit gates [49]). If
a qubit unintentionally enters one of these other states, it is referred to as leakage, and it can be
particularly detrimental [107]. The return of a qubit back into the compuational subspace is called
seepage [388]. Leakage and seepage can be either unitary or non-unitary, and can be caused by
imperfect control or unwanted interactions with the environment [388].

Environment Other Qubits

Unitary External Fields
Over/under Rotations from Imperfect Control [24] Cross-talk [283, 46]

Non-Unitary Unintentional Measurements [24]

Table 8.1: Categorization of physical noise into its sources and whether it is unitary or not.

8.3.2 Noise Models

Working at higher levels of the system stack, it is more critical to know how quantum noise will
affect quantum operations. In this section, we transfer focus from physical sources of noise to the

3Quantum teleportation is the transfer of quantum information between qubits by means of quantum entanglement in
combination with a classical channel. It can be used to transfer information between non-adjacent qubits in a quantum
computer or over long distances via a quantum network.
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process of modeling them. The goal is to learn how noise disrupts the correctness of quantum
algorithms during operation. As most research labs do not have their own physical quantum com-
puter, and publicly available machines have low qubit counts, accurate and efficient noise models
are greatly desired to facilitate simulation. Quantum noise is notoriously difficult to model accurately
[376]. There are variations of quantum noise and it is possible that it may even be non-Markovian.
Knowing what specific type of noise is present and how it affects a particular system is difficult to
determine without extensive, physical experiments. However, there are a number of possible meth-
ods to estimate noise, with varying degrees of accuracy and computational efficiency. Realistic
noise models are often intractable to simulate at scale, so simplifying assumptions are made to
reduce complexity [237]. It is important to know when these assumptions are appropriate to make
in order to produce realistic results. Here, we give a brief, high-level overview of different noise
models and discuss their implications. A summary of noise models is provided in Table 8.2 and a
summary of the physical noise processes they emulate is shown in Table 8.3.

Stochastic Pauli Noise

Stochastic Pauli noise is the simplest and most intuitive noise model. Additionally, according to the
well-known Gottesman-Knill theorem [126, 6], it is easy to simulate using classical computers [45]
and, at the same time, easy to correct using standard error correction procedures [376]. Hence, it
has become popular [204, 7, 177]. It is most applicable for modeling unwanted interactions with the
environment, which is effectively unintentional “measurements” of the quantum state [24]. It can be
implemented by inserting an X, Y, or Z gate into a circuit at random with some specified probability.
The effect on the overall fidelity can be estimated with Monte Carlo simulation [204]. Alternatively,
representing the quantum state as a density matrix, ρ, the noise can be modeled as

Ni(ρ) = (1− ϵi)ρ+ ϵxi XρX + ϵyi YρY + ϵzi ZρZ (8.8)

where ϵi is the total error rate on qubit i and ϵxi , ϵyi , and ϵzi are the rates for each type of error,
corresponding to the probabilities of inserting each gate [45]. This is also referred to as depolarizing
noise [357]. If ϵxi = ϵyi = ϵzi , it is called symmetric depolarizing noise. X, Y, and Z are operators
performing the respective gate on the qubit. While X, Y, and Z gates are unitary operations (causing
a coherent transformation of the quantum state), inserting them in a probabilistic manner does
not represent a coherent process. Additionally, the linear combination of unitary operations, as in
Equation 8.8, can represent a non-unitary operation. Hence, stochastic Pauli noise is an incoherent
source [45].

A common strategy is to inject error only after each gate. However, this is not realistic as
qubits can acquire error even when remaining idle [372]. Therefore, Pauli noise should be injected
in every cycle. Numerous studies have found that stochastic Pauli noise models often lead to
inaccurate and overly optimistic results [262, 45, 132, 143, 145, 24], but that they still can provide
reasonable approximations in certain conditions. These include errors at the logical level under
QEC [45, 132, 143, 28].

There are some natural extensions to this model which can result in more accurate simulations.
Significant improvements can be made, while remaining efficiently simulable, by augmenting Pauli
gates with Clifford group operators (i.e., Hadamard (H), phase (S), and CNOT gates) and Pauli
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measurements [145]. This involves the same process of inserting gates at random, but using a
larger gate set, which, in addition to the Pauli gates (I,X,Y,Z), has H, S, and CNOT gates [238].

A fundamental problem with stochastic Pauli noise is that it is “not quantum enough” [45]. While
the inserted Pauli gates are quantum operations, the choice of whether to insert them is based on
a classical probability. While a classical noise model is familiar and intuitive from a computer archi-
tecture perspective, it is not necessarily true depiction of the real errors occurring at the physical
level.

Coherent Noise

Coherent noise models attempt to capture evolution of the quantum state that, while not destructive,
is still undesired. One could see this as coherently performing a quantum program, just one that
is different than intended. Physical coherent noise can be caused by imprecise classical control
of the quantum operations [45], external fields, and cross-talk [132]. Modeling coherent noise can
be difficult as some of the relevant sources of noise are not well understood. Hence, simplifying
assumptions are made. While not exact, the goal is for the model to affect the quantum state
similar to realistic sources. Examples include static Z-rotations [45], X-rotations in combination with
Pauli-X errors [132], or rotations about a non-Pauli axis [145]. Coherent noise is not efficiently
simulable, meaning the classical resources required to simulate grow exponentially with the system
size. Hence, these simulations are limited to relatively small systems [208, 357, 24, 54].

Coherent noise is typically much more detrimental, with a much higher worst case error rate
[376, 45, 24]. Additionally, many quantum algorithms consist of periodic circuits, where the same
sequences of gates are repeated many times. Coherent noise is particularly harmful in this case,
where its effects get amplified with each iteration [36, 35]. From this, it may appear that coherent
noise is more important, and should be assumed unless known otherwise. However, this may
not be true for all circumstances. The effects of coherent noise were analyzed on quantum error
correction [132, 45]. It was found that the coherence of the error is reduced at the logical level, and
is further decreased with a higher code distance. This means that it may be sufficient to assume
stochastic Pauli noise at the logical level, even if the physical noise is coherent. However, it was
noted that using a stochastic Pauli model for physical noise would significantly under estimate the
error rate at the logical level.

Unfortunately, as modern quantum computers are not capable of QEC, they cannot make use
of this resilience to coherent error. Randomized Compiling (RC) [376] is a novel approach which
may help in this domain. The basic idea is to perform randomizing Pauli gates during the run
of a quantum circuit, which are interleaved with the gates of the program. At each location that
randomization is introduced, the previous randomization is undone to return the quantum state to
the desired state. These randomizing operations disrupt the coherent noise and tailor it effectively
into stochastic Pauli noise. Prior to execution, these additional randomizing gates can be fused
with (compiled “into”) the actual gates in the circuit. Depending on the gate set available in the
system, RC can be performed with no overhead.
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Efficient Not Efficient
Unitary NA Coherent Rotations [45]

Non-Unitary Stochastic Pauli
Pauli Twirling [115]Clifford Channels [143, 145] Amplitude/Phase Damping[357]

Table 8.2: Categorization of noise models into whether they are unitary and whether they are
efficiently simulable or not.

Physical Noise Source Noise Models

Interaction with Environment
@c@Stochastic Pauli Noise
Amplitude/Phase Damping

Pauli Measurements
Imperfect Control Coherent Over/Under Rotations

Table 8.3: Physical noise and corresponding noise models

Amplitude/Phase Damping

Amplitude Damping (AD) is a non-coherent error model which captures energy loss from the quan-
tum state into the environment, such as spontaneous emission of a photon [357]. This noise model
is relevant to any quantum system with multiple energy levels, where there is an excited state and
ground state, with a tendency for the excited state to decay to the ground state, such as ion-trap
quantum computers which use the excitation levels of electrons. Additionally, the loss of energy
must be to some environment – i.e., in the previous example, if the energy loss is a spontaneous
emission of a photon, there must be an environment for the photon to escape into. Hence, if the
quantum system was perfectly isolated, AD would not occur. AD is a realistic noise model but is
also not efficiently simulable. However, models have been designed to approximate the effect of
AD, but which remain simulable [145], such as Pauli Twirling [333, 117, 314, 357]. Phase damping
(PD), sometimes call pure dephasing, is equivalent to a phase flip channel [357]. This does not
change the probability of a qubit being in either the 0 or 1 state, but it changes the phase between
the two states. AD is closely related to the T1 time and PD is closely related to the T2 time, which
are discussed in Section 8.3.1.

The nature of quantum noise greatly affects the quantum state, and by direct result, the perfor-
mance of any potential quantum computer. Hence, even at higher levels in the system stack,
one must give serious attention to the expected noise present in the system and be sure it is
adequately accounted for. This impact of quantum noise is often overlooked or given secondary
consideration. In many cases stochastic Pauli noise may be an overly simplified model. If so, it
will produce incorrectly optimistic results, especially for modern systems.

8.4 Qubit Benchmarking

Before talking about benchmarking a quantum computer, we have to talk about benchmarking
the qubits themselves, even in a single (or two) qubit system. If one is constructing a quantum
computer, it is clearly of great interest how reliable the quantum operations (gates) are. The average
gate fidelity coarsely predicts how many gates can be applied before the quantum state gets too
corrupted. Additionally, quantum error correcting codes only work if the error is below a certain
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threshold [184]. On top of this, the overhead of the error correction strongly depends on the fidelity
[272]. Quantum gates suffer from high error rates. Errors in classical switches could be less than
1 in 1015, whereas effective quantum error rates are frequently above 1%, where the previously
mentioned error sources and models apply and determining their impact is a complex task.

Unfortunately, experimentally determining quantum states, and the fidelity of quantum opera-
tions, is not straight forward. Measurements of a quantum system are destructive, so the state will
need to be prepared or the operation performed for each measurement. In addition to this time
overhead, errors in the initial state preparation and the measurements, (SPAM) errors, can obscure
the error in the operation.

A brute force approach to learn a quantum state is quantum state tomography [371]. This
enables the classical extraction of all quantum information, and hence answers any questions we
may have about its structure. This requires measuring a complete set of observables (physical
properties that can be measured) which determines the quantum state. For example, say there is
a single qubit in the quantum state

ψ =
√
0.80 +

√
0.21 (8.9)

For numerical clarity we use a pure state, however this process works for mixed states, as well.
While this is a pure state, it can be described equivalently in density matrix form:

ρ =

[
0.8 0.4

0.4 0.2

]
(8.10)

This state is unknown to the outside world, but the state can reliably be prepared by a quantum
operation. The goal then is to determine this density matrix only by performing repeated measure-
ments on the prepared state ψ. All single qubit density matrices can be represented as a linear
sum of the Pauli matrices [274]:

ρ =
1

2
(S0I + S1X + S2Y + S3Z) (8.11)

Therefore, if we find the coefficients, we can reconstruct the density matrix. These coefficients can
be found by determining measurement probabilities when measuring along the X, Y, and Z bases
[274]

S0 = P0 + P1 = 0.8 + 0.2 = 1.0

S1 = P0+1 − P0−1 = 0.9− 0.1 = 0.8

S2 = P0+i1 − P0−i1 = 0.5− 0.5 = 0.0

S3 = P0 − P1 = 0.8− 0.2 = 0.6

(8.12)

where Pϕ is the probability of measuring ϕ. Note that S0 = 1 by construction, as 0 and 1 are the
only two measurement outcome possibilities. S3 only requires measurements along the standard
Z-basis. To find S1 and S2, measurements need to be performed along the X and Y axes. This
can be done with a basis change prior to measurement, which is done by applying the appropriate
quantum gate just prior to measurement. For example, performing a Hadamard gate then a Z-
basis measurement is effectively an X-basis measurement. Note that each measurement must be
performed many times to achieve accurate probability estimates. The exact probabilities are shown
in Equation 8.12. For the example we computed them directly with Tr [ξρ], where ξ is the density
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matrix of the corresponding basis state. Once the coefficients are known the state can be described

ρ =
1

2

(
1 ∗

[
1 0

0 1

]
+ 0.8 ∗

[
0 1

1 0

]
+ 0 ∗

[
0 −i
i 0

]
+ 0.6 ∗

[
1 0

0 −1

])
=

[
0.8 0.4

0.4 0.2

]
(8.13)

This process can be generalized to multi-qubit systems as well, we refer the reader to a thorough
introduction in [274]. However, it does not scale well as it requires a number of measurements
which is exponential in the system size. In addition to this, it is difficult to distinguish states with
low probability from those with zero [185] and the computation to convert measured results into
an estimate of the quantum state is intractable [77]. Hence, this approach is not feasible for large
systems. There are notable variations of this process, such as Shadow Tomography [3]. While
quantum state tomography has exponential cost because it tries to answer all possible questions,
shadow tomography attempts to only learn certain features by learning from measurements [162].
The name comes from the idea that one is not trying to learn the full density matrix, only the
“shadow” it casts on the chosen measurements [3].

Quantum process tomography (QPT) uses the same approach as quantum state tomography,
except that the goal is to identify a quantum operation, rather than the quantum state. Known input
quantum states are generated and then the operation is performed. Quantum state tomography is
then applied to the output states allowing identification of the process [64, 282]. As it follows the
same procedure as quantum state tomography, it also requires exponential resources in the number
of qubits. The key assumption that QPT makes is that the input state is known, and therefore only
the quantum operation needs to be found. This simplifies the problem, and finding the parameters of
the operation is equivalent to maximum likelihood estimation of a convex objective function (which
has a single, global minimum) [131]. Hence, standard convex optimization techniques can be
used to solve for it [61, 42]. This simplification comes at a cost however. The input state isn’t
necessarily known, as there can be errors in the state preparation process, which can lead to
inaccuracy [131]. Compressed quantum process tomography [327] uses compressed sensing, a
known classical signal processing strategy, to reduce the number of measurements required. The
unitary operations performed by quantum computers can typically be represented by nearly-sparse
process matrices, and hence can be well approximated by sparse matrices. These sparse matrices
can be found with exponentially fewer measurements [327].

Direct Fidelity Estimation [105] is another clever method used to extract meaningful information
without exponential overhead. This procedure estimates the fidelity of an arbitrary quantum state
relative to a pure state. Here, the pure state is an error free state which is the intended result of a
quantum operation; and the arbitrary state, what is actually produced. Note that complexity can be
reduced by not attempting to learn everything about the state, seeking only to get the estimate of
the fidelity of the arbitrary state. The estimate is achieved by measuring a constant number of Pauli
observables (applying standard Pauli operations and then measuring). This is possible by making
educated guesses about which Pauli observables are likely to reveal errors.

Gate set tomography (GST) is an extension of QPT [131, 264, 246]. Like QPT, the resources it
requires increase exponentially with the number of qubits [131]. Hence, it cannot target large quan-
tum systems and is also used mainly for 1- and 2-qubit systems. However, a significant advantage
it has over QPT is that it is calibration-free, i.e., it does not depend on accurate descriptions of the
initial prepared states [264]. This is significant, as QPT can generate highly inaccurate results when
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the gates used to prepare the input states have systematic error [246]. Like QPT, the process of
finding the parameters of the quantum operations (gate set) involve maximum likelihood estimation
of an objective function based on measurement results. However, the inclusion of state preparation
and measurement (SPAM) errors in the gate set produces a non-convex objective function [131].
Hence, standard convex optimization techniques do not work, and a combination of approximate
and iterative methods must be used. Another consequence of including SPAM errors is that it is not
possible to characterize a single gate at a time, as in QPT. Rather, there is a minimal set of gates
which must be estimated simultaneously [131]. The mathematical background of GST is provided
in [264] and the protocol is provided in [131].

A scalable approach which has been utilized frequently in recent years is Randomized Bench-
marking [185, 82, 99]. Randomized Benchmarking attempts to go beyond tomography by deter-
mining error probability per gate in computational contexts. Like GST, it is calibration free [264]. A
further strength of randomized benchmarking is that is insensitive to variations in error between the
different types of gates used [151, 375, 285, 247].

There are variations on the specific implementation [39], including numerous extensions [237,
373, 182, 111, 11]. We provide a high level description of the general approach, but note that
different formulations may vary on the specifics. First, a random sequence of operations (gates) is
generated. Commonly, gates are chosen uniformly at random from the Clifford set, as these can
be efficiently performed on a quantum processor [234] and also can be efficiently simulated on a
classical computer [125]. The sequence is then appended with a final operation which undoes the
action of the entire sequence. For example, if the sequence has a length of m and the operation
(set of gates) applied at cycle i is denoted as ci, the effect of the first m− 1 operations is

C =

m−1∏
i=0

ci (8.14)

where
∏

denotes matrix multiplication. The final operation is then chosen to be the inverse, or
adjoint, of C

cm = C† (8.15)

and hence the full sequence will become the Identity operation.

m∏
i=0

ci = cmC = C†C = I (8.16)

This final corrective operation is easy to determine, due to the Clifford set being efficient to simulate
classically [234]. Hence, a quantum state subjected to this sequence will be returned back to its
initial state (in the case of no error). This is often chosen to be the 00...0 state. In experiment, the
fidelity can be found by finding the probability of measuring the initial state [286]. Many sequences
of the same length should be generated, and the results averaged over all cases. This process is
then repeated, using sequences of various lengths. The fidelity will be a function of the sequence
length and will drop exponentially as the the length increases. The fidelity can then be fit to a model,
where constants will absorb the state preparation and measurement errors [234]. This enables the
extraction of the average error per gate. For example, in a single qubit case with independent gate
errors, the average fidelity of the sequence can be modeled as [235]
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⟨F ⟩ = A(−2r + 1)m +B (8.17)

where r is the average gate error and A and B are the fitting constants. This enables r to depend
exclusively on the fidelity of the gate operations [151]. This process can be applied to many qubit
quantum states with relative ease, as the resources required scale polynomially in the number of
qubits [131, 235, 236]. As a result, it has become a standard approach to benchmarking quantum
systems. The common practice of using the Clifford set, while convenient, is also a limitation, as by
itself it is not universal [131]. However, strategies have been found to extend randomized bench-
marking beyond the Clifford set [182, 53, 151]. Additionally, note that the scalability of randomized
benchmarking is enabled by only seeking a subset of the quantum information, it does not provide
the full tomographic information about the gates [246, 101].

Modern analog quantum computers have been able to simulate systems that are hard even for
classical supercomputers [384, 334, 48, 178]. This raises the concern of validating their output, as
they may be untrustworthy [149, 123] and it is challenging to classically certify them [384]. Hamil-
tonian Learning is a process by which the Hamiltonian of a system is estimated in order to validate
that it is simulating the correct dynamics [128, 101, 384, 18, 383]. Additionally, reconstructing the
Hamiltonian of a quantum system will provide detailed diagnostic information which can enable
noise reduction in experiment [101]. The Hamiltonian of an n-qubit system, which has dimension
d = 2n can be described by d2 parameters, though most Hamiltonians of interest can be described
by m = O(poly(n)) [101]. Utilizing known information about the system can significantly reduce the
number of measurements required and make the process tractible [128]. Compressed quantum
Hamiltonian learning [382] is a process in which the dynamics of subsystems of a large device are
measured against the dynamics of a smaller system, enabling a model to be created for the larger
system. Using a trusted simulator [384, 383], which has a firm known mathematical model, enables
an absolute model to be generated for the larger system[382].

8.5 (Quantum) Computer Benchmarking

This kind of benchmarking is more similar to classical benchmarking. The idea is to determine
the compute capability of a quantum system running a program. This is sometimes referred to as
holistic benchmarking [264, 265]. Note that this is still considering near-term computers that do not
use error correction. It shares a number of considerations with classical computing, such as latency
and available parallelism. However, these metrics are not as informative for quantum computers. As
to be expected, there are a number of additional considerations. When discussing benchmarking
for full quantum computers, it is important to reconsider the role of quantum error and, if applicable,
quantum error correction. As previously mentioned, quantum noise is not equivalent to classical
noise, and these differences get more pronounced the larger the system is.

In classical computing it would be feasible to obtain an error rate per gate and stitch these error
rates together to generate an error model for a larger circuit. The quantum equivalent would be
finding a fidelity for each gate, and then assuming this error rate for each gate on each qubit in
the system throughout the entire program. This is not accurate for quantum circuits as quantum
noise is context dependent [372]. Even if good estimates of gate fidelity can be obtained, using
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this information to model larger systems with more qubits is not straightforward. A gate performed
on one qubit may induce error in another, via quantum entanglement or physical proximity. Hence,
qubits must be considered as a monolithic system and their error rates cannot be considered in-
dependently [100, 104]. This is problematic as it makes it difficult to understand how noise affects
large quantum computers. The whole point of creating large quantum computers is to create states
that cannot be efficiently classically simulated. Unfortunately, that also means the noise becomes
impossible to simulate. Hence, accurately characterizing the noise, and its significant effects on the
reliability and performance, is not straightforward.

This has a few key impacts on benchmarking quantum computers. One is that it intensifies
the error that is introduced when using a reduced program size as a benchmark. The error rates
per qubit or per operation may be higher on a larger system. Some experimental evidence has
shown that this may be overly pessimistic [100], but increased system sizes will no doubt increase
susceptibility to noise due to complexity [243]. Hence, the rate of success of a program on a small
system may be significantly different from that of a larger system, and extrapolating results is not
straightforward.

8.5.1 Program Benchmarks

An intuitive approach is establishing a set of programs and measuring the performance of a com-
puting system performing each one. As previously mentioned, this is common practice for classical
computers. Replicating this for quantum computing would be collecting a set of quantum programs
which are representative of the algorithms we would like to run on them. Common examples may
be Shor’s [331] for prime factorization or Grover’s [138] for unstructured search. There are intuitive
advantages to this approach, particularly in making the system perform a “real world” task. IonQ, a
quantum start up which has an 11-qubit ion-trap quantum computer, appears to favor this approach.
They tested their computer on the Bernstein-Vazirani [30] and Hidden Shift [367, 304] algorithms,
and their metric for performance was the likelihood of measuring the correct output [389]. They
claim that these algorithms are representative benchmarks and the results proved their system
was the best as of early 2019.

A challenge that this approach introduces is that someone must decide which programs are
important. This introduces the issue of invested interests [212]. In the classical computing domain,
a lot of money is on the line when benchmarking hardware [152]. This problem is exacerbated
by the fact that different, competing quantum technologies are superior at different programs. For
example, the program benchmark approach was used in [213], where a handful of small quantum
circuits 4 were used to benchmark and compare the performance of an Ion-Trap quantum computer
with a superconducting quantum computer. Amongst the chosen benchmarks were three-qubit cir-
cuits implementing the Toffoli and Margolis gates. It was found that the higher connectivity (ability
of different qubits on the machine to interact) of the ion-trap computer allowed it to have a much
higher relative success rate on the Toffoli circuit, which contained more two-qubit gates during the
program. The success rate was more comparable on the Margolis circuit, which required fewer
two-qubit gates. The authors note that how well the quantum architecture matches with the re-
quirements of the algorithm is a major determinant of the performance [213]. So, which of the two

4In literature on quantum computing, circuit refers to a sequence of quantum gates (instructions). It is analogous to
“program” in classical computing.
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benchmarks are more insightful? This question highlights the difficulty of creating a representative
set quantum program benchmarks. While quantum computing is more complicated, much can be
learned from previously discovered pitfalls and fallacies of classical program benchmarking. Intu-
itively, the benchmarks will be set by the customer, rather than the manufacturer. To the extent
possible, the benchmarks should reflect the applications that customers will be running on them.
Another key component of accurate (and honest) benchmarking with a set of programs is trans-
parency [152]. This means providing data on all the programs and not unfairly weighting some
results over others. For example, a quantum benchmark suite could be created which contains
many circuits which have few two-qubit interactions, but also a few prominent circuits which require
many two-qubit interactions, such as the Quantum Fourier Transform (QFT) [331]. A quantum com-
puter with low connectivity could be benchmarked on all circuits, with only the average performance
being reported. Such analysis could falsely inflate perception of the performance.

While impressive, these modern computers are very small compared to the computers we hope
to build in the coming years. Hence, these benchmarks are also very small compared to truly
useful programs. While running smaller versions of real world applications introduces error, and
is accepted in classical benchmarking, this is exacerbated for quantum computers. Entirely new
issues may be introduced when scaling up and it is difficult to say whether measurements taken to-
day are good indicators of future performance. For example, IonQs computer [389] has all 11 qubits
fully-connected, meaning each qubit can directly interact with every other qubit. This configuration
is possible at this scale, but may not be for a system with hundreds or thousands of qubits. Such
a system will likely require multiple fully-connected groups of qubits and communication will need
to be orchestrated between them [243]. This introduces additional complexity which is not found in
these small scale benchmarks. This is analogous to the classical benchmarking of machine learn-
ing inference accelerators. An accelerator which performs well on MNIST [198] digit recognition
will not necessarily perform well on 1000-class ImageNet [87] classification. While the problem and
computation is similar, ImageNet requires much more data, and memory management becomes
the bottleneck.

A more fundamental question is what quantum programs will be useful in the future. Famous
algorithms such as Shor’s [331], Grover’s [138], and quantum chemistry [271, 245, 51] are obvious
examples. However, for the most part, these algorithms will remain well out of reach for some time.
Currently, classical-quantum hybrid algorithms [320, 381, 103, 278] are popular due to their ability to
make use of the limited resources of modern quantum computers. It is important to remember that
quantum algorithm design is still an emerging field, and what actually is the best use of quantum
computers is still unknown. This presents a moving target, which suggests quantum research
should not too heavily invest in any one direction [37].

8.5.2 Quantifying Capability

Considering the current limitations of quantum computers, it may be more insightful to focus on
how much work a quantum computer is capable of, in contrast to performance results on specific
algorithms. Because quantum technology is not mature, modern quantum computers are not yet
capable of performing commercially useful algorithms. However, creating larger, more functional
computers is of great interest, regardless of the applications they perform. This type of benchmark-
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ing is a shift away from traditional, classical benchmarking, and is an attempt to uniquely and objec-
tively quantify the “capability” of modern quantum computers. The aim is to abstract out as much
as possible, such as unique architecture characteristics and performance on specific algorithms,
and create a simple metric which indicates the general computational power of the machine. While
this benchmarking approach can be applied to all modern quantum computers, it is intrinsically tied
to the concept of quantum supremacy - demonstrating that a quantum computer can perform work
that is not possible with classical computers. Hence, this type of benchmarking is not just used
as a comparison between different points in the design space of quantum computers, but is also
the experimental assessment of the capabilities of quantum computers with respect to classical
machines. Such benchmarks seek practical demonstrations of quantum computers solving well-
defined problems, which are also intractable (in terms of time and hardware resources required)
for classical computers. The best known classical algorithm/implementation should be used as a
baseline for comparison in this case, while accounting for all sources of noise on the quantum side.

The importance of demonstrating quantum supremacy cannot be overstated. A central mo-
tivation for creating quantum computers is to solve problems which cannot be solved by other
means [346], which will only be possible if quantum computers can achieve (and go beyond) quan-
tum supremacy. It has been argued that this will be fundamentally impossible due to noise [174].
Hence, even if an experimental demonstration of quantum supremacy does not provide scientifically
or commercially useful results, it is an invaluable proof of concept for future research efforts. The
success of quantum computing research is contingent upon reaching this goal. The key question
then is how to quantify capability of quantum machines accurately and how to be sure when they
truly achieve quantum supremacy.

Cross-Entropy benchmarking [38] can be used to validate the output of a quantum computer
and was created specifically as method to test for quantum supremacy. The previously described
program benchmarks consider decision problems, where the measurement at the end provides
an answer to a specific question. In significant contrast, Cross-Entropy benchmarking considers
sampling problems. Here, the measurement at the end effectively allows for the sampling from a
certain distribution. It is the ability of the quantum computer to create such a distribution which
acts as the demonstration of quantum supremacy. Hence, it must be shown that the quantum
computer produces the distribution with a sufficient fidelity and that a classical computer (using
polynomial resources) cannot provide a sampling from that same distribution. Beyond demonstrat-
ing supremacy, validating sampling problems is important because they correspond to important
quantum applications, such as quantum simulation.

To produce the output distribution, a quantum circuit is constructed by choosing quantum gates
(from a universal set) at random. Using a random circuit allows for limited guarantees of computa-
tional hardness, as it does not have structure [17, 47, 38, 41]. Executing this circuit on a quantum
computer will produce a quantum state in which some states are much more likely than others,
yet is also widely distributed over the 2n possible measurement outcomes, where n is the number
of qubits. The distribution resembles a speckled intensity pattern produced by light interference
in laser scatter [17]. For a large quantum computer, 2n will be much greater than the number of
samples (executions of the circuit) that can be taken. Hence, it is very unlikely that two different
measurements will be same [38]. This makes it difficult to discern it from a uniform random number
generator by simply looking at the samples. However, the output can be distinguished and validated
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if the circuit is also classically simulated [220, 281, 123, 361]. The classical simulation (which re-
quires exponential resources on a classical computer) will provide the exact output quantum state,
and hence also the exact probabilities of measuring each result (in the absence of noise). This
allows the comparison of the output of the experimental quantum circuit with the ideal quantum
circuit, and also with any classical algorithm that attempts to generate the same distribution. The
information theory definition of entropy is [328]

H(X) = −
N−1∑
i=0

P (xi)logP (xi) (8.18)

where X is a random variable which can take on N values and P (xi) is the probability of ob-
serving X = xi. The output of the quantum circuit, and a classical algorithm attempting to emulate
it, is a random variable which can take 2n = N values. The cross-entropy between the distribution
of the ideal quantum probabilities (pU ) and the polynomial classical algorithm probabilities (ppcl)
can be defined as [38]

H(ppcl, pU ) = −
N∑
j=1

ppcl(xj |U) log pU (xj) (8.19)

where pU (xj) is the probability that the quantum circuit, U , will produce the output xj and
ppcl(xj |U) is the probability that the classical algorithm emulating U will also produce xj . The
value of interest is the average quality of the classical algorithm, which can be found by averaging
the cross-entropy over an ensemble of random quantum circuits, U :

EU [H(ppcl, pU )] = EU

 N∑
j=1

ppcl(xj |U)
1

log pU (xj)

 (8.20)

It was argued in [38, 41, 47] that the polynomial classical algorithm cannot accurately reproduce
the distribution.

When performing the circuit on a quantum computer, a single error (such as X or Z error) will
cause the output to become nearly statistically uncorrelated with pU . Hence, depolarizing noise will
cause an increase in the entropy of the output of the quantum computer, and it will resemble that of
a uniform distribution. This means that the quantum computer, which is subject to noise, will only
barely be able to produce a superior cross-entropy to that of a uniform random number generator.

EU [H(Uniform, pU )] = log N + γ = H0 (8.21)

where γ = 0.577 is the Euler constant. On this concept the quantum supremacy test is based. Any
classical or quantum algorithm, A, which produces bitstring xj with probability pA(xj |U), can be
evaluated on how well it predicts the output of an ideal quantum random circuit, U , by comparing its
cross-entropy relative to that of a uniform classical sampler. This metric is called the cross-entropy
difference [38]:

∆H(pA) = H0 −H(pA, pU ) =
∑
j

(
1

N
− pA(xj |U)

)
log

1

pU (xj)
(8.22)
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If the algorithm A produces the distribution perfectly, with no errors, the cross-entropy difference
will be 1. If the algorithm A produces an uncorrelated distribution, the cross-entropy difference will
be 0 [17, 38]. Effectively, this is a measure of how consistent the outcomes are with the predicted
probabilities [36]. A classical algorithm (using polynomial resources) should fail, and a quantum
algorithm running on a sufficiently powerful quantum computer should succeed. The experimentally
determined cross-entropy difference, denoted by α, can be found by taking m samples from the
quantum computer, with each producing a bit string xexp, and then using classical simulation to find
the value pU (xexp). α is then estimated by [38]

α = H0 −
1

m

m∑
j=1

log
1

pU (x
exp
j )

(8.23)

Quantum supremacy is achieved if a quantum computer can produce a higher α than a classical
computer can. Unfortunately, quantum supremacy also implies that the pU values required to de-
termine α, which are produced by classical simulation (using exponential resources), can no longer
be computed by a classical computer in a reasonable amount of time. Hence, measuring α directly
is not possible if the quantum computer truly has achieved quantum supremacy. However, it should
be possible to extrapolate α, if it has been reliably found at sizes which are slightly below the limit
of quantum supremacy (pU can still be computed by sufficiently powerful classical supercomputers
[38]). In the summer of 2019 Google used cross-entropy benchmarking 5 to quantify the capability
of their 52-qubit quantum computer, Sycamore, where they claim to have demonstrated quantum
supremacy [17]. It is also possible to use cross-entropy benchmarking to find the average fidelity of
individual gates [17, 38], similar to randomized benchmarking.

Note that tests for quantum supremacy doesn’t necessarily require a universal set of gates on
the quantum computer. For example, in the case of Boson Sampling, recent work has demon-
strated that these algorithms can be composed by notably more noise-tolerant (yet not necessarily
universal) set of gates [363].

A similar and influential sampling-based benchmark is quantum volume from IBM [34, 79]. The
process of determining quantum volume shares many of the steps with cross-entropy benchmark-
ing. According to the authors [34], there are 4 factors which determine the capability of a quantum
machine:

1. The number of physical qubits

2. The number of gates that can be applied before errors make the the output unreliable

3. The connectivity of the machine

4. The number of operations that can be run in parallel

It is assumed that quantum volume targets modern, noisy quantum computers. Hence, factor 2) is
referring to running a quantum algorithm without error correction and it is assumed there is an upper
limit on the number of gates possible. In the future, it will be of more interest to determine whether
the error rate is low enough to enable efficient error correction, or how often error correction needs
to be applied. Hence, quantum volume will need to be adapted or superseded in the future [79].

5Google used linear cross-entropy benchmarking, which differs from the standard cross-entropy benchmarking process
explained here. However, the argument is similar for why linear cross-entropy benchmarking is easy for a quantum computer
and hard for a classical computer.
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Similar to cross-entropy benchmarking, quantum volume attempts to abstract out all consider-
ations and generates a single number which quantifies the capability of a quantum computer. The
idea is to measure something which can be improved by each of the 4 considerations, meaning
systems that are superior in each consideration will generally achieve a higher quantum volume.
The score is determined by the largest random quantum circuit a quantum computer is able to
complete successfully. Whereas cross-entropy benchmarking uses the cross-entropy to quantify
the validity of the output, quantum volume uses the heavy output generation problem [5]. Heavy
output generation also requires classical exponential time to validate the output from the quantum
computer, as it relies on the ability to classically simulate the quantum operations [5]. Again, this
will not be possible once physical quantum computers reach the scale where their quantum states
are not efficiently classically simulable. By simulating the quantum operation, the output measure-
ment probabilities can be exactly determined. When ordering all possible outputs from most likely
to least likely, all outputs which have a greater probability than the median are called heavy outputs.
The quantum circuit is then repeatedly performed and the output measured. If the measurements
produce heavy outputs more than 2/3 of the time, the quantum computer “passes”; otherwise it
fails. If noise has completely destroyed the information in the quantum state, heavy outputs will be
generated 50% of the time [79]. The largest quantum circuit that the computer can get a pass on
corresponds to the quantum volume, VQ [79]

log2VQ = argmaxm ( min(m, d(m)) ) (8.24)

where m is the number of qubits and d(m) is the maximum achievable depth of an m-qubit
circuit. Hence, quantum volume is the largest square (m = d) circuit that can be successfully run.

Quantum volume has some limitations. A number of which were addressed in [36], which pro-
poses a framework called Volumetric Benchmarks. The idea is to make quantum volume more
general, by allowing different shapes of circuits, kinds of circuits (random, periodic, subroutines of
algorithms), and different criteria for success. As noted by the authors of [36], errors will affect dif-
ferent kinds of circuits differently, such as coherent errors getting magnified by periodic circuits but
getting smeared out by random circuits. This provides evidence that universal benchmarks should
be avoided. While quantum volume is a novel and useful concept, it uses exclusively random cir-
cuits. As we show in our simulations, random circuits have a similar affect to applying randomized
compiling [376]. Another potential drawback is that quantum volume can produce potentially mis-
leading results. For example, a Honeywell quantum computer achieves a high quantum volume
score due to its extremely high fidelity operations [339]. However, given the relatively low qubit
count, its dynamics can be simulated classically with ease [4].

Another significant approach is that of Cycle Benchmarking [100]. This is similar to the process
of randomized benchmarking. The core idea is to break a quantum program into sets of operations
on all the qubits (cycles) and then individually characterize the fidelity of each cycle. This allows one
to quantify how well the computer can do specific operations. Additionally, arbitrary programs can
be broken into a finite set of cycles [372]. This prevents the number of required characterizations
from growing exponentially with the number of qubits. Using cycle benchmarking, the “benchmarks”
would be individual cycles and the metric is the process fidelity.
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8.6 Fault Tolerant (Quantum) Computer Benchmarking

Thus far we’ve considered qubit benchmarking and holistic computer benchmarking for near-term
quantum machines. While there has been much effort to create practically useful quantum algo-
rithms for these machines, as of yet their performance falls far short of their classical competitors.
Hence, the main goal of these near-term demonstrations has been for research and to learn how
to achieve scalability. Once computers are built that have sufficient qubit counts and sufficiently low
error rates, full-scale quantum error correction (QEC) [131] will become possible. QEC can detect
and correct errors during the run of a program, and hence enable computers to perform arbitrar-
ily long quantum programs. This is referred to as fault-tolerant quantum computing [284]. Such
computers will be capable of solving real-world problems with much greater speed than classical
computers, performing well beyond the threshold for quantum supremacy. Naturally, such fault-
tolerant computers will significantly change the landscape of benchmarking as it breaks many of
the assumptions of previously described techniques. For example, the maximum circuit depth is
effectively infinite, hence a metric such as quantum volume would be limited only by qubit count.
More fundamentally, the quantum states of these machines would be much too large to simulate,
and hence the classical validation of the heavy output generation problem would not be possible. A
typical use case for large-scale fault-tolerant quantum computers will be running algorithms which
will be impossible to run on a classical computer, but for which the output can efficiently be checked
for correctness on one [221], such as Shor’s algorithm [331].

However, no fault-tolerant computers have been built to date, and hence there is not much re-
search dedicated to benchmarking them. Likely, quantum benchmarking will look much more similar
to classical benchmarking, where the emphasis will transition to performance (latency to produce
the final result) amongst quantum processors which have sufficiently many qubits to perform the
algorithm of interest. Benchmarking may take a similar form as program benchmarks, as described
in Section 8.5.1, except the chosen benchmarks would be real-world, full-size applications rather
than sample toy cases. Additionally, unlike the modern computers performing the program bench-
marks described in Section 8.5.1, a fault-tolerant computer should not fail due to noise. Hence, the
probability of success will not be a representative metric.

The performance of fault-tolerant computers will have a strong dependence on the method QEC
used as it has a high overhead. QEC utilizes many qubits [108], involves many, repeated quantum
operations, and also requires significant classical hardware resources to manage its orchestra-
tion [248]. Both the qubit chip [95] and the supporting classical architecture [354] will need to be
specifically designed to support QEC. For an introduction to quantum error correction, we refer the
interested reader to [127].

8.7 Simulations

To illustrate the impact of the different types of quantum noise in different computational con-
texts, and the resulting difficulty of choosing representative benchmarks, we run representative
key quantum algorithms at sizes that are experimentally feasible. We use a Quantum Adder [60],
the Quantum Fourier Transform (QFT) [331], and the Quantum Approximation Optimization Algo-
rithm (QAOA) [103]. In addition, we use an idle circuit (which has no computational gates) and a



CHAPTER 8. QUANTUM BENCHMARKING AND IMPACT OF QUANTUM NOISE 136

random circuit (composed of random X, Y, Z, H, and CNOT gates), for reference. Note that this is
not the same randomized circuit as used in Quantum Volume [79], which generates a set of arbi-
trary random unitary operations, which need to be decomposed into a universal gate set. For our
random circuit, we want to view the effects of performing our gate set in random fashion, without
introducing the complexity of gate compilation (which is needed for our other algorithms). Unless
otherwise stated, our metric is the process fidelity [105]. We note that other metrics may be equally
suitable. However, we chose process fidelity as it is widely used in the quantum information science
community [118] and it shines light on the complexities of benchmarking mentioned earlier.

The QFT and QAOA benchmarks contain gates which are precise rotations around the X- or Z-
axis of the bloch sphere. Rz(θ) is a rotation around the Z-axis by angle θ and Rx(θ) is the equivalent
for the X-axis. Currently available modern quantum computers, such as IBM’s machines [7], can
perform these operations directly. This can be powerful, as it enables quantum computation to
occur relatively quickly, which also mitigates the effects of noise. As this gate set is likely to be used
for some time into the future, we include it in our simulations of the QFT and QAOA. However, this
gate set is not compatible with randomized compiling (RC) or quantum error correction. Hence, it is
not scalable to the level of fault-tolerant quantum computers. For progressing into the fault-tolerant
regime, the Clifford+T set is a good option. This gate set is universal and enables use of RC. Hence,
we include Clifford+T versions of the QFT and QAOA as well. While we are using the Clifford+T
gate set, we are not performing error correction in the simulation. Hence, these do not represent
fault-tolerant computations. However, using this gate set can provide insight on how the impact
of noise is affected by the chosen gate set. Each gate in Clifford+T can be implemented with the
previously mentioned X- and Z- rotations – using the Clifford-T set just restricts the angles used.
When performing these gates on physical qubits, as we do here, the operations are not changed in
any fundamental way. While we do not show simulations of error correction, it should be noted that,
in order to perform error correction, groups of physical qubits would form a single logical qubit, and
the logical operations consist of many individual gates on the physical qubits [108].

The drawback of Clifford+T is that precise rotations must be broken into sequences of gates
which can perform the operation approximately. This increases the length of the circuit. For single
qubit gates, we use the gridsynth decomposition method from [323] which finds an approximation
to Z rotations with Hadamard (H), T and S gates. This is sufficient, as any single qubit gate U can
be implemented using the Euler angles [323]

U = Rz(β) Rx(γ) Rz(δ) = Rz(β) H Rz(γ) H Rz(δ) (8.25)

for some β, γ, and δ. Hence, any quantum gate can be approximated by a sequence of approxi-
mate Rz gates and H gates. An additional complication exists in that controlled versions of these
gates cannot be implemented directly [183]. For a general case, controlled 2-qubit versions of the
gates can be implemented by including an additional ancilla (scratch) qubit and using an alternative
sequence of gates [13]. However, both the QFT and QAOA can be implemented with just CNOT
gates and single qubit Rz gates. Hence, controlled- H, S, and T gates are not required.

The Quantum Adder performs binary addition using a sequence of quantum full-adders on two
input integers which are basis state encoded (1 qubit for each bit). If performing n-bit addition, the
quantum adder requires 3n + 1 qubits. We perform 2-bit addition (using 7 qubits). The adder only
uses gates in the Clifford+T set and hence does not require gate decomposition. It does use the
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Toffoli (doubly controlled X gate), which we implement with a sequence of CNOT, H, and T gates.
The QFT effectively performs the Discrete-time Fourier Transform (DFT) on the amplitudes of

the input quantum state, and is the core of Shor’s algorithm. The width and depth of the circuit are
determined by the number of input qubits. We use 4 input qubits. The circuit contains Hadamard
gates and controlled-Z rotations, which can be implemented with CNOT and Rz gates.

QAOA has gained a lot of attention recently as it is considered to be a strong candidate to
demonstrate quantum supremacy. QAOA is a variational algorithm, where quantum computation is
used in tandem with classical optimization [381]. It is commonly applied to the Max-Cut problem.
The input to Max-Cut is a graph which represents a combinatorial optimization problem. Vertices
are variables and the edges between vertices are constraints. The goal is to partition the vertices
into two sets, maximizing the number of edges between the sets. The maximum cut is the number
of edges between the sets in a best possible partition, which is the most constraints that can be sat-
isfied simultaneously. Max-Cut is NP-Hard, however, it is not expected that quantum computers will
be able to solve NP-Hard problems in polynomial time. QAOA only provides an approximate solu-
tion and currently has worse performance than classical approximate algorithms [122, 193]. QAOA
consists of a sequence of stages. Each stage consists of controlled-Z rotations (determined by the
input graph) followed by single qubit X rotations. The hyperparameter p determines the number of
stages in the quantum circuit. For each stage, there is a parameter γ, which determines the angle
of the controlled-Z rotation, and a parameter β, which determines the angle of the X rotations. The
main challenge of QAOA is to determine an optimal set of parameters in order to produce good
output [139]. When implemented on a real quantum computer, optimization algorithms such as
SPSA [335] or gradient descent can be used to update the parameters [343]. This requires many
optimization passes, where each pass requires many (thousands or millions of) samples of the
quantum circuit output. The number of samples required heavily depends on the problem size and
noise level in the system. Here, we consider only a pre-optimized circuit with p = 1. When p = 1, the
optimal circuit is guaranteed to produce an output with an expectation value that is at least 0.6924
times the maximum cut [103, 137] on 3-regular graphs. Here, we use a 3-regular input graph with
8 vertices (represented by 8 qubits), which has a maximum cut of 12. This means QAOA should
produce an expectation value of 8.3 in the case of no error. For this problem, we use expectation
value of the output as the metric. As QAOA is designed to also work on a small scale, it can be
used effectively with continuously parametrized rotation gates available on near term machines.
We implement QAOA with these gates as well as with the Clifford+T set. A useful tutorial for QAOA
is provided in [277].

For our simulations, we assume the quantum computer has an all-to-all connectivity and full
parallelism. This means 2-qubit gates can be performed without any overhead for movement, and
multiple single qubit gates can be performed simultaneously, given that they do not operate on
the same qubits. Moving qubits with swap gates in order to compute on machines with limited
connectivity is a well-studied problem [205, 407]. Our observations here will also apply, but there
will be further complicating factors depending on the specific topology. For discussion on how noise
and topology interact see [355].

We also view the impact of RC [376] in each of our simulations. RC was designed as a method
to convert coherent noise effectively into stochastic Pauli noise. This is significant, as coherent
noise can be much more destructive and is predominantly seen in physical experiments. Hence,
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Benchmark # Qubits Logical Physical Gate Metric
Depth Depth Set

IDLE 4 2-70 2-70 I Process Fidelity
RANDOM 4 2-70 2-70 I,X,Y,Z,H,CNOT Process Fidelity

Adder 7 30 30 H, T, CNOT Process Fidelity
QFT 4 10 10 H,Rz,CNOT Process Fidelity

QFT (Clifford+T) 4 10 229 H, T, S, CNOT Process Fidelity
QAOA 8 10 10 H, Rz ,Rx, CNOT Expectation Value

QAOA (Clifford+T) 8 10 113 H, T, S, CNOT Expectation Value

Table 8.4: Benchmarks used in simulations. # Qubits is the number of qubits required for each input
size. Logical depth is the depth of the quantum circuit (number of sequential gates) required before
compilation into Clifford+T set. Physical depth is the depth after compilation. The Adder and QFT
have two different input sizes.

RC not only provides a significant noise mitigation technique, but also maintains the validity of
previous theorems and results which have been generated by assuming stochastic Pauli noise. We
emphasize, as noted by the original authors [376], that RC is not designed to have any impact on
a Pauli noise model, hence we expect to see no improvement in the fidelity if a Pauli noise model
is used. Additionally, for most of our simulations we are using process fidelity as the figure of merit,
for which RC is not expected to add as much benefit. RC will provide greater impact if using a
norm-based measure, such as the trace distance. In order to perform RC, we need to divide the
gate set into “easy” and “hard” gates. Easy and hard can generally be thought of as the difficulty
in implementing the gate, such as the expected error rate, but the essential requirement is that the
physical noise on the easy gates be independent of which easy gate is performed. We follow
[376] and set easy gates as the Pauli gates and the phase gate S; where the hard gates are H,
T, and all 2-qubit gates. However, instead of controlled-Z, we use CNOT. Nearly all gates in the
decomposed circuits are “hard” gates. Hence, it is necessary to interleave these gates with idle
cycles in order to implement RC. From a high level, simulation perspective, this initially seems to
imply that the cost of RC is a near doubling of the circuit length. However, as noted by the authors
of [376], on real hardware (such as ion traps and superconductors) entangling operations, which
are required for “hard” multiple qubit gates, must be inserted between local gates. These local
gates, which are required even without RC, can be “compiled into” the randomized gates. Hence, in
practice RC can be implemented with no additional circuit length overhead. Therefore, to make our
simulations more representative of physical experiments, we insert the additional idle operations
into our circuits whether RC is performed or not.

We use four representative noise models which fall into different categories discussed in Sec-
tion 8.3. While no quantum system will have a single source of noise, we use them in isolation
to demonstrate how the nature of the noise (along with the assumptions made in noise models)
significantly impacts the results. The first is a standard Pauli noise, where the probability of X,
Y, and Z errors are all equally likely. While the most commonly used noise model, it generally
provides the worst (and overly optimistic) estimates or error correcting threshold error rates [143].
Pauli noise is a non-unitary and incoherent model. To model purely coherent and unitary noise, we
follow the same approach as in [45], where we assume constant Z-rotations by angle θ for each
qubit, (eiθZ)⊗n, for various values of θ. While this model makes some simplifying assumptions, it is
representative. The third is a combination of Pauli and coherent noise, where we follow the model
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Error Pauli Coherent Pauli+Coherent Amplitude
Level Damping

0 0 0π 0 , 0π 0
1 0.01 π/30 0.01 , π/30 0.01
2 0.02 π/15 0.02 , π/15 0.02
3 0.03 π/10 0.03 , π/10 0.03

Table 8.5: Noise levels tested for each noise type. Noise is inserted in every qubit in every cycle,
regardless if it is being operated on. Pauli noise rate refers to probability of inserting and X, Y, or
Z gate. Coherent noise is the rotation angle applied. For Pauli+Coherent, only X Pauli gates and
X rotations are applied to align with the model in [132]. Amplitude Damping error rate refers to the
parameter γ [357], which is the probability of relaxation to the ground state.

in [132]. This includes static X rotations and X Pauli errors. The fourth error model is Amplitude
Damping, which is a commonly used and realistic noise model. It models loss of energy from the
system to the environment and is a non-unitary process. We sweep the noise over a range of
values which are similar to experimental error rates and are expected in near term computers, as
listed in Table 8.5. Each noise type is injected in every qubit in every cycle, regardless if the qubit
is operated on or not. We assume the same noise rates for single and two-qubit gates. While two-
qubit gates will typically have a higher rate of noise in a physical experiment, our values are swept
over ranges typically seen for both single- and two-qubit gates. Unless otherwise stated, our metric
of choice is the process fidelity of the noisy operation, G̃, to the noiseless operation, G, [100, 105].
If the noisy operation G̃ is free of error, the process fidelity will be 1. We repeat experiments with
different input pure states. We generate the input states at random in the same manner as [24],
by selecting random polar coordinates on the Bloch sphere for each qubit and report the average
process fidelity.

Numerous quantum simulators exist, [147, 338, 345, 169, 302], many of which would be suit-
able to run our simulations. However, as we are implementing algorithms and incorporating noise
models from a variety of sources, and did not want to unintentionally bias our experiments by re-
lying on any specific software, we chose to run our simulations with the statistical programming
language R [288]. This allows us to fully and independently define our experiments. Additionally,
R is highly optimized to perform matrix multiplication, which is the essential component for density
matrix simulation. Our source code is available at [294], which is an extension of our R package
QuantumOps [295]. To perform the gate decomposition, we rely on the gridsynth algorithm [322].

Performing simulation with density matrices allows us to avoid much Monte Carlo simulation.
However, Monte Carlo simulation is still needed due to the randomness introduced by our random
input states, use of RC, and the random circuits for the random circuit benchmark.

8.8 Results

For the Idle and Random circuits we sweep the noise levels over the values listed in Table 8.5 and
plot the effect on the fidelity for circuits of different lengths. As the Addition, QFT, and QAOA circuits
have a constant depth, we sweep the 4 error models over a fine-grained range and plot the process
fidelity or accuracy of the output versus the error rate.

Results for the Idle circuit are shown in Figure 8.2 and results for the Random circuit are shown
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(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.2: Idle circuit with 4 qubits under various noise models.

(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.3: Random circuit with 4 qubits under various noise models.

(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.4: 2-bit addition circuit under various noise models.

(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.5: 4-qubit QFT (Clifford+T) under various noise models.
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(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.6: 4-qubit QFT with parameterized rotation gates under various noise models.

(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.7: QAOA (Clifford+T) expectation value under different noise models.

(a) Pauli Noise (b) Coherent Noise (c) Pauli+Coherent Noise (d) Amplitude Damping

Figure 8.8: QAOA with parameterized rotation gates expectation value under different noise mod-
els. As the circuit is significantly shorter than Clifford+T QAOA, the noise is tested over a signifi-
cantly larger range.
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in Figure 8.3. Both circuits are performed from 2 to 70 cycles. Cycles here indicate the length of a
single gate. Note that error level 0 shows a process fidelity of 1, meaning there is no corruption of
the quantum state. It is highly noticeable how coherent noise affects the Idle and Random circuits
differently. For the Idle circuit, coherent noise has an immediate drastic impact on the fidelity. We
must note the strange behavior of the Idle circuit under coherent noise. Due to our simplified
coherent noise model, the fidelity returns with a periodicity determined by the constant angle of
rotation. This is unlikely to be a physically realistic phenomenon, and even if it was, it would not
be possible to exploit this fact unless one was completely aware of the exact effects of the physical
noise. As physical noise is difficult to model and predict, it is highly unlikely one would have such
knowledge. Note that randomized compiling removes this periodic effect.

The true observation from the simulation of coherent noise on the Idle circuit is the immediate
destructive nature of even a slight coherent noise source. Note that randomized compiling mitigates
this impact and causes the coherent noise to have the same effect as stochastic Pauli noise. Inter-
estingly, this same coherent noise is not as destructive on the Random circuit. In fact, even without
Randomized Compiling, the error decays exponentially just as it does under stochastic Pauli noise.
This finding is consistent with [36], which says that coherent noise will affect randomized circuits
much differently than idle or cyclic circuits. The coherent noise gets “smeared out” by the random-
ization inherent in a random circuit. Additionally, this suggests that the randomized benchmark
circuits in Quantum Volume [79], depending on the gate decomposition, may not be representative
of many quantum circuits. Noteworthy is that Randomized Compiling may not be necessary if the
circuit already contains a high degree of randomness. However, the vast majority of useful quantum
algorithms do not have such structure.

The chosen quantum noise model has a drastic impact on the performance of quantum algorithms.
Hence, one must be sure that the assumptions on the noise present in a physical system are
appropriate. Additionally, the effect of the quantum noise is largely determined by the nature of
the quantum algorithm being performed. Hence, one must be cautious when choosing quantum
algorithms for benchmarks.

Results for the addition circuit are shown in Figure 8.4, the Clifford+T version of QFT in Figure
8.6, and the parameterized rotation gate version of QFT in Figure 9.3. Note that circuits using the
parameterized rotation gates cannot be randomly compiled. Randomized Compiling produces a
significant increase in fidelity when coherent noise is present.

Note that under Pauli noise or Amplitude Damping, Randomized Compiling does not provide
a significant improvement. For Pauli noise, as it is already entirely random, it remains unmodified
by the random compilation. This is noted by the inventors of RC [376]. As RC is designed to
mitigate coherent rotations of the qubit state, it is also intuitive that it would not significantly mitigate
Amplitude Damping, which models energy loss of the system. However, RC may help in some
specific circumstances, such as when a qubit is held in the excited 1 for an extended period of time.
As Amplitude Damping models the collapse from 1 to 0, the 1 state is more vulnerable. As noted
by the authors of [310], Amplitude Damping is more destructive if the quantum data in a program
contains more qubits in the 1 state. RC could make the state oscillate, reducing the amount of time
the qubit will spend in the excited, more vulnerable state. However, this condition was not present
in our benchmarks.
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While a critical tool to enable scalable quantum computing, especially for modern machines, Ran-
domized Compiling (RC) cannot be used as a generalized noise mitigation technique. As noted
by the original paper [376], randomized compiling is used to “convert” coherent noise to stochas-
tic Pauli noise. This is significant, as modern, physical quantum computers are dominated by
coherent errors. Additionally, this conversion to Pauli noise maintains the validity of previously
established proofs which have assumed Pauli noise.

Results for the Clifford+T QAOA are shown in Figure 9.2. If no error is present, the QAOA circuit
will produce an expectation value of 8.3, as this is 0.6924× of the maximum cut (12), which is
expected for a QAOA circuit with p = 1. The expectation value of a random guess for the max-cut
problem is at least 50% that of the maximum cut [137]. For the specific problem we used, a random
guess produced an expectation value exactly 50% of that maximum. Hence, increasing the noise,
which increases the entropy of the output, generally caused the expectation value to decay to 6.
Noticeably, the expectation value drops to that of a random guess even for very low levels of noise.
Amplitude Damping noise has significant potential to drop the expectation value below 50%, as
high levels of this noise will cause the state to transition more towards the 00...0 state. The 00...0

state does not satisfy any of the input problem’s constraints and hence produces an expectation
value of 0. Notice that RC prevents this drop below 50%.

QAOA using parametrized rotation gates is shown in Figure 8.8. Due to not using decomposi-
tion, the circuit is much shorter and hence significantly less impacted by noise. Note that this gate
set is not compatible with randomized compiling or quantum error correction. Hence, it is not scal-
able but still feasible for the small cases which we are considering. Despite the difference in gate
sets, this version of QAOA shows similar expectation value patterns due to the different noise types.
The expectation value tends to converge towards a value that is 50% of the maximum. Again, a
combination of Pauli and coherent noise is particularly destructive.

8.9 Conclusion

Computer architecture uses layers of abstraction to manage complex problems. This approach has
already been applied to quantum computing. Unfortunately, quantum systems are notorious at de-
fying abstraction and simplifying assumptions. It is easy to make invalid assumptions and generate
inaccurate results. Here, we showed that quantum noise is more complex and difficult to model
than is often assumed. This has profound effects everywhere, and can be felt significantly even
at higher levels of the system stack. This complicates the task of benchmarking, which is already
challenging and full of subtlety for classical computers. The noise model, the target application,
and the performance metric all need to be carefully considered.



Chapter 9

A day in the life of a quantum error

9.1 Introduction

In the future, quantum computers will have sufficient qubit counts and fidelity in order to perform
quantum error correction, and hence will be capable of computations of arbitrary size. This is unfor-
tunately not true for current machines, which have both limited qubit counts and fidelity. Although
small in size and noisy, the existing quantum computers with fifty-plus qubits are capable of pow-
erful computations. To leverage existing quantum computers, researchers are developing software
techniques to mitigate hardware errors. To that end, recent proposals use machine-specific noise
characteristics to increase the likelihood of measuring the correct output on Noisy Intermediate
Scale Quantum (NISQ) computers [352, 256, 355]. However, there is a lack of studies on under-
standing how an error affects the later instructions and the output of quantum programs. Such
analysis can be beneficial as it can allow the execution of of noise tolerant parts of a program
on less reliable qubits. By exploiting the unique properties of specific programs, potentially larger
applications can be run reliably.

Our approach to sensitivity analysis corresponds to the quantum equivalent of well-explored,
classical statistical fault injection, where each experiment entails (i) injecting a fault in space or time
at a specific point in computation (e.g., by corrupting temporal state, using a representative noise
model to best capture the actual manifestation of a given type of fault); (ii) tracking the fault propa-
gation all the way to the end results; and (iii) repeating this procedure for a statistically significant
number of times to be able to draw a meaningful conclusion. Similar to this procedure, our exper-
iments (in simulation) involve corruption of one qubit (to capture spatial noise tolerance) and one
gate operation (to capture temporal noise tolerance) at a time, in performing a quantum algorithm,
and simulating the respective experiment with density matrices to achieve a statistically significant
result.

Of interest, is how errors on qubits temporally and spatially propagate when performing a quan-
tum algorithm. If this can be properly characterized, such information can enable novel optimiza-
tion opportunities in mapping an application on to quantum hardware, to best match the spatio-
temporal variation in quantum noise tolerance of the underlying quantum substrate. The idea is
mapping noise-sensitive computations to the least noisy components of the quantum computer
(spatial scheduling). Additionally, performing gates earlier or later can reduce sensitivity to noise
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(temporal scheduling). Going even further, characterizing the noise tolerance of specific algorithms
could aid in the design of application-specific quantum hardware [203].

In many ways, quantum computing significantly increases the complexity and difficulty of statis-
tical fault injection. As accurate noise models are difficult to develop, simplifying assumptions must
be made. Additionally, noise rates are much higher in quantum systems, which makes validation by
physical experiment difficult, as errors are not manifested as single isolated events. This leaves as
an open question if classically-inspired fault-injection analysis can be effectively used for quantum
computers.

9.2 Background

9.2.1 Noise Types

Quantum noise is complex, and often simplifying assumptions are made to ease simulation and
analysis [376]. Stochastic Pauli Noise is commonly used, which corresponds to the random inser-
tion of extra X or Z gates. However, this is not a complete representation [44]. More realistic noise
models capture Amplitude Damping (AD) and coherent errors. AD is the collapse of a qubit into its
low energy state, and is the result of imperfect isolation from the environment. The likelihood of this
occurrence can be calculated as a function of experimentally determined coherence times [357].
Notably this can cause loss of entanglement between qubits. For example, if two qubits are in the
maximally entangled bell state, 00 + 11, both qubits are in a superposition and their states depend
on each other. If AD occurs on the second qubit, the state will transform to 00 + 10, where the sec-
ond qubit is now guaranteed to be in state 0. Additionally, the state of the second qubit no longer
depends on the first qubit, and they are no longer entangled.

Coherent noise can be slight over- or under-rotation of qubits due to imperfect control hard-
ware [44, 130, 19, 191, 373], and is the dominant noise source in modern quantum computing
systems [376]. Unlike AD, this noise source is unitary. Hence it does not destroy the quantum
state, but will move it into a different, and undesired, coherent state [24]. A phase error (Z-rotation)
will change the phase between the 0 and 1 states. A Z-rotation by angle θ will transform the quantum
state from α0 + β1 to α0 + eiθβ1. A rotation by π will effectively be a Z gate.

We model noise by causing AD with 100% chance of collapse and by performing Z-rotations by
π.1 This is not to suggest that physical quantum noise manifests in this manner. Rather, we test the
spatial and temporal susceptibility of quantum programs to noise of this nature.

In practice, it may be beneficial to use machine-specific noise models. The approach developed
here still applies, and can be made machine-specific by simply swapping out the specific noise
model. Such machine-specific noise models will change over time and across re-calibration cycles.
Regardless, AD and coherent rotations are representative of real-world processes and can provide
insight into quantum program sensitivity.

1For the case studies used in this work, different AD probabilities and Z-rotation angles affect the severity of the impact,
but not do not change the nature of the impact.
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9.2.2 Metrics

Evaluating the effects of quantum noise also depends on the metrics of interest. Process Fi-
delity [105] is an intuitive metric as this effectively measures the distance between the actual quan-
tum state and the ideal. However, depending on context, this could be misleading. Phase errors
will cause degradation of the process fidelity, but will not directly affect measurement outcomes (in
the Z-basis). Hence, this may be overly pessimistic. A similar metric, the Hellinger Fidelity, focuses
exclusively on measurement probabilities. It is a measure of how similar samples from a probability
distribution are. This can easily be determined by performing a quantum program multiple times
and comparing the measured results to the expected. This metric is useful as it roughly corre-
sponds to how likely one is to get results from the correct set of possible answers. However, it has
its own drawbacks. The Hellinger fidelity can vary widely and report pessimistic results if there are
only a few possible measurement outcomes in the ideal case. For example, say the ideal case has
a 100% chance of measuring 0010010. If there is an X error causing a flip on the last qubit, there
will be a 100% chance of measuring 0010011. While these outputs are highly similar, and it may
be possible to find the correct answer with post processing, the Hellinger fidelity will be 0 due to no
overlap in the output measurements.

Probability of Successful Trial (PST) is another widely used metric. It is the probability of mea-
suring the correct output. In some cases it may also be overly pessimistic. In the above example,
the PST would also be 0. PST finds greater applicability if there is no classical means to extrapolate
the correct output from a noisy measurement.

9.3 Case Studies

Different quantum circuits (programs) can vary in how they are affected by noise. We use circuits
with starkly different characteristics to understand how faults evolve in time and space. Moreover,
we use quantum benchmarks, which can be parametrized and scaled without significantly changing
the workload structure.

Quantum Adder (ADDER): Quantum adder circuits perform addition on two quantum states. We
use quantum adders because (1) Output of quantum adder is trivial to verify using conventional
computers (2) Adders have a rich structure that uses Toffoli gates, which are sensitive to both
amplitude and phase errors. Moreover, quantum adders are used in Shor’s prime factorization, and
they are a basic building block of many quantum arithmetic functions.

Bernstein-Vazirani (BV): is a quantum algorithm that demonstrates quantum speedup by query-
ing the oracle only once to find the encoded secrete. On execution, BV outputs a binary string
corresponding to the secret key. We use an oracle function that uses CNOTs and leverage phase
kickback. The sensitivity to phase errors but tolerance against bit-flip errors make BV an interesting
case study.

Quantum Approximate Optimization Algorithm: The Quantum Approximation Optimization Al-
gorithm(QAOA) can solve combinatorial optimization problems such as MAX-CUT. Certain charac-
teristics of QAOA make it tolerant to noise. For example, QAOA can be run in a variational mode
where it is run multiple times with classical parameter updates in order to achieve an optimal output.
One of the unique structural traits of QAOA is that all qubits have an equal number of connections
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(participate in 2-qubit gates), and the circuit is typically chosen to have a shallow depth. We use
QAOA implementation that requires only nearest-neighbor connections. This greatly eases execu-
tion on a physical machine as it does not require any qubit swap operations. The input to QAOA is
the 00..0 state.

Quantum Fourier Transform (QFT): The Quantum Fourier Transform (QFT) performs the Discrete-
Time Fourier Transform on the amplitudes of a quantum state. It is the core of Shor’s algorithm for
factorization [331]. The QFT circuit is asymmetrical, for an n-qubit QFT, the least-significant qubit
is the target of n − 1 controlled-rotations and the most-significant qubit is not the target of any
controlled-rotations. However, it is the control of n− 1 such operations.

The input to the QFT circuit is typically a highly entangled state. In the case of Shor’s algo-
rithm, the amplitudes are the outputs of the modular exponentiation function. We use an entangled
state where the amplitudes form a periodic function, representative of input to the QFT in Shor’s
algorithm.

9.4 Fault-Injection Analysis

To determine the sensitivity of quantum circuits we need to insert noise at specific locations and
times. This can be done by inserting a noise event on a single qubit during a single cycle of the
circuit. While this noise event will have an immediate impact on the quality of the quantum state,
and analyzing this immediate impact can build intuition, it is of more interest on how it will impact
the state once the entire circuit has been executed. This is for two reasons. One is that only
effects visible at the output will degrade the measurement results. Hence, if a noise event induces
an error which becomes obscured, we don’t care. The second reason is that, unless performing
quantum error correction, we will not be able to detect, mitigate, or correct the error in real time
during execution. The effects remain invisible until a measurement is performed, which is at the
end of the circuit for these near term applications.

For our simulations, we insert a single noise event on a single qubit in a single cycle and view
the impact on the output of the circuit. We repeat this for every qubit and every cycle in each circuit.
To accentuate the impact of the noise event, all other operations are noiseless, including gates,
idling, and measurement. To visualize the impact, we plot the circuit over the heatmap of the output
quality. This way, it is easy to spot the sensitive regions of each circuit.

An example is shown in Figure 9.1. The figure follows the same conventions as quantum circuits,
the qubits are stacked vertically and the time flows from left to right. Gates are represented by black
circles. White circles are the targets of 2-qubit gates. For clarity, we omit the traditional horizontal
lines tracing a qubit in traditional circuit diagrams. The heatmap shows the hellinger fidelity of the
output if a single error occurred at that location in space and time. Hence, each noise location
represents an individual experiment, where noise occurred at that location and nowhere else. The
color on a gate represents an error which occurs immediately after the gate. The heatmap scales
from perfect output, green meaning the hellinger fidelity is 1, to yellow at 0.5, and finally red at 0.

The ideal output of the circuit in Figure 9.1 is 000+ 110. If AD occurs on qubit 0 on cycle 1, after
the H gate, the output will be 000. This has considerable overlap with the desired output, and the
hellinger fidelity is 0.46 and the location on the heatmap circuit is indicated as such. If AD occurs
after the first X gate on qubit 1, the final output will be 010 + 100. This has no overlap with ideal
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(a) Heatmap Circuit (b) Circuit

Figure 9.1: Heat map circuit alongside equivalent circuit diagram. Heatmap shows hellinger fidelity
of output if AD (with 100% chance of collapse) were to occur at each location.

output, hence the hellinger fidelity is 0. If AD occurs on qubit 1 after the final CX (CNOT) gate, this
will cause a loss of entanglement between qubits 0 and 1. The output state will be 000 + 100, and
the hellinger fidelity is 0.29. As qubit 2 remains at 0 the entire time, and is not entangled with the
other qubits, AD on qubit 2 has no effect on output.

For noise events, we use both Amplitude Damping (AD), which has a 100% chance of collapse,
and coherent Z-rotations by π. For metrics, we show the hellinger fidelity.

(a) AD

(b) Coherent-Z
Figure 9.2: QAOA

As can be seen, the effect of noise highly depends on the circuit. For circuits which create highly
entangled output states, AD tends to have more destructive results later in the program, whereas
coherent Z-rotation tends to have more impact earlier in the program. This is intuitive, as AD causes
a loss of information and entanglement. The further along the program is, the more entangled
the quantum state is and hence a greater loss of information with the non-unitary collapse in AD.
Coherent noise will not cause loss of entanglement, and as it is unitary (reversible), does not destroy
information in the quantum state. Effectively, it changes the program that is being performed. The
earlier this occurs in the circuit, the more opportunity it has to spread to other qubits and further
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(a) AD

(b) Coherent-Z

Figure 9.3: QFT

corrupt the state. This trend is observable even in these small scale simulations. It is expected to
have an even more significant impact on larger circuits, where the increased circuit depth provides
more opportunities for spreading error and entangled states exist for longer periods. Notably phase
errors do not cause a change in the measurement outcomes if they occur immediately before
measurement. Hence, Z-rotation errors show no degradation if occurring after the last gate on a
qubit.

If spatial sensitivity is observed (some qubits/gates in a cycle have worse errors than others),
the sensitive gates/qubits can be scheduled on a machine’s most reliable physical qubits (spatial
gate scheduling). This will only help if these qubits can be mapped correctly to the physical machine
without introducing additional swaps, or if the swaps introduce less error than is saved. For example,
qubit 0 of QAOA (Figure 9.2) and qubit 2 of the adder (Figure 9.4) show low sensitivity to both AD
and coherent noise, relative to other qubits in the circuit. Hence, some robustness may be gained by
mapping these logical qubits to less reliable physical qubits in physical experiment. This technique
can be added on top of well-studied methods of mapping quantum circuits to the most reliable
physical qubits [355]. Effectively, in addition to using the overall most reliable qubits, the reliability
of the physical qubits used are matched to sensitivity of the logical circuit.

Temporal gate scheduling also plays an important role. Exemplified by BV (Figure 9.5), per-
forming gates as late as possible can reduce sensitivity. If all qubits are initiated and put into a
superposition with H gates early, this leaves them vulnerable to both AD and coherent errors for
extended periods of time. In this case, scheduling the initial H gates later clearly provides superior
performance, as the qubits are more resilient in the 0 state. However, this is not universally true.
For QAOA (Figure 9.2), performing the second u2 gate on qubit 3 later (immediately prior to follow-
ing CX gate) would reduce its susceptibility to AD noise. However, this would have the opposite
effect if the noise source is coherent, where the delay in u2 would leave the state more susceptible.
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(a) AD

(b) Coherent-Z
Figure 9.4: Adder

Table 9.1: PST of BV-5 on IBM hardware for eager and delayed scheduling
Schedule Valencia Casablanca Bagota

Eager 0.61 0.74 0.45

Delayed 0.73 0.82 0.65

This condition is also seen for qubit 4, but with the reverse conclusion. Hence, gate scheduling
not only critically depends on the circuit but the noise source. Both must be considered for optimal
scheduling.

The high-level insights from fault-injection studies hold on a real hardware. For instance, we ob-
serve substantial reliability improvements by using a delayed schedule, similar to what we observe
for the fault-injection studies with coherent-Z and AD noise in the Figure 9.5. Table 9.1 reports a
Probability of Successful Trial (PST) for five qubit Bernstein-Vazirani(BV) for two scheduling poli-
cies - Eager and Delayed when executed on IBM quantum computers with 5 to 7 qubits. Note that
both instance of circuits with eager and delayed schedule have identical gate count and physical to
logical mapping, the only difference is the instruction order.

9.5 Conclusion

The well studied classical error injection process is also applicable to quantum computers. Finding
critical and noise-tolerant regions will enable an application to be adapted to both mitigate the effect
of quantum noise and save precious resources. The errors that arise from noise are highly spatially
and temporally dependent and are determined by the circuit that is being performed. Unfortunately,
quantum computers have additional complications. The errors are also highly depended on the
nature of the quantum noise, which is not well understood. Assumptions made about the noise
become critical to finding meaningful results and techniques which will remain valid in experimen-
tation.
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Figure 9.5: Eager Bernstein-Vazirani: (a) with AD noise (b) Coherent-Z noise, Late Berstein-
Vazirani: (c) with AD noise (b) Coherent-Z noise
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Variable Strength QEC

10.1 Introduction

Quantum noise is hard to model accurately as it is highly complex and can have counter-intuitive
impacts [100]. Additionally, the noise present in a physical system can change over time [355],
making it difficult to properly characterize it via benchmarking procedures [386].

Quantum error correcting codes (QECC) group collections of physical qubits together to rep-
resent one logical qubit (each qubit in a quantum algorithm corresponds to a logical qubit). The
logical qubit is much more resilient to noise than the individual physical qubits it is made of. A key
property of QECC is that it translates the arbitrary noise on physical qubits into a discrete set of
noise events on logical qubits. This allows us to accurately model the quantum noise acting on
logical qubits with just a few types of noise events (i.e., X and Z errors [337]).

For example, physical quantum noise can lead to slight over- or under-rotations (considering
individual qubit state representation in polar coordinates) [44]. This noise is analog in nature, as
the angle of over- or under- rotation can be arbitrary. QEC involves measurement, which introduces
non-unitary transformations to the physical quantum state (while leaving the computational quan-
tum state intact): Effectively, each measurement forces a binary decision on the impact of noise –
either the qubit snaps back to the uncorrupted state, removing the noise, or a complete noise event
is the case, “flipping” the state of the qubit. This digitizes noise into a set of discrete errors, enabling
detection and correction.

QECC can only detect and correct errors on physical qubits if the physical noise induced error
rates are sufficiently low. An excessive number of noise events on multiple physical qubits, occurring
simultaneously, may result in a logical error which is either undetectable or uncorrectable. QECC is
typically designed with the target of removing logical noise events entirely. The maximum number
of simultaneous physical errors QECC can tolerate is called the code distance which determines
the code strength.

Unfortunately, the cost of creating large distance QECC is very high. The number of phys-
ical qubits required for each logical qubit grows quadratically with the code distance, potentially
reaching thousands of physical qubits for each logical qubit [108] even for modest error rates. The
resource requirement quickly grows beyond what currently available quantum hardware can realis-
tically support.
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In this work we explore how opportunistically reducing the code distance and thereby risking rare
logical errors can help mitigate the hardware resource overhead required to build a (nearly) fault-
tolerant quantum computer. This strategy can prove effective to the extent the quantum application
can tolerate rare errors – i.e., can still produce the correct output with high probability. Two basic
methods span the entire design space:

1. Lowering the code distance overall (for all logical qubits at all times)

2. Selectively lowering the code distance for a subset of the qubits at specific times

Method 2) is especially suitable for Surface Codes [108] where changing the number of physical
qubits dedicated to each logical qubit is possible. For both cases, we use statistical fault injection (i)
to accurately estimate the probability of success in the presence of errors; (ii) to differentiate more
noise-sensitive regions of the application from the less noise-sensitive to allocate scarce QECC
resources based on need.

10.2 Background
Improving the reliability of quantum programs considering physical qubit characteristics is a well
studied problem. Numerous papers such as [355] explored application mapping strategies consid-
ering variation in the reliability of physical qubits, while others focused on minimizing the number
of gate evaluations to reduce the exposure time to noise [93, 205]. Statistical fault injection based
studies of program sensitivity to physical noise, to optimize gate scheduling and qubit placement,
also exist [297]. An important distinction of our study from this lineage of work is that we operate
at the logical qubit level rather than the physical. Noise can be modeled more accurately at the
logical level as QECC effectively forces noise to manifest as X and Z errors. This is in stark con-
trast to modeling noise at the physical level, which involves many different models. Worse, each
noise model can result in a different outcome [299], and the noise in a physical experiment changes
over time [386]. As a result, statistical fault injection at the physical level can produce contradict-
ing conclusions depending on the noise model used [297]. At the same time, we primarily focus on
fine-tuning QECC distance according to algorithmic needs, as opposed to common noise mitigation
strategies at the physical level which focus on application mapping/scheduling.

10.2.1 Surface Codes
Surface codes are a promising form of QECC. They logically arrange qubits into a two-dimensional
lattice, and only require interactions between nearest neighbors [108, 214], allowing the qubits to
remain in place. This makes them easy to use with modern quantum computers, such as super-
conducting quantum computers, which have stationary qubits and only allow interactions between
physically adjacent qubits. Surface codes can be conceptually visualized as “patches” of physical
qubits, where patches can move and interact with each other by performing operations and mea-
surements on the qubits [214]. This is referred to as lattice surgery, and represents the state of
the art [214, 160]. A surface code of code distance d requires d2 physical qubits per logical qubit.
Logical gates on logical qubits require roughly d time cycles [214]. Changing d for each qubit also
roughly takes d cycles. To increase d: initialize more physical qubits and involve them in the next
round of error correction. To decrease d: measure a subset of the physical qubits in the logical
qubit, and then exclude them in the next round [108]. For both, then perform d rounds of error
correction to remove any errors which occurred during the process.
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10.2.2 Gate Decomposition
A qubit can be logically represented as a point on the unit sphere (called Bloch sphere), where
operations (gates) on it become rotations around different axis. Rx(θ), Ry(θ), and Rz(θ) gates
correspond to rotations around the x, y, and z axes by an arbitrary angle θ. Such rotation gates
are often used when operating quantum computers without QEC, where logical gates correspond
directly to physical rotations on individual qubits. The specific gate set available depends on the
specific machine, but generally precise rotations around at least two axes are typically available.
However, such rotations do not work directly with surface codes (or most QECC). When the physical
qubits are grouped together to form a logical qubit, only a specific set of gates are possible [108]. In
this work we use the Clifford+T gate set, the most widely used universal gate set which can also be
used on surface codes. It includes, among others, X, Y, Z, H, S, and T gates, which all correspond
to rotations by π, π/2, or π/4 around various axes. Two-qubit variations of these gates exist, where
a gate is performed on a target qubit only if the control qubit is in a specific (i.e., the 1) state. For
example, the CNOT gate is a controlled X gate. A controlled phase gate is a controlled Rz gate.

Logical versions of Rx(θ), Ry(θ), and Rz(θ) gates are required for many algorithms, hence it is
still necessary to implement them. To perform them on surface codes, they are approximated with
sequences of gates. For this, we use the gridsynth algorithm [323, 322], which converts Rz(θ) into
sequences of X, H, S, and T gates. The length of the sequence depends on the angle of rotation,
θ, and the precision to which we need to approximate it. For example, a rotation by π/3 can be
approximated with Equation 10.1.

Rz(π/3) ≈ HSTHSHTHSHTST (10.1)

There is also a trade-off between the sequence length and the achieved accuracy. Shorter se-
quences take less time to perform but can lead to errors in the program (even in the absence of
noise) due to the higher degree of approximation. We tested different sequence lengths when per-
forming a noiseless simulation of a benchmark quantum algorithm (which we discuss in Section
10.3.2). As an example, based on these experiments, we observe that for an average sequence
length of 34 gates per rotation, the correct output was produced only 50% of the time. Increasing
the sequence length to an average of 44 gates increased the probability of correct output to 98.5%.

Luckily, it is sufficient to approximate Rz rotations, as any quantum operation U can be decom-
posed into a set of three Rz rotations (using angles β, γ, and δ) and H gates:

U = Rz(β) Rx(γ) Rz(δ) = Rz(β) H Rz(γ) H Rz(δ) (10.2)

In our case study we use standard Clifford+T gates, however, we note that further optimizations
exist to tailor the operations specifically for surface codes [214].

10.3 The Case for Variable Strength QECC

10.3.1 Latency vs. Reliability Trade-Off

Reducing the QECC distance (i.e., making QECC weaker), by construction reduces the overhead,
and hence, the time it takes to complete the program. On the other hand, a smaller code distance
reduces the probability of success. Most quantum algorithms, even in the absence of noise, pro-
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(a) X error only (b) Z error only

(c) XZ error (d) Realistic 50% X and 50% Z error

Figure 10.1: Noise sensitivity heatmap of 6-qubit QPE alrogithm to different logical errors. Thin
green lines represent insensitive; thick red lines, sensitive regions. Vertical lines show single qubit
gates. Arrows between qubits show two qubit gates. Qubit 5 has no operations on it after state
preparation. In our noise model, an error on a two-qubit gate affects both qubits.
duce the correct result with some probability. Therefore, the algorithm has to be run multiple times
before the correct answer is produced statistically. The number of repetitions depends on the prob-
ability of a successful trial (PST). 1/PST runs are required to get the correct result, on average.
Hence, mean time to success is a key metric of interest. If the algorithm has a latency of L, the
mean time to success becomes L/PST . Let Lweak and PSTweak denote the latency and probabil-
ity of success of the target algorithm using a weaker (i.e., smaller distance) QECC; where L and
PST denote the latency and probability of success of the target algorithm with default strength (i.e.,
distance) QECC.

Lweak < L

PSTweak < PST
(10.3)

applies, and a weaker QECC would only work if

Lweak

PSTweak
<

L

PST
. (10.4)

In the following, we quantitatively analyze this trade-off.

10.3.2 Sensitivity to Noise in Time and Space
The impact of a logical error on the success of a quantum program depends on when (at which
cycle in the execution) and where (in which qubit) the error occurs [297]. We use statistical fault
injection to characterize this behavior, where we inject errors at different locations at different times
and track the propagation to the output of the program. Since we are working with QEC, we can
assume that errors are restricted to X and Z errors (Y errors are a combination of X and Z errors).
As a representative case study, we profile the Quantum Phase Estimation (QPE) algorithm, which
incorporates the inverse Quantum Fourier Transform (QFT) as the main computational kernel. QPE
is representative of algorithms a fault-tolerant quantum computer (i.e., a quantum computer which
features QEC) is likely to run, and has important applications in quantum chemistry [197]. The
input to QPE is a quantum state which has a phase angle difference between its constituent qubits.
QPE detects this difference and produces a bitstring representing the angle. To produce the input
quantum state, we perform noiseless state preparation. A sequence of controlled-phase gates are
performed with qubits 0-4 as control and qubit 5 as the target. A noiseless QPE implementation
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acting on this state produces a single output bitstring with high probability (> 98%). This eases
validation of the output.

For statistical significance, we simulate each fault with 1,000,000 shots on Qiskit [78]. Each fault
is a logical error on a single qubit at a single moment in time, leaving all other qubits undisturbed.
We test with X error, Z error, and XZ error (both). To model realistic noise, we assume the error
is 50% X and and 50% Z, excluding the rare case where both occur. We use this model for the
remainder of the paper.

This model is realistic because if the probability of X and Z errors is p, the probability of X
(without Z) and Z (without X) is p(1−p), but the probability of both is p2. For small p, p(1−p) >> p2.
Thus, error is predominantly either X or Z.

We evaluate the quality of the output by comparing the probability of successful trial (PST) to
that of the noiseless output. As we set the input state so that there is only one correct answer, this
metric is Relative PST (Equation 10.5).

Relative PST =
PSTnoisy
PSTideal

(10.5)

Figure 10.1 depicts the relative PST as a heatmap, to help visually inspect the significance of the
error at each location and at each point in time. The x-axis is time; the y-axis, space (i.e., different
qubits). Thick, red lines indicate sensitive regions. Some regions are more tolerant to noise than
others, enabling exploitation of variable distance codes.

10.4 Variable Strength QEC
Knowledge about the underlying noise sensitivity of a quantum program, both in time and space,
makes variable strength (i.e., distance) QEC possible, where different logical qubits get protected
by different levels (i.e., different code distances d) of QEC at different times. If a logical qubit is less
susceptible to logical noise at a point in time, it can us lighter weight QEC than more susceptible
qubits.

We start by acknowledging a fundamental limitation to this idea. The logical error rate decreases
exponentially with d. The physical qubit count increases with d2. The time overhead increases lin-
early with d. Hence, we can save quadratic space and linear time, but risk exponential increases in
error rates. This suggests that variable-strength QEC can easily backfire if applied too aggressively.

10.4.1 Success Rate as a Function of Code Distance

We estimate the probability of logical error, PL, from the physical error rate, p, for code distance d
with the analytical formula provided by Fowler et al. for surface codes [108]:

PL ≈ 0.03× (p/0.0057)(d+1)/2 (10.6)

The probability of successful trial (PST) is the probability of measuring the correct result at the
end of the quantum program. With sufficiently high d, no logical errors would occur, and PST would
be 1 (for quantum programs that have a single correct output). As d decreases, PST decreases
exponentially until it hits nearly 0. The smallest d that is acceptable is a function of the physical
error rate.

Using information from Figure 10.1, we know which logical qubits are more sensitive to noise,
which we leverage to designate a variable distance QECC. We experiment with single- and two-
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Figure 10.2: PST of QPE for different (including variable) surface code distances, over a range of
physical noise rates.

distance QECC: For example, 3, 5 is a QECC which uses d = 3 on less susceptible qubits and d = 5

on more susceptible qubits. We consider qubits to be susceptible if the PST is below 40% in Figure
10.1d.

We estimate PST from the probability of two events:

1. No logical error occurs

2. A single logical error occurs, but the output is the same as in the case of no error

These two probabilities combined provide a lower bound on PST . It is also possible that two or
more logical errors occur and the output remains the same. However, counting these possibilities
quickly becomes intractable because a total of (Ngates)

Nerrors must be considered, where Ngates

is the number of quantum gates performed in the algorithm and Nerrors is the number of possible
errors. Hence, in our analysis, two or more errors represent a failure.

The PST for all d are shown in 10.2. The dashed lines capture the variable (two-) distance
QECC, which achieve resilience in-between their constituent code distances.

10.4.2 Time to Solution

We now combine the PST information from Section 10.3.2 with the latency of each logic operation
for a given code distance, to estimate the time to solution. As noted in Section 10.3.1, the time
to solution corresponds to L/PST . A gate on a logical qubit with distance d takes d cycles to
complete. Since the distance of each logical qubit is known throughout the program, we can easily
find the corresponding latency, i.e., L/PST which provides the time to solution as shown in Figure
10.3. This is a best-case analysis for variable QEC, considering only the overhead for (logical) gate
times and code distance conversion. There are additional overheads in lattice surgery or magic
state distillation, see Section 10.4.3.

It is noteworthy that the optimal code distance depends on the error rate. As intuition suggests,
at low error rates lower code distances are preferable due to the lower overhead. However, as the
error rate increases the codes begin to fail. Since error suppression is exponential, once the codes
begin to fail, the reliability degrades dramatically and Psuccess drops quickly. This necessitates a
larger number of trials to obtain the correct solution, causing high latency.

Each variable distance code is optimal within a range of error rates. For example, the QECC
d = 3, 5 is optimal at error rates where d = 3 begins to fail. d = 3, 5 can provide a faster solution
than d = 5, until it breaks down and d = 5 becomes necessary to tolerate errors. The range where
each code distance is optimal is listed in Table 10.1. It is possible to combine significantly different
code distances. For example, using d = 7, 15 instead of d = 7, 9. However, this is sub-optimal.
When d = 7, 9 is optimal, d = 7 is failing, but d = 9 remains strong. Hence, the additional protection
provided by d = 15 is overkill, and consumes resources unnecessarily.
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Figure 10.3: Time to solution for different code distances.

Table 10.1: Physical noise ranges of code distance optimality.
Noise Range Optimal Code Distance
<= 5e-4 3

5.1e-4 - 7.6e-4 3,5
7.7e-4 - 1.0e-3 5

1.01e-3 - 1.38e3 5,7
1.39e-3 - 1.47e-3 7
1.48e-3 - 1.89e-3 7,9
1.90e-3 - 2.26e-3 9,11
2.27e-3 - 2.58e-3 11,13
2.59e-3 - 2.95e-3 13,15

> 2.96e-3 15

10.4.3 Practical Considerations
Variable distance QECC is promising, but practical limitations exist. Superconducting quantum ar-
chitectures, for which surface codes are most appropriate, logical qubits are arranged next to each
other in a two-dimensional lattice [168]. This enables trading physical qubits between neighboring
logical qubits. In Figure 10.1d, qubit 3 can use more physical qubits initially, but then transfer them
to qubit 4 when qubit 4 becomes more sensitive. However, trading qubits may create non-uniform
layouts which do not match well with the physical topology, possibly wasting qubits. Additionally, la-
tency of such state-of-the-art quantum computers is not limited by logic gates, but by the preparation
of special quantum states required to perform specific operations (such as magic state distillation
for T gates [214]). Hence, improvements in the gate latency from variable strength QECC may not
be significant. Also, quantum fault injection is tractable only for small circuits. Obtaining accurate
sensitivity estimates for larger circuits poses a challenge, due to the inability to simulate such cir-
cuits. However, it may be possible to identify patterns in small circuits (Figure 10.1), and use this to
predict sensitive regions in larger circuits.

Finally, physical hardware noise rates will also impact optimal code distances. Our analysis
exploits “software” sensitivity at the logical level. In practice, this information can be combined with
physical hardware noise rates to find the optimal distance, a machine dependent optimization.

10.5 Conclusion
Our profiling analysis based on statistical fault injection shows that quantum programs can be rel-
atively insensitive to isolated logical errors, and that variable distance QECC can reduce the time
to solution by exploiting the spatio-temporal differences in noise sensitivity. However, any decrease
in code distance due to variable strength QECC creates an exponential increase in logical failure
rates, which may eliminate the benefits if not carefully administered.
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Conclusion
In this thesis we showed that architectures can be specifically tailored to their environment by ex-
ploiting unique properties of their hardware or characteristics of their target applications. These
accelerators in extreme environments are able to function well where more traditional architectures
struggle, as they are especially well suited to tolerate distinctive challenges in their respective envi-
ronments.

We showed the non-volatile processing-in-memory (NV-PIM) architectures provide efficient and
automatic checkpointing, which enables them to operate with ease in the beyond edge domain. The
high cost checkpointing mechanisms of more traditional architectures are not necessary, allowing
NV-PIM maintain near ideal performance and energy-efficiency. We also showed that NV-PIM has
an inherent resilience to radiation and wide operating temperature. This allows it to operate in
physically harsh environments. This opens up a wide range of applications. We developed an
architecture which can function in low-earth orbit, and by exploiting the ideal properties of NV-PIM,
remains highly performant and energy efficient. The extreme energy efficient of NV-PIM allows it to
perform computations beyond the edge that would otherwise be highly impractical. We developed
an architecture which is capable of performing encrypted computing on a modest power budget,
which goes a long way to solving the security issues that beyond edge devices introduce.

We also investigated NV-PIM performance in cryogenic environments to enable high perfor-
mance applications like cryogenic computing and quantum computing. Despite some non ideal
characteristics of low-temperature operation, NV-PIM remains a suitable solution to provide both
memory and computational support to cryogenic systems. The extreme energy efficiency of NV-
PIM enables it to operate while generating relatively low amounts of heat, preventing the cooling
budget of cryogenic systems of growing to large.

Much of our work advanced the art of quantum accelerators, where we applied traditional com-
puter architecture concepts to quantum computers. We showed that statistical fault injection can
be performed to identify sensitive regions of quantum programs, allowing proper allocation of quan-
tum hardware resources. This increases the reliability of near-term quantum accelerators. We
combined this method with ideas related to approximate computing to lower the overhead of quan-
tum error correcting codes. Tuning the strength of error correction to match the need to quantum
programs allows us to accelerate quantum programs. This strategy can also lower the quantum
hardware resources in order to each fault-tolerance, and may help speed the development of large
scale quantum accelerators.
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Dartiailh, Abdón Rodrı́guez Davila, Delton Ding, Eugene Dumitrescu, Karel Dumon, Ivan Du-
ran, Pieter Eendebak, Daniel Egger, Mark Everitt, Paco Martı́n Fernández, Albert Frisch, An-
dreas Fuhrer, Julien Gacon, Gadi, Borja Godoy Gago, Jay M. Gambetta, Luis Garcia, Shelly
Garion, Gawel-Kus, Leron Gil, Juan Gomez-Mosquera, Salvador de la Puente González,
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