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Preface

Microbes are ubiquitous in nature. Among microbes, fungal communities play 
important roles in agriculture, environment, and medicine. These fungi are known 
to synthesize functional bioactive compounds, hydrolytic enzymes, and compounds 
for plant growth promotion and biocontrol agents for potential biotechnological 
applications in agriculture, medicine, industry, pharmaceuticals, and allied sectors. 
Vast fungal diversity has been found to be associated with plant systems. Fungi 
associate with plant systems in three ways: epiphytic, endophytic, and rhizospheric. 
The fungi associated with plant systems play an important role in plant growth, crop 
yield, and soil health. The fungal communities are the key components of soil–plant 
systems, where it is engaged in an intense network of interactions at the rhizo-
sphere, endophytic, and phyllospheric level, areas, emerging as an important and 
promising tool for sustainable agriculture. The fungal communities help to promote 
plant growth directly or indirectly through plant growth promoting attributes. These 
PGP fungi could be used as biofertilizers and biocontrol agents replacing chemical 
fertilizers and pesticides in environmental eco-friendly manners for sustainable 
agriculture and environments.

The present book on “Agriculturally Important Fungi for Sustainable 
Agriculture, Volume 1: Perspective for Diversity and Crop Productivity” covers 
biodiversity of plant associated fungal communities and their role in plant growth 
promotion, mitigation of abiotic stress, and soil fertility for sustainable agriculture. 
This book will be immensely useful to the biological sciences, especially to micro-
biologists, microbial biotechnologists, biochemists, researchers, and scientists of 
fungal biotechnology. We are highly obliged to the leading scientists who are 
extensive, in-depth experience and expertise in plant–microbe interaction and 
fungal biotechnology took the time and efforts to make these outstanding 
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contributions. Each chapter was written by internationally recognized researchers 
and scientists so that the reader are given an up- to- date and detailed account of the 
knowledge of the fungal biotechnology and innumerable agricultural applications 
of fungal communities.

Baru Sahib, India  Ajar Nath Yadav 
Lucknow, India   Shashank Mishra 
Baru Sahib, India   Divjot Kour 
Baru Sahib, India   Neelam Yadav 
Jhansi, India   Anil Kumar 
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Chapter 1
Agriculturally Important Fungi:  
Plant–Microbe Association  
for Mutual Benefits
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1.1  Introduction

Plants represent a very dynamic system, reflecting a great capacity for adaptation in 
constantly fluctuating surroundings. This ability is particularly advantageous in the 
areas that are prone to intensive agriculture or biotic or abiotic vagaries (Bhandari 
and Garg 2017). Plants are exposed to huge numbers of microorganisms that are 
present in the top soil and are found on leaves and stems (Sivakumar and 
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Thamizhiniyan 2012). Plant–microbe interactions are an extensively studied area 
and date back to the nineteenth century. The spectrum of plant–microbe interactions 
is highly complex, comprising of phylogenetically diverse microbial species (Hirsch 
2004) as plants are constantly interacting with a range of microbes both in the rhi-
zosphere and within the plant itself (Badri et  al. 2009; Evangelisti et  al. 2014). 
Plant–microbe interactions play a vital role to ensure sustainability in agriculture 
and ecosystem restoration (Badri et al. 2009). Plant–microbe interaction is a mode 
of communication between plants and microbes which is initiated by the secretion 
of different signaling molecules (Rastegari et al. 2020a, b; Verma et al. 2017). One 
of the important questions of communication pathways is how the plant distin-
guishes a microbial mutualist from pathogen. It has been reported that during the 
course of evolution, plants have evolved unique and sophisticated defense mecha-
nism that involves innate immune system consisting of two classes of immune 
receptors that recognize the presence of nonself molecules both inside and outside 
of host cells (Jones and Dangl 2006). Encounter with nonself molecule evokes pow-
erful immune responses which in turn prevents the multiplication of microbial 
pathogens. An increasing number of pattern recognition receptors have been identi-
fied on the plant cell surface during the past few decades (Boller and Felix 2009).

Microbial communities affect the plant physiology directly or indirectly, in a 
positive or negative manner, by various interactions like mutualism, commensalism, 
amensalism, and pathogenic consequences (Yadav et  al. 2017, 2020). In plants, 
commensalism or mutualism is one of the most common interactions found 
(Campbell 1995). The interactions may be categorized as positive, negative, or neu-
tral which largely depends on the nature of microorganisms associating the host 
(Abhilash et al. 2012). Positive interactions stimulate plant growth by conferring 
abiotic and/or biotic stress tolerance and help the plants for the revitalization of 
nutrient-deficient and contaminated soils. Negative interactions involve host–patho-
gen interactions resulting in many plant diseases and adverse effects and host life 
(Akram et al. 2017). Moreover, some microbes reside in the soil surrounding the 
plant roots just to obtain their nutrition from root exudates. They do not influence 
the plant growth or physiology in a positive or negative way, thus forming neutral 
interactions (Akram et al. 2017).

Mutualism is an obligatory or highly specific interaction between two popula-
tions in which both of them benefit from each other. It usually required close physi-
cal connection in which both partners may act as if they are one. When they exist 
separately, the physical tolerance and metabolic activities will be different for each 
single symbiont (Leung and Poulin 2008). Boucher et al. (1982) identified four key 
types of mutualism: dispersal, pollination, nutrition, and protection. Community- 
level effects of nutritional mutualisms, such as mycorrhizal fungi N-fixing bacteria 
(Hartnett and Wilson 1999) may depend on the degree to which benefits are private 
and whether the mutualism enhances the dominance of a single (or few) species to 
the detriment of others. Finally, protection mutualisms may be more likely to have 
strong community-level effects than other types of mutualism because they are 
inherently indirect interactions that require the involvement of at least three spe-
cies, rather than a simple pair such as endophytes (Rudgers and Clay 2008). 
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Mutualism could be classified into different types according to partner’s selection 
and function or purposes of the relationship. Mutualism according to the partner’s 
selection: (1) obligate mutualism occurs when both microorganisms live together 
in close proximity, and both species cannot survive without its mutualistic partner. 
(2) Facultative mutualism: it occurs when one of the two partners can survive with-
out its  mutualistic partner by itself in some conditions. Mutualism according to 
interaction purposes: (1) Trophic mutualism: it is also called resource–resource 
interactions. It is a type of mutualistic association, which comprises the exchange 
of nutrients between two species. (2) Defensive mutualism: it is also called ser-
vice–resource relationships. It appears when one organism provides shelter or pro-
tection from predators or pathogens, while the other provides food. (3) Service–service 
mutualism: it appears when one species receives service from its partner in return 
for transporting another service to the other organism (Selim and Zayed 2017).

Mutualistic relationship such as those formed with nitrogen-fixing bacteria (van 
Rhijn and Vanderleyden 1995; Richardson et al. 2000; O’Hara 2001; Zhang et al. 
2012; Selim and Zayed 2017; Suman et  al. 2016), mycorrhizal fungi (Wu et  al. 
2013; Zayed et al. 2013; Manaf and Zayed 2015; Sengupta et al. 2017), endophytes 
(Hilszczańska 2016; Arora and Ramawat 2017; Jain and Pundir 2017; Lata et al. 
2018; Khare et al. 2018; Rana et al. 2019c). Most of the plant–microbe interaction 
research in the past has focused on the ancient symbiosis between plants and arbus-
cular mycorrhizae (Parniske 2008), nitrogen fixation by rhizobia within the nodules 
of legume roots (Oldroyd et al. 2011) and pathogenesis, and management of plant 
diseases by natural antagonistic microorganisms (Heydari et al. 2004; Sang et al. 
2013). However, the role of endophytes that reside in plants is yet to be explored to 
its fullest potential. Endophytic microorganisms and their role in crop health are 
now attracting great interest from researchers (Jain and Pundir 2017; Kour et al. 
2019c; Rana et al. 2019a; Suman et al. 2016; Yadav 2019b).

1.2  Plant-Symbiotic Nitrogen Fixation Association

There are two main symbiotic nitrogen-fixation systems: those involving symbioses 
between legumes and Proteobacteria (e.g., Bradyrhizobium spp. and Rhizobium spp.), 
and those between actinorhizal plants and actinomycetes (e.g., Frankia spp.). Both 
systems can convert gaseous nitrogen to ammonia in a process known as nitrogen 
fixation. The reaction is catalyzed by the nitrogenize enzyme complex which com-
prises two enzymes, a dinitrogen reductase and a dinitrogenase (Richardson et  al. 
2000). The bacteria Rhizobium and Bradyrhizobium (collectively known as rhizobia) 
and the actinomycetes (filamentous bacteria) Frankia form nodules on plant roots and 
are major contributors to symbiotic nitrogen fixation. The nitrogen- fixing bacteria 
provide the plants with nitrogenous compounds, while in return the plants provide the 
nitrogen-fixing bacteria with carbohydrates. This mutualistic association improves 
plant growth and health (Selim and Zayed 2017; Kour et al. 2020; Rana et al. 2020).
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1.2.1  Nitrogen Fixing in Legumes

Rhizobia are motile, rod-shaped, Gram-negative bacteria with polar or subpolar fla-
gella. They live in the soil and, almost exclusively, form nodules on roots of mem-
bers of one of the three families of legumes. Nodule-forming bacteria (rhizobia) 
require inorganic nutrients for metabolic processes to enable their survival and 
growth as free-living soil saprophytes and for their role as the nitrogen (N)-fixing 
partners in legume symbioses (Rana et al. 2019c; Yadav 2018). Nitrogen-fixing pas-
ture and pulse legumes are important for maintaining productivity in many agricul-
tural systems (Graham and Vance 2000). A key benefit from using symbiotic 
legumes in agriculture is the fixation of atmospheric N by the rhizobia located in 
nodules formed on legume roots. Nitrogen fixation is strongly inhibited in the pres-
ence of oxygen so part of the function of the nodule is to provide an anaerobic 
environment in which nitrogen fixation can take place. Anaerobic conditions are 
achieved by excluding oxygen from the central tissue of the nodule (O’Hara 1998).

Nodules are globose to elongate outgrowths of plant tissue which vary in length 
from a few millimeters to a few centimeters. They do not develop near the root tips, 
but are abundant on older parts of the root system. The morphology of nodules is 
determined by the host, not the symbiont, which occurs within host cells in the cen-
tral tissue of the nodule. The symbionts occur singly or in small groups within 
membrane-bound vacuoles. They are called bacteroids to distinguish them from 
bacteria outside the host cell because they are often much larger and may develop 
branches so they are Y’ or ’X shaped (O’Hara 2001). Rhizobia are classically 
defined as symbiotic bacteria that invade the roots and stems of leguminous plants 
to fix nitrogen (van Rhijn and Vanderleyden 1995). It is a synthesis of NH4

+ (a plant 
usable form of N) using atmospheric N2 (plant non-usable form of N) by rhizobia in 
nodules of leguminous plants. The important nitrogen-fixing rhizobia genera in 
legumes are about 30 named species of nodule bacteria among the 6 accepted gen-
era of Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, 
and Sinorhizobium of the family Rhizobiaceae (Young 1996). The majority of sym-
biotic legumes used for agriculture and forestry are nodulated by species of the 
genera Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (O’Hara 
2001). In agricultural settings, perhaps 80% of the biologically fixed N comes from 
family Rhizobiaceae in association with the leguminous plants. Rhizobium and 
Bradyrhizobium establish symbiotic associations with roots in leguminous plants 
such as soybean, pea, peanut, and alfalfa, convert N2 into ammonia, and make it 
available to the plants as a source of N (Badawi et al. 2011). Among the legumes 
(Fabaceae), of which approximately 18,000 species have been described, the occur-
rence of nodulation varies considerably among subfamilies. There are successful 
nodulation by the Rhizobium strain TAL 1145 on Acacia farnesiana, Calliandra 
calothyrsus, Gliricidia sepium, several species of Leucaena, Mimosa invisa, 
M. pudica, and Sesbania grandiflora (Richardson et al. 2000).
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1.2.2  Nitrogen Fixing in Actinorhizal Plants

Besides rhizobia, many Frankia species have also been reported to form nodules in 
non-leguminous actinorhizal plants for N2 fixation (Zhang et al. 2012). At least 194 
plant species in 24 genera are nodulated by actinomycetes in the genus Frankia 
(Frankiaceae). These “actinorhizal” plants are woody, dicotyledonous angiosperms 
in the Betulaceae, Casuarinaceae, Coriariaceae, Datiscaceae, Elaeagnaceae, 
Myricaceae, Rhamnaceae, and Rosaceae (Benson and Silvester 1993). They are 
typically early successional plants on nutrient-poor sites. Many species are widely 
used in afforestation (including agroforestry) and agriculture (Richardson et  al. 
2000). At least the following actinorhizal species are important invaders of natural 
systems: Casuarina equisetifolia, Elaeagnus angustifolia, E. umbellata, E. pun-
gens, and Myrica faya (Richardson et  al. 2000). Frankia strains exhibit various 
degrees of host specificity. Actinorhizal are much larger than legume nodules, often 
measuring several centimeters across. They are essentially infected lateral roots 
which branch profusely and have very restricted apical growth, resulting in long- 
lived, coral-like structures (Benson and Silvester 1993). It is clear that, as with 
legumes, there are differences between actinorhizal taxa in their ability to form 
associations with local microsymbiont. Alders are nodulated wherever they are 
transplanted throughout the world, including places where they have no natural 
presence (Clawson et al. 1997; Yadav et al. 2018a, b).

1.3  Plant–Mycorrhizas Association

Mycorrhizae are highly evolved soil fungi involved in tripartite interaction mutu-
alistic associations amid soil and plant. The associations formed by Glomeromycota 
fungi in plants usually colonize in arbuscules and often vesicles, thus known as 
arbuscular mycorrhiza (AM) and vesicular-arbuscular mycorrhizas (VAM). These 
are members of Zygomycetes, Ascomycetes, and Basidiomycetes classes of fungi 
kingdom (Morton 1988; Morton and Bebtivenga 1994). The common mycorrhizal 
associations are vesicular-arbuscular mycorrhizas (VAM): zygomycetous fungi 
produce arbuscules, hyphae, and vesicles within root cortex cells, ectomycorrhizal 
(ECM): basidiomycetes and other fungi form a mantle around roots and a Hartig 
net between root cells, orchid mycorrhizas: fungi produce coils of hyphae within 
roots (or stems) of orchidaceous plants, and ericoid mycorrhizas: fungi have 
hyphal coils in outer cells of the narrow “hair roots” of plants in the Ericales 
(Prasad 2017).

AM fungi found in rhizosphere and associated with several vascular plants have 
tremendous contribution in sustainable agriculture as well as agricultural ecosystems 
management (Kour et al. 2019a, b). The beneficial effects of indigenous AM fungi on 
the nutrition replenishment for plants depend on both the abundance and type of fungi 
present in the soil (Prasad and Gautam 2005; Prasad 2005). AM fungi are the obligate 
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biotrophs that have been documented to form symbioses with the roots of more than 
80% of terrestrial plant species (except in the plants belonging to families Amaranthaceae, 
Brassicaceae, Proteaceae, Commelinaceae, Polygonaceae, Cyperaceae, Juncaceae, and 
Chenopodiaceae). They are ubiquitous soilborne fungi, whose origin and divergence 
dates back to over 450 million years (Redecker et al. 2000). AM fungi belong to the 
phylum Glomeromycota (Bhandari and Garg 2017). In general, it has been estimated 
that approximately 20% C of net primary productivity is allocated to AM fungus 
(Fellbaum et al. 2014; Bücking and Kafle 2015) which is used to maintain and extend 
its hyphal network in the soil and in turn provide a majority of the plant nutrients 
(Leake et al. 2004). There are mutualistic association among mycorrhizal fungi and 
plant roots, in which plants provide fungus with carbohydrates and offer it protection 
(Yadav et al. 2019a, b, c). In turn, the fungus increases the surface area of plant roots 
for absorbing water, nitrogenous compounds, phosphorus, and other inorganic nutri-
ents (e.g., phosphate) from the surrounding soil and delivers them to the plant which 
improves plant growth and health (Zayed et al. 2013).

1.3.1  Examples of Specific Activities of AMF

AMF increase seed yield than the controlled groups of flax seeds, and it depends on 
status of nutrient, management, and type of soil. The other beneficial role of AMF 
is to control root pathogens and their hormonal production that has higher potential 
to withstand synergistic interaction and water stress (Thompson 1994). Also, mycor-
rhizal fungi shelter plant roots from invasion by soilborne root-infecting pathogens. 
Endomycorrhizal symbiosis increases plant performance through improving their 
tolerance to different environmental stresses, which may be biotic, e.g., pathogen 
attack, or abiotic (e.g., drought, salinity, and heavy metal toxicity) (Garg and 
Chandel 2010; Garg and Pandey 2015), or presence of organic pollutants and also 
enhancing soil structure through formation of hydro-stable aggregates essential for 
good soil structure (Manaf and Zayed 2015). In addition, growing evidence indi-
cates that association with AM fungi can improve overall plant growth and repro-
ducibility by improving root length, leaf area, plant biomass, plant tissue hydration, 
and nutrient uptake under water-deficit condition (Bhandari and Garg 2017).

Ruth et al. (2011) estimated that about 20% of root water uptake taken by roots 
of mycorrhizal barley plants is caused by the presence of fungal mycelium. 
Gholamhoseini et al. (2013) stated that inoculation sunflower plant with G. mosseae 
improved availability of P, thus minimizing the impact of stress on seed oil percent-
age and oil yield. Studies have further depicted that AM-mediated alleviation of 
drought stress could also be allied with enhancement observed in the activities of 
antioxidants such as superoxide dismutase (SOD), catalase (CAT), and peroxidase 
(POX) in plants (Wu and Zou 2010; Baslam and Goicoechea 2012). AM inoculation 
can also modulate plant water status by accumulating osmolytes such as free amino 
acids (FAA), Pro, GB, SS, and organic acids (Garg and Baher 2013; Evelin and 
Kapoor 2014) which not only lower down osmotic potential but also permit cells to 
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maintain turgor-related processes (Ruiz-Lozano et al. 2012). Mycorrhizal inocula-
tions enhance root hydraulic conductivity (Smith et al. 2010) by altering the mor-
phology of root in a structural, spatial, quantitative, and temporal manner which not 
only results in production of greater root system and better root system architecture 
(RSA) in mycorrhizal plants (Bhandari and Garg 2017). In addition to K+, Ca2+, 
ERM of AM fungi, displays the ability to proliferate and exploit the rhizospheric 
area, thus stimulating the uptake of other mineral components including N, P, Mg, 
Cu, Fe, and Zn, thereby alleviating salt-induced mineral deficiency (Hajiboland 
2013; Garg and Pandey 2015). Several studies have validated that AM fungi play a 
vital role in improving growth and productivity of host plants in metal- contaminated 
soils (Garg and Bhandari 2014; Nadeem et al. 2014). In addition, more than 30 spe-
cies of AM fungi have been identified in contaminated soils worldwide and some at 
high frequencies, such as Paraglomus occultum, G. clarum, G. intraradices, and 
Scutellospora pellucida (Bhandari and Garg 2017).

1.4  Plant–Endophyte Association

The interrelationship that exists between host plant and its endophyte is considered 
as “balanced antagonism”—a cohabitation in which host plant gains resistance 
against pathogenic organisms and phytophagous insects and its overall growth or 
biomass quality improves (Rana et  al. 2019a). In most cases, various bioactive 
metabolites have been involved (Chowdhary et  al. 2012; Kumar and Kaushik 
2013). Numerous fitness benefitting factors conferred by microbes inhabiting 
inside host plants. These benefitting attributes hold a huge promise in sustainable 
agriculture and disease management of plants (Kaul et  al. 2012; Kumar and 
Kaushik 2013).

1.4.1  Fungal Endophyte

Research on fungal endophytes in various plants has progressed significantly. 
Fungal species that were majorly reported as endophytes in agricultural crops 
include Piriformospora indica (Varma et  al. 1999), Trichoderma spp. (Romao- 
Dumaresq et al. 2012; Sharma et al. 2019), Epicoccum nigrum (Fávaro et al. 2012), 
Penicillium spp., Alternaria, Cladosporium, Fusarium spp. (Paul et  al. 2012), 
Fusarium oxysporum (Kim et  al. 2007), Chaetomium globosum, Cladosporium 
cladosporioides (Naik et  al. 2009), Aspergillus, Curvularia, Gilmaniella, 
Arthrobotrys foliicola (Zakaria et al. 2010), Acremonium zeae, Aspergillus flavus, 
A. niger, Alternaria alternata, Colletotrichum graminicola, Fusarium verticillioi-
des, Saccharomyces cerevisiae, Trichoderma koningii (Oldroyd et  al. 2011), and 
others. Entomopathogens such as Beauveria bassiana and Paecilomyces spp. were 
also reported as endophytes in cotton and tobacco (Ek-Ramos et al. 2013).

1 Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits
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Endophytic fungi living asymptomatically in plant tissues may present in almost 
all plants (Saikkonen et al. 1998). One species of an endophyte may be associated 
with many plant species, and many species of endophytes may be present in the 
same species (Rana et al. 2019a). Some endophytes remain as latent in the host 
plant, while others may interact with other endophytes, pathogenic or non- 
pathogenic (Zabalgogeazcoa 2008). Endophytes are known to provide various 
types of protections to their host plant, viz. endurance to grow in hot springs, deter 
herbivores by producing toxic alkaloids in grasses, and provide protection from 
pests in dicots (Zhang et  al. 2006). Colonization by endophytic fungi promotes 
plant growth by protecting against several fungal and bacterial borne diseases, 
improving the ecological adaptation abilities of the host by providing tolerance to 
counteract against biotic and abiotic stresses (Schulz and Boyle 2005; Rana et al. 
2019a, b; Yadav 2019a), production of phytohormone is also considered as a sig-
nificant contribution to enhancement of plant growth (Zhou et al. 2014) and nutri-
ents uptake (Zhang et al. 2013; Jain and Pundir 2017).

1.4.2  Bacterial Endophyte

Bacterial endophytes are widely present in agricultural crops and include 
Serratia spp., Bacillus spp., Enterobacter spp., Agrobacterium radiobacter, 
Burkholderia gladioli, B. solanacearum (McInroy and Kloepper 1995), 
Pseudomonas putida (Aravind et al. 2009), P. fluorescens (Ramesh et al. 2009), 
Achromobacter xylosoxidans (Forchetti et al. 2010), P. aeruginosa (Paul et al. 
2013), Micrococcus spp., and Flavobacterium spp. (UmaMaheswari et  al. 
2013), Acetobacter diazotrophicus, Herbaspirillum seropedicae, H. rubrisubal-
bicans (Varma et al. 2017). Utmost bacterial endophytes interact with plants in 
a biotrophic and mutualistic association (Hallmann et al. 1997; Kobayashi and 
Palumbo 2000). They are also associated with the exchange of nutrients, 
enzymes, functional agents, and signals (Hardoim et al. 2015). Bacterial endo-
phytes colonize above (vegetation) and beneath soil (root) host tissues estab-
lishing long-haul natural associations, without doing substantive harm to the 
host (Hallmann et al. 1997; Hardoim et al. 2015).

Endophytic bacteria provide a large array of beneficial effects to their host plant. 
It promotes plant growth by producing plant growth-enhancing substances such as 
indole acetic acid IAA (Naveed et al. 2015), cytokinins CK (Garcia de Salamone 
et al. 2001), gibberellic acid GA (UmaMaheswari et al. 2013), and improving nutri-
ent absorption, including nitrogen fixation (Mirza et  al. 2001). Besides growth 
enhancement, endophytic bacteria also benefit the host plant by enhancing adapta-
tion for abiotic or biotic stress via phytohormone signaling. The endophytic bacteria 
get advantage of being close to the host and protected from the harsh external envi-
ronment (Sturz et al. 2000). Besides PGP activities, the anti-plant pathogenic activi-
ties of these bacterial endophytes are also well documented (Varma et al. 2017). It 
produces a wide spectrum of compounds such as antibiotic, exoenzymes, sidero-
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phores, and other antimicrobial compounds which can suppress the growth of 
pathogens and act as a biocontrol agent (Brader et al. 2014; Wang et al. 2014). It has 
found to be stimulating an underlying pathogen defense mechanism, called as 
induced systemic resistance (ISR) that provides an increased level of protection to a 
wide variety of pathogens (Pieterse et al. 2014).

1.4.3  Examples of Specific Activities of Endophytes

Herbivory is a well-manifested mechanism exhibited by endophytes that protect 
plant species from herbivores. Several direct and indirect effects of alkaloids pro-
duced by endophytes are witnessed. For example, the endophyte, Neotyphodium 
occultans when present in neighboring Lolium multiflorum has reduced the aphid 
infestation in Trifolium repens plants. This phenomenon can be described as asso-
ciation protection of non-host plants due to changes in host-volatile compounds 
which is an indirect effect (Parisi et al. 2014). Direct effects of alkaloids by endo-
phytes in host plants are a common phenomenon as in Fescue grass (by the endo-
phytes Neotyphodium spp. and Epichloe spp.), wherein the host plant leaves are 
protected from herbivores by the production of alkaloid, loline, produced by mutu-
alistic fungal endophytes (Roberts and Lindow 2014). Secondary metabolite like 
colletotric acid, isolated from the endophytic fungus Colletotrichum gloeosporioi-
des, dwelling in Artemisia annua (Zou et al. 2000), a Chinese traditional herb, was 
shown to have activity against pathogenic plant fungi and human pathogenic bacte-
ria (Lu et al. 2000).

This Chinese traditional herb has already been reported to produce artemisinin 
(an antimalarial drug). Pestalotiopsis sp. an endophyte of Rhizophora mucronata, a 
mangrove, produced pestalotiopen A, exhibiting activity against Enterococcus fae-
calis (Hemberger et al. 2013). Phomopsis spp. occurring as endophytes on different 
host plants produces several chemically diverse bioactive compounds. Phomopsis 
longicolla, associated with mint plant Dicerandra frutescens, was found to produce 
dicerandrol A, B, and C with antimicrobial activity exhibiting zones of inhibition of 
11, 9.5, and 8.0 mm against B. subtilis and 10.8, 9.5, and 7.0 mm against S. aureus. 
Similarly, Phomopsis longicolla strain C81, associated with seaweed Bostrychia 
radicans, produced dicerandrol C active against S. aureus and S. saprophyticus 
(Wagenaar and Clardy 2001).

Endophyte-mediated induction of resistance to plant diseases is also reported. In 
sunflower, resistance to stem rot caused by Sclerotium rolfsii is reported with the 
endophytes Penicillium citrinum LWL4 and Aspergillus terreus LWL5 (Waqas et al. 
2015). The fungal pathogens of corn such as Fusarium verticillioides, Colletotrichum 
graminicola, Bipolaris maydis, and Cercospora zeae-maydis are antagonized by the 
endophyte Bacillus spp. (Varma et  al. 2017). Similarly, the endophyte harboring 
wild and ancient maize is antagonistic to its fungal pathogen, Sclerotinia homoeo-
carpa (Shehata et al. 2016). Other important examples of endophytes having antag-
onistic activity are Bacillus spp., Pseudomonas putida, and Clavibacter 
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michiganensis against Fusarium solani and Alternaria alternata in Curcuma longa 
(Kumar et al. 2016). In banana, the endophytic species of Bacillus such as B. amy-
loliquefaciens, B. subtilis subsp. subtilis, and B. thuringiensis are antagonistic to 
fungal pathogens such as Fusarium oxysporum and Colletotrichum graminicola 
(Souja et al. 2014). Colonization of P. indica controlled various plant diseases such 
as powdery mildew, eyespot, Rhizoctonia root rot, Fusarium wilt, black root rot, 
yellow leaf mosaic, Verticillium wilt, cyst nematode, and leaf blight in barley, 
wheat, maize, tomato, and Arabidopsis plants. Reduced severity of Verticillium wilt 
by 30% in tomato caused by Verticillium dahlia, and increased leaf biomass by 20% 
(Chhipa and Deshmukh 2019) The inoculation of an endophytic E. nigrum strain 
from an apple tree in the model plant Catharanthus roseus triggered defense 
responses against “Candidatus Phytoplasma mali” and reduced symptom severity 
(Fávaro et  al. 2012). E. nigrum has shown biocontrol activity against bacterial 
pathogen pseudomonas savastanoi pv. Savastanoi (Psv) causing olive knot and 
reduced Psv growth/biomass up to 96% (Berardo et al. 2018). Endophytes Epichloe 
in temperate grass produce bioactive compounds in host plant which works as a 
deterrent to herbivores and pests (Chhipa and Deshmukh 2019).

Antibiotic-mediated resistance is also commonly noticed in certain cases. The 
antibiotics like Taxol by Pestalotiopsis microspora in Taxus wallichiana (Strobel 
et al. 1996), ecomycins B and C in Lactuca sativa by Pseudomonas viridiflava EB 
273 (Miller et al. 1998), and trichodermin in garlic by Trichoderma brevicompac-
tum (Shentu et al. 2014) are effective against specific plant pathogens. Besides pro-
duction of antibiotics, HCN is another antimicrobial compound that is produced by 
certain endophytes in crops. For example, Bacillus produces HCN in avocado and 
black grapes (Prasad and Dagar 2014). Similarly, Pseudomonas putida produces 
HCN that has antibacterial activity against Escherichia coli and Klebsiella pneu-
moniae, and antifungal activity against Pythium ultimum (Kumar et  al. 2015). 
Sobolev et  al. (2013) reported antibiosis by the endophytic bacterium, Bacillus 
amyloliquefaciens, in peanut. The isolate of sugarcane has shown biocontrol activ-
ity against fungal pathogen Sclerotinia sclerotiorum in sunflower and Pythium in 
the cotton crop, and has antibacterial activity against Phytoplasma in apple and 
Monilinia sp. in peach fruit and nectarines (Chhipa and Deshmukh 2019).

Pathogen-related enzymes such as lipase, cellulose, protease, amylase, chitin-
ases, and pectinases are also produced by these endophytes (Varma et al. 2017). 
Trichoderma and Phanerochaete are the most comprehensively studied fungi 
responsible for lignocellulolytic degradation (Tiquia et  al. 2002). Other fungi 
involved in cellulolytic degradation of composting materials are Penicillium, 
Fusarium, Aspergillus, Rhizopus, Chaetomium, Alternaria, and Cladosporium 
(Yadav et al. 2019a). In addition, bacteria are involved in cellulose degradation, and 
many species including those belonging to Cytophaga, Bacillus, Cellulomonas, 
Pseudomonas, Klebsiella, and Azomonas are commonly involved in aerobic decom-
position of substrates (Mishra and Sarma 2018). Fouda et  al. (2015) isolated 
Alternaria alternata, and sterile hyphae from Asclepias sinaica. It was observed that 
these endophytes had the ability to produce several extracellular enzymes including 
amylase, pectinase, cellulase, gelatinase, xylanase, and tyrosinase.
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Plant growth-promoting activities by endophytes are well established as is evi-
dent in Echinacea by Pseudomonas stutzeri (Lata et al. 2006), in rice by Pseudomonas, 
Bacillus, Enterobacter, and Micrococcus spp. (Mbai et al. 2013). PGP activities of 
endophytes are attributed to the production of iron-chelating agents, siderophores as 
in rice by Enterobacter spp. and Burkholderia spp. (Souza et al. 2013), indoleacetic 
acid (IAA), and other growth hormones as in cashew by Staphylococcus saprophyti-
cus and Escherichia coli (Lins et  al. 2014). Endophytic Azospirillum spp. are 
reported to accumulate the abscisic acid (ABA) in mitigating water stress tolerance 
in maize. Plant growth-promoting hormones IAA and gibberellins further enhance 
the effect (Cohen et al. 2009). Few of the soilborne pathogens like Fusarium oxys-
porum, Pythium spp., Phytophthora spp., Aphanomyces spp., Sclerotium rolfsii, 
Gaeumannomyces graminis, Rhizoctonia solani, Verticillium spp., and Thielaviopsis 
basicola are found to be negatively affected by PGPR (Sahu et al. 2017).

Water stress alleviation was reported in maize by abscisic acid (ABA) accumulat-
ing endophytic Azospirillum spp. Furthermore, the effect was also seen in IAA and 
gibberellin accumulation. Under stress condition, ABA level increases and regulates 
plant growth (Sahu et al. 2017) and Bacillus pumilus are reported to promote growth 
under water stress (Varma et  al. 2017). P. indica-infected barley plants showed 
higher biomass when compared with non-infected plants at salt stress condition 
(Waller et al. 2005). Similarly, the plant growth-promoting rhizobacterial (PGPR), 
P. fluorescens, an endophyte in eggplant, is antagonistic to Ralstonia solanacearum 
by production of siderophores (Ramesh et al. 2009). Neotyphodium and Epichloë of 
Festuca rubra are a plant growth promoting endophyte which increase the plant 
growth with high uptake of nutrients (Jain and Pundir 2017; Chhipa and Deshmukh 
2019). Penicillium sp. from cucumber roots has been found to synthesize Gibberellic 
acid and IAA. Inoculating these strains in cucumber plants under drought stress has 
shown a significant increase in plant biomass, growth parameters, and assimilation 
of essential nutrients and reduced sodium toxicity (Waqas et al. 2012).

Major activities of endophytes include their role as biofertilizer as evident in 
banana by Rahnella spp. and Pseudomonas spp. (Ngamau et al. 2012) and corn by 
Azotobacter vinelandii, B. subtilis, and Enterobacter cloacae (Varma et al. 2017). A 
number of endophytic diazotrophic bacteria have already been reported to colonize 
the interior roots of maize, rice, and grasses (Barraquio et al. 1997) and are believed 
to be capable of contributing nitrogen nutrition in sugarcane (Boddey et al. 1995), 
rice (Yanni et al. 1997), and wheat (Webster et al. 1998). P. indica, a root endophyte, 
has been promoted as plant protector, plant growth regulator, and fertilizer in both 
agricultural and nonagricultural crops (Schafer et al. 2007). Anuar et al. (2015) iso-
lated Hendersonia Amphinema and Phlebia fungi from trunk and root tissues of oil 
palms and observed that Phlebia could serve as a biofertilizer promoting the oil 
palm seedlings eventually. These are used as empty fruit bunches (EFB) powder and 
real strong bioorganic fertilizer (RSBF) with Phlebia as formulation. The simula-
tions of plant growth executed by plant growth promoters could be attributed in 
terms of tolerance to biotic and abiotic stresses and improved plant nutrition 
(Machungo et al. 2009).
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1.5  Conclusion and Future Prospects

Soil harbors great diversity of microorganisms; this diversity is responsible for bio-
logical equilibrium created by the associations and interactions of all individuals 
found in the community. Plants are the main responsible for most of these interactions 
due to their root exudates. These interactions perform significant roles on plant growth 
and health and the ecological fitness and resistance of plants to different biotic and 
abiotic stresses in soils. Plant–microbe interaction in positive relationship is very ben-
eficial to each other. Mutual relationship in plant microbe associations are mycorrhi-
zas, symbiotic nitrogen-fixing bacteria, and more recently and most interesting 
microorganisms endophytes.
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