The Systematics of the Hedychieae (Zingiberaceae), with Emphasis on Roscoea Sm.

Chatchai Ngamriabsakul

Doctor of Philosophy The University of Edinburgh February, 2001

I declare that this thesis has been composed by myself and the work contained within, unless otherwise stated, is my own.

Abstract

The tribe Hedychieae (ginger lily) is the second largest in the ginger family, Zingiberaceae. I carried out a phylogenetic analysis of the Hedychieae using nuclear ribosomal DNA (ITS1, 5.8S and ITS2) and chloroplast DNA (trnL (UAA) 5^{\prime} exon to $\operatorname{trnF}(\mathrm{GAA})$). The results of these two data sets are in accordance, though with differing levels of resolution. Hedychieae is confirmed to include Zingibereae, the true gingers, and is monophyletic. However, the genera Boesenbergia and Curcuma are not monophyletic. Two major clades are recognised in Hedychieae namely, the 'Curcuma clade' and the 'Hedychium clade'.

The 'Curcuma clade' comprises Camptandra, Pyrgophyllum, Stahlianthus and a set of four morphologically very similar genera: Curcuma, Hitchenia, Paracautleya and Smithatris. In this clade, a subclade of Camptandra/Pyrgophyllum is the sister group to a very strongly supported 'Curcuma complex': Curcuma, Hitchenia, Paracautleya, Smithatris and Stahlianthus. Curcuma is paraphyletic. Two subclades are found in the complex namely, Stahlianthus/Curcuma subg. Hitcheniopsis, and Hitchenia/Paracautleya/Curcuma subg. Curcuma. The dorsifixed versatile anther of the Curcuma complex has been lost independently in Hitchenia and Stahlianthus, while the basifixed versatile anther has arisen independently in Camptandra and Cautleya/Roscoea. Scanning electron micrographs of anther development in Cautleya spicata show that the appendages develop from the joint connective tissue and thus the anther with the appendages is versatile in mature plant. Observation of the appendages in Curcuma and Paracautleya reveals that the anther is dorsifixed and the appendages are derived from the thecae of the anther.

Within the 'Hedychium clade', I recognise two main subclades: a clade of Hedychium/Pommereschea/Rhynchanthus/Cautleya/Roscoea, and a 'Boesenbergia group' that has Boesenbergia, Caulokaempferia, Cornukaempferia, Distichochlamys, Haniffia, Kaempferia, Scaphochlamys and Zingiber. Boesenbergia is paraphyletic with respect to Caulokaempferia. Zingiber is sister to Cornukaempferia and the
large, narrow and curved anther crest found in these two genera is a morphological character also suggesting their close relationship. Pommereschea and Rhynchanthus have been traditionally placed in the tribe Alpinieae, but the lack of petaloid staminodes in these two genera can be seen as a derived character loss.

I carried out a detailed phylogenetic study of Roscoea, the only truly high altitude genus of an otherwise lowland tropical plant family using ITS. It is found along the Himalaya and on high mountains in Southwest China. The results show that Roscoea is monophyletic and Cautleya is the sister group. Furthermore, Roscoea is found to have two subclades, namely the 'Chinese clade' and the 'Himalayan clade', which show contrasting geographical distributions. These two groups are disjunct across the 'Brahmaputra gap', a region in which no Roscoea species has been recorded. Morphological data support these findings. These three lines of evidence: ITS, distribution and morphology are used to define a new species, R. bhutanica, from western populations of previously R. tibetica. A new identification key to Roscoea is presented. The morphological data used in the phylogenetic study of Roscoea are found to be limited as they contain more homoplastic characters than the ITS. Chromosome counts of Roscoea alpina, R. auriculata, R. purpurea and Cautleya spicata are presented. My counts of two species confirm the widely reported number of $2 \mathrm{n}=24$. However, I found that both R. alpina and C. spicata have a chromosome number of $2 \mathrm{n}=26$.

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my supervisors: Dr Quentin Cronk and Dr Mark Newman for their guidance, encouragement and continuous help throughout my study. I wish also to thank the regius keepers and all staff at the Royal Botanic Garden Edinburgh for the excellent place and atmosphere to conduct this study. The firstclass herbarium, library, laboratories and living plant collection of the garden are truly indispenable for the completion of this thesis.

I also thank Jill Cowley for her help, suggestion and support on Roscoea study; Dr Michael Möller, Caroline Guihal, Jill Preston, Frieda Christie, Dr Hans Sluiman, Ruth Hollands and Dr Kwiton Jong for help in the laboratories and others; Nicola Preston, Dr Michelle Hollingsworth and Alexandrea Ponge for the sequencings. I thank Dr Achariya Rangsiruji and Marlina Ardiyani, fellow students of Zingiberaceae; Ph.D. students and M.Sc. students at the garden for their friendships, help and encouragement.

I thank researchers who provided or helped me to obtain the DNA samples of some plants in this study: Dr K.G. Bhat (India); Dr Mark Chase (RBGK); Dr Kongkanda Chayamarit and officers of Forest Herbarium, Royal Forest Department (BKF, Thailand); Prof. Halijah Ibrahim (Malaysia); Ass. Prof. Yingyong Paisooksantivatana (Thailand); Prof. Puangpen Sirirugsa (Thailand); Ass. Prof. Achra Thammathaworn and Plant Taxonomy group at Khon Kaen University (Thailand); Kaew Udomsirichakorn (Thailand).

I thank my friends in Edinburgh and other cities in UK as well as in Thailand for their help and friendships, to name but a few, Dr Natsurang Homchantrara, Jessada Denduangboripant, Charun Maknoi and Surapon Saensouk. Last but not least, I would like to thank my parents for their love and support. My deep gratitude also goes to the Royal Thai Gorvernment under the Development and Promotion of Science and Technology Talents Project (DPST) for their financial support. I should also thank CVCP for part of the tuition fee; Sibbald Trust for the payment of Roscoea bhutanica's drawing.

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
CHAPTER ONE: INTRODUCTION 1
1.1 Taxonomy and Systematics 1
1.1.1 Typological and Populational Thinking 4
1.2 Cladistics and Molecular Systematics 5
1.3 Morphology and Molecules in Systematics 8
1.4 The Plants: Zingiberaceae 13
1.4.1 The Authorities of Tribal Names 23
1.4.2 Biogeography 24
1.5 Aims and Choices of Phylogenetic Information 28
1.5.1 The Hedychieae Study 28
1.5.2 The Roscoea Study 30
CHAPTER TWO: PHYLOGENY OF THE HEDYCHIEAE BASED ON ITS (NRDNA) AND TRNL-F (CPDNA) 33
2.1 Abstract 33
2.2 Introduction 34
2.3 Materials and Methods 36
2.3.1 Plant Material 36
2.3.2 Outgroup Taxa 37
2.3.3 Ingroup Taxa 40
2.3.4 Total Genomic DNA Extraction 41
2.3.5 PCR Amplification and DNA Sequencing 41
2.3.6 Sequence Analysis 42
2.3.7 Phylogenetic Analysis 43
2.4 Results 45
2.4.1 Sequence Comparison with Previous Study 45
2.4.2 The Best Alignment of the ITS Data Set 46
2.4.3 Sequence Analysis of the ITS Region 47
2.4.4 Sequence Analysis of the trnL-F Region 48
2.4.5 Phylogenetic Anaysis of the ITS Region 50
2.4.6 Phylogenetic Analysis of the $\operatorname{trnL} \mathrm{L}$ F Region 58
2.4.7 Phylogenetic Analysis of the Combined Data Sets 60
2.5 Discussion 61
2.5.1 The Evolution of ITS and $t r n \mathrm{~L}-\mathrm{F}$ 61
2.5.2 The Tribe Zingibereae 65
2.5.3 Pommereschea/Rhynchanthus and The Tribal Positions 66
2.5.4 Cautleya and Roscoea 68
2.5.5 The Boesenbergia Group 69
2.5.6 Boesenbergia and Caulokaempferia 71
2.5.7 The Versatile Anther Group 73
2.5.8 The Pouch Bearing Group: The 'Curcuma Clade' 73
2.5.8.1 Mainly One Single Pouch: Pyrgophyllum and Camptandra 74
2.5.8.2 Multiple Bracts or Pouches: The Curcuma Complex 75
CHAPTER THREE: MOPHOLOGICAL STUDY OF THE VERSATILE ANTHER GROUP IN THE HEDYCHIEAE 77
3.1 Abstract 77
3.2 Introduction 77
3.3 Materials and Methods 80
3.4 Results 81
3.5 Discussion 86
CHAPTER FOUR: PHYLOGENY AND DISJUNCTION IN ROSCOEA (ZINGIBERACEAE) 88
4.1 Abstract 88
4.2 Introduction 89
4.3 Materials and Methods 91
4.3.1 Ingroup Таха 91
4.3.2 Outgroup Taxa 93
4.3.3 DNA Extraction 94
4.3.4 PCR Amplification and Sequencing Strategy 95
4.3.5 Sequence Analysis 96
4.3.6 Phylogenetic Analysis 97
4.3.7 Mapping the Distribution Area of Roscoea 98
4.3.8 Morphological Methods 100
4.3.8.1 Roscoea Character Coding 100
4.3.8.2 Morphological Analysis 104
4.4 Results 105
4.4.1 Sequence Analysis 105
4.4.2 Phylogenetic Analysis 112
4.4.3 Morphological Results 116
4.5 Discussion 126
4.5.1 Molecular Evolution of ITS in Roscoea 126
4.5.2 Roscoea and Cautleya 127
4.5.3 Two Groups in Roscoea 128
4.5.4 The Brahmaputra Gap 131
4.5.5 Roscoea tibetica as a Transgressor Species 131
4.5.6 Roscoea brandisii: Uncertain Identity 133
4.5.7 Morphological Discussion 135
4.5.7.1 Morphology as a Source of Phylogenetic Information 135
4.5.7.2 Simultaneous Analysis 136
4.5.7.3 Morphological Evolution as Seen by Molecular Tree 137
CHAPTER FIVE: TAXONOMIC STUDY OF ROSCOEA 150
5.1 Abstract 150
5.2 Introduction 150
5.3 A New Species of Roscoea from Bhutan and Southern Tibet 154
5.3.1 Variation in Material Previously Identified as Roscoea tibetica: Evidence for Separation of Eastern and Western Populations 154
5.3.2 New Species 155
5.4 An Identification Key to Roscoea Species 162
CHAPTER SIX: CYTOLOGICAL STUDY IN ROSCOEA AND CAUTLEYA 165
6.1 Abstract 165
6.2 Introduction 165
6.3 Materials and Methods 166
6.3.1 Collection and Storage of Root Tips 166
6.3.2 Pre-Treatment and Fixation 169
6.3.3 Hydrolysis and Staining 169
6.3.4 Slide Preparation, Squash and Observation 170
6.4 Results 171
6.5 Discussion 179
6.5.1 Timing of Root Tip Collection 179
6.5.2 Pre-Treatment and Staining 179
6.5.3 The Chromosome Number 180
6.5.4 The Chromosome Size 181
6.5.5 Aspects from Literature Review 182
CHAPTER SEVEN: GENERAL DISCUSSION AND CONCLUSIONS 184
REFERENCES 192

LIST OF TABLES

CHAPTER ONE

Table 1.1. The characteristics of plant genomes. 11
Table 1.2. The families, genera, and species of Zingiberales showing geographical distribution (after Larsen et al., 1998). 16
Table 1.3. The systems of classification of the Zingiberales (modified from Kress,1990).17
Table 1.4. The first 200 years of Zingiberaceae systematics. 18
Table 1.5. The classification of tribes in Zingiberaceae (Burtt and Smith, 1972). 20
Table 1.6. Genera and numbers of species in the tribes of Zingiberaceae (after Larsenet al., 1998).22
Table 1.7. Distribution of Zingiberaceae in Asia 25

CHAPTER TWO

Table 2.1. Taxa sequenced in this study with source and accession number, and voucher.

Table 2.2. Sequence characteristics of nuclear ribosomal DNA (ITS1, 5.8S, ITS2) and chloroplast DNA (trnL-F). * 662 bp is the length of ITS data set for analyses. 49

Table 2.3. Recorded chromosome numbers of Boesenbergia and Caulokaempferia species.72

CHAPTER FOUR

Table 4.1. Accessions of Curcuma, Cautleya and Roscoea examined for ITS1 and ITS2 sequence variation. ${ }^{a}$ Number as shown in Figure 4.1 the distribution map of Roscoea. ${ }^{\text {b }}$ RBGE is Royal Botanic Garden Edinburgh; RBGK is Royal Botanic Gardens Kew. The distribution is given first and the locality of the plant sampled in this study is then given in brackets.
Table 4.2. Morphological character coding in Roscoea103
Table 4.3. Sequence characteristics of ITS1 and ITS2 regions of 19 taxa of Zingiberaceae. 111
Table 4.4 shows the results of cladistic analyses in morphological part of this study from Roscoea data matrices 117
Table 4.5. A morphological comparison of Cautleya and Roscoea 128
Table 4.6. The distinguishing characters of the two groups of Roscoea spp. 130
Table 4.7. The distinguishing characters of the two geographically distinct populations of Roscoea tibetica. 134
Table 4.8 shows the statistics of morphological characters on the molecular tree(Figure 4.13)140

CHAPTER FIVE

Table 5.1 shows altitude and flowering time of Roscoea spp. (Cowley, 1982; Cowley and Baker, 1996; Ngamriabsakul and Newman, 2000).153

Table 5.2. The distinguishing characters of Roscoea tibetica and Roscoea bhutanica.

CHAPTER SIX

Table 6.1. A summary of reported chromosome counts in Roscoea.167
Table 6.2. A summary of reported chromosome counts in Cautleya. 168

CHAPTER SEVEN

Table 7.1. A new classification of Zingiberaceae based on this study and others (Searle and Hedderson, 2000; Wood et al., 2000; Kress, pers. comm.) (see also Table 1.6). 189

LIST OF FIGURES

CHAPTER ONE

Figure 1.1. A 'rhizogram' of the Zingiberales (taken from Kress, 1990). 14

Figure 1.2. Floral parts of the four tribes in Zingiberaceae (after Smith, 1981). 21

Figure 1.3. Repeat units of the nuclear ribosomal DNA and the organisation of the internal transcribed spaces (ITS). Arrows indicate orientation and approximate position of primer sites. Primer names and sequences are those of Möller \& Cronk (1997) and Rangsiruji (1999). 32

Figure 1.4. Approximate positions and directions of the primers used to amplify $t r n \mathrm{~L}$ F region (Taberlet et al., 1991). 32

CHAPTER TWO

Figure 2.1. The strict consensus tree of the twenty-three most parsimonious trees resulting from the analysis of 42 taxa ITS data set. Upper numbers are bootstrap values of 1000 replicates. Lower numbers are decay indices $(\mathrm{CI}=0.542 ; \mathrm{RI}=0.637$; $\mathrm{RC}=0.345$). 53

Figure 2.2. One of the twenty-three most parsimonious trees resulting from the unweighted analysis of 42 taxa ITS data set.

Figure 2.3. The single most parsimonious tree resulting from the successive weighting searches of 42 taxa ITS data set using RC. Note that the tree is not one of the twenty-three most parsimonious trees from an unweighted search.

Figure 2.4. The strict consensus tree of the fourteen most parsimonious trees resulting from the transition/transversion ratio applied analysis of 42 taxa ITS data set. The basic chromosome numbers shown are representative, i.e. not all the species in this tree are known.

Figure 2.5. The strict consensus tree of two equally optimal trees resulting from the maximum likelihood analysis of 42 taxa ITS data set (ln-likelihood $=5551.712$). 57

Figure 2.6. The majority consensus tree of the five most parsimonious trees resulting from the analysis of 26 taxa trnL-F data set. Upper numbers are bootstrap values of 1000 replicates. Lower numbers are decay indices $(\mathrm{CI}=0.907 ; \mathrm{RI}=0.788 ; \mathrm{RC}=$ 0.714). * denotes collapse branch in the strict consensus tree.

Figure 2.7. The strict consensus tree of the two most parsimonious trees resulting from the analysis of the combined data set, ITS and $\operatorname{trnL} \mathrm{L}$, of 26 taxa. Upper numbers are bootstrap values of 1000 replicates. Lower numbers are decay indices ($\mathrm{CI}=0.641 ; \mathrm{RI}=0.568 ; \mathrm{RC}=0.364$).

Figure 2.8. The single most parsimonious tree resulting from the successive weighting searches of 26 taxa combined data set, ITS and $\operatorname{trnL} \mathrm{F}$, using Rescaled Consistency index.

CHAPTER THREE

Figures 3.1-3.12 show scanning electron micrographs of Cautleya spicata

CHAPTER FOUR

Figure 4.1. Simplified geographical distribution of Roscoea species described to date (number 5 to 19 referring to the species listed in Table 4.1 , number $20=$ Roscoea debilis, number $21=$ Roscoea forrestii, number $22=$ Roscoea nepalensis). The position of the number is an indication of the species. Note: Roscoea alpina and Roscoea purpurea are widespread along the Himalaya. Cautleya gracilis (number 3) and Cautleya spicata (number 4) occur both in the Himalaya and China. Curcuma species numbers (1 and 2) only indicate the origin of samples. Arrows show the course of the Brahmaputra river.

Figure 4.2. Sequence data matrix of aligned ITS1 and ITS2 regions of nuclear ribosomal DNA of 19 taxa of Zingiberaceae. Nucleotide sequences are displayed from 5' to 3^{\prime}. ITS1 ranges from site 1 to 203 and ITS2 ranges from site 204 to 436 . Uncertain nucleotide states are coded according to PAUP conventions (Swofford, 1993): $\mathrm{n}=\mathrm{A} / \mathrm{C} / \mathrm{T} / \mathrm{G}, \mathrm{k}=\mathrm{G} / \mathrm{T}, \mathrm{r}=\mathrm{A} / \mathrm{G}, \mathrm{s}=\mathrm{C} / \mathrm{G}, \mathrm{w}=\mathrm{A} / \mathrm{T}, \mathrm{y}=\mathrm{C} / \mathrm{T}, \mathrm{m}=\mathrm{A} / \mathrm{C}$; hypens denote alignment gaps; numbers in italic print above the nucleotide matrix, ranging from 1 to 14 , indicate the number and position of alignment gaps; numbers in square brackets at the end of sequences indicate the actual spacer length of the combined region of ITS1 plus ITS2.

Figure 4.3. Strict consensus tree based on five most parsimonious trees for 15 Roscoea, two Cautleya and two Curcuma taxa of 213 steps length based on parsimony analysis of the combined ITS1 and ITS2 sequence data plus the coded indels. Upper numbers are bootstrap values of 1000 replicates. Lower (boldface) numbers are decay indices ($\mathrm{CI}=0.812 ; \mathrm{RI}=0.793 ; \mathrm{RC}=0.644$).

Figure 4.4. The single most parsimonious tree obtained from the weighting of transitions and tranversions (one of the five trees found in the unweighted search).

Numbers above branches indicate number of character changes shared amongst taxa (branch length, from unweighted analysis), including autapomorphic changes. Bars and numbers associated indicate the indels and their positions in the sequences (see Figure 4.2) 115

Figure 4.5. The strict consensus of 166 trees from a morphological analysis of sixteen Roscoea species and the outgroup (Mor.17). All clades have less than 50 per cent bootstrap value and Decay Index value is one. Branch length is given under the clades.

Figure 4.6. The strict consensus tree of 6 trees from a morphological analysis of nineteen Roscoea species and the outgroup (Mor.20). Only the clade of R. alpina and R. nepalensis has bootstrap value higher than 50 per cent. All clades have Decay Index value one. Branch length is given under the clades.

120

Figure 4.7. The strict consensus tree of 4 trees from an ITS analysis of sixteen Roscoea species and the outgroup (ITS17). Bootstrap value higher than 50 per cent are given above the branches. Branch length is given under the clades.

121

Figure 4.8. The strict consensus tree of 14 trees from an ITS analysis of sixteen Roscoea species and four outgroup species (ITS20). Bootstrap value higher than 50 per cent is given above the branches. Branch length is given under the clades. 122

Figure 4.9. The single most parsimonious tree, resulting from an ITS analysis of sixteen Roscoea species and four outgroup species (ITS20) with Rescaled Consistency index applied. This tree was used as a backbone constraint in a later morphological analysis of all nineteen Roscoea species.

Figure 4.10. The tree shows all clades that have bootstrap value higher than 50 per cent in the analysis of Com.17. All clades have Decay Index value one. Branch length is given under the clades. * Note, only the clade of all Chinese species collapses in the strict consensus tree.

Figure 4.11. The strict consensus tree of 3 most parsimonious trees of a morphological analysis of Mor. 20 with the backbone constraint tree (Figure 4.9) of the ITS20 analysis applied. Numbers below the clade is branch length. 125

Figure 4.12. Distribution map of Roscoea tibetica showing the discontinuity between Chinese and Bhutanese populations. Arrows show the course of the Brahmaputra river.

Figure 4.13 shows morphological changes in Roscoea. See 'Roscoea character coding' section in the text for character description and states, and Table 5.5 for a summary of the statistics.

CHAPTER FIVE

Figure 5.1. The first Roscoea to be given a name, R. purpurea.

Figure 5.2. Distribution map of R. bhutanica and R. tibetica showing the separation in ranges of these two species over the 'Brahmaputra gap'.

Figure 5.3. ITS sequences of R. bhutanica compared with R. tibetica (Chinese Clade) and R. auriculata (Himalayan clade). Asterisks mark variable bases. The similarity between R. bhutanica and R. auriculata can be seen.

Figure 5.4. Roscoea bhutanica Ngamriab. A, habit ($\times 1 / 3$); B, roots $(\times 1 / 3)$; C, inflorescence ($\times 2 / 3$); D, labellum ($\times 2$); E, staminode ($\times 2$); F, dorsal petal ($\times 2$); G, lateral petal $(\times 2) ; H$, stamen $(\times 3)$; I, stigma $(\times 10)$; J, ovary and base of style with epigynous glands ($\times 3$); K, ovary, transverse section ($\times 6$); drawn from plant in cult. RBGE 19841747 by Glenn Rodrigues.

CHAPTER SIX

Figures 6.1.-6.4. Somatic chromosomes in root tip of Roscoea purpurea 172
Figures 6.5.-6.8. Somatic chromosomes in root tip of Roscoea alpina 174
Figures 6.9.-6.12. Somatic chromosomes in root tip of Roscoea auriculata 176
Figures 6.13.-6.14. Somatic chromosomes in root tip of Cautleya spicata 178
APPENDICES
Appendix One: Molecular Techniques in Zingiberaceae 215
Appendix Two: A Matrix of ITS Sequences of the Hedychieae 236
Appendix Three: A Matrix of $\operatorname{trnL}-F$ Sequences of the Hedychieae 248
Appendix Four: Localities of Roscoea Specimens 260
Appendix Five: Additional Identification Keys of Roscoea 270

CHAPTER ONE: INTRODUCTION

1.1 TAXONOMY AND SYSTEMATICS

Man classifies all that he sees and gives each thing a name in order to be able to remember it and communicate about it. This is a natural habit and always happens either consciously or subconsciously. In the natural world of which man is a part, there are so many living beings around that he needs some sort of a system to help him to take them all in efficiently. The very first categories of classification may be, for instance, usefulness (e.g. food, medicine, fuel) and harmfulness (poison).

Taxonomy is the term given to this discipline covering all three activities involved, namely classification, nomenclature and identification. The term was first coined by A.P. de Candolle (Davis and Heywood, 1963, p. 8) and the early study's aim was only to recognise the diversity of living organisms. In other words, each species should have a particular place in a system that can be used for data retrieval and communication. Cronquist $(1968,1988)$ gave a definition of taxonomy among various ones (Stace, 1989; Lincoln et al., 1998) as "a study aimed at producing a system of classification of organisms which best reflects the totality of their similarities and differences". A classification system can be created for many different purposes using any sources of the data. However, stability, practicality and convenience are at the core of the system (Davis and Heywood, 1963).

Carolus Linnaeus is famously known as the father of modern taxonomy. His Species Plantarum (Linnaeus, 1753) which presented his classification of the plants of his time, set out the starting point of reference for nomenclature and a sample system of classification that is presently considered far from adequate. It was based on a few characters of the reproductive organs, such as the number of stamens and carpels, so it is often called the 'sexual system'. Nonetheless he succeeded in bringing the bewildering world of plant diversity into a sort of system. He is also frequently accredited with having first introduced the binomial system of
nomenclature, although Jean Bauhin founded the system a century earlier than Linnaeus (Lawrence, 1951, p. 17).

The advent of 'On the Origin of Species by Means of Natural Selection' (Darwin, 1859) with the evolutionary theories of C. Darwin and A.R. Wallace profoundly altered the world of biological studies, albeit it had had little impact in taxonomy until the present time of cladistics. The fundamental concept, as the title suggests, which was new at the time, is a truly luminous, revolutionary guide towards the better understanding of the biological world. It is now accepted that the diversity of life on earth is a result of evolution, the process by which the pool of variation in any species or population interacts with the surrounding environment or natural forces to produce change. As a result of cumulative change from generation to generation, differing characteristics arise in organisms and species are selected to survive and reproduce in those environments or go extinct. This process at the macro scale or above species level takes place very slowly over a long span of time, usually millions of years. The process is well captured by Darwin in the phrase 'descent with modification'.

A good classification system must reflect this pattern of branching or evolutionary relationships. The word 'good' here means stable and predictable. A classification that recognises the evolutionary history of the group is thought to have greater predictive value and can accommodate later findings from new sources of data with greater stability than ones that were not constructed by the recognition of the evolutionary pattern of the group. It can be said that such a classification is natural or phylogenetic. However, such a natural classification that is constructed from all available evidence, may or may not reflect phylogeny. Thus, a phylogenetic or evolutionary classification is preferable. Nonetheless, having this aim in mind, plant taxonomists often come up with different systems of classification (Cronquist, 1988; Thorne, 1992; Takhtajan, 1997). The differences are partly attributable to the characters taxonomists use to define their groupings. Another aspect that cannot be really justified is personal thought or belief deriving from the taxonomist's own experience. This renders the science of taxonomy subjective, and is always a topic of
debate in the community, besides attracting outside criticism. One attempt to produce an objective procedure of classification is termed cladistics to which I shall come back in a later part.

In the history of botanical nomenclature, three revolutionary initiations can be recognised (McNeill, 2000). The first is the introduction of the binomial system of plant naming by Linnaeus in 1753. The second is the agreement of the principle of priority. The third is the type method applied to plant names. The recent International Code of Botanical Nomenclature (Saint Louis Code) is also considered to be the best code published to date, though some aspects of the present code still need to be refined (McNeill, 2000). It can be considered here that taxonomy (in a strict sense i.e. classification) and nomenclature are two different activities and linked to each other only by the types of the plants.

Systematics is a more recent term than taxonomy. It is frequently used interchangeably with taxonomy, though to some taxonomists it has a wider meaning. As Stuessy's diagram illustrated (Stuessy, 1990, p. 8) besides taxonomy, it also includes the study of the process of evolution and the study of phylogeny. The term systematics is thus preferred here. It is accepted that the only theory that can unify all fields in biology is the theory of evolution. 'Nothing in biology makes sense except in the light of evolution' is an article title and famous quoted phrase of Dobzhansky (1973) that summarises it all. Similarly the only organising discipline in biology that can unify all others into one is systematics. All information from studies in biology can find its place in a theoretically single universal classification system that has the theory of evolution at its core. Such a classification is the ultimate goal that systematists should be aiming for. It is expected that it will not take long from now for the ideal system to be reached since the positions of all the major groups of flowering plants are already known (Bremer et al., 1998; Soltis et al., 1999; Soltis et al., 2000). We are coming to an age that the systematists know their plants' phylogeny and this estimate, as more and more data are used to reconstruct plant evolutionary history, will truly reflect the natural, genealogical, phylogenetic or evolutionary relationship and open more opportunities for further research.

1.1.1 TYPOLOGICAL AND POPULATIONAL THINKING

Although it has been assumed that all species included in this study pass species rank recognition, or in other words, they are all well established morphologically as distinct species, the notion of typological and populational concepts is worth bearing in mind. While species exist in the real world, as we recognise, for examples, dogs, cats, roses and thistles, after Darwin, two points are made clear. Firstly species are not unchanging organisms as previously thought. Secondly species are not represented by types, but by a population or populations, a smallest unit of organism which natural selection plays upon. Variation within any population is the raw material for any changes in the course of evolution. The process that gives rise to all species on earth is a continuing one but classification is like a photograph in which a moment of evolution is frozen and portrayed.

We need, however, to have type concepts for taxonomic purposes (Cronquist, 1988), besides the fact that we all have type concepts for countless other things. A group or groups of individuals are best referred to species whose multiple correlations of characters are distinct from those of other species. The typological concept may not be totally correct but it is useful for study and communication. It is also biological rather than nomenclatural when we talk about it. Only names have types, not species (Davis and Heywood, 1963, p. 279). The width of one's typological concept of a particular species is variable depending on the variation of the species that one has seen or is aware of. This is of course a part of the taxonomist's expertise. Often knowledge pertaining to that species arises intuitively in one's mind. Different opinions are thus formed based on experience and concepts. At the species level and above the typological concept is mainly used and these studies lie in the area of phylogeny while studies at species level and below are considered to be in the field of population genetics. As we can see, both levels are the study of variation in the biological world or systematics.

1.2 CLADISTICS AND MOLECULAR SYSTEMATICS

Cladistics is the term given to a method of classification that relies solely on the recency of common ancestry for the classification. It was coined by a distinguished ornithologist E. Mayr (Mayr, 1969). Given a set of organisms and a set of characters in use for classification, this objective method will give ideally the same results by systematists. The characters that are used for grouping are shared derived ones or synapomorphies. This simple, yet very powerful method was first formalised by an entomologist named W: Hennig (Hennig, 1950, 1966). The principal concept is the parsimony of evolution or the requirement of minimum changes in the course of evolution. It means that the shortest hypothetical pathway of change that explains the present pattern of data used in the systematic study is considered to be the most likely evolutionary route.

Its philosophy stems from the notion that evolution is true. Species have evolved and shared common ancestors, giving rise to branching patterns of speciation. This gives credibility to the hierarchical system of classification that has been used since the time of Linnaeus. At present, the system has seven basic hierarchical levels, namely species, genus, family, order, class, division and kingdom, in order of the totality of similarities and differences among individuals or groups. It should be noted that above species level, the rank given to any taxon is largely arbitrary. These ranks should not be deduced as synonyms with the branching pattern of species in reality.

Rank recognition according to the Linnean system of nomenclature is probably the most subjective aspect of taxonomy which has been found to be problematic to use by modern cladists. Arguments as to whether to continue to use the existing traditional system of nomenclature with added modifications when needed or replace it with a new phylogenetic system have arisen in recent years and are unlikely to end in the near future. The PhyloCode (a phylogenetic code of biological nomenclature) that aims to give more stability to the species names and
reflect the phylogeny of the species studied has, however, been proposed recently to the community (Cantino and de Queiroz, 2000). McNeill (2000), however, stated that one may comprehend and find a better position in the dispute over the phylogeny and the names of plants if one understands that classification and nomenclature are two different activities.

There are terms of characters in the method that need to be clarified, i.e. apomorphy, autapomorphy, synapomorphy and plesiomorphy. Apomorphy is a derived character state. Synapomorphy is a shared derived character state. Autapomorphy is a character state that distinguishes a particular clade. Plesiomorphy is a primitive character state. The only useful character in cladistics is synapomorphy. These terms are relative in the group being studied. Upon finding the most parsimonious tree/s from the cladistic analysis, characters are then defined as plesiomorphic or apomorphic. Terminal species are also grouped as monophyletic, paraphyletic and polyphyletic. A monophyletic group is a branch that includes all terminal species arising from a common ancestor. This monophyletic branch is called a clade. Paraphyly occurs when not all terminal taxa are included in the branch and termed a grade. A polyphyletic group is a group that has more than one common ancestor or arises from more than one direct origin. It should be noted that not all synapomorphic characters indicate monophyly, but they also can indicate polyphyly due to parallelism or convergence (homoplasy).

One aspect that is paramount in the study of biology is homology. In order to understand the evolving nature of species, one must be able to differentiate homology from analogy. Unlike analogy where similarity is attributable to convergent evolution, homology is similarity of closely related species due to common descent. It ensures that like is being compared with like, i.e. the same characters, in the comparative study of biology. Its understanding aids in unravelling patterns of changes of the characters and the evolution of the plants as a whole. In cladistics, it is usually considered to be synonymous with synapomorphy. Normally we do not know beforehand which characters are plesiomorphic, synapomorphic or autapomorphic. Character identification is one of the results of cladistic analysis
when all the characters included interact in the process of finding the evolutionarily shortest trees. Each character is then identified in terms of both state (primitive or derived) and consistency (congruent or homoplastic), albeit tentatively or imperfectly because of its relative value.

Usually a few closely related species or outgroup species of the species being investigated (ingroup species) are included in the analysis, for the base of the study. Although it is not necessary to have more than one outgroup, the more complete the sampling of related taxa the greater the expectation of stability of future studies (Nixon and Carpenter, 1993). The outgroup species are normally selected based on their morphology or other similarities with the ingroup species. Then, a matrix of character states of all species in the study is constructed and used for the cladistic analysis. Not until the cladistic analysis has been completed are the outgroup species clearly identified and confirmed. In other words, the result of the analysis may suggest otherwise. If the outgroups are found to have a common direct ancestor with the ingroup species, it is then called the sister group (to the ingroup species).

Not all characters have the same value in systematics, a fact that is well known to the community. Good characters normally mean that they are useful in the process of identification and classification. Practitioners who know their plants well usually select only good characters for use and discard others or give different weight to the characters, a process that is called character weighting. There should be a biological explanation to any given differing values of the character states. In general, during the first cladistic analysis of any sources of data, each character is given the same value, one. Later analyses can be modified according to some statistical values observed from the resulting tree/s or can be tested according to some hypotheses.

There is also another method referred to as discrete one, apart from parsimony, for the cladistic analysis that should be mentioned. This method which was specially developed for use with molecular data is called maximum likelihood (Felsenstein, 1981). It seeks to find the trees that yield the maximum likelihood value
to an observed data set on the explicit model of evolution. In other words, it asks the model of evolution to find the shortest trees of the observed data set. This method is considered to be more versatile than parsimony to analysing the sequences because it evaluates all characters and can accommodate other assumptions, such as different rates and patterns of substitution. However it can give inconsistent results (Siddall, 1998) and is computationally demanding.

A problem in cladistics, known as NP (non-polynomial) - complete problems in mathematics, is criticised as a weakness in the method. It shows that as the number of species increases, the number of possible evolutionary trees quickly soars and even any imaginable increase in the speed of computers cannot evaluate them all to find the most parsimonious tree(s) in a life time (Pankhurst, 1991, 1995). This problem has been, in part, solved by the ever-increasing speed of computers and also by the introduction of new methodologies in cladistics. With the notion of inferred resultant phylogenetic trees as the estimates, or in other words, we do not know the true tree, the inferred trees are best used as a starting point of further investigation.

1.3 MORPHOLOGY AND MOLECULES IN SYSTEMATICS

The relative values of morphological and molecular data have been a topic of debate. Despite the fact that morphological data are cheap and readily obtained, plant systematists are often faced with plasticity within a species, e.g. morphological variation within or among populations. The plasticity of any plant species, apart from genetic variation among individuals, is largely attributable to various physical environments where the plant populations grow. Three main symptoms can be seen in plant plasticity. They are morphological, physiological and behavioural variation (Lincoln et al., 1998). Moreover these highly affected morphological traits by different environments are not inheritable and there are also limited traits to be useful in the systematic study. There is sometimes a problem of the homology of morphological data, which unless firmly supported by its ontology (ontogenetic criterion) is arguable. So it is normally thought that molecular data are superior to
morphological data in that the environmental effect or selection is less active in molecules or DNA. Thus the phylogenetic information in molecules is more preserved and stable, hence more useful to reconstructing the life history of the group. Besides, by using a non-coding region, it also means that the result is less subject to environmental conditions which are sometimes found to play a very influential role in plant evolution.

DNA accumulates mutations over time. Its function is subject to how much it can tolerate before jeopardising its survival. The evolutionary variability of any molecule is a balance of mutationally neutral input and the constraints of structure and function. Its use as a source of phylogenetic information has two advantages over morphological data, first more data and, second generally easier interpretation of homology. There are hundreds or thousands of genes in any genomic set. Each part of the genome has its own properties, e.g. inheritance mode and rate of evolution. Thus, genes can be chosen for their suitability to a particular problem. For instance, genes of high rate of evolution can give rather well resolved trees in specific level studies, whereas, genes of slow rate of evolution are more suitable at generic level and above. Gene sequences also give the power of recognition of the frequency and evolutionary potential of hybridisation and introgression. Nevertheless, a study based on morphological data is still the only way to study relationships between living organisms and fossils.

Each nucleotide in any gene is one character whose states are four nucleotides, namely A, T, C and G. The use of nucleotide sequences in phylogenetic study involves fewer subjective decisions on the homology of character and character states. An 'A' at a particular site is an 'A', providing correctly identified homology and sequences alignment. This type of data is well suited to rigorous, algorithmic methods of analysis. The weighting step of molecular character is also easier than that of morphological character where the process is somewhat more of personal experience and again presents the field another debate. It also opens up the opportunity of studying distantly related species whose other comparative data, e.g. morphology are limited, if not prohibited at all. There are two types of origins of
genes. Orthologous genes are the ones that can be traced back to the speciation event, and will thus give a correct phylogenetic tree when used for evolutionary study. Paralogous genes are the ones that duplicate from one another in a species. This type of gene, as a result of duplication, when used in phylogenetic estimation, will give a gene tree rather than a species tree.

Molecular phylogenetics has twofold benefits. Firstly phylogenetic relationship or branching pattern is ascertained: monophyletic groups are defined and sister groups are identified. In addition, the relative timings of the speciation events that correspond to the lineage divergences are determined. Secondly, DNA-based phylogeny can then be compared to other traditional lines of evidence, e.g. anatomy and morphology (including data obtained by light microscope and electron microscope), palynology, chemistry, cytology and breeding system (Soltis and Soltis, 1995). It also has the power of predictability. Morphological data are commonly mapped on a molecular tree, therefore the evolutions of characters are studied. However, it should be noted that relationships are deduced on the basis of horizontal comparison (living organism) by using homology to refer to vertical (evolutionary) relationship.

Nonetheless, molecular data can occasionally be misleading depending on the history of the molecular data used (Doyle, 1992). Studies in Gossypium (Wendel et al., 1995) and Heuchera (Soltis and Kuzoff, 1995) showed that cpDNA sequencebased phylogeny could not distinguish the true evolutionary interrelationships among the member species. This is because different sources of molecular data may have different histories, especially in cpDNA. Introgression or chloroplast capture is a factor among other biological phenomena, such as lineage sorting and mistaken orthology which may give rise to gene trees that are discordant with species trees (Doyle, 1992). Another source of error in molecular based phylogeny is known as long branch attraction (or Felsenstein Zone) (Felsenstein, 1978). It occurs when two or more species have disproportionately high rates of molecular evolution in respect to other species in the study. As a result, these two or more species are prone to group together due to their higher chance of nucleotide similarity (resulting from
convergent evolution). This might be considered to be only a problem of sampling that can be solved, in part, by sampling more taxa closely related to the problem taxa.

In plants, there are three different DNAs in a cell, namely nuclear DNA, chloroplast DNA and mitochondrial DNA. Their properties are shown in Table 1.1 (adapted from Judd et al., 1999).

Table 1.1. The characteristics of plant genomes.

Source	Heredity	Genome Size (kbp)	Nature of Changes	Mutation Rate
Nuclear DNA (nrDNA)	Biparental	1.1×10^{6} to 1.1×10^{11}	Point mutation, Insertion \& deletion	6 X
Chloroplast DNA (cpDNA)	Uniparental (generally maternal)	$135-160$	Point mutation, Insertion \& deletion	3 X
Mitochondrial DNA (mtDNA)	Uniparental (generally maternal)	$200-2500$	Lots of relocation or shuffling of genes	X

Chloroplast DNA and nuclear DNA have been used as major sources of phylogenetic information since the early days of plant molecular phylogenetic study. A gene termed $r b c \mathrm{~L}$ in the chloroplast DNA which encodes the large subunit of the most abundant protein in the world, ribulose-1, 5-bisphosphate carboxylase/oxygenase or Rubisco, has been extensively studied in the field, both for its restriction site variation and nucleotide substitution (Palmer et al., 1988; Olmstead and Palmer, 1994). In nuclear DNA, ribosomal DNA that encodes for ribosomes, has played a significant role in plant phylogenetic study (Baldwin et al., 1995; Soltis et al., 1997). With the feasibility of direct DNA sequencing, $r b c \mathrm{~L}$ gene sequences and ribosomal gene sequences have proved to be useful in plant phylogenetic estimates (Chase et al., 1993; Soltis et al., 1997). Unfortunately, plant mitochondrial DNA, unlike the other two kinds, is not suitable for plant phylogenetic reconstruction,
especially at lower level because of its frequent relocation or shuffling of member genes and slow rate of nucleotide substitution that are considered to be of limited value (Wolfe et al., 1987; Palmer, 1992). However, there are some reports demonstrating that certain genes of plant mtDNA contain enough variation that when used in the species level phylogenetic estimation, give rather well resolved patterns (Duff and Nickrent, 1999; Bakker et al., 2000).

Ideally both morphological and molecular data should be used in an evolutionary study because they have different rates of evolution which might yield insights into phylogeny at different hierarchical levels (Pennington, 1996). Whether to combine these two sources of data into one analysis or to analyse them separately for phylogenetic reconstruction is again subject to argument as to the optimal use of the data. Traditionally, molecular data are used to infer the group phylogeny first, then morphological data are mapped across the molecular tree. This practice has proved valuable for comparing taxa that are highly morphologically divergent, plesiomorphically simple or secondarily simplified by reduction (and hence have insufficient clearly homologous structures) and for elucidating cases of parallel evolution (Bateman, 1996). This practice is also considered, however, to be suboptimal in cases where there are good or discrete morphological data that can be used to infer a cladogram on their own (Bateman et al., 1998). Seelanan et al. (1997) and Bateman (1999) have suggested similar ways of dealing with phylogenetic trees from different data. Originally they analyse each data set separately and, if there is no incongruency among the resultant trees topologically, then these data sets can be combined and analysed simultaneously to give 'total evidence' trees. If there is an incongruent clade, the data sets should not be combined and explanations must be sought for conflicting phylogenies. In the case of morphology alone, Bateman (1999) has suggested dividing soft or non-discrete states characters and hard or discrete states characters. Subsequently, only a set of hard characters is used in the phylogenetic analysis and the resultant trees are compared with trees from other sets of data. After reaching total evidence clades, soft characters are then mapped onto the trees.

1.4 THE PLANTS: ZINGIBERACEAE

Eighty-eight genera and about 2000 species (Kress, 1995), are accepted in the monophyletic order Zingiberales (Nakai, 1941; Tomlinson, 1962; Cronquist, 1981; Dahlgren et al., 1985; Kress, 1990; Duvall et al., 1993; Bremer et al., 1998). They are grouped into eight families, namely Musaceae, Strelitziaceae, Lowiaceae, Heliconiaceae, Costaceae, Zingiberaceae, Cannaceae, and Marantaceae (see Table 1.2). Attempts have been made to work out the phylogenetic relationships of the families within the order (Tomlinson, 1962; Kress, 1990; Smith et al., 1993; Kress, 1995) (see Figure 1.1). The most recent study of Kress (1995), based on molecular characters ($r b c \mathrm{~L}$) and 36 morphological characters, revealed that the clade of Marantaceae and Cannaceae is the sister clade of Zingiberaceae and Costaceae. The outgroup families were Haemodoraceae, Philydraceae, Pontederiaceae of Bromeliiflorae and Commelinaceae of Commeliniflorae (Dahlgren et al., 1985), then all placed under Commelinales (Bremer et al., 1998). The most recent studies using three molecular sources (18S rDNA, rbcL and atpB) (Chase et al., 2000; Soltis et al., 2000) confirmed that Zingiberales is monophyletic and with Commelinales as its sister group, though the relationships among the families are poorly resolved. Only Lowiaceae-Strelitziaceae is strongly supported. The family Zingiberaceae is also shown to be monophyletic with Alpinieae in basal position, then Globbeae, Hedychieae and Zingibereae, respectively.

There is no doubt that Costaceae is the sister family of Zingiberaceae. They used to be placed as a subfamily of the Zingiberaceae. Many characters are found to justify the family rank of both groups (Tomlinson, 1956). The Zingiberaceae are perennial herbs of the tropical forests, the greatest concentration of genera and species lying in Southeast Asia (Tomlinson, 1956; Dahlgren et al., 1985). They are chiefly forest floor plants, growing in humus-rich shade or semi-shade habitats. All species have branched, fleshy rhizomes that may be above or under ground and many possess tuberous roots.

Figure 1.1. A 'rhizogram' of the Zingiberales (taken from Kress, 1990).

Zingiberaceae make up approximately half the total number of species in Zingiberales, 1000 species in 2000 and more than half the number of genera, 50 genera in 88 (Cronquist, 1981; Kress, 1995). The family has also been always considered a natural group (Kress, 1990; Kress, 1995) within the Zingiberales. The autapomorphic characters of the family are the fusion of the lateral staminodes of the inner staminal whorl into a labellum, the presence of two epigynous glands at the base of the style, and the occurrence of cells containing essential or ethereal oils (Kress, 1990). The latest classification divides the family into four tribes, namely Alpinieae, Globbeae, Hedychieae and Zingibereae (Burtt and Smith, 1972). The circumscriptions of the tribes according to one vegetative character and four floral characters (Smith, 1981) are tabulated (Newman, 1988) in Table 1.5 (see also Figure 1.2).

The name 'zingiber' probably originates from the Arabic word zanjabil and later the Sanskrit word singabera (meaning horn-root), which gave rise to the classical Greek name zingiberi and finally zingiber in Latin (Larsen et al., 1999, p.1). Botanically, Zingiber is a genus name and gives the foundation to the family and
order names which the plant (Zingiber officinale Roscoe) belongs to.

People have used Zingiberaceae for various purposes, such as food, medicines and ornamentals. In daily cuisine, ginger (Zingiber officinale Roscoe or khing in Thai), turmeric (Curcuma longa L. or khamin) and galangal (Alpinia galanga (L.) Willd. or $k h a$) are spices that are widely used in food. Another important species is Elettaria cardamomum (L.) Maton that gives cardamom (krawan). Many have beautiful showy inflorescences or flowers and are used as ornamentals. Among these are Hedychium coronarium Koenig (ginger lily), Alpinia purpurata (Vieill.) K. Schum., Globba winitii C.H. Wright and Etlingera elatior (Jack) K. Schum. Recently Curcuma species have been promoted as cut and pot flowers for export in Thailand, among them, C. alismatifolia Gagnep. (Siamese Tulip) and C. roscoeana Wall. Roscoea is probably the most well known genus in western horticulture. As the only genus that can stand the weather in summer outside, it is grown in many gardens. In spite of the many uses of gingers, we know little of the evolutionary relationships within the family and the genera.

Table 1.2. The families, genera, and species of Zingiberales showing geographical distribution (after Larsen et al., 1998).

Family	Number of genera and species	Distribution
Musaceae Juss.	2 genera; 36-46 species Musa (30-40) and Ensete (6)	Old World Tropics and Subtropics
Heliconiaceae Nakai	1 genus (Heliconia); 200 species	Mainly New World Tropics
Lowiaceae Ridl.	1 genus (Orchidantha); 11 species	Southern China to Pacific Isles
Strelitziaceae Hutch.	3 genera; 6-7 species Phenakospermum (1) Ravenala (1) Strelitzia (4-5)	Trop. S. America Madagascar Southern Africa
Marantaceae Petersen	31 genera; 450 species	Pantropical
Cannaceae Juss.	1 genus (Canna); 10-25 species	Tropical \& subtropical Americas
Costaceae Nakai	4 genera; 108-113 species Costus (90) Tapeinochilus (15-20) Monocostus (1)	Pantropical, mainly in Americas S.E. Asia Tropical Americas
Zingiberaceae Lindl.	50 genera; 1300 species	Mainly Indo-Malayan; 3 endemic genera in Africa and Madagascar: Aframomum (50), Aulotandra (5), Siphonochilus (15), and Renealmia (75) mainly trop. S. America

Table 1.3. The systems of classification of the Zingiberales (modified from Kress, 1990).

Bentham and Hooker (1883) Genera plantarum	Petersen (Engler and Prantl edn. 1, 1889) Nat. Pflanzenfamilien	$\begin{aligned} & \text { Schumann (Engler 1900, } \\ & \text { 1902, 1904) } \\ & \text { Pflanzenreich } \\ & \hline \end{aligned}$	Hutchinson $(1934,1959)$ Fam. Fl. Plants	Nakai (1941) ${ }^{2}$
Family: Scitamineae	Order: Scitamineae	Order: Scitamineae	Order: Scitamineae (later Zingiberales)	Order: Zingiberales
Tribes: Museae (Musa, Ravenala, Strelitzia, Heliconia)	Families: Musaceae Tribes: Museae (Musa, Ravenala, Strelitzia) Heliconieae (Heliconia)	Families: Musaceae Subfamilies: Musoideae (Musa) Strelitzioideae Tribes: Strelitzieae (Strelitzia, Ravenala) Heliconieae (Heliconia) Lowioideae (Orchidantha)	Families: Musaceae (Musa) Strelitziaceae (Strelitzia, Ravenala, Phenakospermum, Heliconia) Lowiaceae (Orchidantha)	Families: Musaceae (Musa, Ensete) Strelitziaceae (Strelitzia, Ravenala, Phenakospermum) Heliconiaceae (Heliconia) Lowiaceae (Orchidantha)
Zingibereae	Zingiberaceae	Zingiberaceae Subfamilies: Zingiberoideae Tribes: Zingibereae Hedychieae Globbeae Costoideae Costeae	Zingiberaceae Tribes: Zingibereae Hedychieae Globbeae . Costeae	Zingiberaceae Costaceae (Costus, Tapeinochilus, Dimerocostus Monocostus)
Maranteae	Marantaceae	Marantaceae	Marantaceae	Marantaceae
Canneae (Canna)	Cannaceae (Canna)	Cannaceae (Canna)	Cannaceae (Canna)	Cannaceae (Canna)

[^0]Table 1.4. The first 200 years of Zingiberaceae systematics.

Author	Year	Significant contributions
Linnaeus, C. $(1707-1778)$	1753	Five genera were recognised in Monandria Monogynia, Species Plantarum: Amomum (now, Zingiber officinale; Z. zerumbet; Elettaria cardamomum; Aframomum spp.) Alpinia (Renealmia racemosa), Curcuma (C. longa; Boesenbergia rotunda), Kaempferia (K. galanga; K. rotunda), Costus (C. arabicus)
König, J.G. $(1728-1785)$	1783	The first good botanical descriptions were made from living plants in Retzius's Observationes Botanicae (3:45-75). (Linnaeus's pupil who visited Thailand)
Retzius, A.J. $(1742-1821)$	1791	Koenig's notes and Retzius's own studies were further published in Observationes Botanicae (6:17-18).
Willdenow, C.L. $(1765-1812)$	1797	Some improvement on Retzius's classification was made in Species Plantarum.
Roscoe, W. $(1753-1831)$	1807	True Scitaminean plants (mainly members of present day defined Zingiberaceae) were separated from Jussieu's Cannae using the anther character in Transactions of the Linnean Society of London (8:330-357). Colour plates of Scitaminean plants were published during 1824-1829 (Monandria Plants of the order Scitaminae).
Roxburgh, W. $(1751-1815)$	1812	The plants may be separated into two groups, apart from by using the charater of the anther: (i) truly herbaceous (Curcuma, Kaempferia, Zingiber and Globba), and (ii) less herbaceous (Canna, Phrynium,
Amomum and Alpinia), in Monandrous Plants of India, Asiatic		
Researches (11:318-362). The work was republished posthumously		
with additional taxa in Flora Indica (three editions, 1820, 1832 and		
1874).		

Horaninow, P.F. $(1796-1865)$	1862	The first monograph of the family was presented in Prodomus Monographiae Scitaminearum.
Baker, J.G. $(1834-1920)$	$1890-$ 1892	Zingiberaceae plants of India (including those known from the Malay Peninsula) were complied in Hooker's Flora of British India $(6: 198-264)$.
Petersen, O.G. $(1847-1937)$	1899	The monograph of the family was presented in Engler and Prantl's Die Natürlichen Pflanzenfamilien (edn.1).
Ridley, H.N. $(1855-1956)$	1899	Ridley's first account of the Scitamineae of the Malay Peninsula was published in Journal of the Straits Branch of the Royal Asiatic Society (32:85-184). He also published the family account in the Flora of the Malay Peninsula (1924,4:233-285).
Schumann, K.M. $(1851-1904)$	1904	A monograph of the family was published in Engler's Das Pflanzenreich (4:part 46).
Valeton, T.H. $(1855-1929)$	1904	Thorough study of the family in Java was first published in Bulletin de L' Institut Botanique de Buitenzorg (20). The work was continued through 1913, 1914 and 1918 (Bulletin du Jardin Botanique de Buitenzorg, 1918, 26).
Gagnepain, F. $(1866-1952)$	1908	Descriptions of new species, mainly from Indo-China, and an account of the family were written in Flore Generale de L' Indo- Chine (6:25-121) (H. Lecomte, ed.).
Loesener, L.E.T. $(1865-1941)$.	1930	An account of Zingiberaceae was published following the work of Valeton in Engler and Prantl's Die Natürlichen Pflanzenfamilien (edn.2, part 15a).
Holtum, R.E. $(1895-1990)$	1950	The Zingiberaceae of the Malay Peninsula was publisehd in the Garden's Bulletin Singapore (13:part 1).

Table 1.5. The classification of tribes in Zingiberaceae (Burtt and Smith, 1972).

Tribe	Lateral staminodes	Ovary	Filament	Anther crest	Plane of distichy of leaves compared with direction of growth of rhizome
Zingibereae	Petaloid, fused with labellum	Trilocular. Placentation axile	Non-exserted	Wrapped around the style above the anther	Parallel
Globbeae	Petaloid, free from labellum Sthilocular. Placentation basal- axile or parietal	Exserted. Bow-like with style as bow- string	Lateral on the anther or absent	Parallel	
Hedychieae	Petaloid, free from labellum	Trilocular. Placentation axile	Non-exserted or, if exserted, not bow-like	When present not wrapped around the style above the anther	Parallel
Alpinieae	Small, linear or tooth-like or absent	Trilocular. Placentation axile	Variable When present, not wrapped around the style above the anther	Transverse	

Figure 1.2. Floral parts of the four tribes in Zingiberaceae (after Smith, 1981).

Anther types in Globbeae

Table 1.6. Genera and numbers of species in the tribes of Zingiberaceae (after Larsen et al., 1998).

Alpinieae A. Rich. (24 genera, $\sim 800 \mathrm{spp}$.)	Globbeae Meisn. (4 genera, ~110 spp.)	Hedychieae Horan. (21 genera, ~303 spp.)	Zingibereae Meisn. (1 genus)
Aframomum K. Schum. (50) Alpinia Roxb. (227) Amomum Roxb. (150) Aulotandra Gagnep. (5) Burbidgea Hook.f. (8) Cyphostigma Benth. (1) Elettaria Maton (7) Elettariopsis Baker (10) Etlingera Giseke (70) Geocharis (K. Schum.) Ridl. (7) Geostachys (Baker) Ridl. (18) Hornstedtia Retz. (50) Leptosolena C. Presl (1) Nanochilus K. Schum. (1) Plagiostachys Ridl. (20) Pleuranthodium (K. Schum.) R.M.Sm. (25) Pommereschea ${ }^{\text {A }}$ Wittm. (2) Renealmia L.f. (75) Rhynchanthus ${ }^{\text {A }}$ Hook. f. (6) Riedelia Oliv. (60) Siamanthus K. Larsen \& J. Mood (1) Stadiochilus ${ }^{\text {B }}$ R. M. Sm. (1) Tamijia S. Sakai \& Nagam. (1) Vanoverbergia Merr. (1)	Gagnepainia K. Schum. (3) Globba L. (100) Hemiorchis Kurz (3) Mantisia Sims (4)	Boesenbergia Kuntze (60) Camptandra Ridl. (4) Caulokaempferia K. Larsen (10) Cautleya (Benth.) Hook. f. (2) Cornukaempferia J. Mood \& K. Larsen Curcuma L. (50) Distichochlamys M. F. Newman (1) Haniffia Holttum (2) Haplochorema K. Schum. (3-4) Hedychium J. König (50) Hitchenia Wall. (3) Kaempferia L. (40) Paracautleya R. M. Sm. (1) Parakaempferia A. S. Rao \& D. M. Verma (1) Pyrgophyllum (Gagnep.) T. L. Wu \& Z. Y. Chen (1) Roscoea Sm. (19) Scaphochlamys Baker (30) Siliquamomum ${ }^{\mathrm{C}}$ Baill. (1) Franks (15) Smithatris ${ }^{\text {E }}$ W.J. Kress \& K. Larsen (1) Stahlianthus Kuntze (6)	Zingiber Boehm. (100)
${ }^{\text {A }}$ From new molecular cladistic analyses (Wood et al., 2000; Kress, pers. comm.), it is placed within Hedychieae. Pommereschea and Rhynchanthus form a clade among other members of Hedychieae. ${ }^{\text {B }}$ Status is uncertain but Stadiochilus has an affinity with Rhynchanthus. In addition, there is a character, a groove bearing the filament in corolla tube, in common with many Hedychium spp. which ${ }_{C}$ is not found in any member of Alpnineae (Smith, 1980). ${ }^{\mathrm{c}}$ From the molecular cladistic analysis (Kress, pers. comm.), it is placed within Alpinieae. ${ }^{\mathrm{D}}$ From the molecular cladistic analysis, it is a sister taxon to all the rest of Zingiberaceae (Wilf et al., 2000). ${ }^{\mathrm{E}}$ It has not been published yet (Kress \& Larsen, pers. comm.).			

1.4.1 THE AUTHORITIES OF THE TRIBAL NAMES

Current classifications accept four tribes in Zingiberaceae namely Alpinieae A. Rich., Globbeae Meisn., Hedychieae Horan. and Zingibereae Meisn. (Burtt \& Smith 1972; Smith, 1981; Dahlgren et al., 1985; Larsen et al., 1998). The delimitations of the tribes are now largely clear, though there are doubts about the placement of some genera in the classification (Smith, 1981; Larsen et al., 1998). The following paragraph is a brief history of the correct authorities for the tribal names. Presently accepted tribal names are in bold.

The first person who divided the family into groups was C.L. Blume. Blume (1827) subdivided the family into five subdivisions or sections: Zingibera, Amomae, Alpiniae, Costae and Globbae. Unfortunately his ranks are not valid according to Article 4.1 of the International Code of Botanical Nomenclature (Greuter et al., 2000). The first person who validly established the first ever tribe in Zingiberaceae: Alpinieae is A. Richard (1841). Then in the following year, C.D.F. Meisner (1842) published his subdivision of the family into five tribes: Alpinieae, Amomeae, Globbeae, Zingibereae and Costeae. Meisner's Amomeae was sunk into synonymy under Alpinieae (Burtt, 1972) while Costeae was raised to family rank (Nakai, 1941). Then in 1862, P.F. Horaninow established Hedychieae, Amomeae, Alpinieae and Costeae for Amomaceae, a synonym of Zingiberaceae. The seminal work of Schumann (1904) which has been a basis for later workers, however, used only three tribal names in his subfamily Zingiberoideae namely Hedychieae, Globbeae and Zingibereae (including the genera of Alpinieae). Schumann attributed all the tribes to Petersen who had written a monograph of the family (Petersen, 1899). Loesener (1930) followed the use of the three tribes and the authorities. In 1950, R.E. Holttum correctly pointed out that Zingiber is more closely related to Hedychieae than to Amomum and Alpinia (Alpinieae). He transferred Zingiber to Hedychieae. Zingibereae was taken up again at tribal rank (Burtt and Olatunji, 1972) after Holttum (1950) failed to rename his Hedychieae that included Zingiber, the type of the family, as Zingibereae in accordance with Article 19.4 of the Code.

1.4.2 BIOGEOGRAPHY

Biogeographical study of the Zingiberales has been advanced by findings of new fossilised remains. It has been found that Zingiberales already existed in the Late Cretaceous, about 83 million years before present (Friis, 1988; Herendeen and Crane, 1995; Bremer, 2000). Though Spirematospermum of the Santonian/Campanian of North America and the European Tertiary was thought at first to belong to the family Zingiberaceae, a new study (Rodriguez de la Rosa and Cevallos Ferriz, 1994) has suggested that it is better referred to the Musaceae. The very first fossils of Zingiberaceae have been found in Late Cretaceous to Early Eocene sediments of Western Interior North America (Hickey and Peterson, 1978). Three species of fossilised leaves of Zingiberopsis were calculated to date from c. 70 million years BP (Herendeen and Crane, 1995) and are morphologically similar to the extant genus Alpinia. The pattern of venation in these three species of Zingiberopsis also shows a clear trend toward loss of the wider parallel vein subsets over the approximately 20 -million-year range of the genus (Hickey and Peterson, 1978). The fossil record is scant in the family, however, and cannot provide new or independent information because it needs to be typed with modern taxa.

The present distribution of Zingiberaceae can also be a guide to reconstructing its evolutionary history in relation and addition to the geological history of the earth (see Table 1.7). Out of 50 genera described so far in the family (Table 1.6), at least 21 genera belong to the tribe Hedychieae (Mood and Larsen, 1997; Larsen et al., 1998; Larsen and Mood, 1998). The majority of these genera occur in continental Southeast Asia, i.e. Burma, Thailand, Laos, Cambodia, Vietnam and Peninsular Malaysia (see Table 1.7). Thailand in the centre of this area possesses the greatest number of genera in Zingiberaceae. The area is in fact a meeting point for elements concentrated in the west and those confined to the east (Ashton, 1990). In addition to the molecular phylogeny of the genera in Hedychieae, and the phylogeny of Roscoea, present distribution patterns of the members should provide further evidence to interpreting the evolutionary patterns of the groups.

Table 1.7 Distribution of Zingiberaceae in Asia.
(Colour scheme: green = Tribe Alpineae, pink = Tribe Globbeae, blue = Tribe Zingibereae; please see also Table 1.6 and Table 7.1).

Country/area	Number of genera	Number of species	The five largest genera	Source
Pakistan	3	4	Curcuma (2, cult.) Roscoea (1) Zingiber (1, cult.)	(Ghazanfar and Smith, 1982)
India	20 (2 monotypic genera: Paracautleya, SW and Parakaempferia, NE)	176	Hedychium (39) Curcuma (28) Zingiber (18) Globba (18) Amomum (16)	(Karthikeyan et al., 1989; Jain and Prakash, 1995; Srivastava, 1998)
Sri Lanka	11 (1 monotypic genus: Cyphostigma)	34	Amomum (10) Alpinia (7) Curcuma (5) Zingiber (5) Hedychium (3)	(Burtt and Smith, 1983)
Nepal	11	36	Hedychium (12) Roscoea (6) Amomum (3) Globba (3) Zingiber (3)	$\begin{aligned} & \text { (Press et al., } \\ & 2000) \end{aligned}$
Bangladesh	13	46	Hedychium (9) Curcuma (8) Globba (7) Zingiber (6) Alpinia (5) Amomum (5)	(Rahman and Yosaf, 1996; Rahman and Yosuf, 1997)

Bhutan	14	47	Hedychium (13) Zingiber (7) Globba (5) Roscoea (4) Amomum (4)	(Smith, 1994)
China	20 (2 monotypic genera: Pyrgophyllum, SW and Siliquamomum, S)	209	Alpinia (51) Zingiber (42) Amomum (39) Hedychium (28) Roscoea (13) Curcuma (12)	(Wu and Larsen, 2000)
Cambodia, Laos and Vietnam	At least 13 (2 monotypic genera: Distichochlamys, C Vietnam and Siliquamomum, N Vietnam)	150	Globba (22) Amomum (19) Alpinia (17) Curcuma (17) Kaempferia (13) Zingiber (13)	(Gagnepain, 1908; Newman, 1995; Larsen, 1996b)
Burma	21 (1 monotypic genus: Stadiochilus)	151	Globba (23) Curcuma (21) Kaempferia (17) Zingiber (16) Alpinia (14) Amomum (14)	(Smith, 1980; Kress, 2000)
Thailand	23 (2 monotypic genera: Siamanthus, S and Smithatris, C)	200	Curcuma (50) Globba (34) Zingiber (26) Hedychium (25) Boesenbergia (15) Kaempferia (15)	(Larsen, 1996a; Larsen and Mood, 1998; Sirirugsa, 1998; Theilade, 1999)
Malesian region	26	700	Alpinia (180) Amomum (100) Etlingera (50-60)	(Larsen, 1996b; Larsen, 1998)

			Riedelia (55) Zingiber (50) Boesenbergia (50)	
Peninsular Malaysia and Singapore	18	171	Alpinia (24) Amoтum (19) Scaphochlamys (19) Zingiber (19) Globba (15)	$\begin{aligned} & \text { (Larsen et al., } \\ & 1999) \end{aligned}$
Mount Kinabalu	11	56	Etlingera (11) Alpinia (10) Amomum (10) Globba (5) Plagiostachys (5)	(Beaman et al., 1998)
Brunei	13	106	Amomum (22) Boesenbergia (18) Alpinia (10) Etlingera (9) Plagiostachys (9)	(Cowley, 2001)
Indonesia	18 (1 monotypic genus: Nanochilus, Sumatra)	366	Alpinia (92) Amomum (66) Riedelia (62) Globba (31) Etlingera (30) Zingiber (30)	(Riswan and Setyowati, 1996; Larsen et al., 1998;)
Philippines	12 (2 monotypic genera: Leptosolena and Vanoverberghia)	99	Alpinia (40) Amomum (19) Globba (12) Zingiber (10) Plagiostachys (6)	(Madulid, 1996)
Australia	9	18	Alpinia (6) Curcuma (2)	(Smith, 1987)

			Hedychium (2) Zingiber (2) Amomum (2)	
Fiji Islands	6	17	Alpinia (9, 5 end.) Hedychium (2) Zingiber (2) Etlingera (2, 1 end.) Curcuma (1) Elettaria (1)	(Smith, 1979)

1.5 AIMS AND CHOICES OF PHYLOGENETIC INFORMATION

1.5.1 THE HEDYCHIEAE STUDY

This study is initiated to study evolutionary relationships in one of the four accepted tribes, Hedychieae in the family Zingiberaceae. The tribe has twenty-one genera described to date (see Table 1.6). To study the evolutionary or phylogenetic relationships among the genera of Hedychieae, two sources of molecular information are sampled. First, the internal transcribed spacers of ribosomal DNA (ITS) which are part of nuclear DNA were chosen (Baldwin, 1992; Rangsiruji, 1999). The second source of phylogenetic information comes from a region of circular-chloroplast DNA encoded trnL (UAA) 5^{\prime} exon - trnF (GAA) exon (referred to hereafter as trnL-F region) (Taberlet et al., 1991; Gielly and Taberlet, 1994).

The ITS region is nested in the ribosomal DNA (rDNA). Ribosomal DNA is a set of many repetitive multicopies DNA sequences found in the nuclear genome that encodes for the synthesis of ribosomal RNA (rRNA). It is the best known example of a repetitive gene region that has undergone a process called concerted evolution (Zimmer et al., 1980). The process homogenises all the mutations within
the multiple copies of the gene in a single individual and species. Thus it appears that all the copies of the gene evolve as if a single unit and are able to outstrip mutations that lead to speciation. The process is still inadequately understood but is thought to have occurred through mechanisms of molecular drive, for instance, biased gene conversion and unequảl crossing over, among others (Li, 1997, p. 309-334). As a result of concerted evolution, ribosomal DNA possesses many advantages for DNA sequencing. For instance, it is easily detected because of the very high numbers of copies in the genome and the problem of homology in the comparison of the sequences from different species is eliminated. A representative sequence of an individual of a species can be safely used as such.

The ITS region is subdivided into the ITS1 region ($<300 \mathrm{bp}$), which separates the 18 S and 5.8 S rDNA genes, and the ITS2 region ($<300 \mathrm{bp}$), which is found between the 5.8 S and 26 S rDNA genes (Figure 1.3). The attributes of the ITS regions that simplify their PCR amplification, sequencing alignment and phylogenetic analysis are: small size, highly conserved flanks, high copy number, rapid concerted evolution and length conservation of angiosperm ITS sequences (Baldwin et al., 1995). The most widely used regions of the ribosomal DNA, as sources of phylogenetic information at specific and generic level, are the internal transcribed spacers (ITS1 and ITS2) of the gene (Baldwin, 1992; Baldwin et al., 1995; Downie and KatzDownie, 1996; Möller and Cronk, 1997a). Simultaneously, the 18S region has been used at familial level and above (Soltis et al., 1997).

The disadvantage in using ITS sequences is that the small number of characters from these short spacers provides limited data for phylogenetic studies in angiosperms. Four-taxon simulations by Huelsenbeck \& Hillis (1993) suggest that sequences of such short length are, under most conditions and types of analysis, less effective for accurate tree reconstruction than longer sequences. Useful variation must be more highly concentrated within a set of ITS1 and ITS2 sequences than in longer DNA regions in order to achieve the same level of phylogenetic resolution and support. Further constraints on the number of useful ITS characters can be imposed by the need to delete small indel regions from phylogenetic analysis
because of uncertain sequence alignment. Therefore, it is essential that data from other sources (e.g. chloroplast DNA) are used in conjunction or combined with ITS evidence to obtain enough characters for well-supported phylogenetic resolution (Kluge, 1989; Barrett et al., 1991; Donoghue and Sanderson, 1992).

The noncoding $t r n \mathrm{~L}-\mathrm{F}$ is then chosen in addition to the use of the ITS regions (Figure 1.4). The trnL-F region is found in a large single copy of chloroplast DNA (Hiratsuka et al., 1989; Maier et al., 1995). The region includes the 5^{\prime} trnL exon, the $\operatorname{trn} \mathrm{L}$ intron, the $3^{\prime} \operatorname{trn} \mathrm{L}$ exon, the intergenic spacer and the $\operatorname{trn} \mathrm{F}$ exon regions. The cpDNA $\operatorname{trnL} \mathrm{L}$ region has been used widely as a source of phylogenetic markers (Gielly et al., 1996; Sang et al., 1997; Kajita et al., 1998; Bakker et al., 1999). The region proves to be useful in reconstructing phylogeny at specific and generic level in these studies. Nonetheless, it was reported that the region in Alpinia spp. (Rangsiruji et al., 2000) was about four times less variable than that of the ITS region of the genus, and thus yielded less resolved phylogenetic trees. It is then expected that the region may be more suitable at higher level i.e. generic level and above for reconstructing phylogeny in Zingiberaceae which is the aim of this study of the Hedychieae. In addition to phylogenetic studies, a study of versatile anther development using scanning electron microscope (SEM) in a group of five genera (Camptandra, Cautleya, Curcuma, Paracautleya and Roscoea) of the Hedychieae is also carried out to further test the monophyly of the group.

1.5.2 THE ROSCOEA STUDY

The study then takes a closer look into the phylogenetic relationships of one of the genera in Hedychieae, Roscoea, a peculiar genus in Zingiberaceae. Unlike most members of the family, Roscoea is mainly found in the north subtropical zone along the Himalaya, from Kashmir in the west to the east of Burma, and Southwest China (Cowley, 1982). This phenomenon prompts a question of how this originally tropical family has established a new home in a temperate region. In order to study the phylogenetic relationships and the biogeography of the genus, this part of the
study is not only based on cladistic analysis of molecular data (ITS sequences), but also incorporates the distribution pattern of all 19 species in the genus (Cowley, 1982; Cowley and Baker, 1996; Ngamriabsakul and Newman, 2000). A morphological cladistic analysis is also performed to find any congruence or discrepancy between the resultant evolutionary patterns from molecular and morphological analyses. Furthermore, five species of Roscoea and Cautleya are studied cytologically.

Figure 1.3. Repeat units of the nuclear ribosomal DNA and the organisation of the internal transcribed spaces (ITS) (adapted from Möller, pers. comm.). Arrows indicate orientation and approximate position of primer sites. Primer names and sequences are those of Möller \& Cronk (1997a) and Rangsiruji (1999).

Figure 1.4. Approximate positions and directions of the primers used to amplify $\operatorname{trnL} \mathrm{F}$ region (Taberlet et al., 1991).

CHAPTER TWO: PHYLOGENY OF THE HEDYCHIEAE BASED ON ITS (nrDNA) AND trnL-F (cpDNA)

2. 1 ABSTRACT

A phylogenetic analysis of the tribe Hedychieae is performed using nuclear ribosomal DNA (ITS1, 5.8S and ITS2) and chloroplast DNA (trnL (UAA) 5' exon to $\operatorname{trnF}(\mathrm{GAA})$). The results of these two phylogenetic sources are in accordance, though with differing levels of resolution. Morphology, chromosome numbers and distribution ranges are discussed in the light of the molecular findings. Hedychieae is confirmed to include Zingibereae, the true gingers, and is monophyletic. However, the genera Boesenbergia and Curcuma are apparently not monophyletic. Two major subclades are recognised in Hedychieae, namely the 'Curcuma clade' and the 'Hedychium clade'.

The 'Curcuma clade' comprises Camptandra, Pyrgophyllum, Stahlianthus and a set of four morphologically very similar genera: Curcuma, Hitchenia, Paracautleya and Smithatris. In this clade, a subclade of Camptandra/Pyrgophyllum is the sister group to a very strongly supported 'Curcuma complex': Curcuma, Hitchenia, Paracautleya, Smithatris and Stahlianthus. Smithatris may be recognised as a distinct genus and sister group to the others in the complex. Curcuma is paraphyletic. Two subclades are found in the complex, namely Stahlianthus /Curcuma subgenus Hitcheniopsis, and Hitchenia/Paracautleya/Curcuma subgenus Curcuma. The dorsifixed versatile anther of the Curcuma complex has been lost independently in Hitchenia and Stahlianthus, while the basifixed versatile anther has arisen independently in Camptandra and CautleyalRoscoea.

Within the 'Hedychium clade', I recognise two main subclades: a clade of Hedychium/Pommereschea/Rhynchanthus/Cautleya/Roscoea, and a 'Boesenbergia group' that has Boesenbergia, Caulokaempferia, Cornukaempferia, Distichochlamys,

Haniffia, Kaempferia, Scaphochlamys and Zingiber. Pommereschea and Rhynchanthus have been traditionally placed in the tribe Alpinieae, but the lack of petaloid staminodes in these two genera can be seen as a derived character loss. Haniffia is the sister group to the remaining genera of the 'Boesenbergia group'. Boesenbergia is paraphyletic in respect to Caulokaempferia. Zingiber is sister to Cornukaempferia and the large, narrow and curved anther crest found in these two genera is a morphological character also suggesting their close relationship.

Under low stringency conditions, two bands of the $\operatorname{trnL} \mathrm{L}$ trn F PCR product using either a set of primer ' c ' and ' f ', ' c ' and ' d ' or ' e ' and ' f ' are encountered in some species. The PCR amplification of the region needs stricter conditions than the ITS amplification of the same species, including a well-calibrated thermocycler. All the products used for sequencing in this study are obtained as a single band.

2.2 INTRODUCTION

Hedychieae, as the second largest tribe following Alpinieae, has twenty-one genera described to date (see Table 1.6). Almost all the genera in the tribe are confined to South and Southeast Asia. The only exception is Siphonochilus whose distribution lies in Africa and Madagascar. Two recent, preliminary molecular cladistic analyses based on the ITS (nuclear ribosomal DNA) (Searle and Hedderson, 2000, for Hedychieae) and with matK (chloroplast DNA) (Kress, pers. comm., for the family) suggest that Siphonochilus is not a member of Hedychieae, but rather a taxon in Alpinieae as is Siliquamomum. On morphological grounds, the Hedychieae appears to form a monophyletic group. The synapomorphies of the tribe are free petaloid staminodes, trilocular ovary (infrequently incompletely trilocular or unilocular) with axile placentation and the plane of distichy of the leaves parallel with the direction of growth of the rhizome.

The internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA have proven to be useful in phylogenetic studies in many plant families, e.g.

Asteraceae (Baldwin, 1992), Apiaceae (Downie and KatzDownie, 1996), Gesneriaceae (Möller and Cronk, 1997a), and Araliaceae (Wen et al., 1998). These regions have rates of substitution that are useful for evaluating generic and specific level relationships in plants (Baldwin et al., 1995, see review). There has been an increasing recent interest in reconstructing the phylogeny of Zingiberaceae, mostly by using the ITS region. Searle and Hedderson (2000) reported for the first time the phylogeny within the tribe Hedychieae based on ITS sequences. Their study concentrated on the genera of the 'Kaempferia group', namely Kaempferia, Boesenbergia, Haplochorema, Distichochlamys and Scaphochlamys. Another study by Rangsiruji (2000b), investigated the phylogeny of Alpinia, the largest genus (about 227 species) in the family, using the ITS region and trnL-F spacer of chloroplast DNA. Two other detailed phylogenetic studies of specific relationships in Roscoea (Ngamriabsakul et al., 2000) and Hedychium (Wood et al., 2000) have been published. These studies have shown the suitability of ITS for the phylogenetic study of ginger plants. In addition to the use of ITS sequences, a region of trnL (UAA) 5^{\prime} exon to trnF (GAA) in the chloroplast genome is also used (Taberlet et al., 1991). The $t r n \mathrm{~L}-\mathrm{F}$ region can be divided into two subregions, namely trnL intron and $t r n \mathrm{~L}-\mathrm{F}$ spacer. The cpDNA trnL-F region has been used widely as a source of phylogenetic markers (Gielly et al., 1996; Sang et al., 1997; Kajita et al., 1998; Bakker et al., 1999). It proves to be useful in reconstructing phylogeny at specific and generic level in these studies. Nonetheless, it was reported that the trnL-F spacer in Alpinia species was about four times less variable than that of the ITS region (Rangsiruji et al., 2000a), and thus yielded less resolved phylogenetic trees. It is then expected that the region may be more suitable at higher level, i.e. generic level and above for reconstructing phylogeny in Zingiberaceae which is the aim of this study for the Hedychieae.

By ascertaining the phylogeny of the Hedychieae, endless exciting new interpretations of the morphological evolution of the group become possible. For instance, among the twenty-one genera of the tribe, there is a group of five genera, i.e. Camptandra, Cautleya, Curcuma, Paracautleya and Roscoea, that possesses a versatile anther, an unusual character in the family. The result of this study could
suggest whether this character was derived only once or several times during the evolutionary history of the plants. In addition, the findings of this study may also help in understanding morphological changes in the family as a whole. Although recent morphological studies have noted that the current subdivision of the family is inadequate (Smith, 1980; Larsen and Mood, 1998; Sakai and Nagamasu, 2000), the present study is focused on the tribe Hedychieae as presently circumscribed (Smith, 1981, see Table 1.5). I intend to make a more thorough and balanced sampling of the members of the Hedychieae for this study than the previous studies reported.

2.3 MATERIALS AND METHODS

2.3.1 PLANT MATERIAL

Many of the plant samples were taken from the research glass house of the Royal Botanic Garden Edinburgh (RBGE). Another important source of plant samples was my fieldtrip in Thailand during the months of July and August 1999 (C.N. and M.F.N.). Zingiberaceae researchers also helped me to obtain some samples (see Table 2.1 for the plants sequenced in this study).

The number of species of each genus was sampled to account for the variation within the genus, both in terms of the total number of species described to date and its distribution range. At least 10 per cent of the species in each genus were included. Following are the genus name and, within the parentheses, the number of species described to date and the number included in this study: 1. Boesenbergia (50/5), 2. Camptandra (4/2), 3. Caulokaempferia (10/1), 4. Cautleya (2/1), 5. Cornukaempferia (2/1), 6. Curcuma (50/6), 7. Distichochlamys (1/1), 8. Hedychium (50/5), 9. Kaempferia (40/4), 10. Paracautleya (1/1), 11. Pyrgophyllum (1/1), 12. Roscoea (19/2), 13. Scaphochlamys (20/2), 14. Smithatris. (1/1), 15. Stahlianthus (6/1). A species of tribe Zingibereae or Zingiber (the only genus in the tribe) (50/1) was also included to test the findings of Searle and Hedderson (2000), Wood et al. (2000) and Kress (pers. comm.) that Zingiber is found among the genera of

Hedychieae, particularly forming a clade with Cornukaempferia.

2.3.2 OUTGROUP TAXA

The phylogenetic relationships (Soltis et al., 2000; Wilf et al., 2000; Wood et al., 2000) within the family unambiguously show that Alpinieae is the basal branch in the family. It is then followed by Globbeae, Hedychieae and Zingibereae. Zingiber is also found nesting among the genera of the Hedychieae. I chose three species in Alpinieae: Alpinia galanga, Renealmia battenbergiana and Pleuranthodium schlechteri, as the outgroup, because these plants were available living at RBGE and were used in a previous study (Rangsiruji et al., 2000b).

Table 2.1 Taxa sequenced in this study with source and accession number, and voucher.

Taxon	Source, Accession Number and Voucher
Outgroup Alpinia galanga (L.) Willd.	RBGE, 19771077; A. Rangsiruji 3 (E)
Pleuranthodium schlechteri (K.Schum.) R. M. Sm.	WAI, 75p168; C. Cory 5 (E)
Renealmia battenbergiana Cummins ex Baker	RBGE, 19740104; A. Rangsiruji 27 (E), C8482 (E)
Ingroup 1. Boesenbergia aurantiaca R. M. Smith	RBGE, 19850843; C. Ngamriabsakul 29 (E)
B. basispicata K. Larsen ex Sirirugsa	RBGE, 19851662; C. Ngamriabsakul 26 (E)
B. gelatinosa K. Larsen	Thailand, the fieldtrip; M.F. Newman 905 (BKF, E)
B. longiflora (Wall.) Kuntze	Thailand, the fieldtrip; M.F. Newman 904 (BKF, E)
B. aff. longiflora	Thailand, the fieldtrip; M.F. Newman 934 (BKF, E)
2. Camptandra parvula (King ex Bak.) Ridl.	Malaysia, Prof. Halijah Ibrahim; -
3. Caulokaempferia thailandica K . Larsen	Thailand, the fieldtrip; C. Ngamriabsakul 61 (BKF, E)
4. Cautleya spicata (Sm.) Baker	RBGE, 19590760; C. Ngamriabsakul 30 (E)
5. Cornukaempferia longipetiolata J. Mood \& K. Larsen	RBGE, 19991165 (Thailand, the fieldtrip); C. Ngamriabsakul 32 (E)
6. Curcuma alismatifolia Gagnep.	Thailand, the fieldtrip; M.F. Newman 944 (BKF, E)
C. amada Roxb.	RBGE, 19810001; M. Ardiyani 27 (E)
C. ecomata Craib	Thailand, the fieldtrip; C . Ngamriabsakul 38 (BKF, E)
C. harmandii Gagnep.	Thailand, the fieldtrip; C . Ngamriabsakul 48 (BKF, E)

C. parviflora Wall.	Thailand, the fieldtrip; C. Ngamriabsakul 32 (BKF, E)
C. rubescens Roxb.	Thailand, Prof. Puangpen Sirirugsa; -
7. Distichochlamys citrea M. F. Newman	RBGE, 19901463; C. Ngamriabsakul 24 (E)
8. Hedychium coccineum Sm.	RBGE, 19751806; Voucher n .
H. gardnerianum Roscoe	RBGE, 19910120; C. Ngamriabsakul 27 (E)
H. x raffillii	RBGE, 19662631; Voucher n.
H. villosum Wall.	RBGE, 19901454; Voucher n.
H. sp.	Thailand, the fieldtrip; M.F. Newman 916 (BKF)
9. Kaempferia angustifolia Roscoe	RBGE, 19621457; Voucher n .
K. elegans Wall.	Thailand, the fieldtrip; M.F. Newman 879 (BKF, E)
K. marginata Carey	RBGE, 19860057; Voucher n .
K. rotunda L .	RBGE, 19590678; C. Ngamriabsakul 28 (E)
10. Paracautleya bhatii R. M. Smith	India, Dr K.G. Bhat; K.G.B. 11349 (E)
11. Pyrgophyllum yunnanensis (Gagnep.) T. L. Wu \& Z. Y. Chen	RBGE, 19901313; C. Ngamriabsakul 33 (E)
12. Roscoea bhutanica Ngamriab.	RBGE, 19841747; C. Ngamriabsakul 23 (E)
R. humeana Balf. f. \& W. W. Sm.	RBGE, 19871610; C. Ngamriabsakul 8 (E)
13. Scaphochlamys kunstleri (Bak.) Holtt.	RBGE, 19643232; C. Ngamriabsakul 25 (E)
S. lanceolata (Ridl.) Holtt.	RBGE, 19782413; Voucher n. (G53)
14. Smithatris supraneanae W. J. Kress and K. Larsen	Thailand, Ass. Prof. Yingyong Paisooksantivatana; Y. Paisooksantivatana 00081101 (BK)
15. Stahlianthus involucratus (King ex Baker) R. M. Sm.	RBGE, 19981701; C. Ngamriabsakul 34 (E)
16. Zingiber junceum Gagnep.	RBGE, 19991169 (Thailand, the fieldtrip); M.F. Newman 954 (BKF, E)

2.3.3 INGROUP TAXA

Thirty-three species of fifteen genera in Hedychieae and Zingiber junceum were sequenced (see Table 2.1). At least ten per cent of the species in each genus were sampled to avoid any excess heterogeneity of rates of molecular evolution that may be found. The species were also sampled in such a way as to represent most of the major distribution of each genus. Previous molecular analyses (Wood et al., 2000; Kress, pers. comm.) suggest that Siliquamomum and Siphonochilus are not members of Hedychieae, instead they are placed within Alpinieae. In addition, Siphonochilus appears to be a sister taxon to all the members of the family (Wilf et al., 2000). This is supported by anatomical work by Olatunji (1970). The presence of internal stegmata in the sheath and lamina in Siphonochilus and some Globba species is similar to all the members of Alpinieae. They are absent from any Hedychieae observed. Thus, I make no further effort to relate this study to these two genera. The ITS sequences of missing Hedychieae genera were also obtained from GenBank (Wood et al., 2000) to include in this present study. These are Pommereschea lackneri (2, the number of species in the genus) (GenBank number AF202405), Rhynchanthus beesianus (6) (AF202415), Haniffia cyanescens (2) (AF202407) and Hitchenia glauca (3) (AF202413). The ITS sequences of Boesenbergia cordata (AJ388277), a Bornean species and Camptandra ovata (AJ388302) were also taken from the GenBank (Searle and Hedderson, 2000). Curcuma ecomata's ITS sequences were kindly provided by Marlina Ardiyani.

Two genera of Hedychieae that are not present in this study are Haplochorema (3-4) and Parakaempferia (monotypic). Haplochorema is morphologically close to Boesenbergia. It differs from Boesenbergia in that it has a unilocular ovary (instead of mostly trilocular in Boesenbergia) and its flower is held flat as opposed to the saccate form in Boesenbergia. Nonetheless, it is sometimes found to have a trilocular ovary and is endemic to Borneo, the centre of diversity of Boesenbergia (Smith, 1987a). Searle and Hedderson (2000) reported an attempt to amplify the ITS sequences of Haplochorema from herbarium sheets, but to no avail. Parakaempferia is known only from the type locality in Assam (Rao and Verma,
1969). It resembles Haniffia in that it has a rather well-developed pseudostem (up to 60 cm) and the inflorescence arises mainly radically (Larsen and Mood, 2000). Although Stadiochilus (monotypic) is of uncertain tribal position (Larsen et al., 1998), it is similar to Rhynchanthus and Hedychium (Smith, 1980). It is only found in Burma, the centre of diversity of Pommereschea and Rhynchanthus. Attempts were made to amplify its genomic DNA from herbarium specimens, but these were unsuccessful. While Larsen et al. (1998) have placed Nanochilus (monotypic) under Alpinieae, the genus besides having the lateral staminodes, shows much resemblance with Stadiochilus and Rhynchanthus (Smith, 1980). These genera remain the missing pieces in the phylogenetic jigsaws of the Zingiberaceae.

2.3.4 TOTAL GENOMIC DNA EXTRACTION

The CTAB method (Doyle and Doyle, 1987, 1990) was used to obtain the total DNA of the plant cells. Fresh leaf samples were taken and kept in dry silica gel before the DNA extraction. The modified protocol of DNA extraction followed my previous study (Ngamriabsakul et al., 2000). The QIAgen Dneasy kit (QIAGEN, 1997) with liquid nitrogen was also used to give high quality total DNA with a few modifications. Times of incubation were increased to thirty and ten minutes, instead of ten and five minutes in steps three and four of the protocol, respectively.

2.3.5 PCR AMPLIFICATION AND DNA SEQUENCING

Each PCR reaction was $50 \mu 1$ in volume. The PCR reaction mix was prepared before aliquoting to each tube and adding template DNA as the last component. The components and the conditions of the PCR followed Ngamriabsakul et al. (2000), but with a decrease of primers down to 2μ l, instead of 5μ. No significant reduction in products was detected. The ITS1, 5.8 S and ITS 2 complete region was amplified by using primers ' 5 P ' and ' 8 P ' (Möller and Cronk, 1997a). ITS1 and ITS2 had to be amplified separately for some species. Primer ' 5 P ' and Primer ' 2 K ' (Rangsiruji, 1999) were then used to amplify ITS1, while primer ' 3 P ' and primer ' 8 P ' were used for ITS2.

PCR amplification of $t r n L-F$ with primers ' c ' and ' f ' (Taberlet et al., 1991) was noted to contain more than one distinct band in some species, i.e. two when using the conditions as described for the ITS (Ngamriabsakul et al., 2000). Different conditions of the PCR reaction were then tried. It was found that using primers ' c ' and ' f ' to amplify some ginger plants DNA, a stricter condition was needed than those of ITS, including a well calibrated thermocycler. In cases that the second band could still be observed after amplifications, the trnL-F region was thus amplified by using two sets of primers. Primers ' c ' and ' d ', along with ' e ' and ' f ' were used for amplifications of trnL intron and $\operatorname{trnL} \mathrm{L}$ spacer separately, respectively. All the products of primers, ' c ' and ' f ' (a complete region of trnL intron and $t r n \mathrm{~L}-\mathrm{F}$ spacer), ' c ' and ' d ' (trnL intron), ' e ' and ' f ' (trnL-F spacer) were successfully obtained each as a single band. PCR products were purified before automated cycle sequencing by using a QIAquick ${ }^{\text {TM }}$ PCR purification kit. Forward and reverse sequencings, using the same primers as in PCR reactions, were performed for sequence confirmation as described in Ngamriabsakul et al. (2000). The primer sequences used in this study are (5^{\prime} to 3^{\prime}), $5 \mathrm{P}=\mathrm{GGA}$ AGG AGA AGT CGT AAC AAG G, $8 \mathrm{P}=\mathrm{CAC}$ GCT TCT CCA GAC TAC A, $2 \mathrm{~K}=\mathrm{GGC}$ ACA ACT TGC GTT CAA AG, $3 \mathrm{P}=\mathrm{GCA}$ TCG ATG AAG AAC GTA GC, $\mathrm{c}=\mathrm{CGA}$ AAT CGG TAG ACG CTA CG, d= GGG GAT AGA GGG ACT TGA AC, e = GGT TCA AGT CCC TCT ATC CC, $\mathrm{f}=\mathrm{ATT}$ TGA ACT GGT GAC ACG AG.

2.3.6 SEQUENCE ANALYSIS

All sequences were verified by comparison of their forward and reverse sequences in Autoassembler ${ }^{\text {TM }}$ (Applied Biosystems Division) which was used to form the single nucleotide strands of each sequence. Most base-calling disagreement could be resolved unambiguously by eye. When this was not possible, IUPAC codes were used for ambiguous nucleotides. Sequence boundaries of the range of ITS1, 5.8 S and ITS2 of all taxa were determined by comparison with published sequence data of Roscoea species (Ngamriabsakul et al., 2000) and Alpinia species (Rangsiruji et al., 2000a). Sequences of the trnL-F region started from nucleotide position 41,
from the last nucleotide of primer ' c ' and continued until nucleotide position 3, before the site of primer ' f '. This region was chosen because most of the species have a complete sequence. All sequences will be submitted to GenBank. A transition/transversion ratio was determined by MacClade version 3.07 (Maddison and Maddison, 1992) using one of the most parsimonious trees from the unweighted initial analysis. The $\mathrm{G}+\mathrm{C}$ content and sequence divergence among taxa were calculated using Base Frequencies and Show Pairwise Distance options in PAUP* Version 4.0b4 (Swofford, 1998).

The sequences were aligned using CLUSTAL X (Thompson et al., 1997; Hickson et al., 2000) with default values (e.g. gap opening cost $=15$) and manual adjustment in only the first alignment. Because of the high similarity in length and nucleotides of the trnL-F sequences (see Table 2.2), sensitivity test of alignment was performed only for the ITS data set by varying the gap opening cost to $5,10,20$ and 25 to yield four other different alignments (Jeanmougin et al., 1998). The alignments were directly submitted to parsimony analysis. This test was to find the effect of alignment and gaps of the ITS data set to phylogenetic estimates resulting from the use of the alignment. Character congruence is advocated as both an internal criterion (Bogler and Simpson, 1996) and an external criterion (Giribet and Wheeler, 1999) for choosing the best alignment based on parsimony criterion. Thus, I chose rescaled consistency (RC) index of each analysis (Bogler and Simpson, 1996) and P-values of the homogeneity test of each of the differently aligned ITS data sets and the trnL-F data set as indicators of the optimal alignment.

2.3.7 PHYLOGENETIC ANALYSIS

Phylogenetic trees were generated using PAUP* Version 4.0b4 (Swofford, 1998), run on a Power Mac G4 with character states unordered and initially equally weighted. The heuristic search was set to 1000 replicates with random addition sequence and TBR (Tree Bisection-Reconnection) branch swapping. Polymorphic characters were treated as uncertain. Gaps were treated as missing values. MULPARS, COLLAPSE and STEEPEST DESCENT were the options selected.

ACCTRAN (accelerated transformation) was chosen for character optimisation.

A partition homogeneity test (Farris et al., 1994), also known as the Incongruence Length Difference, ILD, test was performed, in PAUP* with the heuristic search set to 1000 replicates, 10 replicates of random addition sequence, TBR and MULPARS, to test the hypothesis that the two data sets, ITS and trnL-F, contain the same phylogenetic information. The ITS data set was reduced to 26 taxa to match with the 26 taxa trnL-F data set for the test. This test is a bootstrap approach which randomly partitions characters and tests the null hypothesis that a given partition of a data set (for example, ITS and $\operatorname{trnL} \mathrm{L}$) represents an arbitrary subdivision of one large data set. If two data sets are highly incongruent, then the sum of their minimal trees should be significantly shorter than that of the sum of treelengths from random partitions of the combined data set and the null hypothesis will be rejected. The result of the test suggests that both data sets are congruent (P value >0.05) and can be combined. A combined analysis of both data sets was performed utilising the same phylogenetic methods and parameters as above.

Successive weighting searches were performed, using Rescaled Consistency index (RC, mean value) (Swofford, 1993) until the resulting tree length remained unchanged in two consecutive rounds. Due to the high value of transitions found in the ITS data matrix (65%), the transition/transversion ratio ($\mathrm{ts} / \mathrm{tv}=1 / 2$) was applied to a parsimony analysis of the data set to weight transversion over transition.

Descriptive statistics reflecting the fitness of the data sets to the shortest trees were given by the consistency index (CI) (Kluge and Farris, 1969), retention index (RI) (Farris, 1989) and branch length. Support for individual clades was given by two statistics, bootstrap value (Felsenstein, 1985) and decay index (Bremer, 1988; Donoghue et al., 1992). Bootstrap analysis was performed using PAUP*, set to heuristic search with 1000 replicates, TBR and ten random addition sequence replicates per heuristic search. In the results and discussion presented here, clades with bootstrap values of $50-74 \%$ represent weak support, $75-84 \%$ moderate support and $85-100 \%$ strong support (Richardson et al., 2000). The decay index was
calculated using Autodecay version 4.0 (Eriksson, 1998) with ten random addition sequence replicates per heuristic search.

Maximum Likelihood analysis was performed for the ITS data set in PAUP* by applying a model, $\operatorname{TrN+G}$ (Tamura and Nei, 1993, G = Gamma distribution). The model was determined to be the best fit model to the data set by the likelihood ratio test (Huelsenbeck and Rannala, 1997) using MODELTEST version 3.0 (Posada and Crandall, 1998). The substitution model used allows unequal base frequencies, unequal transition and transversion rates and among-site rate heterogeneity.

2.4 RESULTS

The ITS sequences of thirty-six species were obtained in this study, leaving out one taxon, K. marginata whose the sequences were unreadable. The ITS sequences of other six ingroup taxa were taken from GenBank. In total, there are forty-two taxa in the ITS data matrix and twenty-six taxa in the trnL-F data matrix. The reasons why the $\operatorname{trnL-F}$ data matrix is smaller than the ITS data matrix are: first, the taxa that have ITS sequences in GenBank have not been sequenced for $t r n \mathrm{~L}-\mathrm{F}$ or the sequences are not yet available; second, my own DNA samples of some species proved to be difficult for the amplification and sequencing of the $t r n \mathrm{~L}-\mathrm{F}$ region.

2.4.1 SEQUENCE COMPARISON WITH PREVIOUS STUDY

ITS1 and ITS2 sequences of Renealmia battenbergiana and Pleuranthodium schlechteri in this study were identical to the sequences of the same taxa obtained by Rangsiruji et al. (2000a). Only one nucleotide of ITS2 is observed to be different for Alpinia galanga. For the trnL-F spacer, the sequences of Alpinia galanga and Pleuranthodium schlechteri were identical to the sequences of Rangsiruji et al. (2000a). However, the first thirty-seven nucleotides of the spacer of Renealmia battenbergiana of Rangsiruji et al. (2000a) were different from this study. Nine
unmatched nucleotides and one gap of eight nucleotides were observed in this region. Apart from this, the sequences differed by only two nucleotides. Each sequence obtained in this study was a complete region of trnL intron and $\operatorname{trnL} \mathrm{L}-\mathrm{F}$ spacer by the sequencing of all four primers products (c, d, e and f). The sequence difference of Renealmia battenbergiana observed in Rangsiruji et al. (2000a) and this study may be the result of multiple copies of the region in the genome. Different PCR conditions prefer different sites of the region. In addition, the problematic site is near the beginning of the primer which makes it more difficult to obtain the correct sequence by only one primer sequencing.

2.4.2 THE BEST ALIGNMENT OF THE ITS DATA SET

The alignment of the ITS data set with default values (i.e. gap opening cost = 15) in Clustal X gave the highest Rescaled Consistency (RC) value when the data set was analysed to find the most parsimonious trees. Four other values of gap opening in Clustal X, i.e. 5, 10, 20 and 25 gave different alignments from the default value. RC values of these different alignments by parsimony analysis, were lower than that of the first alignment without manual adjustment (data not shown). The default value alignment that gave the highest value of RC was further improved by manual adjustment and when analysed the resulting RC was a bit higher than the alignment without manual adjustment (data not shown).

The P-value of the initial homogeneity test of both data sets suggests that the phylogenetic signals contained in the data sets are homogeneous and can be combined (P-value >0.05). It is assumed that the alignment of the ITS data set that yields the highest P-value when used in the homogeneity test represents the best alignment of the ITS data set. The assumptions are that the data sets are parts of the one big data set of the taxa and however partitions should lead to the same phylogenetic estimates. The P-value of the homogeneity test of trnL-F data set and the first alignment of ITS data set with default value and manual adjustment, was the highest value compared to that of other different alignments of the ITS data set (data not shown). Thus, the best alignment of ITS data set that is chosen in this study is

722 bp in length and its characteristics are presented in Table 2.2.

2.4.3 SEQUENCE ANALYSIS OF THE ITS REGION

Alignment of ITS sequences of the 42 taxa analysed resulted in a $722-\mathrm{bp}$ long data matrix. 60 bp were excluded because of alignment ambiguities, so a data matrix 662-bp long was subject to analyses. Its characteristics are given in Table 2.2. Two sequences, Boesenbergia cordata and Camptandra ovata taken from GenBank were missing the first 23 and 25bp of ITS1, respectively. Scaphochlamys kunstleri and S. lanceolata lacked most of their 5.8 S sequences.

The lengths of the complete ITS sequences were on average 591.24 bp . The lengths of aligned ITS1, 5.8 S and ITS2 were 265 , 158 and 299 bp respectively. Of these aligned sites, 320 (48.34%) were constant, 213 (32.17%) had at least two nucleotide states in two or more sequences and were potentially informative phylogenetically, and 129 (19.49\%) were autapomorphies (Table 2.2).

The sequence divergence of ITS1, 5.8 S and ITS2 among ingroup species ranged from 0.0-23.9\% whereas sequence divergence between the ingroup and the outgroup ranged from 10.0-23.8\%. The maximum sequence variation among ingroup species was 23.9% between Kaempferia angustifolia and Scaphochlamys lanceolata. The maximum sequence variation between the ingroup and the outgroup was 23.8% Alpinia galanga and Scaphochlamys lanceolata. Apart from the identical ITS sequences of Hedychium coccineum, Hedychium gardnerianum and Hedychium x raffillii, the least sequence variation among ingroup species was 0.09% between Curcuma alismatifolia and Curcuma parviflora.

The sequence of K. elegans is the longest found in this study (672 bp) and the highest variation of ITS within a genus belongs to Kaempferia (17.93\%, between K. angustifolia and K. elegans). The maximum level of variation of ITS within other genera are 15.37\% (Scaphochlamys kunstleri and S. lanceolata), 11.83\% (Boesenbergia cordata and B. gelatinosa), 7.06\% (Camptandra ovata and C.
parvula), 6.96\% (Curcuma alismatifolia and C. ecomata), 2.75\% (Roscoea bhutanica and R. humeana), 1.88% (Hedychium coccineum and H. sp.).

2.4.4 SEQUENCE ANALYSIS OF THE trnL-F REGION

Alignment of trnL-F sequences of the 26 taxa analysed resulted in a data matrix $1008-\mathrm{bp}$ long. Its characteristics are given in Table 2.2. Ranges of the sequence at the primers sites (d and e) in three taxa, Cornukaempferia longipetiolata, Hedychium sp. and Kaempferia rotunda were missing, 25, 66 and 32bp, respectively. The sequence of Distichochlamys citrea lacked the last 126bp.

The lengths of the complete trnL-F were on average 913.04 bp . The lengths of aligned $t r n \mathrm{~L}$ intron and $t r n \mathrm{~L}-\mathrm{F}$ spacer were 595 and 413 bp respectively. Of these aligned sites, 885 (87.80%) were constant, 38 (3.77%) had at least two nucleotide states in two or more sequences and were potentially informative phylogenetically, and 85 (8.43\%) were autapomorphies (Table 2.2).

The sequence divergence of $\operatorname{trnL} \mathrm{L}$ intron and $\operatorname{trnL} \mathrm{L}$ spacer among ingroup species ranged from 0.1-2.5\% whereas sequences divergence between the ingroup and the outgroup ranged from $1.8-3.9 \%$. The maximum sequence variation among ingroup species was 2.5% between Kaempferia angustifolia and Pyrgophyllum yunnanensis. The maximum sequence variation between the ingroup and the outgroup was 3.9% Renealmia battenbergiana and Curcuma alismatifolia. The least sequence variation among ingroup species was 0.1% between Boesenbergia aurantiaca and Caulokaempferia thailandica. However, there are two indels present when comparing the sequences of these two taxa, 1 and 7 bp in size.

Table 2.2 Sequence characteristics of nuclear ribosomal DNA (ITS1, 5.8S, ITS2) and chloroplast DNA (trnL-F). * 662 bp is the length of ITS data set for analyses.

Parameter	ITS1, 5.8S, ITS2	trnL-F
Length range (total) (bp)	$573-672$	$894-960$
Length mean (total) (bp)	591.24	913.04
Length range (ingroup) (bp)	$577-672$	$894-960$
Length mean (ingroup) (bp)	592.00	913.52
Length range (outgroup) (bp)	$573-591$	$906-914$
Length mean (outgroup) (bp)	582.00	909.33
Aligned length (bp)	$722(662)^{*}$	1008
G+ C content range (\%)	$52.30-59.82$	$31.35-33.41$
G + C content mean (\%)	55.71	32.78
Sequence divergence (ingroup) (\%)	$0.00-23.89$	$0.11-2.50$
Sequence divergence (in/outgroup) (\%)	$9.98-23.75$	$1.79-3.88$
Number of variable sites (\%)	$342(51.66)^{*}$	$123(12.20)$
Number of constant sites (\%)	$320(48.34)^{*}$	$885(87.80)$
Number of informative site (\%)	$213(32.17)^{*}$	$38(3.77)$
Number of autapomorphic sites (\%)	$129(19.49)^{*}$	$85(8.43)$
Transitions (unambiguous)	483	30
Transversions (unambiguous)	258	38
Transitions/transversions (ts/tv)	1.87	0.79
Average number of steps per character	1.414	0.149

2.4.5 PHYLOGENETIC ANALYSIS OF THE ITS REGION

Twenty-three most parsimonious trees from two islands, size 2 and 21, were obtained with the parsimony analysis of the 42 taxa ITS1, 5.8 S and ITS2 data set, with a length of $936, \mathrm{CI}=0.5417, \mathrm{RI}=0.6374$ and $\mathrm{RC}=0.3452$. The strict consensus tree of the twenty-three most parsimonious trees is given in Figure 2.1 with bootstrap values and decay indices. The average number of nucleotide substitutions per character was high, with 1.414 compared to 0.149 for the trnL-F data set.

The strict consensus tree strongly supports the hypothesis that Zingiber is a member of Hedychieae $(\mathrm{BS}=95, \mathrm{DI}=6)$. There are four major clades recognised in the tree, namely the Pyrgophyllum clade, the Curcuma clade, the Camptandra clade and the 'Hedychium clade'. Apart from the Pyrgophyllum clade as the sister clade to all the rests, their relationships are unresolved. Only two major clades are strongly supported, i.e. the Curcuma clade $(\mathrm{BS}=100, \mathrm{DI}=9)$ and the Camptandra clade (BS $=99, \mathrm{DI}=10$). The resolutions within the Curcuma clade are rather high and show that Curcuma is paraphyletic. The Curcuma clade comprises, besides Curcuma, four other morphologically very similar genera, namely Hitchenia, Paracautleya, Smithatris and Stahlianthus. Curcuma ecomata and Smithatris supraneanae form a subclade separated from the rest of the clade but with weak support ($\mathrm{BS}=52, \mathrm{DI}=$ 1). Stahlianthus is found as the sister group of Curcuma subgenus Hitcheniopsis (BS $=100, \mathrm{DI}=13$). The clade of Hitchenia/Paracautleya is the sister clade to Curcuma subgenus Curcuma $(\mathrm{BS}=84, \mathrm{DI}=3)$.

Although the relationships within the 'Hedychium clade' are not resolved, there are some well-supported clades. The strict consensus tree shows that Caulokaempferia forms a clade with Boesenbergia aurantiaca and B. cordata (BS = 99 and $\mathrm{DI}=8$). However this clade is not grouped with the other four Boesenbergia taxa with any support. The other four taxa of Boesenbergia: B. basispicata, B. gelatinosa, B. longiflora and B. af. longiflora, are weakly supported as a clade (BS =

70, $\mathrm{DI}=1$). Cattleya spicate is found to be the sister group to Roscoea $(\mathrm{BS}=98$, DI =6). Pommereschea and Rhynchanthus form a weakly supported clade $(\mathrm{BS}=73$, $\mathrm{DI}=3$). Hedychium species are grouped as a clade with strong support ($\mathrm{BS}=100$, DI $=14$). Kaempferia species are grouped as a clade with weak support $(\mathrm{BS}=57, \mathrm{DI}=$ 2) while Scaphochlamys species are grouped as a clade with strong support ($\mathrm{BS}=94$, $\mathrm{DI}=6$).

Successive weighting analyses produced a single most parsimonious tree (Figure 2.3). However this tree is not one of the twenty-three shortest trees resulting from an unweighted analysis (Figure 2.2 shows one of the twenty-three most parsimonious trees). Besides the clear patterns of relationships in the successive weighting tree, the positions of Pyrgophyllum and Camptandra, in the successive weighting tree and the strict consensus tree of an unweighted analysis, when compared are the most significant differences.

The weighting of transversion over transition by an observed ratio (2/1) of the data set produced fourteen most parsimonious trees $(\mathrm{CI}=0.5620, \mathrm{RI}=0.6342, \mathrm{RC}=$ 0.3564). The strict consensus tree of these fourteen trees is nearly identical to the strict consensus tree of an unweighted analysis, but with higher resolutions, particularly within the 'Hedychieae clade' (Figure 2.4).

The maximum likelihood analysis recovered two optimal trees (ln-likelihood $=5551.712$). The strict consensus tree of the two optimal trees is presented in Figure 2.5. Two main subclades, as found in the strict consensus tree of transition/transversion ratio applied search, can be recognised, namely the 'Hedychium clade' and the 'Curcuma clade'. Within the 'Curcuma clade', Pyrgophyllum is identified as the sister group to Camptandra and thus the clade Pyrgophyllum/Camptandra is the sister group to the Curcuma complex. Topologies of the complex are identical to those found in the strict consensus tree of the $\mathrm{ts} / \mathrm{tv}$ applied search. Within the 'Hedychium clade', the clade of Cautleya/Roscoea/Pommereschea/Rhynchanthus is found to be the sister clade of Hedychium species. In turn, this Cautleya/Roscoea/Pommereschea/Rhynchanthus/

Hedychium clade is the sister clade to the Boesenbergia group. Haniffia is suggested to be the sister group to the remaining taxa. One difference of the topologies found here in maximum likelihood tree and the $\mathrm{ts} / \mathrm{tv}$-applied tree is the swapping of the clade of Distichochlamys/Scaphochlamys and the Kaempferia clade while the clade of Boesenbergia in the two trees, which also has Caulokaempferia nested, is the last branch and identical.

Figure 2.1. The strict consensus tree of the twenty-three most parsimonious trees resulting from the analysis of 42 taxa ITS data set. Upper numbers are bootstrap values of 1000 replicates. Lower numbers are decay indices $(\mathrm{CI}=0.542 ; \mathrm{RI}=0.637$; $\mathrm{RC}=0.345$).

Figure 2.2. One of the twenty-three most parsimonious trees resulting from the unweighted analysis of 42 taxa ITS data set.

Figure 2.3. The single most parsimonious tree resulting from the successive weighting searches of 42 taxa ITS data set using RC. Note that the tree is not one of the twenty-three most parsimonious trees from an unweighted search.

Figure 2.4. The strict consensus tree of the fourteen most parsimonious trees resulting from the transition/transversion ratio applied analysis of 42 taxa ITS data set. The basic chromosome numbers shown are representative, i.e. not all the species in this tree are known.

Figure 2.5. The strict consensus tree of two equally optimal trees resulting from the maximum likelihood analysis of 42 taxa ITS data set (ln-likelihood $=5551.712$).

2.4.6 PHYLOGENETIC ANALYSIS OF THE trnL-F REGION

Five most parsimonious trees of an island were obtained with the parsimony analysis of the 26 taxa trnL-F complete region data set, with a length of $150, \mathrm{CI}=$ $0.9067, \mathrm{RI}=0.7879$ and $\mathrm{RC}=0.7143$. Successive weighting analyses produced the same set of trees as found in the unweighted analysis. The majority consensus tree of the five most parsimonious trees was given in Figure 2.6 with bootstrap values and decay indices. Although there is less resolution in the consensus tree compared to that of the ITS data set, the tree of $\operatorname{trnL} \mathrm{L}$ data set gives some phylogenetic information. It moderately supports that Zingiber is a member of Hedychieae (BS = 82 , $\mathrm{DI}=3$). It also confirms that Caulokaempferia is derived within Boesenbergia $(\mathrm{BS}=66, \mathrm{DI}=1)$. An obscure relationship, not found in the strict consensus tree of ITS, was also revealed when Camptandra parvula and Pyrgophyllum yunnanensis were grouped together, though with weak support ($\mathrm{BS}=52$, $\mathrm{DI}=1$). Curcuma complex genera, as found in the strict consensus tree of ITS, were again retrieved by the trnL-F data set (Curcuma, Paracautleya, Smithatris and Stahlianthus) with moderate support (BS = 84, DI = 2). Curcuma subgenus Hitcheniopsis, Smithatris and Stahlianthus were further supported, though weakly as a clade $(B S=64, D I=1)$. Hedychium was suggested as the sister group to the Curcuma complex genera by the $\operatorname{trnL}-\mathrm{F}$ data set, yet with weak support ($\mathrm{BS}=62, \mathrm{DI}=1$). The members of each of the genera, Kaempferia, Roscoea and Scaphochlamys were grouped together, though with weak to moderate support, i.e. $\mathrm{BS}=69, \mathrm{DI}=2$ in Kaempferia, BS $=80, \mathrm{DI}=3$ in Roscoea and BS $=51, \mathrm{DI}=1$ in Scaphochlamys.

Figure 2.6. The majority consensus tree of the five most parsimonious trees resulting from the analysis of 26 taxa $\operatorname{trnL} \mathrm{L}$-F data set. Upper numbers are bootstrap values of 1000 replicates. Lower numbers are decay indices $(\mathrm{CI}=0.907 ; \mathrm{RI}=0.788 ; \mathrm{RC}=$ $0.714)$. denotes collapse branch in the strict consensus tree.

2.4.7 PHYLOGENETIC ANALYSIS OF THE COMBINED DATA SETS

The P-value, 0.734 , resulting from the partition homogeneity test of both data sets indicates that there is considerable congruence in the phylogenetic information contained within the ITS and trnL-F data sets. Thus the data sets were combined for a simultaneous parsimony analysis. Two most parsimonious trees from an island were obtained, with a length of $882, \mathrm{CI}=0.6406, \mathrm{RI}=0.5681$ and $\mathrm{RC}=0.3639$. The strict consensus tree is shown in Figure 2.7. The tree recognised the monophyly of Hedychieae including Zingiber with strong support (BS =99, DI $=11$). Three major clades were identified in the Hedychieae, the clade of Cautleya/Roscoea $(\mathrm{BS}=99$, $\mathrm{DI}=7)$, the Curcuma complex $(\mathrm{BS}=100, \mathrm{DI}=11)$ and the 'Hedychium clade' (BS $=63, \mathrm{DI}=3$). However, there is no strong support to the relationships of these clades. Cautleya is identified as the sister group to Roscoea $(\mathrm{BS}=99, \mathrm{DI}=7)$. The clade of Camptandra/Pyrgophyllum is suggested as the sister group of the Curcuma complex, though the bootstrap value is less than 50 per cent. Within the Curcuma complex, Smithatris is moderately supported as the sister group to the rest of the complex (BS $=88$, DI $=5$). Stahlianthus is grouped with Curcuma subgenus Hitcheniopsis $(\mathrm{BS}=100, \mathrm{DI}=10)$ while Paracautleya is grouped with Curcuma subgenus Curcuma $(\mathrm{BS}=75, \mathrm{DI}=2)$.

The 'Hedychium clade' is weakly supported ($\mathrm{BS}=63$, $\mathrm{DI}=3$) and has Hedychium as the sister genus to the rest of the clade. The monophyly of the genus Hedychium is strongly supported $(\mathrm{BS}=100$, $\mathrm{DI}=20)$ as so the genus Kaempferia ($\mathrm{BS}=91, \mathrm{DI}=7$) and the genus Scaphochlamys $(\mathrm{BS}=98, \mathrm{DI}=9)$. Here is also found the clade of Boesenbergia aurantiaca and Caulokaempferia thailandica with strong support ($\mathrm{BS}=100$, $\mathrm{DI}=11$). Nevertheless, the relationships among these genera are not resolved with any real support in this combined analysis.

The successive weighting searches of the combined data set by using Rescaled Consistency (RC) index produced a single most parsimonious tree (Figure 2.8). Two major clades can be recognised, namely the 'Curcuma clade' and the
'Hedychium clade'. In the 'Curcuma clade', Camptandra and Pyrgophyllum are found as the sister clade to a set of four morphologically very similar genera, Curcuma, Paracautleya, Smithatris and Stahlianthus. Smithatris is found to be the sister group to the clade of Paracautleya/Curcuma subgenus Curcuma and Stahlianthus/Curcuma subgenus Hitcheniopsis. Within the 'Hedychium clade', the clade of Cautleya/Roscoea is the sister group to all the rest of the clade. Hedychium is next separated as the sister group of the genera of 'Boesenbergia group': Boesenbergia, Caulokaempferia, Cornukaempferia, Distichochlamys, Kaempferia, Scaphochlamys and Zingiber. Boesenbergia is found to be paraphyletic. Caulokaempferia forms a clade with Boesenbergia aurantiaca. Distichochlamys is the sister group to Scaphochlamys. Cornukaempferia and Zingiber are sister group to each other.

2.5 DISCUSSION

2.5.1 THE EVOLUTION OF ITS AND $t r n L-F$

The rate of mutation in ITS of the Hedychieae is about nine times faster than that of the trnL-F region. As a result, the phylogenetic relationships among Hedychieae revealed by ITS are observed to be more fully resolved than those revealed by trnL-F region. This was also recorded in Gentiana, a perennial herb genus of dicotyledon whose ITS sequences gave a distinctively higher resolution in the parsimony analysis than the trnL-F region (Gielly et al., 1996).

The ITS1, 5.8S and ITS2 sequences in Hedychium are found to be markedly less variable than those of other genera in the Hedychieae. Their usefulness as phylogenetic markers in the genus is thus minimal as also observed in Wood et al. (2000). There are two possible explanations. Firstly it may be attributed to the exceptionally low mutation rate of the sequences in the genus compared to other genera in the family. The other explanation is that the diversity of morphology found in the genus is large and outstrips the mutation rate of the ITS genes (rapid
radiation). The latter is thought to be more likely to occur in the genus. The phenomenon is explained in that morphology is normally held in equilibrium, by stabilising selection for much of evolutionary time, but with punctuation by relatively rapid speciation events (Bateman, 1999). This phenomenon may also happen in Curcuma subgenus Hitcheniopsis where ITS sequence variation is low, but the morphology of the species cannot be mistaken. Another example can be found in Aframomum of the Alpinieae where ITS variation within this medium sized genus (50 species) is exceptionally low, $0-2.74 \%$ (Harris et al., 2000). The mechanism is further explained by the species ecological factors. Most Aframomum species are found on the edges of forests and savannas and the ecological constraints of these habitats are normally large and have much effect on the morphology of the species. The different edges have rather specific conditions and these differences could be a driving force for speciation. It may also be assumed that the distribution of an ancestor species had been restricted, thus giving rise to a few species, peripheral isolation or fragmentation.

On the contrary, the sequence in Kaempferia is very variable. Kaempferia has the highest mutation rate of the genera in this study. Its fast evolving ITS regions cannot be ascribed solely to its perennial habit, as all other genera of the Hedychieae in this study are also perennial in habit and shed leaves during the dry season. However, it is noticeable that the ITS sequences of Kaempferia are polymorphic implying that there may be more than one copy of the ribosomal gene or low molecular drive to homogenise the gene. This would allow the presence of different copies of the gene and relaxation of the homogenisation process, giving rise to the very variable ITS sequences found among Kaempferia species. The big deviation of the ITS mutation rate in Kaempferia and Scaphochlamys from the mean rate in other genera of the Hedychieae poses a potential problem of long branch attraction when analysed under a parsimony criterion (Felsenstein, 1978). Nonetheless, no implausible groupings in the trees are observed based on morphological grounds. This may be due to the fact that the sampling in this study is quite representative.

Figure 2.7. The strict consensus tree of the two most parsimonious trees resulting from the analysis of the combined data set, ITS and trnL-F, of 26 taxa. Upper numbers are bootstrap values of 1000 replicates. Lower numbers are decay indices ($\mathrm{CI}=0.641 ; \mathrm{RI}=0.568 ; \mathrm{RC}=0.364$).

Figure 2.8. The single most parsimonious tree resulting from the successive weighting searches of 26 taxa combined data set, ITS and $t r n \mathrm{~L}-\mathrm{F}$, using Rescaled Consistency index.

I believe that ITS analyses give closer trees to the real tree than trnL-F analyses because there are more taxa and more informative sites in the ITS data matrix than the trnL-F data matrix. In addition, there is no strongly contradictory clade revealed by the analyses of the two genomes. Thus, the following discussion is based mainly on the trees resulting from the ITS while the results of the $\operatorname{trnL} \mathrm{L}-\mathrm{F}$ analyses are used as supporting evidence.

2.5.2 THE TRIBE ZINGIBEREAE

Molecular analyses of the two data sets, ITS (nrDNA) and trnL-F (cpDNA), in this study strongly show that the tribe Zingibereae or Zingiber is derived within Hedychieae. It is also suggested that Zingiber is a member in the 'Hedychium clade', particularly in the Boesenbergia group. Although the relationships among the Boesenbergia group are still not certain according to the present data, Cornukaempferia is shown to be the sister group to Zingiber. The synapomorphy of these two genera is the large, narrow and curved anther crest that encloses the style and the undivided labellum. Other morphological characters that are distinctive of Zingiber, are the fusion of the lateral staminodes with the labellum, forming a 3lobed structure and the well-developed pseudostem. These characters are also shared with other members of Hedychieae, particularly in the 'Hedychium clade'. Boesenbergia longiflora is an example of the fusion of lateral staminodes with the labellum (Larsen, 1997). The well-developed pseudostem can be found in Hedychium. To date, Zingiber can be regarded as a derived genus within the Hedychieae and seemingly no tribal rank is needed for the genus. Moreover, cytological evidence does not support the treatment of Zingiber as a separate tribe (Beltran and Kam, 1984). Nonetheless, two autapomorphic characters that can be found in Zingiber are a pulvinus-like petiole and vascular bundle with collenchymatous sheath. In other Hedychieae observed by Burtt and Olatunji (1972), the vascular bundle has a sclerenchymatous sheath.

2.5.3 POMMERESCHEA/RHYNCHANTHUS AND THE TRIBAL POSITIONS

Pommereschea/Rhynchanthus is the sister clade of Cautleya/Roscoea in the Hedychieae based on the ITS analyses (Figures 2.3 and 2.5). For years, they have been placed within the Alpinieae based primarily on their lack of lateral staminodes (Smith, 1981; Larsen et al., 1998). Only recently, cladistic analyses of molecular characters have suggested that they belong to the tribe Hedychieae, forming a clade together (Wood et al., 2000). The present analysis, with emphasis on the tribe Hedychieae confirms this hypothesis.

In addition, the chromosome numbers of these two genera do not support a relationship with other members of Alpinieae. All Asian Alpinieae have $2 n=48$, or the basic chromosome number is $x=12$ (Chen and Huang, 1996, see review). In Alpinieae only Renealmia, of Africa and South America has $2 \mathrm{n}=22,44$ or the basic chromosome number is $\mathrm{x}=11$. Pommereschea lackneri has $2 \mathrm{n}=22$, while Rhynchanthus beesianus has $2 \mathrm{n}=44$, so the basic chromosome number of these two genera can be deduced as $x=11$. Chen and Huang (1996) proposed to transfer the two genera to Hedychieae based on their chromosome numbers and parallel plane of distichy of leaves to the rhizome. Another evidence of the parallel plane of the leaves to the rhizome is found in Rhynchanthus longiflorus (Tripathi and Prakash, 1998). As far as our knowledge of the family goes, all members of Hedychieae possess the parallel plane of the distichy of leaves to the rhizome that is usually associated with the occurrence of petaloid staminodes (Smith, 1980; Larsen et al., 1998; Sakai and Nagamasu, 2000). A study of seed coat in Zingiberaceae (Liao and Wu, 2000) shows that in Alpinieae the endotesta type is sclerenchymatous while that of Globbeae, Zingibereae and Hedychieae (including Pommereschea) is parenchymatous. These lines of evidence are in accordance with the molecular analyses and suggest that the proper placement of the two genera be within the tribe Hedychieae. In fact, Smith (1980) already gave a convincing statement of the petaloid staminodes and the classification of Zingiberaceae that the staminodes alone do not justify the placement of the genus, especially whether it be Hedychieae or Alpinieae. She went on to
hypothesise that Pommereschea, Stadiochilus, Rhynchanthus and Nanochilus, with the Hedychium resemblance and the lack of a close affinity in the Alpinieae, the correct tribe of these genera is Hedychieae.

The lack of petaloid staminodes in Pommereschea and Rhynchanthus can be seen as a derived character loss. This may be the case in the monotypic Burmese genus, Stadiochilus which also lacks petaloid staminodes. Stadiochilus resembles Rhynchanthus and Hedychium in many morphological characters (Smith, 1980). Probably Stadiochilus and Nanochilus are members of the Hedychieae and close to Pommereschea and Rhynchanthus or Hedychium. The lateral staminodes are found to be postero-lateral members of the outer whorl of the androecium whereas the anterior member of this whorl is always suppressed and absent (Rao et al., 1954; Kirchoff, 1997; 1998). The producing of the lateral staminodes may be controlled by a gene or a set of genes that only a shift of gene control or expression can result in the presence or absence of the staminodes.

On the contrary, interpretation based on recent molecular cladistic analyses (Searle and Hedderson, 2000; Wood et al., 2000; Kress, pers. comm.) points to another fact that non-member of Hedychieae in the family can sometimes have petaloid staminodes. This is shown in Siphonochilus and Siliquamomum. The two genera both with petaloid staminodes are found to be allies with Alpinieae. In addition, Siphonochilus appears to be the sister clade to all the rest of the family (Wilf et al., 2000). Although Siliquamomum has petaloid staminodes, its narrow elongated capsule (at least $10 \times 1 \mathrm{~cm}$) is not shared with any other member of the Hedychieae (Smith, 1981). Rather, the elongated capsule is found also in other two genera of Alpinieae: Burbidgea and Siamanthus (Larsen and Mood, 1998). Its chromosome number, $2 \mathrm{n}=48$, is an additional evidence suggesting a close relationship to Alpinieae (Wu and Larsen, 2000).

In the case of Siphonochilus, its conventional placement in Hedychieae also means that the genus is the only member of Hedychieae found outside Asia, i.e. Africa and Madagascar. Siphonochilus's position as the basal clade on the family
phylogenetic tree (Wilf et al., 2000) appears to be more closely related to the Alpinieae clade than to the Hedychieae clade. A recent discovery of a new genus, Tamijia, in Borneo has given additional evidence on morphological evolution of the family (Sakai and Nagamasu, 2000). Although Tamijia is placed in Alpinieae based on the transverse plane of the distichy of leaves to the rhizome and other floral characters shared with Elettaria and Elettariopsis, the genus has distinctively petaloid staminodes as in Siphonochilus. Interestingly, Siphonochilus and Tamijia share also other morphological characters, i.e. stigma not ciliate along the rim, broad and petaloid anther crest and short filament (Sakai and Nagamasu, 2000). However, the phylogenetic relationships of these two genera are not yet known.

The only morphological character of the traditional classification of the family into tribes left intact, or in other words, not showing to date any homoplasy, is the plane of the distichy of the leaves to the rhizome (Smith, 1981). It is transverse in Alpinieae whereas it is parallel in Globbeae and Hedychieae. However, it is not always possible to observe the character as often encountered in very short rhizome species, for instance in, Kaempferia and Siphonochilus. Finding a tribe for a species in Zingiberaceae, however, is not as hopeless as it may seem. Many workers already use a combination of characters for the critical species, for example: Siamanthus, (Larsen and Mood, 1998) and Tamijia (Sakai and Nagamasu, 2000).

2.5.4 CAUTLEYA AND ROSCOEA

The predominantly circum-Himalaya genera Cautleya and Roscoea are found to form a clade in this study and others (Searle and Hedderson, 2000; Wood et al., 2000). The most detailed study of the phylogeny of Roscoea and its relationship to Cautleya is that of Ngamriabsakul et al. (2000). It confirms the monophyly of Roscoea and that Cautleya is the sister group to the genus. The synapomorphies of the two genera include the closed leaf-sheath (Spearing, 1977), the versatile anthers and the absence of bracteoles. The closed leaf-sheath and small tuber roots that grow deep in the soil in the two genera can be seen as adaptations to the extreme climate (Chen, 1989).

2.5.5 THE BOESENBERGIA GROUP

Boesenbergia, Caulokaempferia, Cornukaempferia, Distichochlamys, Kaempferia, Scaphochlamys and Zingiber are found as a polytomy clade in the ITS strict consensus tree (Figure 2.1), though also with the clade of Hedychium species. The morphological similarity of the group is, indeed obvious. Most of them are small plants in habit, the pseudostem being poorly developed, except in Caulokaempferia, Zingiber and some species of Boesenbergia, for example B. pulcherrima and B. acuminata (Sirirugsa, 1992a). Some species of Boesenbergia, Kaempferia and Scaphochlamys also have unilocular ovary in contrast to the uniform occurrence of trilocular ovary in all other Hedychieae. Nonetheless, floral development study in Scaphochlamys kunstleri indicates that the unilocular ovary observed is strictly derived from a trilocular ovary (Kirchoff, 1998).

The maximum likelihood tree suggests that Haniffia is the sister group to the clade of 'Boesenbergia group' (Figure 2.5) while the relationships in ts/tv strict consensus tree are unresolved (Figure 2.4). Then the clade of Cornukaempferia/Zingiber is the sister clade to the clade of remaining genera in both trees. Distichochlamys is found to be the sister group of Scaphochlamys. Whereas Kaempferia is the sister clade of Boesenbergia in the maximum likelihood tree (Figure 2.5) the clade of Distichochlamys/Scaphochlamys is suggested as the sister group to Boesenbergia in ts/tv tree (Figure 2.4). Caulokaempferia is derived within Boesenbergia in both trees.

Distichochlamys is morphologically close to Scaphochlamys (Newman, 1995). In each bract of these two genera, there is a cincinnus that has up to 3 flowers (only one flower in Scaphochlamys biloba). The character is a synapomorphy of the two genera compared to others in the Boesenbergia group: Boesenbergia, Caulokaempferia, Kaempferia, Cornukaempferia and Zingiber. The bracts in the latter genera only bear a single flower (except in Caulokaempferia, Zingiber clarkei). Distichochlamys is identified as the sister group of Scaphochlamys in this study. The same relationship is also found in Searle and Hedderson (2000) where they included
five species of Scaphochlamys. Two floral characters and a character of ovary separate the two genera. Morphological differences in the two genera include the arrangement of the bracts and the form of the bracteoles. The bracts in Distichochlamys are arranged distichously while the bracts of Scaphochlamys appear spiral. The first bracteole in Distichochlamys is tubular whereas it is open to the base and often keeled in Scaphochlamys. In fact, the form of all bracteoles is as the first one in both genera. Chromosome number as a character in a parsimony analysis prefers the topology of the Boesenbergia group in the ts/tv tree (5 steps) over the maximum likelihood tree (6 steps) (see Figure 2.4). The close relationship between Kaempferia and Zingiber is supported, besides the same basic chromosome number \mathbf{x} $=11$, by the similar size of the chromosomes (2.4-5.8 $\mu \mathrm{m}$ in Kaempferia, the biggest in Tribe Hedychieae; 2.1-4 $\mu \mathrm{m}$ in Zingiber) (Beltran and Kam, 1984).

Unlike the RC-weighted tree of ITS data set, all Boesenbergia species are found to form a clade in the maximum likelihood tree and the transition/transversion ratio applied tree. The clade is further subdivided into two subclades. These two subclades seem to correspond well with the origin of the species and the chromosome numbers. The subclade of Boesenbergia aurantiaca and B. cordata has the origin in Borneo and the basic chromosome number is $\mathrm{x}=12$. In contrast, the subclade of B. basispicata, B. gelatinosa, B. longiflora (formerly known as Curcumorpha) and B. aff. longiflora has the origin on the continental Southeast Asia and the basic chromosome number is $\mathrm{x}=10$. Note also that in Searle and Hedderson (2000), while the Bornean Boesenbergia species were strongly supported as a clade, B. plicata, a continent species was actually left out to be the sister taxon to the clade.

Although B. longiflora seems to have spirally arranged bracts, a few bracts of the inflorescence appear two-ranked or distichous (Larsen, 1997). Larsen (1997) stated that the flowering pattern (basipetal floral development as opposed to acropetal floral development) of the genus is the most reliable character in Boesenbergia. This study confirms that B. longiflora, or formerly Curcumorpha, is actually a taxon in Boesenbergia

2.5.6 BOESENBERGIA AND CAULOKAEMPFERIA

Boesenbergia is morphologically a well-defined genus by its distichously arranged bracts and the basipetal (meaning towards base) flowering pattern (Smith, 1987a; Larsen, 1997). In this analysis, Caulokaempferia thailandica, from North Thailand is grouped with two Boesenbergia species from Borneo. The general synapomorphies of the two genera are distichous bracts, basipetal flowering pattern, undivided labellum and bracteole open to the base. The two genera, however, are stated to have some morphological differences (Larsen and Smith, 1972). The entire labellum of Caulokaempferia is never saccate in shape characteristic of Boesenbergia. Many Boesenbergia are found to have a short tube resulting from the base of labellum combining with the filament while there is no evidence of this in Caulokaempferia. There is also a prominent anther crest in Caulokaempferia that is rarely found or minute in Boesenbergia. The bracts in Boesenbergia subtend a single flower, but up to a few flowers are found in Caulokaempferia. Nonetheless, these morphological characters may prove to be very variable in both genera when more studies are conducted. More sampling of Caulokaempferia species and studies on other lines of evidence are needed before suggesting that Caulokaempferia better be treated as a subgroup within Boesenbergia, possibly a subgenus.

It is more difficult to ascertain the relationships of the two genera based on the chromosome numbers. Chromosome numbers show that the continental Southeast Asian Boesenbergia species in this study (B. basispicata and B. longiflora) have $2 \mathrm{n}=20$ while that of Boesenbergia aurantiaca, a Bornean species, is $2 \mathrm{n}=24$, the number also found in Caulokaempferia alba and C. coenobialis (see Table 2.3). It may suggest that Caulokaempferia has a common ancestor with Boesenbergia species that have $\mathrm{x}=12$. However, Caulokaempferia saxicola has $2 \mathrm{n}=20$. Geographically, they are far apart in present distribution ranges. The lowest recorded latitude in distribution range of Caulokaempferia species is that of C. saksuwaniae in South Thailand ($\sim 08^{\circ} 27^{\prime}$ N, Phangnga Province) (Larsen, 1973) and most of the species occur in tropical Himalaya, Southwest China and North Thailand. The Sunda Shelf which refers to continental Southeast Asia and the Malesian archipelago was a
continuous landmass for a long period of time (50 MBP), until about 5 MBP , when the gulf of Thailand was created (Hall, 1998). This would cause the separation of the distribution ranges of many plant species, possibly including the ancestor of Boesenbergia and Caulokaempferia.

Table 2.3. Recorded chromosome numbers of Boesenbergia and Caulokaempferia species.

Origin/Species (distribution range)	n	2n	Sources
Continental Southeast Asia Boesenbergia basispicata K. Larsen ex Sirirugsa (Peninsular Thailand)	-	20	(Newman, 1988)
B. curtisii (Hook. f.) Schltr. (Malay Peninsular, Java, India)	-	24	(Eksomtramage et al., 1996)
B. fallax Loes. (Yunnan)	-	36	(Chen et al., 1988)
B. longiflora (Wall.) Kuntze (India, Burma, Thailand)	-	20	(Eksomtramage et al., 1996)
B. longipes (Ridl.) Schltr. (Malay Peninsular)	-	20	(Newman, 1988)
B. plicata (Ridl.) Holtt. (Malay Peninsular, India)	10	20	(Beltran and Kam, 1984; Newman, 1988; Eksomtramage et al., 1996)
B. prainiana (Baker) Schltr. (Malay Peninsular)	10	20	(Beltran and Kam, 1984; Eksomtramage et al., 1996)
B. rotunda (L.) Mansf. (cultivated)	-	36	(Chen et al., 1988; Sirirugsa, 1992b)
Borneo B. aurantiaca R. M. Smith	-	24	(Newman, 1988)
B. belalongensis A. D. Poulsen	-	24	(Poulsen, 1993)
B. burttiana R. M. Smith	-	24	(Poulsen, 1993)
B. orbiculata R. M. Smith	-	36	(Poulsen, 1993)
B. pulchella (Ridl.) Merr.	-	20	(Newman, 1988)
Continental Southeast Asia Caulokaempferia alba K. Larsen \& R. M. Smith (N Thailand)	-	24	(Larsen and Smith, 1972)
C. coenobialis (Hance) K. Larsen (China)	12	-	(Chen et al., 1988)
C. saxicola K. Larsen (C Thailand)	-	20	(Larsen, 1964)

2.5.7 THE VERSATILE ANTHER GROUP

Five genera in the Hedychieae possess versatile anthers, namely Camptandra, Cautleya, Curcuma, Paracautleya and Roscoea (Smith, 1981). It is shown in this study that the character in these genera has probably convergent origins. Versatile anther has lost many times in the 'Curcuma clade', i.e. that is found in, Hitchenia, Pyrgophyllum and Stahlianthus. On the contrary, the versatile anther in Cautleya/Roscoea has arisen independently.

However, there is another genus in the family, Nanochilus that possesses versatile anther (Smith, 1980, figure 2). While Larsen et al. (1998) have placed the monotypic genus of Sumatra under Alpinieae, Nanochilus, besides having the lateral staminodes, shows much resemblance with Stadiochilus and Rhynchanthus (Smith, 1980). As Smith's hypothesis is supported by the molecular analyses, that Pommereschea and Rhynchanthus are actually members of Hedychieae, the tribal position of Nanochilus may well also be Hedychieae. It is interesting to test the position of Nanochilus in the family phylogenetic tree based on Smith's morphological observation. Whether it is within the clade of Pommereschea/Rhynchanthus/Roscoea/Cautleya awaits future study.

2.5.8 THE POUCH BEARING GROUP: THE ‘CURCUMA CLADE’

Although, in some species of Boesenbergia, Scaphochlamys and Zingiber, similar water-holding pouches can be formed by the leaf bases or the bracts (Larsen et al., 1998), the bracts are normally free from the axis of the inflorescence and do not fuse in members of the 'Hedychium clade'. By contrast, the bracts of the majority number of species of the 'Curcuma clade' are adnate to each other and form pouches. In this clade, it is also noted that the basic chromosome number of the majority of the members is $x=21$. While the basic chromosome number is $x=21$ or $2 n=42,63$ in most of the Curcuma subgenus Curcuma species (Chen et al., 1984; Joseph et al., 1999, for example), the numbers in Curcuma subgenus Hitcheniopsis are variable, e.g. $2 \mathrm{n}=20$ in C. harmandii (Eksomtramage et al., 1996), $2 \mathrm{n}=26$ in C. parviflora
and $2 \mathrm{n}=32$ in C. alismatifolia (Saensouk et al., 1998). Stahlianthus involucratus which may be the sister group of Curcuma subgenus Hitcheniopsis has $2 \mathrm{n}=22$ (Bisson et al., 1968) and $2 \mathrm{n}=33$ (Sirirugsa, 1992b). Hitchenia (Ramachandran, 1969) and Pyrgophyllum (Chen et al., 1988) have the same basic chromosome number of $x=21$.

2.5.8.1 MAINLY ONE SINGLE POUCH: PYRGOPHYLLUM AND CAMPTANDRA

Pyrgophyllum yunnanensis was originally described in Kaempferia subgenus Pyrgophyllum by Gagnepain (1901). It was then transferred to Camptandra subgenus Pyrgophyllum following Ridley's establishment of the genus (Gagnepain, 1902). Schumann (1904) subdivided Camptandra into two sections: Eucamptandra and Pyrgophyllum. P. yunnanensis was later transferred to Caulokaempferia (Larsen and Smith, 1972). The taxon was finally separated out from Caulokaempferia to be recognised as a distinct genus Pyrgophyllum based on morphological, anatomical andcytological grounds (Wu and Chen, 1989). The molecular findings in this study support the recognition of the genus. Camptandra and Pyrgophyllum share two main characters of the inflorescence. Firstly a single large concave bract whose base is adnate to the inflorescence axis, is usually present in the inflorescence (or up to 2-3 bracts in succession in both genera). Secondly the main axis of the inflorescence extends beyond the insertion of the uppermost bract into a short slender sterile tip (Larsen and Smith, 1972). In each bract in both genera, there is a cincinnus of flowers. These characters are unique to the two genera. In addition, the labellum of the two genera is divided, in contrast to the entire labellum of Caulokaempferia. The leaves of Camptandra and Pyrgophyllum are also noticeable of differing degrees of unequal division. Interestingly, the high elevation of their habitats, above 1000 metres (except, Camptandra parvula) is in common. The morphological differences between the two genera are that there are a lamina-like extension of the bract and a well-developed anther crest in Pyrgophyllum whereas there is no epigynous gland in Camptandra.

2.5.8.2 MULTIPLE BRACTS OR POUCHES: THE CURCUMA COMPLEX

Most inflorescences appear to comprise only a large single bract in Pyrgophyllum and Camptandra. On the other hand, genera in the Curcuma complex, Curcuma, Hitchenia, Paracautleya, Smithatris and Stahlianthus, bear an inflorescence composed of free or connate bracts. The single involucral bract of Stahlianthus can be regarded as two bracts joining together (Wood et al., 2000; Searle and Hedderson, 2000). In addition, Stahlianthus, instead of having anther appendages at the base of the thecae rendering the anthers versatile, has a large and entire anther crest resembling that of Kaempferia species. Generally, the whole group has bracts forming the inflorescence. In the Curcuma complex, either the bracts fuse to one another (Curcuma and Stahlianthus) or stay separately on the axis of the inflorescence (Hitchenia, Paracautleya and Smithatris).

Hitchenia and Paracautleya share a character of free bracts on the inflorescence. The differences between Hitchenia and Paracautleya are the protruding nature of the corolla tube of Hitchenia, tubular bracteole and the nonversatile anther. Paracautleya has no bracteole and its anther is versatile. However, the separation of Hitchenia from Curcuma has never seemed adequate on the grounds of exserted flowers and non-versatile anthers (Wood et al., 2000). Olatunji (1970) came to the conclusion that Curcuma and Hitchenia are very similar in anatomical characters. The genus Curcuma itself, though long thought to comprise two subgroups, namely subgenus Curcuma and subgenus Hitcheniopsis based largely on the spurs of the anthers, needs to be thoroughly examined to prove that it is not just a degree of extension of the spurs on the anthers for dividing the genus.

All the presently recognised genera in the Curcuma complex: Curcuma, Hitchenia, Paracautleya, Smithatris and Stahlianthus, may be regarded as a single genus, Curcuma, though there are some morphological characters supporting the distinction of each taxon. These morphological characters, however, are autapomorphic as suggested by the present data. The acceptance of Hitchenia,

Paracautleya, Smithatris and Stahlianthus each as a distinct genus renders the genus Curcuma paraphyletic within which the relationships are more complicated. Smithatris may be regarded as a distinct genus, yet more sampling of Curcuma species may prove otherwise. If classification should reflect the phylogeny of the members, Curcuma is best to be the only recommended generic name for all the genera mentioned above with an adjusted circumscription to cover all various subgroups.

Position of the inflorescence in Curcuma subgenus Curcuma may be a good taxonomic character. To date, only members of Curcuma subgenus Curcuma, in the whole 'Curcuma clade', are found to have a radical inflorescence, i.e. on a leafless side-shoot from the rhizome, with sometime a later terminal one. It is not known yet whether other members of the 'Curcuma clade' may have a radical inflorescence. The character, however, is found to have only relative value throughout the family, i.e. a species or genus can have both types of the inflorescences. In 'Hedychium clade', Haniffia and Zingiber are examples. Haniffia produces mainly radical inflorescence, but terminal one is sometimes found (Larsen and Mood, 2000). While most species of Zingiber bear radical inflorescences, some species possess both types of the inflorescence e.g. Z. junceum and Z. gramineum (Theilade, 1999). B. longiflora, B. basispicata and B. prainiana are examples of deviation from the norm of the genus. They have radical inflorescences versus the terminal one of all the rest in the genus (Sirirugsa, 1992a). It has also been observed in some species of terminal inflorescence genera, Renealmia and Alpinia in Alpinieae (Sakai and Nagamasu, 2000). In Globbeae, Mantisia, once thought bearing only radical inflorescence genus, is found to possess also a terminal inflorescence (Burtt and Smith, 1968; Newman and Jong, 1986).

CHAPTER THREE: MOPHOLOGICAL STUDY OF THE VERSATILE ANTHER GROUP IN THE HEDYCHIEAE

3.1 ABSTRACT

Scanning electron micrographs of anther development in Cautleya spicata show that the appendages develop from the joint connective tissue where at the one end the anther develops first, well before the other end much later turns into the appendages. The anther with appendages is thus basifixed in mature plant in Cautleya spicata while observation of Curcuma species reveals that the anther is dorsifixed, and the appendages are derived from the thecae of the anther. Mapping this character of the anther in the five genera that possess versatile anther in Zingiberaceae, namely Camptandra, Cautleya, Curcuma, Paracaulteya and Roscoea, onto the ITS based phylogeny of the tribe suggests that the dorsifixed versatile anther of the Curcuma complex has been lost independently in Hitchenia and Stahlianthus, while the basifixed versatile anther has arisen independently in Camptandra and Cautleya/Roscoea.

3.2 INTRODUCTION

The inflorescence of Zingiberaceae plants is usually a thyrse, sometimes with large coloured bracts (Endress, 1996; Larsen et al., 1998). A thyrse is a densely branched inflorescence with the main branch racemose, but the lateral branches cymose (Harris and Harris, 1994). The bracts of the inflorescence subtend a short cincinnus of flowers (Smith, 1981). In some taxa, the cincinni are reduced to a single flower, thus resulting in a raceme or spike (Larsen et al., 1998). The flowers of Zingiberaceae are zygomorphic or monosymmetric and most last only for a day. They are tubular and contain nectar. The most outstanding parts of the flower are petaloid staminodes. Only one stamen is fertile while the remaining five stamens are transformed or absent. The lip of the flower is composed of the two staminodes of
the inner whorl whereas, if present, the two lateral petaloid staminodes are those of the outer whorl. The anterior member of the outer whorl is always suppressed and absent (Kirchoff, 1997, 1998). The two-locular anther is attached to the filament mostly basally and along its whole length. The connective is sometimes produced apically into a structure called the anther crest that may be large and petaloid, as in Kaempferia. The connective near the joint of the filament and anther is sometimes also structured into a special base that is termed anther appendages or spurs. These anther appendages give the anther versatility. They can be found in Cautleya, Roscoea and Camptandra. In other cases, the anther is dorsifixed, as found in Curcuma and Paracautleya, and thus also giving rise to the versatile anthers. Unlike the anther appendages in Cautleya, Roscoea and Camptandra, Curcuma and Paracautleya have anther appendages that are formed from the bases of the thecae of the anther, not distinctly so from the connective as in the former group. In all, the versatile anther is observed in five genera of the Hedychieae namely: Cautleya, Camptandra, Curcuma, Paracautleya and Roscoea.

However, note that there is another genus, Nanochilus, that possesses pronounced anther appendages (Smith, 1980). The relative position of the anther appendages in Nanochilus, however, is in line with the anther and it seems that no such mechanism for pollination is present as is found in the five genera mentioned above (Smith, 1980). The versatile anther in these genera of Zingiberaceae resembles that of the dicotyledon genus Salvia (Labiatae). The anther appendages act as a lever when the pollinator enters the floral tube foraging for nectar, its head will pull the anther down bringing it into contact with the pollinator's back. Nonetheless, the success of pollination depends on the pollinator visiting another flower and transfering pollen from its back to the stigma of the second flower. It seems likely that versatile anthers in Zingiberaceae are a mechanism acquired through coevolution of the plants and the pollinators.

Pollination syndrome or pollination system is a term for the descriptive interrelation between flower and pollinator. Five aspects of a flower may be considered for any given type of syndrome. They are floral colour, scent, time of
flowering, structure and rewards. On the pollinator side, three main aspects are involved, namely sensory capacity, behaviour and diet. These factors are interrelated in the success of any pollination. Rewards for pollinators from flowers are mainly of two kinds, nectar or pollen. It is thought that nectar is the main reward in Zingiberaceae. The nectar of Zingiberaceae usually contains a high concentration of sugar, 6-32 \% (Kato, 1996), 15.5-35.5 \% (Sakai et al., 1999).

Reports of pollinators in the family are scant. Endress (1996) compiled a list of pollinators. These are hawkmoths and butterflies which visited Hedychium coronarium and H. coccineum, respectively. Large bees (Euglossine, Centris, and Bombus) are found to be the pollinators of the flower of Alpinia zerumbet and Xylocopa species are the pollinators of A. malaccensis and A. hookeriana. Etlingera elatior is found to be visited by a bird of Nectariniidae and butterflies. Renealmia species are pollinated by hummingbirds (Maas, 1977). Etlingera brevilabris and Hornstedtia tomentosa have Arachnothera species (spiderhunters; Nectariniidae) as the pollinator (Kato, 1996). The latter species of Zingiberaceae both have red flowers and basal inflorescences. Small traplining bees (Nomia and Trinchostoma of Halictidae) are also observed on Amomum polycarpum and three species of Boesenbergia. Medium sized traplining bees (Amegilla) are the pollinators of Amomum gyrolophos, Plagiostachys crocydocalyx and Globba brachyanthera (Kato, 1996). A recent study by Sakai et al. (1999) identified three pollination groups, namely spiderhunters (two species), Amegilla bees (two species) and halictid bees (four species) as the pollinators of 29 species of Zingiberaceae in Borneo. Eight plant species (all of Alpinieae) were pollinated by spiderhunters, eleven species (two Costus species, Globba brachyanthera, Zingiber longipedunculatum and the rest of Alpinieae) by medium-sized Amegilla bees and ten species (three Boesenbergia species and the rest of Alpinieae) by small halictid bees. They also found that there were significant correlations between floral morphology and pollination guilds.

Here I attempt a preliminary study of the ontogeny of the two types of anther appendages using Scanning Electron Microscopy and direct observation. The result will be discussed with the phylogenetic findings of the plants. As shown in Chapter

Two, the versatile anther genera in Hedychieae involve three distinct lineages namely the clade of Cautleya/Roscoea, the Curcuma complex clade and the separate clade of Camptandra. Cautleya spicata representing the clade of Cautleya/Roscoea, was studied for the growth and development of the anther appendages by SEM. Roscoea species and Curcuma species were observed from fresh material, spirit collection and drawings. Camptandra and Paracautleya are not in cultivation at Royal Botanic Garden Edinburgh, only spirit material and drawings were available for observation.

3.3 MATERIALS AND METHODS

A plant sample of Cautleya spicata was obtained from the cultivated stocks of the Royal Botanic Garden Edinburgh for scanning electron microscope study. The accession number and the voucher specimen number are RBGE 19590760 and C.Ngamriabsakul 30. Living plant observation was also made on Roscoea species, Curcuma species in the garden in addition to the spirit collection and available drawings. Camptandra and Paracautleya were studied from spirit material and drawings.

The material of Cautleya spicata was fixed in FAA (9 parts 70\% ethanol: 0.5 parts glacial acetic acid: 0.5 parts formaldyhyde) overnight. Then the material was passed through a series of an increased concentration ethanol to absolute ethanol and finally acetone to dehydrate it (70% ethanol for 15 minutes, 95% ethanol for 10 minutes, 100% ethanol for 5 minutes and 100% acetone for 5 minutes twice). The material was next dried in an Emitech K850 critical point dryer. Dried parts were mounted with carbon discs on $1.25-\mathrm{cm}$ Agar Scientific aluminium stubs, and further dissected. The stubs were sputter coated with gold-palladium using an Emscope sc500. Specimens were viewed using a Zeiss DSM962 SEM at a working distance of $8-13 \mathrm{~mm}$, and operating at 5 kV . Digital photographs were taken. Phylogenetic findings in the previous chapter were also used as an additional basis for the evolutionary interpretation.

It was intended that a sample taxon of Roscoea would be present for the study. Unfortunately, at the time I started to collect the material, it was found that Roscoea had already developed inflorescences and flowers. Although no leaf or a lack of the elongation of pseudostem were observed in Roscoea, the inflorescences and the flowers were already well advanced in development. The rates of inflorescence and floral development in Roscoea species are generally faster than those of Cautleya species. Vegetative and reproductive growth seem to be concomitant in Roscoea whereas Cautleya spicata seems to develop quite a few leaves and a long stem before the maturation of its inflorescence and flowers. Thus' only Cautleya spicata, whose stages of inflorescence and floral development were available, was suitable for this development study.

3.4 RESULTS

Although it has been observed that five genera in Hedychieae possess versatile anthers (Smith, 1981), the nature of the versatile anthers has not been given much attention or has not been mentioned at all. It is rather interesting why this character of the anther has managed to escape attention as it can be observed by the naked eye or with a hand lens. Light microscopy could be used to confirm the character. In this present study, visual inspection was confirmed by SEM that the type of the connection of the filament and the anther in Cautleya is basifixed. Observation in Camptandra, Curcuma, Paracautleya and Roscoea revealed that the versatile anther of Camptandra and Roscoea is basifixed whereas it is dorsifixed in Curcuma and Paracautleya. Figure 1.3 in Chapter One and Figure 5.4 in Chapter Five can be consulted.

The development of the versatile anthers in Cautleya spicata suggests that the appendages were developed at the base of the connection of the anther and the filament. The appendages were observed much later in comparison to the growth of the thecae (Figure 3.1-3.9). The thecae were already big and developed when the
appendages were initiated. Then later, the connection at the thecae side extended pushing the thecae further away from the appendages (Figure 3.10, 3.11). The dried plant material gave also a clear distinction between the thecae and the appendages (Figure 3.7, 3.8 and 3.12). There appeared a groove in the middle on along the appendages whereas the thecae were slightly changed in form.

In Curcuma species, the appendages are produced from the base of the thecae compared to the appendages from the connection tissue of Cautleya and Roscoea. Despite the lack of the appendages in some Curcuma species e.g. C. alismatifolia, C. harmandii and C. parviflora, the anthers in these species are still versatile because of the dorsifixed attachment of the anthers to the filament. It should be noted here also that the thecae of some Curcuma species are fertile only in part while the thecae in Cautleya and Roscoea are fertile throughout.

Legend for Figures 3.1-3.12. St denotes stigma while Sty $=$ style, Ant $=$ anther, App = appendages, EpiG $=$ epigynous gland, $\mathrm{Stm}=$ staminodes, Ova = ovary .

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

3.5 DISCUSSION

Developmental studies of the inflorescence and flower of Zingiberaceae, especially members of Hedychieae, have been carried out by $\operatorname{Kirchoff}(1997,1998)$. The results of these studies reveal that, even in a very short period of time, differences in morphological changes through time (heterochrony) are observed in two closely related species Hedychium coronarium and H. gardnerianum (Wood et al., 2000). The study of ontogeny, or the series of developmental processes through time, is of pivotal value to the study of phylogeny and systematics. It may demonstrate that slight differences in development can lead to dramatic differences in mature organ structures (divergence). On the other hand, different pathways can also lead to invariant mature floral morphology (convergence).

The phylogenetic findings based on ITS and trnL-F sequences presented in the previous chapter, suggested that the basifixed versatile anther in the clade of Cautleya/Roscoea and Camptandra had been derived independently. The convergence of basifixed versatile anther in the two distinct lineages in Hedychieae may have resulted from adaptation to similar pollination syndromes in different habitats. Floral structure, including the anther and the appendages indicate that the pollinators of Cautleya, Roscoea and Camptandra are bee species which forage for the nectar of the flower. However, there is no report of pollination studies in these genera. The pendulous lip of the flower is thought to be a platform for the pollinator to enter and in so doing the appendages will be pushed and bringing down the anther into contact with the back of the pollinator. Fruits of Roscoea are often observed in the Royal Botanic Garden Edinburgh where there is probably no true pollinator of Roscoea as in its wild habitat. Garden bees may be pollinating the flowers, leading to the formation of fruits. Because Roscoea grows as a clump of individuals, possibly other insects or wind may also play a part in the pollination.

The appendages can grow into varying shapes and sizes in Curcuma species (Mangaly and Sabu, 1993; Sirirugsa, 1996) and Roscoea species (Cowley, 1982;

Ngamriabsakul et al., 2000). Not only are they useful taxonomically, but also may be a clue suggesting the pollinators of the species.

The molecular phylogenetic findings also suggested that the dorsifixed versatile anther of the Curcuma complex has been lost independently in Hitchenia and Stahlianthus. These may have further obscured the patterns of morphological changes in Hedychieae which otherwise would be more revealing for the students of Zingiberaceae. Holttum (1950) who studied the Zingiberaceae of Malay Peninsula, however, with meticulous conduct, came to notice the differences of the anther appendages in Camptandra (and Roscoea) and Curcuma as well as suggesting the implication of their function as quoted below.
"In Camptandra (and apparently also in Roscoea) the pollen-sacs are much produced basally into the sterile appendages which are inclined forwards away from the filament, thus giving a versatile character to the anther. In Curcuma also the anther is versatile, being attached usually about the middle of the pollen-sacs, and at the same time there is usually a sterile outgrowth from the back of the base of each pollen-sacs. These outgrowths are usually called spurs, and they function in the same way as the basal appendages in Camptandra as a mechanism for cross-pollination. A visiting insect pushes against the spurs on entering the flower, and in so doing brings the pollen-sacs into contact with its back." (Holttum, 1950, p. 46-47)

CHAPTER FOUR: PHYLOGENY AND DISJUNCTION IN ROSCOEA (ZINGIBERACEAE)

(Materials in this chapter have been published in 'Ngamriabsakul, C., Newman, M.F. and Cronk, Q.C.B. (2000) Phylogeny and disjunction in Roscoea (Zingiberaceae).

Edinburgh Journal of Botany, 57, 39-61.')

4.1 ABSTRACT

A phylogenetic study of Roscoea (Zingiberaceae) - a subtropical, high altitude genus of an otherwise tropical, lowland plant family- was undertaken using sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA (nrDNA). Two species of Cautleya and two species of Curcuma were used as outgroups. This resulted in an aligned matrix of 436 bp (ITS1, 203 bp ; ITS2, 233 bp). Sequence divergence of ITS1 and ITS2 within the ingroup ranged from 0-13.9\% and $0-7.6 \%$ respectively.

The results suggest that Roscoea is monophyletic ($\mathrm{BS}=99 \% ; \mathrm{DI}=>3$) with the genus Cautleya as sister group. Roscoea itself is divided into two sister clades which correlate with geography: a 'Chinese' clade ($\mathrm{BS}=67 \%$; $\mathrm{DI}=+2$) and a 'Himalayan' clade ($\mathrm{BS}=59 \%$; $\mathrm{DI}=+1$). These two groups are disjunct across the 'Brahmaputra gáp', a region in which no Roscoea spp. have been recorded. The only. species which occurs on both sides of the Brahmaputra gap is Roscoea tibetica. However, the western populations of Roscoea tibetica (from Bhutan) show numerous morphological differences. It is therefore possible that Bhutanese R. tibetica represents a distinct taxon, possibly more closely allied to Himalayan species.

Seventeen morphological characters of Roscoea were analysed cladistically to explore the usefulness of the characters. Morphology was found to contain too much homoplasy to be usefully analysed on its own. The strict consensus tree of a
hundred and sixty-six equally most parsimonious trees of the morphological data analysis of seventeen species was compared with the strict consensus tree of four equally most parsimonious trees of the ITS analysis of the same set of taxa. A combined analysis of the ITS and morphological data of seventeen species gave twenty-six most parsimonious trees. The most parsimonious tree, resulting from rounds of weighting searches of ITS data using mean rescaled consistency index as a weight, was used as a backbone constraint to a later search of morphological data. The evolution of morphological traits in Roscoea were then studied on the strict consensus tree of three equally most parsimonious trees, resulting from the backbone constraint search of all Roscoea species morphological data.

4.2 INTRODUCTION

Roscoea is one of a group of five genera in Hedychieae (Zingiberaceae) which possess versatile anthers. The members of the group are Camptandra, Cautleya, Curcuma, Paracautleya, and Roscoea. They all occur in tropical regions or low altitude sites, except the truly alpine genus, Roscoea. Cautleya and Roscoea have sometimes been confused by inexperienced observers. Indeed, these two genera occur in similar habitats, and have a similar habit with orchid-like flowers. Nevertheless, there are many characters separating these genera as pointed out by Cowley (1982), e.g. lateral petals are free from the claw of labellum in Roscoea while they are joined to the labellum for about half their length in Cautleya. Roscoea, the high altitude genus of Zingiberaceae, comprises 18 species (Cowley, 1982; Cowley and Baker, 1996). It occurs along the Himalaya from the west (Pakistan), to the east (Southwest China), between 1200 and 4880 metres (Cowley, 1982). Roscoea grows in drier and cooler environments than other Zingiberaceae, in places that are more exposed to extremes of climate. Unlike some other members of Zingiberaceae, Roscoea has closed leaf-sheaths (Spearing, 1977).

The internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA are well established as being useful in systematics (Baldwin, 1992). ITS regions have
rates of substitution that are useful for evaluating generic and species level relationships in plants (Baldwin et al., 1995). Many investigations have been carried out using these regions, for instance in Asteraceae (Baldwin, 1992), Apiaceae (Downie and KatzDownie, 1996), Gesneriaceae (Möller and Cronk, 1997a; Möller and Cronk, 1997b), and Araliaceae (Wen et al., 1998). In Zingiberaceae, there are currently phylogenetic studies going on at Royal Botanic Garden Edinburgh (RBGE) using ITS regions as a source of phylogenetic information. These regions have proved to be useful for studying the evolutionary relationships of the family at the species level (e.g. Curcuma spp., Ardiyani, 1997; Alpinia spp., Rangsiruji, 1999).

This molecular part of the study aimed to confirm the monophyly of Roscoea, and the relationship between Roscoea and Cautleya, using living collections in the Royal Botanic Gardens (Edinburgh and Kew). It was hoped that, by combining data from ITS regions with distribution records and information on geological history, the study would give insights into the evolution of Roscoea and its sister genera: how a tropical plant family has colonized temperate regions.

There is no report of morphological cladistic analysis in Zingiberaceae. Here I explore the usefulness of the morphological data of Roscoea in cladistic analysis. The most important step in the cladistic analysis of morphology is the delimitation of characters or character coding. Unlike qualitative or discrete morphological data which is readily accepted and used in the cladistic study, it has been a topic of debate whether quantitative or continuous characters should be used and, if so, how they should be delimited into character states. Almeida and Bisby (1984) presented a simple method for defining multistate characters from measurement data by using bar diagrams. There are various other methods for coding variable morphological features (Archie, 1985; Chappill, 1989; Thiele, 1993) which advocate using continuously varying characters in phylogenetic analysis. This practice seems logically sound, or otherwise illogical to discard characters a priori, to employ as much information as possible of the taxa being studied for inferring their phylogeny. However, it is likely that these continuously varying characters are often totally abandoned because there is no really objective means of delimiting states within
them (Pimentel and Riggins, 1987; Stevens, 1991). Besides, it has been shown that differing presentations of these soft or continuous characters have played a major role in individual's perception of the characters, hence one's own delimitation of the character states (Gift and Stevens, 1997) which confound the cladistic study using these characters. Many so-called qualitative or discrete characters are also in fact based on a quantitative phenomenological base and thus face the same problem as quantitative characters (Stevens, 1991).

It is normally assumed that the morphological terminology used in the study of cladistics is uniform among various authors, either in a group of plants or within a particular journal. I have never found any disclosing statement in publications regarding the source of the terminology used which at least to me is a helpful source of reference. I here follow the guidelines from Cowley's works with two additional other published references: Systematics Association Committee for descriptive biological terminology (1962) and Harris and Harris (1994).

4.3 MATERIALS AND METHODS

4.3.1 INGROUP TAXA

Eight species of Roscoea cultivated in the RBGE were verified by using the identification key and species descriptions of (Cowley, 1982). Fresh leaf material of one plant representing each accession was taken for a total DNA extraction. Multiple samples of some species were also used. Voucher specimens were prepared, flowers were also preserved in Kew cocktail (water 5.5 units; methanol 3.5 units; glycerol 0.5 units) and both were deposited at the Royal Botanic Garden Edinburgh herbarium (E). DNA extracts of another eight species were taken from living plants at the Royal Botanic Gardens Kew (RBGK), and DNA aliquots were kindly provided by Dr Mark Chase (Table 4.1). These species represent all major areas of distribution of the genus (Figure 4.1). The remaining species that are no longer in cultivation are Roscoea nepalensis, Roscoea forrestii and Roscoea debilis. Attempts were made
several times to acquire DNA of Roscoea nepalensis and Roscoea forrestii from dried herbarium specimens but, unfortunately, these failed. Roscoea nepalensis is an endemic species of central Nepal, near Jumla. It is thought that this species might be allied to others from central Nepal, such as Roscoea capitata and Roscoea ganeshensis. On the other hand, Roscoea forrestii is one of the species that only occurs in southcentral China. Although the DNA sample of Roscoea debilis from RBGK was thought to be genuine, it turned out to be a variant of Roscoea tibetica after closer examination of the plant. These 15 species comprise most (83%) of the genus (total 18 species).

Table 4.1. Accessions of Curcuma, Cautleya and Roscoea examined for ITS1 and ITS2 sequence variation. ${ }^{\text {a }}$ Number as shown in Figure 4.1 the distribution map of Roscoea. ${ }^{\mathrm{b}}$ RBGE is Royal Botanic Garden Edinburgh; RBGK is Royal Botanic Gardens Kew. The distribution is given first and the locality of the plant sampled in this study is then given in brackets.

(11) Roscoea ganeshensis Cowley \& W. J. Baker	Nepal (Ganesh Himal)	RBGK 1992 2303	AF192238	AF192239
(12) Roscoea humeana Balf. f. \& W. W. Sm.	China (Yunnan)	RBGE 19851160	AF192240	AF192241
(13) Roscoea praecox K. Schum.	China (Yunnan)	RBGK 1994 3511	AF192242	AF192243
(14) Roscoea purpurea Sm.	India, Nepal, Bhutan (Ganesh Himal)	RBGK 1992 2310	AF192244	AF192245
(15) Roscoea schneideriana (Loes.) Cowley	China (Yunnan)	RBGK 1990 3345	AF192246	AF192247
(16) Roscoea scillifolia (Gagnep.) Cowley	China (not known)	RBGE 1979 4045	AF192248	AF192249
(17) Roscoea tibetica Batalin	Tibet, Bhutan, China (Yunnan)	RBGE 1985 1159	AF192250	AF192251
(18) Roscoea tumjensis Cowley	Nepal (Ganesh Himal)	RBGK 1992 2301	AF192252	AF192253
(19) Rosocea wardii Cowley	India, Tibet, Burma (Yunnan)	RBGE 1987 1608	AF192254	AF192255

4.3.2 OUTGROUP TAXA

There are currently 5 accepted names in Cautleya, though there may be fewer than five species (Kumar, 1994; Larsen et al., 1998). C. carthcartii is probably just a robust form of C. gracilis while C. robusta may be synonymous with C. spicata (Smith, 1994). The number of Curcuma spp. is less certain, partly because many species of Curcuma have long been widely cultivated, causing doubts on the justification of these species. Nonetheless, it is estimated at 50 species worldwide (Larsen et al., 1998). Two species of Cautleya (C. gracilis and C. spicata) and two species of Curcuma (C. amada and C. parviflora) were chosen as the outgroup because living collections of these plants are available at RBGE. As mentioned in the introduction, Cautleya is morphologically very similar to Roscoea. Its strong affinity with Roscoea necessitates further outgroup species which are distantly enough related to allow unequivocal rooting of the phylogenetic tree. Curcuma spp. were then chosen on the grounds that they possess versatile anthers, a shared distinct character of five genera in Hedychieae, including Roscoea and Cautleya, but are clearly different from Roscoea and Cautleya in other characters. An attempt was made to obtain Paracautleya's DNA, a monotypic genus from South India, from a dried herbarium specimen. Unfortunately, this was not successful. Fresh leaf material
of Camptandra (4 species, Larsen et al., 1998) from Malaysia (Ibrahim, pers. comm.) was not available, so it was not included in this study.

4.3.3 DNA EXTRACTION

Fresh leaf materials were kept in silica gel-filled plastic bags and stored at 0 ${ }^{\circ} \mathrm{C}$ overnight in a refrigerator before extraction, to destarch the leaf tissue. Starch may interfere with subsequent operations performed using the DNA. Total DNA extraction was carried out using the modified CTAB procedure of Doyle \& Doyle (1987) sometimes with further purification using a QIAquick ${ }^{\text {TM }}$ PCR purification kit (Qiagen Ltd, Dorking, Surrey, UK). All the samples of the study were obtained from fresh leaves, except Cautleya spicata which was taken from a dried herbarium specimen.

Small scale total genomic DNA extraction using CTAB (Doyle and Doyle, 1987) as a detergent gives lower levels of enzyme inhibition than other methods (Scott and Bendich, 1994). The modified protocol is as follows:

A portion of leaf about $1 \mathrm{~cm}^{2}$ was cut into many small pieces, and put into a $1.5-\mathrm{ml}$ microcentrifuge tube and about 50 mg of purified sand and $200 \mu \mathrm{l}$ of 2 x CTAB extraction buffer were added. The leaf tissue was ground with a plastic pestle until a homogeneous slurry was formed. A further $800 \mu \mathrm{l} 2 \mathrm{x} \mathrm{CTAB}$ was then added. The contents were mixed gently, and the tube was incubated at $65^{\circ} \mathrm{C}$ for 30 minutes. The tube was allowed to cool to ambient temperature before adding $200 \mu \mathrm{l}$ of wet chloroform (chloroform 24 units; octan-1-ol 1 unit).

The solution was mixed gently 4 or 5 times and centrifuged for 2 minutes at 13000 rpm . The aqueous (upper) phase was removed to a clean tube and re-extracted with $200 \mu \mathrm{l}$ wet chloroform. Again this was mixed gently to obtain a momentary single phase and centrifuged for 2 minutes at 13000 rpm . In another clean tube with the aqueous phase, $600 \mu \mathrm{l}$ cold $\left(-20^{\circ} \mathrm{C}\right)$ propan-2-ol was added and the contents were mixed gently to precipitate the nucleic acids. After $10-15$ minutes at room
temperature, the pellet of nucleic acids was precipitated by centrifuging for 2 minutes at 13000 rpm . The supernatant was removed and 1 ml of wash buffer (76% ethanol, 10 mM ammonium acetate) was added. The tube was left for at least 30 minutes to remove the 2 x CTAB from the pellet. The supernatant was then aspirated as much as possible after the tube was centrifuged for 2 minutes at 13000 rpm . Next, the pellet was dried completely by using an incubator drying oven for 10 minutes at $50^{\circ} \mathrm{C}$. Lastly the pellet was dissolved in 30-50 $\mu \mathrm{l}$ of sterile distilled water to obtain a DNA concentration of $10-30 \mathrm{ng} / \mu \mathrm{l}$ and stored at $-20^{\circ} \mathrm{C}$ until required.

4.3.4 PCR AMPLIFICATION AND SEQUENCING STRATEGY

Double-stranded DNAs of the complete ITS regions in each genomic DNA were amplified by the polymerase chain reaction method (PCR) using 2 primers, ITS 5P and ITS 8P (Möller and Cronk, 1997a). The primer sequences were (5^{\prime} to 3^{\prime}), ITS $5 \mathrm{P}=\mathrm{GGA}$ AGG AGA AGT CGT AAC AAG G and ITS 8P = CAC GCT TCT CCA GAC TAC A. The reaction (total volume $=50 \mu \mathrm{l}$) contained (in order of addition) $32.5 \mu \mathrm{l}$ of sterile distilled water, $5.0 \mu \mathrm{l}$ of 10 x Dynazyme $^{\mathrm{TM}}$ reaction buffer (1X: 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.8$ at $25{ }^{\circ} \mathrm{C}, 1.5 \mathrm{mM} \mathrm{MgCl} 2,50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100; Finnzymes Oy , Espoo, Finland), $1.0 \mu \mathrm{l}$ of a mix of each dNTP at 10 mM (final concentration $200 \mu \mathrm{M}$) (Sigma Chemicals, Poole, Dorset, UK), $5.0 \mu \mathrm{l}$ of each primer at $10 \mu \mathrm{M}$ (final concentration $1 \mu \mathrm{M}$) (Oswel DNA Service, Southampton, UK), a 1.0 μl aliquot of unquantified total genomic (template) DNA and $0.5 \mu \mathrm{l}(1 \mathrm{U})$ of Dynazyme ${ }^{\text {TM }}$ II thermostable DNA polymerase (Finnzymes Oy, Espoo, Finland). PCR amplification of the ITS region was carried out in $0.2-\mathrm{ml}$ microcentrifuge tubes in a Perkin Elmer thermal cycler. Each PCR reaction cycle proceeded as follows: (1) 1 minute at $94{ }^{\circ} \mathrm{C}$ to denature the double-stranded template DNA; (2) 2 minutes at $55^{\circ} \mathrm{C}$ to anneal primers to single-stranded template DNA; and (3) 1 minute at $72^{\circ} \mathrm{C}$ to extend primers. The first cycle was preceded by an initial denaturation step of 3 minutes at $94{ }^{\circ} \mathrm{C}$. Each set of reactions was monitored by the inclusion of a negative (no template DNA) control. Five microlitres of each double-stranded DNA PCR product were resolved by electrophoresis in 1.5% agarose gel using 1x TBE as the
gel buffer. Successful PCR resulted in a single band of ethidium bromide corporated-DNA viewed under ultraviolet (UV) light corresponding to approximately 700 base pairs. The PCR product was then purified using the QIAquick ${ }^{\text {TM }}$ PCR purification kit.

Purified PCR products were sequenced using a dye terminator cyclesequencing ready-reaction kit (Perkin Elmer, Applied Biosystems Division, Warrington, UK), with AmpliTaq ${ }^{\circledR}$ DNA polymerase, FS, according to the manufacturer's recommendation. Sequencing products were analyzed on an ABI 377 Prism Automatic DNA Sequencer (Perkin Elmer, Applied Biosystems Division, Foster City, CA, USA), according to the manual supplied. Each reaction was $20 \mu \mathrm{l}$ in volume and contained (in order of addition) $6 \mu \mathrm{~L}$ of sterile distilled water, $8 \mu \mathrm{l}$ of Reaction Mix, 1μ l of primer at $3.2 \rho \mathrm{M}$ and $5 \mu \mathrm{l}$ of purified PCR product. For each taxon forward and reverse sequencing reactions were performed for sequence confirmation. Sequencing primers were ITS 5P, ITS 8P and in addition ITS 3P (Möller and Cronk, 1997a) and a modification suitable for Zingiberaceae, ITS 2K (Rangsiruji, 1999) were also used. All primers were synthesized by and purchased from Oswel DNA Service, Southampton, UK. The primer sequences were, ITS 3P = GCA TCG ATG AAG AAC GTA GC and ITS $2 \mathrm{~K}=$ GGC ACA ACT TGC GTT CAA AG.

4.3.5 SEQUENCE ANALYSIS

All sequences were verified by comparison of their forward and reverse sequences. Sequence boundaries of both internal transcribed spacers of all taxa were determined by comparison with published rDNA sequence data for Daucus carota, Vicia faba (Yokota et al., 1989) and Alpinia spp. (Rangsiruji, 1999). ITS1 and ITS2 of each species are deposited in GenBank (accession numbers AF186195-AF186213, see Table 4.1). Both ITS regions were aligned using the CLUSTAL option in the multiple alignment program Sequence Navigator ${ }^{\text {TM }}$ Version 1.0.1 (Perkin Elmer, Applied Biosystems Division, Foster City, CA, USA), with minor manual adjustments. The $\mathrm{G}+\mathrm{C}$ content and transition/transversion ratio were determined by
inspection, using MacClade Version 3.0.1 (Maddison and Maddison, 1992). Sequence divergences among taxa were calculated using the DISTANCE MATRIX option in PAUP Version 3.1.1 (Swofford, 1993).

4.3.6 PHYLOGENETIC ANALYSIS

Phylogenetic trees were generated using PAUP Version 3.1.1 (Swofford, 1993), run on a Power Macintosh 6400/200 computer with character states unordered. The branch-and-bound search option, which guarantees to find the shortest tree or trees, was selected with MULPARS and furthest addition sequence options.

Bootstrap analyses (Felsenstein, 1985) were performed using PAUP, set to branch-and-bound search option and 1000 replicates. Decay indices (DI) (Bremer, 1988; Donoghue et al., 1992) for individual clades were obtained by comparing the strict consensus of all equal-length trees up to four steps longer than the shortest tree, using the branch-and-bound search option. Descriptive statistics reflecting the amount of phylogenetic signal in the parsimony analyses were given by the consistency index (CI) (Kluge and Farris, 1969), retention index (RI) (Farris, 1989), and the resulting rescaled consistency index (RC) (Swofford, 1993). Additionally, the g_{1} statistics (Hillis and Huelsenbeck, 1992) were obtained by calculating the treelength distribution of 10000 random trees using RANDOM TREES under PAUP to assess the amount of phylogenetic signal in the data set, in comparison to random noise.

For all analyses of sequence data, gaps (indels) were treated as missing data (Soltis and Kuzoff, 1995; Susanna et al., 1995; Downie and KatzDownie, 1996). Indels were scored as a separate presence/absence character and added to the sequence data matrix (Wojciechowski et al., 1993; Oxelman and Liden, 1995). To investigate the effect of these additional data, a separate analysis without indels scored as characters was undertaken. Character state changes were weighted equally, except for one analysis in which character-state weighted parsimony was
implemented: transversions were weighted over transitions by a factor of 1.7, corresponding to an average of the transition/transversion ratio of ITS1 and ITS2.

4.3.7 MAPPING THE DISTRIBUTION AREA OF ROSCOEA

Three hundred and eleven records of locations of Roscoea spp. were taken from all the herbarium sheets at E, including extra locations taken from a revision of Roscoea (Cowley, 1982). These data were entered into PANDORA (a taxonomic database system by Richard Pankhurst and Martin Pullan, RBGE: www.rbge.org.uk/research/pandora.home) at RBGE (see Appendix Four for all the records). The latitude-longitude format data in PANDORA were then exported and modified for use with MapPad (a freeware program by John Keltner at National Oceanic and Atmospheric Administration (NOAA), Paleoclimatology Program: www.ngdc.noaa.gov/ paleo/softlib.html). The simplified distribution map of Roscoea is shown in Figure 4.1 (including the outgroups).

Figure 4.1. Simplified geographical distribution of Roscoea species described to date (number 5 to 19 referring to the species listed in Table 4.1, number $20=$ Roscoea debilis, number $21=$ Roscoea forrestii, number $22=$ Roscoea nepalensis). The position of the number is an indication of the species. Note: Roscoea alpina and Roscoea purpurea are widespread along the Himalaya. Cautleya gracilis (number 3) and Cautleya spicata (number 4) occur both in the Himalaya and China. Curcuma species numbers (1 and 2) only indicate the origin of samples. Arrows show the course of the Brahmaputra river.

4.3.8 MORPHOLOGICAL METHODS

I scored seventeen morphological characters for all nineteen species of Roscoea (Table 6.1) and one outgroup species, Cautleya gracilis. All the characters investigated should cover the full range of variation within species. This was done by checking the literature of the species and genus (Cowley, 1982, 1994, 1997a, 1997b, 1998; Cowley and Baker, 1994, 1996; Cowley and Wilford, 1998, 2000), and by personal observation of herbarium specimens and living collection.

Cautleya gracilis was chosen as the outgroup based on its close affinity with Roscoea, as suggested by molecular analyses in the previous chapters and morphology.

4.3.8.1 ROSCOEA CHARACTER CODING

The criteria for selecting the following putative synapomorphies are, firstly that they have uniform and constant occurrence or absence among the terminal taxa, implying that they are not likely to be environmentally plastic and that differences among populations are fixed. Therefore they are thought to be intrinsic attributes of the taxa. Secondly, continuously varying or overlapping quantitative characters are here mostly omitted because it is difficult to put them into discrete states. Although I have found colour of flower useful for species identification, it is rather difficult to group the species meaningfully according to all the variation of each species. Thus this character was not used in the analysis. The data matrix is presented in Table 6.1.

1. Bladeless sheathing leaf number
(0) 0-2 (1) 3-5

This number sometimes overlaps among species. However the modal number separates them and is thus used here as the representative number for species. R. alpina and R. australis have $2-3$ sheathing leaves, so are given 01 .
2. Leaf number
(0) up to 4 (1) usually 5 or more

3. Leaf form

(0) linear to elliptic (1) elliptic-lanceolate to oblong-ovate (2) ovate to ovatelanceolate.
4. Leaves forming a tuft or rosette
(0) absent (1) present
5. Leaf bases
(0) shortly petiolate (1) decurrent (2) slightly auriculate or first leaf auriculate (3) all bases auriculate

6. Inflorescence

(0) peduncle showing (1) peduncle not showing
7. Flowering precociously (leaves hardly developed at anthesis)
(0) no (1) yes
R. cautleoides, R. tumjensis and R. alpina show considerable variation. I scored their character state as 01 .
8. Number of flowers open at a time
(0) a few flowers to many (1) usually only one
9. Bract length compared with calyx length
(0) shorter to equal (1) equal to longer

Although the character states seem continuous, the proportional length of the two parts of the flower (bract and calyx) in all species is consistent as observed in two states as above.
10. Bract tip
(0) acuminate (1) acute (2) obtuse-truncate
11. Lowest bract tubular
(0) absent (1) present
12. Dorsal petal form
(0) elliptic (1) broadly elliptic to obovate or obcordate (2) circular
13. Labellum
(0) deflexed (1) not deflexed
14. Labellum claw
(0) present (1) absent
15. Staminode form
(0) obliquely spathulate (1) circular (2) asymmetrically obovate to elliptic
16. Angle of appendages to thecae
(0) 90 (1) 135 (2) 180
17. Appendages tip
(0) pointed (1) obtuse (2) ball
R. schneideriana has an unusual form of appendage tip, globular or ballshaped. This is clearly an autapomorphy.

Table 4.2. Morphological character coding in Roscoea.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$
Cautleya gracilis	01	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R. alpina	01	0	0	1	2	1	0	1	0	2	0	2	1	1	1	2	0
R. auriculata	0	1	0	0	3	1	0	1	0	1	0	1	0	0	2	0	0
R. australis	01	0	1	1	2	1	0	1	0	2	0	1	0	0	2	1	01
R. bhutanica	1	0	1	1	2	1	0	1	0	1	0	1	0	0	0	0	0
R. brandisii	0	1	0	0	2	1	0	1	1	1	0	0	1	1	2	0	0
R. capitata	0	1	0	0	1	0	0	1	1	1	1	0	0	0	0	0	0
R. cautleoides	1	0	0	0	1	0	01	0	0	1	1	1	0	0	2	1	1
R. debilis	1	0	1	0	0	1	0	0	0	12	1	0	0	0	2	1	01
R. forrestii	1	0	1	1	1	1	0	0	0	2	0	0	0	0	2	1	1
R. ganeshensis	0	1	2	0	2	1	0	1	1	1	1	0	1	0	0	1	0
R. humeana	1	0	2	1	1	1	1	0	0	2	0	1	0	0	2	1	1
R. nepalensis	0	0	2	1	0	1	0	1	0	1	0	0	1	1	1	2	0
R. praecox	1	0	0	1	1	1	1	0	0	1	1	0	0	0	2	01	1
R. purpurea	0	1	0	0	2	1	0	1	1	1	0	0	01	0	0	0	0
R. schneideriana	1	1	0	1	1	0	0	1	1	1	1	0	0	0	2	0	2
R. scillifolia	0	0	0	0	1	0	0	1	1	12	1	0	1	1	2	01	1
R. tibetica	1	0	1	1	2	1	1	1	0	1	0	0	01	0	2	1	1
R. tumjensis	1	0	2	0	3	1	01	1	0	1	0	1	1	0	1	0	0
R. wardii	1	0	0	0	01	0	0	1	0	2	1	1	0	0	2	01	1

4.3.8.2 MORPHOLOGICAL ANALYSIS

To allow comparison and combination of the morphological and molecular characters, the same phylogenetic methods and parameters were used for analyses of both data sets. Phylogenetic trees were generated using PAUP* Version 4.0 b 4 (Swofford, 1998), run on a Power Mac G4 with character states unordered and initially equally weighted. Polymorphic characters were treated as uncertain. The branch-and-bound search option was selected. Then successive weighting searches were applied, using Rescaled Consistency index (RC, mean value) (Swofford, 1993) until the length of the resulting tree remained unchanged.

Bootstrap analyses (Felsenstein, 1985) were performed using PAUP*, set to branch-and-bound search option and 1000 replicates, or heuristic search with 1000 replicates, tree bisection-reconnection (TBR) branch swapping and random taxon addition sequence. Descriptive statistics reflecting the amount of phylogenetic signal in the parsimony analyses were given by the consistency index (CI) (Kluge and Farris, 1969), retention index (RI) (Farris, 1989), and branch length.

Because there are only 16 Roscoea species in ITS data matrix, morphological characters are scored for the same species as in the ITS data matrix. The data matrices are coded ITS17 and Mor.17, respectively. The morphological data matrix of all nineteen species of Roscoea is called Mor.20. The ITS data matrix of Roscoea, Cautleya and Curcuma species presented in Table 4.1 is here re-analysed with the addition of R. bhutanica's sequences. Thus, there are now 20 species in this new ITS data matrix or ITS20. The ITS17 and Mor. 17 data matrices are combined, Com.17, for a simultanious analysis. A constraint analysis, Con.20, of Mor. 20 on the most parsimonious tree of Rescaled Consistency Index weighted ITS20 analysis is also performed. This should also suggest the positions of ITS missing species, i.e. R. debilis, R. forrestii and R. nepalensis in the evolutionary history of the genus. The evolution of characters in Roscoea were then studied by using MacClade (Maddison and Maddison, 1992) with ACCTRAN (accelerated transformation) option, presenting the morphological changes on the branching trees.

4.4 RESULTS

4.4.1 SEQUENCE ANALYSIS

Alignment of internal transcribed spacer sequences of the 19 taxa analyzed resulted in a 436-bp long data matrix (Figure 4.2); its characteristics (including G + C content) are given in Table 4.3. The number of unresolved bases ranged from 0 to 5 bp per sequence.

The lengths of ITS1 and ITS2 were, on average, 189.7 and 225.1 bp. Alignment of all taxa required the insertion of 14 gaps of 1 to 5 bp length, 8 in ITS1 and 6 in ITS2 of which 5 and 2, respectively, were potentially informative. The lengths of aligned ITS1 and ITS2 regions were 203 and 233 bp respectively. Of these aligned sites, 296 (67.90\%) were constant, 70 (16.05\%) had at least two nucleotide states in two or more sequences and were potentially informative phylogenetically, and 70 (16.05%) were autapomorphies (Table 4.3).

Sequence divergence of ITS1 and ITS2 between ingroups ranged from 0$13.9 \%$ and from $0-7.6 \%$ respectively. Sequence divergence between ingroups and outgroups showed that ITS2 was marginally more variable at 4.5-21.0\% than ITS1 at 3.2-19.2\%. Pairwise comparison of individual taxa across both spacer regions revealed $0-9.7 \%$ sequence divergence within the ingroup and $4.6-18.4 \%$ divergence between ingroup and outgroup taxa analyzed (Table 4.3). The maximum sequence variation between Roscoea accessions was 9.7% (40 character changes) between R. praecox and R. ganeshensis. Sequences of R. cautleoides, R. wardii and R. humeana were identical.

Figure 4.2. Sequence data matrix of aligned ITS1 and ITS2 regions of nuclear ribosomal DNA of 19 taxa of Zingiberaceae. Nucleotide sequences are displayed from 5' to 3'. ITS1 ranges from site 1 to 203 and ITS2 ranges from site 204 to 436 . Uncertain nucleotide states are coded according to PAUP conventions (Swofford, 1993): $\mathrm{n}=\mathrm{A} / \mathrm{C} / \mathrm{T} / \mathrm{G}, \mathrm{k}=$ $\mathrm{G} / \mathrm{T}, \mathrm{r}=\mathrm{A} / \mathrm{G}, \mathrm{s}=\mathrm{C} / \mathrm{G}, \mathrm{w}=\mathrm{A} / \mathrm{T}, \mathrm{y}=\mathrm{C} / \mathrm{T}, \mathrm{m}=\mathrm{A} / \mathrm{C}$; hypens denote alignment gaps; numbers in italic print above the nucleotide matrix, ranging from 1 to 14 , indicate the number and position of alignment gaps; numbers in square brackets at the end of sequences indicate the actual spacer length of the combined region of ITS1 plus ITS2.

	100	110	120	130	140	150	160		170		180
alignment	-				
gaps		5.	.	67	.	8	

Curcuma amada GACCGTAGCTCGGTGCGATCGGCAMTAAGGAACAACGAAATTGGAAGCAGAGGACCCCCTTAGCGTGAGCGGGG--AGCCCAAT-GCGTC Curcuma parviflora GACCGTAGCTCGGTGCGATCGGCACTAAGGAACAATGAACTTGÅÅAGCAGAGGGCCCC-TTGGCGTGAGCGGGG--AGCACAAT-GCGTC

Cautleya gracilis Cautleya spicata
R.cautleoides
R.wardii
R.humeana
R.praecox
R.australis
R.scillifolia
R.schneideriana
R.tibetica
R.capitata
R.tumjensis
R.ganeshensis
R.purpurea
R.brandisii
R.auriculata
R.alpina

GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTGGCGTGCGCGGGG-GAGCCCAAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTGGCGTGCGCGGGG-GAGCCCAAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TCGGCGTGCGCGGGGGGAGCCCGAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TCGGCGTGCGCGGGGGGAGCCCGAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TCGGCGTGCGCGGGGGGAGCCCGAT-GCGTC GACTCTAGCTCAGAGTGGTTGGCATTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TCGGCGTGCGCGGGGGGAGCCCGAT-GCGTT GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TCGGCGTGCGCGGGGGGAGCCCAAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTGGCGTGCGCTGGG--AGCCCAAT-GCGTC GACCGTAGCTCAGTGCGATCGGCATTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTCGCGTGCGCGGGGGGAGCCCAAT-GCGTA GACCGTATCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTGCCGTGCGCGGGG--AGCCCGAT-GCGTC GACCGTAGGTCAGTGCGATCGGTACTAAGGMACAATGAAMTCAGAAGCAGAGGGCCCC-TTGGTGTKCCCGGGG--AGCCCAAT-GAGTT GACCGTAGSTCAGTGCGATCAGCASTAAGGAACAATGAACTCAGAAGCAGATGGCCCC-TTGGCGTKCCCGGGG--AGCCTAAT-GAGTT GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCAGAAGCAGAGGGCCCC-TTGGCATTCCCGRGA--AGCCCAATTGAGTY GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTTGCGTTCCCGACG--AGCCCAATTGAGTT GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTGGCGTGCCCGGGG--AGCCCAAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCAGAGGGCCCC-TTGGCGTGCCCGGGG--AGCCCAAT-GCGTC GACCGTAGCTCAGTGCGATCGGCACTAAGGAACAATGAACTCGGAAGCGGAGGGCCCC-TCGGCGTGCCCGGGG--AGCCCAAT-GCGTC

	190	200	210	220	230	240	250	260	270	
alignment	\cdot	\cdot	ITS2	\cdot						
gaps	\cdot	\cdot		\cdot	\cdot	\cdot	\cdot	\cdot		

Curcuma amada Curcuma parviflora Cautleya gracilis Cautleya spicata
R.cautleoides
R.wardii
R.humeana
R.praecox
R.australis
R.scillifolia
R.schneideriana
R.tibetica
R.capitata
R.tumjensis
R.ganeshensis
R.purpurea
R.brandisii
R.auriculata
R.alpina

GGAGATTCTTCGGAATCAAATGAATCGTCGCTTTTGCTCCATGCTTCGTCGGCATTGAGCGCGGAAGTTGGCCCCGTGTGCCCTCGGGCA GAAGATTCTTCGGAATCAAATGAATTGTCGCTTATGCTTCATGCTTTGTTGGCATTGAGTGCGGAAATTGGCCCCGTGTGCCCTCGGGCA GGAGATTTTTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTATTGGCATCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTTTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTATTGGCATCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATATCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATATCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATATCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATATCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATATCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTCTCGAAATCAAATGAATCGTCGCTTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA AGAGATTTCTCGAAATCAAATGAATCGTCGCTTTAGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATATCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCAAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTGTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGCCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGACA GGAGATTTCTCAAAATCAAATGAATCGTCGCTTTCGCTCCATGCGTTGCTGGTGTCGAGCGCGAAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTCTCGAAATCAGATGAATCGTCACTTTTGCTCCATGCGTTGCTGGAGTCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTGTCGAAATGAGATGAATCGTCGCTTTTGCTCCATGCGTTGCTGGTGTCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTCTCGAAATCAAATGAATCGTCACTTTAGCTCCATGCGTTGCTGGTGTCCAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTCTCGAAATCAAATGAATCGTCGCTTTTGCTCCATGCATTGCTGGTGTCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA GGAGATTTCTCGAAATCAAATGAATCGTCGCTTTCGCTCCATGCATTGCTGGTGTCGAGCGCGGAAATTGGCCTCGTGTGTCCTCGGGCA

	280	290	300	310	320	330	340	350	360	
alignment	\cdot									
gaps	\cdot									

Curcuma amada CAGTCGGTCGAAGAGTGGGTAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTGAACGTCGTGTCCTCGTCGT Curcuma parviflora TAGTCGGTCGAAGAGTGGGTACTCGGCAATCGTCGAGCACGATGGGCGTTGGTCGTCGCAAGCGAGAACTGAACGTCGT--CCTCGTCAT Cautleya gracilis CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT Cautleya spicata CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT
R.cautleoides
R.wardii
R.humeana
R.praecox
R.australis
R.scillifolia
R.schneideriana
R.tibetica
R.capitata
R.tumjensis
R.ganeshensis
R.purpurea
R.brandisii
R.auriculata
R.alpina CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGCCGGGCACGACGGGTGTTGGTCGCCTTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGCCGGGCACGACGGGTGTTGGTCGCCTTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGCCGGGCACGACGGGTGTTGGTCGCCTTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGCCGGGCACGACGGGTGTTGGTCGCCTTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGCGGGTAGTCCGCAGTCGCCGGGCACGACGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGCCGGGCACGACGGGTGTTGGTCGCCTTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGC CAGTCGGTTGAAGAGTGGGCAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAACACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGAAATCGTCGGGCACGACGGGTGTTGGTCGCCGTGAGCGAAAACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGAACTCGTCGGGCACGACGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGAAGTCGTCGGGCACGACGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGTCGT--CCCCGTCGT CAGTCGGTTGAAGAGTGGGTAGTCCGAAGTCATCGGGCACGACGGGTGTTGGTCGCCGTGAGCGAGAACAAAACGTCGT--CCCCGTCGT

	370	380	390	400	410	420	430
alignment	11	.	1	.	.	.	1.1
gaps	01		2				34

Curcuma amada TTTGGGATGAGTCCTCCAGAGACCCTGTGTGATGATTGCGGAGTCGCGTGAAAGCGCCGCGTCAATCA-- - TTTG
Curcuma parviflora TTTGGGATGAGTCCTCAAGAGACCCTATGTGAT---TGCAGAGTCGGACGAAAGCGATGTGTCAATCATCATTTGC
Cautleya gracilis TTTGGGAAT-GTCCTCAAGAGACCCTGTGTGAT---TGTGATGTCGTGTGAAAGTGCCGTGTCCATCA--AATTGT Cautleya spicata TTTGGGAAT-GTCCTCAAGAGACCCTGTGTGAT---TGTGATGTCGTGTGAAAGTGCCGTGTCCATCA--AATTGT R.cautleoides TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---TGTGACGTCGTGCGAAAGTGCCGTGTCCATCA--AATTGT
R.wardii
R. humeana
R.praecox
R.australis
R.scillifolia
R.schneideriana
R.tibetica
R.capitata
R.tumjensis
R.ganeshensis
R.purpurea
R.brandisii
R.auriculata
R.alpina TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---TGTGACGTCGTGCGAAAGTGCCGTGTCCATCA--AATTGT TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---TGTGACGTCGTGCGAAAGTGCCGTGTCCATCA--AATTGT TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---TGTGACGTCGTGCGAAAGTGCCGTGTCCATCA--AATTGT TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---CGTGACGTCGTGCGAAAGTGCCGCGTCCATCA--AATTGT TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---TGCGACGTCGTGCGAAAGTGCCGCGTCCATCA--AATTGT TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---TGTGATGTCGTGCGAAAGTGCCGTGTCCATCA--AATTGT TTTAGGATT-GTCCTCAAGAGACCCCGTGTGAT---CGTGATGTGGTGCGAAAGTGCCGTGTCCATCA--ATTTGT TTTAGGATT--TCCTCAAGAGACCCTGTGTGAT---TGTGATATCGTGCGAAAGTGCCGTGTCCATCA - - AATTGT TTTAGGATT--TCCTCAAGAGACCCCGTGTGAT---TGTGATATCGTGTGAAAGTGCCGTGTCCATCA--AATTGT ATTACGATT--TCCTCAAGAGACCCTGTGTGAT---TGTGATATCGTGTGAAAGTGCCGTGTCCATCA--AATTGT TTTACGATT--TCCTCAAGAGACCCCGTGTGAT---TGTGATGTGGTGTGAAAGTGCCGTGTCCATCA--AATTGT TTTACGATT--TCCTCAAGAGACCCCGTGTGAT---TGTGATGTCGTGTGAAAGTGCCGTGTCCATCA--AATTGT TTTAGGATT--TCCTCAAGAGACCCCGTGTGAT---TGTGATGCGGTGTGAAAGCCCCGTGTCCATCA--AATTGT TTTAGGATT--TCCTCAAGAGACCCCGTGTGAT---TGTGATGTCGTGCGAAAGTGCCGTGTCCATCA--AATTGT

Table 4.3. Sequence characteristics of ITS1 and ITS2 regions of 19 taxa of Zingiberaceae.

Parameter	ITS1	ITS2	ITS1 and ITS2
Length range (total) (bp)	188-200	224-230	412-430
Length mean (total) (bp)	189.74	225.05	414.79
Length range (ingroup) (bp)	188-190	224-225	412-415
Length mean (ingroup) (bp)	188.93	224.53	413.47
Length range (outgroup) (bp)	190-200	225-230	-415-430
Length mean (outgroup) (bp)	192.75	227	419.75
Aligned length (bp)	203	233	436
$\mathrm{G}+\mathrm{C}$ content range (\%)	47.34-55.79	53.07-59.56	51.55-57.35
$\mathrm{G}+\mathrm{C}$ content mean (\%)	52.43	56.64	54.73
Sequence divergence (ingroup) (\%)	0-13.86	0-7.58	0-9.75
Sequence divergence (in/outgroup) (\%)	3.21-19.22	4.46-21	4.58-18.47
Number of indels (ingroup)	3	1	4
Number of indels (total)	8	6	14
Size of indel (ingroup)	1-2	1	1-2
Size of indel (total)	1-5	1-3	1-5
Number of variable sites (\%)	67(33)	73(31.33)	140(32.10)
Number of constant sites (\%)	136(67)	160(68.67)	296(67.90)
Number of informative site (\%)	27(13.30)	43(18.45)	70(16.05)
Number of autapomorphic sites (\%)	40(19.70)	30(12.88)	70(16.05)
Transitions (minimum)	50	71	121
Tranversions (minimum)	40	32	72
Transitions/tranversions	1.25	2.21	1.68
Skewness of tree-length distribution (g_{1} value for 10000 random trees)	-1.022	-1.663	-1.509
Average number of steps per character	0.448	0.446	0.447

4.4.2 PHYLOGENETIC ANALYSIS

Parsimony analysis of aligned ITS sequences using equally weighted character states yielded five most parsimonious trees when coded indels were added to the data matrix. The strict consensus tree was computed (Figure 4.3), with 213 steps when all uninformative characters were included, 136 steps with autapomorphies excluded, with CIs of 0.812 and 0.706 , respectively. These were higher than the expected empirical values of 0.559 calculated from 60 phylogenetic studies for 19 taxa (Sanderson and Donoghue, 1989). The RI was 0.793 , and thus the RC was 0.644 with, and 0.560 without, uninformative characters.

The average number of nucleotide substitutions per character was low, with 0.447 indicating a low saturation of base substitution. The homoplasy index (HI) of the present data matrix was low $(\mathrm{HI}=0.188)$.

Thirty three character changes separated the Cautleya/Roscoea clade from Curcuma spp. $(\mathrm{BS}=99, \mathrm{DI}=>3)$. The ingroup Roscoea spp. was separated from Cautleya spp. by nine character changes (one indel) $(\mathrm{BS}=99, \mathrm{DI}=>3)$. Roscoea spp . formed 2 distinct groups, a Chinese clade comprising eight species from China and Burma, separated by two character changes $(B S=67, D I=2)$, and a Himalayan clade with seven species from the Himalaya, separated by four character changes (one indel) ($\mathrm{BS}=59, \mathrm{DI}=1$) (Figure 4.3). In the Chinese clade, the relationship of species was fairly well resolved, with bootstrap values ranging from 59 to 75% and decay index values of 1 to 2 . However, the relationship of a terminal branch in this Chinese group was unresolved due to a lack of sequence variation, forming a four species polytomy (R. cautleoides, R. wardii, R. humeana, R. praecox) separated from R. australis by two character changes $(\mathrm{BS}=75, \mathrm{DI}=1)$. The Himalayan clade contained two subclades, (1) R. capitata, R. tumjensis and R. ganeshensis with seven character changes ($\mathrm{BS}=70$, DI $=1)$, (2) R. auriculata and R. alpina by one character change $(\mathrm{BS}=53, \mathrm{DI}=1)$ with R. purpurea and R. brandisii unresolved. Of the seven potentially informative indels, four
were congruent with the tree topology of the strict consensus tree.

Exclusion of the coded indels from the combined ITS1 and ITS2 data matrix resulted in eight most parsimonious trees of 195 steps (125 steps excluding uninformative characters; $\mathrm{CI}=0.815 ; \mathrm{RI}=0.787 ; \mathrm{RC}=0.642$). The strict consensus tree differed from the strict consensus tree obtained with the addition of coded indels only in the collapse of the Himalayan clade grouping all seven species from the Himalaya while the two subclades within remained.

The transition/transversion ratio was 1.25 for ITS1 and 2.21 for ITS2, and 1.68 for the combined data matrix. Altering the character weights to $1.7: 1$ to accommodate this ratio and reanalyzing the data (coded indels excluded) in a parsimony analysis gave a single most parsimonious tree (Figure 4.4).

Figure 4.3. Strict consensus tree based on five most parsimonious trees for 15 Roscoea, two Cautleya and two Curcuma taxa of 213 steps length based on parsimony analysis of the combined ITS1 and ITS2 sequence data plus the coded indels. Upper numbers are bootstrap values of 1000 replicates. Lower (boldface) numbers are decay indices ($\mathrm{CI}=0.812 ; \mathrm{RI}=0.793 ; \mathrm{RC}=0.644$).

Figure 4.4. The single most parsimonious tree obtained from the weighting of transitions and tranversions (one of the five trees found in the unweighted search). Numbers above branches indicate number of character changes shared amongst taxa (branch length, from unweighted analysis), including autapomorphic changes. Bars and numbers associated indicate the indels and their positions in the sequences (see Figure 4.2).

4.4.3 MORPHOLOGICAL RESULTS

The results of parsimony analyses of all different sets of species and types of data are summarised in Table 4.4. Cladistic analysis of seventeen morphological characters (all potential synapomorphies) of sixteen Roscoea species and Cautleya gracilis as the outgroup (Mor.17) generated 166 equally most parsimonious trees (length $=56$; consistency index $(C I)=0.446$; retention index $(R I)=0.586)$. The strict consensus tree (Figure 4.5) preserved five clades, but with no support (all clades had bootstrap values less than 50%). The analysis of these seventeen morphological characters in all Roscoea species (nineteen species) and the outgroup (Mor.20) yielded six equally most parsimonious trees (length $=62 ; \mathrm{CI}=0.403 ; \mathrm{RI}=0.606$). The strict consensus tree (Figure 4.6) had somewhat better resolved clades than the strict consensus tree of Mor.17, though only one branch had bootstrap value higher than 50% (the clade of R. alpina and R. nepalensis, with 75% bootstrap value).

The analysis of ITS sequences matrix of the same set of species as in morphology (ITS17) gave four equally most parsimonious trees (length $=138$) with significantly higher values of $\mathrm{CI}=0.753$ and $\mathrm{RI}=0.725$ than in the morphological analysis. The strict consensus tree was presented in Figure 4.7. The re-analysis of the nineteen species ITS data matrix in as presented in Figure 4.3-4.4 with a newly acquired ITS sequences of R. bhutanica (ITS20) produced fourteen equally most parsimonious trees (length $=217, \mathrm{CI}=0.801, \mathrm{RI}=0.785$). The strict consensus tree (Figure 4.8) was very similar to the strict consensus tree of the ITS analysis of nineteen species data matrix (Figure 4.3), only one exception in the Himalayan clade. The subclade of R. alpina and R. auriculata collapsed while the subclade of R. tumjensis, R. capitata and R. ganeshensis was retained. The support of bootstrap values in this strict consensus tree was also in the same range (57-100\%) with the tree in the previous analysis.

Table 4.4 shows the results of cladistic analyses in morphological part of this study from Roscoea data matrices.

	Mor.17	Mor.20	ITS17	ITS20	Com.17	Con.20
Number of steps	56	62	138	217	208	77
Number of trees	166	6	4	14	26	3
CI (Consistency Index)	0.446	0.403	0.753	0.801	0.620	0.324
HI (Homoplasy Index)	0.553	0.596	0.246	0.198	0.379	0.675
CI (excluding uninformative sites)	-	-	0.580	0.686	0.476	-
HI (excluding uninformative sites)	-	-	0.419	0.313	0.523	-
RI (Retention Index)	0.586	0.606	0.725	0.785	0.605	0.446
RC (Rescaled Consistency index)	0.261	0.244	0.547	0.629	0.375	0.145
Number of informative sites	17	17	39	79	56	17

The simultaneous analysis of both morphological and ITS data sets of seventeen species (Com.17) yielded twenty-six equally most parsimonious trees (length $=208$; CI $=0.620 ; \mathrm{RI}=0.605$). The strict consensus tree (Figure 4.10) differed from the strict consensus tree of the ITS20 analysis in that the only subclades recognised within Roscoea were the clade of R. capitata, R. ganeshensis and R. tumjensis and the clade of five terminal species of the Chinese clade (R. australis, R. cautleoides, R. humeana, R. praecox and R. wardii). These two clades had bootstrap values of 50 and 63 , respectively.' In addition, the clade containing all members of the Chinese clade was retrieved with the bootstrap value at 59 , though it collapsed in the strict consensus tree.

When Rescaled Consistency index (RC , mean value) was applied to rounds of successive weighting searches of the ITS20 matrix, a single most parsimonious tree was retrieved. The tree is shown in Figure $4.9(\mathrm{CI}=0.947 ; \mathrm{RI}=0.937 ; \mathrm{RC}=0.888)$ and it was used as a constraint tree to a later morphological analysis. The constraint analysis of morphological data of all Roscoea species (Mor.20) by the single most parsimonious tree of the RC weighted tree as a backbone constraint generated three equally most parsimonious trees with the length of 77 steps (Figure 4.11). The descriptive statistics of the phylogenetic signals of the tree were low, i.e. $\mathrm{CI}=0.324, \mathrm{RI}=0.446$ and $\mathrm{RC}=$ 0.145 .

Figure 4.5. The strict consensus of 166 trees from a morphological analysis of sixteen Roscoea species and the outgroup (Mor.17). All clades have less than 50 per cent bootstrap value and Decay Index value is one. Branch length is given under the clades.

Figure 4.6. The strict consensus tree of 6 trees from a morphological analysis of nineteen Roscoea species and the outgroup (Mor.20). Only the clade of R. alpina and R. nepalensis has bootstrap value higher than 50 per cent. All clades have Decay Index value one. Branch length is given under the clades.

Figure 4.7 The strict consensus tree of 4 trees from an ITS analysis of sixteen Roscoea species and the outgroup (ITS17). Bootstrap value higher than 50 per cent are given above the branches. Branch length is given under the clades.

Figure 4.8. The strict consensus tree of 14 trees from an ITS analysis of sixteen Roscoea species and four outgroup species (ITS20). Bootstrap value higher than 50 per cent is given above the branches. Branch length is given under the clades.

Figure 4.9. The single most parsimonious tree, resulting from an ITS analysis of sixteen Roscoea species and four outgroup species (ITS20) with Rescaled Consistency index applied. This tree was used as a backbone constraint in a later morphological analysis of all nineteen Roscoea species.

Figure 4.10. The tree shows all clades that have bootstrap-value higher than 50 per cent in the analysis of Com.17. All clades have Decay Index value one. Branch length is given under the clades. * Note, only the clade of all Chinese species collapses in the strict consensus tree.

Figure 4.11. The strict consensus tree of 3 most parsimonious trees of a morphological analysis of Mor. 20 with the backbone constraint tree (Figure 4.9) of the ITS20 analysis applied. Numbers below the clade are branch lengths.

4.5 DISCUSSION

4.5.1 MOLECULAR EVOLUTION OF ITS IN ROSCOEA

The internal transcribed spacers of ribosomal DNA of the Roscoea spp. investigated have evolved mainly by base substitution. Only four indels occurred in the DNA studied, of 1-2 bases in length. The levels of sequence variation among the Roscoea spp. are similar to those infrageneric levels found in other angiosperms. Sequence divergence within the Roscoea spp. ranged from 0 to 13.8% for ITS1 and 0 to 7.5% for ITS2. In species of Saintpaulia (Gesneriaceae) for example, the range of sequence divergence was from 0 to 17.6% for ITS1 and 0 to 13.9% for ITS2 (Möller and Cronk, 1997b) and in species of Alpinia (Zingiberaceae), sequence variation ranged from 0 to 20.9% for ITS1 and 0 to 19.7% for ITS2 (Rangsiruji, 1999). However, a group of four species remained unresolved because the level of sequence divergence was too low for unequivocal phylogenetic resolution. Indeed, three of these species had identical sequences. Other similar studies have such unresolved groups (Kim et al., 1996; Möller and Cronk, 1997b) and this is generally attributed to rapid radiation, especially on islands or in newly created ecological niches. The Chinese and Himalayan mountains apparently represent a recent range extension for the predominantly tropical family Zingiberaceae. This may have induced processes of adaptive radiation similar to those found on islands. These regions have been affected by the continuous uplift of the Himalaya since the collision of the Indian and Asian plates ca. 52 to 45.8 Ma B.P. (Rowley, 1998).

Although the spacers show considerable variation at higher levels of the taxonomic hierarchy, they are thought to be important in post-transcriptional processing, and are thus conserved to some extent (Liu and Schardl, 1994; Vañ Nues et al., 1994). It is interesting to find that speciation, as in the Saintpaulia ionantha complex (Möller and Cronk, 1997b) and in the Roscoea cautleoides complex, has been able to outstrip variation in the comparatively fast-evolving ITS region. Möller \& Cronk (Möller and

Cronk, 1997b) have suggested that, where divergence times are short compared to rDNA homogenization rates, ITS variation will appear highly conservative; on the other hand, where divergence times are long compared to rDNA homogenization rates, ITS variation will appear disproportionately variable.

4.5.2 ROSCOEA AND CAUTLEYA

The phylogenetic trees resulting from this study show that Roscoea is monophyletic and Cautleya is its sister group. This is supported by a preliminary phylogenetic study of Hedychieae which included R. cautleoides, R. purpurea, C. gracilis and twenty six species from another ten genera of Hedychieae (Searle and Hedderson, 2000). The relatively low sequence divergence of species of Cautleya from those of Roscoea suggests a close relationship between the two genera. This is supported by their similar morphology and overlapping distribution area. Roscoea spp. can be found between 1200 to 4880 metres and Cautleya spp. between 900 to 3100 metres above sea level (Kumar, 1994; Wu and Larsen, 2000). However, Cowley (1982) pointed out that some clear distinguishing features exist. Roscoea has no true petiole, its lateral petals are free from the claw of the labellum and it has an elongate capsule, while Cautleya has a true petiole, the lateral petals are joined to the claw of the labellum and it has a round capsule. In addition, Roscoea has small (ca. $3 \times 1 \mathrm{~cm}$), fusiform, fascicled tuber roots, whereas in Cautleya, the tuber roots are cylindrical (see Table 4.5, a comparison of the two genera). The closed leaf sheath (Spearing, 1977) of all Roscoea spp. and Cautleya gracilis also suggests a relationship.

It is also interesting to consider which of the Chinese and Himalayan groups of Roscoea is more closely related to Cautleya. Morphologically, Cautleya spp. are superficially similar to Roscoea cautleoides. However, the phylogenetic analyses presented here suggest that neither the Chinese nor the Himalayan clade can be considered as more closely related to Cautleya, as they are sister groups.

Table 4.5. A morphological comparison of Cautleya and Roscoea

Cautleya* (Royle ex Bentham) Hook. f.	Roscoea Smith
Ligule conspicuous	Ligule inconspicuous
Pseudostem packed, small with red dots	Loose without red dots
All 2 ${ }^{\text {nd }}$ veins merge into midrib of petiole	No real petiole
Leaves elliptic-lanceolate-oblong with apiculate-aristate tip	Leaves vary, acute or acuminate
Rachis elongates, flowers well separated	A head of flowers
Lateral petals joined up to half its length	Lateral petals free
Flower always yellow	Flower mainly purple, few species yellow or white
Stigma under a small anther crest	No anther crest
Roots fusiform	Roots cylindrical
Seeds.sharply angular, adhering in a mass; aril fleshy, lacerate	Seeds not sharply angular, not adhering; aril inconspicuous

[^1]
4.5.3 TWO GROUPS IN ROSCOEA

The strict consensus tree of five most parsimonious trees resulting from the combined ITS sequences and coded indels clearly shows not only that Roscoea is monophyletic, but also that it is divided into two distinct groups. Seven species from China and one species from Burma form the first group (Chinese clade) (Figure 4.3),
while the rest form the second group (Himalayan clade). These two groups are supported by morphological characters as shown in Table 4.6. In order to explain this divergence, we need to examine the distribution of Cautleya, the sister group of Roscoea. Cautleya is not only found with Roscoea at lower levels of the Himalaya and in southcentral China, but is also recorded from high altitude sites on nearby tropical mountains, in Burma and in the north of Thailand (Larsen, 1980). However, the geographical centre of the present distribution of Roscoea and Cautleya is Assam, as shown in Figure 4.1. Assam is also the centre of diversity of the related genus Hedychium. There are 39 species of Hedychium in India, of which 35 occur in Assam (Jain and Prakash, 1995). It is possible that Roscoea originated in Assam, and spread east and west along the nearest mountain ranges, thus accounting for the separate Chinese and Himalayan groups. This is supported by a single maximally likely tree showing that a clade of Roscoea/Cautleya shares an ancestor with Hedychium species clade (Searle and Hedderson, 2000). Smitinand et al. (Smitinand et al., 1970) reported that Anaphalis margaritacea (L.) Benth. \& Hook. f. ssp. margaritacea is mainly distributed in the cool temperate zone of eastern Asia (including the Himalaya), and in North America. On finding the species in northern Thailand, he suggested that the species may have spread southwards along the high mountains of the Indo-China Peninsula to Thailand and Vietnam. Similar migration along mountain dispersal routes may have occured in Roscoea and Cautleya.

All of the species in the Chinese clade (except R. australis, Burma) are found in Yunnan province (mostly in Lijing and Dali) and some extend to parts of Sichuan. The data suggest that this is an area of rapid evolution of a complex of Roscoea spp. On the other hand, the area of greatest diversity of the Himalayan clade is in central Nepal. One particular area is Ganesh Himal (Cowley and Baker, 1996) which accounts for up to five species among eight species in the entire Himalayan region. These data give an indication of the priority of land protection and preservation for the authorities concerned.

Table 4.6*. The distinguishing characters of the two groups of Roscoea spp.

Chinese group	Himalayan group
1. Sheathing leaf number ca. 3-5, except R. scillifolia	Sheathing leaf number ca. 02, except R. bhutanica, R. tumjensis
2. Leaf number 0-4, except R. schneideriana	Leaf number > 4*
3. Leaf base not auriculate, except R. australis, R. tibetica	Leaf base auriculate, except R. capitata, R. nepalensis
4. Leaves almost forming rosette, except R. cautleoides, R. scillifolia	Leaves usually not forming rosette, except R. alpina, R. bhutanica, R. nepalensis
5. Corolla tube length $<6 \mathrm{~cm}$, except R. humeana, R. australis	Corolla tube length $>6 \mathrm{~cm}$
6. Appendage tip obtuse (R. australis, R. scillifolia: obtuse-pointed, R. schneideriana: ball)	Appendage tip pointed
7. Epigynous gland length $<5 \mathrm{~mm}$	Epigynous gland length >5 mm, except R. auriculata, R. capitata
8. Seed aril deeply lacerate, except R. scillifolia, R. australis, R. wardii	Seed aril shallowly lacerate
9. Ratio labellum length/dorsal petal length <1, except R. schneideriana, R. wardii, R. praecox, R. cautleoides	Ratio labellum length/dorsal petal length >1

[^2]
4.5.4 THE BRAHMAPUTRA GAP

The distribution of Roscoea (Figure 4.1) is strikingly discontinuous. There are no records from that part of Assam where the Brahmaputra river flows south around the eastern end of the Himalayan chain. Interestingly, this gap in the distribution coincides with the boundary between the Chinese and Himalayan clades. Although it is possible that the Brahmaputra gap is an artefact of undercollection, it is also possible that it represents a genuine phytogeographical boundary.

The region of the Brahmaputra gap is known to be undercollected, as the area has been historically inaccessible. Rao (1994) suggests that 30% of northeastern India (not including Arunachal Pradesh) has been only casually surveyed. More collecting in this region is therefore badly needed.

It is also possible that this area really has no Roscoea spp.. Although the Himalayan mountains form a continuous, geologically connected chain, here the eastern Himalaya rise rather abruptly from the plain without a distinct sub-Himalayan zone (Rao, 1994). This abrupt rise of the mountain range and its horseshoe shape may serve as a barrier between the two sides of the area. Thus the disjunct distribution of Roscoea, between two sides of northeastern India, may be genuine along with other examples of Indian disjunctions (Rao, 1994), e.g. Nymphaea pygmaea Ait. (with Siberia, N China), Illicium cambodiana Hance (with Southern Indo-China), Mitrastemon yamamotoi Makino (with Japan, Sumatra) and Dendrobium bensoniae Reichb. (with Burma, Thailand).

4.5.5 ROSCOEA TIBETICA AS A TRANSGRESSOR SPECIES

As mentioned above, the species of Roscoea fall into two groups, with either an eastern or a western distribution. The only exception to this is Roscoea tibetica which
occurs in both the eastern (China and Southeast Tibet) and the western area (Bhutan and in nearby Tibet) (Figure 4.12). There are two possible explanations for this: (1) that R. tibetica is a genuine transgressor which crosses the phytogeographical boundary, or (2) that the Bhutanese populations of R. tibetica represent a separate species, possibly more closely allied to Himalayan ones.

Figure 4.12. Distribution map of Roscoea tibetica showing the discontinuity between Chinese and Bhutanese populations. Arrows show the course of the Brahmaputra river.

The accession used in this study comes from China and groups with the Chinese clade. It would be very interesting to obtain material from Bhutan. There is some evidence of morphological difference between the Bhutanese and Chinese specimens (Table 4.7). Further studies on Bhutanese Roscoea tibetica remain a priority.

4.5.6 ROSCOEA BRANDISII: UNCERTAIN IDENTITY.

Jill Cowley (RBGKew) has recently informed me that R. brandisii at Kew used in this study is unlikely to come from Meghalaya, the only recorded distribution area of the taxon (see also Figure 4.1). The plant was donated by a Dutch businessman who acquired it through local plant hunters. Its origin is unknown. The molecular findings in the present study suggest that the plant belongs to the Himalayan clade, though Meghalaya is southwestern to the Brahmaputra river. Geographically speaking, this species of western side of the Brahmaputra river is predicted to form a clade with other Chinese and Burmese species. The molecular phylogeny of Roscoea suggests that this plant may have its origin on the eastern side of the Brahmaputra river, not from the western side or the type locality. I sent these findings back to Jill Cowley and she decided to make another close observation of the plant. She found that the plant is probably not R. brandisii, by various morphological differences. However, the true identity of the plant has yet to be further confirmed.

Table 4.7. The distinguishing characters of the two geographically distinct populations of Roscoea tibetica.

Chinese populations	Bhutanese populations
1. Leaf number ≈ 2	Leaf number ≥ 3
2. Calyx longer than bract	Bract and calyx equal
3. Corolla tube long, exserted from calyx	Corolla tube short, within calyx
4. Labellum shorter than lateral petals	Labellum longer than lateral petals
5. Labellum usually divided more than half	Labellum divided less than half
6. Labellum drying dark purple or pink (in herbarium specimens)	Labellum drying purple (in herbarium specimens)
7. Labellum throat with white lines	Labellum throat without white lines
8. Lateral petal tip acute	Lateral petal tip obtuse
9. Appendage tip obtuse	Appendage tip pointed
10. Stigma with long hairs at tip	Stigma with short hairs at tip

4.5.7 MORPHOLOGICAL DISCUSSION

4.5.7.1 MORPHOLOGY AS A SOURCE OF PHYLOGENETIC INFORMATION

The morphological characters treated here were mostly hard characters or qualitative ones. It has been suggested that only such characters should be used to discern the phylogeny of taxa (Bateman, 1999). In addition, some other characters that were useful in the identification of the species were included in the study, such as the relative length of the bract and the calyx.

Although the morphological analyses of Roscoea species performed rather well in terms of CI, RI and RC values $(\mathrm{CI}=0.446, \mathrm{RI}=0.586, \mathrm{RC}=0.261$ in Mor. 17 and CI $=0.403, \mathrm{RI}=0.596, \mathrm{RC}=0.244$ in Mor.20), the molécular analyses of the same taxa were better fitted with their resulting trees as indicated by the same descriptive statistics with higher values $(\mathrm{CI}=0.753, \mathrm{RI}=0.725, \mathrm{RC}=0.547$ in ITS 17 and $\mathrm{CI}=0.801, \mathrm{RI}=$ $0.785, \mathrm{RC}=0.629$ in ITS20). The resolution of the strict consensus tree of the morphological analysis was also less than that of the molecular analysis. It can be seen that there are more homoplasies in morphological data than in molecular data, resulting in more discrepancy in each morphological trait in the best trees. This might be explained by environmental factors which play a crucial role in plants. Plant morphological plasticity is well known and thought to have occurred within a species. Adding more morphological characters, particularly continuously varying ones may increase the resolution of the phylogenetic tree, yet it may also reduce the CI, RI and RC values of the tree because of the added homoplasies.

The character coding of morphological data in a cladistic study is also problematic. There is no real objective means for delimitation of morphological data. For qualitative and non-overlapping characters, it is rather straightforward to put them into discrete character states, yet the polarity of the character states may need more explanation. Clear biological explanation of morphological states can help investigators
to study the evolution of characters. It becomes more complicated when quantitative or continuously varying characters are employed in cladistic analysis, including some socalled qualitative characters such as leaf form and dorsal petal form. These so-called characters are based on a quantitative phenomenological base filtered through the reified semantic discontinuities of botanical terminology (Stevens, 1991). Thus, they face the same problem as continuously varying characters. There are several methods for delimiting these continuously varying characters into states, but all are subject to criticism, based on the methods and statistics used, and the presentation of these characters to investigators (Gift and Stevens, 1997). Nonetheless, the situation is not totally hopeless in using morphology in cladistic analysis. Gift and Stevens (1997) suggested that all measurements and the variation of each character should be presented as well as a character coding table. This will help justification for the use and the delimitation of the characters. It should also demonstrate whether the study suffers from sampling error or not.

4.5.7.2 SIMULTANEOUS ANALYSIS

The consensus trees of both the morphological and molecular analyses (Mor. 17 and ITS17) showed no real discrepancy. The morphology just could not identify the Himalayan clade as in the molecular data. In both strict consensus trees, two of the members of the Chinese clade identified by the analysis of ITS20 were left out. This indicated less informative sites in the data matrices. The strict consensus tree of Mor. 17 also had less credence in terms of bootstrap values, in comparison to the tree of ITS17. However, they both grouped the five terminal species of the Chinese clade.

The combined analysis of both morphology and ITS of the data sets gave twenty six equally most parsimonious trees. The consensus tree (Figure 4.10) was less resolved than that of the consensus tree of ITS20 analysis. It did not recognise the two subclades, i.e. the Himalayan and the Chinese clades in Roscoea, though the 59 bootstrap value of the Chinese clade was retrieved. This suggested that among the twenty-six equally most
parsimonious trees, the topologies within were highly discordant. The CI, RI and RC of the combined analysis were less than those of the molecular analysis alone (ITS17) and more trees were generated. The results showed that adding the morphological characters into the molecular data increased homoplasies in the most parsimonious trees, and reduced resolution of the phylogeny.

4.5.7.3 MORPHOLOGICAL EVOLUTION AS SEEN BY MOLECULAR TREE

The morphological data set was analysed according to the RC weighted ITS20 tree by backbone constraint option in PAUP (Con.20). The three equally most parsimonious trees were seventy-seven steps which were fifteen steps longer than the resulting trees of the morphological analysis alone. It implied that molecular data detected more changes in the morphological evolutionary history of the genus. A summary of descriptive statistics of morphological characters is given in Table 4.8. Figure 4.13 (character one to seventeen) shows morphological changes in the phylogeny of Roscoea. Based on the core topology of Roscoea's phylogenetic relationships, the following morphological discussion was focused at the division of the Chinese and the Himalayan clades.

From Figure 4.13, Character one, it was observed that there was a trend in reducing of the number of bladeless sheathing leaf in Roscoea. Terminal taxa in the Himalayan clade had only a few sheathing leaves (0-2), with exception in R. tumjensis and R. bhutanica. Only R. scillifolia in the Chinese clade had a few sheathing leaves. Character five, leaf bases, is one of the most distinguishable characters among species in Roscoea. Nearly all species in the Himalayan clade had either first leaf base auriculate or all leaves base auriculate, with the exception of leaves base shortly petiolate in R. nepalensis and decurrent in R. capitata. In the Chinese clade, the majority of species had decurrent leaf bases while R. tibetica and R. australis showed slightly auriculate leaf bases and R. debilis had slightly petiolate leaf bases. Character six, only R. capitata had showy pedunculate inflorescence in the Himalayan clade whereas three species in the

Chinese clade possessed the character (R. schneideriana, R. scillifolia and R. cautleoides). Character eight, the flowers of the members of the Himalayan clade all seem to open one after another in succession whereas in the Chinese clade, five species at the terminal taxa showed a simultaneous flowering pattern of a few flowers to many flowers. Character fifteen, all the species in the Chinese clade had asymmetrically obovate or elliptic staminode. This character in the Himalayan clade was variable among species with no discernible trend. Character sixteen, most of the species in the Himalayan clade had anther appendages at right angle to the thecae. Two species, R. alpina and R. nepalensis, however, had very small appendages or unnoticeable and they were in line with the thecae $\left(180^{\circ}\right)$. In the Chinese species, they were mostly placed more or less at the obtuse angle to the thecae. Character seventeen, the tip of the appendages was pointed or tapering toward the end in the Himalayan species whereas it was rather obtuse in the Chinese species, but with one extra form in R. schneideriana whose appendages tip was globular.

For other morphological characters that were not included in the analyses, there were some useful characters for the identification of the species. Colour of flowers as discussed earlier, was difficult to put them all meaningfully in discrete character states, though colour yellow was only found at three terminal species in the Chinese clade (R. cautleoides, R. forrestii and R. humeana). The majority of colour was purple with different shade variation while white and pink were less found forms. Hairiness of any parts of the plant was found not a consistent character in general, so it was not possibleto assign a character state to all species. It was, however, useful to confirm some species identification, such as R. capitata, R. ganeshensis and R. tumjensis. Despite the measurement of the plant was a wealthy source of information and was used indispensably in plant systematics, it was not readily useable and subject to justification in the cladistic analysis of morphology.

A more detailed study of the morphology of Roscoea may yield many more characters that are suitable to use in the cladistic analysis. In addition, continuously
varying characters may be included in the study. This will give a comparison opportunity of how each data, i.e. molecular data, qualitative morphological characters and all morphological characters, perform. The more the well-studied morphological characters are used in the analysis, the better may be the resolution of the phylogenetic tree of the genus. The delimitation of the morphological characters may also be improved.

Table 4.8 shows the statistics of morphological characters on the molecular tree (Figure 4.13).

Character	Consistency Index (CI)	Retention Index (RI)	Rescaled Consistency Index (RC)	Homoplasy Index (HI)
1. Sheathing leaf number	0.33	0.66	0.22	0.66
2. Leaf number	0.25	0.40	0.10	0.75
3. Leaf form	0.25	0.14	0.03	0.75
4. Leaves forming a tuft or rosette	0.16	0.37	0.06	0.83
5. Leaves base	0.37	0.44	0.16	0.62
6. Peduncle of Inflorescence	0.20	0.00	0.00	0.80
7. Flowering precociously	0.50	0.00	0.00	0.50
8. Number of flowers	0.25	0.40	0.10	0.75
9. Bract length cf. calyx length	0.25	0.40	0.10	0.75
10. Bract tip	0.50	0.50	0.25	0.50
11. Lowest bract tubular	0.25	0.57	0.14	0.75
12. Dorsal petal form	0.33	0.33	0.11	0.66
13. Labellum deflex	0.20	0.20	0.04	0.80
14. Labellum claw	0.33	0.33	0.11	0.66
15. Staminode form	0.40	0.50	0.20	0.60
16. Appendages angle	0.50	0.71	0.35	0.50
17. Appendages tip	1.00	1.00	1.00	0.00

Figure 4.13 shows morphological changes in Roscoea. See 'Roscoea character coding' section in the text for character description and states, and Table 4.8 for a summary of the statistics.

CHAPTER FIVE: TAXONOMIC STUDY OF ROSCOEA

(Materials in this chapter have been published in 'Ngamriabsakul, C. and Newman, M.F. (2000) A new species of Roscoea Smith (Zingiberaceae) from Bhutan and Southern Tibet. Edinburgh Journal of Botany, 57, 271-278.')

5.1 ABSTRACT

A new species of Roscoea from Bhutan and South Tibet, R. bhutanica Ngamriab., formerly included in R. tibetica Batalin, is described and a new key to all species of Roscoea is provided. While studying the phylogeny of Roscoea, I discovered that there is a correspondence between phylogeny and biogeography (Ngamriabsakul et al., 2000). There are two distinct areas of distribution in Roscoea, namely the Himalaya and China. Only R. tibetica has been recorded in both areas. Cowley (1982) indicated that this species was very variable and suggested that it might be divided. I now propose to name a new species, R. bhutanica, based on observation of living and herbarium material at the Royal Botanic Garden Edinburgh (RBGE) and a molecular systematic study. A morphological table comparing R. tibetica with R. bhutanica is given, along with the ITS sequences of R. tibetica, R. bhutanica and R. auriculata. The identification key to Roscoea species largely follows our phylogenetic tree (Ngamriabsakul et al., 2000).

5.2 INTRODUCTION

The name of the genus Roscoea first appeared in taxonomic literature in 1804. J.E.Smith (Smith, 1804) described Roscoea purpurea (Figure 5.1), a new species of a new genus, commemorating William Roscoe (1753-1831), one of the founders of Liverpool Botanic Garden who had a keen interest in the Zingiberales and was known to have had several collections in cultivation. William Roscoe's authoritative interest in the Zingiberales can be seen in his publication 'Monandrian Plants' which contains 112 coloured illustrations of Zingiberaceae, Cannaceae and

Marantaceae (Cullen, 1973). Later on, there were many additional collections and new names published in the genus expanding through the region (see Cowley, 1982), but it was not until 1904 that K. Schumann thoroughly revised Roscoea, as a part of his monumental monograph of the whole family. Schumann's account written for Das Pflanzenreich and based mainly on herbarium investigation (Burtt, 1972, p. 155; Cowley, 1997b, p. 3) recognised 13 species of Roscoea (Schumann, 1904). The difficulties encountered when trying to identify dried specimens of the Zingiberaceae are well known. J.M. Cowan (Cowan, 1938) mentioned these difficulties in Roscoea, "the species are difficult to delineate and the criteria used to distinguish them are quite unreliable".

Therefore, in the most important recent work on Roscoea, Cowley (1982) tried to employ as much living material as possible. Cowley (1982), however, underlined that it is still desirable that a more detailed study of this genus including fieldwork be carried out. Cowley (1982) recognised 17 . species and 2 varieties. The number of species has been added to 19 species in two later publications: R. ganeshensis (Cowley and Baker, 1996), R. bhutanica (Ngamriabsakul and Newman, 2000) (Table 5.1).

A new species from Kunming (Roscoea kunmingensis) (Tong, 1992) which is closely related to R. praecox, has been described in a Chinese publication. This species is smaller in size than R. praecox and has smaller bracts and labellum.

Figure 5.1. The first Roscoea to be given a name, R. purpurea.

Table 5.1 shows altitude and flowering time of Roscoea spp. (Cowley, 1982; Cowley and Baker, 1996; Ngamriabsakul and Newman, 2000).

Species	Altitude (metres above sea level)	Flowering Time
1. R. alpina Royle	$2130-4270$	May-August
2. R. auriculata K.Schum.	$2130-4880$	May-September
3. R. australis Cowley	$2130-2820$	May-July
4. R. bhutanica Ngamriab.	$2130-3510$	May-August
5. R. brandisii (Baker) K.Schum.	$1520-3050$	July-August
6. R. capitata Smith	$1200-2600$	June-September
7. R. cautleoides Gagnep.	$2130-3350$	May-August
8. R. debilis Gagnep.	$1670-2440$	June-August
9. R. forrestii Cowley	$2000-3350$	May-July
10. R. ganeshensis Cowley \& W.J.Baker.	1900	August
11. R. humeana Balf.f. \& W.W.Sm.	$2900-3800$	May-July
12. R. nepalensis Cowley	$2240-3050$	June-July
13. R. praecox K.Schum.	$1520-2300$	April-June
14. R. purpurea Smith	$1520-3100$	June-September
15. R. schneideriana (Loes.) Cowley	$2600-3350$	July-August
16. R. scillifolia (Gagnep.) Cowley	$2740-3350$	June-August
17. R. tibetica Batalin	$2130-4270$	May-August
18. R. tumjensis Cowley	$2740-3050$	May-July
19. R. wardii Cowley	$2240-3960$	June-August

"Roscoea kunmingensis S.Q. Tong, sp. nov.
Species R. praecox K. Schum. affinis, sed flore minutiore, labello $1.6-2.1 \mathrm{~cm}$ longo, $1-1.5 \mathrm{~cm}$ lato, profundo-bilobo, bracteis brevioribus, $5-7 \mathrm{~mm}$ longis, staminodiis lateralibus anguste obovato-cuneatis differt"

Because of the wide range of variation in a species, Cowley (1996) stated that one has to be somewhat cautious when studying this genus and judgement on the validity of new species has to be reserved until good specimens can be studied. There is a report, 'Notes on the Zingiberaceae for the Flora of China' (Wu, 1997), confirming the high variation in a species from China. Wu (1997) sank two new species of Roscoea, namely Roscoea pubescens Z.Y. Zhu under Roscoea cautleoides var. pubescens and Roscoea sichuanensis Miau under Roscoea humeana on the grounds that one only has slightly different morphological characters (pubescent sheaths, abaxial leaf surfaces and slightly longer fruit) and the other one is indistinguishable. Nonetheless, in Flora of China, it seems that Roscoea kunmingensis is now accepted as a distinct species (Wu and Larsen, 2000). In this study, because of lack of materials, it is not possible to include it.

5.3 A NEW SPECIES OF ROSCOEA FROM BHUTAN AND SOUTH TIBET

5.3.1 VARIATION IN MATERIAL PREVIOUSLY IDENTIFIED AS ROSCOEA TIBETICA: EVIDENCE FOR SEPARATION OF EASTERN AND WESTERN POPULATIONS

It is evident that R. tibetica is very variable. Cowley (1982) wrote, "there is also a very wide range of variation within this species which needs further study and may reveal the need to divide the taxon into subspecies". A later study of Roscoea (Ngamriabsakul et al., 2000) noted the significant disjunct distribution of materials identified as R. tibetica across the 'Brahmaputra gap' (Figure 5.2), and the morphological differences between eastern and western populations. There is one living population from Bhutan identified as R. tibetica in the Royal Botanic Garden

Edinburgh. This Bhutanese plant was grown from seed collected by Ian Sinclair and David Long on their expedition to Bhutan in 1984 (accession number RBGE 19841747). Molecular phylogenetic analysis of ITS sequences of Roscoea (Ngamriabsakul et al., 2000), revealed two clades, the Himalayan clade and the Chinese clade. R. tibetica from China was placed within the Chinese clade, but R. tibetica from Bhutan was not sequenced. The Bhutanese material has now been sequenced and when this is added to the previous phylogenetic analysis, it is found to be nested in the Himalayan clade. All this evidence taken together (ITS sequence, distribution range and morphology) persuades me that this plant from Bhutan is a new taxon. The ITS sequence of the Bhutanese material, now called R. bhutanica, which is more similar to sequences from species in the Himalayan clade than to those from species in the Chinese clade, is shown in Figure 5.3 along with R. tibetica (Chinese clade) and R. auriculata (Himalayan clade) for comparison.

5.3.2 NEW SPECIES

Roscoea bhutanica Ngamriab., sp. nov. Figure 5.4.

R. tibeticae Batalini affinis sed floribus generaliter majoribus, tubo corollae vix exserto, staminodiis spatulatis et appendicibus acutis ab thecis antherarum angulo recto divergentibus.

Type: Bhutan: Bumthang Dist., Bumtang Chu, Byakar, wooded valley above Lami Gompa, $27^{\circ} 33^{\prime} \mathrm{N}, 90^{\circ} 42^{\prime} \mathrm{E}$, alt. $3050 \mathrm{~m}, 12$ vi 1979 , Grierson \& Long 1826 (holo. E)

Plants $8-14 \mathrm{~cm}$ tall. Roots tuberous, oblong-fusiform. Sheathing leaves 2-4, apex obtuse. Leaf blades usually 2-4 (-6) at flowering time, lanceolate-ovate to oblong, slightly auriculate, $4-21 \times 1-4.5 \mathrm{~cm}$, glabrous, crowded together at the base. Inflorescence enclosed in leaf sheaths. Flowers opening just above leaves tuft, purple, one open at a time. Bracts $4.5-8 \times 1-1.6 \mathrm{~cm}$, oblong to spathulate, acute. Calyx $5-6.5 \mathrm{~cm}$, apex more or less equal to bract, bidentate, teeth $1-3(-9) \mathrm{mm}$ long, split by $1-1.5 \mathrm{~cm}$. Corolla tube $5-6.5 \mathrm{~cm}$ long, usually longer than calyx by up to 1 cm , rarely equal to or shorter than it. Dorsal petal narrowly oblanceolate, 2.3-2.6×
$1.1-1.3 \mathrm{~cm}$, apiculate. Lateral petals linear-oblong, $2.4-2.8 \times 0.4-0.6 \mathrm{~cm}$, obtuse.
Labellum slightly deflexed, $2.5-3.2 \times 1.6-2 \mathrm{~cm}$, obovate, lobed less than $1 / 2$ its length, without white lines at claw. Lateral staminodes obliquely spathulate, $1.6-1.9 \times$ $0.5-0.6 \mathrm{~cm}$. Anther white, thecae $6-7 \mathrm{~mm}$ long, at right angles to connective elongation and pointed appendages. Ovary $1-1.7 \times 0.3 \mathrm{~cm}$. Epigynous glands $4-5 \mathrm{~mm}$. Style pinkish-white. Stigma white. Seed aril shallowly lacerate.

OTHER SPECIMENS SEEN

Bhutan, cultivated material: RBGE accession number 19841747, originating from Bhutan, Thimphu Dist., Dechhenphu, N of Thimphu. $27^{\circ} 32^{\prime} \mathrm{N}, 89^{\circ} 38^{\prime} \mathrm{E}$. In cleared Pinus wallichiana forest amongst Artemisia, alt. 2480m, 5 ix 1984, Sinclair \& Long 4829.

Bhutan, herbarium specimens: Ha Dist.: Damthang, Ha Valley, alt. c. 3050m, 2 vi 1933, Ludlow, Sherriff 50 (BM). Thimphu Dist.: 6 km N of Thimphu Dzong, alt. 2450m, 9 vii 1975, Grierson \& Long 116 (E); Dotena Chu, alt. c. 3050m, 27 v 1949, Ludlow, Sherriff \& Hicks 16377 (E, BM); Pumo La, alt. c. 3350m, 8 vii 1938, Gould 925 (K); Tsalimaphe, alt. c. 2440m, 8 vii 1938, Gould 912 (K); Tsalimaphe, alt. c. $2440 \mathrm{~m}, 28$ v 1938, Gould 251 (K); Phajudin, alt. c. 2740m, 13 viii 1914, Cooper 2526 (E, BM); Zado La, alt. c. 2740m, 29 vii 1914, Cooper 3252 (E, BM); Tashichu, alt. c. $2380 \mathrm{~m}, 12$ vii 1914, Cooper 1512 (E); Chapcha, alt. c. $2130 \mathrm{~m}, 6$ vii 1914, Cooper 1300 (E, BM). Punakha Dist.: Kotaka, Wangdi Phodrang, alt. c. 2590m, 24 v 1966, Bowes-Lyon 3244 (BM); Mara Chu Valley, alt. c. 2440-3050m, 28 v 1937, Ludlow, Sherriff 3123 (BM). Tongsa Dist.: Chendebi, alt. c. 2290m, 2 vi 1938, Gould 356 (K); Bumthang Dist.: Takhung, Bumthang Tang, alt. c. $3050 \mathrm{~m}, 20 \mathrm{v} 1949$, Ludlow, Sherriff \& Hicks 18911 (BM).
S. Tibet, herbarium specimens: Kyimpu (Chayul to Charwe), alt. c. $3510 \mathrm{~m}, 3$ vii 1936, Ludlow, Sherriff 2275 (BM); Chumbi, Ta-ssi-cheu-doow, 16 vi 1884, King's collector 454 (K); Chumbi, 26 vi 1878, Dungboo 56 (K); Chumbi, 21 vii 1877, Dungboo 4244 (K).

Figure 5.2. Distribution map of R. bhutanica and R. tibetica showing the separation in ranges of these two species over the 'Brahmaputra gap'.

Figure 5.3. ITS sequences of R. bhutanica compared with R. tibetica (Chinese Clade) and R. auriculata (Himalayan clade). Asterisks mark variable bases. The similarity between R. bhutanica and R. auriculata can be seen.

Figure 5.4. Roscoea bhutanica Ngamriab. A, habit ($\times 1 / 3$); B, roots ($\times 1 / 3$); C, inflorescence ($\times 2 / 3$); D, labellum ($\times 2$); E, staminode ($\times 2$); F, dorsal petal ($\times 2$); G, lateral petal ($\times 2$); H, stamen ($\times 3$); I, stigma ($\times 10$); J, ovary and base of style with epigynous glands ($\times 3$); K, ovary, transverse section ($\times 6$); drawn from plant in cult. RBGE 19841747 by Glenn Rodrigues.

This new species resembles both R. purpurea and R. auriculata (Himalayan clade) in floral characters. R. purpurea and R. auriculata are bigger plants with a well-developed stem, usually more than 25 cm in length, thus the leaves are not crowded together. R. bhutanica's staminodes are intermediate in colour and shape between those of R. auriculata, which are white and rather asymmetrically obovate, and those of R. purpurea, which are purple and spathulate. They are purple with a long claw, thus the proportion of staminode length to width is greater, closer to that of R. purpurea than to that of R. auriculata which has a short claw. R. bhutanica generally has smaller flowers than R. purpurea or R. auriculata. The confusion with R. tibetica (Chinese clade) in the past resulted from their superficial similarities; they are both small plants with crowded leaves at the base. In most of the herbarium specimens, R. tibetica shows only one or two small leaves (some with no leaf at all) while R. bhutanica usually shows two or three leaves at flowering time and can have up to 6 leaves. Young plants of both species with very few leaves are not easily distinguished, especially when they are pressed on herbarium sheets. Nevertheless, at a later stage of growth R. bhutanica clearly shows a distichous leaf arrangement whereas R. tibetica remains a rosette. From observations in herbaria and of living plants at RBGE, it seems that R. tibetica flowers slightly earlier and usually precociously while R. bhutanica generally starts to flower after producing several leaves. In addition, R. bhutanica can be distinguished by its bracts being equal to or longer than the calyx, shortly exserted corolla tube, narrowly elliptic dorsal petal, the labellum being large compared to the rest of the flower, usually divided for less than half its length and lacking white lines at the throat, the pointed appendages, and anther thecae at right angles to the connective elongation and appendages. Table 5.2 shows the morphological comparisons between Roscoea tibetica and Roscoea bhutanica.

Table 5.2. The distinguishing characters of Roscoea tibetica and Roscoea bhutanica

Roscoea tibetica	Roscoea bhutanica
1. Calyx longer than bract	Calyx equal to or shorter than bract
2. Corolla tube long, exserted from calyx	Corolla tube short, usually within calyx
3. Labellum shorter than lateral petals	Labellum longer than lateral petals
4. Lateral petal tip acute	Lateral petal tip obtuse
5. Appendage tip obtuse	Appendage tip pointed

5.4 AN IDENTIFICATION KEY TO ROSCOEA SPECIES

1a. Labellum longer than dorsal petal; anther appendages pointed or tapering toward tips; staminodes obliquely spathulate or circular to elliptic; thecae at right angles or in line with appendages; flowers purple, red, white never yellow; the Himalaya 2 2a. Leaves usually 2-3 (-6) at flowering time, forming a tuft; plant usually less than 20 cm high 3
3a. Staminodes circular to elliptic 4
4a. Leaves linear, first leaf slightly auriculate; bracts obtuse R. alpina
4 b. Leaves obovate, all leaves slightly petiolate; bracts acute R. nepalensis 3b. Staminodes obliquely spathulate R. bhutanica
2b. Leaves usually more than 3 at flowering time, well spread; plant usually more than 20 cm high 5
5a. Leaves auriculate throughout; bracts equal to or shorter than calyx 6
6a. Bracts exserted, equal to or slightly shorter than calyx; staminodes whiteR. auriculata
6b. Bracts hidden, much shorter than calyx; staminodes purple \quad R. tumjensis
5 b . Leaves generally not auriculate, rarely lower leaves auriculate;bracts equal to or longer than calyx7
7a. First bract tubular, soon splitting or not, bracts ciliate; calyces ciliate 8
8a. Inflorescence on exserted peduncle, capitulate; thecae at rightangles to appendages; lateral petal linear to oblong R. capitata

> 8b. Inflorescence hidden; thecae \pm in line with appendages; lateral petal elliptic
> R. ganeshensis

$$
\begin{align*}
& \text { 7b. First bract not tubular, bracts glabrous; calyces glabrous } \tag{9}\\
& \text { 9a. Leaves lanceolate to oblong-ovate; } \\
& \text { dorsal petal narrowly elliptic, length }>3 \mathrm{~cm} \\
& \begin{array}{l}
\text { 9b. Leaves linear to narrowly lanceolate; dorsal petal elliptic }
\end{array} \\
& \text { to broadly elliptic, length }<3 \mathrm{~cm}
\end{aligned} \quad \text { R. brandisii } \quad l \begin{aligned}
& \text { purea }
\end{align*}
$$

1b. Labellum mostly shorter than dorsal petal; anther appendages obtuse or globular, never really pointed; staminodes asymmetrically obovate, rhombic or elliptic; thecae at obtuse angles with appendages; flowers purple, yellow or white; southcentral
China or Burma 10
10a. Leaves bases petiolate or slightly auriculate . 11
11a. Leaves petiolate; bracts equalling calyces R. debilis
11b. Leaves auriculate; bracts shorter than calyces 12
12a. Bracts acute; dorsal petal elliptic; lowest bract not tubular \quad R. tibetica
12b. Bracts obtuse; dorsal petal obovate; lowest bract tubular R. australis
10b. Leaves bases decurrent , 13
13a. Bracts longer than calyces 14
14a. Leaves crowded together in a fan shape; inflorescence not capitulate, peduncle hidden in leaf sheaths R. schneideriana 14 b . Leaves rather evenly spaced up the stem; inflorescence capitulate,
peduncle visible
R. scillifolia 13b. Bracts shorter than or equal to calyces 15
15a. Leaf blade abaxially glaucous; flowers deep purple R. wardii
15b. Leaf not as above; flowers purple, yellow or white 16
16a. Bracts obtuse; lowest bract not tubular 1717a. Dorsal petal obovate to obcordate; bracts much shorterthan calyces R. humeana17b. Dorsal petal broadly elliptic; bracts shorter than or equalto calyces R.forrestii
16b. Bracts acute; lowest bract tubular 18

18a. Peduncle hidden; dorsal petal elliptic to narrowly elliptic
R. praecox

18b. Peduncle visible; dorsal petal obovate to obcordate
R. cautleoides

NB. Lead number 1, 8, 9 and 18 of this key reflect the phylogenetic findings.

China possesses 13 species of Roscoea, the largest number of any one country. The main distribution is in Yunnan, along with neighbouring areas including Southeast Tibet. I include also two other identification keys of Roscoea for the purpose of comparative study as appendices. The first one is taken from Flora of China (Wu and Larsen, 2000). The second one is a translation from the Chinese version (Tong, 1992).

CHAPTER SIX: CYTOLOGICAL STUDY IN ROSCOEA AND CAUTLEYA

6.1 ABSTRACT

Chromosome counts of Roscoea alpina, R. auriculata, R. purpurea and Cautleya spicata are presented. My counts of two species: R. auriculata, R. purpurea confirm the widely reported number of $2 \mathrm{n}=24$. However, I found that both R. alpina and C. spicata have a chromosome number of $2 \mathrm{n}=26$. The chromosome number, 2 n $=24$, of R. auriculata is reported for the first time. Chromosome structures of the species studied are metacentric.

6.2 INTRODUCTION

Roscoea is a small genus, distributed mainly in temperate regions, with nineteen species in a tropical plant family, Zingiberaceae (Cowley, 1982; Cowley and Baker, 1996; Ngamriabsakul and Newman, 2000). It is found along the Himalaya, from Pakistan in the west to Southwest China in the east. Molecular phylogenetic studies of the tribe Hedychieae (Searle and Hedderson, 2000; Chapter Two in this thesis) and the genus Roscoea (Ngamriabsakul et al., 2000) find that Cautleya is the sister group to Roscoea and Roscoea is monophyletic. In addition, Roscoea is further divided into two subclades, namely the Himalayan clade and the Chinese clade (Ngamriabsakul et al., 2000).

The chromosomes of Roscoea have been relatively well studied by comparison with those of other genera in the family Zingiberaceae. The first recorded chromosome count is of R. alpina (Sharma and Bhattacharyya, 1959), a widespread species along the Himalaya (Ngamriabsakul et al., 2000). The diploid number of the species is reported to be twenty-four. All the counts, up to the present are summarised in Table 6.1. In all, eight taxa (42\%), eighteen lineages are reported.

While most of the counts report $2 \mathrm{n}=24, R$. purpurea (five lineages) from the Himalaya being the only species is found to have $2 n=26$, besides one lineage of $2 n$ $=24$ (Table 6.1). An incidence of polyploidy, $2 n=48$, was also observed in an unidentified Roscoea species (Mahanty, 1970).

A recent study by West \& Cowley (1993) reports that all four Chinese Roscoea species investigated: R. cautleoides, R. debilis, R. schneideriana and R. tibetica (seven lineages) have uniform chromosome morphology and number, i.e. metacentric and $2 \mathrm{n}=24$. The sizes of the chromosomes are in the range of $1-2 \mu \mathrm{~m}$. Moreover, they mentioned that the $2 \mathrm{n}=26$ number of R. purpurea (Mahanty, 1970) may actually be a result of false impression of two of the chromosomes separated into chromatids at late metaphase. For unknown reason, Mahanty (1970) did not mention R. purpurea and the number in his discussion, though it was written $2 \mathrm{n}=26$ in the legend of R. purpurea's photograph. It is interesting to know whether other Himalayan species also have $2 \mathrm{n}=26$ populations as found in most of R. purpurea populations reported. To find out, the chromosome counts of three Himalayan Roscoea species: R. alpina, R. auriculata and R. purpurea are carried out. The count of R. auriculata is reported for the first time. The present study of Himalayan species may confirm the aberrant chromosome number and give new evidence to the systematic study of Roscoea.

6.3 MATERIALS AND METHODS

6.3.1 COLLECTION AND STORAGE OF ROOT TIPS

Root tips of three species of Roscoea from the Himalaya, namely R. alpina, R. auriculata and R. purpurea and Cautleya spicata were taken from Royal Botanic Garden Edinburgh around midday (11.30-12.30 p.m.) (see Table 6.3 for plants in this study). This time has been found to give high numbers of cells at metaphase in Zingiberaceae (Lim, 1972; Newman, 1990). The root tips were then washed with tap water a few times and once with distilled water.

Table 6.1 A summary of reported chromosome counts in Roscoea.

Species	Place of origin	Number of chromosomes		Author(s)
1. Roscoea cautleoides Gagnep.	China	$2 \mathrm{n}=24$	-	(Mahanty, 1970; Chen et al., 1987; West and Cowley, 1993)
2. Roscoea debilis Gagnep.	China	$2 \mathrm{n}=24$	-	(West and Cowley, 1993)
3. Roscoea humeana Balf. f. \& W. W. Sm.	China	$2 \mathrm{n}=24$.	-	(Mahanty, 1970; Chen et al., 1986)
4. Roscoea schneideriana (Loes.) Cowley	China	$2 \mathrm{n}=24$	-	(West and Cowley, 1993)
5. Roscoea tibetica Batalin	China	$2 \mathrm{n}=24$	-	(Chen et al., 1988; West and Cowley, 1993)
6. Roscoea alpina Royle	India, Nepal, Bhutan and China (Xizang)	$2 \mathrm{n}=24$	$\mathrm{n}=12$	(Sharma and Bhattacharyya, 1959; Malik, 1961; Mahanty, 1970)
7. Roscoea purpurea Sm. (syn. Roscoea procera Wall.)	India, Nepal and Bhutan	$2 \mathrm{n}=24$	-	(Bisson et al., 1968)
Roscoea purpurea Sm . (syn. Roscoea procera Wall.)	India, Nepal and Bhutan	$2 \mathrm{n}=26$	$\mathrm{n}=13$	$\begin{aligned} & \text { (Bhattacharyya, 1968; } \\ & \text { Mahanty, 1970; Mehra } \\ & \text { and Sachdeva, 1971, } \\ & \text { 1976, 1979) } \end{aligned}$
8. Roscoea species	-	$2 \mathrm{n}=48$	-	(Mahanty, 1970)

Table 6.2 A summary of reported chromosome counts in Cautleya.

Species	Place of origin	Number of chromosomes	Author(s)
Cautleya gracilis (Sm.) Dandy (syn. Cautleya lutea Royle)	China (Sichuan, Yunnan, Xizang), India and Nepal	$\mathrm{n}=12$	(Mehra and Sachdeva, 1979)
Cautleya gracilis (Sm.) Dandy (syn. Cautleya lutea Royle)	China (Sichuan, Yunnan, Xizang), India and Nepal	$\mathrm{n}=13$	(Mehra and Sachdeva, 1979)
Cautleya spicata (Sm.) Baker	China (Guizhou, Sichuan, Yunnan, Xizang), India, Nepal and Myanmar	$\mathrm{n}=13$	(Mehra and Sachdeva, 1971, 1976, 1979)

6.3.2 PRE-TREATMENT AND FIXATION

A pre-treatment chemical is used to increase the proportion of metaphases in the root tip meristem by inhibiting the formation of the spindle (Dyer, 1979). The root tips were treated in either 1-bromonaphthalene (MBN saturated aqueous solution, at $4^{\circ} \mathrm{C}$, for 24 hours) or 8 -hydroxyquinolene (OQ aqueous solution, 0.002 0.02 M , at $13{ }^{\circ} \mathrm{C}$, for $5-7$ hours). Pre-treatment is very important since the success rate of staining depends directly on the number of good metaphases rather than on the dyes used in the staining stage (Newman, 1988). Fixation is necessary to kill the material rapidly in such a way that the internal structures are preserved in a life-like form. In this study, the root tips were treated in Farmer's fluid for 24 hours. Dyer (1979) suggests a fixation period of 5 minutes to 24 hours. Freshly prepared Farmer's fluid (Schiff's reagent) contains 3 parts absolute ethanol and 1 part glacial acetic acid (Jong, 1997).

6.3.3 HYDROLYSIS AND STAINING

The cell wall is softened using an acid to make the cells easier to squash. The acid used in this study is 5 N HCl and the hydrolysis is for 30 minutes. Additional softening with enzymes can be employed in a later step depending on the schedule used (Jong, 1997). In this study, 4\% cellulase and pectinase is used after the staining stage at $60^{\circ} \mathrm{C}$ for 30 minutes. In this study, Feulgen which is a dye made mainly from pararosaniline, is used to stain the chromosomes. Of all staining methods employed for the study of chromosomes, the Feulgen reaction is considered to be the most effective (Sharma and Sharma, 1999). Two commonly used methods to prepare the reagent are given in Jong (1997). The dye is light sensitive and thus the staining is carried out in a dark room, for 3 hours. DNA is stained a deep magenta colour while the other cell components remain unstained.

6.3.4 SLIDE PREPARATION, SQUASH AND OBSERVATION

The root tip was cut off into a small piece and placed on a clean slide. It was macerated with 2% acetic-orcein or 2% aceto-carmine using a brass tapping rod. A number 1 coverslip was placed on the material and the material was warmed over a flame. Squashing was done by pressing the slide firmly and suddenly between sheets of blotting paper or filter paper. The edges of the coverslip were sealed immediately with rubber solution. The material may be heated again over a lamp to increase the intensity of the stain. Slides were observed under a light microscope. Slides were made permanent by a quick freeze method using liquid nitrogen (Conger and Fairchild, 1953; Jong, 1997). A block of aluminium was immersed in liquid nitrogen for equilibrating the temperature of the aluminium to that of the liquid nitrogen. The aluminium was then placed in a block of polystyrene and the slide to be frozen was stood on the cold aluminium block for two minutes. Next the coverslip was flicked off and the slide and the coverslip were both dehydrated in 95% ethanol for two minutes and 100% ethanol for two minutes. One drop of Euparal, a permanent mountant, was allowed near but not on top of the material. Slides were left to dry on a slide warming plate for a few days.

Chromosome information generally can be divided into three groups, namely chromosome number, chromosome structure and chromosome behaviour (Stace, 1989). Mitotic studies of Roscoea and Cautleya in the present investigation, only chromosome number and chromosome structure can be obtained. Whenever possible, chromosome counts are based on as many cells as can be found in the slides. However, only one population and a few individuals of each species were sampled in this study. Some workers suggest numbers of cells and individual root tips to base the counts. These include Chen (1992) who suggests counting at least 30 cells of at least 5 individuals and the number finalised should represent in more than 85% of the cells counted.

The most commonly utilised aspect of chromosome structure is the position of centromeres, i.e. the arm-length ratio of each chromosome in the genome. A
system of chromosome classification of Levan et al. (1964) based on the ratio of the lengths between the long arm and the short arm of the chromosome has been widely followed. The system recognises 5 forms of the chromosomes. They are metacentric (the ratio $=1.0-1.7$), submetacentric (1.7-3.0), subacrocentric (3.0-7.0), acrocentric (more than 7.0) and telocentric (where centromere is at the terminal).

6.4 RESULTS

Chromosome numbers of all four species were determined. The results are 2 n $=24$ in Roscoea purpurea and R. auriculata, $2 \mathrm{n}=26$ in R. alpina and Cautleya spicata. The chromosomes are mainly metacentric, with occasional submetacentrics (Figures 6.1-6.14). The size of the chromosomes ranges between 1-2 $\mu \mathrm{m}$. The pretreatment of the root tips by 1-bromonaphthalene (MBN) gives a slightly higher percentage of metaphase cells in the plants studied than 8-hydroxyquinolene (OQ): Feulgen stain gives well-stained chromosomes in this study.

Figure 6.1 Roscoea purpurea

Figure 6.2 R. purpurea

Figure 6.3 R. purpurea

Figure 6.4 R. purpurea

Figure 6.5 Roscoea alpina

Figure 6.6 R. alpina

Figure 6.7 R. alpina

Figure 6.8 R. alpina

Figure 6.9 R. auriculata

Figure 6.10 R. auriculata

Figure 6.11 R. auriculata

Figure 6.12 R. auriculata

Figure 6.13 Cautleya spicata

Figure 6.14 C. spicata

6.5 DISCUSSION

6.5.1 TIMING OF ROOT TIP COLLECTION

There are two times of day at which it is best to collect root tips. West and Cowley (1993) collected the root tips of four Chinese Roscoea species between 9 and 10 am whereas, in this study, the root tips were taken between 11.30 and 12.30 am . Both periods were found to give adequate numbers of metaphases. However, the midday period is widely followed in the field of cytology, both for Zingiberaceae (Lim, 1972; Newman, 1990) and other families (Jong, 1997). Midday is known to be at the peak of cell division in many plants and thus will yield the highest numbers of metaphases when fixed for cytological observation. The time recommended proves to be generally satisfactory in all plant families (Jong, 1997). Nonetheless, the midmorning period, 9-10 am, is preferred by Chen (1992). Lim (1972) collected root tips at midday for mitotic studies, but at 9-11 a.m. for meiotic studies of flower buds. No systematic study of the relationship of the two periods and the metaphases of root tips of Roscoea species is conducted in this study.

6.5.2 PRE-TREATMENT AND STAINING

Literature review shows that workers in cytotaxonomic studies of Zingiberaceae have used various pre-treatment and staining chemicals. Chen (1992) stated that 1-bromonapthalene (MBN) and paradichlorobenzene (PDB) are better at treating the material of Zingiberaceae plants than other chemicals. West and Cowley (1993) used MBN and obtained plenty of metaphases. The pre-treatment of the root tips by 1-bromonaphthalene (MBN) gives a slightly higher percentage of metaphase cells than 8 -hydroxyquinolene (OQ) in this study. However, 8-hydroxyquinolene (OQ) is preferred in the cytological lab of RBGE by two other workers on Curcuma species (Ardiyani, pers. comm.; Nasir, pers. comm.). Recent papers on cytological studies of Zingiber officinale (Rai et al., 1997; Das et al., 1998) and Curcuma species (Joseph et al., 1999), show that OQ and PDB are preferred for the pretreatment. In addition, there is one report of using colchicine as the pre-treatment
chemical in the study of Zingiber officinale (Dhamayanthi, 1998).

Feulgen has proved so far to be effective in staining the chromosomes of Zingiberaceae. Examples are Lim (1972), Newman (1990), West and Cowley (1993). Feulgen gives also well-stained chromosomes in this study. Chen (1992) used and recommended a derivative of basic fuchsin, carbolo fuchsin for its convenience and reliability. In other plant families, Jong (1993) for example, successfully used Feulgen to stain the chromosomes of tribe Manuleae, Scrophulariaceae. Feulgen reagent is known as the most useful stain, but perhaps also one that causes the most disappointment (Jong, 1997). However, the state of the root tips is observed to be far more important than the stain (Newman, 1988). The healthy state of root tips collected for the study is the main reason to the well-stained chromosomes observed (Newman, 1988). Other dye, such as Haematoxyline is found to stain components of the cell as well as the chromosomes in Curcuma species, thus failing to yield well distinct-coloured chromosomes from the background (Ardiyani, pers. comm.).

6.5.3 THE CHROMOSOME NUMBER

The chromosome number of individuals is sometimes found to be different to the number of the species because of factors, such as chromosome fission and misdivision of the paired chromosomes at meiosis. An example is Crepis tectorum $(2 \mathrm{n}=8)$ where in 4000 plants, 10 plants, 4 plants and 4 plants have $2 \mathrm{n}=9,10$ and 11, respectively (Navashin, 1926 as cited in Briggs and Walters, 1997). The chromosome numbers $2 \mathrm{n}=26$ of Roscoea alpina in this study and R. purpurea in other studies may be attributed to centric fission of one of a pair of the chromosomes. The event is thought to derive from centromere breakage without reunion giving rise to two telocentrics or iso-chromosomes. However, meiotic studies of the species are needed before any such statement can be confirmed. The pairing of the homologous chromosomes during meiosis will be the first evidence for any conclusion. It may be noted here that $\mathrm{n}=12$ and $\mathrm{n}=13$ populations of Cautleya gracilis show correlations with some vegetative and floral characters (Mehra and Sachdeva, 1979). Plants with $\mathrm{n}=13$ are shorter, possess smaller leaves and bracts
and have fewer flowers per spike, in comparison to plants with $\mathrm{n}=12$. However the size of the flower is almost the same in both groups. In addition, plants with $\mathrm{n}=13$ are always found at higher altitudes, $2250-2500 \mathrm{~m}$, in comparison to those with $\mathrm{n}=$ 12 that occur between 2000-2200 m. Flower colour in Roscoea populations has not been found to correlate with the chromosome information (West and Cowley, 1993).

The sister clade of Roscoea/Cautleya is a clade of Pommereschea and Rhynchanthus (Wood et al., 2000; Kress, pers. comm.; Chapter Two in this thesis). The basic chromosome number of Pommereschea is $x=11$ or $2 n=22$ (Larsen, 1973b), while that of Rhynchanthus is $x=22,2 n=44$ (Chen et al., 1987). This suggests that the basic chromosome number of the clade of Pommereschea/Rhynchanthus is $\mathrm{x}=11$. In the Roscoea/Cautleya clade, the basic chromosome number is $\mathrm{x}=12$ and 13 (see Tables 6.1-6.3). Within the context of Hedychieae evolution and its chromosomal changes, these numbers imply that the ancestor of Roscoea/Cautleya and Pommereschea/Rhynchanthus had a basic chromosome number of $x=11$, with later the addition of chromosomes in the clade of Roscoea/Cautleya. A pollen character that seems to support the relationships among the genera is the type of spine on the surface of the pollen. Pollen grains in Pommereschea and Rhynchanthus are spineless whereas pollens of Roscoea and Cautleya are long-spined (Chen, 1989).

6.5.4 THE CHROMOSOME SIZE

The chromosomes of Zingiberaceae are of small to medium size, 0.24-5.8 $\mu \mathrm{m}$, compared with those of other angiosperms where small is $\leq 2 \mu \mathrm{~m}$ and large is \geq $10 \mu \mathrm{~m}$ (Stace, 2000). Most are metacentric in shape with submetacentrics and occasional subacrocentrics (Newman, 1988). West and Cowley (1993) found that chromosomes in Roscoea are uniform by metacentric and the total length range of the chromosomes is 1-2 $\mu \mathrm{m}$. Chromosome sizes of Roscoea species in this study,1-2 $\mu \mathrm{m}$, conform to those found by West and Cowley (1993). The size of the chromosomes of Roscoea is rather small compared to those found in Kaempferia, 2.4-5.8 $\mu \mathrm{m}$, the biggest chromosomes in Hedychieae (Beltran and Kam, 1984). The
smallest chromosomes found in Hedychieae are those of Curcuma, a genus with the highest basic chromosome number, $x=21$, in Zingiberaceae. Chromosome sizes in Curcuma range between $0.24-0.99 \mu \mathrm{~m}$ in six species studied by Joseph et al. (1999).

6.5.5 ASPECTS FROM LITERATURE REVIEW

An incident of the chromosome number $2 \mathrm{n}=34$ of Cautleya spicata (Sharma and Bhattacharyya, 1959) has had quite an impact on cytotaxonomic interpretation of the family as a whole. Apart from three other reports (Mehra and Sachdeva, 1971, 1976, 1979) that all recorded $\mathrm{n}=13$ for Cautleya spicata, Chen (1989) followed the number of $2 \mathrm{n}=34$ for Cautleya spicata in his review of cytology and pollen structure of Asian Zingiberaceae. Although, Chen and his colleagues had published a series of chromosome counts of Zingiberaceae in six papers (Chen et al., 1982; Chen et al., 1984; Chen et al., 1986; Chen et al., 1988; Chen et al., 1987; Chen et al., 1989), Cautleya species is not one of the species counted. Mehra \& Sachdeva (1979) pointed out that the Cautleya spicata count of Sharma \& Bhattacharyya (1959) appeared to be erroneous since they recounted the plant from the same locality of Sharma \& Bhattacharyya and found the chromosome number of Cautleya spicata to be $\mathrm{n}=13$. Molecular phylogenetic studies (Searle and Hedderson, 2000; Wood et al., 2000; Chapter Two in this thesis) show that Cautleya is the sister group to Roscoea and the basic chromosome number of the clade is $x=12$ and 13. In light of the molecular phylogenetic findings, it also suggests that the basic chromosome number x = 17 appears only in Hedychium (Mukherjee, 1970; Chen et al., 1984) in the family which is confirmed to be a monophyletic group within the tribe (Wood et al., 2000).

There is also another assumption that seems to be incorrect in Chen's evolutionary interpretation paper of the chromosome numbers in Zingiberaceae (Chen, 1989). Two species of Boesenbergia, namely B. fallax (endemic to Yunnan) and B. rotunda (widely cultivated), from the three species that are found in China (with B. albomaculata, another endemic to Yunnan, Wu and Larsen, 2000) were counted with $2 \mathrm{n}=36$ (Chen et al., 1988). These numbers and few others of

Boesenbergia species counts of $2 \mathrm{n}=20$ available up to the time persuaded Chen to deduce that the basic chromosome number of Boesenbergia is $x=9$ while $x=10$ species are the minority and perhaps derived by aneuploidy of $x=9$. New cytological studies of Boesenbergia, particularly those of Poulsen (1993) and Eksomtramage et al. (1996) with new numbers of $2 \mathrm{n}=24$ and 36 , indicate that the likely basic chromosome number of Chinese Boesenbergia is $x=12$ and not $x=9$. The $2 n=36$ Boesenbergia species are probably triploids. The basic chromosome numbers of $x=$ 10 and $\mathrm{x}=12$ are supported in the molecular phylogenetic studies of the Hedychieae in Chapter Two. Two distinct lineages of Boesenbergia species are revealed in accordance with the basic chromosome numbers, i.e. $x=10$ and $x=12$. Only mitotic events were investigated in the two Chinese Boesenbergia species (Chen et al., 1988). It is important that the meiotic behaviour study of the two species and other Boesenbergia species of $2 \mathrm{n}=36$ is conducted for further information, particularly for the ploidy level.

Table 6.3 Roscoea and Cautleya species in this cytotaxonomic study.

Species	Place of origin	RBGE accession number	Number of chromosomes
Roscoea alpina Royle	India (Himachal Pradesh)	19861108	$2 \mathrm{n}=26$
R. auriculata K. Schum.	Not known	19699652	$2 \mathrm{n}=24$
R. purpurea Sm.	Nepal (Sing Gompa)	19962515	$2 \mathrm{n}=24$
Cautleya spicata (Sm.) Baker	Not known	19590760	$2 \mathrm{n}=26$

CHAPTER SEVEN: GENERAL DISCUSSION AND CONCLUSIONS

It is always challenging for man to understand the variation of biological diversity. Not only is it for his own curiosity as an entity in the biological world, but also the knowledge of the all living beings is fundamental for his own survival. Advances of the theory and practice in cladistics, molecular techniques and computer technology enable systematists to have much more rigorous and accountable tools for studying biological variation and producing rigorous hypotheses of the relationships of plants. However, differences in the phylogeny or branching patterns uncovered by different sources or methods, remind the reader that we do not know the true evolutionary history of the plants. We were not there to see speciation or extinction. The best we can do is to have the closest tree to the real tree based on available data.

This thesis presents an attempt to understand the evolution of the Zingiberaceae, by using mainly two sources of phylogenetic information, i.e. molecules and morphology. The internal transcribed spacers of nuclear ribosomal DNA (ITS) have proved to be informative and useful in the reconstruction of the phylogeny of the Zingiberaceae plants, both at generic and specific levels as shown in the Hedychieae study (Chapter Two) and the Roscoea study (Chapter Four). Although the nucleotide substitution rate in $\operatorname{trnL} \mathrm{L}$ F is low compared to that in ITS sequences, it gives some phylogenetic information for the Hedychieae study confirming parts of the ITS trees.

Two main subclades can be recognised in the tribe Hedychieae, namely the 'Hedychium clade' and the 'Curcuma clade'. Two genera are found to be paraphyletic, namely Boesenbergia and Curcuma. It is also clearly shown that the tribe Zingibereae should be combined with the tribe Hedychieae, reducing the numbers of tribes in the family to three, namely Hedychieae, Globbeae and Alpinieae. Since the type genus of the family, Zingiber, is included in what is
currently called tribe Hedychieae, the tribe must be renamed to Zingibereae according to article 19.4 of the International Code of Botanical Nomenclature (Greuter et al., 2000). The proper tribal placement of Pommereschea and Rhynchanthus should be made clearly in the Hedychieae. While the traditional classification of the family as comprising the three tribes, is likely to be a reflection of the family evolutionary history, an explicit adjusted circumscription of the three tribes should be laid out synthesising from all the available data. A new classification of Zingiberaceae based on this study and others is presented in Table 7.1.

Lateral staminodes, as suggested by the molecular analyses in this study and others (Searle and Hedderson, 2000; Wilf et al., 2000; Wood et al., 2000), appear to be present and fused with the labellum first in Siphonochilus, as found also in members of the Costaceae. It is likely that this character, a fusion of lateral staminodes with the labellum is plesiomorphic in the family Zingiberaceae. Nonetheless, the labellum in Costaceae is composed of all five staminodes (two from the inner whorl and all three from the outer whorl) different from that of the Zingiberaceae. Then within the Alpinieae they are wanting or reduced to very small tooth-like appendages (but petaloid and fused with the labellum in Tamijia). Note that the homology interpretation of the tooth-like appendages in Alpinieae is not conclusive among the members of the family (Burtt, 1972). In Globbeae, they are again petaloid with a notable position of the staminodes in the lower part of the filament in Mantisia. Nearly all the members of Hedychieae possess petaloid and free staminodes, except Pommereschea, Rhynchanthus and Stadiochilus without the staminodes. Boesenbergia longiflora which was once held to be a distinct genus, Curcumorpha, has again the fused staminodes with the labellum (Larsen, 1997) and so has the so-called tribe Zingibereae or Zingiber species.

Although, the ideal morphological synapomorphies of the tribes readily observable in the field are only a few, if any, the correlated characters consideration of a given species seems to be the best possible measurement for the moment. The classification of Zingiberaceae seems never to be adequate basing on a few morphological characters. Besides, as more and more molecular data have become
available for the phylogenetic investigation, the result is making it clear that the convergence and reversal evolution of many morphological characters in the family is more likely to occur than previously thought.

The relationships among Boesenbergia species may be better resolved with additional molecular characters and/or more samples of the species. Ideally, the species of Caulokaempferia are also highly in need for the investigation. But what is clearly shown here is that Boesenbergia is paraphyletic in respect to Caulokaempferia. The phylogenetic relationships revealed here and the distribution ranges of Pyrgophyllum and Camptandra, Boesenbergia and Caulokaempferia suggest that the progenitor of these genera may have the ancient, wider and connected distribution range. But it was later restricted to certain areas, i.e. mountain ranges that act as a reservoir for the species.

Smithatris may be the true sister group of the Curcuma complex that manifests the paraphyly of Curcuma. A detailed molecular phylogenetic study of the members in the complex is badly needed in order to discern and confirm the relationships found in this thesis. All genera in the complex, namely Curcuma, Hitchenia, Paracautleya, Smithatris and Stahlianthus may be recognised under a single genus Curcuma. This proposal could be supported by more studies on both molecules and morphology.

There are two types of anther appendages in the Hedychieae. One is derived from the joint of the anther and the filament, as found in basifixed versatile anther of Cautleya/Roscoea and Camptandra. The other is derived from the base of the thecae of the anther, as found in dorsifixed versatile anther of Curcuma and Paracautleya.

Wood (1991, as cited in Wood et al., 2000) hypothesised that the origin of the family Zingiberaceae may have been in West Gondwanaland before the effective separation of South America and Africa. The progenitor of the plants was then rafted on the Indian subcontinent to Asia. The hypothesis seems to fit well with all molecular results available to date, i.e. with the basal placement of Siphonochilus in
the phylogenetic tree of the family and Alpinieae as the only tribe whose members are pantropical. On the other hand, Globbeae and Hedychieae are confined to Asia. In addition, the preponderance of the members of Costaceae, the sister family of Zingiberaceae, in neotropics and Africa supports the hypothesis.

The molecular phylogenetic trees obtained not only suggest the likely pathways of evolution or phylogeny of the plants studied, but also give us a clue about the origin of some of the well known spices in Zingiberaceae such as Curcuma longa or turmeric and Zingiber officinale or ginger. The branching patterns of the trees in Chapter Two coupled with the distribution ranges of the species and the genus, suggest that the origin place of Curcuma longa lies roughly in the Indian subcontinent while the place of origin of Zingiber officinale is confined within Indochina, highly possibly in Thailand. The clue for the origin of the true ginger comes from the fact that Cornukaempferia, a newly found genus (Mood and Larsen, 1997, 1999), is the sister group of Zingiber. The distribution ranges of the two species of Cornukaempferia lie within North and Northeast Thailand. Although Zingiber has become widespread in tropical Asia, it suggests that Zingiber may have originated in the area. As Curcuma longa or turmeric is a species placed in Curcuma subgenus Curcuma that is the sister clade of ParacautleyalHitchenia, it suggests that the clade of Curcuma subgenus Curcuma may have originated in peninsular India where Paracautleya is endemic to the Western Ghats in Kerala and Hitchenia caulina is endemic to the next state, Karnataka (Jain and Prakash, 1995). Two other species of Hitchenia, namely H. careyana and H. glauca have wider distribution ranges that are as far as Himalayan India and Burma (Kress, 2000). On the other hand, species in the clade of Stahlianthus/Curcuma subgenus Hitcheniopsis are well presented in North and Northeast Thailand and adjacent countries. These patterns of relationships and the distribution records suggest that the 'Curcuma clade' may have originated in continental Thailand and later two distinct lineages appeared. One is the diversification of species in more or less the same area (Stahlianthus/Curcuma subgenus Hitcheniopsis). The other is well adapted in the Indian subcontinent (Paracautleya/Hitchenia/Curcuma subgenus Curcuma). The division of these two subclades is coincident with the species distributions of the two subclades of a
monophyletic genus Roscoea, namely: the 'Himalayan clade' and the 'Chinese clade' that are separated at Northeast India.

These line of evidence suggest that the likely place of origin of the Hedychieae may have been Northeast India and that the tribe later diversified in both directions, i.e. eastward to Southeast Asia and westward to peninsular India. The hypothesis is also supported by the high endemism and rich species diversity of Hedychium, an early-branched genus in one of the two subclades in the tribe phylogeny (Chapter Two), in Northeast India (Jain and Prakash, 1995).

The basic chromosome number $\mathrm{x}=11$ seems to be the first shared number of tribe Hedychieae. In the 'Curcuma clade', the number of $x=21$ is thought to derive from $\mathrm{x}=11$ by either $11 \times 2-1$ or $11+10$. The numbers in the clade of Stahlianthus /Curcuma subgenus Hitcheniopsis appear to be variable whereas it is rather constant at $\mathrm{x}=21$ within the clade of Hitchenia/Paracautleya/Curcuma subgenus Curcuma. In the 'Hedychium clade', the changes of the basic chromosome number appear to be exclusively by aneuploidy of $x=11$ either losing $(x=10)$ or adding up $(x=12,13$, 14 and 17) the chromosomes. In spite of the numerous chromosome studies in Zingiberaceae, some genera are still not yet counted, for instance, Camptandra, Cornukaempferia, Paracautleya, Smithatris, Haniffia, Stadiochilus and Nanochilus. The missing numbers of these genera are very important evidence to the study of the evolutionary history of tribe Hedychieae and the family as a whole. In addition, comparative cytological study in Boesenbergia and Caulokaempferia may shed light on the evolution of the two genera.

Table 7.1. A new classification of Zingiberaceae based on this study and others (Searle and Hedderson, 2000; Wood et al., 2000; Kress, pers. comm.). (see also Table 1.6)

Alpinieae A. Rich. (21 genera, ~ 788 species)	Globbeae Meisn. (4 genera, ~ 110 species)	Zingibereae Meisn. (24 genera, ~395 species)
Aframomum K. Schum. (50) Alpinia Roxb. (227) Amomum Roxb. (150) Aulotandra Gagnep. (5) Burbidgea Hook.f. (8) Cyphostigma Benth. (1) Elettaria Maton (7) Elettariopsis Baker (10) Etlingera Giseke (70) Geocharis (K. Schum.) Ridl. (7) Geostachys (Baker) Ridl. (18) Hornstedtia Retz. (50) Leptosolena C. Presl (1) Plagiostachys Ridl. (20) Pleuranthodium (K. Schum.) R. M. Sm. (25) Renealmia L.f. (75) Riedelia Oliv. (60) Siamanthus K. Larsen \& J. Mood (1) Siliquamomum Baill. (1) Tamijia S. Sakai \& Nagam. (1) Vanoverbergia Merr. (1)	Gagnepainia K. Schum. (3) Globba L. (100) Hemiorchis Kurz (3) Mantisia Sims (4).	Boesenbergia Kuntze (60) Camptandra Ridl. (4) Caulokaempferia K. Larsen (10) Cautleya (Benth.) Hook. f. (2) Cornukaempferia J. Mood \& K. Larsen (2) Curcuma L. (50) Distichochlamys M. F. Newman (1) Haniffia Holttum (2) Haplochorema K. Schum. (3-4) Hedychium J. König (50) Hitchenia Wall. (3) Kaempferia L. (40) Nanochilus K. Schum. (1) Paracautleya R. M. Sm. (1) Parakaempferia A. S. Rao \& D. M. Verma (1) Pommereschea Wittm. (2) Pyrgophyllum (Gagnep.) T.-L. Wu \& Z.-Y. Chen (1) Rhynchanthus Hook. f. (6) Roscoea Sm. (19) Scaphochlamys Baker (30) Smithatris W. J. Kress \& K. Larsen (1) Stadiochilus R. M. Sm. (1) Stahlianthus Kuntze (6) Zingiber Boehm. (100)

A genus of uncertain placement:
Siphonochilus J. M. Wood \& Franks (15)

It should be borne in mind that the genes sampled in this study constitute only a minute part of the big pool of molecular information contained in the plant genome. With the completion of the sequencing project in Arabidopsis thaliana, we now know that there are 25498 genes in its genome (The Arabidopsis Genome Initiative, 2000). The ideal scenario may be that as many genes as possible be used to infer the phylogeny of the plants, preferably from all the three genomes: nuclear, chloroplast and mitochondrial. Other genes or parts of the genome that may be sampled for phylogenetic information of Zingiberaceae plants include, for example, matK (Hilu and Liang, 1997). Kress (pers. comm.) has sequenced this noncoding region in chloroplast DNA, and found that the region is informative and suitable for the study of phylogeny in Zingiberaceae at generic level. Apart from the two common sources of molecular phylogenetic information, nuclear and chloroplast DNA, to be complete with the molecules of a cell, a region in mitochondria should be included. Because of the very low rate of nucleotide substitution in mitochondrial DNA, this may take sometimes to find out which region is informative enough and suitable for phylogenetic study at specific or generic levels (Palmer, 1992b). The exceptional high rate of nucleotide substitution of nad $1 \mathrm{~b} / \mathrm{c}$ in Pelargonium, is an example that shows the usefulness of the mitochondria (Bakker et al., 2000). New genes may give more support to those clades in the molecular trees in this thesis that are only weakly supported, i.e. bootstrap value less than 75%.

Morphology, however, should not be ignored. The evidence of morphological variation in plants is always the first that we can see and appreciate. Searching for hard morphological chàracters as well as documenting all variable characters will be pivotal to the interpretation of the study of morphological evolution, whether the study is based on molecular evidence and/or morphological evidence alone. In addition, the study of the development of morphological traits or ontogeny, will be the basis for homology assessment. However, It is found that the morphological characters of Roscoea species contain too much homoplasy to be usefully analysed on their own. Nonetheless, one character, anther appendages tip, is completely congruent with the molecular phylogeny, dividing the genus into Himalayan and Chinese clades.

Distribution ranges of the species have long been used, along with morphology, to define the delimitation of the taxon. The geographical boundaries of the species are now also a crucial part of the study of their evolutionary history. The distribution patterns of the plants provide another clue of how the species are related and derived. There are various ways to incorporate biogeographical data into phylogeny (Conran, 2000). As has been shown in helping to define a new taxon, Roscoea bhutanica in Chapter Five, herbarium records are invaluable in this respect. More plant collecting in less explored areas is badly needed to fill in the gaps in the study of the evolutionary history of the group. An exploration in a new or already visited area may discover new taxa and give new evidence to the study of Zingiberaceae phylogeny. Live samples of the taxa not yet sequenced, such as Stadiochilus and Nanochilus are valuable as well. Complete collections, including leaf samples in silica gel, colour photographs of the flowers, flowers in spirit, dried pressed plants and possibly also living plants of a given taxon in Zingiberaceae is highly recommended for the collectors.

Other traditional lines of evidence, for instance, cytology, anatomy and breeding systems (including pollination biology) may be further pursued for the plants. As all these are different aspects of a single taxon, they will find no greater value than in the context of evolutionary history of the taxon. Searching for the closest phylogenetic tree of the true tree will go on for as long as we are not certain yet with the current ones. In addition, fossil records and ecological information should be sought in order to explain better the branching patterns found.

REFERENCES

Almeida, M.T. and Bisby, F.A. (1984) A simple method for establishing taxonomic characters from measurement data. Taxon, 33, 405-409.

The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796-815.

Archie, J.W. (1985) Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Zoology, 34, 326-345.

Ardiyani, M. (1997) The classification of Curcuma L.: a morphological and molecular study. M.Sc. Thesis. Institute of Cell and Molecular Biology. University of Edinburgh, Edinburgh, pp. 88.

Ashton, P.S. (1990) Thailand: biodiversity center for the tropics of Indo-Burma. Journal of Science Society of Thailand, 16, 107-116.

Bakker, F.T., Culham, A. and Gibby, M. (1999) Phylogenetics and diversification in Pelargonium. In Hollingsworth, P.M., Bateman, R.M. and Gornall, R.J. (eds.), Molecular systematics and plant evolution. Taylor and Francis Ltd., London, pp. 353-374.

Bakker, F.T., Culham, A., Pankhurst, C.E. and Gibby, M. (2000) Mitochondrial and chloroplast DNA-based phylogeny of Pelargonium (Geraniaceae). American Journal of Botany, 87, 727-734.

Baldwin, B.G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution, 1, 3-16.

Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S. and Donoghue, M.J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247-277.

Barrett, M., Donoghue, M.J. and Sober, E. (1991) Against Consensus. Systematic Zoology, 40, 486-493.

Bateman, R.M. (1996) Nonfloral homoplasy and evolutionary scenarios in living and fossil land plants. In Sanderson, M.J. and Hufford, L. (eds.), Homoplasy: the
recurrence of similarity in evolution. Academic Press, London, pp. 91-130.
Bateman, R.M. (1999) Integrating molecular and morphological evidence of evolutionary radiations. In Hollingsworth, P.M., Bateman, R.M: and Gornall, R.J. (eds.), Molecular systematics and plant evolution. Taylor and Francis Ltd., London, Vol. 57, pp. 432-471.
Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe, N.P., Speck, T. and Stein, W.E. (1998) Early evolution of land plants: Phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics, 29, 263-292.
Beaman, J.H., Beaman, R.S., Cowley, E.J. and Smith, R.M. (1998) Zingiberaceae. In Beaman, J.H. and Beaman, R.S. (eds.), The Plants of Mount Kinabalu: Gymnosperms and Non-Orchid Monocotyledons. Natural History Publications (Borneo), Kota Kinabalu, pp. 180-193.

Beltran, I.C. and Kam, Y.K. (1984) Cytotaxonomic studies in the Zingiberaceae. Notes from the Royal Botanic Garden Edinburgh, 41, 541-559.
Bentham, G. and Hooker, J.D. (1883) Genera Plantarum. L. Reeve \& Co.; Williams \& Norgate, London.

Bhattacharyya, R. (1968) Systematic status of the family Zingiberaceae. Nucleus, Supplement Volume, 39-41.
Bisson, S., Guillemet, S. and Hamel, J.L. (1968) Contribution a l'etude caryotaxonomique des Scitaminees. Memoires du Museum National d' Histoire Naturelle, Serie B, Botany, 18, 59-133.
Blume, C.L. (1827) Enumeratio Plantarum Javae et Insularum Adjacentium. J.W. van Leeuwen, Lugduni Batavorum (Leiden).

Bogler, D.J. and Simpson, B.B. (1996) Phylogeny of Agavaceae based on ITS rDNA sequence variation. American Journal of Botany, 83, 1225-1235.
Bremer, K. (1988) The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795-803.
Bremer, K. (2000) Early Cretaceous lineages of monocot flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 97, 4707-4711.

Bremer, K., Chase, M.W., Stevens, P.F., Anderberg, A.A., Backlund, A., Bremer, B.,

Briggs, B.G., Endress, P.K., Fay, M.F., Goldblatt, P., Gustafsson, M.H.G., Hoot, S.B., Judd, W.S., Kallersjo, M., Kellogg, E.A., Kron, K.A., Les, D.H., Morton, C.M., Nickrent, D.L., Olmstead, R.G., Price, R.A., Quinn, C.J., Rodman, J.E., Rudall, P.J., Savolainen, V., Soltis, D.E., Soltis, P.S., Sytsma, K.J. and Thulin, M. (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden, 85, 531-553.

Briggs, D. and Walters, S.M. (1997) Plant Variation and Evolution. Cambridge University Press, Cambridge.
Burtt, B.L. (1972) General introduction to papers on Zingiberaceac. Notes from the Royal Botanic Garden Edinburgh, 31, 155-165.

Burtt, B.L. and Olatunji, O.A. (1972) The limits of the tribe Zingibereae. Notes from the Royal Botanic Garden Edinburgh, 31, 167-169.
Burtt, B.L. and Smith, R.M. (1968) Mantisia wardii: a new Burmese species of Zingiberaceae. Notes from the Royal Botanic Garden Edinburgh, 28, 287290.

Burtt, B.L. and Smith, R.M. (1972) Tentative keys to the subfamilies, tribes and genera of Zingiberaceae. Notes from the Royal Botanic Garden Edinburgh, 31, 171-176.

Burtt, B.L. and Smith, R.M. (1983) Zingiberaceae. Flora of Ceylon, pp. 488-532.
Cantino, P.D. and de Queiroz, K. (2000) PhyloCode: a phylogenetic code of biological nomenclature. www.ohiou.edu/phylocode/.

Chappill, J.A. (1989) Quantitative characters in phylogenetic analysis. Cladistics, 5, 217-234.

Chase, M.W. and Hills, H.H. (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon, 40, 215-220.
Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedren, M., Gaut, B.S., Jansen, R.K., Kim, K.J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H., Graham, S.W.,

Barrett, S.C.H., Dayanandan, S. and Albert, V.A. (1993) Phylogenetics of seed plants - an analysis of nucleotide- sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80, 528-580.
Chase, M.W., Soltis, D.E., Soltis, P.S., Rudall, P.J., Fay, M.F., Hahn, W.H., Sullivan, S., Joseph, J., Molvray, M., Kores, P.J., Givnish, T.J., Sytsma, K.J. and Pires, J.C. (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In Wilson, K.L. and Morrison, D.A. (eds.), International conference on the comparative biology of the monocotyledons. CSIRO, Sydney, Vol. 1, pp. 3-16.
Chen, Z.-Y. (1989) Evolutionary patterns in cytology and pollen structure of Asian Zingiberaceae. In Holm-Nielsen, L.B., Nielsen, I.C. and Balsler, H. (eds.), Tropical Forest: Botanical Dynamic, Speciation and Diversity. Academic Press, Cornwall, UK, pp. 185-191.

Chen, Z.-Y. (1992) Cytology of Zingiberaceae. In Sirirugsa, P. (ed.) A training report on cytotaxonomy of Zingiberaceae and some selected plants, 23 September-22 October 1992. Department of Biology, Prince of SongklaUniversity, Hat Yai, pp. 19-29.
Chen, Z.Y., Chen, S.J. and Huang, S.F. (1982) Preliminary report of chromosome numbers on Chinese Zingiberaceae. Guihaia, 2, 153-157.
Chen, Z.Y., Chen, S.J. and Huang, S.F. (1984) A report on chromosome numbers on Chinese Zingiberaceae (2). Guihaia, 4, 13-18.
Chen, Z.Y., Chen, S.J. and Huang, S.F. (1986) A report on chromosome numbers on Chinese Zingiberaceae (3). Acta Botanica Austro Sinica, 3, 57-61.
Chen, Z.Y., Chen, S.J. and Huang, X.X. (1988) A report on chromosome numbers on Chinese Zingiberaceae (5). Guihaia, 8, 143-147.
Chen, Z.Y., Chen, S.J., Huang, X.X. and Huang, S.F. (1987) Reports on the chromosome numbers of Chinese species of Zingiberaceae (4). Guihaia, 7, 39-44.

Chen, Z.Y., Chen, S.J., Huang, X.X. and Huang, S.F. (1989) A report on chromosome numbers on Chinese Zingiberaceae (6). Guihaia, 9, 331-334.

Chen, Z.-Y. and Huang, X.-X. (1996) Cytotaxonomy of the tribe Alpinieae. In Wu, T.-L., Wu, Q.-G. and Chen, Z.-Y. (eds.), The second symposium on the family

Zingiberaceae. Zhongshan University Press, Guangzhou, China, pp. 112-121.
Conger, A.D. and Fairchild, L.M. (1953) A quick-freeze method for making smear slide permanent. Stain Technology, 28, 281-283.
Conran, J.G. (2000) Biogeographic studies in the monocotyledons: an overview of methods and literature. In Wilson, K.L. and Morrison, D.A. (eds.), International conference on the comparative biology of the monocotyledons. CSIRO, Sydney, Vol. 1, pp. 35-43.
Cowan', J.M. (1938) A review of the genus Roscoea. New Flora and Silva, 11, 17-28.
Cowley, E.J. (1982) A revision of Roscoea (Zingiberaceae). Kew Bulletin, 36, 747777.

Cowley, E.J. (1994) Roscoea schneideriana. The Kew Magazine, 11, 13-18.
Cowley, E.J. (1996) Roscoea. Bulletin of the Alpine Garden Society, 64, 239-242.
Cowley, E.J. (1997a) Roscoea alpina. Curtis's Botanical Magazine, 14, 77-81.
Cowley, E.J. (1997b) Roscoea praecox. Curtis's Botanical Magazine, 14, 2-6.
Cowley, E.J. (1998) Roscoea tumjensis. Curtis's Botanical Magazine, 15, 220-225.
Cowley, E.J. (2001) Zingiberaceae. In: The Flora of Brunei Darussalam. Royal Botanic Gardens Kew. http://www.rbgkew.org.uk/herbarium/brunei/ bclhome.htm.

Cowley, E.J. and Baker, W.J. (1994) Roscoea purpurea 'Red Gurkha'. The Kew Magazine, 11, 104-109.

Cowley, E.J. and Baker, W.J. (1996) Roscoea ganeshensis. Curtis's Botanical Magazine, 13, 8-13.

Cowley, E.J. and Wilford, R. (1998) Roscoea capitata. Curtis's Botanical Magazine, 15, 226-230.

Cowley, E.J. and Wilford, R. (2000) Roscoea humeana. Curtis's Botanical Magazine, 17, 22-28.
Cronquist, A. (1968) The evolution and classification of flowering plants. Thomas Nelson and Sons Ltd., London.

Cronquist, A. (1981) An integrated system of classification of flowering plants. Columbia University Press, New York.

Cronquist, A. (1988) The evolution and classification of flowering plants. New York Botanical Garden, New York.

Cullen, J. (1973) William Roscoe's monandrian plants of the order Scitamineae. Notes from the Royal Botanic Garden Edinburgh, 32, 417-421.
Dahlgren, R., Clifford, H.T. and Yeo, P.F. (1985) The families of the Monocotyledons. Springer-Verlag, Berlin.

Darwin, C. (1859) On the Origin of Species by Means of Natural Selection. Murray, London.

Das, A.B., Rai, S. and Das, P. (1998) Estimation of 4C DNA and karyotype analysis in ginger (Zingiber officinale Rosc.) II. Cytologia, 63, 133-139.
Davis, P.H. and Heywood, V.H. (1963) Principles of Angiosperm Taxonomy. Oliver \& Boyd Ltd., Edinburgh and London.

Dḥamayanthi, K.P.M. (1998) Comparative karyomorphology and DNA estimation studies in ginger cultivars (Zingiber officinale Rosc.). Cytologia, 63, 311-315.

Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolution. American Biology Teacher, 35, 125-129.

Donoghue, M.J., Olmstead, R.G., Smith, J.F. and Palmer, J.D. (1992) Phylogeneticrelationships of Dipsacales based on rbcL sequences. Annals of the Missouri Botanical Garden, 79, 333-345.

Donoghue, M.J. and Sanderson, M.J. (1992) The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In Soltis, P.S., Soltis, D.E. and Doyle, J.J. (eds.), Molecular Systematics of Plants. Chapman and Hall, New York, pp. 340-368.
Downie, S.R. and KatzDownie, D.S. (1996) A molecular phylogeny of Apiaceae subfamily Apioideae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany, 83, 234-251.
Doyle, J.J. (1992) Gene trees and species trees - molecular systematics as onecharacter taxonomy. Systematic Botany, 17, 144-163.
Doyle, J.J. and Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
Doyle, J.J. and Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
Duff, R.J. and Nickrent, D.L. (1999) Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. American Journal of Botany,

Duvall, M.R., Clegg, M.T., Chase, M.W., Clark, W.D., Kress, W.J., Hills, H.G., Eguiarte, L.E., Smith, J.F., Gaut, B.S., Zimmer, E.A. and Learn, G.H. (1993) Phylogenetic hypotheses for the Monocotyledons constructed from rbcL sequence data. Annals of the Missouri Botanical Garden, 80, 607-619.
Dyer, A.F. (1979) Investigating Chromosomes. Edward Arnold (Publishers) Ltd., London.

Eksomtramage, L., Sirirugsa, P. and Mayakul, S. (1996) Chromosome counts of Thai Zingiberaceae. In Wu, T.-L., Wu, Q.-G. and Chen, Z.-Y. (eds.), The second symposium on the family Zingiberaceae. Zhongshan University Press, Guangzhou, China, pp. 107-111.

Endress, P.K. (1996) Diversity and Evolutionary Biology of Tropical Flowers. Cambridge University Press, Cambridge.
Eriksson, T. (1998) Autodecay version 4.0. Department of Botany, Stockholm University, Stockholm.

Farris, J.S. (1989) The retention index and homoplasy excess. Systematic Zoology, 38, 406-407.

Farris, J.S., Kallersjo, M., Kluge, A.G. and Bult, C. (1994) Testing Significance of Incongruence. Cladistics-the International Journal of the Willi Hennig Society, 10, 315-319.
Felsenstein, J. (1978) Cases in which parsimony and compatibility methods will be positively misleading. Systematic Zoology, 27, 401-410.

Felsenstein, J. (1981) Evolutionary trees from DNA-sequences - a maximumlikelihood approach. Journal of Molecular Evolution, 17, 368-376.
Felsenstein, J. (1985) Confidence-limits on phylogenies - an approach using the bootstrap. Evolution, 39, 783-791.
Friis, E.M. (1988) Spirematospermum chandlerea sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tertiary Research, 9, 712.

Gagnepain, F. (1901) Kaempferia yunnanensis. Bulletin de la Societe Botanique de France, 48, LXXVII-LXXVIII.

Gagnepain, F. (1902) Camptandra vel Pyrgophyllum. Bulletin de la Societe

Gagnepain, F. (1908) Zingiberacees. In Humbert, H. (ed.) Flora Generale de L' Indo-Chine. Masson et cie, Paris, Vol. 6, pp. 25-121.
Ghazanfar, S.A. and Smith, R.M. (1982) Zingiberaceae. In Nasir, E. and Ali, S.I. (eds.), Flora of Pakistan. Shamin Printing Press, Karachi, pp. 1-7.

Gielly, L. and Täberlet, P. (1994) The use of chloroplast DNA to resolve plant phylogenies - noncoding versus rbcL sequences. Molecular Biology and Evolution, 11, 769-777.

Gielly, L., Yuan, Y.M., Kupfer, P. and Taberlet, P. (1996) Phylogenetic use of noncoding regions in the genus Gentiana L: chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Molecular Phylogenetics and Evolution, 5, 460-466.
Gift, N. and Stevens, P.F. (1997) Vagaries in the delimitation of character states in quantitative variation- an experimental study. Systematic Biology, 46, 112125.

Giribet, G. and Wheeler, W.C. (1999) On gaps. Molecular Phylogenetics and Evolution, 13, 132-143.

Greuter, W., McNeill, J., Barrie, F.R., Burdet, H.M., Demoulin, V., Filgueiras, T.S., Nicolson, D.H., Silva, P.C., Skog, J.E., Trehane, P., Turland, N.J. and Hawksworth, D.L. (2000) International Code of Botanical Nomenclature (Saint Louis Code). Koeltz Scientific Books, Konigstein, Germany.

Hall, R. (1998) The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Hall, R. and Holloway, J.D. (eds.), Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Leiden, the Netherlands, pp. 99131.

Harris, D.J., Poulsen, A.D., Frimodt-Møller, C., Preston, J. and Cronk, Q.C.B. (2000) Rapid radiation in Aframomum (Zingiberaceae): evidence from nuclear ribosomal DNA internal transcribed spacer (ITS) sequences. Edinburgh Journal of Botany, 57, 377-395.
Harris, J.G. and Harris, M.W. (1994) Plant Identification terminology: an illustrated glossary. Spring Lake Publishing, Spring Lake, Utah.

Hennig, W. (1950) Grundzuge einer Theorie der Phylogenetischen Systematik.

Deutsche Zentralverlag, Berlin.
Hennig, W. (1966) Phylogenetic Systematics. University of Illinois Press, Urbana.
Herendeen, P.S. and Crane, P.R. (1995) The fossil history of the monocotyledons. In Rudall, P.J., Cribb, P.J., Cutler, D.F. and Humphries, C.J. (eds.), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens Kew, pp. 1-21.
Hickey, L.J. and Peterson, R.K. (1978) Zingiberopsis, a fossil genus of the ginger family from Late Cretaceous to early Eocene sediments of Western Interior North America. Canadian Journal of Botany, 56, 1136-1152.
Hickson, R.E., Simon, C. and Perrey, S.W. (2000) The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Molecular Biology and Evolution, 17, 530539.

Hillis, D.M. and Huelsenbeck, J.P. (1992) Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity, 83, 189-195.
Hilu, K.W. and Liang, H. (1997) The matK gene: sequence variation and application in plant systematics. American Journal of Botany, 84, 830-839.

Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.R., Meng, B.Y., Li, Y.Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K. and Sugiura, M. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome - Intermolecular recombination between distinct transfer RNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molecular and General Genetics, 217, 185-194.

Holttum, R.E. (1950) The Zingiberaceae of the Malay Peninsula. the Gardens' Bulletin, Singapore, 13, 1-249.
Horaninow, P.F. (1862) Prodomus Monographiae Scitaminearum. Petropoli (St. Petersburgh).

Huelsenbeck, J.P. and Hillis, D.M. (1993) Success of phylogenetic methods in the four taxon case. Systematic Biology, 42, 247-264.
Huelsenbeck, J.P. and Rannala, B. (1997) Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science, 276, 227-232.

Hutchinson, J. (1934) The Families of Flowering Plants, 1st edition. Macmillan \& Co., London.
Hutchinson, J. (1959) The Families of Flowering Plants, 2nd edition. Clarendon Press, Oxford.

Jain, S.K. and Prakash, V. (1995) Zingiberaceae in India: phytogeography and endemism. Rheedea, 5, 154-169.
Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. and Gibson, T.J. (1998) Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences, 23, 403-405.

Jong, K. (1993) Variation in chromosome number in the Manuleae (Scrophulariaceae) and its cytotaxonomic implications. Edinburgh Journal of Botany, 50, 365-379.
Jong, K. (1997) Laboratory Manual of Plant Cytological Techniques. Royal Botanic Garden Edinburgh, Edinburgh.

Joseph, R., Joseph, T. and Jose, J. (1999) Karyomorphological studies in the genus Curcuma L. Cytologia, 64, 313-317.
Judd, W.S., Campbell, C.S., Kellogg, E.A. and Stevens, P.F. (1999) Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Sunderland, Massachusetts.
Kajita, T., Kamiya, K., Nakamura, K., Tachida, H., Wickneswari, R., Tsumura, Y., Yoshimaru, H. and Yamazaki, T. (1998) Molecular phylogeny of Dipterocarpaceae in Southeast Asia based on nucleotide sequences of matK, $t r n \mathrm{~L}$ intron, and $\operatorname{trnL} \mathrm{L} t r n \mathrm{~F}$ intergenic spacer region in chloroplast DNA. Molecular Phylogenetics and Evolution, 10, 202-209.

Karthikeyan, K., Jain, S.K., Nayar, M.P. and Sanjappa, M. (1989) Florae Indicae Enumeratio Monocotyledonae. Flora of India. Botanical Survey of India, Calcutta, Vol. 4.

Kato, M. (1996) Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. American Journal of Botany, 83, 732-743.
Kim, S.C., Crawford, D.J., Francisco Ortega, J. and Santos Guerra, A. (1996) A common origin for woody Sonchus and five related genera in the Macronesian islands-molecular evidence for extensive radiation. Proceedings
of the National Academy of Science of the United States of America, 93, 7743-7748.

Kirchoff, B.K. (1997) Inflorescence and flower development in the Hedychieae (Zingiberaceae): Hedychium. Canadian Journal of Botany-Revue Canadienne De Botanique, 75, 581-594.
Kirchoff, B.K. (1998) Infloresence and flower development in the Hedychieae (Zingiberaceae): Scaphochlamys kunstleri (Baker) Holttum. International Journal of Plant Sciences, 159, 261-274.
Kluge, A.G. (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology, 38, 7-25.

Kluge, A.G. and Farris, J.S. (1969) Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18, 1-32.
Kress, W.J. (1990) The phylogeny and classification of the Zingiberales. Annals of the Missouri Botanical Garden, 77, 698-721.

Kress, W.J. (1995) Phylogeny of the Zingiberanae: morphology and molecules. In Rudall, P.J., Cribb, P.J., Cutler, D.E. and Humphries, C.J. (eds.), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew, London, pp. 443-460.
Kress, W.J. (2000) Botanical Exploration in Myanmar. Department of Botany, National Museum of Natural History, Smithsonian Institution. http://persoon.si.edu/myanmar/ openingpage.cfm.

Kumar, S. (1994) The genus Cautleya Royle (Zingiberaceae) in India. Journal of Indian Botanical Society, 73, 195-197.

Larsen, K. (1964) Studies on Zingiberaceae IV. Caulokaempferia, a new genus. Botanisk Tidsskrift, 60, 165-179.

Larsen, K. (1973a) Studies in Zingiberaceae VI. Botanisk Tidsskrift, 68, 157-159.
Larsen, K. (1973b) Pommereschea lackneri found in Thailand. Natural History Bulletin of the Siam Society, 24, 476-478.
Larsen, K. (1980) Annotated key to the genera of Zingiberaceae of Thailand. Natural History Bulletin of the Siam Society, 28, 151-169.

Larsen, K. (1996a) A preliminary checklist of the Zingiberaceae of Thailand. Thai

Larsen, K. (1996b) The Zingiberaceae in the Malesian Region. In Wu, T.-L., Wu, Q.G. and Chen, Z.-Y. (eds.), Proceedings of the second symposium on the family Zingiberaceae. Zhongshan University Press, Guangzhou, pp. 10-14.
Larsen, K. (1997) Further studies in the genus Boesenbergia (Zingiberaceae). Nordic Journal of Botany, 17, 361-366.
Larsen, K. (1998) Progress in Zingiberaceae for Flora Malesiana. Fourth International Flora Malesiana Symposium. Forest Research Institute Malaysia and Flora Malesiana Foundation, Kuala Lumpur, Malaysia, p. 22.
Larsen, K., Ibrahim, H., Khaw, S.H. and Saw, L.G. (1999) Gingers of Peninsular Malaysia and Singapore. Natural History Publication (Borneo), Kota Kinabalu.
Larsen, K., Lock, J.M., Mass, H. and Mass, P.J.M. (1998) Zingiberaceae. In Kubitzki, K. (ed.) Families and Genera of Vascular Plants. Springer, Berlin, Vol. 4, pp. 474-495.
Larsen, K. and Mood, J. (1998) Siamanthus, a new genus of Zingiberaceae from Thailand. Nordic Journal of Botany, 18, 393-397.

Larsen, K. and Mood, J. (2000) A revision of Haniffia. Nordic Journal of Botany, 20, 285-289.

Larsen, K. and Smith, R.M. (1972) Notes on Caulokaempferia. Notes from the Royal Botanic Garden Edinburgh, 31, 287-295.

Lawrence, G.H.M. (1951) Taxonomy of Vascular Plants. Macmillan, New York.
Levan, A., Fredga, K. and Sanberg, A.A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas, 52, 201-220.
Li, W.-H. (1997) Molecular Evolution. Sinauer Associates, Sunderland, MA.
Liao, J.P. and Wu, Q.G. (2000) A preliminary study of the seed anatomy of Zingiberaceae. Botanical Journal of the Linnean Society, 134, 287-300.
Lim, S.-N. (1972) Cytogenetics and Taxonomy of the genus Globba L. (Zingiberaceae) in Malaya II: Cytogenetics. Notes from the Royal Botanic Garden Edinburgh, 31, 271-285.
Lincoln, R., Boxshall, G. and Clark, P. (1998) A Dictionary of Ecology, Evolution and Systematics. Cambridge University Press, Cambridge.

Linnaeus, C. (1753) Species Plantarum. Impensis Laurentii Salvii, Holmiae (Stockholm).
Liu, J.-S. and Schardl, C.L. (1994) A conserved sequence in internal transcribed spacer 1 of plant nuclaer rDNA genes. Plant Molecular Biology, 26, 775-778.

Loesener, T.H. (1930a) Marantaceae. In Engler, A. and Prantl, K. (eds.), Die Natulichen Pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 15a, pp. 654-693.

Loesener, T.H. (1930b) Zingiberaceae. In Engler, A. and Prantl, K. (eds.), Die Natulichen Pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 15a, pp. 541-640.

Maas, P.J.M. (1977) Renealmia (Zingiberaceae-Zingiberoideae); Costoideae (additions) (Zingiberaceae). Published for Organization for Flora Neotropica by the New York Botanical Garden, Bronx, N.Y.

Maddison, W.P. and Maddison, D.R. (1992) MacClade: Analysis of Phylogeny and Character Evolution. Version 3.0. Sinauer Associates, Sunderland, Massachusetts.

Madulid, D.A. (1996) The family Zingiberaceae and the flora of the Philippines project. In Wu, T.-L., Wu, Q.-G. and Chen, Z.-Y. (eds.), Proceedings of the second symposium of the family Zingberaceae. Zhongshan University Press, Guangzhou, China, pp. 1-9.

Mahanty, H.K. (1970) A cytological study of the Zingiberales with special reference to their taxonomy. Cytologia, 35, 13-49.

Maier, R.M., Neckermann, K., Igloi, G.L. and Kossel, H. (1995) Complete Sequence of the Maize Chloroplast Genome - Gene Content, Hotspots of Divergence and Fine-Tuning of Genetic information by transcript editing. Journal of Molecular Biology, 251, 614-628.

Malik, C.P. (1961) Chromosome number in some Indian angiosperms: monocotyledons. Science and Culture, 27, 197-198.

Mangaly, J.K. and Sabu, M. (1993) A taxonomic revision of the South Indian species of Curcuma Linn. (Zingiberaceae). Rheedea, 3, 139-171.
Mayr, E. (1969) Principles of Systematic Zoology. McGraw-Hill, New York.
McNeill, J. (2000) Naming the groups: developing a stable and efficient
nomenclature. Taxon, 49, 705-720.
Mehra, P.N. and Sachdeva, S.K. (1971) IOPB chromosome number reports. Taxon, 20, 611-613.

Mehra, P.N. and Sachdeva, S.K. (1976) Cytological observations on some W. Himalayan monocots IV. several families. Cytologia, 41, 31-53.

* Mehra, P.N. and Sachdeva, S.K. (1979) Cytological observation on some EastHimalayan monocots. Cytologia, 44, 233-240.(Note that M.P.N. \& S.S.K., 1977 counts appearing in IOPB, Taxon were the same counts fully discussed here in this 1979 paper)

Meisner, C.D.F. (1842) Plantarum Vascularium Genera. Libraria Weidmannia, Lipsiae (Leipzig).

Möller, M. and Cronk, Q.C.B. (1997a) Origin and relationship of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacers (ITS) sequences. American Journal of Botany, 84, 956-965.

Möller, M. and Cronk, Q.C.B. (1997b) Phylogeny and disjunct distribution: evolution of Saintpaulia (Gesneriaceae). Proceedings of the Royal Society of London, 264, 1827-1836.

Mood, J. and Larsen, K. (1997) Cornukaempferia, a new genus of Zingiberaceae from Thailand. Natural History Bulletin of the Siam Society, 45, 217-221.

Mood, J. and Larsen, K. (1999) A new species of Cornukaempferia. The New Plantsman, 196-205.

Mukherjee, I. (1970) Chromosome studies of some species of Hedychium. Botanical Magazine Tokyo, 83, 237-241.
Mullis, K.B. (1990) The unusual origin of the polymerase chain reaction. Scientific American, 262, 36-43.

Mullis, K.B. and Faloona, F. (1987) Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods in Enzymology, 155, 335-350.
Nakai, T. (1941) Notulae ad Plantas Asiae Orientalis (XVI). Japanese Journal of Botany, 17, 189-203.

Newman, M.F. (1988) Aspects of cytotaxonomy and reproductive biology of some Zingiberaceae. Ph.D. Thesis. Department of Botany. University of Aberdeen, Aberdeen, UK. pp. 238.

Newman, M.F. (1990) A reconsideration of Brachychilum Petersen (Hedychieae: Zingiberaceae). Edinburgh Journal of Botany, 47, 83-87.
Newman, M.F. (1995) Distichochlamys, a new genus from Vietnam. Edinburgh Journal of Botany, 52, 65-69.

Newman, M.F. and Jong, K. (1986) Cytotaxonomic observations on Mantisia wardii (Zingiberaceae). Notes from the Royal Botanic Garden Edinburgh, 43, 493496.

Ngamriabsakul, C. and Newman, M.F. (2000) A new species of Roscoea Smith (Zingiberaceae) from Bhutan and Southern Tibet. Edinburgh Journal of Botany, 57, 271-278.
Ngamriabsakul, C., Newman, M.F. and Cronk, Q.C.B. (2000) Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinburgh Journal of Botany, 57, 39-61.

Nixon, K.C. and Carpenter, J.M. (1993) On outgroups. Cladistics, 9, 413-426.
Olatunji, O.A. (1970) Taxonomic studies in the Zingiberaceae with special reference to vegetative characters. Ph.D. Thesis. Department of Botany. University of Edinburgh, Edinburgh, pp. 260.

Olmstead, R.G. and Palmer, J.D. (1994) Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany, 81, 1205-1224.

Oxelman, B. and Liden, M. (1995) Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. Taxon, 44, 525542.

Palmer, J.D. (1992) Mitochondrial DNA in plant systematics: applications and limitations. In Soltis, P.S., Soltis, D.E. and Doyle, J.J. (eds.), Molecular systematics of plants. Chapman and Hall, New York, pp. 36-49.

Palmer, J.D. (1992b) Comparison of chloroplast and mitochondrial genome evolution in plants. In Hermann, R.G. (ed.) Cell Organelles. Springer-Verlag, Wien, Germany, pp. 99-133.

Palmer, J.D., Jansen, R.K., Michaels, H.J., Chase, M.W. and Manhart, J.R. (1988) Chloroplast DNA variation and plant phylogeny. Annals of the Missouri Botanical Garden, 75, 1180-1206.

Pankhurst, R.J. (1991) Practical Taxonomic Computing. Cambridge University

Press, Cambridge.
Pankhurst, R.J. (1995) Some problems in the methodology of cladistics. Binary, 7, 37-41.
Pennington, R.T. (1996) Molecular and morphological data provide phylogenetic resolution at different hierarchical levels in Andira. Systematic Biology, 45, 496-515.
Petersen, O.G. (1889) Musaceae, Zingiberaceae, Cannaceae and Marantaceae. In Engler, A. and Prantl, K. (eds.), Die Natulichen Pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 2(6), pp. 1-43.
Pimentel, R.A. and Riggins, R. (1987) The nature of cladistic data. Cladistics, 3, 201-209.

Posada, D. and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817-818.
Poulsen, A.D. (1993) 2 new species of Boesenbergia (Zingiberaceae) from Borneo. Nordic Journal of Botany, 13, 289-294.
Press, J.R., Shrestha, K.K. and Sutton, D.A. (2000) Annotated Checklist of the Flowering Plants of Nepal. The Natural History Museum, London.
QIAGEN. (1997a) DNeasy Plant Mini Handbook (for DNA isolation from plant tissue).
QIAGEN. (1997b) QIAquick Spin Handbook (for QIAquick PCR Purification Kit and QIAquick Gel Extraction Kit).

Rahman, M.A. and Yosaf, M. (1996) Diversity, ecology and ethnobotany of the Zingiberaceae of Bangladesh. In Wu, T.-L., Wu, Q.-G. and Chen, Z.-Y. (eds.), Proceedings of the second symposium on the family Zingiberaceae. Zhongshan University Press, Guangzhou, China, pp. 219-228.

Rahman, M.A. and Yosuf, M. (1997) New records of Zingiberaceae for Bangladesh. Bangladesh Journal of Botany, 26, 37-42.
Rai, S., Das, A.B. and Das, P. (1997) Estimation of 4C DNA and Karyotype Analysis in Ginger (Zingiber officinale Rosc.) I. Cytologia, 62, 133-141.
Ramachandran, K. (1969) Chromosome numbers in Zingiberaceae. Cytologia, 34, 213-221.

Rangsiruji, A. (1999) A study of the infrageneric classification of Alpinia Roxb.
(Zingiberaceae) using molecular data. Ph.D. Thesis. Institute of Cell and Molecular Biology. University of Edinburgh, Edinburgh, UK., pp. 228.
Rangsiruji, A., Newman, M.F. and Cronk, Q.C.B. (2000a) Origin and relationships of Alpinia galanga (Zingiberaceae) based on molecular data. Edinburgh Journal of Botany, 57, 9-37.
Rangsiruji, A., Newman, M.F. and Cronk, Q.C.B. (2000b) A study of the infrageneric classification of Alpinia (Zingiberaceae) based on the ITS region of nuclear rDNA and the trnL-F spacer of chloroplast DNA. In Wilson, K.L. and Morrison, D.A. (eds.), International conference on the comparative biology of the monocotyledons. CSIRO, Sydney, Vol. 1, pp. 695-709.
Rao, A.S. and Verma, D.M. (1969) Parakaempferia synantha (Zingiberaceae)- a new genus \& species from Assam. Bulletin of the Botanical Survey of India, 11, 206-208.
Rao, R.R. (1994) Biodiversity in India (Floristic Aspects). Bishen Singh Mahendra Pal Singh, Dehra Dun, India.

Rao, V.S., Karnik, H. and Gupte, K. (1954) The floral anatomy of some Scitamineae - Part I. The Journal of the Indian Botanical Society, 33, 118-147.

Reveal, J.L. (2001) Indices Nominum Supragenericorum Plantarum Vascularium. www.inform.umd.edu/PBIO/fam/famWZ.html.
Richard, A. (1841) Alpinieae. In A.C.V.D., d' Orbigny (ed.), Dictionnaire Universel d^{\prime} Histoire Naturelle. Paris, pp. 299.
Richardson, J.E., Fay, M.F., Cronk, Q.C.B., Bowman, D. and Chase, M.W. (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. American Journal of Botany, 87, 1309-1324.
Riswan, S. and Setyowati, F.M. (1996) Ethnobotanical study on Zingiberaceae in Indonesia. In Wu, T.-L., Wu, Q.-G. and Chen, Z.-Y. (eds.), Proceedings of the second symposium of the family Zingiberaceae. Zhongshan University Press, Guangzhou, China, pp. 196-218.
Rodriguez de la Rosa, R.A. and Cevallos Ferriz, S.R.S. (1994) Upper Cretaceous Zingiberalean fruits with in-situ seeds from Southeastern Coahuila, Mexico. International Journal of Plant Sciences, 155, 786-805.
Rowley, D.B. (1998) Minimum age of initiation of collision between India and Asia
north of Everest based on the subsidence history of the Zhepure Mountain section. Journal of Geology, 106, 229-235.
Saensouk, S., Bunnag, S. and Luangpiran, A. (1998) Chromosome numbers of some Zingiberaceae in Phu-Phan National Park. 24th Congress on Science and Technology of Thailand, B-450-451.

Sakai, S., Kato, M. and Inoue, T. (1999) Three pollination guilds and variation in floral characteristics of Bornean gingers (Zingiberaceae and Costaceae). American Journal of Botany, 86, 646-658.

Sakai, S. and Nagamasu, H. (2000) Systematic studies of Bornean Zingiberaceae: III. Tamijia: a new genus. Edinburgh Journal of Botany, 57, 245-255.

Sanderson, M.J. and Donoghue, M.J. (1989) Patterns of variation in levels of homoplasy. Evolution, 43, 1781-1795.

Sang, T., Crawford, D.J. and Stuessy, T.F. (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84, 1120-1136.

Schumann, K.M. (1900) Musaceae. In Engler, A. (ed.) Das Pflanzenreich IV. Verlag von Wilhelm Englermann, Leipzig, Germany, Vol. 45, pp. 1-45.

Schumann, K.M. (1902) Marantaceae. In Engler, A. (ed.) Das Pflanzenreich IV. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 48, pp. 1-184.

Schumann, K.M. (1904) Zingiberaceae. In Engler, A. (ed.) Das Pflanzenreich IV. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 46, pp. 1-458.

Scott, O.R. and Bendich, A.J. (1994) Extraction of total cellular DNA from plants algae and fungi. In Gelvin, S.B. and Schilperoort, R.A. (eds.), Plant Molecular Biology Manual. Kluwer Academic Puplishers, Dordrecht, the Netherlands, D1, pp. 1-8.

Searle, R.J. and Hedderson, T.A. (2000) A preliminary phylogeny of the Hedychieae tribe (Zingiberaceae) based on ITS sequences of the nuclear rRNA cistron. In Wilson, K.L. and Morrison, D.A. (eds.), International conference on the comparative biology of the monocotyledons. CSIRO, Sydney, Vol. 1, pp. 710-718.

Seelanan, T., Schnabel, A. and Wendel, J.F. (1997) Congruence and consensus in the cotton tribe (Malvaceae). Systematic Botany, 22, 259-290.

Sharma, A.K. and Bhattacharyya, N.K. (1959) Cytology of several members of Zingiberaceae and a study of the inconstancy of their chromosome complement. Cellule, 59, 229-345.
Sharma, A.K. and Sharma, A. (1999) Plant Chromosomes: Analysis, Manipulation and Engineering. Harwood Academic Publishers, Amsterdams.

Siddall, M.E. (1998) Success of parsimony in the four-taxon case: Long-branch repulsion by likelihood in the Farris Zone. Cladistics-the International Journal of the Willi Hennig Society, 14, 209-220.
Sirirugsa, P. (1992a) A revision of the genus Boesenbergia Kuntze (Zingiberaceae) in Thailand. Natural History Bulletin of the Siam Society, 40, 67-90.

Sirirugsa, P. (1992b) A training report on cytotaxonomy of Zingiberaceae and some selected plants, 23 September-22 October 1992. Department of Biology, Prince of Songkla University, Hat Yai.

Sirirugsa, P. (1996) The genus Curcuma of Thailand. In Wu, T.-L., Wu, Q.-G. and Chen, Z.-Y. (eds.), The second symposium on the family Zingiberaceae. Zhongshan University Press, Guangzhou, China, pp. 39-46.

Sirirugsa, P. (1998) Rare and unidentified Curcuma (Zingiberaceae) from Thailand. Fourth International Flora Malesiana Symposium. Forest Research Institute Malaysia and Flora Malesiana Foundation, Kuala Lumpur, Malaysia, p. 81.
Smith, A.C. (1979) Zingiberaceae. Flora Vitiensis Nova. Pacific Tropical Botanical Garden, Lawai, Kanai, Hawaii, Vol. 1, pp. 192-216.

Smith, J.E. (1804) Roscoea purpurea. Exotic Botany, 2, 97 t. 108.
Smith, J.F., Kress, W.J. and Zimmer, E.A. (1993) Phylogenetic analysis of the Zingiberales based on rbcL sequences. Annals of the Missouri Botanical Garden, 80, 620-630.
Smith, R.M. (1980) A new genus of Zingiberaceae from N Burma. Notes from the Royal Botanic Garden Edinburgh, 38, 13-17.

Smith, R.M. (1981) Zingiberaceae: synoptic keys to the tribes Zingibereae, Globbeae, Hedychieae, Alpinieae (in part). Royal Botanic Garden, Edinburgh.

Smith, R.M. (1987a) A review of Bornean Zingiberaceae: III (Hedychieae). Notes from the Royal Botanic Garden Edinburgh, 44, 203-232.

Smith, R.M. (1987b) Zingiberaceae. Flora of Australia. Griffin Press, Netley, South Australia, Vol. 45, pp. 19-34.
Smith, R.M. (1994) Zingiberaceae. In Noltie, H.J. (ed.) Flora of Bhutan. Royal Botanic Garden Edinburgh, Edinburgh, Vol. 3, pp. 182-209.

Smitinand, T., Shimizu, T., Koyama, H. and Fukuoka, N. (1970) Contributions to the Flora of Southeast Asia, I. taxonomy and phytogeography of some temperate species in Thailand. Southeast Asian Studies, 8, 171-186.

Soltis, D.E. and Kuzoff, R.K. (1995) Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution, 49, 727-742.
Soltis, D.E., Soltis, P.S., Chase, M.W., Mort, M.E., Albach, D.C., Zanis, M., Savolainen, V., Hahn, W.H., Hoot, S.B., Fay, M.F., Axtell, M., Swensen, S.M., Prince, L.M., Kress, W.J., Nixon, K.C. and Farris, J.S. (2000) Angiosperm phylogeny inferred from 18 S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society, 133, 381-461.

Soltis, D.E., Soltis, P.S., Nickrent, D.L., Johnson, L.A., Hahn, W.J., Hoot, S.B., Sweere, J.A., Kuzoff, R.K., Kron, K.A., Chase, M.W., Swensen, S.M., Zimmer, E.A., Chaw, S.M., Gillespie, L.J., Kress, W.J. and Sytsma, K.J. (1997) Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Annals of the Missouri Botanical Garden, 84, 1-49.
Soltis, P.S. and Soltis, D.E. (1995) Plant molecular systematics: inference of phylogeny and evolutionary process. Evolutionary Biology, 28, 139-194.

Soltis, P.S., Soltis, D.E. and Chase, M.W. (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402, 402-404.
Spearing, J.K. (1977) A note on closed leaf-sheaths in Zingiberaceae-Zingiberoideae. Notes from the Royal Botanic Garden Edinburgh, 35, 217-220.

Srivastava, S.K. (1998) Zingiberaceae in Andaman and Nicobar Islands, India. Higher Plants of Indian Sub-Continent. Bishen Singh Mahendra Pal Singh, Dehra Dun, U.P. (India), Vol. 8, pp. 1-33.

Stace, C.A. (1989) Plant Taxonomy and Biosystematics. Cambridge University Press, Cambridge.

Stace, C.A. (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21th centuries. Taxon, 49, 451-477.

Stevens, P.F. (1991) Character states, morphological variation, and phylogenetic analysis: a review. Systematic Botany, 16, 553-583.

Stuessy, T.F. (1990) Plant Taxonomy: The Systematic Evaluation of Comparative Data. Columbia University Press, New York.

Susanna, A., Jacas, N.G., Soltis, D.E. and Soltis, P.S. (1995) PhylogeneticRelationships in Tribe Cardueae (Asteraceae) Based On Its Sequences. American Journal of Botany, 82, 1056-1068.

Swofford, D.L. (1993) PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Illinois Natural History Survey, Champaign, Illinois.
Swofford, D.L. (1998) PAUP*: Phylogenetic Analysis Using Parsimony*, Version 4.0. Sinauer Associates, Sunderland, Massachusetts.

Systematics Association Committee for descriptive biological terminology (1962) II. Terminology of Simple Symmetrical Plane Shapes (Chart 1). Taxon, 11, 145156, tab. 1.

Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105-1109.

Takhtajan, A. (1997) Diversity and Classification of Flowering Plants. Columbia University Press, New York.
Tamura, K. and Nei, M. (1993) Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial-Dna in Humans and Chimpanzees. Molecular Biology and Evolution, 10, 512-526.

Theilade, I. (1999) A synopsis of the genus Zingiber (Zingiberaceae) in Thailand. Nordic Journal of Botany, 19, 389-410.

Thiele, K. (1993) The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics, 9, 275-304.

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.

Thorne, R.F. (1992) Classification and Geography of the Flowering Plants. Botanical Review, 58, 225-348.

Tomlinson, P.B. (1956) Studies in the systematic anatomy of the Zingiberaceae. Botanical Journal of the Linnean Society, 55, 547-592.
Tomlinson, P.B. (1962) Phylogeny of the Scitamineae: morphological and anatomical considerations. Evolution, 16, 192-213.

Tong, S.-Q. (1992) Notes on the genus Roscoea of Zingiberaceae in China. Bulletin of Botanical Research, 12, 247-253.
Tripathi, S. and Prakash, V. (1998) Studies on Zingiberaceae Lindley of N.E. India: I on the rediscovery of Rhynchanthus longiflorus Hook. f. Indian Journal of Forestry, 21, 333-336.
Van Nues, R.W., Rientes, J.M.J., Van de Sande, C.A.F.M., Zerp, S.F., Sluiter, C., Venema, J., Planta, R.J. and Raue, H.A. (1994) Separate structure elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17 S and 26 S ribosomal RNA. Nucleic Acids Research, 22, 912-919.

Wen, J., Shi, S., Jansen, R.K. and Zimmer, E.A. (1998) Phylogeny and biogeography of Aralia sect. Aralia (Araliaceae). American Journal of Botany, 85, 866-875.

Wendel, J.F., Schnabel, A. and Seelanan, T. (1995) An unusual ribosomal DNAsequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Molecular Phylogenetics and Evolution, 4, 298-313.

West, J.P. and Cowley, E.J. (1993) Floristic notes and chromosome numbers of some Chinese Roscoea (Zingiberaceae). Kew Bulletin, 48, 799-803.
Wilf, P., Labandeira, C.C., Kress, W.J., Staines, C.L., Windsor, D.M., Allen, A.L. and Johnson, K.R. (2000) Timing the radiations of leaf beetles: Hispines on gingers from latest Cretaceous to recent. Science, 289, 291-294.

Winkler, H. (1930a) Cannaceae. In Engler, A. and Prantl, K. (eds.), Die Natulichen Pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 15a, pp. 640-654.
Winkler, H. (1930b) Musaceae. In Engler, A. and Prantl, K. (eds.), Die Natulichen Pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, Germany, Vol. 15a, pp. 505-541.
Wojciechowski, M.F., Sanderson, M.J., Baldwin, B.G. and Donoghue, M.J. (1993) Monophyly of aneuploid astragalus (Fabaceae) - evidence from nuclear
ribosomal DNA internal transcribed spacer sequences. American Journal of Botany, 80, 711-722.

Wolfe, K.H., Li, W.H. and Sharp, P.M. (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America, 84, 9054-9058.

Wood, T.H., Whitten, W.M. and Williams, N.H. (2000) Phylogeny of Hedychium and related genera (Zingiberaceae) based on ITS sequence data. Edinburgh Journal of Botany, 57, 261-270.
Wu, T.L. (1997) Notes on the Lowiaceae, Musaceae, and Zingiberaceae for the Flora of China. Novon, 7, 440-442.

Wu, T.-L. and Chen, Z.-Y. (1989) Pyrgophyllum a new genus of Zingiberaceae from China. Acta Phytotaxonomica Sinica, 27, 124-128.

Wu, T.-L. and Larsen, K. (2000) Zingiberaceae. In Wu, Z.-Y. and Raven, P.H. (eds.), Flora of China. Science Press (Beijing) \& Missouri Botanical Garden Press (St. Louis), Vol. 24, pp. 322-377.

Yokota, Y., Kawata, T., Iida, Y., Kato, A. and Tanifuji, S. (1989) Nucleotidesequences of the 5.8 s ribosomal-RNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. Journal of Molecular Evolution, 29, 294-301.

Zimmer, E.A., Martin, S.L., Beverley, S.M., Kan, Y.W. and Wilson, A.C. (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 77, 2158-2162.

APPENDIX ONE: MOLECULAR TECHNIQUES IN ZINGIBERACEAE

A1.1 DNA EXTRACTION

Fresh leaf material was harvested and kept in silica gel-filled plastic bags and stored at $0^{\circ} \mathrm{C}$ at least overnight in a refrigerator before extraction for plants in cultivation at RBGE, to destarch the leaf tissue (starch may interfere with subsequent operations performed using the DNA). Field collected samples were also kept in silica gel (Chase and Hills, 1991) and used after returning to the laboratory.

Generally, there are two methods of extracting plant DNA in this study. A modified CTAB procedure of Doyle and Doyle (1987) was followed for most of the plants studied. The QIAGEN DNeasy Plant Mini Kit (QIAGEN, 1997a), with a little modification, was used to obtain purer DNA from herbarium specimens and some species which proved difficult to amplify in later PCR reactions. The former method is sometimes followed by purification using the QIAGEN QIAquick PCR Purification Kit.

Considering the two methods above, it is found that DNA extraction work by the Kit is easier, quicker and at the same time gives relatively higher quality (fewer impurities, such as carbohydrates, protein, and salts) of DNA. However, the modified CTAB procedure works just as well in general for most species and is cheap to use.

CTAB PROCEDURE

1. A portion of leaf $\mathrm{c} .1 \mathrm{~cm}^{2}$ was cut into many small pieces, and put into a $1.5-\mathrm{ml}$ microcentrifuge tube and c. 50 mg of purified sand and $200 \mu \mathrm{l}$ of $2 x$ CTAB extraction buffer were added. The leaf tissue was ground with a
plastic pestle until a homogeneous slurry was formed.
2. A further $800 \mu \mathrm{l}$ of 2 x CTAB was then added. The contents were mixed gently, and the tube was incubated at $65^{\circ} \mathrm{C}$ for 30 to 60 minutes with optional gentle swirling.
3. The tube was allowed to cool to ambient temperature before adding 200 $\mu \mathrm{l}$ of wet chloroform. The solution was mixed gently 4 or 5 times and centrifuged for 2 minutes at 13000 rpm .
4. The aqueous upper phase was removed to a clean tube and re-extracted with $200 \mu \mathrm{l}$ of wet-chloroform. (Extracting DNA by wet-chloroform can be improved by using a shaking platform for c .10 minutes each)
5. Again this was mixed gently to obtain a momentary single phase and centrifuged for 2 minutes at 13000 rpm .
6. In another clean tube with the aqueous phase, $600 \mu \mathrm{l}$ of cold $\left(-20^{\circ} \mathrm{C}\right)$ propan-2-ol was added and the contents were mixed gently to precipitate the nucleic acids. After at least 30 minutes at room temperature, the pellet of nucleic acids was precipitated by centrifuging for 5 minutes at 13000 rpm. (Longer period of precipitation increases the yield, i.e. overnight)
7. The supernatant was removed and 1 ml of wash buffer was added. The tube was left for at least 30 minutes to remove the 2 x CTAB from the pellet.
8. The tube was centrifuged for 5 minutes at 13000 rpm and the supernatant was then aspirated as much as possible.
9. Next, the pellet was dried completely by using an incubator drying oven for 10 minutes at $50^{\circ} \mathrm{C}$. Lastly the pellet was dissolved in $30-50 \mu \mathrm{l}$ of sterile distilled water and stored at $-20{ }^{\circ} \mathrm{C}$ until required. (DNA concentration is normally between $10-30 \mathrm{ng} / \mu \mathrm{l}$)

STOCK SOLUTIONS

2x CTAB (500 ml):

10 g CTAB (Hexadecyltrimethylammonium bromide), $140 \mathrm{ml} 5 \mathrm{M} \mathrm{NaCl}, 25$ ml 2 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.0$), 20 ml 0.5 M EDTA, with optional 1\% PVP-40T (5
g) and 0.2\% Beta-Mercaptoethanol or DTT (added immediately prior to use, $1 / 50$ dilution)

Adjust to pH 8.0 with either NaOH or HCl and autoclave.
Wet Chloroform:
Chloroform 24 units, Octan-1-ol 1 unit
Wash Buffer:
76% ethanol, 10 mM Ammonium Acetate

CTAB is a cationic detergent that aids in the lysis of cell membranes and will form complexes with nucleic acids. NaCl aids in the formation of nucleic acid-CTAB complexes. EDTA chelates divalent ions, particularly Ca^{2+} and Mg^{2+} and prevents the activity of metal-dependent nucleases. PVP-40T forms complexes with secondary plant products, particularly with polyphenols, tannins and quinones. Betamercaptoethanol and DTT are reducing agents that protect DNA against quinones, disulphides, peroxidases and polyphenol oxidases. The chloroform is described as 'wet' because the addition of isoamylalcohol (or octan-1-ol) changes its properties making it slightly more hydrophilic and therefore, capable of precipitating proteins and carbohydrates more effectively. The purpose of the chloroform stage is to remove proteins and carbohydrates. The wash buffer stage reduces the salt concentration in the extraction buffer, therefore the CTAB-nucleic acid complex is precipitated. The effect of the wash buffer is to dissolve the CTAB from the CTABnucleic acid complex.

DNEASY KIT PROCEDURE

1. Plant tissue was ground under liquid nitrogen to a fine powder using a plastic pestle in a $2-\mathrm{ml}$ microcentrifuge tube. Without leaving to thaw, the sample was continued immediately with step 2.
2. $400 \mu \mathrm{l}$ of Buffer AP1 and $4 \mu \mathrm{l}$ of Rnase A stock solution ($100 \mathrm{mg} / \mathrm{ml}$) were added to a maximum of 100 mg of ground plant tissue and mixed by spinning with a vortex shortly and vigorously.
3. The mixture was incubated for at least 30 (instead of 10) minutes at $65{ }^{\circ} \mathrm{C}$
and was mixed 2-3 times during incubation by inverting tube. (Longer period of incubation gives higher yield)
4. $130 \mu \mathrm{l}$ of Buffer AP2 was added to the lysate and mixed. The mixture was incubated for 10 (instead of 5) minutes. (This step precipitates detergent, proteins and polysaccharides)
5. Next, the lysate was applied to the QIAshredder spin column (lilac) sitting in a $2-\mathrm{ml}$ collection tube. The tube was then centrifuged for 2 minutes at maximum speed (13000 rpm).
6. A flow-through fraction from step 5 was transferred to a new tube without disturbing the cell-debris pellet. (Typically 450μ l of lysate are recovered)
7. $225 \mu \mathrm{l}$ of Buffer AP3 and $450 \mu \mathrm{l}$ of ethanol ($96-100 \%$) were added to the cleared lysate and mixed by pipetting. (or 0.5 volume of Buffer AP3 and 1 volume of ethanol in corresponding to a flow-through amount)
8. $650 \mu \mathrm{l}$ of the mixture from step 7 were applied, including any precipitate which may have formed, onto DNeasy mini spin column sitting in a 2-ml collection tube. The tube was then centrifuged for 1 minute at 8000 rpm and a flow-through was discarded.
9. Step 8 was repeated with remaining sample. A flow-through and a collection tube were then disposed.
10. A DNeasy column was placed in a new $2-\mathrm{ml}$ collection tube. $500 \mu \mathrm{l}$ of Buffer AW were added onto the DNeasy column and the tube was centrifuged for 1 minute at 8000 rpm . A flow-through was discarded but the collection was reused in step 11.
11. $500 \mu \mathrm{l}$ of Buffer AW were added to DNeasy column and the tube was centrifuged for 2 minutes at 13000 rpm to dry the column membrane.
12. A DNeasy column was then transferred to a new 2-ml microcentrifuge tube. 50 (instead of 100) $\mu \mathrm{l}$ of preheated $\left(65^{\circ} \mathrm{C}\right.$) Buffer AE were added directly onto the DNeasy column membrane and incubated for 5 minutes at room temperature. Next, the tube was centrifuged for 1 minute at 8000 rpm to elute.
13. Step 12 was repeated once as described.

POINTS TO NOTE

1. Do not underestimate the importance of this very first step of working on DNA. High yield and purity of DNA will make things a lot more easier in later uses of this DNA.
2. Using liquid nitrogen in the grinding step is a very effective technique to break down cells of plant tissues. Using sand requires more vigorous force and skill. The first step of grinding of each protocol below can be interchanged.
3. If working on many samples at the same time, an electric drill can be used for the grinding step.
4. It is always better to use fresh material or silica gel-dried sample from fresh material for DNA extraction. If this is not possible, try to use the most recent herbarium sheet with a healthy, green colour.
5. The procedures presented here are a total genomic DNA extraction method yielding both nuclear DNA and chloroplast DNA that are later used successfully in this study.
6. Isopropanol, propan-2-ol and 2-propanol are the different names of one chemical used interchangeably that I came across in a literature of protocols.

A1.2 AGAROSE GEL ELECTROPHORESIS

The DNA obtained in section A should be visualised to check its presence, size and conformation (quality) and relative density (quantity). Agarose gel electrophoresis is used throughout this study, not only for DNA checking in the first step of DNA extraction, but also for a later step of PCR result checking. This method employs the fact that DNA is overall negatively charged by phosphates along its backbone. By applying an electric field to a supporting layer (in this case, agarose gel), different sizes of DNA will travel through this layer at different rates according to their relative sizes. The method is also used for purification of some PCR products
(Gel Extraction) when PCR products contain more than one distinct band on a checking gel.

PROCEDURE

1. An appropriate amount of agarose and a volume of $1 \times$ TBE were prepared for an optimal concentration of the gel depending on the size of DNA fragments to be analysed. These were mixed and heated in a microwave oven to make a well melted solution (usually c. 2 minutes).
2. A gel mould was prepared by sealing its open ends with tape and a gel comb was aligned vertically in the mould.
3. The gel solution was allowed to cool for $2-3$ minutes, then 1μ of ethidium bromide was added to 50 ml of the gel solution. The mixture was poured onto the gel mould.
4. The gel mould was left to set for c. 20 minutes. This could be accelerated by running tap water onto the outside of the flask holding the hot gel solution prior to step 3.
5. Once the gel had set which could be seen by its opacity, the adhesive tape and gel comb were removed to a special bin designated hazardous. The gel mould then was placed in an electrophoresis tank containing TBE buffer at the same concentration as the gel.
6. Samples were mixed with $1 \mu 1$ of loading solution and then loaded into the gel plus a DNA marker.
7. Electricity was then applied, usually 80 V for one hour.
8. The DNA fragments in the gel were visualized under UV light and then photographed using a digital camera.

STOCK SOLUTIONS

$10 \times$ TBE (Tris-Borate-EDTA) Buffer:
108 g Tris base, 55 g boric acid, 9.5 g EDTA, disodium salt, $750 \mathrm{ml} \mathrm{dH}_{2} \mathrm{O}$. Adjust pH to 8.3 with NaOH or HCl . Filter and adjust final volume to 1 L .

DNA Markers:

1. Lambda HinDIII ($33 \mathrm{ng} / \mu \mathrm{l}$) (for DNA checking)

1 part Lambda HinDIII stock ($0.33 \mathrm{mg} / \mathrm{ml}$): 3 parts loading solution: 6 parts $\mathrm{dH}_{2} \mathrm{O}$
2. 123 ladder $(0.1 \mu \mathrm{~g} / \mu \mathrm{l})$ (for PCR products checking)

1 part 123 bp ladder stock ($1 \mu \mathrm{~g} / \mu \mathrm{l}$): 3 parts loading solution: 6 parts ladder buffer
Loading solution (SIGMA):
0.05% bromophenol blue (serves as tracking dye), 40% sucrose (add density and facilitate sample loading), 0.1 M EDTA pH 8.0 (terminate the action of enzymes that require divalent cations), 0.5% sodium lauryl sulphate (SDS) (dissociate DNA-protein complexes)

Ladder buffer:
10 mM Tris- HCl (pH .7 .5), $50 \mathrm{mM} \mathrm{NaCl}, 0.1 \mathrm{mM}$ EDTA
Ethidium bromide $(10 \mathrm{mg} / \mathrm{ml})$

POINTS TO NOTE

1. In this study, Gel moulds were usually prepared at 1% for DNA checking and 1.5% for PCR products checking (low agarose concentrations are used to separate large DNA fragments, while high agarose concentration allow resolution of small DNA fragments). The products of primers 'ITS 5 P ' and 'ITS 8P' are approximately 700 bp long, while that of primer ' c ' and primer ' f ' are approximately 1000 bp long both of which are suitable for analysing in 1.5% gel.
2. If the volume of liquid reduces considerably during heating due to evaporation, make up to the original volume with distilled water.
3. Ethidium bromide is a radioactive agent which is harmful upon contact.
4. Make sure that there are no air bubbles in the gel or trapped between the wells.
5. TBE buffer in a gel tank should slightly (1 mm) cover an agarose gel. Too little buffer will hinder the flow of electricity, whereas the electricity will
pass over an agarose gel, rather than go through the gel, with too much buffer.
6. Low V and longer time, for example 60 V and two hours, can be used as a combination to well separate DNA fragments.

A1.3 POLYMERASE CHAIN REACTION (PCR)

In order to decode or sequence a segment of DNA, current technologies require an adequate amount of the target segment that will be analysed. The polymerase chain reaction (PCR) (Mullis and Faloona, 1987; Mullis, 1990) which has been a driving force behind molecular biology researches since its invention is widely used to amplify in vitro a segment of DNA that lies between two regions of known sequence. The principle of this method is straightforward; the DNA segment flanked by two oligonucleotide primers is amplified in vitro by repeating a cycle of (1) heat denaturation of the DNA, (2) annealing the primers to their complementary sequences, and (3) extension of the primers with heat stable DNA polymerase. The components of every single PCR reaction that are DNA templates, primers, a DNA polymerase (with buffer to keep it active during the cycles) and free nucleotides each play a great role of whether a PCR reaction will be successful (with plenty of products) or not. Concentrations of each component in the specific volume must be optimal, along with an optimal profile of temperature used, in order to amplify successfully and correctly the target segment of DNA. This optimality is usually a subject of individual species or groups of species.

Despite of a careful handle of the PCR procedure, contamination sometimes arises and is a serious problem. Any amount of foreign DNA present will theoretically be amplified competing with the target DNA. A good laboratory will have a specific area and designated equipments used especially for the PCR. All equipments and chemicals should be autoclaved before use if it is possible. Reagents that are used regularly for PCR should be aliquoted into smaller amount tubes, making it easier to work with and can be easily discarded when contamination has
been detected. Every set of PCR reactions should have a negative control which has all the reagents as in others except a DNA template. A positive control which has a high quality of DNA template (highly amplifiable) should be included in the case of working with difficult species or herbarium specimen-DNA.

In this study, two main regions in the genome were amplified. The internal transcribed spacers (ITS), the 5.8 gene, and flanking regions of the 18 S and 26 S genes in nuclear DNA, and a segment comprising trnL intron and $\operatorname{trnL}-\mathrm{F}$ of chloroplast DNA were amplified from total genomic DNA. Double-stranded DNAs of the complete ITS regions in each genomic DNA were amplified using initially 2 primers, 'ITS 5P' and 'ITS 8P' (Möller and Cronk, 1997). Whereas the region of cpDNA was amplified using 2 primers, ' c ' and ' f ' (Taberlet et al., 1991). Later reactions and in sequencing step also used other primers i.e. 'ITS 1', 'ITS 3P', 'ITS 4' (Möller and Cronk, 1997); 'ITS 2K' (Rangsiruji, 1999); 'd' and 'e' (Taberlet et al., 1991).

PROCEDURE

The reaction (total volume $=50 \mu \mathrm{l}$) contained (in order of addition)

1. $32.5 \mu \mathrm{l}$ of sterile distilled water
2. $5.0 \mu \mathrm{l}$ of 10 x Dynazyme ${ }^{\text {TM }}$ reaction buffer
3. $1.0 \mu \mathrm{l}$ of a mix of each dNTP at 10 mM (final concentration $200 \mu \mathrm{M}$) (Sigma Chemicals, Poole, Dorset, UK)
4. $5.0 \mu \mathrm{l}$ of each primer at $10 \mu \mathrm{M}(50 \rho \mathrm{~mol}$, final concentration $1 \mu \mathrm{M}$) (can decrease down to $2 \mu \mathrm{l}$ without significant decrease of the products)
5. $0.5 \mu \mathrm{l}(1 \mathrm{U})$ of Dynazyme ${ }^{\mathrm{TM}} \mathrm{II}$ thermostable DNA polymerase (Finnzymes Oy, Espoo, Finland)
6. a $1.0 \mu \mathrm{l}$ aliquot of unquantified total genomic (template) DNA

The reaction solution can be prepared as a master mix for a set of run and aliquoted into each tube prior to adding the last component, DNA template. PCR amplification was carried out in $0.2-\mathrm{ml}$ microcentrifuge tubes in a thermal cycler.

Each PCR reaction cycle usually proceeded to a 30 cycles of: (1) 1 minute at $94{ }^{\circ} \mathrm{C}$ to denature the double-stranded template DNA; (2) 1 minute at $55^{\circ} \mathrm{C}$ to anneal primers to single-stranded template DNA; and (3) 1 minute and a half at $72^{\circ} \mathrm{C}$ to extend primers. The first cycle was preceded by an initial denaturation step of 3 minutes at $94^{\circ} \mathrm{C}$ and the last cycle was followed by a completion of extension at 72 ${ }^{\circ} \mathrm{C}$ for 7 minutes. This temperature profile was normally successfully used with both regions, ITS and $\operatorname{trnL}, \operatorname{trnL}-\mathrm{F}$. Each set of reactions was monitored by the inclusion of a negative (no template DNA) control. Three microlitres of each double-stranded DNA PCR product were resolved by electrophoresis. Successful PCR resulted in a single band of ethidium bromide corporated-DNA viewed under ultraviolet (UV) light corresponding to approximately 700 bp in ITS and 1000 bp in trnL, $\operatorname{trnL} \mathrm{L}-\mathrm{F}$.

STOCK SOLUTIONS

10x Dynazyme ${ }^{T M}$ reaction buffer (Finnzymes Oy, Espoo, Finland):
1X: 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.8$ at $25^{\circ} \mathrm{C}, 1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$
Triton X-100
Primers (Oswel DNA Service, Southampton, UK):
The primer sequences are (5^{\prime} to 3^{\prime})
'ITS 1 ' = TCC GTA GGT GAA CCT GCG G
'ITS 2 K ' = GGC ACA ACT TGC GTT CAA AG
'ITS 3P' = GCA TCG ATG AAG AAC GTA GC
'ITS 4' = TCC TCC GCT TAT TGA TAT GC
'ITS 5P' = GGA AGG AGA AGT CGT AAC AAG G
'ITS 8P' = CAC GCT TCT CCA GAC TAC A
' c ' = CGA AAT CGG TAG ACG CTA CG
' d ' = GGG GAT AGA GGG ACT TGA AC
' e ' = GGT TCA AGT CCC TCT ATC CC
' f ' = ATT TGA ACT GGT GAC ACG AG

Nature Taq DNA polymerase is isolated from Thermus aquaticus (thermophilic bacterium) found growing in hotsprings in Yellowstone National Park
(USA). One unit of DNA polymerase is defined as the amount of the enzyme that will incorporate free nucleotides into the extension of primer at the rate of 10 nmoles in 30 minutes at $74^{\circ} \mathrm{C}$ under the stated assay conditions.

POINTS TO NOTE

1. If you are fortunate to have more than one thermal cylcer in your lab, it is wise to stick to only one thermal cycler. Different thermal cyclers have different temperature control qualities. A parameter of thermal cyclers that can be adjusted but often ignored is a ramping time during two different set temperatures, i.e. heating up or cooling down. Besides, the pace of diffusing heat to the reaction tubes is also a factor of its quality. A poorly calibrated thermal cycler can have a dramatic effect on the sensitivity, specificity, and reproducibility of PCR. Some targets require precise cycling condition to prevent formation of secondary amplification products. Secondary products can form from hybridization of primers either to a pseudogene with a sequence that is similar to that of the actual target, or to a non-specific target.
2. A reaction volume can be either $25 \mu \mathrm{l}$ or $50 \mu \mathrm{l}$. This volume of a PCR reaction is not really a factor when working with a good template DNA. However, a reaction volume of $50 \mu 1$ is more likely to be successful than a reaction of $25 \mu 1$ for difficult species or herbarium specimen-DNA. This may account to a fact that greater amount of template DNA increases a chance of amplification.
3. Preparing the reaction solution as a master mix and then aliquoting it into each tube is really a better idea. Measuring a very minute amount of PCR's contents can be difficult and doing it all over for each individual tube is relatively time consuming. In addition, any set of reaction tubes can be sure that the contents are all the same (standard control), allowing a comparison of the products of the set.
4. Primers should be heated up prior to use from time to time if they have been kept for an extended period.
5. Please note the number of ITS primers, odd numbers are used for a forward direction and even numbers are used for a reverse direction. (see Figure 1.3 and 1.4 for the approximate position of each primer)
6. In this study, primers 'ITS 5P' and 'ITS 8P' were initially used for amplifying a region of ITS $1,5.8 \mathrm{~S}$ and ITS2. Later attempts were followed by using a set of primers 'ITS 1 ' and 'ITS 4' for the whole region which is shorter than that of primers 'ITS 5P' and 'ITS 8P' about a hundred of base pairs. Otherwise, an individual spacer, i.e. ITS1 and ITS2, could be amplified by a set of primers 'ITS 5P' and 'ITS 2 K ' for ITS1, and 'ITS 3 P ' and 'ITS 8P' for ITS2. There were again alternatives set of primers, 'ITS 1' and 'ITS 2K' for ITS1, and 'ITS 3P' and 'ITS 4' for ITS2. It was normally successful at the first attempt of amplification when working with a good DNA. However, it was found that some DNA required more than once on amplification.
7. Although there has never been observed in PCR products of ITS having more than one distinct band (presumably one product), using the same amount of primers in trnL, trnL-F caused some products having more than one clear band. The amount of primers was then reduced and it was observed on later trials that this factor has played a pivotal role in the PCR reaction of Zingiberaceae species (primer purity is also another factor).
8. Temperature profile in $\operatorname{trn} \mathrm{L}, \operatorname{trn} \mathrm{L}-\mathrm{F}$ is also an important factor in its amplification. Usually it was adjusted to increase stringency in the PCR reaction, i.e. increasing an annealing temperature to up to $62{ }^{\circ} \mathrm{C}$ and reducing the time to 30 second, in later reactions. The whole reaction could also be reduced to 25 cycles, instead of 30 .
9. It should be noted that the second band generated by a set of primer ' c ' and ' f ' in Alpinia study (Rangsiruji, 1999) is at the approximate length of 800 bp , apart from the referred one at 1000 bp . Whereas in this study, it is a much shorter one at about 300 bp .
10. The problem of the second band in trnL-F may be further tackled by: 1 . The PCR techniques 'hot start' or 'step down' could be employed; 2. Gel
purification, select only the right size band i.e. about 1000 bp and discard the second one (in this study, the band is about 300 bp); 3. Primer redesigning for the region in the problematic species of Zingiberaceae e.g. Hedychium spp., to increase the stringency of the annealing stage.

A1.4 PURIFICATION OF PCR PRODUCT

The efficiency of the sequencing reaction can be improved by purifying the PCR-generated DNA template prior to sequencing. Contaminants in the templates, such as residual primers and nucleotides reduce the quality of sequence data. In this study, the templates were purified by using a QIAGEN QIAquick PCR Purification Kit. This kit is designed to purify single- or double-stranded PCR products ranging from 100-10000 base pair from primers, nucleotides, polymerases and salts using the QIAquick spin columns in a microcentrifuge (QIAGEN, 1997b).

PROCEDURE

1. 5 volumes of Buffer PB were added and mixed to 1 volume of the PCR reaction.
2. A QIAquick spin column was placed in a provided 2-ml collection tube.
3. To bind DNA, the sample was applied to the QIAquick column and centrifuged for 1 minute.
4. The flow-through was discarded. The QIAquick column was then put back into the same tube.
5. To wash, 0.75 ml Buffer PE were added to the column and centrifuged for 1 minute.
6. Again, the flow-through was discarded and the QIAquick column was placed back in the same tube. It was centrifuged for an additional 1 minute.
7. The QIAquick column was then placed in a clean $1.5-\mathrm{ml}$ microcentrifuge tube.
8. To elute DNA, 50μ l Buffer EB were added (10 mM Tris-Cl, pH 8.5) or $\mathrm{H}_{2} \mathrm{O}$ to the centre of the QIAquick column and the tube was centrifuged for 1 minute. Alternatively, for increased DNA concentration, a reduced Buffer EB or $\mathrm{H}_{2} \mathrm{O}$ at $30 \mu \mathrm{l}$ was added instead to the center of the QIAquick column. Then it was left for 1 minute and centrifuged.

Ethanol (96-100\%) was added to Buffer PE before use (see bottle label for volume). All centrifuge steps were at 13000 rpm in a conventional tabletop microcentrifuge. Elution efficiency is dependent on pH . The maximum elution efficiency is achieved between pH 7.0 and 8.5. When using water, make sure that the pH value is within the range, and store DNA at $-20^{\circ} \mathrm{C}$ as DNA may degrade in the absence of a buffering agent.

A1.5 AUTOMATED CYCLE SEQUENCING

Purified PCR products were sequenced using the ABI PRISM ${ }^{\text {TM }}$ dRhodamine $^{\text {d }}$ Terminator Cycle Sequencing Kit (Perkin Elmer, Applied Biosystems Division, Warrington, UK), with AmpliTaq ${ }^{\circledR}$ DNA polymerase, FS, according to the manufacturer's recommendations. The chemistry of dye terminator method is that the PCR products that are to be analysed then are fluorescently labeled by incorporating fluorescently labeled dideoxynucleotides. Each . different dideoxynucleotides is labeled with a different fluorophore so the sequencing reaction can be performed in a single tube provided with all the components of a normal PCR reaction plus all of the four fluorescently labeled dideoxynucleotides. As a result of incorporating the fluorescently labeled dideoxynucleotides, the extension of the sequencing primer terminates. In general, DNA fragments of the same size generated in the sequencing reaction are labeled at the 3^{\prime} end with the same dye. Then they are separated by running through a gel. As the sequencing products pass through the gel at a fixed point, the fluorophore is excited by a laser and the fluorescence emission is produced and measured making up a sequence of DNA. The PCR products were sequenced in both strands to reduce any potential error. Sequencing products were analysed on an

ABI 377 Prism Automatic DNA Sequencer (Perkin Elmer, Applied Biosystems Division, Foster City, CA, USA), according to the manual supplied (This stage was carried out by Nicola Preston, ICMB's former sequencing staff, and later Dr Michelle Hollingsworth and Alexandrea Ponge at RBGE).

PROCEDURE

Each reaction was $20 \mu \mathrm{l}$ in volume and contained (in order of addition) $6 \mu \mathrm{l}$ of sterile distilled water, $8 \mu \mathrm{l}$ of Reaction Mix, $1 \mu \mathrm{l}$ of primer at $3.2 \mu \mathrm{M}(3.2 \rho \mathrm{~mol})$ and $5 \mu 1$ of purified PCR product. For each taxon forward and reverse sequencing reactions were performed for sequence confirmation. Sequencing primers were those used in the PCR amplification.

The automated cycle sequencing profile is a cycle of, the denaturation of the PCR products at $96^{\circ} \mathrm{C}$ for 10 seconds, the annealing of the sequencing primer at 50 ${ }^{\circ} \mathrm{C}$ for 5 seconds and the extension of the sequencing product at $60^{\circ} \mathrm{C}$ for 4 minutes. This cycle was repeated 25 times and followed with keeping the final sequencing products at $4{ }^{\circ} \mathrm{C}$ till required.

POINTS TO NOTE

1. Originally all sequencing reactions were carried out at a $20 \mu 1$ scale. It was later reduced to a $10 \mu \mathrm{l}$ scale upon finding that the result sequences were as good as at the original scale. However, it was found that any variation occurred in the reaction tube in a $10 \mu \mathrm{l}$ scale had greater affect to the result sequence than in a $20 \mu \mathrm{l}$ scale. It is thus best to use a $20 \mu \mathrm{l}$ scale for a sequencing of long stretch of DNA (in this case, trnL which is about 600 bp in Zingiberaceae). Sequencing of ITS1, ITS2 (both about 200 bp) and trnL-F (about 300 bp) posed no problem at the $10 \mu \mathrm{l}$ scale. It is also possible to reduce the reaction mix to $6 \mu \mathrm{l}$ in a $20 \mu \mathrm{l}$ scale and use as a standard scale.
2. Try to use internal primers for sequencing reactions. For example, primers 'ITS 2 K ' and 'ITS 3 P ' are used in sequencing reactions of the products originally generating from a set of primers 'ITS 5 '' and 'ITS 8 P '.
3. The amount of purified DNA template in the procedure is roughly calculated, from a clear band in the checking gel, to be optimal for the sequencing reaction. Each purified PCR products has different concentration of DNA template, so it should be individually determined of how much is optimal for the sequencing reaction. This needed amount of DNA template for the sequencing reaction is normally suggested by the sequencing kit's company used (ABI). Normally, $5-10 \mathrm{ng}$ of amplified frangment are required to any 100 bp . sequencing.

A1.6 PRECIPITATION OF CYCLE SEQUENCING PRODUCT

After finishing the thermal cycler run, the next step was the removal of excess dye. Ethanol precipitation aims to discard the excess, unincorporated dye terminators from the extension products.

PROCEDURE 1

1. A $0.75-\mathrm{ml}$ microcentrifuge tube was prepared for each reaction by adding the followings: $2 \mu \mathrm{l}$ 3M Sodium acetate, pH 4.6 and $50 \mu \mathrm{l} 100 \%$ ethanol.
2. The entire $20 \mu \mathrm{l}$ contents of the tubes from the cycle sequencing reaction were transferred to the ethanol solution and shortly spinned with a vortex.
3. The tube was then placed on ice for 10 minutes.
4. Next, it was centrifuged at 13000 rpm for 30 minutes.
5. The ethanol solution was carefully aspirated with a micropipetter. The solution was removed as completely as possible.
6. The pellet was rinsed by adding $250 \mu 170 \%$ ethanol, and left for 1 minute.
7. The tube was then centrifuged at 13000 rpm for 2 minutes.
8. Again, the alcohol solution was carefully aspirated. Be careful not to disturb the pellet that may or may not be visible.
9. The pellet was dried in a vacuum centrifuge at medium temperature for 35 minutes.
10. The sample was kept at $-20^{\circ} \mathrm{C}$ before proceeding to an electrophoresis process in a sequencing machine (ABI 377).

PROCEDURE 2

This protocol is intended for use with AmpliTaq ${ }^{\circledR}$ DNA Polymearase, FS (Taq FS) dye terminator chemistry. The ABI PrismTM Dye Terminator Cycle Sequencing Kits with AmpliTaq ${ }^{\circledR}$ DNA Polymearase, FS use much lower amounts of dye terminator than kits with AmpliTaq ${ }^{\circledR}$ DNA Polymearase. As a consequence, a simple ethanol precipitation protocol can now be used for the removal of unincorporated dye terminators from the extension products.

Use of this protocol may leave some residual dye-labeled terminators in the sample, but only small peaks should be observed in the electropherogram and should not affect the base calling above base 40 . The use of procedure 2.1 (not pursued in this study) will result in no residual dye-labeled terminators in the sample. 70\% ethanol with $0.5 \mathrm{mM} \mathrm{MgCl}_{2}$ is made by mixing 70% ethanol and $0.5 \mathrm{M} \mathrm{MgCl}_{2}$ at 1000:1 volumetric ratio.

1. A $0.75-\mathrm{ml}$ microcentrifuge tube was prepared for each reaction by adding $37 \mu \mathrm{~L} 70 \%$ ethanol with 0.5 mM MgCl 2 .
2. The entire $10 \mu \mathrm{l}$ contents of the sequencing product were transferred to the microcentrifuge tube containing the ethanol solution. The tube was then spinned with a vortex briefly.
3. The solution tube was left at room temperature for 15 minutes to precipitate the extension products. (A precipitation time of less than 5 minutes will result in loss of very short extension products, precipitation
time greater than 24 hours will increase the precipitation of the unincorporated dye terminators)
4. The solution tube was centrifuged at 13000 rpm . for 15 minutes.
5. The supernatant was discarded immediately after step 4. The supernatant must be completely removed (This is because unincorporated dye-labeled terminators are dissolved in the supernatant).
6. The sample tube was visually inspected, if there was any residual supernatant, it was briefly centrifuged (5-10 seconds) and then aspirated.
7. The pellet was dried in a vacuum centrifuge for 1-3 minutes.

Procedure 2 gives a slightly better sequence than the procedure 1 when other control factors are all the same.

PROCEDURE 2.1

(Optional further reduction of unincorporated dye-labeled terminators by shrimp alkaline phosphatase (SAP) digestion)

At the end of dye terminator sequencing reaction add $2 \mu \mathrm{~L}$ of SAP (1 unit $/ \mu \mathrm{L}$) and $18 \mu \mathrm{~L}$ of SAP buffer to the reaction tube. Re-seal the reaction tube and incubate at $37^{\circ} \mathrm{C}$ for 30 minutes. The SAP digested reaction is then ethanol precipitated using the above method with the following modifications.

1. After completion of the SAP reaction, add $150 \mu \mathrm{~L}$ of 70% ethanol with 0.5 mM MgCl 2 to this tube (or add $40 \mu \mathrm{~L}$ of $2 \mathrm{mM} \mathrm{MgCl}_{2}$ and then 110 $\mu \mathrm{L}$ of 95% ethanol). Cap the tube and spin with a vortex briefly.
2. Go to step 3 in the method above.

POINTS TO NOTE

All the methods presented above can be further consulted at Qiagen website, www.qiagen.com/literature, which iucludes many useful handbooks, application guides and newsletter.

A1.7 SEQUENCE ANALYSIS

All sequences were verified by comparison of their forward and reverse sequences simultaneously using Factura ${ }^{\mathrm{TM}}$ version 2 and later Autoassembler ${ }^{\mathrm{TM}}$. Sequence boundaries of both internal transcribed spacers of all taxa were determined by comparison with published rDNA sequence data for Daucus carota, Vicia faba (Yokota et al., 1989) and Alpinia spp. (Rangsiruji, 1999). Both ITS regions were aligned using the CLUSTAL option in the multiple alignment program Sequence Navigator ${ }^{\text {TM }}$ Version 1.0.1 and CLUSTAL X, with minor manual adjustments. A transition/transversion ratio was determined using MacClade Version 3.0.1 (Maddison and Maddison, 1992). Sequence characteristics, such as sequence divergence, number of constant sites, variable sites and G+C content were calculated in PAUP* (Phylogenetic Analysis Using Parsimony) version 4.0b4 (Swofford, 1998).

The sequence boundaries of the $t r n \mathrm{~L}-\mathrm{F}$ region started at the base number 41 counted from the end of primer ' c ' and stopped at the base positioned 16 away from the beginning of primer ' f '. The sequences in this range were, in most of the species, complete and unambiguously alignable. These sequences were also determined with Alpineae species (Rangsiruji, 1999). All computer programs and methods for the sequence analyses followed those of the ITS sequence.

POINTS TO NOTE

1. For some species, both strands of sequences confirmed polymorphic sites, i.e. more than one clear base calling, or in some rare cases indels sites. In the case of they were interpretable and able to give a consensus sequence,
this consensus sequence was thus used in later phylogenetic studies.
2. In some cases, it was not possible to obtain an interpretable good sequence, for instance some products of trnL, this problem could be solved by applying stricter conditions or a cloning technique.

A1.8 PHYLOGENETIC ANALYSIS

Phylogenetic trees were generated using PAUP* Version 4.0b4 (Swofford, 1998), run on a Power Macintosh $6400 / 200$ or $G 4$ with character states unordered. The branch-and-bound search option, which guarantees to find the shortest tree or trees, was selected for the analyses that contain less than 20 species, with MULPARS and furthest addition sequence options. Heurustic serach is an alternative option in searching the best trees for a large data matrix. Although it does not guaruntee to find the best trees, it is fast and efficient to recover the nearest true trees. Different addition sequence and different branch swapping are employed in the analyses helping to find the best trees (usually tree bisection-reconnection (TBR) branch swapping and random taxon addition sequence were used). Then successive weighting searches were applied, using Rescaled Consistency index (RC, mean value) (Swofford, 1993) until the tree length of resulting tree remains unchanged.

Descriptive statistics reflecting the amount of phylogenetic signal in the parsimony analyses were given by consistency index (CI) (Kluge and Farris, 1969), retention index (RI) (Farris, 1989), and resulting rescaled consistency index (RC) (Swofford, 1993). Additionally, the g_{1} statistics (Hillis and Huelsenbeck, 1992) were obtained by calculating the tree-length distribution of 10000 random trees using RANDOM TREES under PAUP* to assess the amount of phylogenetic signal in the data set, in comparison to random noise. The strength of individual clades of the trees were evaluated by using bootstrap value (Felsenstein, 1985) and decay index (Bremer, 1988; Donoghue et al., 1992). The bootstrap values were performed in PAUP*, set to branch-and-bound search option and 1000 replicates. The decay indices were obtained by comparing the strict consensus of all equal-length trees up
to four steps longer than the shortest tree, using branch-and-bound search option.

For all analyses of sequence data, gaps (indels) were treated as missing data, i.e. do not affect the analysis in any way (Soltis and Kuzoff, 1995; Susanna et al., 1995; Downie and KatzDownie, 1996). Indels were scored as a separate presence/absence character and added to the sequence data matrix (Oxelman and Liden, 1995; Wojciechowski et al., 1993). To investigate the effect of these additional data, a separate analysis without indels scored as characters was undertaken. Character-state changes were weighted equally, except for some analyses in which character-state weighting parsimony was implemented: transversions were weighted over transitions by the observed ratio, e.g. 1.7 in ITS1 and ITS2 of the Roscoea study.

APPENDIX TWO: A MATRIX OF ITS SEQUENCES OF THE HEDYCHIEAE (CHAPTER TWO)

Alpinia
Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B.longiflora
B.aff.longiflora

Camptandra.ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C.amada
C.ecomata
C. harmandii
C.parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium. coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K.rotunda

Paracautleya
Pommereschea
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Rhynchanthus Scaphochlamys.kunstleri S.lanceolata Smithatris Stahlianthus Zingiber

ITS1
TTGTTGAG--AGTGCATT----GAATGATGGATGGTTGCGAATGTGTCAACGTGCCCC---TTT TTGTTGAG--AGAGCACA-----GAATGATGGATGGTTGTGAATGTGTCAACGTGTCCC---TTT TTGTTGAGGGAGAGCATT-----GAATGATGGATGGTTGTGAATGTGTTAACGTGCCCC--TTGTTGAG--AGAGCACA-----GAATGATGGATGGTTGTGAACGTGTGAATGCGCCCC---TTT TTGTTGAG--AGAGCATA----GAATGATGGATGGTTGTGAACCTGTGAATGCGTCCC-- TTT ?????????????????????????ATGATGGATGGTTGTGAACGTGTGAATGCGCCGC---TTT TTGTTGAG--AGAGCATA-----GAATGATGGATGGTTGTGAACGTGTGAATGCGTCCC---TTT TTGTTGAG--AGAGCATA-----AAATGATGGATGGTTGTGAACGTGTGAATGTGTCCC---TTT TTGTTGAG--AGAGCATA-----AAATGATGGATGGTTGTGAACGTGTGAATGTGTCCC---TTT ?GATTGATGGATAATTGTGAATGTGTGAACGTGCCCC---TTT TTGTTGAG--AGAGCATA-----GATAGATGGATGATTGTGAATGTGTGAATGTGGCCC---TTT TTGTTGAG--AGAGCATA-----GAATGACGGATGATTGTGAACGTGTGAATGCGCCCC---TTT TTGTTGAG--AGAGCATA----GAATGATGGATGGTTGTGAATGTGTAAATGTGCCCC-- TTT TTGTTGAG--AGAGCATA-----GAATGACGGATGGTTGTGAACGCGTGAATGTGTCCC---TTT TTGTTGAG--AGAGCATA-- TAGAATGACGGATGAATGTGAACGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCATAGCATRGAATGATGGATGATTGCGAACGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCATA-----GAATGATGGATGATTGTGAATGTGTGAACGCGACCC---TTT TTGTTGAG--AGAGCATA---TAGAATGATGGATGAATGTGAATGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCATA---TAGAATGACGGATGAATGTGAATGTGTGAACGTGACCC-- - TTT TTGTTGAG--AGAGCATA-TATAGAATGATGGATGATTGTGAACGTGTGAACGCGACCC---TTT TTGTTGAG--AGAGCATA-----CAATGACGGATGGTTGTGAATGTGTGAATGCGTCTC---TTT TTGTTGAGAGAGAGCATA---- GAATGATGGATGATTGTGAATGTGTGAACGTGCCCC---TTT TTGTTGAG--AGAGCACA-----AGACGATGGATGGTTGTGAATGTGTGAACGCGCCCC---TTT TTGTTGAG--AGAGCACA-----AGACGATGGATGGTTGTGAATGTGTGAACGCGCCCC---TTT TTGTTGAG--AGAGCAYA-----AGACGATGGATGGTTGTGAATGTGTGAACGCGCCCC-- - TTT TTGTTGAG--AGAGCATA----AGACGATGGATGATTGCGAATGTGTGAACGCGCCCC-- - TTT TTGTCGAG--AGAGCATA-----AGACGATGGATGGTTGTGAACGTGTGAACGCGCCCC---TTT TTGTTGAG--AGAGCATAGAAT-GATGGATGGATGATTGTGAATGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCATC-----GAATGACGGATGTTTGTGAACGTGTGAATGCTTCCT---CCT TTGTTGAG--AGAGCACAACACAGAATGACGGATGGT-GCGAACGTGTGAATGTGTCCCT--TTC TTGTTGAG--AGAGCACG-----GACCGATGGATGGTTGTGAATGTGTGAATGTGTCCC---TTC TTGTTGAG--AGAGCATAGAAT-GATGGA----TGATTGTGAATGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCACA-----GAATGACGAATGTTTGTGAATGTGTGAATGCGCCCCT--TTC TTGTTGAG--AGAGTATA-----GAATGATGGATGATTGTGAATGTGTGAGCGTGCTCC---TTT TTGTTGAG--AGAGCATA-----GAATGACGGATGGTTGTGAATGTGTGAATGTGCCCC---TTT TTGTTGAG--AGAGCACA-----GAATGACGGATGGTTGTGAATGTGTGAATGTGCCCC---TTT TTGTTGAG--AGAGCATA-----GAATGATGGATGGTTGTGAATGTGTGAATGTGCCCC---TTT TTGTTGAG--AGAACATAACACAAAATGACGGATGGTTGCGAATGTGTGAATGTGTCCCT--TTT TTGTTGAGASAKAAAATT----AAATGGACGGTTGTTTTTGATTGTTTGAWTCCTYCCC---TTC TTGTTGAG--AGAGCATA-----GAATGATGGATGATTGTGAACGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCATA---TAGAATGATGGACGAATGTGAATGTGTGAACGTGACCC---TTT TTGTTGAG--AGAGCATA---TAGAATGACGGATGGCTGCGAACGTGTGAATGTGTCCCCCCTTT
[55]
[55]
[55]
[55]
[62]
[55]
[55]
[55]
[60]
[55]
[57]
[57]
59]
[55]
[55]
[55]
[55]
[55]
[55]
[59]
[55]
[60]
[55]
[56]
[55]
[55]
Alpinia
Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B.longiflora
B.aff.longiflora
Camptandra.ovata
C.parvula
Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C.amada
C.ecomata
C.harmandii
C.parviflora
C.rubescens
Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.
Hitchenia
Kaempferia.angustifolia
K.elegans
K.rotunda
Paracautleya
Pommereschea
Pyrgophyllum
Roscoea.bhutanica
R.humeana
Rhynchanthus
Scaphochlamys.kunstleri
S.lanceolata
Smithatris
Stahlianthus
Zingiber

Alpinia pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B. longiflora
B.aff.longiflora

Camptandra. ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia Curcuma.alismatifolia
C.amada
C. ecomata
C. harmandii
C. parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K.rotunda

Paracautleya
Pommereschea
Pyrgophyllum Roscoea.bhutanica R.humeana Rhynchanthus Scaphochlamys.kunstleri S.lanceolata Smithatris Stahlianthus zingiber

AATT-GATCGTAG-CTCGGTGCGATCGGCACCAAGGAATAA-TAA--------- - ACTGAGAAGC GTTT-GACCCTAC-TTCGGTGCGATCGGCACCAAGGAATAA-TGA--.-.------ACTCAGAAGG AATT-GACCGTAG-CTCGGTGCGATCGGCACCAAGGAACAA-TGA--------- ACTTAGAAGC -ATT-GACCGTAG-CTCGGTGCGATCCGCACTAAGGAACAA-TGA----------ACTCGGAAGC -ATT-GACCGTAG-CTCGGTGCGATCCGCACTAAGGAACAA-TGA----------ACTCGGAAGC -ATC-GACCGWWG-CTCGGTGCGATCCGCACTAAGGAACAA-TGA-.......-.-.-. - ACTCGGAAGC
-ATT-GACCGTAG-CTCAGTGCGATCCGCACTAAGGAACAA-TGA----------ACTCGGAAGC
-ATT-GACTAGAG-CTCGGTGCGATCCGCACTAAGGAACAA-TAA-........-.-ACTCGGAAGC
-ATT-GACTAGAG-CTCGGTGCGATCAGCACTAAGGAACAA-TAA---------ACTCGGAAGC GATT-GACCATAV-CTCAGTGCGATCGGCACTAAGGAACAA-TGA-......-.--ACTCGGGAGC GATTTGACCATAAGCTCAGTGCGATCGGCACTAAGGAACAA-TGA---------ACTCGGAAGC -ATT-GACCGTAG-CTCGGTGCGATCCGCACTAAGGAACAA-CGA--.--------ACTCGGAAGC GATT-GACCGTAG-CTCAGTGCGATCGGCACTAAGGAACAA-TGA----------ACTCGGAAGC GATC-GACCGTAG-CTCAGTGCGATCGGCACTAAGGAACAA-TGA---------ACTCGGAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA----------ACTTGAAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-CGA---------ACTTGGAAGC GATT-GAC--TA----CGGTGCGATCGGCACTAAGGAACAA-TGA----------ACTCGGAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA-...........-ATTTGAAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA---......--ACTTGAAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-CGA---------ACTTGGAAGC GATT-GACCATAG-CTCGGTGCGATCAGCACTAAGGAACAA-TAAGGAACAATGAACTCGGAAGC AATT-GACCGCAG-CCCGGTGCGATCGGCACTAAGGAATAA-TGA--......---ACTCGGAAGC GATT-GACCGTAG-CCGGGTGCGATCGGCACCAAGGAACAA-TGA-...............ACTCGGAAGC GATT-GACCGTAG-CCGGGTGCGATCGGCACCAAGGAACAA-TGA--------- - ACTCGGAAGC GATT-GACCGTAG-CCGGGTGCGATCGGCACCAAGGAACAA-TGA-.............ACTCGGAAGC GATT-GACCGTAG-CCGGGTGCGATCGGCACCAAGGAACAA-TGA--..-.-----ACTCGGAAGC GATT-GACCGTAG-CCGGGTGCGATCGGCACCAAGGAACAA-TGA----------ACTCGGAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA--.......--ACTTGGAAGC GATT-GACCATCA-ATCGCTGCGACCGGCACTMAGGAACAA-TGA----------ATTCAGAMGC GATT-GACCGTAG-CTCGGTGCGATCAGCACTAAGGAACAA-TGAATG------AACTCGGAAGC GGTT-GACCGTCG-STCRGTCCGTTCGGCAYTAAGKAACAA-TSA----------ATTMCGAMGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA----------ACTTGGAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA--.......--ACTCGGAAGC GATT-GAACGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA---------ACTCGAAAGC GATT-GACCGTAG-CTCAGTGCGATCGGCACTAAGGAACAA-TGA----------ACTCGGAAGC GATT-GACCGTAG-CTCAGTGCGATCGGCACTAAGGAACAA-TGA----------ACTCGGAAGC GATT-GACTGTAT-CTCGGTGCGATCGGCACTAAGGAAAAA-TGA-- $-\cdots-A_{-}^{-}$- ACTCGGGAGC GAAT-GACCGTAG-CTCGGTGCGATCGGCACTAASGAACAA-TGA---------ACTCGGAAGC GATT-G-CCSTTGGTTGGTTCCGTCCGCCATTAGGGACCAT-TGA----------ATTCGGARCC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA--....------ACTCGGAAGC GATT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAA-TGA-...........-ACTTGAAAGC GGTT-GACCGTAG-CTCGGTGCGATCGGCACTAAGGAACAAATGA--.......-. - ACTCGGAAGC
(128] [129]

Alpinia
Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B.longiflora
B.aff.longiflora

Camptandra. ovata
C.parrula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C. amada
C. ecomata
C. harmandii
C. parviflora
C.rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya
pommereschea
Pyrgophyllum
Roscoea.bhutanica
R. humeana
Rhynchanthus Scaphochlamys.kunstleri S.lanceolata Smithatris Stahlianthus zingiber

AAAGGGCCC--TCGGTGTGTGCGGGG--AGCCCAATGCGTCGGAGAAGCCTCGAAA-TCAAA--- [185]
AGAGGGCCC--TCGGCGTGCGTGGGG--AGCCCAATGCTTCGGAGACAGCTCGAAAATCAAA-- [186]
AGAGGGCCC--TCGATGTGCGCGGGG--AGCCCAATGCGGAGGAGATGCCACGGAA-TCGAA--- [186]
AGACGGCCCC-CCGGCGTGCGCGAGGG-AGCCCGATGCATCGGAGATTCCTCGGAA-TCAAA-- [192]
AGAGGGCCCC-TTGGCATGCAC-AGGT-AGCCCAATGCGTCAGAGATTCCTCGGAA-TCAAA--- [185]
AGACGGCTCC-CCGGCGTGCGCGAGGG-AGCCCGATGCGTCGGAGATTCCTCGGAG-TCAAA--- [195]
GGAGGGCCCC-TTGTCGTGCAC-AGGG-AGCCCAACGCGTCGAGGATTGCTCGGAA-TCAAA--- [185]
AGAGGRCCCC-TTGGCRTGCAC-AGGG-AGCCCAATGCRTCGGAGATTCCTCGGAA-TCAAA--- [185]
AGARGGCCCC-TTGGCGTGCAC-AGGG-AGCCCAATGCGTCGGAGATTCCTCGGAA-TCAAA-- [185]
AAAGGGCCCC-TTGGCGTGCGCGGGG--AGCCCATTRCWTCAAASATTCCTCGKAA-TCAAA--- [193]
AGAGGACCCC-TCGGCGTGCGCGGGG--AGCCCAATGCATCGGAGATTCCTCGTAA-TCAAA-- [188]
AGACGGGCCC--------CGC-AAGGGAGCCCGATGCGTCGGAGATTCCTCGGAA-TCAAA--- [180]
AGAGGGCCCC-TTGGCGTGCGCGGGGG-AGCCCAATGCGTCGGAGATTTTTCGAAA-TCAAA--- [187]
GGAGGGCTCC-TCGGCGTGCGC-AGGG-AGCCCAATGCGTCGGAGATTCCTCGGAA-TCAAAA-- [191]
AGAGGGCCCC-TTGGCGTGAGCGGGG--AGCACAATGCGTCGAAGATTCTTCGGAA-TCAAA--- [188]
AGAGGGCCCCCTTAGCGTGAGCGGGG--AGCCCAATGCGTCGGAGATTCTTCGGAA-TCAAA--- [196]
AGAGGGCCCC-TTGCTGTGAGCGGGG--AGCCCAATGCATCGAAGATTCCTCGGAA-TCAAA- -- [181]
AGAGGGCCCC-TTGGCGTGAGCGGGG--AGCACAATGCGTCGAAGATTCTTCGGAA-TCAAA--- [188]
AGAGGGCCCC-TTGGCGTGAGCGGGG--AGCACAATGCRTCGAAGATTCTTCGGAA-TCAAA--- [188]
AGAAGGCCCCCTTAGCGTGAGCGGGG--AGCCCAATGCGTCGGAGATTCTTCGGAA-TCAAA--- [194]
AAAGGGCCCC-TTGGCGTGCAC-AGGG-AGCCCAATGCGTCGGAGATTCCTCGGAA-CCAAA--- [202]
AGACGGCCCC-TTGGCGTGCGC-AGGG-AGCCCAATGCGTCGGAGATTCCTCGGAA-TCAAA--- [192]
AGAGGGCCCC-TCGACGTGCGCGGGGGGAGCCCAATGCGTCGGAGACTCCTCGAAA-TCAAA--- [192]
AGAGGGCCCC-TCGACGTGCGCGGGGGGAGCCCAATGCGTCGGAGACTCCTCGAAA-TCAAA-- - [192]
AGAGGGCCCC-TCGACGTGCGCGGGGGGAGCCCAATGCGTCGGAGACTCCTCGAAA-TCAAA-- [192]
AGAGGGCCCC-TCGACGTGCGCGGGGG-AGCCCAATGCGTCGGAGATTCCTCGGAA-TCAAA--- [191]
AGAGGGCCCC-TCGACGTGCGCGGGGG-AGCCCAATGCGTCGGAGATTCCTCGGAA-TCAAA--- [192]
AGAGGGCCCC-TCAGCGTGAGCGGGG--AGCCCAATGCGTCGGAGATTCTTCGGAA-TCAAA--- [189]
AGACGGCCCS-CYCCCTTCCGC-AGGC-AGSCCMCTGCATCAGTGATTCCTCCGAA-TCAATCAT [193]
AGAGGGCTCC-TTGGCGTGCAC-AGGG-GGCCCAATGCGTCGGAGATTCCTCGGGAATCAATCAA [239]
AGASGGCCCC-CYGGCGTGCTC-AGGG-AGCCCAATGCGTCGGAGATTSWTCGGAA-TCAATCAA [191]
AGAGGGCCCC-TTAGCGTGAGCGGGG--AGCACAATGCGTCGGAGATTCTTCGGAA-TCAAA--- [186]
AGAAGGCCCC-TTGCCGTGCGCGGGG--AGCCTAATGCGTCGGAGATTCCTCGGAA-TCAAA--- [186]
AGAGGGTCCC-TTGGCGTGCCCGGGG--AGCCAAAAGCATCGTAGATTCCTCGGAA-TCAAAA-- [187]
AGAGGGCCCC-TTGGCGTGCCCGGGG--AGCCCAATGCGTCGGAGATTTCTCGAAA-TCAAA--- [185]
AGAGGGCCCC-TCGGCGTGCGCGGGGGGAGCCCGATGCGTCGGAGATATCTCGAAA-TCAAA-- [187]
AGAGGGCCCC-TCGGCGTGCGCGGGG--AGCCTAATGCATCGGAGATTCCTCGGAA-TCAAA--- [188]
AAAGGKTCCC-TTGGCGTGCGC-AASG-AGCCCGATGCGTCGGAGATTCCTCGGAA-TCAAA--- [191]
AARGGTTCCC-TTGGCTTGCCC-ARGGGGACCCCATKSCTYCGGGGTTCCTTCGGA-TCCAAA-- [196]
AGAGGGCCCC-TCGCCGTGAGCGGGG--AGCACAATGCGTCGAAGATTCTTCGGAA-TCAAA--- [186]
AGAGGGCCCC-TTGGCGTGAGCGGGG--AGCACAATGCGTCAAAGATTCTTCGGAA-TCAAA--- [188]
GGAGGGCCCC-TTGGCGTGCAC-AGGGGAGCCCAATGCGTCGGAGATTCCTCGGAA-TCAAA--- [214]
[

Alpinia Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B.longiflora
B.aff.longiflora

Camptandra. ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C. amada
C.ecomata
C. harmandii
C. parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium. coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya
Pommereschea
Pyrgophyllum Roscoea.bhutanica R. humeana Rhynchanthus Scaphochlamys.kunstleri S.lanceolata Smithatris Stahlianthus zingiber
5.8 S

- - TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT - TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTTGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAAAACGTAGTGAAATGCGATACT
- TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- - TGACTCTCGACAATGGATATCTCGGCTCCTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--TGACTCTCGGCAATGGATATCTCGGCTCCTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- - TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -CGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAA-TGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- - TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- - TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCCCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCYTGYATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
-ATGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT AATGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT - ATGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTYTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGMAATGCGATACT
--TGA??
- - TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
- -TGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
--CGACTCTCGGCAATGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGTGAAATGCGATACT
(248]
[249]
[249]
[255]
[248]
[258]
[248]
[248]
[248]
[256]
[251]
[243]
[250]
[254]
[251]
[258]
[244]
[251]
[251]
[257]
[265]
[255]
[255]
[255]
[255]
[254]
[255]
[252]
[257]
[304]
[255]
[249]
[249]
[250]
[248]
[250]
[251]
[254]
[259]
[249]
[251]
[277]
$\left.\begin{array}{lllllllll}{[} & \cdot & 330 & 340 & 350 & 360 & 370 & 380 & 390] \\ {[} & \cdot & \cdot & \cdot & \cdot & \cdot & . & .\end{array}\right]$

Alpinia
Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B. cordata
B.gelatinosa
B.longiflora
B.aff.longiflora

Camptandra.ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C. amada
C. ecomata
c. harmandii
C. parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya
Pommereschea
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Rhynchanthus
Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
Zingiber

TGGTGTGAATTGCAGAATCTCGTGAATCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGGAGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTCGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTC TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGCGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG -GGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGCGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGCGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAȦTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG -GGTGTCAATTGCAGAATCTC-TGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTC TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTC TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTC TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCTCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAACCATTGAGTCTTTGAACGCAAGTTGTGCCTGAGGCCTTG TGGTGTGAATGC??? ??????????????????????????????????GTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGCGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGCGAACCATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG TGGTGTGAATTGCAGAATCTCGTGAA-CATTGAGTCTTTGAACGCAAGTTGTGCCCGAGGCCTTG
[313]
[314]
[320]
[313]
[323]
[313]
[313]
[313]
[321]
[316]
[308]
[315]
[319]
[316]
[322]
[
[

Alpinia

Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B. cordata
B.gelatinosa
B.longiflora
B.aff.longiflora

Camptandra.ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C.amada
C. ecomata
C.harmandii
C.parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia.
K.elegans
K. rotunda

Paracautleya
Pommereschea
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Rhynchanthus
Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber

400
410

TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCCTTTGCTCCTTG--CTTT-----G [371] TGGCCGA-GGCACGCCTGCTTGGGCGTCATTGCATCGTCGCTTTTGCTCCCTG--CCTT-----G [371] CGGTCGAGGGCACGCCTGCTTGGGCGTCATCGCATCGTCGCCTTTGCTCCTCT--CTTT----G [372] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCCTTCGCTCCATG--CGTG-----G [378] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGGCATCGTCGCCTTTGCTGCATG--CATT----G [371] TGACCGAGGGCACGCCTGCTTGGGCGTCATGTCATCGTCGCCTTCGCWCCATG--CRTG-----G [381] TGGTCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCCTTGGCTCCATG--CGTT-----G [371]
TGGTCGAGGGCACGCCTGCTTGGGCGCCATGGCATCGTCGCCTTTGCTCCAAG--CGTT----G [371]
TGGTCGAGGGCACGCCTGCTTGGGCGCCATGGCATCGTCGCCTTTACTCCGAG--CGTT-----G [371]
TGGCCGAGGGCACGCCTGCTTGGGTGTCATGGCATCGTCGCTTTTGCACSATG--CGGT----G [379]
TGGTCGAGGGCACGCCTGCTTGGGTGTCATGGCATCGTCGCTTTTGCACCAGC--TGGCCT---G [376]
TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCCTTCGCTCCATG--CGTG----G [366] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGACATCGTCGCTTTTGCTCCATG--CGTT-----A [373] TGGCCGAGGGCACGCCTGCTTGGGGGTCATGGCATCATCGCCTTTGCGCCATC--CATTTGT-CG [381] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATTGTCGCTTATGCCCCATG--CTTT-----G [374] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATCGTCGCTTTTGCTCCATG--CTTC----G [380] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGGCATTGTCGCTTTTGCTCCATG--CTTC-----G [367] TGGTCGAGGGCACGCCTGCTTGGGCGTCATGACATCGTCGCTTATGCTCCATG--CTTC-----G [374] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATTGTCGCTTATGCCYCATG--CTTT----G [374] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATCGTCGCTTTTGCTCCATG--CTTC--..-G [380] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGGCATCGTCGCCTTTGCTCCATG--CGTC----G [388] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCACCGTCGCTCTCGCTCCATG--CATT-----C [378] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTCGCTCCACG--CATT-----G [378] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTCGCTCCACG--CATT-----G [378] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTCGCTCCACG--CATT-----G [378] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTCGCTCCACG--CGTT-----G [377] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTCGCTCCACG--CGTT-----G . [378] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATTGTCGCTTTTGCTCCATG--CTTC-----G [375] TGGCCGAGGGCACGCCTGCTTGGGAGTCATGGCACCGCCGCCTCTGCTCCATG--CAAT-----A [378] TGGCCGAGGGCACGCCTGCTTGGGAGTCATGGCATTGCCGCCTCCGCTCCACG--CGATAT--G [429] TGGCCGAGGGCACGCCTGCTTGGGAGTCATGGCATTGCCGCCTTTGCACCACCACCATGTAATGA [385] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATTGTCGCTTTTGCTCCATG--CTTT----G [372] TGGTCGAGG-CACGCCTGCTTGGGCGTCATGACATCGTCACGTTTGCTCCACG--CATT----G [371] TGGTCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTTGCTCCATG--CTTT----G [373] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTTGCTCCATG--CGTT----G [371] TGGCCGAGGGCACGCCTGCTTGGGCGTCATGACATCGTCGCTTTTGCTCCATG--CGTT-----G [373] TGGTCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCTTTTGCTCCATG--CGTT-----G [374] ????????????????????????????????ATCGTCGCCTTCGCTCCATG--CATGCGTT-G [381] TGGTCGAGGGCACGCCTGCTTGGGCGTCATGGCATCGTCGCCTTTGCTCCATG--CATGCATGCG [387] TGGTCAAGGGCACGCCTGCTTGGGTGTCATGGCATCGTCGCTTTTGCTCCATG--CTTT----T [372] TGGTCGAGGGCACGCCTGCTTGGGTGTCATGACATCGTCGCTTATGCTCCATG--CTTT-----G [374] TGGCCGAGGGCACGCCTGCTTGGGTGTCATGGCATCGCCGCCTCTGCTCCATG--CCCT-----G

Alpinia
Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B. longiflora
B.aff.longiflora

Camptandra.ovata
c.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C.amada
C.ecomata
C. harmandii
C. parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya Pommereschea Pyrgophyllum Roscoea.bhutanica
R. humeana
Rhynchanthus
Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
Zingiber
$460 \quad 470$

CTGCTGGTGCTAAGTGCGGAAATTGGCCTCGTGTGCC----CTCGGGCGAGGGCACAGTCGGTTG
[432]
[423]
[424]
[429]
[420]
[434]
423]
[423]
[423]
[431]
[428]
[417]
[425]

Alpinia
Pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B. gelatinosa
B. longiflora
B.aff.longiflora

Camptandra.ovata
C. parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C. amada
C. ecomata
C. harmandii
C.parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya
Pommereschea
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Rhynchanthus
Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
Zingiber

AAGAGTGGGTAGTCG-- GTAGACGTCGGGCRCGATGGGTGTTGGTCACTCTATGCGTGAATCGA AAGAGCGGGTAGTCG---ACAATCGTCGGGCGCGATGGGTGTTGGTCGCCCTGTGCGTGAATTGA AAGAGTGGGTAGTCG---GCAGTCGTCGGGCGCGATGGGTGTTGGTCGCCCTGTGCGTGAATTGA AAGAGCGGGCAGTCG---GCAGACGTCGGGCACGATGGGCGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGTAGCCG---GCAATCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGCGGGTAGTCG---GCAATCGTCGGGCACGATGGGCGTTGGTCGCCGCCAGCGGGAACAGA AAGGGTGGGTAGTCG-- GCAATCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGCGGGTAGTCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAKA AAGAGTGGGTAGTCG---GCAGTCGTCGGTCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGCAGACG---GCAGTAGTCGGGCACGATGGGTGTTGGTCGCTGTGAGCGGGAATCGA AAGAGTGGGTCGGCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAATCGA AAGAGCGGGCAGTCG-- GCAATCGTCGGGCACGATGGGCGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGTAGTCC---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGA AAGAGCGGGTAGTCGTCGGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCATGAGCGGGAACAGA AAGAGTGGGTACTCG---GCAATCGTCGAGCACGATGGGCGTTGGTCGTCGCAAGCGAGAACTGA AAGAGTGGGTAGTCG---GTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTGA AAGAGTGGGTAGTCG---GTATTCGTCGAGCACGATGGATGTTGGTCGTCGCGAACGGGAACTGA AAGAGTGGGTACTCG---GCAATCGTCGAGCACGATGGGCGTTGGTCGTCGCAAGCGAGAACTGA AAGAGTGGGTACTCG---GCAATCGTCGAGCACGATGGGCGTTGGTCGTCGCAAGCGAGAACTGA AAGAGTGGGTAKTCG---GTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTGA AAGAGTGGGAAGTCG-- ACAATCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGTAGTCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGTAGTCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGCGAGCGGGAACAGA AAGAGTGGGTAGTCG-- -GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGCGAGCGGGAACAGA AAGAGTGGGTAGTCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGCGAGCGGGAACAGA AAGAGCGGGTAGTCG-- -GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGCGAGCGGGAACAGA AAGAGTGGGTAGTCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGCGAGCGGGAACAGA AAGAGTGGGTA-TCG---GTA------GAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTGA AAGAGCGGGTATTCG---GCAATCGTCTGGCGCAACAGGTGTTGGTCGCCGCGGGCGGGAACAGA AAGAGCGGGCAGTCG-- CCGGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGA AAGAGCGGGCAGTCG---CCAATCGTCAGGCACGATGGGTGTTGGTCGCGGTGAGCGGGAACAGA AAGAGTGGGTAGTCG---GTAATCGTCGAGCACGATGGACGTTGGTCGTCGCAAGCGAGAACTGA AAGAGTGGGATGTCG---GCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGTAGTCG---GCAGCCGTCGGGCATGATGGGTGTTGGTCGCCGTTAGCGGGAACTGA AAGAGCGGGTAGTCC---GAAGTCGTCGGCCACGACGGGTGTTGGTCGCCGTGAGCGAGAACAGA AAGAGTGGGTAGTCC---GCAGTCGCCGGGCACGACGGGTGTTGGTCGCCTTGAGCGAGAACAGA AAGAGTGGATAGTCG---ACAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGGGAACAGA AAGAGCGGGAAGTCG---GCAATCGTCKGGCACGATGGATGTTGGTCGCCGTGAGCGGGAACAGA AAGAGCGGGAAGTCR---GCAATCGTCGGGCGCGATGGATGTTGGTCGCCGTGAGCGGGAACAGA AAGAGTGGGTAGTCG---GTAGTCGTCGAGCACGACGGATGTTGGTCGCCATGAGCGGGAACTGA AAGAGTGGGCACTCG---GCAATCGTCGAGCACGATGGGCGTTGGTCGTCGCAAGCGAGAACTGA AAGAGCGGGTAGTCT---GCAGTCGTCGGGCACGACGGGCGTTGGTCGCCGTGAGCGGGAACCGA

Alpinia
pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B. cordata
B.gelatinosa
B. longiflora
B.aff.longiflora

Camptandra. ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C.amada
C. ecomata
C. harmandii
C.parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H. gardnerianum
H. x raffillii
H. villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya
pommereschea
Pyrgophyllum
Roscoea.bhutanica
R. humeana

Rhynchanthus
Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber
$590 \quad 600 \quad 610$
$620 \quad 630$ 640

650]
.]

ACATCGT--CCCCG-TCGT---ACTGGGATG---AGTCCTCAAG----AGACCTTG---TGTG-- [541]
ACGTTGT--CCCCG-TCGT---GTCGGGATG---AGTCCTCAAG----AGACCCTA---TGTG-- [532]

ACATCGT--CCTCG-TCGT---TTCGGGACG---AGCCCTCAAG--AGAGACCCTG---TGCG-- [540]
ACATCAC--CCCCGATCAT---TTCTGGACG---AGTCCTCAAG----AGACCCTG---TGTG-- [530]
ACATCGT--CCTCG-TCGT---TTCGGGACG---ARCCCTCAAG----AGAACCTG---TGCG-- [543]
ACATCAC--CCCCS-TCGT---TTTTGGGTK---AATCCTCAAG----AAACCCKG---TWTG-- [532]
ACATCGG--CCTCG-TCAT-- TTTTGGACG---AGTCCTCAAG---AGACCCTG-- TTTG-- [532]
ACATCGG--CCTCG-TYGT---TTTTRGACA---AGTCCTCAAG---AGACCTTA---TTTG-- [532]
ACGTCGT--CCTCG-TCGT---GTAGGGATG---AGTCCTCAAG---AGACCCTG---TCAG-- [540]
ATATCGT--CCCCG-TCGT---GTTGGGATG---AGTCCTCAAG----AGACCCTG---TCTG-- [537]
ACATCGT--CCTCG-TCGT---TTTGGGATG---AGCCCTGGAT--AGAGACCCTG---TGCG-- [528]
ACGTCGT--CCCCG-TCGT---TTTGGGAAT----GTCCTCAAG---AGACCCTG---TGTG-- [533]
ACGTCGT--CCTCG-TCGG-- -TTCGGGACT---AGTCCTCAAG----AGACCCTG---TGCG-- [545]
ACGTCGT--CCTCG-TCAT-- TTTGGGATG---AGTCCTCAAG----AGACCCTA---CGTG-- [535
ACGTCGTGTCCTCG-TCGT---TTTGGGATG---AGTCCTCCAG----AGACCCTG---TGTG-A [544]
ACGTCGT--CCTCG-TCGT-- TTCGGGATG---AGTCCTCAAG----AGACCCTG---TGTG- - [528]
ACGTCGT--CCTCG-TCAT---TTTGGGATG---AGTCCTCAAG----AGACCCTA---TGTG-- [535]
ACGTCGT--CCTCG-TCAT---TTTGGGATG---AGTCCTCAAG----AGACCCTA---TGTG-- [535]
ACGTCGT--CTTCG-TCRT---TTTGGGATG---AGTCCTCAATC---AGACCCTK---TKTG-A [543]
ACGTCGT--CCTCG-TCGT---TTGGAGATG---AGTTCTCAAG----AGACCCTG---TGTG-- [552]
ACGTCGT--CCCTG-TCGT-- TTTGGGATG---AGCCCCCAAA---GAGACCCTA---TTTG-- [540]
ACGTCGT--CCCCG-TCGT---CTCGGGATG---AGTCCTCAAG----AGACCCTG---TGCG-- [537]
ACGTCGT--CCCCG-TCGT-- CTCGGGATG---AGTCCTCAAG----AGACCCTG---TGCG-- [537]
ACGTCGT--CCCCG-TCGT---CTCGGGATG---AGTCCTCAAG----AGACCCTG---TGCG-- [537]
ACGTCGT--CCCCG-TCGT---CTCGGGATG-- AGTCCTCAAG---AGACCCTG---TGCG- - [536]
ACGTCGT--CCCCG-TCGT---CTCGGGACG---AGTCCTCAAG----AGACCCTG---TGTG-- [539]
ACGTCGC--C-TCG-TCGT---TTTGGGATG---AG-CCTCAATCAAGAGACCCTG---TGTG-A [536] ACGTCTC--CCCCGTCTGT----TTGGGACA---AGCCCTCAATCA-GAGACACTC---TGTG-- [542]
ACATCGT--CCCCG-TCGTTTCCGGATGACGATGAGCCCTCGTCAA-GAGACCCTGCTGTGTGTG [604] ACATCKT--CCCCG-TCGT---ATTGGGATGA-GTGTCCCCAAG----AGACCCTG---TGTG-A [552] ACGTCGT--CCTCG-TCGT---TTTGGGATG---AGTCCTCAAAG---AGACCTTG---TGTG-A [535] ACGTCGT--ACCCA-A-GT---TGTGGGATG---ATTCCTCAAG---AGACCCTT---TGTG-- [531]
ACGTTGT--CCCCG-TCGT---GCTGGGATG---AGACCTCAAG----AGACCCTG---TGTG-- [534]
ACGTCGT--CCCCG-TCGT---TTTAGGATT-----TCCTCAAG---AGACCCCG---TGTG-- [530]
ACGTCGT--CCCCG-TCGC---TTTAGGATT----GTCCTCAAG----AGACCCCG---TGTG-- [533]
ACGTCGT--ACCCT-TCAT---TGTGGGATG---ATTCCTCAAG----AGACCTTG---TGTG-- [534]
ACGTCGT--CCTCG-TCGT---TTTGAGACGATGAGTCCTCCTCAAAGAGACCCTG---TGCG-- [552]
ACGTCGT--CCTCG-TCGT---TTTGAAACG---AGTCTC-AAG---AGACCCTG---CTTG-G [551]
ACGTCGT--CCTCG-TCGT-- - TTCGGAACG-- AGTCCTCAAG----AGACCCTG---TGTG-- [533]
ACGTCGT--CCTCG-TCAT---TTTGGGATG---AGTCCTCAAG----AGGCCCTA---TGTATG [537]
ACGTCGT--CCCCG-TCGTCATTTTCGGACG---AACCCTCAAG----AGACCCTG---CGTG-- [563]

Alpinia
pleuranthodium
Renealmia
Boesenbergia.aurantiaca
B.basispicata
B.cordata
B.gelatinosa
B.longiflora
B.aff.longiflora

Camptandra. ovata
C.parvula

Caulokaempferia
Cautleya.spicata
Cornukaempferia
Curcuma.alismatifolia
C. amada
C. ecomata
C.harmandii
C. parviflora
C. rubescens

Distichochlamys
Haniffia
Hedychium.coccineum
H.gardnerianum
H.x raffillii
H.villosum
H.sp.

Hitchenia
Kaempferia.angustifolia
K.elegans
K. rotunda

Paracautleya
Pommereschea
Pyrgophyllum Roscoea.bhutanica R.humeana Rhynchanthus Scaphochlamys.kunstleri S.lanceolata Smithatris Stahlianthus zingiber

660	670	680	690	700	710	1
.	.	.				

--ATTGCAGCATCGCATGAAAG--------TGCCGTG----TTCATCATA-----TTGTGGC--- [584]
--AATGCGGCATCACGTGAAAG--------TGCCGTG----TCCATCTGA-----TTGTGGC--- [575]
--ATTGCGGCGTCGCGTGAAAG-------TGCCGTG----TTCGTCATA-----TTGTGGC--- [566]
--ATCGCGGCATCGGACGAAAG--------TGCCGTGT--GTCCATCTAC-----TTGTGGC--- [585]
--ATTGTGGCATCGGGTGAAAG--------TGCCGTG----CCCATCAAC----TTGTGGC--- [573]
--ATTGCGGCATCGGACAAAAG-.-....-TGCCGTG---TCCATCTAA----TT??????? [589]
--ATTGKGGAATCGGGTKTTAA---...-.TGCCGTG----SCCAACAAC-----TTGTGGC--- [575]
--ATTGTGGCATTAGGTCAAAG-------TGYCATG----TCCATCAAC--.--TTGTGGC--- [575]
--AWTGTGGCATCAGGTCAAAG--------TGCCATG----TCCATCAAC-----TTGTGGC--- [575]
--ATAGCCGAGTCGGGCGGAAG--.----TTCCGTG----AGCATCATA-----TT???????? [586]
--GTTGCGGAGTCGGGTGAAAG--------TGCCGTA----TGCATCATA-----TTGTGGC--- [580]
--ATTGCGGCATCGGACGAAAG--..---TGCCGTG----CCCATCTAC-----TTGTGGC--- [571]
--ATTGTGATGTCGTGTGAAAG--------TGCCGTG----TCCATCAAA-----TTGTGGC--- [576]
--ATTGCGGCGTCGGGCGAAAG-----.--CGCGGCG----TCCATCAAA-----CTGTGGC--- [588]
--ATTGCAGAGTCGGATGAAAG--....-CGCTGTG----TCAATCATCAT---TCGCGGC--- [580]
TGATTGCGGAGTCGCGTGAAAG-------CGCCGCG----TCAATCAT-----TTGCGGC--- [588]
--ATTGCGGAGTCGGTTGAAAG----.--TGCCGTG----TCAATCAT------TTGTGGC--- [570]
--ATTGCAGAGTCGGATGAAAG-------CGCTGTG----TCAATCATCAT---TTGCGGC--- [580]
--ATTGCAGAGTCGGACGAAAG--------CGSTGTG----TCAATCATCAT---TTGCGGC--- .[580]
TGATTGCGGAGTCKCGTGAAAG--------CGCCGCG----TCAATCAT------TTGCGGC--- [587]
--TTTGTGGCATCGGGCGAAAG-------TGCCGTG----TCCATCAAC--..-TTGTGGC--- [595]

- -ATTGTGGCGTCGGGTGAAAG--..-.--TGCCGTG--. TCCATGAAC----TTGTGGC-- [583]
--AATGCGGCGTCGGCCGAAAG--------TGCCGCG----CCCATCAAA-----TTGTGGC--- [580]
--AATGCGGCGTCGGCCGAAAG-.....-YGCCGCG--- CCCATCAAA---- TTGTGGC--- [580]
--AATGCGGCGTCGGCCGAAAG-------YGCCGCG----CCCATCAAA-----TTGTGGC--- [580]
\therefore-AATGCGGCGTCGGGCGAAAG-------CGCCGCG----CCCATCAAA----TTGTGGC--- [579]
--AATGCGGCGTCGGCCGAAAG-----.--TGCCGCG----CCCATCAAA----TTGTGGC--- [582]
TGATCGCGGAGCCGCGTGAAAG------CGCCGCG----TCAATCAT-----TTGCGGC--- [580]
TGWGTGTTGTGTCGGGTGAGTG--------TGGCGCA-CC????????????????????????? [598]
TGATCGTGGCGTCGTGAGCTAAAAAGTGC-CTCGGCGTCCGTCCATCACATCAACTTGTGGC--- [665]
TTGTGGCGGCGTCCGGCGAAAA--.-.--TGCCGCG-CCGTCCATCAAC----TTGTGGC--- [600]
TGATTGCGGAGTCGCGTGAAAG--.-.---TGCCGTG----TCAATCAT------TTGCGGC--- [579]
--ATTGTGGCATCGAGCGAAAG--------CACCGTG----TCCATCAAA-----TTGTGGC--- [574]
--ATTGTGGAGTCGGGTGAAAG-------TGCCGTG----TCCATCAAA-----TTGTGGC--- [577]
- -ATTGTGATGTGGTGTGAAAG-------TGCCGTG----TCCATCAAA----TTGTGGC--- [573]
- -ATTGTGACGTCGTGCGAAAG---.-.--TGCCGTG----TCCATCAAA-----TTGTGGC--- [576]
--ATTGTGGCATCGGGTGAAAG-------TGCCGTG----CCCATCAAA--.--TTGTGGC--- [577]
--ATTGCGGCGTCGGACGAAAG-------TGCCGTGTCCGTCAACTAAC-...-TTGTGGC--- [599]
TGATTGCGGCGTCGGGCGAAAG--..-.-TGCCGTGTCCGTCAACTAAC-----TTGTGGC--- [600]
--ATTGCGGAGTCGGACGAAAG--------TGCCGTG----TCAATCAT------TTGTGGC--- [575]
TGATTGCAGAGTCGGATCAAAG--------CGCTGTG----TCAATCATCAT---TTGCGGCGGC [587]
--ATTGCGGCACCGGGCGAAAGAAAGAAAGCGCCGTGTCCGTCAATCAAC----TTGTGGC--- [618]

【	720]	
[
Alpinia	CCCAAGT	[591]
Pleuranthodium	CCCAAGT	[582]
Renealmia	CCCAAGT	[573]
Boesenbergia.aurantiaca	CCCAAGT	[592]
B.basispicata	CCCAAGT	[580]
B. cordata	???????	[596]
B.gelatinosa	CCCAAGT	[582]
B.longiflora	CCCAAGT	[582]
B.aff.longiflora	CCCAAGT	[582]
Camptandra.ovata	???????	[593]
C.parvula	CCCAAGT	[587]
Caulokaempferia	CCCAAGT	[578]
Cautleya.spicata	CCCAAGT	[583]
Cornukaempferia	CCCAAGT	[595]
Curcuma.alismatifolia	CCCAAGT	[587]
C.amada	CCCAAGT	[595]
C. ecomata	CCCAAGT	[577]
C. harmandii	CCCAAGT	[587]
C.parviflora	CCCAAGT	[587]
C. rubescens	CCCAAGT	[594]
Distichochlamys	CCCAAGT	[602]
Haniffia	CCCAATC	[590]
Hedychium.coccineum	CCCAAGT	[587]
H.gardnerianum	CCCAAGT	[587]
H.x raffillii	CCCAAGT	[587]
H.villosum	CCCAAGT	[586]
H.sp.	CCCAAGT	[589]
Hitchenia	CCCAAGT	[587]
Kaempferia.angustifolia	???????	[605]
K.elegans	CCCAAGT	[672]
K. rotunda	CCCAAGT	[607]
Paracautleya	CCCAAGT	[586]
Pommereschea	CCCAATC	[581]
Pyrgophyllum	CCCAAGT	[584]
Roscoea.bhutanica	CCCAAGT	[580]
R. humeana	CCCAAGT	[583]
Rhynchanthus	CCCAAGT	[584]
Scaphochlamys.kunstleri	CCCAAGT	[606]
S.lanceolata	CCCAAGT	[607]
Smithatris	CCCAAGT	[582]
Stahlianthus	CCCAAGT	[594]
zingiber	CCCAAGT	[625]

APPENDIX THREE: A MATRIX OF trnL-F SEQUENCES OF THE HEDYCHIEAE (CHAPTER TWO)

[
[

10

20
.

30
.

40
.

60 70 80 90] .]

Alpinia

Renealmía
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra.parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia C. amada

Distichochlamys
Hedychium.gardnerianum
H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGTAATCCTGAGCCAAATCCTTAGTTTGCTAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAAGGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAAACTAAGGTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTGAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAAACTAAGGTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAAC------TATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAAACTAAGGTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTAAGGTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTGAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTCAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAAACTAAGGTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTAAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTAAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTTATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTT-------------TATCAAA
 TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA TGATAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA

100	110	120	130	140	150	160	170	$180]$
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	.	\cdot	.$]$

Alpinia
Renealmia
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra. parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia
C. amada

Distichochlamys
Hedychium.gardnerianum
H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber
--...-..-. CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG --..-.----CTATAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAACGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG
---...----CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAACGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAAA-GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAACGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAAAAGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG
---.-.----CTAGAATAAAAAAAAA-GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TCG ----------CTAGAAAAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TCG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAATTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGACTGAAGATGACTACGTGTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG
----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGGTGACTACGTTTCGCGTTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAA---GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGGTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAAA-GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TCG ----------CTAGAATAAAAAAA---GGATAGGTGCAGAGACTCGATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG
 ----------CTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG ----------CTAGAATAAAAAAAAA-GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TCG --.--------CTAGAATAAAAAAAAA-GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TCG TTTTATCAAACTAGAATAAAAAAAA--GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCG--TTG
[166]
[166]
[166]
[166]
[166]
[159]
[166]
[168]
[166]
[167]
[166]
[166]
[166]
[166]
[159]
[166]
[165]
[167]
[165]
[151]
[151]

Alpinia
Renealmia
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra.parvula Caulokaempferia Cautleya
Cornukaempferia Curcuma.alismatifolia
C. amada

Distichochlamys
Hedychium.gardnerianum H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
Zingiber

GTAGTTGGAATCCGTCTATCAAAATTATAGAAAGGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAGGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAATATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATC̈CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGGCATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTAAAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATATTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATATTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTTTATCAAAATTACAGAAAAGATATTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCATCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTATATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTATATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA GTAGTTGGAATCCGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGA

Alpinia
Renealmia
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra.parvula Caulokaempferia Cautleya
Cornukaempferia
Curcuma.alismatifolia C. amada

Distichochlamys
Hedychium.gardnerianum H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
Zingiber
TTAATCATGACCCGAATCCATT------------ATATTA--------TATG-----GATAATTATATATGCAAAAT [309]
TTAATCATGACCCGAATTTATT---․-. --- ATATTAATTTTATTATATTATATGTATAATTATAATATGCAAAAT- [322]
TTAATCATGACTCGAATCCATT------------ATATTA--------TATA-----GATAATTATAATATGAAAAT [309]
TTAATCATGACTCGAATCCATT-------------ATATTA--------TATG-----GATAATTATAATATGAAAA [309]
TTWATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATAATTATAATATGAAAAT [309]
TTAATCATGACTCGAATCCATT-----------ATATTA--------TATG-----GATAATTATAATATGAAAAT [302]
 [311]
TTAATCATGACTCGAATCCATT------------ATATTA---------TATG------ [311]
TTAATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATA [309]
TAATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATAATTATAATATGAAAA [310]
 [309]
TTAATCACGACTCGAATCCATT-----------ATATTA--------TATGATATGGATAATTATAATATGAAAAA [314]
TTAATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATATTATAATATGAAAAT [309]
 [309]
TTAATCATGACTCGAATCCATT------------ATATTA--------- TATG--- - GATAATTATAATATGAAAAAT [302]
TTAATCATGACTCGAATCCATT----------- ATATTA--------TATG----- GATA [309]
TTAATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATAATTATAATATGAAAAT [308]
TTAATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATAATTATATATGAAAA [310]
TTAATCATGACTCGAATCCATT-----------ATATTA--------TATG-----GATAATTATAATATTAAAAA [308]
TTAATCATGACTCGAATCCATT-----------ATATTA--------TATG-----GATAATTATAATATGAAAAAT [294
TTAATCATGACTCGAATCCATT------------ATATTA-------- TATG-----GATAATTATAATATTAAAAAT [294]
TTAATCATGACTCGAATCCATT------------ATATTA--------TATG-----GATAATTATAATATGAAAAT [300]
TTAATCATGACTCGAATCCATT------------ATATTA-------- TATG-----GATATTATAATATGAAAA [309]
TTAATCATGACTCGAATCCATT- -ATATTA--------TATG-----GATAATTATAATATGAAAAAT [310]
TTAATCATGACTCGAATCCATT -ATATTA--------TATG-----GATAATTATAATATGAAAAAT [310]
TTAATCATGACTCGAATCCATTCTCGAATCCATTATATTA-------TATG---- AATAATTATAATAT--AAAATTATATGAATAAT

Alpinia

Renealmia

Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra.parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia
C. amada

Distichochlamys
Hedychium.gardnerianum
H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber
-TCAGAATTAGAGTTATTTT--ATTGTGCC---AATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA ----------- -- TCAGAATTAGAGTTATTGTGC---------CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATT-----ATTA ---------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA ---------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA AGAATTAGAAAAAATTCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA ---------------TCAGAATTAGAGTTATTGTGAATCCAATC--CAATGGAAGTCGAAAGAAGAATTGAATATTCAATTCAATTATTA -----.--.----- TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGATTTAATAATTGAATATTCAATT-----ATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTACTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATT-----ATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTATGAATCCAGTC--CAATGGAAGTTGAAAGGAAAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGGAGAATTGAATATTCAATTCAATTATTA -------------TAAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGGAGAATTGAATATTCAATTCAATTATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTAAATTCAATTATTA ------------ TCAGAATTAGAGTTATTGTGAATCCAGTCTCCAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA -------------TAAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA -------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATT-----ATTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA --------------TAAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA -------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTACTA --------------TCAGAATTAGAGTTATTGTGAATCCAGTC--CGATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTACTA TATAATATAAAAAATTCAGAATTAGAGTTATTGTGAATCCAGTC--CAATGGAAGTTGAAAGAAGAATTGAATATTCAATTCAATTATTA
$460 \quad 470$
$480 \quad 490$

Alpinia Renealmia
Pleuranthodium Boesenbergia.aurantiaca
B.basispicata

Camptandra. parvula
Caulokaempferia Cautleya
Cornukaempferia
Curcuma.alismatifolia
C. amada

Distichochlamys
Hedychium.gardnerianum
H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstlerj
S.lanceolata

Smithatris Stahlianthus
Zingiber

AATCATTCATTCCATAATTTGATAGATCTTTTGAAAAACAGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACAGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACGGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAATAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACT AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC AATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAGAGTCCCATTCTACATGTCAATACC

Alpinia
Renealmia
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra.parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia
C. amada

Distichochlamys
Hedychium.gardnerianum
H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
Zingiber

GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTCGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTGAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTGAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTCGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTGAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCMATAAAAAGGGAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTA????????????????? GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTCGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT CACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGA?? GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTAT????????????????????????????????GTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTTTAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTTTATCCCCAATAAAAAGGGCAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAACGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT GACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCCCTCTATCCCCAATAAAAAGGTAAT

640	650	660	670	680	690	700	710	$720]$
.	.	.	$:$.	.	.		

Alpinia
Renealmia
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra. parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia
C.amada

Distichochlamys
Hedychium.gardnerianum
H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber

ITTACTTCCTAAATATT------TATTCTCC-TTTTTTT---CATCAGCGATTCAGTTCAAACAAAATTCA-------CTATCTTTCTCA TTTAGTTCCTAAATATT------TATCCTCC-TTTTTTT---CATCAGCGATTCAGTTCAAACAAAATTAA-------CTCACT------TTTACTTCСТАААТАТT------TATCCTCC-TTTTTTT---САTCAGCGATTCAGTTCAAACAAAATTCA-------СTATCTTTCTCA TTTACTTCCTAAATATT-----TATCCTCC-TTTTTTTTTTTCATCAGCGATTCAGTTCAAACAAAATTCAAAATTCACTATCTTTCTCA TTTACTTCCTAAATATT------TATCCTCC-TTTTTTTTT-САTGAGCGATTCAGTTCAAACAAAATTCA------ СTATCTTTCTCA TTTAMCTCCCAAAAAWT------TATCCTCCCTTTTTTTTT-CATCAGCGATTCAGTTCAAACAAAATTCA-------СTATCTTTCTCA TTTACTTCCTAAATATT------TATCCTCC-TTTTTTTTT-CATCAGCGATTCAGTTCAAACAAAATTCA-------CTATCTTTCTCA TTTACTTCCTAAATATTTATATTTATCCTCC-TTTTTTTTT-САTCAGCGATTCAGTTCAAACAAAATTCA------ СTATCTTTCTCA ??????TCCTAAATATT------TATCCTCC-TTTTTTTTTTCATCAGCGATTCAGTTCAAACAAAATTCA------- СTATCTTTCTCA TTTACTTCСТАААТАТТ------TATCCTCC-TTTTTTTTTTCATCAGCGATTCAGTTCAAACAAAATTCA-------GTATCTTTCTCA
 TTTACTTCСTAAATATT------TATCCTCC-TTTTTTTTT-CATCAGCGATTCAGTTCAAACAAAATTCA-------CTATCTTTCTCA TTTACTTCCTAAATCTAAATATTTATCCTCC-TTTTTTTTT-САTCAGCGATTCAGTTCAAACAAAATTCA------ СTATCTTTCTCA TTTACTTCCTAAATCTAAATATTTATCCTCC-TTTTTTTTT-CATCAGCGATTCAGTTCAAACAAAATTCA------ СTATCTTTCTCA TTTAСТTССТАААТАТТ-----TATCCTCC-TTTTTTTTTTCATCAGCGATTCAGTTCAAACAAAATTCA------- СTATCTTTCTCA
 TTTAСТТССТАААТАТТ------TATCCTCC-TTTTTTTTT-CATCAGCGATTCAGTTCAAACAAAATTCA------ СТАТСТТТСТСА
 TTTACTTCСTAAATATT------TATCCTCCCTTTTTTTTTTCATCAGCGATTCAGTTCAAACAAAATTCA-------СTATCTTTCTCA TTTACTTCCTAAATATT------TATCCTCC-TTTTTCTTTTCATCCGCGATTCAGTTCAAACAAAATTCA-------CTATCTTTCTCA TTTAСТTССТАААТАТТ------TATCCTCC-TTTTTCTTTTCATCCGCGATTCAGTTCAAACAAAATTCA------ СTATCTTTCTCA TTTAСТТССТАААТАТТ------TATCCTCC-TTTTTTTT--CATCAGCGATTCAGTTCAAACAAAATTCA----- - СTATCTTTCTCA
 TTTAСTTССТАААТАТТ------TATCCTCC-TTTTTTTT--САТСАGСGATTCAGTTCAAACAAAATTCA------TTTACTTCСTAAATATT------TATCCTCC-TTTTTTTTTTCATCAGCGATTCAGTTCAAACAAAATTCA-------CTATCTTTCTCA TTTACTTCCTAAATATT------TATCCTCC-TTTTTTTTT-CATCAGCGATTCAGTTCAAACAAAATTCA----- - СTATCTTTCTCA
[632
[634]
[630]

730	740	750	760	770	780	790	800	$810]$
\cdot	\cdot	\cdot	\cdot	.	.	.		

Alpinia

Renealmia
Pleuranthodium
Boesenbergia.aurantiaca
B.basispicata

Camptandra.parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia
C. amada

Distichochlamys
Hedychium.gardnerianum H.sp.

Kaempferia.angustifolia
K.elegans
K. rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica

R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber

TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T --САСТССААТTTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTCACTCCACTСTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТTTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAAAT TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACGAA-T TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTCAAATTCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАAATGTATCCGAACTAAAATCCGTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТТТСАСААСАСАААТGTATCСGAACTAAAATCCTTGGATCTTATCCCAATTTTGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTTGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТТТСАСААСАСАААТGTATCСGAACTAAAATCСTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCGTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCCTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCCTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCСGAACTAAAATCCTTGAATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGATACAATACCTCTACAAA-T TTСАСТССАСТСТTTСАСААСАСАААТGTATCCGAACTAAAATCCTTGGATCTTATCCTAATTTCGATAGATATAATACCTCTACAAA-T

[820	830	840	850	860	870	880	890	900]
[.]

Alpinia
Renealmia
Pleuranthodium
Boesenbergia.aurantiaca B.basispicata

Camptandra.parvula
Caulokaempferia
Cautleya
Cornukaempferia
Curcuma.alismatifolia
C.amada

Distichochlamys
Hedychium.gardnerianum H.sp.

Kaempferia.angustifolia
K.elegans
K.rotunda

Paracaulteya
Pyrgophyllum
Roscoea.bhutanica
R.humeana

Scaphochlamys.kunstleri
S.lanceolata

Smithatris
Stahlianthus
zingiber

AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATACTTACGCTTACTAGTCAAATTTTTGACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCACATCATTATCCTTACGCTTACTAGTAAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTAAAATTTTTGACTACTT AAACATATATAGGCAAATAATCTTTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATAGGCAAATAATCTTTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCCATTATTGAATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCYTACGCCTACTAG????????????????? AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTGGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTATTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTGGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAG--------------TCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATCCACAGTCCGTATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT AAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCATATCATTATCCTTACGCTTACTAGTTAAATTTTTTACTACTT

Alpinia	AGAGCAGAGGACTGAAAA	$[914]$
Renealmia	AGAGCAGAGGACTGAAAA	$[908]$
Pleuranthodium	AGAGCAGAGGACTGAAAA	$[906]$
Boesenbergia.aurantiaca	AGAGCAGAGGACTGAAAA	$[921]$
B.basispicata	AGAGCAGAGGACTGAAAA	$[914]$
Camptandra.parvula	AGAGCAGAGGACTGAAAA	$[909]$
Caulokaempferia	AGAGCAGAGGACTGAAAA	$[930]$
Cautleya	AGAGCAGAGGAA??????	$[916]$
Cornukaempferia	AGAGCAGAGGACTGAAAA	$[884]$
Curcuma.alismatifolia	?????????????????	$[895]$
C.amada	AGAGCAGAGGACTGAAAA	$[913]$
Distichochlamys	?????????????????	$[798]$
Hedychium.gardnerianum	AGAGC?????????????	$[906]$
H.sp.	AGAGCAGAGGACTGAAAA	$[853]$
Kaempferia.angustifolia	AGAGCAGAGGACTGAAAA	$[889]$
K.elegans	AGAGCAGAGGACTGAAAA	$[913]$
K.rotunda	AGAGCAGAGGACTGAAAA	$[862]$
Paracaulteya	AGAGCAG??????????	$[903]$
Pyrgophyllum	????????????????	$[873]$
Roscoea.bhutanica	AGAGCAGAGGACTGAAAA	$[901]$
R.humeana	AGAGCAGAGGACTGAAAA	$[894]$
Scaphochlamys.kunstleri	AGAGCAGAGGACTGAAAA	$[903]$
S.lanceolata	AGAGCAGAGGACTGAAAA	$[911]$
Smithatris	AGAGCAGAGGACTGAAAA	$[913]$
Stahlianthus	AGAGCAGAGGACTGAAAA	$[915]$
Zingiber	AGAGCAGAGGACTGAAAA	$[960]$

APPENDIX FOUR: LOCALITIES OF ROSCOEA

SPECIMENS

Latitude	Longitude	Species	Collector (s)	Number
2750 N	10115 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	16009
$30 \quad 27 \mathrm{~N}$	07805 E	Roscoea purpurea Sm.	Thomson	1341
2720 N	10005 E	Roscoea schneideriana (Loes.) Cowley	Rock	4726a
2720 N	10005 E	Roscoea cautleoides Gagnep.	Forrest	5969
2534 N	09153 E	Roscoea brandisii (King ex Baker) K.Schum.	Clarke	38491C
2720 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	3475
2709 N	10012 E	Roscoea cautleoides Gagnep.	Rock	24831
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	136
3106 N	07710 E	Roscoea purpurea Sm.	Brown, Countess of Dalhousie	-
2750 N	10040 E	Roscoea scillifolia (Gagnep.) Cowley	Handel-Mazzetti	3166
2727 N	08757 E	Roscoea auriculata K.Schum.	Williams	967
2733 N	09042 E	Roscoea bhutanica Ngamriab.	Grierson \& Long	1826
3106 N	07710 E	Roscoea purpurea Sm.	Gamble	4663A
2744 N	08833 E	Roscoea auriculata K. Schum.	Younghusband	-
2720 N	10005 E	Roscoea cautleoides Gagnep.	Forrest	2687
2709 N	10012 E	Roscoea cautleoides Gagnep.	Rock	24930
2702 N	08816 E	Roscoea alpina Royle	Hara, Kanai, Kurosawa, Murata \& Togashi	6183
2826 N	08455 E	Roscoea capitata Sm.	Gardner	847
2534 N	09153 E	Roscoea brandisii (King ex Baker) K.Schum.	Tessier-Yandell	280
-	-	Roscoea purpurea Sm.	Reid	-
2919 N	08222 E	Roscoea nepalensis Cowley	Polunin, Sykes \& Williams	362
2813 N	08527 E	Roscoea alpina Royle	Schilling \& Sayers	418
2610 N	10302 E	Roscoea tibetica Batalin	Maire	-
2737 N	08753 E	Roscoea auriculata K. Schum.	KEKE	291
3106 N	07710 E	Roscoea alpina Royle	-	-
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	572
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	518
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	518
2950 N	08208 E	Roscoea alpina Royle	Bailey	
273308 N	0884005 E	Roscoea auriculata K. Schum.	Long \& Noltie	115
3111 N	07738 E	Roscoea alpina Royle	Maclagan	723
-	-	Roscoea purpurea Sm.	Brown, Countess of Dalhousie	-

2737 N	09130 E	Roscoea purpurea Sm.	Lyon	9054
3106 N	07710 E	Roscoea alpina Royle	Lace	975
-	-	Roscoea debilis var. limprichtii (Loes.) Cowley	Limpricht	855
		Roscoea capitata Sm.	Bailey	242?
2728 N	08853 E	Roscoea bhutanica Ngamriab.	King's collector	454
-	-	Roscoea purpurea Sm.	Drummond	26414
2750 N	10040 E	Roscoea tibetica Batalin	Schneider	1625
2555 N	10030 E	Roscoea forrestii Cowley	McLaren	B105
2835 N	09900 E	Roscoea tibetica Batalin	Gamble	152
3116 N	07727 E	Roscoea alpina Royle	Watt	7910
2821 N	09637 E	Roscoea wardii Cowley	Kingdon-Ward	8382
2502 N	09828 E	Roscoea debilis var. debilis Gagnep.	Howell	333
2709 N	10012 E	Roscoea humeana Balf.f. \& W.W.Sm.	Cribb	C41
2814 N	08459 E	Roscoea ganeshensis Cowley \& W.J.Baker	Baker, Burkitt, Miller \& Shrestha	34
$27 \quad 2248 \mathrm{~N}$	1000550 E	Roscoea tibetica Batalin	ACE	353
3234 N	07608 E	Roscoea alpina Royle	Lace	1724
2728 N	08853 E	Roscoea alpina Royle	Cooper	195
2723 N	08805 E	Roscoea alpina Royle	Rohmoo	793
2735 N	08632 E	Roscoea tumjensis Cowley	McCosh	65
2709 N	09924 E	Roscoea tibetica Batalin	Alden, Alexander, Long, McBeath, Noltie \& Watson	1684
2520 N	09835 E	Roscoea debilis var. debilis Gagnep.	Forrest	8456
2655 N	10010 E	Roscoea schneideriana (Loes.) Cowley	Handel-Mazzetti	4152
$25 \quad 40 \mathrm{~N}$	10011 E	Roscoea forrestii Cowley	Forrest	11726
2720 N	10005 E	Roscoea scillifolia (Gagnep.) Cowley	Forrest	6513
2735 N	10005 E	Roscoea scillifolia (Gagnep.) Cowley	Forrest	6354
$30 \quad 27 \mathrm{~N}$	07805 E	Roscoea purpurea Sm.	Anderson	-
2610 N	10302 E	Roscoea tibetica Batalin	Maire	490
2700 N	10456 E	Roscoea schneideriana (Loes.) Cowley	Maire	267
2744 N	08833 E	Roscoea auriculata K. Schum.	King's collector	60
2540 N	10011 E	Roscoea tibetica Batalin	Forrest	7041
2745 N	09930 E	Roscoea schneideriana (Loes.) Cowley	Forrest	10655
3106 N	07710 E	Roscoea purpurea Sm.	Drummond	26413
3106 N	07710 E	Roscoea alpina Royle	Gamble	4585A
-	-	Roscoea schneideriana (Loes.) Cowley	Bonati	3462
3113 N	07724 E	Roscoea alpina Royle	Sherriff	7312
2535 N	09138 E	Roscoea brandisii (King ex Baker) K.Schum.	Griffith	5736
2535 N	09138 E	Roscoea brandisii (King ex Baker) K.Schum.	Mann	347
-	-	Roscoea purpurea Sm.	Wallich	6528A
2655 N	10010 E	Roscoea cautleoides Gagnep.	Rock	4102
2655 N	10010 E	Roscoea humeana Balf.f.	Handel-Mazzetti	4154

		\& W.W.Sm.		
2447 N	10316 E	Roscoea debilis var. debilis Gagnep.	Ducloux	688
3027 N	07805 E	Roscoea alpina Royle	Drummond	22734
2700 N	10456 E	Roscoea tibetica Batalin	Maire	-
280293 N	0994542 E	Roscoea tibetica Batalin	ACE	484
2917 N	08210 E	Roscoea nepalensis Cowley	Polunin, Sykes \& Williams	4391
2712 N	10010 E	Roscoea cautleoides Gagnep.	Forrest	2178
2750 N	10040 E	Roscoea cautleoides Gagnep.	Gamble	5269
2922 N	08212 E	Roscoea nepalensis Cowley	Polunin, Sykes \& Williams	4381
3106 N	07710 E	Roscoea alpina Royle	-	328
2740 N	09112 E	Roscoea purpurea Sm.	Ludlow \& Sherriff	309
3106 N	07710 E	Roscoea alpina Royle	Parmanand	364
2917 N	08210 E	Roscoea nepalensis Cowley	Polunin, Sykes \& Williams	4391
2730 N	09945 E	Roscoea cautleoides Gagnep.	Gamble	236
2642 N	10045 E	Roscoea tibetica Batalin	Handel-Mazzetti	3351
2803 N	09735 E	Roscoea wardii Cowley	Kingdon-Ward	6885
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	136
2809 N	08524 E	Roscoea capitata Sm.	Halliwell	34
2836 N	08339 E	Roscoea purpurea Sm.	Stainton, Sykes \& Williams	1596
2922 N	08224 E	Roscoea alpina Royle	Polunin, Sykes \& Williams	159
2744 N	08833 E	Roscoea auriculata K. Schum.	Cave	111/47
$27 \quad 22 \mathrm{~N}$	09204 E	Roscoea purpurea Sm.	Kingdon-Ward	13755
2727 N	08939 E	Roscoea bhutanica Ngamriab.	Gould	912
2729 N	08854 E	Roscoea alpina Royle	Gould	2937
2744 N	08833 E	Roscoea auriculata K.Schum.	Hooker	-
3106 N	07710 E	Roscoea alpina Royle	Lace	975
2750 N	10115 E	Roscoea tibetica Batalin	Rock	5486
2720 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	4549
3106 N	07713 E	Roscoea purpurea Sm.	Maclagan	437
2720 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	3344
2740 N	10048 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	21437
2805 N	08520 E	Roscoea capitata Sm.	Kanai, Hara \& Ohba	723600
2838 N	08337 E	Roscoea nepalensis Cowley	Stainton, Sykes \& Williams	1628
27.29 N	08938 E	Roscoea bhutanica Ngamriab.	Grierson \& Long	116
2730 N	08937 E	Roscoea bhutanica Ngamriab.	Gould	925
-	-	Roscoea alpina Royle	Gamble	26988
2736 N	08839 E	Roscoea auriculata K.Schum.	King's collector	53
27 20 N	10005 E	Roscoea tibetica Batalin	Forrest	5988
2745 N	09930 E	Roscoea tibetica Batalin	Forrest	10638
2700 N	10456 E	Roscoea schneideriana	Maire	-

		(Loes.) Cowley		
2534 N	09153 E	Roscoea brandisii (King ex Baker) K.Schum.	Kingdon-Ward	18682
2735 N	08526 E	Roscoea purpurea Sm.	Schilling	609
2740 N	10048 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	21447
2720 N	10005 E	Roscoea schneideriana (Loes.) Cowley	Rock	4888
2733 N	08747 E	Roscoea purpurea Sm.	Stainton	1198
2122 N	09359 E	Roscoea australis Cowley	Kingdon-Ward	22292
2542 N	10011 E	Roscoea cautleoides Gagnep.	Orleans	
2655 N	10010 E	Roscoea cautleoides Gagnep.	Forrest	258
272522 N	0995628 E	Roscoea debilis Gagnep.	Alden, Alexander, Long, McBeath, Noltie \& Watson	1540
3027 N	07805 E	Roscoea alpina Royle	King	-
2720 N	10005 E	Roscoea tibetica Batalin	Rock	4617
2540 N	10011 E	Roscoea tibetica Batalin	Forrest	4808
2322 N	10324 E	Roscoea debilis var. debilis Gagnep.	Henry	11102B
2709 N	10012 E	Roscoea humeana Balf.f. \& W.W.Sm.	KEYSE	44
-	-	Roscoea alpina Royle	Watt	3362
2504 N	10241 E	Roscoea praecox K.Schum.	Cavalerie	4763
2709 N	08805 E	Roscoea alpina Royle	King's collector	57
2726 N	092. 08 E	Roscoea purpurea Sm.	Kingdon-Ward	11529
2840 N	08257 E	Roscoea purpurea Sm.	Stainton, Sykes \& Williams	3372
$23 \quad 22 \mathrm{~N}$	10324 E	Roscoea praecox K.Schum.	Henry	11117
2655 N	10010 E	Roscoea tibetica Batalin	Handel-Mazzetti	4153
-	-	Roscoea praecox K.Schum.	Gregory \& Gregory	-
2817 N	08349 E	Roscoea purpurea Sm.	Grey-Wilson \& Phillips	274
2640 N	09940 E	Roscoea tibetica Batalin	Forrest	23229
2239 N	09337 E	Roscoea australis Cowley	Venning	10
3106 N	07710 E	Roscoea alpina Royle	Parmanand	398
2826 N	08455 E	Roscoea tumjensis Cowley	Gardner	525
3106 N	07710 E	Roscoea alpina Royle	Schlich	-
2734 N	08626 E	Roscoea auriculata K. Schum.	Dhwoj	4
2542 N	10011 E	Roscoea cautleoides Gagnep.	Delavay	92
2720 N	10005 E	Roscoea tibetica Batalin	Rock	4393
2725 N	08810 E	Roscoea auriculata K.Schum.	King's collector	63
2823 N	08338 E	Roscoea purpurea Sm.	Kanai, Hara \& Ohba	723603
3027 N	07805 E	Roscoea purpurea Sm.	Anderson	-
2230 N	09330 E	Roscoea australis Cowley	-	85
2504 N	10241 E	Roscoea praecox K.Schum.	Schoch	179
2838 N	08337 E	Roscoea alpina Royle	Stainton, Sykes \& Williams	958
2741 N	08845 E	Roscoea auriculata K.Schum.	Ribu \& Rhomoo	5520
2655 N	09950 E	Roscoea tibetica Batalin	Rock	25147
2820 N	09740 E	Roscoea wardii Cowley	Kingdon-Ward	9682
2736 N	08938 E	Roscoea bhutanica Ngamriab.	Ludlow, Sherriff \& Hicks	16377

-	-	Roscoea purpurea Sm.	Cleghorn	-
2812 N	08505 E	Roscoea capitata Sm.	Stainton	3833
2830 N	09705 E	Roscoea wardii Cowley	Kingdon-Ward	10476
2808 N	09658 E	Roscoea wardii Cowley	Kingdon-Ward	19623
2616 N	10000 E	Roscoea schneideriana (Loes.) Cowley.	Gregory \& Gregory	-
3116 N	07727 E	Roscoea alpina Royle	Watt	7910
$27 \quad 20 \mathrm{~N}$	10005 E	Roscoea tibetica Batalin	Rock	4709
2830 N	09705 E	Roscoea bhutanica Ngamriab.	Ludlow \& Sherriff	2275
-	-	Roscoea purpurea Sm.	Buchanan-Hamilton	-
2743 N	09130 E	Roscoea purpurea Sm.	Ludlow, Sherriff \& Hicks	20845
2734 N	08940 E	Roscoea bhutanica Ngamriab.	Cooper	3252
2528 N	09146 E	Roscoea brandisii (King ex Baker) K.Schum.	Koelz	33255
-	-	Roscoea purpurea Sm.	Watt	5770
2759 N	08656 E	Roscoea auriculata K.Schum.	Wollaston	281
2725 N	10133 E	Roscoea cautleoides Gagnep.	Handel-Mazzetti	2253
$27 \quad 20 \mathrm{~N}$	10005 E	Roscoea tibetica Batalin	Forrest	5815
2322 N	10324 E	Roscoea praecox K.Schum.	Hancock	170
-	-	Roscoea alpina Royle	Watt	3362
-	-	Roscoea alpina Royle	Watt	-
3027 N	07805 E	Roscoea purpurea Sm.	Anderson	-
2906 N	082 54 E	Roscoea alpina Royle	Polunin, Sykes \& Williams	2266
2912 N	07925 E	Roscoea purpurea Sm.	Duthie	24985
$30 \quad 28 \mathrm{~N}$	07806 E	Roscoea purpurea Sm.	Huggins	2
3223 N	07715 E	Roscoea alpina Royle	Drummond	23185
2518 N	09142 E	Roscoea brandisii (King ex Baker) K.Schum.	Clarke	17590A
2904 N	08221 E	Roscoea purpurea Sm.	Polunin, Sykes \& Williams	436
2903 N	08244 E	Roscoea purpurea Sm.	Polunin, Sykes \& Williams	2500
2816 N	08349 E	Roscoea alpina Royle	Barclay \& Synge	2416
2740 N	08512 E	Roscoea purpurea Sm.	Codrington	238
2839 N	08312 E	Roscoea alpina Royle	Stainton, Sykes \& Williams	3021
2735 N	08526 E	Roscoea purpurea Sm.	Hara	723602
2743 N	08519 E	Roscoea alpina Royle	Bailey	-
2947 N	08117 E	Roscoea purpurea Sm.	Tyson	101
3106 N	07710 E	Roscoea alpina Royle	Lace	975
$28 \quad 17 \mathrm{~N}$	09710 E	Roscoea wardii Cowley	Kingdon-Ward	7112
-	-	Roscoea purpurea Sm.	Wallich	-
-	-	Roscoea alpina Royle	Madden	-
2729 N	08934 E	Roscoea bhutanica Ngamriab.	Cooper	2526
2535 N	09138 E	Roscoea brandisii (King ex Baker) K.Schum.	Hooker	-
-	-	Roscoea scillifolia (Gagnep.) Cowley	Delavay	3283
-	-	Roscoea brandisii (King ex Baker) K.Schum.	Brandis	-
2947 N	08201 E	Roscoea alpina Royle	Polunin, Sykes \& Williams	4340

2723 N	08813 E	Roscoea auriculata K.Schum.	Long, McBeath, Noltie \& Watson	131
2830 N	08328 E	Roscoea alpina Royle	Stainton, Sykes \& Williams	2836
2540 N	10011 E	Roscoea tibetica Batalin	Forrest	4807
3027 N	07805 E	Roscoea alpina Royle	Haines	2301
2730 N	08938 E	Roscoea bhutanica Ngamriab.	Cooper	1512
3106 N	07710 E	Roscoea alpina Royle	-	-
3106 N	07710 E	Roscoea alpina Royle	-	-
2750 N	10115 E	Roscoea tibetica Batalin	Gamble	4286
3340 N	07308 E	Roscoea alpina Royle	Fleming	-
2435 N	09954 E	Roscoea tibetica Batalin	Yu	16596
$\begin{array}{lllll}26 & 14 & \mathrm{~N}\end{array}$	10256 E	Roscoea praecox K.Schum.	McLaren	V 47 A
2733 N	08751 E	Roscoea purpurea Sm.	KEKE	258
2811 N	08522 E	Roscoea capitata Sm.	Polunin	691
2535 N	09138 E	Roscoea brandisii (King ex Baker) K.Schum.	-	-
$\begin{array}{llll}21 & 14 & \mathrm{~N}\end{array}$	09355 E	Roscoea australis Cowley	Cooper	6009
2655 N	10010 E	Roscoea schneideriana (Loes.) Cowley	Schneider	1770
2534 N	09153 E	Roscoea brandisii (King ex Baker) K.Schum.	Clarke	44607A
-	-	Roscoea auriculata K. Schum.	Bailey	-
$27 \quad 20 \mathrm{~N}$	10005 E	Roscoea tibetica Batalin	Rock	4589
2828 N	08500 E	Roscoea tumjensis Cowley	Gardner	790
$27 \quad 28 \mathrm{~N}$	08853 E	Roscoea alpina Royle	Dungboo	58
$27 \quad 37 \mathrm{~N}$	10105 E	Roscoea tibetica Batalin	Handel-Mazzetti	2966
2735 N	08522 E	Roscoea purpurea Sm.	Bailey	-
2655 N	10010 E	Roscoea humeana Balf.f. \& W.W.Sm.	Handel-Mazzetti	4145
2713 N	08933 E	Roscoea bhutanica Ngamriab.	Cooper	1300
3106 N	07710 E	Roscoea purpurea Sm.	Gamble	4663E
2805 N	08941 E	Roscoea alpina Royle	Ludlow, Sherriff \& Hicks	16439
3106 N	07710 E	Roscoea alpina Royle	Jacquemont	1024
2739 N	09109 E	Roscoea purpurea Sm.	Cooper	4182
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	470
2655 N	10010 E	Roscoea schneideriana (Loes.) Cowley	Schneider	2264
-	-	Roscoea purpurea Sm.	Wallich	6528A
3106 N	07710 E	Roscoea purpurea Sm.	Lace	2153
27.12 N	10005 E	Roscoea tibetica Batalin	Forrest	2396
2727 N	08939 E	Roscoea bhutanica Ngamriab.	Gould	251
2720 N	10005 E	Roscoea schneideriana (Loes.) Cowley	Forrest	6407
272248 N	1000550 E	Roscoea tibetica Batalin	ACE	346
$25 \quad 55 \mathrm{~N}$	10030 E	Roscoea forrestii Cowley	McLaren	B106
2826 N	08455 E	Roscoea tumjensis Cowley	Gardner	790
2700 N	10456 E	Roscoea tibetica Batalin	Maire	235
2720 N	10005 E	Roscoea'cautleoides Gagnep.	Forrest	5890
2655 N	10010 E	Roscoea cautleoides Gagnep.	Rock	11443
2540 N	10011 E	Roscoea debilis var. debilis Gagnep.	Forrest	6917

2655 N	10010 E	Roscoea humeana Balf.f. \& W.W.Sm.	```Chamberlain, Grey- Wilson, Li Y., McBeath, Schilling Xu T. & Yuan H.```	$\begin{aligned} & \text { SBL } \\ & 00000018 \\ & 1 \end{aligned}$
-	-	Roscoea cautleoides Gagnep.	Forrest	30047
2540 N	10011 E	Roscoea debilis.var. debilis Gagnep.	Forrest	6917
2712 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	2347
2655 N	10010 E	Roscoea cautleoides Gagnep.	Rock	5069
-	-	Roscoea tibetica Batalin	-	928
2743 N	08519 E	Roscoea capitata Sm.	Wallich	6529
2728 N	08853 E	Roscoea alpina Royle	Dungboo	6
2720 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	4549
$\begin{array}{lllll}27 & 37 & 55 & \mathrm{~N}\end{array}$	1000216 E	Roscoea tibetica Batalin	ACE	236
2842 N	08252 E	Roscoea nepalensis Cowley	Stainton, Sykes \& Williams	3328
2727 N	08939 E	Roscoea bhutanica Ngamriab.	Gould	912
2447 N	10316 E	Roscoea debilis var. debilis Gagnep.	Ducloux	1257
2640 N	09940 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	21527
2740 N	10130 E	Roscoea cautleoides Gagnep.	Schneider	1232
2815 N	10120 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	23852
2740 N	10130 E	Roscoea cautleoides Gagnep.	Schneider	1200
2520 N	09835 E	Roscoea debilis var. debilis Gagnep.	Forrest	8456
2745 N	09930 E	Roscoea schneideriana (Loes.) Cowley	Forrest	10945
2740 N	09910 E	Roscoea schneideriana (Loes.) Cowley	Forrest	12910
$27 \quad 28 \mathrm{~N}$	08853 E	Roscoea tibetica Batalin	Dungboo	-
2745 N	09930 E	Roscoea scillifolia (Gagnep.) Cowley	Forrest	10657
2730 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	6092
2750 N	099.36 E	Roscoea tibetica Batalin	CLD-90	483
2709 N	10012 E	Roscoea humeana Balf.f. \& W.W.Sm.	```Chamberlain, Grey- Wilson, Li Y., McBeath, Schilling, Xu T. & Yuan H.```	$\begin{aligned} & \text { SBL } \\ & 00000061 \\ & 2 \end{aligned}$
2750 N	09936 E	Roscoea tibetica Batalin	CLD-90	282
2720 N	10005 E	Roscoea forrestii Cowley	McLaren	105B
-	-	Roscoea auriculata K. Schum.	Hara, Kanai, Kurosawa, Murata \& Togashi	6300493
2720 N	10005 E	Roscoea cautleoides Gagnep.	CLD-90	687
2755 N	10130 E	Roscoea cautleoides Gagnep.	Gamble	4355
-	-	Roscoea cautleoides Gagnep.	Maire	472

2640 N	09940 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	21527
2518 N	09142 E	Roscoea brandisii (King ex Baker) K.Schum.	Clarke	17590B
2709 N	10012 E	Roscoea cautleoides Gagnep.	-	173
2540 N	10011 E	Roscoea cautleoides Gagnep.	McLaren	128
$\begin{array}{lllll}27 & 48 & 19 & \mathrm{~N}\end{array}$	0995431 E	Roscoea tibetica Batalin	ACE	406b
2655 N	10010 E	Roscoea cautleoides Gagnep.	Rock	3351
2540 N	10011 E	Roscoea cautleoides. Gagnep.	Forrest	7050
2814 N	10115 E	Roscoea schneideriana (Loes.) Cowley	Rock	17811
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	572
21.14 N	09355 E	Roscoea australis Cowley	Kingdon-Ward	22124
2728 N	08853 E	Roscoea bhutanica Ngamriab.	Dungboo	4244
2655 N	10010 E	Roscoea cautleoides Gagnep.	Rock	3441
2502 N	09828 E	Roscoea debilis var. debilis Gagnep.	Howell	44
2740 N	210005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	10239
273359 N	1000164 E	Roscoea humeana Balf.f. \& W.W.Sm.	ACE	250
2322 N	10324 E	Roscoea debilis var. debilis Gagnep.	Henry	11102C
2720 N	10005 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	3793
2720 N	10005 E	Roscoea scillifolia (Gagnep.) Cowley	Rock	4759
2642 N	10045 E	Roscoea cautleoides Gagnep.	Gamble	3922
-	-	Roscoea purpurea Sm.	Wallich	6528A
2709 N	10012 E	Roscoea cautleoides Gagnep.	-	43
2720 N	10005 E	Roscoea scillifolia (Gagnep.) Cowley	Rock	4759
2635 N	10215 E	Roscoea humeana Balf.f. \& W.W.Sm.	Schneider	1192
2700 N	10456 E	Roscoea schneideriana (Loes.) Cowley	Maire	-
$28 \quad 13 \mathrm{~N}$	08527 E	Roscoea capitata Sm.	Kanai \& Shakya	671948
2540 N	10045 E	Roscoea cautleoides Gagnep.	ACE	981
2743 N	08519 E	Roscoea capitata Sm.	Wallich	6529
2709 N	10012 E	Roscoea tibetica Batalin	KEYSE	470
2750 N	10115 E	Roscoea humeana Balf.f. \& W.W.Sm.	Rock	16008
2818 N	08346 E	Roscoea alpina Royle	Stainton, Sykes \& Williams	5382
-	-	Roscoea purpurea Sm.	Reid	-
-	-	Roscoea alpina Royle	Clarke	28272
2528 N	09146 E	Roscoea brandisii (King ex Baker) K.Schum.	Hooker	1452
2655 N	10010 E	Roscoea cautleoides Gagnep.	Rock	3330
2720 N	10005 E	Roscoea cautleoides	Forrest	6387

		Gagnep.		
2728 N	08715 E	Roscoea purpurea Sm.	Long, McBeath, McKean, Rae \& Bhattarai	149
2743 N	$085 \cdot 19 \mathrm{E}$	Roscoea capitata Sm.	Wallich	6529
3106 N	07710 E	Roscoea purpurea Sm.	-	-
2853 N	08259 E	Roscoea alpina Royle	Polunin, Sykes \& Williams	2460
2741 N	08845 E	Roscoea auriculata K. Schum.	Cooper	378
3111 N	07738 E	Roscoea alpina Royle	Maclagan	723
2809 N	08524 E	Roscoea purpurea Sm.	Halliwell	35
2744 N	08833 E	Roscoea auriculata K. Schum.	Younghusband	-
$28 \quad 10 \mathrm{~N}$	08534 E	Roscoea purpurea Sm.	Polunin	1949
2614 N	10256 E	Roscoea praecox K.Schum.	McLaren	V 47 A
2542 N	10011 E	Roscoea tibetica Batalin	McLaren	B67
2322 N	10324 E	Roscoea debilis var. debilis Gagnep.	Henry	11102
2542 N	10011 E	Roscoea forrestii Cowley	Gebauer	-
2742 N	08747 E	Roscoea auriculata K. Schum.	Stainton	1067
2736 N	08839 E	Roscoea auriculata K.Schum.	-	-
2720 N	10005 E	Roscoea scillifolia (Gagnep.) Cowley	Rock	4448
2540 N	10011 E	Roscoea tibetica Batalin	Forrest	4806
2504 N	10241 E	Roscoea praecox K.Schum.	Maire	467
2504 N	10241 E	Roscoea praecox K.Schum.	Maire	467
-	-	Roscoea alpina Royle	Bailey	-
2730 N	09945 E	Roscoea cautleoides Gagnep.	Gamble	237
-	-	Roscoea alpina Royle	Reid	-
2805 N	08520 E	Roscoea capitata Sm.	Kanai, Hara \& Ohba	721776
2740 N	08512 E	Roscoea purpurea Sm.	Codrington	236
2740 N	10048 E	Roscoea humeana Balf.f. \& W.W.Sm.	Forrest	21437
$27 \quad 2215 \mathrm{~N}$	0995758 E	Roscoea tibetica Batalin	Alden, Alexander, Long, McBeath, Noltie \& Watson	1506

APPENDIX FIVE: ADDITIONAL IDENTIFICATION KEYS OF ROSCOEA (CHAPTER FIVE)

1. A KEY FROM FLORA OF CHINA

(Wu and Larsen, 2000)

1a. Corolla tube $1.6-4(-5) \mathrm{cm}$; labellum usually less than 2.5 cm
2a. Plants usually less than 15 cm when mature
3a. Central lobe of corolla orbicular; labellum not reflexed R. alpina
3b. Central lobe of corolla oblong; labellum slightly to conspicuously reflexed
4a. Leaves obscurely to densely hairy especially when young; bracts elliptic; lateral staminodes oblong, $1-1.3 \mathrm{~cm} \quad R$. tibetica 4b. Leaves glabrous; bracts tubular; lateral staminodes narrowly obovate-cuneate, ca. $1.4 \mathrm{~cm} \quad$ R. kunmingensis
2b. Plants usually more than 15 cm tall when mature
5 a. Leaves appearing after anthesis, 3-6 cm wide; bracts much shorter than calyx
R. humeana
$5 b$. Leaves appearing before anthesis, $1-2.8 \mathrm{~cm}$ wide; bracts longer than calyx 6a. Lateral staminodes elliptic to obliquely obovate, 1-1.4 cm; labellum $1.3-2 \times 0.8-1.2 \mathrm{~cm}$, with white lines at throat
R. scillifolia

6b. Lateral staminodes obliquely spathulate, ca. 2 cm ; labellum ca. 2.5 x 1.4 cm , without white lines at throat
R. capitata

1b. Corolla tube (3-)4-12.5 cm; labellum usually more than 2.5 cm
7a. Bracts obtuse or truncate at apex
8a. Leaves glaucous abaxially
R. wardii

8 b . Leaves not glaucous abaxially
9a. Leaves distinctly narrowed, petiolelike between sheath and blade; ligule prominent
R. debilis

9b. Leaves not narrowed and petiolelike between sheath and blade;
ligule obscure \quad R. forrestii

7b. Bracts acute at apex
10a. Leaves auriculate R. auriculata
10b. Leaves not auriculate
11a. Leaves absent at anthesis R. praecox 11b. Leaves present at anthesis

12a. Leaves forming a rosette at apex of pseudostem; labellum not reflexed, lobes usually emarginate; stigma hooked
R. schneideriana

12b. Leaves not forming a rosette at apex of pseudostem; labellum reflexed, lobes usually not emarginate; stigma not hooked
R. cautleoides

2. A KEY BY TONG SHAO-QUAN

(Tong, 1992)
The original version is in Chinese. It was translated into English by Mr. Chun-Neng Wang, a fellow Ph.D. student from Taiwan.

1a. Leaf auriculate	R. auriculata
1b. Leaf not auriculate	

2a. Bract short, 2-4 mm, white, transparent
3a. Leaf abaxial white grey, calyx bilobed, labellum lobes with three white lines
R. wardii

3b. Leaf abaxial green, calyx three teeth, labellum with no lines
R. tibetica

2 b . Bract long, $0.7-7 \mathrm{~cm}$, not white, not transparent
4a. Leaf on top rosette, labellum no claw, appendages ball, stigma balled
R. schneideriana

4 b . Leaf not rosette, labellum claw
5a. Leaf petiolate \quad R. debilis
5b. Leaf not petiolate

6a. Bract tubular
7a. Bract long, $2.6-5 \mathrm{~cm}$
8a. Ligule triangular, bracts shorter than calyx, corolla tube longer than calyx ca. 1.5 cm , dorsal petal obovate

> R. cautleoides

8b. Ligule semicircular, bracts longer than calyx, corolla tube shorter than calyx, dorsal petal elliptic
R. scillifolia

7a. Bract short, 7 mm
R. kunmingensis

6b. Bract not tubular
9a. Dorsal petal circular \quad R. alpina
9b. Dorsal petal not
10a. Inflorescence capitulate, dorsal petal 2 cm , corolla tube shorter than calyx R. capitata
10b. Inflorescence not, dorsal petal $3.5-4 \mathrm{~cm}$, corolla tube longer than calyx

11a. Labellum as long as dorsal petal R. praecox
11b. Labellum not
12a. L. shorter than DP, bracts shorter than calyx, staminodes 2 times shorter than DP R. humeana
12b. L. longer than DP , bracts equal to longer than calyx staminodes half the length of DP R. forrestii

[^0]: ${ }_{2}$ Also included Loesener and Winkler (in Engler and Prantl, edn. 2, 1930).
 ${ }^{2}$ Also included Tomlinson (1962), Cronquist (1981), Dahlgren et al. (1985), Thorne (1992)

[^1]: * Five valid names of Cautleya appear in the literature. Only two species are believed to be really distinct. 1. Cautleya gracilis (Smith) Dandy (Cautleya cathcartii Baker differs from C. gracilis in that it has more flowers on the inflorescence), 2. Cautleya spicata (Smith) Baker (Cautleya robusta Baker was described from inadequate, fruiting material; Cautleya petiolata Baker has fewer flowers on the inflorescence and its bracts are shorter than C. spicata) (Kumar, 1994; Smith, 1994; Larsen et al., 1998).

[^2]: * See Table 4.2 and Figure 4.13 for exceptions.

