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Abstract: Ducrosia flabellifolia Boiss. is a rare desert plant known to be a promising source of bioac-

tive compounds. In this paper, we report for the first time the phytochemical composition and bio-

logical activities of D. flabellifolia hydroalcoholic extract by using liquid chromatography–elec-

trospray tandem mass spectrometry (ESI-MS/MS) technique. The results obtained showed the rich-

ness of the tested extract in phenols, tannins, and flavonoids. Twenty-three phytoconstituents were 

identified, represented mainly by chlorogenic acid, followed by ferulic acid, caffeic acid, and sinapic 

acid. The tested hydroalcoholic extract was able to inhibit the growth of all tested bacteria and yeast 

on agar Petri dishes at 3 mg/disc with mean growth inhibition zone ranging from 8.00 ± 0.00 mm 

for Enterococcus cloacae (E. cloacae) to 36.33 ± 0.58 mm for Staphylococcus epidermidis. Minimal inhibi-

tory concentration ranged from 12.5 mg/mL to 200 mg/mL and the hydroalcoholic extract from D. 

flabellifolia exhibited a bacteriostatic and fungistatic character. In addition, D. flabellifolia hydroalco-

holic extract possessed a good ability to scavenge different free radicals as compared to standard 

molecules. Molecular docking studies on the identified phyto-compounds in bacterial, fungal, and 

human peroxiredoxin 5 receptors were performed to corroborate the in vitro results, which revealed 

good binding profiles on the examined protein targets. A standard atomistic 100 ns dynamic simu-

lation investigation was used to further evaluate the interaction stability of the promising phyto-

compounds, and the results showed conformational stability in the binding cavity. The obtained 

results highlighted the medicinal use of D. flabellifolia as source of bioactive compounds, as antioxi-

dant, antibacterial, and antifungal agent. 
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1. Introduction 

The Apiaceae family (syn. Umbelliferae) comprises more than 455 genera and more 

than 3700 species [1] and is known to yield distinctive phytochemicals with antioxidant, 

antimicrobial, anticancer, anti-inflammatory, and hepatoprotective properties [2–4]. In 

Saudi Arabia, the Apiaceae family comprises more than eighteen plant species and is con-

sidered the most used family in ethnomedicine [5,6]. The Ducrosia genus includes six spe-

cies and is widely spread in Asia, particularly the Kingdom of Saudi Arabia, Afghanistan, 

Pakistan, and Iraq with D. anethifolia as the most popular species [7]. Ducrosia flabellifolia 

Boiss. (D. flabellifolia), with the popular name of “Al Haza”, grows as a rare species in 

volcanic cinders in the center and north of Saudi Arabia [8,9], and in the deserts of the 

eastern parts of Jordan [10]. 

Many scientific studies have investigated the chemical composition of D. anethifolia 

and D. flabellifolia essential oil from Saudi Arabia [11], Iran [12], Jordan [13–15], and Tuni-

sia [16]. Most studies have focused on the essential oil obtained from D. flabellifolia species. 

In fact, in 2014, Shahabipour and colleagues [12] reported the identification of 32 bioactive 

compounds in the volatile oil of D. flabellifolia from Iran dominated mainly by decanal 

(32.8 ± 1.91%), dodecanal (32.6 ± 1.75), and (2E)-tridecen-1-al (3.3 ± 0.08%). Moreover, D. 

flabellifolia volatile oil from Safawi (Jordan) obtained by hydrodistillation was a rich source 

of monoterpenes and terpenoids [13]. Hydrodistilled oil from fresh leaves was dominated 

by n-decanal (36.61%), dodecanal (7.5%), D-L- limonene (3.86%), and β-phellandrene 

(3.84%), while the oil obtained by hydrodistillation from dried leaves was dominated by 

n-decanal (24.44%), α-pinene (15.72%, 2E-octene (9.73%), 2Z-octane (7.04%), 2-heptanone 

(5.92%), frenchone (5.18%), and β-phellandrene (4.58%) [13]. While using GC/MS tech-

nique, Elsharkawi and colleagues [11] reported the identification of 30 phytoconstituents 

in ethyl acetate fraction of D. anethifolia collected from Wadi Arar (Saudi Arabia) domi-

nated by 8-ethoxypsoralen, coumarin-6-ol-3,4-dihydro-4,4,7,8-tetramethyl, isoaromaden-

drene epoxide, aromadendrene oxide, ferulic acid methyl ester, pterin-6-carboxylic acid, 

vitamin A palmitate, and ursodeoxycholic acid. 

The pharmacological potency of organic extracts obtained from members of Ducrosia 

genus has been subjected to diverse in vitro and in vivo biological activities. In a former 

study performed by Javidnia et al. [17], potent antimicrobial activity of the hydro-meth-

anolic extract from D. anethifolia aerial parts towards Bacillus subtilis, Staphylococcus aureus, 

Escherichia coli, Pseudomonas aeruginosa, and Candida albicans has been assessed. For a long 

time, the aerial parts and leaves of D. flabellifolia have been smoked as a cigarette [18]. The 

aerial parts of D. ismaelis have been reported as being used as natural insecticides and to 

cure skin infections [13,19]. In addition, D. anethifolia has been well documented essen-

tially as an insecticide and is used for the treatment of colds [20], heartburn [21], inflam-

mation of the inner wall of the nose [22], as an analgesic [23], and a flavoring in food 

[24,25]. 

The emergence of multidrug-resistant bacterial pathogens due to the overuse and 

abuse of currently available antibiotics has caused about 750,000 deaths annually, and 10 

million will die every year by 2050 [26]. In this context, the purpose of this study was to 

ascertain the effective valorization of selected D. flabellifolia hydroalcoholic extract col-

lected from the Hail region (Saudi Arabia) by assessing its phytochemical profile, antiox-

idant, and antimicrobial activities. Molecular docking and dynamic approaches were per-

formed in order to elucidate the possible interaction between the identified phytoconstit-

uents with specific target proteins involved in antibacterial, antifungal, and antioxidant 

activities. 
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2. Materials and Methods 

2.1. Chemicals 

Gallic acid, (+)-catechin, pyrocatechol, chlorogenic acid, 2,5-dihydroxybenzoic acid, 

4-hydroxybenzoic acid, (−)-epicatechin, caffeic acid, syringic acid, vanillin, taxifolin, sin-

apic acid, p-coumaric acid, ferulic acid, rosmarinic acid, 2-hydroxycinnamic acid, pi-

noresinol, quercetin, luteolin, and apigenin were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Vanillic acid, 3-hydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, 

apigenin 7-glucoside, luteolin 7-glucoside, hesperidin, eriodictyol, and kaempferol were 

obtained from Fluka (St. Louis, MO, USA). Finally, verbascoside, protocatechuic acid, and 

hyperoside were purchased from HWI Analytik (Ruelzheim, RP, Germany). Methanol 

and formic acid of HPLC grade were purchased from Sigma-Aldrich (St. Louis, MO, USA) 

and Merck (Darmstadt, Hesse, Germany), respectively. Ultra-pure water (18 mΩ) was ob-

tained using a Millipore Milli-Q Plus water treatment system (MILLIPORE CORPORA-

TION, Bedford, MA, USA). 

2.2. Plant Material Sampling 

In this proposal, D. flabellifolia (Al-Hazaa; Figure 1) plant species were collected from 

the Hail region (Al-Mu’ayqilat, 27°16′41.9″ N, 41°22´48.0″ E) in October 2019. A voucher 

specimen (AN04) was deposited at the herbarium in the Department of Biology (College 

of Science, University of Hail, Hail, Kingdom of Saudi Arabia). For the experiment, 4 g of 

air-dried aerial parts were macerated in 100 mL of methanol-80% at room temperature for 

72 h. The filtrate was recuperated by lyophilization, and the yield (expressed in percent-

age) was calculated using the following Equation (1): Yield (%) = (W1/100)/W2, where W1 

is the weight of extract after the evaporation of solvent and W2 is the dry weight of the 

sample. The yield of extraction was about 21.56 ± 1.78%. 

 

Figure 1. D. flabellifolia Boiss. plant species collected from the Hail region. 

2.3. Study of the Phytochemical Composition 

An Agilent Technologies 1260 Infinity liquid chromatography system (Santa Clara, 

CA, USA) hyphenated to a 6420 Triple Quad mass spectrometer was used for quantitative 

analyses. Chromatographic separation was carried out on a Poroshell 120 EC-C18 (100 

mm × 4.6 mm I.D., 2.7 μm) column (Santa Clara, CA, USA). The previously validated 

method was used for the analysis of phenolic compounds by LC-ESI-MS/MS [27]. The 

mobile phase was made up of solvent A (0.1%, v/v formic acid solution) and solvent B 

(methanol). The gradient profile was set as follows: 0.00 min 2% B eluent, 3.00 min 2% B 

eluent, 6.00 min 25% B eluent, 10.00 min 50% B eluent, 14.00 min 95% B eluent, 17.00 min 

95% B, and 17.50 min 2% B eluent. The column temperature was maintained at 25 °C. The 

flow rate was 0.4 mL min−1 and the injection volume was 2.0 μL. The tandem mass spec-

trometer was interfaced with the LC system via an ESI source. The electrospray source of 
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the MS was operated in negative and positive multiple reaction monitoring (MRM) mode 

and the interface conditions were as follows: capillary voltage of −3.5 kV, gas temperature 

of 300 °C, and gas flow of 11 L min−1. The nebulizer pressure was 40 psi. MRM transitions, 

the optimum collision energies, and retention times for each species are indicated in Sup-

plementary Material S1. In addition, representative LC-ESI-MS/MS chromatograms of 

phenolic compounds are shown in Supplementary Material S2. Calibration curves and 

sensitivity properties of the method are also shown in Supplementary Material S3. 

In negative and positive multiple reaction monitoring (MRM) mode, the peaks of the 

analytes were identified by comparing the retention time, together with monitoring ion 

pairs in an authentic standard solution. 

2.4. Screening of the Biological Activities 

2.4.1. Antimicrobial Activities 

The antimicrobial activity of Al-Haza extracts was tested against twelve ESKAPE 

bacterial strains including Enterococcus faecium, three Staphylococcus species (S. aureus, S. 

epidermidis, and S. hominis), Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas ae-

ruginosa, two Enterobacter species (E. cloacae and E. faecalis), and Escherichia coli. Four types 

of Candida species were also tested (C. albicans ATCC 20402, C. tropicalis ATCC 1362. C. 

guillermondii ATCC 6260, and C. utilis ATCC 9255). The effect of the hydroalcoholic extract 

from D. flabellifolia was estimated using disc diffusion assay [28] by measuring the diam-

eter of the growth inhibition zone tested on a Mueller Hinton agar plate for bacterial 

strains and Sabouraud dextrose agar for yeast. Sterile discs were impregnated with three 

different concentrations of the tested extract (1 mg/disc, 1.5 mg/disc, and 3 mg/disc). After 

incubation, the mean diameter of the growth inhibition zone (mGIZ) was calculated, and 

the scheme proposed by Parveen et al. [29] was used to interpret the obtained results (no 

activity: mGIZ = 0; low activity: mGIZ = 1–6 mm; moderate activity: mGIZ = 7–10 mm; 

high activity: mGIZ = 11–15 mm; and very high activity: GIZ = 16–20 mm). Ampicillin and 

Amphotericin B were used as controls.  

The microdilution assay was used for the determination of MIC (minimal inhibitory 

concentration) and MBC/MFC values (minimal bactericidal/fungicidal concentration) as 

previously described by Khalfaoui et al. [30]. Bacterial and fungal cultures were inocu-

lated into the wells of 96-well microtiter plates in the presence of D. flabellifolia methanolic 

extract at final concentrations varying from 0.039 mg/mL to 100 mg/mL. To interpret the 

character of the tested extract, we used the ratios (MBC/MIC ratio and MFC/MIC ratio) 

described by Gatsing et al. [31] and Moroh et al. [32]. 

2.4.2. Phytochemistry and Antioxidant Activities Screening 

Total phenolic content expressed as milligram (mg) of gallic acid per gram of plant 

extract (mg GAE/g extract) was estimated by using the Folin–Ciocalteu method as previ-

ously described by Kumar et al. [33]. Total flavonoids expressed as mg of quercetin equiv-

alents per gram of plant extract (mg QE/g extract) were determined using the AlCl3 

method developed by Benariba et al. [34]. In addition, acidified vanillin method previ-

ously described by Broadhurst and Jones [35] was used to estimate the total condensed 

tannins (expressed mg tannic acid equivalent per gram of plant extract (mg TAE/g ex-

tract)).  

The ability of the Al-Haza extract against DPPH-H was determined following the 

same method as Mseddi al. [36]. The method of Koleva et al. [37] for β-Carotene bleaching 

test and Oyaizu [38] method for the determination of reducing power were used. 

2.5. In Silico Study 

2.5.1. Molecular Docking 

The 3D structures of LC-MS-detected phytochemicals were retrieved in structural 

data format (sdf) from the PubChem database. The LigPrep module was used to prepare 
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the entire set of phytochemicals, which involved the addition of hydrogen atoms and suit-

able charges, as well as the correcting of the valences and the protonation and tautomeric 

states at pH 7.2 ± 2.0 of the molecules using the Epik tool [39,40]. The X-ray crystal struc-

ture of S. aureus type IIA topoisomerase, tyrosyl-tRNA synthetases (TyrRS) of S. aureus, 

Sap1 of C. albicans, and human peroxiredoxin 5 receptor were retrieved from the PDB 

server with accession codes of 2XCT, 1JIJ, 2QZW, and 1HD2, respectively, as the receptor 

for the molecular docking study. The Schrodinger Protein Preparation Wizard has been 

used for protein preparation and energy minimization, in which crystallographic water 

molecules are removed, then missing hydrogen and/or side chain atoms are added, and 

the correct charges and protonation states are given to protein residues at pH 7.0 [41,42]. 

The protein structure was energy minimized using the OPLS3 force field to alleviate steric 

conflicts in the protein structure. Following that, the prepared protein was considered for 

grid generation utilizing the “Receptor Grid Generation” panel where active sites in tar-

geted proteins were defined for grid generation by selecting cognate ligands [43]. Glide’s 

standard precision (SP) mode was used to execute all docking calculations for the pre-

pared ligand molecules, with the default parameters. 

2.5.2. Molecular Dynamics (MD) Simulation 

MD simulation is regarded as the most important approach for comprehending the 

nature of biological macromolecules’ underlying structure and function. The MD simula-

tions were conducted utilizing the Schrödinger MD simulation program Desmond, which 

helps us to understand how a ligand–protein complex binds in simulated physiological 

conditions [44]. MD simulation analysis was conducted for top score phyto-compound 

Hyperoside in complex with 1JIJ protein. The simulation system was built through the 

system builder, with the boundaries set by an orthorhombic shape with a diameter of 10 

Å × 10 Å × 10 Å and filled with SPC water molecules.  

To neutralize the system’s charges, sodium (+27) and chloride (−12) ions were sup-

plied as counter ions and salt concentration was maintained at 0.15 M. Following the setup 

of the system builder, the protein–ligand complex system was minimized using the steep-

est descent method, which was followed by LBFGS algorithms with a maximum of 2000 

iterations [45,46]. Further, the system was equilibrated using the NPT ensemble with a 

Nose–Hoover chain thermostat to evenly distribute the ions and solvent throughout the 

protein–ligand complex. During the simulation, the temperature was maintained at 300 

K. Furthermore, isotropic position scaling was used to control 1bar barostat pressure [47–

50]. A 100 ns simulation was run, with a total of 1000 frames stored in the simulation 

system for subsequent analysis using the Desmond program’s “Simulation Interactions 

Diagram” module. 

2.6. Statistical Analysis 

All experiments were performed in triplicate and average values were calculated us-

ing the SPSS 25.0 statistical package for Windows. Duncan’s multiple-range tests for 

means with a 95% confidence interval (p ≤ 0.05) were used to calculate the differences in 

means.  

3. Results 

3.1. Phytochemical Composition of D. flabellifolia Hydroalcoholic Extract 

Using ESI-MS/MS technique, 23 phytocompounds were identified in the hydroalco-

holic extract from D. flabellifolia aerial parts (Table 1). This extract was dominated by (mg/g 

of extract): chlorogenic acid (5980.96 ± 73.12), ferulic acid (180.58 ± 2.77), caffeic acid (70.90 

± 1.75), and sinapic acid (61.74 ± 2.79). 
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Table 1. Phytochemical profiling of D. flabellifolia methanol/water extract by using ESI–MS/MS tech-

nique. 

N° Identified Compounds 
Retention Time 

(min) 

Abondance 

(mg/Kg of Extract) 
Chemical Formula 

Molecular Weight 

(g/mol) 

1 Gallic acid 8.891 8.78 ± 0.14 C7H6O5 170.12 

2 Protocatechuic acid 10.818 25.69 ± 0.395 C7H6O4 154.12 

3 3,4-Dihydroxyphenylacetic acid 11.224 1.61 ± 0.135 C8H8O4 168.15 

4 Pyrocatechol 11.506 14.36 ± 0.315 C6H6O2 110.11 

5 Chlorogenic acid 11.802 * 5980.96 ± 73.12 C16H18O9 354.31 

6 2,5-Dihydroxybenzoic acid 12.412 59.74 ± 0.945 C7H6O4 154.12 

7 4-Hydroxybenzoic acid 12.439 19.25 ± 0.98 C7H6O3 138.12 

8 (-)-Epicatechin 12.458 * 5.15 ± 0.1 C15H14O6 290.27 

9 Caffeic acid 12.841 70.90 ± 1.75 C9H8O4 180.16 

10 Syringic acid 12.963 28.92 ± 0.51 C9H10O5 198.17 

11 3-Hydroxybenzoic acid 13.259 13.30 ± 0.405 C7H6O3 138.12 

12 Vanillin 13.379 25.03 ± 0.785 C8H8O3 152.15 

13 Sinapic acid 13.992 61.74 ± 2.79 C11H12O5 224.21 

14 p-Coumaric acid 14.022 55.11 ± 0.765 C9H8O3 164.16 

15 Ferulic acid 14.120 180.58 ± 2.77 C10H10O4 194.18 

16 Luteolin 7-glucoside 14.266 5.42 ± 0.5 C21H20O11 448.4 

17 Hyperoside 14.506 * 26.55 ± 0.635 C21H20O12 464.4 

18 Rosmarinic acid 14.600 6.05 ± 0.025 C18H16O8 360.3 

19 Apigenin 7-glucoside 14.781 * 2.52 ± 0.25 C21H20O10 432.4 

20 2-Hydroxycinnamic acid 15.031 31.28 ± 0.015 C9H8O3 164.16 

21 Pinoresinol 15.118 13.13 ± 0.55 C20H22O6 358.4 

22 Eriodictyol 15.247 2.29 ± 0.005 C15H12O6 288.25 

23 Quercetin 15.668 2.27 ± 0.075 C15H10O7 302.23 

*: Compounds identified by positive Ionization mode. 

The chemical structures of the main identified phytoconstituents are summarized in 

Figure 2. 

 

Figure 2. Chemical structure of the main compounds identified by ESI-MS/MS technique in the hy-

droalcoholic extract from D. flabellifolia aerial parts. Numbers are the same as listed in Table 1. 

3.2. Antioxidant Activities Screening 

Table 2 summarizes the results of the quantification of tannins, phenols, and flavo-

noids. In fact, the hydroalcoholic extract was dominated by phenolic compounds (46.684 
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± 0.757 mg GAE/g extract), followed by tannins (6.204 ± 0.401 mg TAE/g extract), and fla-

vonoids (1.816 ± 0.133 mg QE/g extract). The results obtained showed that the tested meth-

anolic extract from D. flabellifolia was able to scavenge the DPPH radical with a low IC50 

value (0.014 ± 0.045 mg/mL) as compared to BHT and AA (0.023 ± 3 × 10−4 mg/mL and 

0.022 ± 53 × 10-4 mg/mL, respectively). In addition, the ABTS + radical was scavenged with 

an IC50 value of about 0.102 ± 0.024 mg/mL of the tested extract. For beta-carotene bleach-

ing inhibiting property, the IC50 value was estimated at 7.80 ± 0.919 mg/mL, significantly 

different from BHT and AA (p < 0.05). 

Table 2. Antioxidant activities of D. flabellifolia methanol/water extract compared to known drugs. 

Test Systems 
D. flabellifolia 

(Methanol-80%) 

Butylated Hy-

droxytoluene 
Ascorbic Acid 

DPPH IC50 (mg/mL) 0.014 ± 0.045 a 0.023 ± 3 × 10−4 b  0.022 ± 5 × 10−4 b  

ABTS IC50 (mg/mL) 0.102 ± 0.024 a 0.018 ± 4 × 10−4 b 0.021 ± 0.001 b 

β-carotene IC50 (mg/mL) 7.80 ± 0.919 a 0.042 ± 3.5 × 10−3 b 0.017 ± 0.001 b 

The letters (a,b) indicate a significant difference between the different antioxidant methods accord-

ing to the Duncan test (p < 0.05). 

3.3. Antimicrobial Activities Screening 

The results of the antimicrobial activity of the hydro-methanolic extract from D. fla-

bellifolia aerial parts showed that the mean diameter of the growth inhibition zone (mGIZ) 

increased in a concentration-dependent manner (Figure 3). At 3 mg/disc, the mGIZ ranged 

from 8.00 ± 0.00 mm (E. cloacae) to 36.33 ± 0.58 mm (S. epidermidis). At the same concentra-

tion (3 mg/disc), C. utilis ATCC 9255 was the most sensitive strain with mGIZ of about 

13.67 ± 0.58 mm. All bacterial strains seem to be more sensitive to the tested extract6 as 

compared to yeast strains, and the reference drug (ampicillin). Using the scheme proposed 

by Parveen et al. [29], the tested extract at 3 mg/mL showed high to very high activity 

against all tested bacterial and fungal strains with mGIZ from 11 to 20 mm. 

 

Figure 3. Mean diameters of bacterial and fungal growth inhibition zones (mGIZ ± mm) obtained 

with different concentrations of D. flabellifolia hydro-methanolic extract as compared to standard 

drugs. *: Ampicillin for bacteria and amphotericin B for Candida strains. 

Using the microdilution technique, the minimal inhibitory concentrations values 

(MICs) ranged from 12.5 to 25 mg/mL for bacterial strains and the minimal bactericidal 
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concentration values (MBCs) ranged from 100 to 200 mg/mL. Using the scheme proposed 

by Gatsing et al. [31] and Moroh et al. [32], the tested extract showed bacteriostatic activity 

against almost all tested ESKAPE microorganisms (MBC/MIC ratio higher than 4 and 

lower than 16), with the exception of E. faecium and E. cloacae (MBC/MIC equal to 4). All 

these data are summarized in Table 3. 

Table 3. Determination of MICs, MBCs, and MBC/MIC ratio values for ESKAPE strains as compared 

to known drugs. 

Code ESKAPE Bacterial Strains 

D. flabellifolia Methanol-80% Extract 

(mg/mL) 

Ampicillin 

(mg/mL) 

MIC  MBC MBC/MIC Ratio MIC  MBC 

260 Enterococcus faecium 25 100 = 4; Bactericidal 0.625 5 

445 Staphylococcus aureus (MRSA) 12.5 100 8; Bacteriostatic 0.625 5 

259 Staphylococcus aureus 12.5 100 8; Bacteriostatic 0.625 1.25 

140 BC Staphylococcus hominis 12.5 100 8; Bacteriostatic 0.625 2.5 

BC 161 Staphylococcus epidermidis 12.5 100 8; Bacteriostatic 0.312 0.625 

147 Klebsiella pneumoniae 25 200 8; Bacteriostatic 0.625 5 

486 Acinetobacter baumannii 25 200 8; Bacteriostatic 1.25 5 

249 Pseudomonas aeruginosa 25 200 8; Bacteriostatic 2.5 5 

525 Pseudomonas aeruginosa 25 200 8; Bacteriostatic 2.5 5 

268 Enterobacter faecalis 12.5 100 8; Bacteriostatic 0.312 2.5 

235 Enterobacter cloacae 50 200 = 4; Bacteriostatic 0.625 1.25 

215 Escherichia coli 25 200 8; Bacteriostatic 1.25 5 

Similarly, the tested D. flabellifolia hydroalcoholic extract was able to inhibit the 

growth of Candida strains in liquid media at 25 mg/mL (Table 4), while a high concentra-

tion of the tested extract was needed to completely kill them (from 100 to 200 mg/mL), 

with MFC/MIC ratios varying from 4 (C. albicans ATCC 20402; fungicidal action) to 8 

(Fungistatic action against C. utilis ATCC 9255, C. tropicalis ATCC 1362, and C. guiller-

mondii ATCC 6260). 

Table 4. Determination of MICs, MFCs, and MFC/MIC ratios for Candida species as compared to 

Amphotericin B. 

Code Candida sp. Strains 

D. flabellifolia Methanol-80% 

Extract 

(mg/mL) 

Amphotericin B 

(mg/mL) 

MIC  MFC MFC/MIC Ratio MIC  MFC 

A1 Candida utilis ATCC 9255 25 200 8; Fungistatic 0.78 1.56 

A8 Candida tropicalis ATCC 1362 25 200 8; Fungistatic 0.195 0.78 

A4 Candida guillermondii ATCC 6260 25 200 8; Fungistatic 0.097 1.56 

A15 Candida albicans ATCC 20402 25 100 = 4; Fungicidal 0.195 0.39 

3.4. Computational Study 

3.4.1. Molecular Docking 

The molecular docking study of identified phyto-compounds was carried out against 

bacterial fungal and human peroxiredoxin 5 targets. The binding affinities of phyto-com-

pounds are shown in the Supplementary Material (S1). The results of the molecular dock-

ing study revealed that phyto-compound luteolin 7-glucoside showed the highest binding 

affinity toward topoisomerase IIA (2XCT) with a docking score −12.562 Kcal/mol. The 

phyto-compounds apigenin 7-glucoside, quercetin, (−)-epicatechin, eriodictyol, and hy-
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peroside from D. flabellifolia also showed significant binding affinities against topoisomer-

ase IIA (2XCT) with docking scores of −12.514, −10.06, −9.836, −9.582, and −9.159 Kcal/mol, 

respectively. The best binding pose of luteolin 7-glucoside inside the active site of topoi-

somerase IIA and the 2D and 3D representations of the interactions with the amino acids 

inside the binding pocket are presented in Figure 4. 

 

Figure 4. Two- and three-dimensional residual interactions network of luteolin 7-glucoside against 

the active site of S. aureus IIA topoisomerase (PDB ID: 2XCT). 

Luteolin 7-glucoside binding interaction reveals that it interacted with Arg1122 and 

manganese (II) ion via π-cationic and metal coordinates, respectively. Among the assessed 

phyto-compounds, five compounds, namely, (−)-epicatechin, eriodictyol, 2,5-dihy-

droxybenzoic acid, chlorogenic acid, luteolin 7-glucoside, and vanillin showed proper and 

promising antioxidant activity by proper recognition at the binding active site of human 

peroxiredoxin protein with docking scores of −5.791, −5.255, −5.249, −5.11, −5.06, and −5.02 

Kcal/mol, respectively. It was reported that hydrogen bonds and hydrophobic interac-

tions established with the surrounding amino acids are applied to anticipate the binding 

modes of the novel compounds compared to the antioxidant benzoic acid cognate ligand, 

at the 1HD2 complex. This active pocket contained conserved amino acid residues such 

as Thr44, Gly46, Cys47, and Arg127, which play critical roles in docked compound recog-

nition via hydrogen bonding and hydrophobic interactions. The binding interaction 

shows that two terminal hydroxyl groups connected with asp145 and the147 in the (−)-

epicatechin-1HD2 complex, whereas the chromane ring hydroxyl group showed triple 

hydrogen bonding with Cys47, Thr44, and Arg127 amino acids, suggesting that the iden-

tified phyto-compound (−)-epicatechin has antioxidant activity (Figure 5). 

 

Figure 5. Two- and three-dimensional residual interactions network of (−)-epicatechin in human 

peroxiredoxin 5 protein (PDB ID: 1HD2). 
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Similarly, in C. albicans Sap1 protein (2QZW), hyperoside showed the highest binding 

affinity with a docking score of −6.055 Kcal/mol, and phyto-compounds eriodictyol, (−)-

epicatechin, and syringic acid showed potential binding affinities against C. albicans Sap1 

(2QZW) protein with docking scores of −5.814, −5.461, and −5.042 Kcal/mol, respectively. 

The residues of Thr6, Asp17, Lys26, Gly103, and Ala104, from Sap1 of C. albicans formed 

seven significant interactions with the phyto-compound hyperoside with a standard hy-

drogen binding pattern as shown in Figure 6. 

 

Figure 6. Two- and three-dimensional residual interactions network of hyperoside against the active 

site of C. albicans Sap1 (PDB ID: 2QZW). 

Among assessed phyto-compounds, hyperoside also showed a promising docking 

score (−8.852 Kcal/mol) in the microbial target TyrRS from S. aureus (1JIJ) in which it in-

teracted with active residues, namely, Asp195, Gly193, Gly38, and Asp177 (Figure 7).  

 

Figure 7. Two- and three-dimensional residual interactions network of hyperoside against the active 

site of TyrRS protein (PDB ID: 1JIJ). 

Table 5 shows the promising phyto-compounds hydrogen bonding profile in the ac-

tive site of type IIA topoisomerase, TyrRS, Sap1, and human peroxiredoxin 5 proteins. 
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Table 5. Interacting active site residues of receptors with the best phyto-compounds identified in D. 

flabellifolia hydroalcoholic extract. 

Name of Complex Interacting Residues 

Luteolin 7-glucoside-2XCT 

Arg1112(5.54 Å): [Arg N of NH2) -Lig (Phenyl ring) *] 

Mn2492(1.84 Å): [ Mn-Lig (O of OH) **] 

Mn2492(1.80 Å): [ Mn-Lig (O of OH) **] 

Mn2492(1.81 Å): [ Mn-Lig (O of OH) **] 

(-)-Epicatechin -1HD2 

Thr44 (1.84 Å): [Thr (O of COO-) -Lig (H of OH) d] 

Cys47 (2.76 Å): [Cys (H of NH) d-Lig (O of OH)] 

Arg127 (2.70 Å): [Arg (H of NH) d-Lig (O of OH)] 

Asp145 (1.70 Å): [Asp (O of COO-)-Lig (H of OH) d] 

Thr147 (2.20 Å): [Asp (O of COO-)-Lig (H of OH) d] 

Hyperoside-2QZW 

Thr6 (1.92 Å): [Thr (H of NH) d -Lig (O of OH)] 

Asp17 (1.74 Å): [Asp (O of COO-)-Lig (H of OH) d] 

Asp17 (1.84 Å): [Asp (O of COO-)-Lig (H of OH) d] 

Asp17 (1.92 Å): [Asp (O of NHCO-)-Lig (H of OH) d] 

Lys26 (1.80 Å): [Lys (H of NH) d -Lig (O of OH)] 

Gly103 (2.62 Å): [Gly H of NH) d -Lig (O of C-O-C)] 

Ala104 (2.18 Å): [Ala O of COO-) -Lig (H of OH) d] 

Hyperoside-1JIJ 

Gly38 (2.70 Å): [Gly (H of NH) d -Lig (O of C = O)] 

Asp80(1.85 Å): [Asp (O of COO-)-Lig (H of OH) d] 

Lys84 (1.91 Å): [Lys (H of NH) d -Lig (O of OH)] 

Asp177 (1.85 Å): [Asp (H of NH) d -Lig (O of OH)] 

Gly193 (2.28 Å): [Gly (H of NH) d -Lig (O of OH)] 

Asp195 (1.93 Å): [Asp (O of COO-)-Lig (H of OH) d] 
d Hydrogen bond donor; * π-Cation interaction; ** Metal interaction. 

3.4.2. MD Simulation  

Using molecular dynamics simulation, the docked complex of the phyto-compound 

hyperoside at the binding site of TyrRS of S. aureus was simulated under biological envi-

ronments to investigate complex stability and protein flexibility. Hyperoside, a phyto-

compound, has shown a high affinity for microbial targets, hence it was chosen for the 

MD simulation studies. The MD trajectories were used to determine RMSD values, root-

mean-square fluctuation (RMSF) values, and protein–ligand interactions. Various MD tra-

jectory data analyses for the hyperoside-1JIJ complex are shown in Figure 8. The RMSD 

figure showed a stable ligand–protein complex throughout the simulation time, as shown 

by RMSD values ranging from 1.6 to 2.8 Å for protein Cα atoms in the complex with hy-

peroside (Figure 8A). RMSD changes remain within 3 Å throughout the simulation pe-

riod, which is perfectly appropriate for small, globular proteins such as TyrRS. In the case 

of hyperoside RMSD with respect to protein, it was found that the ligand RMSD ranged 

from 0.8 to 2.6 Å. Except for a minor fluctuation, the RMSD of hyperoside was found to 

remain steady throughout the simulation. The maximum ligand RMSD was recorded at 

59 and 66 ns, when RMSD reached 2.59 and 2.60 Å, respectively.  

Furthermore, the flexibility of the protein system was evaluated during the simula-

tion by computing the RMSF of individual protein amino acid residues. The higher-peak-

ing residues correspond to loop regions (highlighted by white shade) identified by MD 

trajectories or N- and C-terminal areas. Low RMSF values of binding site residues show 

that hyperoside binding to TyrRS protein is stable. From Figure 8B, it may be observed 

that phyto-compound hyperoside interacted with 31 amino acids of TyrRS protein during 

the simulation time, which were highlighted by green vertical bars, including, Tyr36 

(0.425 Å), Cys37 (0.452 Å), Gly38 (0.509 Å), Ala39 (0.534 Å), Asp40 (0.769 Å), Thr42 (1.106 
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Å), His47 (0.975 Å), Gly49 (1.588 Å), His50 (1.015 Å), Pro53 (0.672 Å), Phe54 (0.712 Å), 

Leu70 (0.486 Å), Gly72 (0.59 Å), Thr75 (0.628 Å), Gly76 (0.685 Å), Ile78 (0.726 Å), Asp80 

(0.788 Å), Ser82 (1.097 Å), Lys84 (1.507 Å), Arg88 (1.551 Å), Asn124 (0.655 Å), Tyr170 (0.538 

Å), Gln174 (0.528 Å), Asp177 (0.505 Å), Gln190 (0.434 Å), Val191 (0.46 Å), Gly193 (0.563 

Å), Asp195 (0.687 Å), Gln196 (0.604 Å), Asn199 (0.524 Å), and Pro222 (0.662 Å). 

The 2D ligand interaction diagram shows the charged negative amino acid Asp es-

tablishing a major hydrogen bond with a hydroxyl group of hyperoside. The amino acids 

His50, Gly38, Val191, and Thr75 interacted with hyperoside for 57%, 92%, 43%, and 57% 

of simulation time, respectively. Additionally, there are intramolecular hydrogen bonds 

in hyperoside between the hydrogen atom of hydroxyl and the carbonyl oxygen of 

chromen-4-one moiety (Figure 8C). The binding interactions between hyperoside and ac-

tive site amino acid residues inside the binding pocket of TyrRS were computed and rep-

resented in Figure 8D. Most of the important interactions of hyperoside with the TyrRS 

protein determined with MD simulations are hydrogen bonds, polar (amino acids medi-

ated hydrogen bonding) interactions, and hydrophobic interactions.  
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Figure 8. MD simulation analysis of hyperoside in complex with S. aureus tyrosyl-tRNA synthetases (TyrRS) (PDB ID: 1JIJ): (A) time dependent 

RMSD (protein Cα atoms RMSD is shown in teal blue color while the RMSDs of hyperoside with respect to protein are shown in brown color); (B) 

protein Cα atoms RMSF; (C) 2D diagram of ligand interactions that occurred more than 30.0% of the simulation time; and (D) protein–ligand contact 

analysis of throughout the simulation..
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4. Discussion 

In the present study, we report for the first time the identification of bioactive mole-

cules by using the ESI-MS/MS technique in the hydroalcoholic extract from D. flabellifolia 

aerial parts collected from the Saudi Arabian desert. The main identified phytoconstitu-

ents were: protocatechuic acid, chlorogenic acid, 2,5-dihydroxybenzoic acid, 4-hy-

droxybenzoic acid, caffeic acid, syringic acid, vanillin, sinapic acid, p-coumaric acid, feru-

lic acid, hyperoside, 2-hydroxycinnamic acid, and pinoresinol.  

As far as we know, there are few data available in the literature relating to the chem-

ical compounds from D. flabellifolia extracts. In fact, Talib et al. [14] have demonstrated 

that D. flabellifolia 95% ethanolic extract collected from Wadi Hassan (Jordan) was a rich 

source of flavonoids and terpenoids qualitatively estimated by the thin layer chromatog-

raphy technique. The same team has demonstrated the identification of several flavonoids 

(flavonols and flavones) by using the HPLC-MS/MS technique in D. flabellifolia ethanolic 

extract including quercetin, fisetin, kaempferol, luteolin, and apigenin.  

Our results have shown that D. flabellifolia hydroalcoholic extract was active against 

ESKAPE pathogens and Candida species with an increase in the mean diameter of the 

growth inhibition zone depending on the concentration used. The highest sensitivity for 

all tested microorganisms was obtained at 3 mg/disc of the tested extract. Using the 

schemes proposed by Gatsing et al. [31] and Moroh et al. [32], the tested extract exhibited 

bacteriostatic and fungistatic action against almost all tested microorganisms. No study 

has hitherto described the antimicrobial activity of D. flabellifolia extracts. While testing 

Jordanian D. flabellifolia essential oil from dried leaves, Al-Shudiefat et al. [10] reported 

good activity against C. albicans with a MIC value of about 234 μg/mL; meanwhile, for 

bacterial strains, the MICs values were about 234 μg/mL against S. aureus, 1870 μg/mL 

against E. coli, and 1872 μg/mL against P. aeruginosa strain. For D. anethifolia, Elsharkawi 

and colleagues [11] have demonstrated that the ethyl acetate fraction was active against 

different Gram-positive bacteria including S. aureus ATCC 25923, S. epidermidis ATCC 

49461, Bacillus cereus ATCC 10876, and S. aureus clinical isolate tested at 500 mg/mL. The 

highest diameter of growth inhibition was recorded against S. epidermidis (14.5 ± 0.5 mm) 

followed by B. subtilis (14.0 ± 0.00 mm), while no activity was recorded against E. coli 

ATCC 35218, K. pneumoniae ATCC 700603, K. pneumoniae ATCC 27736, P. aeruginosa, and 

A. baumannii.  

We also reported in this study that D. flabellifolia hydroalcoholic extract was domi-

nated by phenolic compounds, followed by tannins and flavonoids. The same extract 

showed the ability to scavenge different radicals with low IC50 values (IC50 DPPH radical 

= 0.014 ± 0.045 mg/mL; IC50 ABTS + radicals = 0.102 ± 0.024 mg/mL; and IC50 for the beta-

carotene test = 7.80 ± 0.919 mg/mL). Previously, Mottaghipisheh et al. [13] reported that 

the IC50 value of the free radical scavenging activity of D. anethifolia ethanolic extract was 

estimated at 122.02 ppm and 354.37 ppm for the ethyl acetate extract. In addition, El-

sharkawi and colleagues [11] revealed the presence of high reduction capacity (EC50: 0.63 

± 0.03 g/L) and ability to scavenge the free radicals of DPPH with an IC50 of 0.38 ± 0.02 g/L 

in ethyl acetate fraction of D. anethifolia.  

Overall, the good antimicrobial activity against all tested Gram-positive/Gram-neg-

ative and Candida species, and the antioxidant activity of the tested hydroalcoholic extract 

can be attributed to the presence of many molecules with potential biological activities 

(Table 6). 
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Table 6. Literature survey showing some biological activities of the identified molecules in D. fla-

bellifolia hydroalcoholic extract. 

Identified Compounds Biological Activities References 

Gallic acid 

Antioxidant, antimicrobial, anticancer, anti-inflammatory, gastroprotec-

tive, cardioprotective, neuroprotective, anti-hyperlipidemia, anti-obe-

sity, and anti-diabetes. 

[51–53] 

Protocatechuic acid 
Antiviral, anti-oxidation, antibacterial, anti-apoptotic, anti-inflamma-

tory, anti-atherosclerotic, antioxidant, and neuroprotective. 
[54–58] 

3,4-Dihydroxyphenylacetic 

acid 

Decrease in the formation of amyloid fibrils and modulator of cell fate 

in Parkinson’s disease. 
[59,60] 

Pyrocatechol Antibacterial, antitumor, antioxidant and cytotoxic activities. [61] 

Chlorogenic acid 

Anti-metastatic, anti-oxidative, nephroprotective, anti-inflammatory, 

anti-diabetic, anti-hypertensive, hepatoprotective, anti-bacterial, neuro-

protective, anti-proliferative, central nervous system stimulator, anti-

obesity, cardioprotective, anti-pyretic, anti-viral, anti-angiogenic. 

[62] 

2,5-Dihydroxybenzoic acid 

Anti-inflammatory, anti-oxidant, antibacterial, muscle relaxant, anticar-

cinogenic, nephroprotective, hepatoprotective, cardioprotective, neuro-

protective. 

[63,64] 

4-Hydroxybenzoic acid 
Antibacterial, antiviral, antisickling agent, antialgal, antimutagenic, es-

trogenic agent, anti-inflammatory, antioxidant. 
[65] 

(-)-Epicatechin 

Antiviral (Anti-SARS-CoV-2 virus), gastroprotective, cardioprotective, 

neuroprotective, hepatoprotective, antioxidant, anti-inflammatory, anti-

diabetic. 

[66–68] 

Caffeic acid 
Anti-inflammatory, anticancer, antiviral, antioxidant, antihyperglyce-

mic, antidepressive, antibacterial. 
[69–71] 

Syringic acid 

Anti-oxidant, anti-microbial, anti-inflammation, antiangiogenic, anti-

cancer, anti-diabetic, hepatoprotective, cardioprotective, neuroprotec-

tive. 

[72] 

3-Hydroxybenzoic acid Antifungal, antimutagenic, antisickling, estrogenic, antimicrobial.  [73] 

Vanillin 

Anticancer, neuroprotective, antihyperglycemic, anti-hyperlipidemic, 

anti-inflammatory, antimicrobial, antioxidant, antisickling, cardiopro-

tective. 

[74–76] 

Sinapic acid 

Antioxidant, anti-inflammatory, anti-cancer, antihypertensive, cardio-

protective, neuroprotective, renoprotective, hepatoprotective, anti-hy-

perglycemic, anti-diabetic. 

[77,78] 

p-Coumaric acid 
Antioxidant, anti-inflammatory, anti-platelet aggregation, analgesic, an-

ticancer, neuroprotective, anti-necrotic, anti-cholestatic, anti-amoebic. 

[79,80] 

 

Ferulic acid 
Anti-inflammatory, antioxidant, antimicrobial activity, anticancer, and 

antidiabetic 
[81–83] 

Luteolin 7-glucoside Antioxidant, anti-inflammatory, antiaging, anticancer, vasoprotective [84,85] 

Hyperoside 

Anti-inflammatory, anti-thrombotic, antidiabetic, anti-viral, anti-fungal, 

hepato-protective, antioxidant, neuroprotective, antidepressant, cardio-

protective, antidiabetic, anticancer, hepatoprotective, Immuno-modula-

tory activity. 

[86–88] 

Rosmarinic acid 

Cytoprotective, antioxidative, antibacterial, antiviral, astringent, analge-

sic, anti-inflammatory, antihyperglycemic, hepatoprotective, immuno-

modulatory, anticancer, cardioprotective, neuroprotective. 

[89–91] 

Apigenin 7-glucoside 

Anti-inflammatory, anticandidal, anticancer, antiviral, antibacterial, an-

tioxidant, pro-apoptotic, antimutagenic, antiproliferative, antiallergic, 

inhibits xenobiotic-metabolizing enzymes. 

[92–94] 
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2-Hydroxycinnamic acid Inhibition of HIV/SARS-CoV S pseudovirus. [95] 

Pinoresinol 
Neuroprotective, vasorelaxant, hepatoprotective, anti-inflammatory, an-

ticancer. 
[96–98] 

Eriodictyol 

Cardioprotective, skin protection, antitumor, neuroprotective, antioxi-

dant, antidiabetic, anti-inflammatory, cytoprotective, hepatoprotective, 

analgesic. 

[99,100] 

Quercetin 
Anticancer, antiviral, antiprotozoal, antimicrobial, anti-allergy, anti-in-

flammatory, cardioprotective, sedative, immunostimulant. 
[101,102] 

Molecular docking studies were performed in order to explore binding affinity and 

interaction of identified phyto-compounds against bacterial, fungal, and human peroxire-

doxin 5 receptor. A docking score was used to determine the binding affinities of the 

phyto-compounds to target proteins. A lower docking score indicates a higher affinity. 

Luteolin 7-glucoside connected with Arg1122 and manganese (II) ion in the S. aureus IIA 

topoisomerase target via π -cationic and metal coordinates, respectively. This interaction 

is comparable to that of the co-crystallized standard drug ciprofloxacin. According to the 

study, the binding site cavity’s metal interaction had an impact on the substance’s physi-

cochemical properties and antibacterial activity [103,104]. Free radical-scavenging activity 

properties using the 3-D crystallographic peroxiredoxin 5 (1HD2) were carried out to ex-

plore the identified phyto-compounds’ recognition in the active site as potential antioxi-

dants. With a docking score of -5 kcal/mol, five phyto-compounds, namely (−)-epicatechin, 

eriodictyol, 2,5-dihydroxybenzoic acid, chlorogenic acid, luteolin 7-glucoside, and vanil-

lin, showed promising antioxidant activity by appropriate orientation at the binding ac-

tive site of human peroxiredoxin protein. In fungal target C. albicans Sap1 and bacterial 

TyrRS protein, the phyto-compound hyperoside showed the highest binding affinity. SB-

219383 and its analogs are a family of bacterial TyrRS inhibitors that are both potent and 

selective. These inhibitors’ crystal structures have been solved in complex with the TyrRS 

from S. aureus, the bacterium that causes the majority of hospital-acquired infections, ac-

cording to crystal structure. SB-219383 and its analogs interacted with charged negative 

amino acids Asp195 and Asp80, as well as hydrophobic Tyr170, in the active region of 

TyrRS from S. aureus [105]. Our docking results for hyperoside match those found in the 

deposited crystal structure, indicating that it has potential antibacterial activity by inhib-

iting TyrRS S. aureus. Because of its high affinity for microbial targets, hyperoside was 

selected for MD simulation studies. The RMSD values of the protein Cα atoms were used 

to calculate the stability of the protein–ligand complex during dynamics analysis. In fact, 

Cα atoms in proteins’ RMSD is a crucial parameter of the MD simulation trajectory that is 

used to investigate the backbone deviation of a single frame created in a dynamic envi-

ronment. The unfolding of the protein molecule results in a high RMSD value, which sug-

gests compactness. The steady fluctuation in the RMSD value across the simulation time 

indicates that the protein–ligand complex has equilibrated [106–110]. It is anticipated that 

the lesser RMSD value during the simulation reveals that the protein–ligand complex is 

more stable. In contrast, the higher RMSD value indicates the protein–ligand complex is 

less stable [111–113]. The overall RMSD revealed that fluctuations in the range of 1.6 Å to 

2.8 Å were within the standard range (1-3 Å) of RMSD, indicating that the protein–ligand 

complex is stable. Throughout the simulation process, the RMSF value shows the mobility 

and flexibility of each amino acid in the protein. In this plot, the peaks indicate the fluctu-

ation of each amino acid residue over the entire simulation. It implies that higher RMSF 

values represent higher residue flexibility, whereas lower RMSF values reflect less residue 

flexibility and better system stability. If the residues in the active site and main chain fluc-

tuated slightly, it indicated that the conformational change was minimal, implying that 

the reported lead compound was firmly bound within the cavity of the target protein 

binding pocket [114,115]. In addition, it was observed that the phyto-compound hyper-

oside interacted with 31 amino acids of the TyrRS protein during the simulation period, 
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which was highlighted by the green vertical bar. All these intercalated residues have low 

RMSF values, indicating that the hyperoside binding to TyrRS protein is stable. 

5. Conclusions 

In summary, we report for the first time in this study the identification of various 

phenolic compounds in the hydroalcoholic extract from D. flabellifolia aerial parts growing 

wild in Saudi Arabia. The tested extract possessed good antimicrobial activities and ex-

hibited notable potency in scavenging free radicals. Docking studies on the identified 

phyto-compounds in the bacterial, fungal, and peroxiredoxin 5 receptors were carried out 

to confirm the in vitro results, and they exhibited satisfactory binding profiles. In-depth pro-

tein–ligand interaction stability in the dynamic state was evaluated using 100 ns MD simu-

lation studies, which revealed a significant binding affinity of the discovered hyperoside 

towards the TyrRS protein, implying anti-bacterial effectiveness via TyrRS enzyme inhibi-

tion. The obtained results highlighted the possible use of this plant species as a source of 

molecules with therapeutic effects to be used as antimicrobial and antioxidant agents. 
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