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Impact of Fire on Biodiversity of the Gnangara Groundwater 

System 

Summary  

• Fire has been an integral part of the Australian environment for millions of years 

• Species and communities are adapted to specific fire regimes, determined by fire 

intensity, frequency, season and scale. 

• Inappropriate fire regimes may have undesirable consequences including declines or 

local extinctions of biota.  

• Although the impact of inappropriate fire regimes has been identified as a major 

threat to biodiversity on the Swan Coastal Plain (DEC 2007, 2009 SNCA Plan) 

information on these impacts is limited.  

• Vital attributes and juvenile periods of a range of plant species on the GGS have 

been identified in order to determine appropriate fire intervals. 

• Key fire response plant species were identified with juvenile periods of 4-6 YSLF 

(year since last fire) for fire sensitive species relying on seed for reproduction,  

• The two dominant Banksia species Banksia menziesii and Banksia attenuata 

(resprouters) have a juvenile period of 8 YSLF. 

• A minimum fire interval of 8-16 years (twice juvenile period) is recommended 

based on the information for key flora fire response species 

• Food availability for the Critically Endangered Carnaby’s Cockatoo was found to 

vary in relation to time since fire for B. menziesii and B. attenuata where food was 

highest in 20-30 YSLF years and lowest in < 6 YSLF 

• It is recommended that burning regimes maximise the amount of Banksia woodland 

in the 11-30 YSLF to ensure food sources for Carnaby’s cockatoo (particularly in 

light of the removal of current pine plantation resources between 2002 and 2027) 

• Strong evidence for post-fire seral responses and habitat requirements of reptile and 

mammal species was obtained from fauna studies (e.g. Honey possum, Quenda, 

rakali, Neelaps calonotus, and Menetia greyii) 

• Key fire response fauna species were identified based on conservation status and 

data on the relationships to successional ages and response curves on the GGS  



Gnangara Sustainability Strategy 

Impact of Fire on Biodiversity  2 

• Burning regimes need to ensure different fire ages in the long term, including 

retention of long-unburnt Banksia and Melaleuca that are important to species such 

as honey possum, quenda, rakali, Neelaps calonotus and Menetia greyii.  

• Wetland biota on GGS at high risk from fire (direct effects and indirect impacts on 

water quality) include vegetation communities, threatened ecological communities 

(the stygofaunal assemblages in the Yanchep Caves aquatic root mats and organic 

mound springs), aquatic invertebrates, wetland birds, reptiles, frogs, fish and 

mammals).  

•  It is recommended that sites known to be important for these species (e.g. Honey 

possums, Quenda, Rakali) and communities (high priority wetlands) are designated 

as refugia and protected from further loss or modification and frequent fire.   

• This report provides the basis for development of ecological burning regimes on the 

GGS based on plant vital attributes and habitat requirements of fauna. 

• Monitoring of flora and fauna responses to any implemented fire regime should be 

undertaken to ensure species are responding as predicted and to feed into an 

adaptive management framework 
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Introduction 

Australia has been the most fire-prone continent on Earth for a long time (Bowman 2003), 

yet fire and the Australian environment remains a complex issue. Adaptations of flora and 

fauna to tolerate and survive in an environment where fire is prominent and frequent have 

developed over millions of years (Bowman 2003); indeed some biota have adaptations that 

lead them to rely on fire e.g. the seeds of some species of Hakea are released by heat 

during bushfire (Attiwill and Wilson 2003). The arrival of humans in Australia however 

has lead to an increase in fires, and altered the interaction between the environment and 

fire.  

 

Before humans arrived, Bowman (2003) suggests that fires were started by lightning and 

burned in large areas infrequently and created a broad-based mosaic in eucalypt savannas. 

The arrival of Aboriginal people presumably led to changes in fire patterns, using ‘firestick 

farming’ (Abbott 2003; Bowman 2003), whereby fires were lit frequently and burnt small 

areas. This regular and deliberate burning of parts of the landscape probably maintained a 

fine-scale vegetation mosaic of varying time since last fire across the landscape (Bowman 

2003). For example, this regime was thought to be used by the Noongar Aboriginal people 

in the south-west of Western Australia (Bowman 2003).  Recent depopulation of 

Aboriginal people in some desert areas has seen a major change in fire regimes and a 

decrease in the landscape mosaic of small patches at different post-fire ages (Burrows et al 

2006).   

 

Bushfire behaviour (i.e., its spread rate, intensity and flame dimensions) and its 

environmental and ecological impacts mainly depends on weather, topography, fuel 

characteristics (quantity, structure, distribution and moisture content), as well as 

suppression effort (Attiwill and Wilson 2006; Whelan et al. 2006). Fire intensity (rate of 

heat energy release) is a useful measure of the severity of a fire; its damage potential and 

suppression difficulty (Burrows et al. 2008).  

 

Post fire responses of flora and fauna are related to their mortality in the fire, survival post 

fire, recolonisation, establishment, reproduction and population growth.  In addition to fire 

severity, factors that impact on these attributes include habitat quality, such as food 
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availability, and predation. Fire response patterns also vary over time and space. They are 

thus affected by variations in fire behaviour, landscape and climate (Whelan et al. 2002). 

 

The long-term effect of fire on a landscape varies according to sequences of fire events, 

rather than to a single fire event. Sequences of fires are known as fire regimes, and are 

determined by factors including: intensity (how severe fires are), frequency (how often 

fires occur), fire interval (intervals between successive fires), season (the time of year fires 

occur) and scale (the extent and patchiness of a fire). It is important to understand the fire 

regime in order to define risks to people and property, and to make management decisions 

(Bradstock et al. 2002). In terms of biodiversity, inappropriate fire regimes (e.g. long 

periods of fire exclusion, sustained frequent burning, large and intense wildfires and post-

fire grazing (Burrows and Wardell-Johnson 2003) may lead to local extinctions of plants 

and animals (Woinarski 1999), and may result in a loss of biodiversity and structural 

complexity over time (Burrows and Wardell-Johnson 2003). However, the term 

‘inappropriate’ is relative – what may be an inappropriate fire regime for one species may 

be beneficial to another species (Whelan et al. 2006). 

 

In fire-prone ecosystems, fire management involves the prevention and suppression of 

unplanned fires and the introduction of planned fire where appropriate. Of the factors that 

influence fire behaviour, only fuel quantity, structure and distribution can be effectively 

managed (Bowman 2003; Burrows et al. 2008). Therefore, fire regimes are commonly 

planned to reduce fuel quantity and flammability so as to reduce the severity and impact of 

wildfires (Attiwill and Wilson 2006).  Prescribed burning refers to the planned use of fire 

to achieve specific land management objectives, where fire is applied under specific 

environmental conditions to a predetermined area.  

 

Development of fire regimes that are optimal for biodiversity conservation is one of the 

major challenges in current fire management throughout Australia (Whelan et al. 2006). 

One approach is to determine fire regimes that are appropriate for a vegetation type and 

fire sensitive taxa based on vital attributes and life histories (Burrows et al. 2008; Friend 

1999; Tolhurst 1999). The fire interval for each vegetation type and for fauna habitats 

needs to be determined by the needs of the flora and fauna at risk from extinction from too 

frequent or too infrequent burning.   
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Inappropriate fire regimes on the Gnangara groundwater system (GGS) are not the only 

threat to biodiversity.  The impacts of fragmentation, rainfall and aquifer declines, the plant 

pathogen Phytophthora cinnamomi and introduced predators have all been found to be 

having serious impacts on biodiversity (Government of Western Australia 2009a; Wilson 

and Valentine 2009). Management and recovery actions identified as necessary to protect 

biodiversity include control of predators, development of ecological linkages and refugia, 

and ecologically appropriate fire management (Government of Western Australia 2009a; 

Wilson and Valentine 2009). The interactions and compounding effects of threats must be 

taken into account when developing ecological fire regimes (Hobbs 2003).  

 

This report was undertaken by DEC for the Gnangara Sustainability Strategy (GSS) to 

examine the impacts of fire on biodiversity on the GGS.  This was addressed by a number 

of sub-projects carried out between July 2007 and June 2010. A summary of their findings 

are presented in this report, however more detailed information can be found in the 

relevant technical reports. The sub-projects included field studies to examine the response 

to time since fire by reptile, bird and mammal fauna (Davis 2009a; Valentine et al. 2009b)  

and  food availability from B. attenuata and B. menziesii for Carnaby’s Cockatoo in 

relationship to fire regimes (Valentine et al. 2009b).  

 

Field studies to examine patterns of floristic diversity between sites with different times 

since last fire, and the post-fire juvenile period of plants were also undertaken (Mickle et 

al. 2010b).   A major aim of these studies was to determine the appropriate fire interval 

(burn regime) for Banksia woodland on the Swan Coastal Plain.  The post-fire juvenile 

period (time to first flowering after fire) can be used to guide minimum intervals between 

fires to conserve plant diversity (Burrows et al. 2008).  Knowledge of fire responses and 

sensitive species is vital to implement ecologically-based fire regimes to conserve 

biodiversity and reach water balance goals in the GSS study area. 

 

Gnangara Groundwater System 

The Gnangara groundwater system is located on the Swan Coastal Plain (SWA2) IBRA 

sub-region, north of the Swan River, Perth, Western Australia and covers an area of 

approximately 220 000 ha (Figure 1).  The GGS consists of an unconfined, superficial 

aquifer known as the Gnangara Mound that overlies the confined Leederville and 
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Yarragadee aquifers, as well as the smaller Mirrabooka and Kings Park aquifers 

(Government of Western Australia 2009b). The area covered by the GGS represents a 

distinct water catchment that extends from Perth (Swan River) in the south, to the Moore 

River and Gingin Brook in the north, and from the Darling Scarp in the east to the Indian 

Ocean in the west  (Government of Western Australia 2009b).  The GGS is directly 

recharged by rainfall (Allen 1981; Government of Western Australia 2009b) and provides 

the city of Perth with approximately 60 % of its drinking water.  It supports numerous 

significant biodiversity assets, including the largest patch of remnant vegetation south of 

the Moore River, a number of Bush Forever (regionally important bushland) sites, 

threatened species, threatened ecological communities, and some 600 wetlands.  However, 

declining rainfall and runoff levels in the past 30 years have heavily impacted on water 

availability and the ecosystems in the region. 

 

The impacts of a drying climate and declining groundwater levels strongly influence the 

water levels of the GGS (Froend et al. 2004; Horwitz et al. 2008).  Since the late 1960s, 

monthly rainfall has generally been below average (Yesertener 2007), resulting in 

decreased flows to public water supply dams and declining groundwater levels in the 

aquifers (Vogwill et al. 2008).  Indeed, groundwater levels have decreased by up to four 

meters in the centre of the Gnangara system and the eastern, north-eastern and coastal 

mound areas have experienced declines in the water table of 1 – 2 m (Yesertener 2007).   

 

The Gnangara Sustainability Strategy 

Maintaining biodiversity is fundamental to maintaining ecosystem processes and is an 

environmental policy and priority of both Commonwealth and State Governments in 

Australia. To tackle the impending water crisis, the Gnangara Sustainability Strategy 

(GSS) was initiated to provide a framework for balancing water, land and environmental 

issues; and to develop a water management regime that is socially, economically and 

environmentally sustainable for the GGS (DOW 2008).  A multi-agency taskforce was 

established in 2007 to undertake the GSS project, which incorporates existing land and 

water use policies, studies on the ecosystem assets and processes, and the development of a 

decision-making process to integrate values, risks and planning processes (DOW 2008).    
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Figure 1: Location and extent of the Gnangara Groundwater System 

 

 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity  8 

The draft GSS was released in 2009 (Government of Western Australia 2009a). The 

project undertook modelling of the relative impacts of climate, water abstraction and land 

use on the water balance of the groundwater system out until 2030. Under all but the most 

optimistic assumptions for climate, declines in groundwater storage and water levels are 

predicted. Major recommendations of the Strategy included:  reduction of  public and 

private abstraction by 20%, the development of desalination plants, increased recharge 

from treated wastewater, and stormwater, development of local area models and risk 

assessment to identify wetlands and GDEs at most risk, accelerated removal of pines and 

establishment of strategic ecological linkages.  Protection of remnant vegetation from 

threats (fire, dieback, fragmentation, predators) was also recommended.  The 

implementation of the optimum fire regime that will maximise groundwater recharge, 

while maintaining biodiversity values was a further major recommendation.   

 

Prior to the GSS program, understanding of biodiversity values, ecosystem processes and 

the dynamics of the GGS, particularly at landscapes scales, was inadequate (Government 

of Western Australia 2009b).  Gaps in our capacity to measure impacts on biodiversity, 

landscape condition and ecosystem processes as a result of disturbances (e.g. climate 

change, changed water regimes, fire, and plant pathogens) are likely to result in ineffective 

management actions and low quality outcomes.  The ability to develop successful planning 

relies on the quality of the biodiversity information (Pressey 1999; Wilson et al. 2005).  

Indeed, unless an adequate understanding of these issues is accomplished, justification of 

changed management actions in the face of potentially degrading impacts on biodiversity is 

difficult.   

 

Manipulation of fire regimes on Crown land has been proposed as a cost effective option to 

enhance water yield to the GGS (Canci 2005; Yesertener 2007). Information from ground-

water bore monitoring indicated that recharge of   0.5-2 m occurred 3-4 yrs post fire (Canci 

2005; Yesertener 2007), and models and hydrograph analyses suggest that increased 

recharge was related to increased frequency of controlled burns in Banksia woodland 

(Vogwill  et al. 2008).     

 

The GSS project modelling of the relative impacts of climate, water abstraction and land 

use on the water balance of the groundwater system out until 2030 was based on PRAMS 

(Perth Regional Aquifer Models).  The PRAMS base case scenario incorporates a burning 
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regime whereby 10% of total native vegetation in the GSS study area is burnt (each year) 

on a 10-year rotational burning system. For example, the model assumes that the 10% 

vegetation burnt in 2008 will be re-burned in 2018.  

 

The implementation of a fire regime that will maximise groundwater recharge while 

maintaining biodiversity values was a major GSS recommendation.  While increasing the 

frequency of fire will likely result in increased groundwater re-charge, the environmental 

and biodiversity consequences of such a regime must be understood and the water yield 

and biodiversity balance, or trade-off, quantified. The GSS seeks to address these gaps by 

improving knowledge of the impacts of fire on biodiversity values on the GGS.  

 

One of the challenges involved in developing a land and water use management plan for 

the GSS study area is the strong interconnectedness between land uses and hydrological 

balance, which in turn affects consumptive water yields and the ecological integrity of 

water-dependent and other terrestrial ecosystems. In addition, other threatening processes 

are impacting on biodiversity in the region, including habitat clearing, fragmentation, 

altered fire regimes and impacts of Phytophthora cinnamomi and need to be considered 

when assessing impacts of fire (Government of Western Australia 2000; Mitchell et al. 

2003).  

 

This report aims to examine information from field studies undertaken for the GSS on the 

impact of fire on biodiversity, together with compilation and assessment of other relevant 

data. 

 

Fire Projects for the GSS 

The Draft Strategy recommended that a fire regime that will maximise groundwater 

recharge, while maintaining biodiversity values, be implemented (Government of Western 

Australia 2009a).  Due to the time limitation for the preparation of the Draft Strategy (July 

2007 - June 2009) most of the projects were of relatively short duration and constrained in 

an ecological time–frame. However we consider that the data obtained provide new and 

important information for better understanding fire impacts on biodiversity in the study 

area and are an excellent baseline for future work. The information is essential for the 

development of optimum fire regimes for biodiversity conservation which is one of the 
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major challenges in current fire management throughout Australia (Burrows 2008; Gill and 

McCarthy 1998; Tolhurst 1999). 

 

CSIRO undertook a major project to examine the effect of fire on ground water recharge 

on the GGS (Silberstein et al. 2010). This project was designed to determine the changes in 

water recharge to the groundwater table under native vegetation following prescribed fire. 

In addition a number of projects have been undertaken to firstly examine the impacts of 

fire on biodiversity on the GSS and secondly to develop optimum fire regimes to maximise 

and maintain biodiversity.  They have drawn on work previously conducted within the 

GSS regarding the impacts of fire on fauna and flora, together with extensive field work 

undertaken over the period July 2007 to June 2010.  

 

The GSS fire projects included: 

 

1. Recharge and fire in native Banksia woodland on Gnangara Mound (Silberstein et 

al. 2010) 

This project was a prescribed burn-scale experiment undertaken by CSIRO to determine 

the changes in water recharge to the water table under native vegetation following fire, and 

the time course of recharge accompanying recovery of the vegetation after fire. CSIRO 

investigated the impact of fire on groundwater recharge by measuring differences in soil 

moisture profiles, groundwater response, rainfall, evapotranspiration and CFC dating 

measurements between the burnt and unburnt sites. It is hypothesised that there will be a 

higher amount of water recharge to the groundwater table from rainfall in the localised area 

of a burn, due to the lack of vegetation or leaf litter that reduces or prevents water from 

percolating down to the water table.  

 

2. Impact of fire on biodiversity of the Gnangara groundwater system  

The second project, and the subject of this report, was undertaken by DEC for the GSS to 

examine the impact of fire on biodiversity.  This was addressed by a number of sub-

projects carried out between July 2007 and June 2010. A summary of their findings are 

presented in this report, however more detailed information can be found in the relevant 

technical reports. The sub-projects included: 

� Patterns of ground-dwelling vertebrate biodiversity (Valentine et al. 2009b). A 

fauna survey was undertaken by DEC for the GSS to assess the current occurrence 
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and distribution of terrestrial vertebrate fauna across the GSS study area, to 

examine patterns in biodiversity with landscape features and to assess the 

susceptibility of taxa and communities to threatening processes such as declining 

groundwater levels and fire. One of the specific aims was to examine the response 

to time since fire by reptile and mammal fauna in the GGS. 

� Impact of fire on avifaunal communities (Davis 2009a). This project was carried 

out to investigate the impact of prescribed burning regimes on the diversity, 

composition and abundance of avifauna within the GGS. 

� Post-fire response of terrestrial fauna (Sonneman et al. 2010). This study 

compared the pre- and post-fire faunal assemblages of sites following a wildfire 

that occurred in January 2009. 

� Patterns of floristic diversity (Mickle et al. 2009). This project assessed the current 

occurrence and distribution of plant taxa across the GGS fauna study sites, and 

examined plant species composition between landforms (Bassendean and 

Spearwood dunes), dominant vegetation types, and between sites with different fire 

ages. 

� Post-fire juvenile period of plants (Mickle et al. 2010b). The project collected 

secondary juvenile period (post-fire time to flowering) information for plants in 

Banksia woodland after a prescribed fire to asses the juvenile period of flora 

species for the purpose of determining the appropriate fire interval (burn regime).   

� Time to flowering across a fire chronosequence (Mickle et al. 2010a). The study 

obtained specific fire response (e.g. post-fire regeneration strategies) and 

secondary juvenile period (post-fire time to flowering) information for plants 

whose first time to flowering following fire exceeds 18 months (as examined in 

project above).   

� Food availability for Carnaby’s black cockatoo in relationship to fire regimes on 

the GGS (Valentine 2010). The aim of this study was to assess the food 

availability, in the form of fruiting cones, of B. attenuata and B. menziesii at sites 

of different time since fire.   This information is then examined in relation to the 

caloriphic content of Banksia’s as a food item for Carnaby’s black-cockatoo.  The 

outcomes are assessed in relation to fire management recommendations to 

optimise food availability for this endangered bird.  
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3. Spatial fire history analysis in the GSS study area (Sonneman and Kuehs 2010) 

The aim of this project undertaken by DEC for the GSS was to update the spatial fire 

history dataset using remote sensing information and DEC records for the GSS study area 

to more accurately analyse fire history, current fire regime and fire frequency. Landsat 

imagery was employed to check and update the fire boundaries, historic records were used 

to check the accuracy of the year since last fire for areas, examine the burning frequency 

within the study area over the last thirty years.   

 

4. Fire management operations on the GSS study area (Muller 2010). 

The purpose of this report was to review fire management operations on the major areas of 

Crown Land managed by DEC on the GGS in relation to the impacts of such practices on 

groundwater recharge and biodiversity.  

 

5. Guidelines for ecological burning regimes for the Gnangara Groundwater System 

(Wilson et al. 2010). 

The purpose of this report was to develop ecological burning regimes and fire management 

guidelines on the major areas of Crown Land managed by DEC on the GGS in relation to 

the impacts of such practices on biodiversity.  
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Impacts of fire on flora 

Fire has a direct impact on plants by affecting their growth, survival and reproduction (Burrows 

and Wardell-Johnson 2003). Many plants may tolerate the actual fire but cannot tolerate the 

stresses of the post-fire environment. Fire itself affects the structure of vegetation by consuming 

live and dead vegetation (Bond and Van Wilgen 1996), and the frequency of fire affects both the 

structure of vegetation and its floristic composition (Burrows and Wardell-Johnson 2003; Muir 

1987). Changes in vegetation structure and composition can affect light penetration, soil 

moisture, soil nutrient levels and competition of juvenile plants with adult plants.  

  

Plants  have many adaptive vegetative and reproductive traits that enable them to persist in fire-

prone environments (Gill 1981a).  The survival of woody plants after fire can vary according to 

the level of protection of the bud by soil (e.g. subterranean buds, lignotubers) or bark (stem buds 

located beneath the bark) during a fire. In some plant species, reproduction may be enhanced as a 

result of fire through a flowering response (e.g. Xanthorrhoea australis), or through seed that is 

held on the plant being released, or through germination that is stimulated by fire (Gill 1981a). 

 

Plant species are classified into two major classes with relationship to their post fire responses: 

sprouters and seeders (Burrows et al. 2008; Gill 1981b; Whelan 1995). Seeders (or obligate 

seeders) are species in which mature plants are killed by fire and depend either on seed for 

regeneration or germinate in woody capsules on the plant (bradysporous or serotinous species). 

They are more susceptible to population decline through inappropriate fire regimes. If a second 

fire kills a population of regenerating bradysporous plants before it reaches reproductive 

maturity, then it may decline and become locally extinct. Conversely, if fire is necessary to 

stimulate seedfall and germination, and the interval between fires is too long such that the parent 

plants die before a recruitment event, then the population could decline or become locally extinct. 

Serotiny (the canopy storage of seed for a prolonged period) is common in Australian sclerophyll 

vegetation (Cowling and Lamont 1985), and 76% of Banksia species are serotinous (George 

1981).  

 

Sprouters (or vegetatively regenerated) are species in which mature plants survive fire by re-

sprouting (Gill 1981b). The most significant impact fire will have on these species is if the 

intensity of a fire is sufficient to kill the entire plant, or fires occur too frequently and there is 

insufficient time for resprouting plants to reach maturity, propagate and recruit to the population.. 
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Conversely, if fire is necessary to stimulate flowering or seed germination, and the interval 

between fires is too long such that the parent plants die and the viable seed bank deteriorates 

before a fire recruitment event, then the population could decline or become locally extinct. 

 

For sprouter species, as most of the heat from fire rises, protection of buds below ground is a 

very effective survival mechanism from above-ground fires (i.e. not peat fires). Even though 

trees may endure 100% leaf scorch during fire, these trees survive because their buds are 

protected by the bark. For the species that have subterranean buds, species can either produce 

basal buds that grow out to form shoots (i.e. still one individual plant) or possess root suckers 

that produce multiple stems after fire (Gill 1981a).  Table 1 summaries the post-fire regenerations 

strategies used by Burrows (2008).  

 

Two other categories include geophytes and fire ephemerals (Shedley 2007; Whelan 1995). 

Geophytes are a group of species that avoid the main impact of fire in time or space as they have 

bulbs, corms, tubers or rhizomes, and their above-ground growth takes place outside the normal 

season for fires (summer-autumn) (Bell et al. 1984). Fire ephemerals are also short-lived species 

that germinate in large numbers following fire (and utilise the nutrient-rich post-fire site) and 

often avoid fire by completing their life cycles within one year and before the next fire event. 

Fire ephemerals also produce seed that is stored in the soil, which germinates in response to 

heavy rainfall or disturbance (Bell et al. 1984; Shedley 2007).  

 

Table 1. Regeneration strategies based on Burrows et al. (2008) 

Response Class  

Seeders 

(1) Stem girdling or 100% scorch kills, depends on canopy stored seed 

(2) Stem girdling or 100% scorch kills, depends on soil stored seed 

(3) Stem girdling or 100% scorch kills, no stored seed 

(8) Stem girdling or 100% scorch kills, any of 1,2,3 above 

(10) Ferns and allies (spores) 

Resprouters 

(4) Survives stem girdling or 100% scorch, soil suckers (rhizome, corm, bulb, tuber)  

(5) Survives stem girdling or 100% scorch, basal sprouts (lignotuber) 

(6) Survives100% scorch, epicormic shoots 

(7) Survives100% scorch, large apical bud 

(9) Survives100% scorch, any of 4,5,6,7 above 
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Post-fire vegetation dynamics and fire regimes  

Post-fire vegetation dynamics tend to have similar patterns or post-fire seral stages (Ashton 1981; 

Bell and Koch 1980; Burrows 1994; Burrows and Wardell-Johnson 2003; Gill et al. 1999; Gould 

et al. 2007; Hobbs and Atkins 1990; Hobbs et al. 1984; McFarland 1988; Noble and Slatyer 

1980; Russell and Parsons 1978; Specht 1981; Specht et al. 1958). Firstly, plant species richness 

is greatest in the first few years following fire before stabilising or decreasing. The cover and 

height of understorey vegetation increases rapidly post-fire before stabilising for a period of time 

and then declining. Total biomass also increases rapidly post-fire before stabilising and 

ultimately declining to a steady state. The proportion of dead vegetation increases with time since 

fire and then stabilises.  

 

 
Figure 2. Cumulative proportion of species to have reached flowering age with time since fire for 639 species 

from four locations in the south west forest region of Western Australia (Burrows 2008). A species was 

deemed to have reached flowering age when at least 50% of the population had flowered.  

 

The rate of change of vegetation structure and floristics is affected by the type of fire (e.g. 

intensity of fire). Seral stages are not distinct stages; rather, vegetation dynamics change 

continuously after fire (Burrows 2008). Using indicators of the post-fire rate of change in floristic 

composition and structure for a given ecological unit can help to interpret the transition between 
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the seral stages. An example is the juvenile period of the slowest maturing fire sensitive plant 

species within the major vegetation type (Tolhurst and Friend 2001). 

 

The ability to flower and produce viable seed in inter-fire periods is fundamental to the 

persistence of vascular plants in fire-prone environments, especially the species that depend on 

seed stored on the plant (Burrows et al. 2008). Therefore it is vital to have an appropriate fire 

regime to ensure the persistence of all species. The frequency of fires is important and if the 

juveniles of serotinous species that store their seed on the plant are exposed to lethal fire before 

their first flowering, the species may be lost locally. On the other hand, species with short-lived 

seed or serotinous species that only regenerate after fire may decline in long unburnt areas (Bond 

and Van Wilgen 1996; Burrows and Wardell-Johnson 2003).  The intensity of fires is also an 

important factor, with low intensity burns unable to germinate some species and high intensity 

burns damaging epicormic buds and viable seeds (Burrows et al. 1990; Yates et al. 1994). 

 

While the majority of studies that have assessed the effects of fire on Australian plant 

communities have focused on time since fire the effects of multiple fires have been less 

intensively studied (Bowman et al. 1988; Bradstock et al. 1997; Cary and Morrison 1995; 

Fensham 1990; Fox and Fox 1986; Morrison et al. 1995).  Fire frequency can be defined as the 

number of fires within a specific time period and can be assessed by a number of components 

including the length of the inter-fire intervals; the variability of the length of the inter-fire 

intervals; and the sequence of fire intervals (Cary and Morrison 1995; Morrison et al. 1995).The 

components are interrelated, for example as the number of fires within a specific time period 

changes so does the average length of the inter-fire intervals.   

 

Short inter-fire intervals are associated with lower evenness in species composition than longer 

inter-fire intervals particularly with regard to obligate seeders whose adult plants are fire 

sensitive and do not survive fire normally (Bradstock et al. 1997; Cary and Morrison 1995; Fox 

and Fox 1986; Morrison et al. 1995).  For example in a coastal sandstone shrubland–heath 

community high frequency of fire (several fires in short succession) reduced the frequency or 

density of a range of plant species (Bradstock et al. 1997). The dominant, serotinous obligate 

seeder B. ericifolia was most impacted together with a range of functional groups including 

resprouters.  The results suggest that community composition and structure will be simplified by 

high frequency fire, and may result in community changes and lower floristic diversity. 
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Avoidance of short inter-fire intervals has become a major focus of management in Australia 

where obligate seeder plants exhibit floristic and structural prominence in fire-prone vegetation, 

(Bradstock et al. 1995; Conroy 1987; Gill and Nicholls 1989; Wouters 1993).  The effects of 

inter-fire interval on plant species composition is however complex, the variation associated with 

inter-fire intervals is not necessarily solely related to the shortest inter-fire interval, but is related 

to combinations of inter-fire intervals through time (Cary and Morrison 1995; Morrison et al. 

1995).  Knowledge of the effects on longer sequences of short-interval fires (beyond two or three 

successive fires) is required.  Another consideration is the scale of frequent fire effects and the 

consequences of heterogeneity of fire regimes in landscapes.  Patches that are not burnt may act 

as refugia and sources of seeds for dispersal to other areas (Keith 1995).  Many studies have 

focussed on fine-scale effect and it is difficult to extrapolate conclusions to the landscape scale. 

 

Recent work in Western Australia in jarrah and shrublands of the Walpole area investigated the 

impacts of short (< 5yrs), mixed (6-9 yrs), long (> 10 yrs), and very long (30 yrs) fire intervals on 

species composition of plants, ants, beetles, vertebrates and macrofungi (Wittkuhn et al. in 

press).  There was weak evidence of differences between Short-Short and Lon-Long/Very-Long 

regimes for plants, ants and beetles.  However it is possible that the most recent fire interval 

which was long (12 years) may have overshadowed any impacts of fire intervals some 14-20 yrs 

previously.  The study concluded that richness and composition was resilient to divergent fire 

interval sequences.  Although the occurrence of a number of consecutive short was considered 

unlikely to have severe impacts, maintaining either only short or long intervals may alter species 

composition and, or abundance.  Prescribed burning at an intermediate level of disturbance and 

incorporating variability in interval length was recommended for wildfire mitigation and 

biodiversity conservation. 

 

Development of fire regimes that are optimal for biodiversity conservation is one of the major 

challenges in fire management throughout Australia (Whelan et al. 2006). There are a range of 

evidence-based practical fire regimes that can be implemented to conserve biodiversity and 

protect property and life (Burrows 2008).   Plant vital attributes and life histories developed 

initially by Noble and Slatyer (1980) have been employed to predict the responses of plant 

species and vegetation communities to fire and fire regimes and thus direct  the development of 

ecologically appropriate fire regimes that will not result in local extinctions of plants and animals 

and structural complexity over time (Burrows and Wardell-Johnson 2003; Gill and McCarthy 

1998; Tolhurst 1999; Whelan et al. 2006; Woinarski 1999). Development of ecological fire 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 18 

regimes has commonly been based on plants as they are the first trophic level of terrestrial 

ecosystems (Burrows 2008).  Vital attributes such as regeneration requirements, post-fire 

regeneration strategies, and juvenile periods are useful criteria to determine minimum and 

maximum intervals between lethal fires for a particular ecosystem (Burrows 2008). 

 

It is possible to identify the ‘key fire response species’ of each community using vital attributes.  

The ‘key fire response species’ are those that are most sensitive to fire because they are most 

likely to be disadvantaged by excessively short or long fire intervals.  Having identified the key 

species it is possible to determine the time interval between fires required to conserve species, i.e. 

the maximum and minimum intervals between lethal fires (Bradstock et al. 1996; Friend 1999; 

Gill and McCarthy 1998; Tolhurst 1999). 

 

Previous studies in the GSS study area 

Despite the extent of the Banksia woodlands of the GGS and their proximity to Perth there have 

been few studies investigating their vegetation dynamics and the impact of fire on vegetation in 

these communities, especially in comparison to studies in the jarrah and karri forests of south-

west Western Australia (e.g. Abbott 1999; Abbott et al. 1985; Adams et al. 2003; Burrows 2008; 

Burrows and Wardell-Johnson 2003; Burrows et al. 2008; Christensen and Kimber 1975; Kimber 

1974; McCaw et al. 2003; Robinson and Bougher 2003; Van Heurck and Abbott 2003; Wooller 

and Calver 1988).  

 

Studies that have investigated various aspects of the impact of fire on vegetation on the Swan 

Coastal Plain include Baird (1977), Lamont and Downes (1979), Cowling and Lamont (1985), 

Hopkins and Griffin (1989), Hobbs and Atkins (1990), and Lamont and Markey (1995). In 

addition, there are some studies on the impacts of fire on vegetation that have been conducted 

just outside the GSS study area (e.g. Hayward et al. 2008; Lamont et al. 2000).    

 

Flora responses to fire on the Geraldton Sandplain 

Several studies have examined fire responses of Banksia species and other species near Eneabba, 

235 km north of Perth. Lamont et al. (2007) found that after two burns in ten years, the numbers 

of B. attenuata increased with each fire and B. menziesii decreased, due to different levels in seed 

production and fire tolerance. A post fire study of B. attenuata, B. leptophylla, B, menziesii and 
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B. prionotes (Cowling and Lamont 1987) found that seed release in serotinous species of Banksia 

is largely fire-dependant; however B. menziesii and B. prionotes both exhibit regular spontaneous 

follicle rupture in summer. In a seed bank study, a marked depletion of the Restionaceae seed 

bank after fire was found while for Epacridaceae seed banks persist in soil after fire regardless of 

fire response or life history (Meney et al. 1994) . Between 90-100% of annual seed production of 

obligate seeder and resprouter Epacridaceae species deteriorate within two years. There was also 

no evidence of recruitment of any of the species studied after 10 years since last burn (Meney et 

al. 1994). 

 

There was a correlation between a decrease in annual rainfall and an increase in average 

temperature with a decrease in plant height and an increase in the degree of serotiny for  three 

Banksia species (B. attenuata, B. menziesii and B. prionotes) along a climatic gradient extending 

500 km north of Perth (Cowling and Lamont 1985). This study concluded that the degree of 

serotiny in these three species is related to the fire characteristics of the site, which depend on 

plant height. In the northern-most site (Northampton), with a xeric scrub-heath, plant height was 

lowest and entire canopies of the Banksia species would be consumed by fire, promoting a 

massive release of seed. In the south-most site (King’s Park), with a mesic woodland, cones 

would rarely come into contact with flames due to a greater plant height, and seeds are released 

spontaneously in interfire periods (Cowling and Lamont 1985). 

 

Flora responses to fire on the Swan Coastal Plain  

Responses of individual species 

In a review by Hopkins and Griffin (1989), the Banksia woodland on the Swan Coastal Plain was 

found to contain 13 long-lived perennial species that regenerated only from seed after 100% 

crown scorch. Six of these species were identified as fire sensitive and as having seed storage on 

the plant in bradyspores. Species that stored seed on plant include Banksia prionotes, B. sessilis, 

Hakea trifurcata, Hakea obliqua, Beaufortia elegans and Beaufortia squarrosa. Species with 

seed storage in the soil include Adenanthos cygnorum, Astroloma xerophyllum, Leucopogon 

striatus, Leucopogon cordatus, Lysinema ciliatum, Andersonia heterophylla, and Acacia 

pulchella (Hopkins and Griffin 1989). In B. prionotes, adults are killed by fire (depending on 

intensity) but fire stimulates seeds to germinate. This fire response may be vulnerable to frequent, 

widespread fire events as seed regeneration may be insufficient to replace adults lost in the fire if 
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the canopy seed bank has not had sufficient time to recover from previous fire (Wooller et al. 

2002). 

 

Several of the key species in the GSS study area are resprouters, including Banksia attenuata, B. 

grandis, B. ilicifolia, B. littoralis, and B. menziesii (Enright et al. 1998). In these species adult 

trees can sometimes survive low to medium intensity fire due to their thick bark and also 

regenerate from lignotubers, which resprout following fire. Hobbs and Atkins (1990) suggest that 

both B. attenuata and B. menziesii do not depend on fire for recruitment in the Banksia 

woodlands on the Swan Coastal Plain. This concept is also supported by Cowling and 

Lamont (1985).  There is a need to determine and compare fire induced and inter-fire recruitment 

rates.  

 

The relationships between fire interval, extent of canopy seed storage (serotiny) and maximum 

rate of population increase was investigated for two of the key resprouter species in the GSS 

study area Banksia attenuata and B. menziesii by (Enright et al. 1998).  The peak rate of increase 

for Banksia attenuata populations was for fire frequencies of 7 - 20 years with maximum at 13 

years for those completely serotinuos i.e. no seeds released except as caused by fire  

(Enright et al. 1998).  At very short < 5 years and very long > 45 years fire intervals populations 

are predicted to decline to extinction, and degree of serotiny was irrelevant.  

 

The probability of seedling recruitment for Banksia attenuata was low after most fires due to low 

seed survival and high seedling mortality over the first summer. The rare recruitment events are 

strongly related to summer rainfall and are extremely important in the population dynamics of 

this serotinuos resprouter in regions of Mediterranean climate (Enright et al. 1998).   

 

The apparent decline in B. menziesii  in its northern geographical limits is likely to be related to 

the lower adult survivorship through fires and the negligible recruitment of the species and more 

frequent fires and drying climate (Cowling et al. 1990; Enright et al. 1998). 

 

Responses in plant populations and communities 

There is little literature on the responses of plant populations and communities to fire on the 

Swan Coastal Plain. In the Eucalyptus-Banksia-Casuarina woodland of King’s Park (Baird 

1977), the first plants that grow after a mid-summer fire are Xanthorrhoea spp., followed closely 
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by sedges. A few weeks after the fire, new leaves of the cycad Macrozamia appear and deep-

rooted shrubs sprout within 2-3 weeks. With the start of the winter rains there is growth of 

herbaceous plants and annual weeds, as well as an increase in growth of shrubs and seedlings. 

Shrub species are erect and vigorous for the first 2-3 years after the fire, and the percentage of 

dead wood and litter from trees increases with time since fire. In stands not burnt for 20 years or 

more, Baird (1977) found a suppression of the undergrowth and a large amount of leaf and twig 

litter build-up.  

 

Using a series of stands, within remnant areas of low woodland dominated by B. attenuata and B. 

menziesii, ranging in age since last fire from 1 to > 44 years, Hobbs and Atkins (1990) examined 

long-term vegetation development post-fire. Species richness increased for the first five years 

after fire, and many shrub species reached their greatest density two years after fire, thereafter 

declining in density.  

 

The season of a fire can have an effect on the rate and type of recovery of vegetation (e.g. 

growth, germination, flowering and fruiting) post-fire. For example, within remnant areas of low 

woodland dominated by B. attenuata and B. menziesii near Perth, autumn fires can promote 

seedling germination and regeneration (and may therefore be beneficial especially for seeder 

species), while spring fires may result in rapid vegetation recovery and greater species diversity 

(Hobbs and Atkins 1990). Autumn burns may result in less vegetation regrowth and may also 

increase invasion by non-native plant species (Hobbs and Atkins 1990). From this Hobbs and 

Atkins (1990) suggest that spring burning may be preferable in these remnant patches of Banksia 

woodlands. 

 

Seasonal differences in the recovery of vegetation post-fire have also been recorded in the Jarrah 

woodlands in King’s Park (Baird 1977). There was vigorous growth of Xanthorrhoea spp., 

fibrous monocotyledons and shrubs after a spring to early summer fire, with shoots of shrubs 

appearing within 3-6 weeks of the fire, and then growing more rapidly into the summer. While 

autumn burns are not necessarily unfavourable to the growth of shrubs, the growth of herbaceous 

plants was greater in autumn burns as compared to spring-early summer fires (Baird 1977). 

 

North of the GSS study area, the responses of vegetation to fire in different seasons have also 

been studied. Cowling and Lamont (1987) examined the effects of autumn and spring burns on 

the recruitment of Banksia species (B. menziesii, B. prionotes, B. leptophylla and B. attenuata). 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 22 

The rate of seed release from burnt cones of all four species was significantly slower after the 

spring burn compared to the autumn burn. In addition, the number of seedlings recruited per 

parent of all four species was less than half as high after the spring burn than the autumn burn 

(after the first winter) (Cowling and Lamont 1987).  

 

Fire responses of threatened ecological communities and declared 

rare flora 

Several threatened ecological communities and declared rare flora occur on the GGS (Valentine 

et al. 2009a). Interim Recovery Plans have been written for five of the ten declared rare flora that 

occur on the GGS (Brown et al. 1998; Evans et al. 2003). Known responses to fire of the ten 

species of declared rare flora are summarised in Table 2. 

 

A number of adaptive management projects have been undertaken by the DEC Swan Coastal 

District that have examined the burn responses of several threatened ecological communities and 

declared rare flora on the Swan Coastal Plain. These include: Banksia mimica (fire response at 

different fire intensities); Caladenia huegelii (examined the Fraser Road population after a 

wildlife occurred in the 2007-2008 fire season); Melaleuca huegelii- Melaleuca systena 

shrublands on limestone ridges community type 26a described by (Gibson et al. 1994b) (fire 

response and percentage cover before and after a prescribed burn); Macarthuria keigheryi (fire 

response after a prescribed burn), Perth to Gingin Ironstone Association (examining this 

threatened ecological community after a major wildfire burnt the entire community), and fire 

response of two species of declared rare flora on Muchea Nature Reserve (Darwinia foetida and 

Grevillea curviloba).  Based on this work recommendations have been made regarding the 

optimal fire and burning regimes for management and recovery of species and communities. 
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Table 2: Responses to fire of declared rare flora on the Swan Coastal Plain (from Wilson and Valentine 2009, chapter 7). Further scientific 

assessments are required for much of this information. 

Scientific Name Fire Responses References 
Caladenia huegelii 
 
(Geophyte: Survives 
100% scorch) 

• Fire is considered detrimental if fire occurs between July to November (during vegetative and flowering 
stages). 

• Fire may be beneficial as summer fires promote flowering. 
• Field experiment showed that the Fraser Road population is in a degraded bush block in Banjup 

surrounded by sand mines. No prescribed burning is allowed for this species. Wildfire occurred in 
2007/2008 season. Recent experiment overlayed 5 x 5 m plots in burnt area.  

• DEC (2008a) 
• Evans et al. (2003) 
• Brown et al. (1998) 

Darwinia foetida • Frequent fires reduce vigour and seed bank.  • Evans et al. (2003) 

Drakaea elastica 
 
(Geophyte: Survives 
100% scorch) 

• Fire is considered detrimental if fire occurs between April/July to November (during vegetative and 
flowering stages). Fire may kill plant during active growing period (late April-Oct). Indirect impacts of 
fire include loss of canopy cover and increased weeds. 

• Fire may be beneficial if fire occurs between November to June, which may open up the canopy and 
reduce competition, but species still needs to retain some canopy vegetative cover after disturbance in 
order to protect plant and its fungus from desiccation. Fire is not likely to impact during the species’ 
dormant period (November to early April). 

• Field observation: species does not require fire to complete its life cycle. Increased competition with 
increased density of native understorey vegetation has been observed following fire, leading to a decline 
in some populations. Species does not generally endure repeated disturbance or the consequential habitat 
changes (e.g. fire/wildfire). 

• DEC (2008a) 
• Evans et al. (2003) 
• Brown et al. (1998) 

Eleocharis keigheryi • Field Observation: species can grow in areas that have been recently burnt, and can flower in the absence 
of fire (one plant up to 10 years since last fire). 

• Evans et al. (2003) 
• Brown et al. (1998) 

Epiblema grandiflorum 
var. cyaneum 

• Fire is considered detrimental if fire occurs between June to December (during vegetative and flowering 
stages). 

• Autumn fire is thought to be the most appropriate for this species. 

• Stack et al. (2000).  
• Evans et al. (2003) 
• Brown et al. (1998) 

Eucalyptus argutifolia • Fire is considered to be detrimental if fire frequency is less than every 5-8 years (the species flowers 3-4 
years after regenerating from rootstock). 

Grevillea curviloba 
subsp. curviloba & G. 
curviloba subsp. incurva 

• Fire is considered to be detrimental if fire is too frequent, as it can deplete rootstock reserves and soil 
bank. 

Trithuria occidentalis • Fire is considered to be detrimental if fire occurs during flowering (Sept-Nov) 

Maranthius paralius • No information available 

 
• Evans et al. (2003) 
 
• Brown et al. (1998) 

s 
• English and Phillimore 

(2000) 
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GSS Flora studies (2007 to 2010) 

For the GSS projects there was a focus on identifying post-fire regeneration strategies, 

juvenile periods of flora species, identification of key fire response species, and changes in 

floristic diversity to help guide the development of suitable fire intervals for the GSS study 

area. 

Post-fire Regeneration Strategies 

Local area knowledge of plant regeneration strategies are important as it has been shown 

that regeneration strategies or timing of events such as juvenile periods of some plant 

species can vary across a plant’s distribution (George 1981). A summary of past research 

on flora responses to fire is discussed in Bleby et al. (2009a - Table 7.2). They found that 

out of 1,337 known native vascular plant taxa occurring in a range of habitats on the GGS, 

only a small number (n = 438) were found to have post-fire regeneration strategies 

recorded. Even fewer (n = 42) had their fire responses recorded in studies conducted on the 

Swan Coastal Plain, highlighting that most fire response data has been obtained from 

habitats elsewhere in the plant’s distribution. From these records, it was discovered that 

37% of the native vascular plants are killed by 100% scorch and rely on stored seed or 

dispersed seed from adjacent sites. A further 53% surviving fire by utilising basal sprouts, 

epicormic growth, apical buds or soil suckers (Bleby et al. 2009a).  

 

A field study was undertaken by DEC for the GSS in 2009-2010 in an area of Banksia 

woodland that underwent a prescribed burn (Mickle et al. 2010b). A total of 107 species 

from 32 families were recorded in the pre and post-fire floristic surveys; the dominant 

families being Proteaceae, Myrtaceae and Stylideaceae. The post-fire regeneration 

strategies were observed in the field for 60 of these species. Of these, only 5 species (8%) 

were recorded as being seeders (killed by fire). 

 

Post-fire regeneration strategies of the other 47 species were supplemented from, the 

Vegetation Species List and Response Database (DEC 2008b). In total, twenty four species 

(22%) were recorded as being seeders (killed by fire), 72 % recorded as resprouting from a 

variety of underground structures (soil suckers or lignotubers), epicormic or apical growth, 

and 6% of unconfirmed or varied regeneration  strategies. 
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Juvenile Periods 

The post-fire juvenile period (time to first flowering after fire) can be used to guide 

minimum intervals between fires to conserve plant diversity.  Burrows et al. (2008) 

defined the juvenile period as the time for at least 50% of a population of plants to have 

flowered following fire. As the first seed set will not necessarily be sufficient to maintain a 

species’ abundance (Friend et al. 1999), Burrows et al. (2008) suggested that the minimum 

fire interval be twice that of the juvenile period of the longest maturing plant species.  

They proposed that if burning was sufficiently patchy and of low intensity burns to spare 

all plants in a burn from being scorched, fire intervals could be reduced (Burrows et al. 

2008). 

  

A field study by Mickle et al. (2010b) found that out of 107 observed plant species, a total 

of 71 (66%) species from 28 families reached their juvenile period in the 18 months 

following a prescribed burn in Banksia woodland on the GGS (Mickle et al. 2010b). Of the 

species that had reached their post-fire flowering period within 6 months of the burn, most 

(81%) were resprouters. Only 19% were annual seeders, and no perennial seeders had 

reached their juvenile period. Within 18 months of the burn, the proportion of seeders 

(20%) and resprouters (80%) reaching juvenile period had not changed, however some 

perennial seeders had reached juvenile period.  It was expected that the majority of 

perennial seeders require greater than 18 months to reach juvenile period following fire.  

 

Examining juvenile periods across a fire chronosequence 

A fire chronosequence study at sites ranging from one to nine years since last fire was 

conducted in September and October 2009 (Mickle et al. 2010a).  The study aimed to 

provide data from a wider range of fire ages, where plants killed by fire and regenerating 

from seed were better represented.  

 

Nineteen observed plant species reached their juvenile period in the first 12 months 

following fire increasing to 30 species by 45 months post fire. Sixty species were found to 

reach juvenile period within five years (60 months) of fire although the exact timing could 

not be pinpointed for all species (Mickle et al. 2010a). Of the 60 species attaining juvenile 

period within 60 months, 35% regenerated by plant or soil-stored seed, and 65% by 
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sprouting from underground structures or apical or epicormic growth. The flowering 

patterns for 8 of these species can be seen in Figure 3. 

 

 
Figure 3. Average flowering category against years since last fire for 8 common Banksia woodland 

species across fire ages from one to nine YSLF. A species reaches juvenile period with a flowering 

category 3 or greater (represents 50% flowering or many flowers on some plants) (Mickle et al. 2010a). 

* indicate flowering category based on a single replicate. Categories: (1) no flowering, (2) 25% 

flowering, (3) 50% flowering, (4) 75% flowering, and (5) 100% flowering. 

 

There was evidence that the juvenile period for two species, Banksia attenuata and 

Banksia menziesii, was attained more than 5 years following fire.  However a decision was 

made to supplement this data with more field observations. The data was obtained in April 

2010 when the sites were re-surveyed, and one new site was surveyed. The combined data 

for both surveys is shown in Figure 4.  The data indicates that after 8 years, 50% of both B. 

menziesii and B. attenuata will be flowering 50% of the time.  
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Figure 4. Average flowering for B. attenuata and B. menziesii.  Values range in categories 1 to 5 

according to Burrows et al (2008) scale where 1 is limited to no flowering observed in a population and 

5 represents many flowers on many plants in the population. Category 3 represents 50% flowering in 

50% of the population and indicates that a species has reached juvenile period. Data for Banksia 

species is based on data surveyed in spring 2009 (Mickle et al. 2010a) supplemented by April 2010 

resurveying of the same sites (with the addition of a new site at 8 YSLB).  

 

Impact of fire on plant species richness 

Plant species richness with relationship to time since fire provides important information 

which (along with seed back quantity and durability) can be used to determine maximum 

interval between fires to sustain biodiversity (Burrows et al. 1999). An analysis of plant 

species richness at sites of different time since fire was undertaken for quadrat data at 28 

sites obtained in Bassendean (landform) Banksia on the GGS.  

 

 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 28 

0

10

20

30

40

50

60

70

80

0-5 YSLF 6-10 YSLF 11-19 YSLF 20-29 YSLF > 30 YSLF

P
la

nt
 s

p
ec

ie
s 

ric
hn

es
s

Year since last f ire (YSLF)  
Figure 5. Mean (± 95%CI) plant species richness in different time since last fire categories (n=28).  All 

Bassendean landform Banksia sites that we collected plant flora records for. 0-5 YSLF = 6 replicates; 

6-10 YSLF = 4 replicates; 11 – 19 YSLF = 8 replicates; 20-29 YSLF = 6 replicates; >30 YSLF = 4 

replicates. 

 

There was no significant different between means (ANOVA F:4,23 = 2.053, p = 0.120) 

although there was a trend towards highest number of species in the most recently burnt 

habitat.  It is likely that this is related to the presence of fire-emergent species (e.g. grasses, 

orchids) within a few years since fire (<5 yslf).  There was also no significant correlation 

(either linear or 2nd order polynomial between species richness and time since last fire 

(Figure 6).  It should be noted that in these analyses the Banksia woodland was not 

separated further into the floristically different I1 and J1 as has been recognised by 

Mattiske Consulting Pty Ltd (2003). It is possible that analysis at the level of these 

floristically different communities may reveal significant differences between species 

richness and time since last fire.   
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Figure 6. Plant species richness by years since last fire. 
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Flora Vital Attributes Summary  

 

For the purposes of developing an ecological fire regime it is important to understand how 

plants respond to fire. The most important attributes for this assessment include post-fire 

regeneration strategy (method of persistence following a disturbance) and the juvenile 

period time (time to reach reproductive maturity) (Burrows et al. 2008; Shedley 2007; 

Tolhurst 1999).  Juvenile period is defined as the time taken for at least half the population 

to reach flowering age (50% of the population flowering 50% of the time). Longevity (the 

age at which senescence and death occurs) should also be taken into account, but this 

information is often unknown or difficult to find out (Shedley 2007). These attributes are 

used to select key fire response species and are then used to define maximum and 

minimum tolerable interfire periods for the land management unit or vegetation 

community in question. 

 

Floristic surveys within the GSS area used the regeneration strategies as defined by 

Burrows et al. (2008, see Table 1). The species likely to be effected most by fire are those 

that rely on seeds for reproduction and are killed by fire. 

 

Key fire response species were selected using the list of species known to exist in the GGS 

based on floristic surveys by the GSS (Mickle et al. 2010a; Mickle et al. 2009) including 

declared rare and priority flora (Valentine et al. 2009a). This list was supplemented with 

species vital attribute information from the Vegetation Species List and Response Database 

(DEC 2008b).  Some values, especially for rare or priority species that could not be found 

in the database were inferred from information available from FloraBase (Western 

Australian Herbarium 1998-2009).  The compiled flora species list with all vital known 

attributes can be seen in Appendix 1. 

The key fire response species were then selected from this list based on the vital attribute 

criteria including regeneration strategy (species killed by fire and relying of seeds for 

reproduction); juvenile period (greater than 48 months), conservation status (DRF), and 

endemism (GSS endemic).  The 39 key fire response species selected with these criteria 

are shown in Table 3.  
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The data collected on juvenile period and post-fire regeneration strategies have advanced 

our understanding and ability to utilise these criteria to develop an ecologically appropriate 

burn regime for the Banksia woodland on the Swan Coastal Plain. Burrows (2008) 

recommends that the minimum interval between fires lethal to fire sensitive species be 

approximately twice the juvenile period of the slowest maturing species.  Based on this 

statement, the highest recorded juvenile period in species relying solely on seed for 

reproduction (seeders) is 4 years for species surveyed by GSS (Mickle et al. 2010a) 

including Lysinema ciliatum and the DRF Darwinia foetida.  Supplemented data from the 

database (DEC 2008b) suggests a maximum juvenile period of 5 years for seeder species 

Melaleuca viminea.  The highest juvenile period for resprouters is 8 years for Banksia 

menziesii and Banksia attenuata (GSS survey, Mickle et al. 2010a) and 4 years for 

database supplemented data. Inferred data for rare and GSS endemic flora suggest a 

potential maximum of 6- 7 years. 

 

Based on the key species selected using the vital attribute criteria (Table 3) a 

minimum fire interval of 8 to 16 years is recommended (twice the juvenile period of 4 

to 8 years).   

 

The maximum interval between fires is recommended to be based on the senescence time 

for the longer lived woody species. Given the dominance of Banksia species, it has been 

estimated that the maximum age to which Banksia would live is 45 years (Enright et al. 

1998).   

 

Based on this information a conservative estimate of 40 years is suggested as the 

maximum fire cycle.   

 

This work is not based on a complete list of fire responses to all species know for the 

region and will be supplemented in the future as data on more species is obtained on the 

GGS.  
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Table 3. Key fire response flora species as selected using their vital attributes criteria including regeneration strategy (any species 100% killed by 

fire relying on seed for reproduction), juvenile period (greater than 45 months), conservation status (DRF), and endemism (GSS endemic). A 

more comprehensive list can be found in Appendix 1. 

 

Juvenile Period4 
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Epacridaceae Leucopogon conostephioides     Seeders 4  (5) <45 60 Northern Sandplain 6 2 6 
Epacridaceae Andersonia lehmanniana   Seeders 4 (3) <45 36 Dandaragan     4 
Epacridaceae Lysinema ciliatum     Seeders 4 (2) <48 24 Nannup 1   6 
Myrtaceae Beaufortia elegans     Seeders 4 (2) <45 24 Cataby 5 2 7 
Mimosaceae Acacia pulchella   Seeders 4 (2) <45 22 Mt Cooke     7 
Papilionaceae Gompholobium tomentosum     Seeders 4 (2) <45 20 Nannup 9 3 6 
Myrtaceae Darwinia foetida DRF LE Seeders 4* >48*          
Rutaceae Boronia purdieana   Seeders 4 <45        8 
Papilionaceae Gastrolobium capitatum     Seeders 4 <45    5 1 7 
Epacridaceae Leucopogon squarrosus   Seeders 4 <45        6 
Asteraceae Podotheca chrysantha     Seeders 4 <45    1   6 
Hydatellaceae Trithuria occidentalis DRF GSS Seeders 1* <12*          
Proteaceae Banksia menziesii     Respouters 8 (2) 96 24 Perth 12 1 9 
Proteaceae Banksia attenuata     Respouters 8 (2) 90 24 Perth 16 2 9 
Myrtaceae Calytrix sapphirina   Respouters 5 <60  Eneabba     3 
Orchidaceae Elythranthera brunonis     Respouters 5 (2) <60 24 Stirling Range 2 1 5 
Stylidiaceae Stylidium bicolour   Respouters 4 <48        2 
Myrtaceae Eucalyptus argutifolia DRF LE Respouters 4 48*          
Myrtaceae Eucalyptus x mundijongensis P1 GSS Respouters 4 48*          
Cyperaceae Schoenus curvifolius     Respouters 4 (2) 48 24 Stirling Range 8 1 8 
Orchidaceae Caladenia flava      Respouters 4 (1) <48 9 Mt Cooke   1 7 
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Juvenile Period4 
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Myrtaceae Eremaea pauciflora     Respouters 2 (4) 24 48 Jurien Bay 1 1 3 
Epacridaceae Conostephium pendulum   Respouters 1 (5) 12 60 Northern Sandplain 8 3 8 
Orchidaceae Epiblema grandiflorum var. cyaneum DRF GSS Respouters 1* 12*          
Cyperaceae Eleocharis keigheryi DRF RE Respouters 1 – 6* 4 to 72*          
Dasypogonaceae Calectasia sp. Pinjar (C. Tauss 557) P1 GSS Respouters 2* 24*           
Proteaceae Grevillea curviloba subsp. curviloba DRF GSS ? 1 – 6* 6 to 72*        
Proteaceae Grevillea curviloba subsp. incurva DRF RE ? 1 – 6* 6 to 72*          
Pittosperaceae Marianthus paralius DRF LE ? 2* 24*          
Myrtaceae Melaleuca systena   TEC  ? 1 – 7* ? 18-84*          
Aizoaceae Sarcozona bicarinata P3 GSS ? ? ?          
Myrtaceae Melaleuca viminea     Seeders (5) - 60 Perup       
Epacridaceae Astroloma xerophyllum     Seeders (4) - 48 Badgingarra Nat. Park       
Papilionaceae Templetonia retusa     Seeders (4) - 48 Swan Coastal Plain   3   
Orchidaceae Corymbia calophylla     Respouters (4) - 48 Walpole       
Myrtaceae Eucalyptus gomphocephala     Respouters (4) - 48 Swan Coastal Plain       
Myrtaceae Eucalyptus marginata     Respouters (4) - 48 Nannup       
Orchidaceae Drakaea elastica DRF LE Respouters (1) - 12         
Orchidaceae Caladenia huegelii DRF RE Respouters (1) - 9         

1.DRF (Declared Rare Flora), P3 (Priority flora) (Valentine et al. 2009a) and TEC (Species vital to Threatened Ecological Community),  
2. GSS: unique to GSS study area; LE: locally endemic to Swan Coastal Plain; RE: regionally endemic to South Western Australian Floristic Region; (Valentine et al. 2009a). 
3. Seeders = 1,2,3, 8 and 10; Resprouters = 4,5,6,7 and 9; ? = uncertainty or multiple strategies – see Appendix 1 for actual codes. Based on (Burrows et al. 2008).  
4. Juvenile period based on Burrow (pers comm. 2009) (see Mickle et al. 2010a) 
5. Juvenile periods (in months) determine during Gnangara Sustainability Strategy (GSS) flora studies (see Mickle et al. 2010a; Mickle et al. 2009) 
6. Juvenile period (in months) obtained from  Vegetation Species List and Response Database (DEC 2008b) 
7. Number of Floristics survey site species occurs in Banksia-dominant or Melaleuca-dominant sites. Total number of sites surveyed in brackets. (Mickle et al. 2009) 
8. Number of Chronosequence survey sites species occurs at (all sites are Banksia-dominant). Total number of sites surveyed in brackets. (Mickle et al. 2010a) 
* indicates inferred information based predominantly on FloraBase (Western Australian Herbarium 1998-2009) 
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Impacts of fire on fauna 

The interaction between Australian fauna and fire has received considerable attention 

(Catling and Newsome 1981; Fox 1996; Friend 1993; Whelan 1995; Wilson 1996) 

although the focus has been the impact of fire upon birds and mammals. Behavioural 

patterns and requirements for shelter and food are two major factors that affect the 

responses of taxa to fire (Friend 1993). For example, species that nest in tree hollows may 

avoid the acute effects of a low intensity fire. Conversely there may be limited food 

resources for sedentary species in the early post-fire period, whilst mobile species can 

migrate to unburnt patches to obtain food and shelter.  

 

Similar to changes in the vegetation composition and structure over time following a fire, 

the composition of fauna (birds, mammals, reptiles and invertebrates) that use post-fire 

habitat can also change. A ‘habitat accommodation’ model developed to describe post-fire 

succession of small mammals describes how succession occurs in response to vegetation 

changes (Fox 1982; Fox 1996). Species enter the succession as their specific requirements 

are met, and decline in abundance as conditions become suboptimal. Species such as the 

eastern chestnut mouse (Pseudomys gracilicaudatus), which prefer open, floristically rich 

vegetation, recolonise early in the post-fire recovery period, while species such as the 

swamp antechinus (Antechinus minimus), which require dense ground cover, exhibit low 

population numbers up to 20 years after fire (Fox 1982; 1983; Wilson et al. 2001; Wilson 

et al. 1990). This model is generally supported by the results of studies in southern 

heathlands, heathy woodlands and arid grasslands (Masters 1993; Newsome et al. 1975; 

Recher et al. 1974; Wilson 1996; Wilson et al. 2001).  The rate of recovery of vegetation 

not time per se has been shown to be most important in the successional process for 

mammals (Fox and Monamy 2007; Monamy and Fox 2000). 

 

The effect of fire on reptile and frog communities is still largely unclear in Australia 

(Bamford and Roberts 2003; Friend 1993). Reptile information is based on studies in 

mallee woodlands, heathlands and savannah forests where reptilian diversity is high 

(Caughley 1985; Cogger 1969; 1989; Dickman et al. 1999; Letnic et al. 2004; Masters 

1996; Pianka 1996; Trainor and Woinarski 1994; Valentine and Schwarzkopf 2009). Few 

studies have been undertaken in southern temperate areas (e.g. Humphries 1992; Lunney et 
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al. 1991). Studies suggest that many species of snakes and lizards are resilient to the short-

term effects of fire, due to their preference for open microhabitats and use of burrows, 

whereas arboreal or surface-dwelling species are less protected (Fox 1978; Friend 1993). 

Although the longer-term relationships between reptiles and fire regimes are still uncertain, 

species respond in variable ways and the type of fire regime imposed may be critical in 

determining species response (Braithwaite 1987; Valentine and Schwarzkopf 2009).  

Succession of reptiles has been documented for arid Spinifex landscapes, where there is a 

strong relationship between shelter and foraging requirements of species and their 

abundance in successional ages (Cogger 1969; Dickman et al. 1999; Letnic et al. 2004; 

Masters 1996; Pianka 1996). 

 

The knowledge of the effects of fire on birds in many environments is limited (Catling and 

Newsome 1981; Christensen and Abbott 1989; Christensen and Kimber 1975; Christensen 

et al. 1985; Cowley et al. 1969; McFarland 1993; Recher 1981; Recher and Christensen 

1981). There have been few long-term studies of the ecological impacts of fire regimes, 

and the long-term consequences of fire management are poorly known (Woinarski 1999).  

 

The impacts of fire on birds in heathlands have been reasonably well studied.  During 

wildfires very high mortality rates have been reported (Fox 1978; Pescott 1983; Recher et 

al. 1975; Wegener 1984) while insectivores and some raptors may be attracted to fire 

fronts (Main 1981).  In the early post fire months dead or dormant invertebrate and 

vertebrate prey attracts predators (e.g. Laughing Kookaburra, raptors, Pied Currawong, 

Australian Magpie), and seed produced by plants such as Banksia species attracts parrots 

and cockatoos (McFarland 1988; 1993; Roberts 1970).  The regenerating vegetation in the 

first three years post fire remains comparatively open and herb and grass species are 

abundant.  Open-habitat species such as swallows and martins commonly colonise this 

habitat (McFarland 1988).  As the vegetation structure becomes more closed these species 

are lost and they are replaced by species reliant on denser vegetation such as Brush 

Bronzewing, Ground Parrot, Red-backed Fairy-wren and Southern Emu-wren (McFarland 

1988; Smith 1987).  In older heaths (>10–20 years post-fire) there may be a reduction in 

productivity or seed availability, and some of these bird species may decline or disappear 

(McFarland 1993).  
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Burbidge’s (2003) review of the impacts of fire on birds in south west Western Australia 

found that bird species richness is highest in long unburnt vegetation (15 years post-burn) 

but is also high in habitat for several years following a fire. Only honeyeater species 

richness is reduced in burnt habitat for the first 3 years following fire. However post-fire 

habitat is favoured by species that have a preference for open habitat, e.g. birds of prey. 

Many species that prefer open habitat will remain in a burnt area and be the dominant 

species for 2-6 years post fire (Burbidge 2003). 

 

The abundance of birds decreases to very low levels immediately following a fire but 

usually recovers within 2-3 years (Burbidge 2003). Insectivores generally increase in 

abundance after fire and can exceed pre-fire abundance for up to 7 years. Conversely, 

nectarivores decline following fire due to the reduction in the number of flowering 

Banksias in the burnt area. However it is fire intensity that is one of the biggest 

determinants of post-fire richness and abundance. Low intensity burns have the least 

impact on bird ecology (Burbidge 2003). 

 

There are no species in south-west Western Australia that only occur in long-unburnt 

vegetation (Burbidge 2003), however Bamford (1985) found that the western thornbill 

(Acanthiza inornata), shining bronze-cuckoo (Chrysococcyx lucidus) and scarlet robin 

(Petroica multicolor) were more common in Banksia woodland unburnt for 11-12 years. 

Wooller and Calver (1988) noted significant decreases in the abundance of white-breasted 

robin (Eopsaltria Georgiana), golden whistler (Pachycephala pectoralis), splendid fairy-

wren (Malurus splendens) and white-browed scrub-wren (Sericornis frontalis) following 

fire.  Variations in abundance are linked to habitat structure and consequential foraging 

opportunities.  

 

A study of repeated fire on Splendid Fairy-wren over a long period of 18 years in a 

southwestern Australian heath found that although in general, the birds survived fire it 

directly impacted on natality and juvenile survival, and indirectly affected population 

density, age structure, sex ratio and group composition (Brooker and Rowley 1991) 

(Russell and Rowley 1993).   The repeated fires threatened this population and without 

recruitment from adjacent unburnt patches (for example, if this site had been a habitat 

fragment), it would have been eliminated by the fire regime (Brooker and Brooker 1994). 
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Provision of adequate areas of suitable seral stages across the landscape is especially 

important for this mobile species.   

 

Inappropriate fire regimes are recognized as the main threat to many vulnerable and 

endangered Australian birds (Garnett 1992) and are a factor in the threatened status of  

approximately 51 nationally recognised threatened bird taxa (Woinarski 1999) . In 

environments such as heath and mallee inappropriate fire regime is the main threat to most 

declining bird species.  Most fire-sensitive threatened birds have low reproductive output 

and limited dispersal ability. The persistence of these species is further threatened by 

habitat fragmentation, which further impacts on their ability to recolonise following fire. 

 

The impact of fire on invertebrates and the response patterns that invertebrates exhibit can 

be highly variable and difficult to detect, often more so than for vertebrates and plants 

(Campbell and Tinton 1981; Friend 1995; Whelan 1995; Whelan et al. 2002). This is due 

to several reasons. Most invertebrate studies lack robust experimental design, and adequate 

sampling (Friend 1995; Whelan 1995; Whelan et al. 2002). In addition, invertebrates are a 

diverse group and exhibit a wide range of life histories and morphologies and are found in 

many different habitat types. Fire-related responses may not be apparent when data is 

analysed at broad classifications such as class and order (Friend 1995; Whelan et al. 2002).  

 

Fire directly impacts invertebrates by killing them, as well as indirectly by affecting their 

habitat. Some invertebrate species survive the direct effect of fire by either moving ahead 

of the fire front, by being protected in the soil or other refugia (e.g. termite mounds) or if 

they are dormant (Whelan et al. 2002). Some species may also survive due to the 

patchiness of a fire, providing refugia in the unburnt pockets (Whelan et al. 2002). Most 

invertebrates subsequently recolonise burnt areas from unburnt patches (Whelan et al. 

2002), dense crowns of plants (Gandar 1982; Main 1981; Whelan et al. 1980), thick layers 

of leaf litter (Andrew et al. 2000), thick bark on trees, and soil under rocks and in burrows 

(Main 1981; Warren et al. 1987). Species recolonise at different rates, depending on their 

dispersal ability. The patchiness, intensity, extent and season will all influence the 

recolonisation capacity of invertebrates (Whelan et al. 2002). 

 

Many invertebrate taxa appear to decline after fire and then recover quickly (Friend and 

Williams 1996; Whelan 1995), with little change in subsequent abundance (e.g. Abbott et 
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al. 1985; Collette and Neumann 1995). Some studies have found that populations of soil 

and litter arthropods will not recover to pre-fire population numbers during a five year 

inter-fire period, but other researchers have stated that populations will recover quickly.  

 

Fire sensitive fauna are often recognised as those that have specific characteristics such as 

late seral stage habitat requirements, strong site fidelity, low fecundity, poor dispersal 

capacity and are vulnerable to other threats such as predation. Fire sensitive fauna are often 

associated with mesic habitats, wetlands and rock outcrops (Burrows 2008).  

 

While the majority of studies that have assessed the effects of fire on Australian fauna 

communities have focused on time since fire, the effects of multiple fires have been less 

intensively studied.  Fire frequency has strong impacts on community composition for 

plants and animals (Andersen et al. 2005; Peterson and Reich 2001). Repeated burning can 

lead to changes in habitat structure, and simplification of vegetation complexity with 

implications for fauna composition (Bowman et al. 1988; Christensen et al. 1981) 

  

Fire frequency has been identified as a major factor influencing bird assemblages 

(Engstrom et al. 2005; Woinarski et al. 1999; Woinarski and Recher 1997). Although in 

tropical savannas birds seem to respond to time since fire (Woinarski et al. 1999) or 

whether or not a site was burnt (Woinarski 1990) in one study species richness and overall 

bird abundance was found to be lower in repeatedly burnt sites than either unburnt or site 

burnt once (Valentine et al in prep.).    In particular, abundance of frugivores and 

insectivores was lower in repeatedly burnt sites, probably due to the decline of a native 

fruiting shrub, Carissa ovata. 

 

Frequent low intensity fires can reduce invertebrate abundance and species richness in 

subtropical Eucalypt forests (York 1999; 2000). Although tropical savannah arthropod 

communities tend to be resilient to fire (Andersen et al. 2005; Parr et al. 2004), burning 

does disadvantage certain arthropods and alter the overall composition of arthropod 

communities (Andersen and Muller 2000; Parr et al. 2004). 

 

Although the effects of fire frequency on small mammals in southeastern Australia have 

been investigated predominantly the assessments have been limited to only several 

consecutive wildfires.  Recolonisation at a site at Nadgee was monitored after two 
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wildfires (1972, 1980) and the responses of small mammals to changes in vegetation 

structure examined (Catling 1986; Catling and Burt 1995; Catling et al. 2001; Catling and 

Newsome 1981; Newsome and Catling 1979; Newsome et al. 1975).  Abundance and 

species richness increased as the habitats increased in complexity with post fire age.  A 

long term study by Recher et al. (2009) also assessed recovery of ground-dwelling, small 

mammals on a different plot in coastal eucalypt forest at Nadgee (1970-2005).  Following 

an intense fire in 1972 numbers fell to the lowest level recorded and each species 

population became extinct on the plot 14-18 months later. One year later the site was 

recolonised and numbers peaked 6 to 7 years later.  A less intense fire in 1980 did not lead 

to extinctions, but numbers of A. agilis, A. swainsonii and R. fuscipes declined under 

drought conditions. This long-term study demonstrated that differences in impacts are 

related to a number of factors including the intensity of fire, rainfall and drought.   

Increased frequency is predicted to impact on late successional species such as the swamp 

antechinus (Antechinus minimus), which requires dense ground cover, is extirpated after 

fire, and exhibits low population numbers up to 20 years after fire (Fox 1982; 1983; 

Wilson et al. 2001; Wilson et al. 1990). 

 

In tropical savannah of northern Australia, total abundance and species richness, and the 

abundances of six of the seven most common small mammal species were all significantly 

affected by fire treatment (frequency and time-since-fire) making small mammals the most 

sensitive faunal group (Andersen et al. 2003; Andersen et al. 2005).  Three species 

(northern quoll, Dasyurus hallucatus; fawn antechinus, Antechinus bellus; and northern 

brown bandicoot, Isoodon macrourus) were most abundant in unburnt catchments, while 

other species were more variable but tended to be most abundant in unburnt catchments.  A 

highly significant result was the importance of unburnt habitat for maintaining large 

populations especially for extinction-prone species, which have suffered serious population 

declines across northern Australia in recent decades.  

 

Historically ecological fire management regimes have focussed mainly on vegetation as 

providing habitat and successional phases for fauna (Fire Ecology Working Group 2002) 

(Kenny et al. 2004).  Ecological fire regimes appropriate for fauna can be based on life 

histories, post fire succession patterns and habitat requirements (Friend 1993; Friend and 

Wayne 2003; MacHunter et al. 2009).  Selection of Key Fire Response species has also 

been recommended (MacHunter et al. 2009).   
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However, significant differences in the response of animals to fire need to be 

accommodated (Bradstock et al. 2005; Clarke 2008).  In contrast to plants, animals are 

mobile and the spatial components of their habitats and fire responses need to be assessed 

more closely.  The maintenance of the metapopulation dynamics of fauna species in fire 

impacted landscapes is important. This involves the provision of structural and functional 

connectivity in seral habitat networks that preserve dispersal for metapopulations. There is 

however little information on the sizes, shapes, age structure or configurations of suitable 

habitat for fauna in relationship to fire dynamics and fire mosaics (Bradstock et al. 2005).  

 

A spatially explicit simulation model that was employed to assess the effects of fire regime 

dynamics on the malleefowl Leipoa ocellata incorporated home ranges, plant populations, 

and fires (prescribed and unplanned) and spatial patterns of fires (random versus non-

random ignitions) (Bradstock et al. 2005). Results were affected particularly by the spatial 

pattern of prescribed burns, topography and probability of wildfire all of which were 

sensitive to fire-interval distributions on plant species and habitat. The study found that the 

persistence of populations would be dependant on a prescribed fire regime providing small 

patch burns (Bradstock et al. 2005).  The study however emphasised that the dependence 

of fauna species on fire mediated habitat heterogeneity is highly variable and strongly 

dependent on species life-history traits, dispersal and territory sizes, together with 

landscape features.   

 

Seral and habitat requirements for species that co-occur in a landscape can differ 

significantly.  For example in the Eastern Otways, Victoria, the Swamp Antechinus, 

Antechinus minimus, is a late successional species (15-20 years) and slow recoloniser 

while in contrast the Pseudomys novaehollandiae, New Holland Mouse, is an early to mid-

successional species (3-7 years) (Lock and Wilson 1999; Wilson 1991; Wilson et al. 2001; 

Wilson and Wouters 1996).  For the former species protection of the limited critical habitat 

from frequent fire is crucial to ensure connectivity of populations and the long-term 

persistence of the species, while for the latter burning to achieve a series of optimal-aged 

(3-7 years) small habitat patches is required (Wilson and Wouters 1996).  In this case the 

distribution of preferred habitat for the two species is understood and mapped (Gibson et 

al. 2004; Wilson et al. 1999).  Further the habitats occur in different parts of the landscape 
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thus enabling fire management to be applied where there is a need for fire protection in one 

area, and fire-induced heterogeneity in the other. 

 

Previous studies in the GSS study area 

Studies of the impacts of fire on fauna in the GGS are few.  Kitchener et al. (1978) 

proposed that too frequent burning of vegetation may have threatened the persistence of 

mammal species on the Swan Coastal Plain. In the 1978 study, ash-grey mice (Pseudomys 

albocinereus) and honey possums (Tarsipes rostratus) were only trapped at two sites 

(Mullaloo and Burns Beach) in patches of vegetation that had remained unburnt (six years 

post-fire age) after extensive, high intensity fires.  (How and Dell 2000) proposed that high 

intensity fire in small isolated vegetation remnants on the Swan Coastal Plain may lead to 

local extinction. Those individuals that survive fire are prone to starvation or predation due 

to lack of cover and food and there is little likelihood of colonisation from elsewhere in the 

urban matrix. Macropods such as the western grey kangaroo (Macropus fuliginosus) and 

the western brush wallaby (Macropus irma) favour burnt forest (Christensen and Kimber 

1975).  

 

Dell and How (1995) examined the response of reptiles to wildfire at Kings Park and found 

that the longest unburnt sites supported the highest lizard diversity, while the most recently 

burnt sites were found to have the lowest lizard diversity. Species numbers and abundance 

was lower in the first year post-fire but appeared to return to pre-fire levels by the second 

year post-fire. Migration from burnt to adjacent unburnt sites was apparent.  

 

 In contrast to other studies, Bamford (1986; 1992; 1995) did not find a relationship 

between total reptile species or number of captures, and time after fire in heathland and 

Banksia woodland habitats. He concluded that the overall effect of fire on reptiles was 

negligible, although a small number of species did exhibit clear post-fire seral responses. 

Some species were absent from early succession areas, while others were present in 

increased numbers, apparently favouring the more open ground. Whilst overall the 

assemblage did not change, fire effects may have been obscured by patterns of abundance 

across the landscape that were independent of fire history (Bamford and Roberts 2003). 

These studies focused on time since fire and did not examine fire intensity. 
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Studies undertaken by Bamford (1985; 1986) examined the impact of prescribed burns on 

mammals in Banksia woodland and assessed areas of varying fire ages at Mooliabeenee 

Nature Reserve north east of the GGS. Survival of most mammal species was high in 

places of uneven (patchy) burn as species were able to survive by moving to unburnt areas. 

The mean number of captures in the first year after fire was significantly less than that of 

all subsequent years. House mice (Mus musculus) and little long-tailed dunnarts 

(Sminthopsis dolichura) were more abundant 0 – 3 years after fire, ash-grey mice 

(Pseudomys albocinereus) between 3 – 6 years after fire, and honey possums (Tarsipes 

rostratus) and western pygmy possums (Cercartetus concinnus) were more abundant in 11 

year old vegetation.  

 

Much of the work on effects of fire on invertebrates in Western Australia has been 

conducted in the wetter south west forests. The invertebrate fauna on the Swan Coastal 

Plain however has been shown to respond in different ways. The greater regularity of 

seasonal climate and uniform landscape and fire regimes has lead to a more predictable 

succession following frequent moderate intensity fires on the Swan Coastal Plain, 

compared to the south west with less frequent high intensity fires and greater 

topographical/geological variability (Van Heurck and Abbott 2003). This has lead to a less 

predictable response and the favoured persistence of relict Gondwanan taxa in the south 

west (Main 1987; Van Heurck et al. 1998). 

 

On the Swan Coastal Plain, in Jarrah-Banksia woodland, richness and abundance of 

invertebrates increased several weeks after a wildfire with some of this being attributed to 

the survival of arboreal species which had become more active on the ground (Barendse et 

al. 1981; Whelan et al. 1980) found that eight years was required for spider richness in 

Allocasuarina-Banksia woodland to recover after fire. The work also found some rare 

spiders only in areas unburnt for over 20 years, and that litter type and location was more 

important than time since fire for composition and richness. 

 

In Kings Park (Ladhams 1999) the beetles and spiders showed no change in richness but 

significant changes in composition following fire. These changes were associated with 

changes in habitat availability for both beetles and spiders, as well as prey abundance and 

climate for the latter. The changes in habitat availability are primarily, for ground dwelling 
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invertebrates, based on changes in the leaf litter. The time since fire was found to be an 

important regulator of litter biomass, depth and living space. 

 

Van Heurck et al. (1998) also looked at leaf litter variables in response to fire, although in 

the central Jarrah forest. Litter depth, cover and volume recovered after three years for both 

spring and autumn fires, with understorey shrubs recovering more rapidly after a high 

intensity autumn burn. The season of the fire was found to influence microhabitat 

diversity, with particular types of habitats being created by high intensity autumn fires 

only. Friend and Williams (1993) found post fire invertebrate abundances and composition 

did not correlate with changes in floristics or vegetation structure in Mallee Heath 

remnants in the south west. 

 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 43 

GSS Projects-fauna studies 2007 to 2010  

The GSS projects focussed upon post-fire regeneration patterns of vertebrates and the 

identification of key fire response vertebrate species in order to help guide the 

development of suitable fire intervals for the study area. 

 

Patterns of ground-dwelling vertebrate biodiversity (Valentine et 

al. 2009b). 

Reptiles 

Results from the studies undertaken by DEC for the GSS indicate that the response of 

reptile communities to time since fire varied among different combinations of vegetation 

type (Banksia, Melaleuca, Tuart, Jarrah) and time since fire (Valentine et al. 2009b).  The 

surveys found that overall reptile abundance, as well as the abundance of some specific 

species including Morethia obscura and Lerista elegans, was higher at sites with a fire age 

of at least 11 years since last burn (Figure 7, Swinburn et al. 2009; Valentine et al. 2009b).  

 

The majority of the burrowing snake species, including the Priority listed elapid Neelaps 

calonotus were also captured at sites with a fire age of 11 YSLF or greater (Swinburn et al. 

2009; Valentine et al. 2009b). This perhaps reflects a difference in resource availability 

between recently burnt and long unburnt sites. In previous studies, skink-consuming 

elapids tend to be absent, or in lower abundances in recently burnt habitat (Valentine and 

Schwarzkopf 2009).   

 

Time since fire also influenced the assemblages or species composition of reptiles that 

occurred at sites which is shown by NMDS ordination (Figure 8a).  Older sites (> 16 

YSLF) predominantly are separated from younger sites, although there is some overlap 

which is likely to be due to some influence of habitat type. Analyses of correlations of the 

reptile species and habitat variables that are contributing to the ordination are shown in 

Figure 8b.   Here species such as L elegans, M. obscura are associated with older sites, R. 

adelaidensis with younger sites. 
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Figure 7. Significant differences in the mean (± 95%CI) of a) reptile abundance and b) abundance of 

M. obscura between ‘old’ sites (those long unburnt, > 16 years since last fire) and ‘young’ sites ( those 

recently burnt, < 11 years since last fire). 
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Figure 8. NMDS ordination (Sorensen distance measure) on the assemblage of reptiles 

(n = 23 species) at 38 sites for time since fire.  The ordination is in three dimensions 

(stress = 0.135), with axis 1 and 2 plotted (r2 = 0.346 and 0.306 respectively).  (d) 

Correlations of species and habitat variables (r2 > 0.2) with NMDS ordination. 

 

Specific analyses examining the interaction between vegetation type and fuel age 

categories were undertaken for Banksia and Melaleuca sites. Our results indicated that 

reptile communities varied among different combinations of habitat and fuel age 

(Valentine et al. 2009b). Different reptile species tend to prefer different habitat attributes 

(Letnic et al. 2004), and these attributes will be in different supply in different vegetation 

types, and may be altered by burning. The differences between fuel ages were particularly 
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pronounced in Melaleuca sites. Young fuel age sites in Melaleuca habitat tended to contain 

fewer reptiles, and had few species associated with them. Although some differences were 

also detected between fuel ages in Banksia sites, they were less pronounced, and young 

fuel age Banksia sites often had species common in old fuel age sites (e.g. Morethia 

obscura). Particular species of fauna were associated with fuel age sites in different ways 

within the two habitat types. For example, reptile abundance was correlated with fuel age, 

however, this correlation was only significant within Melaleuca sites. This suggests that 

the response of reptiles to fire age is dependent upon habitat type. 

 

Changes in the abundance of reptiles following burning is often linked to fire-induced 

changes in the resource availability of the post-fire environment (Friend 1993; Masters 

1996). Because reptiles tend to occupy sites with suitable thermal, shelter, and food 

resources (Friend 1993; Letnic et al. 2004; Masters 1996), burning may have modified 

elements of the habitat in a manner undesirable to some species. The long unburnt sites 

contained deeper piles of litter, and those species with a preference for deeper litter, were 

observed in high abundances in the long unburnt sites. Typically, litter-associated lizards 

respond strongly to the removal of vegetation and are usually observed in high abundance 

in the least-disturbed sites, and their density is often correlated with variables of vegetation 

cover (e.g. litter cover; Greenberg et al. 1994; Masters 1996).  

 

The succession of fauna with time since fire on the GGS was also examined by assessing 

relative abundance (species average abundance, divided by the maximal average 

abundance) in relationship to time since fire. This highlighted that the responses of reptiles 

to fire in Banksia woodland are complex. Reptile species tended to respond in different 

patterns to time since fire, with relative abundance estimates peaking at every fire age 

category for at least one species of reptile (Figure 9 and Table 4). Several species preferred 

recently burnt sites (e.g. Morethia lineoocellata and Lerista praepedita), whilst others were 

most abundant in intermediate fuel age sites (e.g. Ctenotus fallens and Strophurus 

spinigerus), and still other species in long unburnt sites (e.g. Morethia obscura, Lerista 

elegans and Aprasia repens). Furthermore, several species displayed a bimodal response to 

time since fire, with relative abundances peaking in both recently burnt and long unburnt 

sites (e.g. Rankinia adelaidensis and Ctenotus australis). This is likely to be related to 

changes in habitat features, not time since fire per se.  Certain habitat characteristics of 

recently burnt and very long unburnt may be similar and preferred by some species. This 
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study indicates that a diverse range of post-fire habitat is necessary to cater for the species 

rich reptile fauna in the GSS study area. 

 

Table 4. Preferred fire age for reptile species, derived from species abundance analyses, multiple 

captures in only one fire age, and NMDS ordinations of reptile assemblages (Swinburn et al. 2009; 

Valentine et al. 2009b). 

Reptile Species Preferred Fire Age 

(years since last fire) 

Method 

Rankinia adelaidensis <11 (young) 1,3 

Lerista elegans 11+ (old) 1,3 

Morethia obscura > 16 (old) 1,3 

Aprasia repens >16 (old) 3 

Menetia greyii >16 (old) 1,3 

Neelaps calonotos 11+ (old) 2 

Tiliqua rugosa <11 (young) 3 

Tiliqua occipitalis <11 (young) 2 

Ramphotyphlops australis >16 (old) 2 

Demansia psammophis reticulata >16 (old) 2 

Delma concinna concinna <11 (young) 2 

1. Preferred fire age derived from species abundance analyses 
2. Insufficient data for analysis however multiple captures in only one fire age (at least 2)  
3. Preferred fire age derived from NMDS ordinations of reptile assemblages 

 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 47 

0

0.2

0.4

0.6

0.8

1

1.2

         Young        
(4 YSLF)

Young-Intermed
(6-7 YSLF)

   Intermediate  
(17 YSLF)

           Old          
(22-26 YSLF)

      Very Old      
(36 YSLF)

R
el

at
iv

e 
A

bu
nd

an
ce

  
Rankinia adelaidensis
Simoselaps bertholdi
Ctenotus australis
Lerista praepedita
Morethia lineoocellata

0

0.2

0.4

0.6

0.8

1

1.2

         Young        
(4 YSLF)

Young-Intermed
(6-7 YSLF)

   Intermediate  
(17 YSLF)

           Old          
(22-26 YSLF)

      Very Old      
(36 YSLF)

Time Since Fire (Years Since Last Fire)

R
el

at
iv

e 
A

bu
nd

an
ce

  
 

Aprasia repens
Cryptoblepharus buchananii
Pygopus lepidopodus
Menetia greyii
Morethia obscura
Lerista elegans
Lialis burtonis

0

0.2

0.4

0.6

0.8

1

1.2

         Young        
(4 YSLF)

Young-Intermed
(6-7 YSLF)

   Intermediate  
(17 YSLF)

           Old          
(22-26 YSLF)

      Very Old      
(36 YSLF)

R
el

at
iv

e 
A

bu
nd

an
ce

  

Pogona minor
Stropherus spinigerus
Christinus marmoratus
Ctenotus fallens
Hemiergis quadrilineata

Early

Late

a)

b)

c)

Intermediate

 
Figure 9. Successional responses of reptiles in Banksia woodland related to time since fire.  Relative 

abundance estimated as a species average abundance divided by its maximal average abundance. 

Responses are separated into a) early, b) intermediate, and c) late. 

 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 48 

Reptiles and habitat parameters 

Habitat variables were also assessed further across the four habitat types (Banksia, 

Melaleuca, Tuart, Jarrah) to examine differences between time since fire.  The number of 

plant species was correlated with reptile species richness (Pearson’s r = 0.452, P = 0.006, 

Figure 10), but not reptile abundance.  However, reptile abundance was correlated with 

times since fire (Pearson’s r = 0.327, P = 0.045; Figure 10), unlike reptile species richness.  

In addition, reptile abundance was correlated with a number of habitat parameters       

(Table 5), including positive associations with litter cover, canopy cover and litter depth, 

and negative associations with soil cover and a number of the touch pole count intervals 

(Table 5; Figure 10).  The association of reptile abundance with litter depth indicated that 

the pattern was only significant in long unburnt sites (Figure 10), with trend lines 

indicating r2 values for the subset groups time since fire.  Of the touch pole counts, the 

interval 20 – 40 cm was positively correlated with reptile diversity measures, and the 

number of plant species, but negatively correlated with the abundance of reptiles (Table 5; 

Figure 10).  The number of plant species was negatively correlated with other touch pole 

count intervals (intervals > 40 cm; Table 5).  Time since fire was significantly correlated 

only with litter depth (Table 5).  

 

Table 5.  Pearson’s correlations (r) of reptile abundance, species number, diversity, evenness, plant 

species number and fuel age with habitat variables at each site. 

 
Reptile 

Abundance 

Reptile 
Species 
Richness 

Reptile 
Diversity 

Reptile 
Evenness 

Flora 
Species 

Time since 
Fire 

Vegetation cover -0.017  0.396*  0.373*  0.192  0.276  0.170 
Litter cover   0.475** -0.267 -0.173 -0.192  0.128  0.170 
Soil cover -0.466**  0.133  0.011  0.085 -0.159 -0.219 
Canopy Cover   0.447** -0.380* -0.179 -0.310 -0.173  0.153 
Litter Depth   0.512** -0.241 -0.019 -0.084  0.046  0.433** 
Touch pole counts       

0 – 20 cm  -0.077  0.249  0.289  0.209  0.180  0.098 
20 – 40 cm -0.336*  0.504**  0.361*  0.331*  0.375* -0.206 
40 – 60 cm -0.430** -0.016 -0.033  0.243 -0.346* -0.286 
60 – 80 cm -0.346* -0.115 -0.170  0.082 -0.623** -0.221 
80 – 100 cm -0.353* -0.124 -0.209  0.039 -0.634** -0.264 
100 – 150 cm -0.208 -0.286 -0.277 -0.072 -0.626** -0.249 
150 – 200 cm -0.274 -0.390* -0.255  0.020 -0.469** -0.298 

Significant values are in bold (* P < 0.5, ** P < 0.01) and values approaching significance are identified (^ 
0.06 > P ≥ 0.05) Diversity calculated using Simpson’s Diversity of Index (1-D), 0 (low) to 1 (high). 
Evenness derived from Shannon-Wiener Index with higher values representing a less variable community. 
.   
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Figure 10. a) Reptile abundance with time since fire, and, b) reptile abundance with litter depth, with 

times since fire categories identified.  Linear trend lines are plotted for each graph, and an r2 value 

provided.   

 

Mammals 

Although a number of mammal species were captured during the GSS field studies 

including honey possum (T. rostratus), Quenda (Isoodon obesulus fusciventer), bush rat, 

moodit (Rattus fuscipes), Rakali (Hydromys chrysogaster),  Sminthopsis sp., echidna 

(Tachyglossuss aculeatus), house mouse (M. musculus) and black rat (Rattus rattus), 

overall mammal capture rates were very low and there was little detailed information on 

their specific responses to fire (Valentine et al. 2009b).   The exceptions were for M. 

musculus and T. rostratus and the response of these two mammal species to fire was clear. 

The house mouse (Mus musculus) preferred more recently burnt sites (Swinburn et al. 

2009; Valentine et al. 2009b). In contrast, honey possums (Tarsipes rostratus) were more 

abundant in older sites, with peaks in relative abundance at sites 20 – 26 YSLF (Valentine 

et al. 2009b). Although honey possums (Tarsipes rostratus) are known to return to burnt 

areas within 2 – 4 years since fire (Bamford 1986; Everaardt 2003; Richardson and 

Wooller 1991), higher densities are recorded in older vegetation, with peaks in abundance 

in vegetation 20 – 30 years since last burnt (Bradshaw et al. 2007; Everaardt 2003). Our 

results were very similar, with low abundance in recently burnt sites (< 7 YSLF), followed 

by an increase in abundance as time since fire increased (Valentine et al. 2009b). However, 

in the Banksia woodland on the GGS we also noticed lower abundances in sites that have 

remained unburnt for a very long time (> 36 YSLB). Honey possums are dependent on 

nectar and pollen, particularly from plants of the Proteaceae, Myrtaceae and Epacridaceae 
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families (Wooller et al. 1984). Capture rates of honey possums are closely linked to food 

sources (Bradshaw et al. 2007) and have been correlated with the densities of flowers and 

the flowering periods of Banksias (Everaardt 2003). Hence, the impact of fire on honey 

possums will be related to the post-fire responses of target food species (Bradshaw et al. 

2007).  

 

Historically the Honey possum was considered uncommon on the northern SCP and the 

Western Australian Museum 1977-78 survey only recorded one specimen at Burns Beach. 

This species has been recorded in other fauna surveys undertaken by consultants on the 

GGS since the WAM 1977-78 survey (Ecologia Environmental Consultants 1997). Honey 

possums are highly susceptible to habitat loss from both land clearing and dieback disease 

(Phytophthora cinnamomi), predation by cats, inappropriate fire regimes and food source 

restrictions caused by lowered groundwater affecting flowering capacity of vegetation 

(Phillips et al. 2004).  
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Figure 11. Successional responses of Mus musculus and Tarsipes rostratus in Banksia woodland (using 

relative abundance estimates) to time since fire. 
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Figure 12. Abundance of four mammal species at sites targeted for trapping quenda.  The 

abundance of quenda was highest at Twin Swamps Nature Reserve, which is fenced and 

baited to reduce predators.  (M’burra NR = Muckenburra Nature Reserve). 

 

The number of H. chrysogaster Rakali trapped at Lake Goolellal and Loch McNess, with 

minimal survey effort was surprising, indicating that these two lakes support reasonable 

populations of this species.  The survival of Rakali is critically linked to the persistence of 

wetland eco-systems.  Loch McNess has a history of frequent (and recent) fires. It has a 

low numbers of islands that could provide refugia habitat for water rats. This may result in 

Rakali utilising the banks more and being subjected to impacts from fires.  

 

On the northern SCP Rakali are restricted to the lakes and water bodies of the Spearwood 

system as most water bodies on the Bassendean dune system are ephemeral. Rakali are 

highly susceptible to loss of habitat through the contraction and drying out of lakes either 

through filling and draining for alternative land use, decreasing rainfall/drying climate and 

hydrological groundwater changes. Rakali are also susceptible to water quality degradation 

and predation by foxes and cats. Loss or reduction in size and quality of wetland areas 

would also affect the food resource for rakali, as they feed on large aquatic insects, fishes, 

crustaceans, mussels, frogs, lizards, water birds and tortoises etc (Olsen 2008; Woollard et 

al. 1978).  
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Figure 13.  Abundance of three mammal species at sites targeted for trapping Rakali.  The 

abundance of Rakali was highest at Lake Goolellal.   

 

Valentine et al. (2009b) found the mootit or bush rat were only located in wetland habitat. 

The northern SCP is approaching the northern limit of their distribution. Three other sub-

species are widespread in eastern and southern Australia and the species as a whole is 

considered common in abundance. On the northern SCP bush rats appear to prefer mesic 

environments providing dense understorey and ground cover. This appears consistent 

throughout all fauna studies that have been undertaken on the northern SCP.  Prior to the 

WAM 1977-78 survey there had only been one specimen collected on the northern SCP, 

from Yanchep in 1975. In the 1977-78 survey they were again only trapped near Loch 

McNess in Yanchep National Park. In 2007 Turpin trapped bush rats in thickets of 

wetland-associated Lepidoserma gladiatum in the coastal dune swales west of Yanchep 

National Park (pers. comm. to Brent Johnson, 2008). These results indicate a preference 

for near-coastal habitats. This area, along the linear coastal strip (Quindalup Dunes), is 

largely proposed for urban development and is not considered a long term viable fauna 

habitat. Threats to this species include habitat loss, fragmentation, predation and 

inappropriate fire regimes (Lunney 2008).  
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Southern brown bandiccot or quenda (Isoodon obesulus) were typically found in moist 

low-lying areas with dense mid-storey vegetation (Valentine et al. 2009b).  Similarly, 

studies at Whiteman Park have indicated that quenda are persisting in the dense mid-storey 

level heath associated with wetlands (Bamford and Bamford 1994).  When fox baiting was 

introduced at Whiteman Park, quenda both increased in number and began using upland 

areas as the threat of predation diminished (Bamford and Bamford 1994).  Valentine et al. 

(2009b) found quenda were only observed in high densities at Twin Swamps Nature 

Reserves which is both fenced and baited for protection of the critically endangered 

Western Swamp Tortoise. This information indicates that suppression of quenda 

populations is likely from fox predation in unbaited habitat.  In other parts of their range 

where baiting occurs, such as the jarrah forest on the Darling Scarp, quenda inhabit a 

variety of habitats including open woodland and upland areas.  It is thought Quenda may 

be favouring the dense wetland-associated vegetation habitat type to a greater extent 

because of the presence of foxes.  Hence, the persistence of quenda in unbaited areas on 

the GGS is strongly reliant on dense wetland-associated vegetation that is likely to 

decrease with increased fire frequency. 

 

Impact of fire on avifaunal communities (Davis 2009a) 

On the GGS bird density and species richness were highly variable across the 20 fire ages 

which ranged from one to 26 YSLF. There was no obviously discernable trend between 

fire age and bird density, with the highest bird densities occurring 9, 23 and 25 years post-

burn and the lowest bird densities 2, 10 and 18 years post-burn. Species richness was less 

variable and was also highest at 9, 23 and 25 years post-burn and lowest at 2, 6 and 10 

years post-burn. 

 

Most species did not show any clear trend in terms of occurrence in relation to fire age, 

although Splendid Fairy-wrens (Malurus splendens) were more frequently recorded in 

longer unburnt areas (Figure 14) and Yellow-rumped Thornbills (Acanthiza chrysorrhoa) 

were more commonly observed in more recently burnt areas (Figure 15). 
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Figure 14. Relative occurrence (number of surveys in which the species was recorded) for Splendid 

Fairy-wrens (Malurus splendens). 

 
Figure 15. Relative occurrence (number of surveys in which the species was recorded) for Yellow-

rumped Thornbills (Acanthiza chrysorrhoa). 

 

Studies have found that bird species richness is usually highest in long-term unburnt 

vegetation (15 years post-burn) but is also high for several years following a fire (Burbidge 

2003). Species diversity can also increase and be higher in burnt areas for up to 3 years 

post-burn (Christensen et al. 1985). Although these results were not clearly reflected in this 

study, the highest mean density and total species richness occurred at the longest unburnt 



Gnangara Sustainability Strategy – Biodiversity Report 

Impacts of Fire on Biodiversity 55 

sites (23 and 25 years post-fire). However, overall there was only a weak positive 

relationship between density, richness and time since fire.  

 

Although time since fire was not significantly related to changes in species richness or 

density these measures were strongly correlated with the floral richness of sites and it is 

likely that the primary impacts of fire are likely to be on the structure and composition of 

vegetation at sites and this will in turn affect avifauna. 

 

Impact of fire on food availability for Carnaby’s Cockatoo on 

the GGS (Valentine 2010) 

Carnaby’s Black-Cockatoo is an endangered species, with less than 50% of the original 

population remaining (Garnett and Crowley 2000). A major threatening process includes 

habitat fragmentation and the removal of critical feeding resources (Cale 2003). The GSS 

study area is an important foraging area during the non-breeding season for Carnaby’s 

Black-Cockatoo with both native Banksia woodlands and pine plantations recognised as 

important food resource (Perry 1948; Saunders 1974; 1980). Indeed, the GSS region has 

been identified by Birds Australia as one of Australia’s 314 Important Bird Areas (IBA), 

primarily due to the regions known significance for providing foraging habitat for 

Carnaby’s black-cockatoo (Dutson et al. 2009).   

 

Although Carnaby’s black-cockatoo traditionally forage upon mostly proteaceous plants, 

an expanding urban population and agricultural development has resulted in the removal of 

large sections of native vegetation.  There has been a major shift in dietary composition 

from a traditional diet of mostly native seeds and nectar to seeds of pine from plantations 

(Higgins 1999; Saunders 1980)).  The pine plantations in the GSS study area limit ground 

water recharge and will be harvested without replacement over the next 18 years 

(Government of Western Australia 2009b).  The expected clear fall without replacement 

will potentially lead to a shortage of food for Carnaby’s black-cockatoo (Cale 2003) 

(Garnett and Crowley 2000).  Of the native feeding records on the Swan Coastal Plain, 

Banksia species accounted for nearly 50%, with the majority of records from the slender 

Banksia, Banksia attenuata (Shah 2006).  This species, and the co-dominant Banksia 

menziesii are considered essential native food sources (Shah 2006).  
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Preliminary surveys of the food availability of banksias woodlands in remnant vegetation 

in the GSS indicated that food resources varied depending on a number of factors, 

including fire history (Valentine and Stock 2008).  Given that fire is a common occurrence 

within the GSS study area, and one of the main tools available to land managers, 

understanding the changes in food availability with time since fire is potentially important 

for conserving food resources for Carnaby’s black-cockatoo.  The responses of Banksia 

attenuata and B. menziesii to fire are still largely unknown.  This project measured a 

number of variables (including tree density, proportion of populations producing cones and 

the number of unopened cones per tree) of Banksia attenuata and B. menziesii in a range of 

Banksia woodland habitat varying in time since last fire (Valentine 2010).  This 

information was then combined with the field metabolic requirements of Carnaby’s black-

cockatoo and the energetic values of Banksia cones (using Cooper et al. 2002) to derive 

estimates of the maximum number of Carnaby’s black-cockatoos that could be supported 

by 1ha of habitat for 1 day (with the food resources of this habitat being depleted after this 

day, assuming that the return of the food sources will take one year).   

 

The 39 sites surveyed were spread throughout the GSS banksias woodlands in a range of 

time since fire habitat.  Sites were grouped into the following time since fire categories: 0-

5 YSLF (9 replicates), 6-10 YSLF (10 replicates), 11-19 YSLF (12 replicate), 20-29 YSLF 

(4 replicates) and ≥ 30 YSLF (4 replicates).  Due to the difficulty of finding older time-

since last fire sites, the number of replicates within each category varies.  In this report, we 

present some of the preliminary findings, for more detailed information refer to (Valentine 

2010). 

 

The density of B. attenuata was typically greater than that of B. menziesii in all sites 

however the density of both banksias did not vary significantly between fire-age 

categories, although there is a very slight tendency for higher density of plants in the 20-30 

YSLF (Figure 16).  The number of unopened cones per tree represents the standing crop of 

available food resources for Carnaby’s black-cockatoo, and varied among fire age 

categories depending on the Banksia species.  For B. attenuata there was a significant 

difference in the number of unopened cones per tree in different fire-age categories, with 

the highest number of unopened cones observed in the 6-10, 11-19 and 20-30 YSLF 

categories (Figure 17).  For B. menziesii the number of unopened cones per tree was low in 
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all of the fire-age categories, with the exception of the ≥ 30 YSLF fire-age category 

(Figure 17). 

 

 
Figure 16. Density (plants/ha ± 95%CI) of B. attenuata and B. menziesii among different time-since-

last fire categories.  No difference in density was detected. 

 

For B. attenuata there was a significant difference in the number of unopened cones per 

tree in different fire-age categories (Figure 17).  The highest number of cones is observed 

in the 6-10, 11-19 and 20-30 categories. For B. menziesii there was a significant difference 

in the number of cones per tree in different fire-age categories with the highest number of 

cones is observed in the ≥ 30 fire-age category (although this data is variable) (Figure 17). 
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Figure 17. The number (± 95%CI) of unopened cones per tree for B. attenuata and B. menziesii in 

different time-since-last-fire categories. 
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The proportion of B. attenuata trees containing unopened cones was greatest in the 6-10 

YSLF and 20-30 YSLF categories (note that at the 4 sites in the 20-30 category, all trees 

surveyed contained unopened cones (Figure 18). However, for B. menziesii there was no 

significant difference in the proportion of trees containing unopened cones.  The trend 

observed was for more trees in the ≥ 30 YSLF category to contain more unopened cones 

(Figure 18). 
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Figure 18. Proportion of trees containing unopened cones for B. attenuata and B. menziesii in different 

fire-age categories 

 

By combining the data collected on Banksia productivity with data on the metabolic 

requirements of Carnaby’s black-cockatoos (Cooper et al 2002), it is possible to estimate 

how many Carnaby’s black-cockatoos could be supported in one ha of different time-since-

fire habitat for one day.  The number of Carnaby’s black-cockatoos that could be supported 

varied between Banksia species and among the fire-age categories.  Significantly higher 

numbers of Carnaby’s black-cockatoo could be supported in the 6-10 YSLF, 11-19 YSLF 

and the 20-29 YSLF categories (Figure 19).  Only a few (< 50) Carnaby’s black-cockatoo 

could be supported in the youngest (0-5 YSLF) and the oldest (> 30 YSLF) fire-age 

categories.  For B. menziesii, all fire-age categories supported < 50 Carnaby’s black-

cockatoos, with the exception of the >30 YSLF category, which could support on average 

150 Carnaby’s black-cockatoos, although this was variable among replicates (Figure 19). 
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Figure 19. Number of Carnaby’s (± 95%CI) 1 ha of B. attenuata and B. menziesii could support for 

one day. 

 

By combining the two species, we can estimate the average number of Carnaby’s black-

cockatoos that are supported by both Banksia woodlands in the GSS in different fire-age 

categories (Figure 20).  The 0-5 YSLF category supports the lowest number of Carnaby’s 

black-cockatoos, with < 50 birds supported on average.  The 6-10 YSLF, 11-19 YSLF and 

> 30 YSLF support on average ~ 175 Carnaby’s black-cockatoos.  The highest number of 

Carnaby’s black-cockatoos that could be supported was observed in the 20-30 YSLF 

category, with an average of ~ 300 birds supported per ha (Figure 20).  These results 

indicate that fire management actions to conserve food resources for Carnaby’s black-

cockatoos should involve maintaining or increasing long-unburnt Banksia woodland 

habitat within the 20 -30 YSLF category.  In addition, to conserve future food resources for 

Carnaby’s black-cockatoos, fire management options should consider adequate protection 

of the current 11-19 YSLF Banksia habitat. 
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Figure 20. Total number of Carnaby’s 1 ha of Banksia woodland could support for one year. 

 

 

Fauna Attributes Summary: for development of ecological 

fire regimes  

Fire regimes can also be based on the vital attributes of vertebrate fauna (e.g. honey 

possum, quokka and quenda) (Burrows 2008). However, determining fire regimes based on 

the vital attributes of fauna is less clear due to factors such as mobility, predation and 

habitat availability which all affect the distribution of fauna species (Burrows 2008). There 

is also a need to gain data and information on fauna life histories and habitat requirements, 

timed fire responses, habitat requirements linked to post-fire habitat changes (e.g. litter, 

understorey structure, cover, resources-seeds) and the spatial habitat distribution of 

species. 

 

One useful approach is to categorise species responses in relationship to their changes in 

abundance over time following fire (Fox 1982; MacHunter et al. 2009; Whelan 2002).  

Species that peak in abundance at different fuel ages have been broadly categorised as 

early, mid or late successional species. More detailed response categories could include  

species that do not change in abundance after fire (Type 1), species that increase after fire 

by either moving into burnt areas or increasing in abundance (Type 2), species that exhibit 

an initial decline following fire and then increase to levels above pre-fire abundance (Type 

3), species that show a long-term decline or extinction following fire (Type 4) and species 
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that decline immediately post-fire and do not recover for very long periods (Type 5). Fire 

response curves can be assigned for species where information is available, and in some 

instances estimated relative abundances will be possible. 

 

Key Fire Response fauna species identified for the GGS are shown in Table 6.  They were 

based on conservation status and data on the relationships to successional ages and 

response curves obtained from GSS field studies(Swinburn et al. 2009; Valentine et al. 

2009b).  It should be noted that the preferred ages for fauna were based on a study where 

the site ages surveyed did not include between 11 and 16 years. Thus more precise or 

accurate ages could not be estimated (Table 6). 
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Table 6. Key Fire Response Fauna Species and some of the vital attributes used to select them including endemism, conservation status, and 

preferred fire age. 

  Species Common Name Endim.‡ Cons 
status† 

Preferred 
Fire Age∞ Meth.◊ Comments 

Invertebrates Synemon gratiosa  Graceful sun moth LE E unknown  Preference for Lomandra species; breed on grasses, 
sedges and rushes. Limited dispersal ability therefore 
lose food source after fire and become locally extinct. 
(DEWHA 2008) 

Amphibians Crinia insignifera sign-bearing froglet LE  >16 years 2 Driven primarily by proximity to water - but require 
population recovery time of about 5-7 years (Conroy 
2001; Driscoll and Roberts 1997) 

Pseudemydura umbrina Western swamp tortoise GSS CE, SI unknown   Populations restricted to Ellen Brook Nature Reserve 
and Twin Swamps Nature Reserve on the eastern 
boundary of the GSS (Burbidge and Kuchling 2004) 

Rankinia adelaidensis 
adelaidensis 

western heath dragon LE  <11 YSLB 1,3 Significant preference for Banksia woodland 

Aprasia repens sandplain worm lizard RE  >16 YSLB 3   

Delma concinna concinna west coast javelin lizard LE  <11 YSLB 2   

Demansia psammophis 
reticulata 

yellow-faced whip snake RE  >16 YSLB 2   

Lerista elegans west coast four-toed 
lerista 

WA  >16 YSLB 1, 3   

Menetia greyii common dwarf skink AUS  >16 YSLB 1*, 3  

Morethia obscura southern pale-flecked 
morethia 

AUS  >16 YSLB 1**  

Neelaps calonotos black-striped snake LE P3 >16 YSLB 2  

Pletholax gracilis gracilis keeled legless lizard LE  unknown    

Tiliqua occipitalis western bluetongue AUS  >16 YSLB 4  

Reptiles 

Tiliqua rugosa bobtail AUS  >16 YSLB 4   

Overall Reptile abundance     >16 YSLB 1**  
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  Species Common Name Endim.‡ Cons 
status† 

Preferred 
Fire Age∞ Meth.◊ Comments 

Calyptorhynchus latirostris Carnaby's Black 
Cockatoo 

RE E, S1 Long unburnt 
(20-30 YSLB) 

5 
(6) 

Rely on Banksia for food - so effects of fire on Banksia 
woodland will effect them (Valentine 2010) 

Acanthiza chrysorrhoa Yellow-rumped 
Thornbills  

AUS  Recently burnt 7 Species declining (Bleby et al. 2009b) 

Birds 

Malurus splendens Splendid Fairy-wrens AUS  Long unburnt  7 Nest placement in favoured plant, Xanthorrhoea 
preissii, increases with time since fire (Bleby et al. 
2009a), Species declining (Bleby et al. 2009b) 

Tarsipes rostratus Honey Possum RE  20-26 YSLB 1 Known to return to burnt areas 2-4 years after fire 
(Everaardt 2003).  

Isoodon obesulus Quenda or Bandicoot WA P5 unknown  Dense mid-storey level heath associated with wetlands. 
Increase in numbers where foxes are baited 

Hydromys chrysogaster Rakali or Water rat AUS P4 unknown  Reliant of permanent wetlands. 

Rattus fuscipes Bush rat AUS  unknown    

Mammals 

Mus musculus House mouse I  <7years 1**  

 
‡ Endemism within Australia (at the taxa level) for each species: GSS (restricted to GSS study area), LE (locally endemic to the Swan Coastal Plain), RE (regionally endemic 

to south-west Western Australia), WA (restricted to Western Australia), AUS (occurring within and outside Western Australia, and I (Introduced). 
† Conservation Status: CE – Critically Endangered on EPBC Act; E – Endangered on EPBC Act; V – Vulnerable on EPBC Act; S1 – Schedule 1 of WA Wildlife 

Conservation Act; P3 – Priority 3 fauna on DEC Priority List; P4 – Priority 4 fauna on DEC Priority List; P5 – Priority 5 fauna on DEC Priority List. 
∞ Fuel age in Years Since Last Burnt  

(Data for Valentine (2009b) sites cover fuel ages 3, 4, 6, 7, 10, 17, 22, 26, and 36YSLB grouped into Young (<11YSLB) and Old (>16YSLB) fuel ages) 
◊ Methodology: 

1. Preferred fire age derived from species abundance analyses (Valentine et al. 2009b). Significants indicated by ** (p < 0.01) and * (p < 0.05) 
2. Insufficient data for analysis however multiple captures in only one fire age (at least 2) (Valentine et al. 2009b) 
3. Preferred fire age derived from NMDS ordinations of reptile assemblages (Valentine et al. 2009b) 
4. Implied trend only from Cage and Elliot trap data (Valentine et al. 2009b) 
5. Information only (Davis 2009b) 
6. Preferable fuel age suggested through analysis of number of Carnaby’s Cockatoos that Banksia woodlands could support (Valentine 2010) 
7. Implied trend only from Davis (2009b) - data covers 26 years evenly  
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Habitat parameters and growth stages 

 

Another approach to determine fire regimes involves identification of habitat parameters 
associated with the different post fire stages of different vegetation types that are important 

for individual species (MacHunter et al. 2009; McElhinny et al. 2006). Habitat parameters 

(such as % cover of understorey, canopy, litter, open ground, coarse woody debris, trees – 

various diameters at breast height, shrub composition etc.) can be linked with post fire 

stages and estimated fauna fire response curves.  The Department of Sustainability & 

Environment (Victoria), is developing methods to use growth stages, in preference to age 

class distributions, and the known or predicted relationships between fauna and habitat 

growth stages (G. Friend pers. comm.).  The relationship with growth stages is likely to be 

more precise than the relationship with age classes as there is often variability in habitat 

factors within categories of age class (YSLF) due to factors such as season of burn, type of 

fire (wildfire, prescribed burn), and post fire recovery conditions such as rainfall.  The rate 

of recovery of vegetation and habitat parameters not time per se has been shown to be most 

important in the successional process for mammals (Fox and Monamy 2007; Monamy and 

Fox 2000). The aim of these approaches is thus to optimise these seral or growth stages so 

that species requirements are met and there is no loss of species due to absence of suitable 

seral or growth stages.   

 

Based on this fauna and habitat information it is possible to identify key fire response 

species i.e. species most likely to be affected by long or short intervals between fires. It 

would be beneficial to select species whose habitat requirements can clearly or logically be 

linked to habitat changes with post-fire vegetation succession (Burrows 2008; MacHunter 

et al. 2009). 

 

Spatial components of fire regimes for fauna should also be incorporated.  This is 

particularly important with regards to factors such as patch size, connectivity between 

patches and the home ranges and dispersal capabilities of taxa.   
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Impact of fire on wetlands on GGS 

Wetland soils and sediments are becoming more vulnerable to fire on the Swan Coastal 

Plain due to summer drying of surface sediments, which is affected by recent changes in 

climate, declining rainfall, increased use of groundwater by an increasing urban 

population, clearing of bushland, silviculture and horticulture, urban development (Horwitz 

et al. 2003; Horwitz and Smith 2005; Horwitz and Sommer 2005).  Wetlands exposed to 

fire can result in the loss of organic matter and other chemical and physical changes 

(Horwitz and Sommer 2005). Semeniuk and Semeniuk (2005)consider that along with the 

hydrology of a wetland, the potential for soils and sediments to combust is related to 

annual fluctuations in the water table, the longer term climatic patterns and the distribution 

of flammable material within a wetland. 

 
Comparatively little has been published on the effects of fires on wetlands, aquatic biota 

and water quality per se. Many plants and animals found in wetlands either require fire as 

part of their life history strategy, or can avoid, behaviourally or phyiologically, the effects 

of fire. Other wetland biota cannot survive the direct effects of fire, and that such species 

are likely to be found in permanently wetter parts of the landscape where they have been 

able to evade fires over long periods of time (in ‘refuges’) (Horwitz et al. 2003; Horwitz et 

al. 2009).  

 

The potential consequences of fire on wetlands and water quality have been categorised in 

terms of interrelated effects and all have trophic consequences, particularly when 

considered together with the direct effects of the fire on wetland biota  (Horwitz and 

Sommer 2005; Horwitz et al. 2009).  

• Catchment effects due to runoff and deposition, can result in short-term changes such as 

increased base cations, alkalinity, nutrient, sediments, and groundwater recharge. 

• Atmospheric effects mostly short term, include rain of dissolved volatilised reactive and 

particulate compounds that have mild acidifying and/or fertilising effect. 

• Rehydration of burnt or overheated (organic) soils a) alkaline consequences where ash 

can fertilise and increase productivity in the short term, or b)acidic consequences where 

acid sulfate soils are oxidized producing acidification. 

• Fire suppression activities have different effects depending on the particular method. 
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• Water movement (taking water from or dumping it into a wetland) can inappropriately 

translocate species, disturb acid sulfate soils. 

 

Increased frequency of controlled burns as proposed to enhance water yield on the GGS 

(Canci 2005; Yesertener 2007) must be evaluated in terms of the likely consequences for 

wetland ecology. For instance, there may also be a loss of heterogeneity in vegetation as 

species that are intolerant of frequent fire are gradually lost and age class structures change 

to reflect predominately early post-fire regeneration stages. This may drive the system to 

become more grassy and flammable. Burning around wetlands more often may increase 

the likelihood of fire entering wetland sediments, particularly if they are in a relatively dry 

state.  

 

Wetland biodiversity: flora and fauna on GGS 

 

A range of wetland biodiversity is likely to be significantly impacted by inappropriate fire 

regimes.  Vegetation at risk includes major complexes 1. Typha-Baumea, 2. Melaleuca 

rhaphiophylla, 3. Melaleuca preissiana, 4. Melaleuca viminea, 5. Eucalyptus rudis, 6. 

Juncus kraussi, 7. Lepidosperma longitudinale, 8. Casuarina obesa (Horwitz et al. 2009). 

Seven threatened ecological communities in the GSS study area that are considered to be 

wetland communities are also at risk, including: 

• Banskia attenuata woodland over species-rich dense shrubland (community type 

20a as described by (Gibson et al. 1994a) 

• Aquatic root mat community of caves of Swan Coastal Plain (Yanchep Caves) 

• Communities of tumulus springs (organic mound springs, Swan Coastal Plain) 

• Woodlands over sedgelands in Holocene dune swales of the southern Swan Coastal 

Plain (community type 19b as described by (Gibson et al. 1994a) 

• Herb rich saline shrublands in clay pans (community type 7 as described by Gibson 

et al. 1994) 

• Forests and woodlands of deep seasonal wetlands of Swan Coastal Plain 

(community type 15 as described by Gibson et al. 1994) 

• Perth to Gingin Ironstone Association (Northern Ironstones). 
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Aquatic invertebrates are at high risk from fire impacts.  Studies of aquatic invertebrate 

taxa recorded from wetlands on the Gnangara groundwater system (Horwitz et al. 2009) 

has revealed a surprisingly high richness considering the comparatively small survey area 

and the degree of anthropogenic alteration of the plain. Rare and endemic invertebrate taxa 

are generally associated with rare wetland types such as cave streams and mound springs 

which provide a unique wetland environment with characteristic stygofaunal assemblages 

distinguishable from the unconfined aquifer (Sommer et al. 2008).  

 

(Horwitz et al. 2009) identified high priority wetlands with ‘significant’ invertebrate fauna 

(in terms of aquatic invertebrate richness, endemism and/or rarity) (see Table 7).  They 

include: 

• aquatic habitats in cave systems in karstic areas around Yanchep 

• permanent deeper surface waters in northern linear chain wetlands of the Spearwood 

interdunal system 

• tumulus springs (organic mound springs) in the Ellen Brook region of the eastern 

Gnangara groundwater system 

• surface waters in the Ellen Brook region of the eastern Gnangara groundwater system 

• habitat complexes in large shallow wetland systems on the interface between Bassendean 

dune and Pinjarra Plain systems. 
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Table 7.  High priority wetlands on the Gnangara groundwater system in terms of richness, endemism 

or rarity criteria for aquatic invertebrate records . Wetlands are ordered from north to south. (adapted 

from Horwitz  et al. in press).  

High priority 
wetland 

Richness1  Endemism2 Rarity 3 Wetland habitat descriptors 

Yanchep Caves  LE X Underground karstic stream, root mat 
fauna 

Loch McNess X RE  Permanent lake, spring, karstic 
system, diverse littoral vegetation 
communities, low conductivity, low 
colour and low turbidity 

Lake Yonderup X   Permanent lake, karstic system, 
unconsolidated and consolidated 
organic soils, low conductivity, low 
colour and low turbidity 

Lake Nowergup X   Deep, permanent lake, Spearwood 
sands, diverse littoral vegetation 
communities, unconsolidated and 
consolidated organic sediment, low 
conductivity, low colour and low 
turbidity 

Lake Jandabup X RE  Semi permanent, weakly-coloured 
water, a mix of diatomaceous-organic 
sediment and leached Bassendean 
dune sands, relatively shallow, with a 
variable drying regime but mostly 
with complex littoral vegetation 
communities that are seasonally 
inundated 

Twin Swamps X RE X Discrete bodies of shallow seasonal 
surface water influenced by both the 
clays of the Pinjarra Plains 
(Guildford) and sands of the 
Bassendean dunes, with associated 
complex littoral vegetation 
communities and darkly stained water 

Muchea/Peter’s Spring, 
Kings Spring, 
Bullsbrook Channel, 
Edgerton Spring, 
Edgecombe Lake, 
Nursery Dam 

 LE, RE X Mound spring, or small (created) 
depression fed by spring 

Ellenbrook Nature 
Reserve 

 RE X Shallow seasonal clay-based wetland 
fed by surface run-off on Pinjarra 
Plain, with littoral vegetation 

1 Richness – more than 100 species and/or 65 Families shown with ‘X’ 
2 Endemism – wetlands with known local endemic species (LE; restricted to the Swan Coastal Plain 

bioregion) or with greater than 20% regional endemics (RE; restricted to the South-west Australian 
Floristic Region) 

3 Rarity – wetlands with more than 25% rare taxa shown with ‘X’ 
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A range of vertebrate fauna that occur in wetland habitats are at risk from inappropriate 

fire regimes.  The water rat, or rakali, (Hydromys chrysogaster), requires permanent water 

for at least part of the year, dispersing to seasonal wetlands when conditions are suitable 

(Froend et al. 2004). Bamford and Bamford (2003) regarded wetlands and their margins to 

be a significantly productive habitat for the chuditch (Dasyuris geoffroii). They also 

referred to the preference of the southern brown bandicoot, or quenda, (Isoodon obesulus) 

for denser vegetation and association with wetland habitats. The quenda and rakali are both 

listed as Priority 4 species by the Department of Environment and Conservation. 

 

Storey et al. (1993) recorded 79 species of waterbirds on the Swan Coastal Plain.  A list of 

172 bird species (including about 15% land birds or vagrants) that have been observed or 

that are expected to make regular use of the area encompassed by the Gnangara 

groundwater system has been compiled by Bamford and Bamford (2003).  

 

Five reptile species are associated with dense vegetation and seasonally damp soils 

around wetlands (Bamford and Bamford 2003). The western swamp tortoise 

(Pseudemydura umbrina) in particular is threatened by inappropriate fire regimes.   It is 

listed nationally under the EPBC Act 1999 as critically endangered and in Western 

Australia is listed under the Wildlife Conservation Act 1950 as rare or likely to become 

extinct. Internationally, the western swamp tortoise is listed as critically endangered on the 

2008 IUCN Red list of threatened species as well as being listed under Family Chelidae of 

the Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES) (Burbidge and Kuchling 2007). Only one viable population survives at Ellen 

Brook Nature Reserve with two other locations, Twin Swamps and Mogumber Reserve 

populations being maintained with translocated individuals (Burbidge and Kuchling 2007). 

 

Because of their biology, frogs are likely to be sensitive to changes in landscape hydrology 

and the impacts of fire on wetlands.  In 2009 field studies based on aural surveys of calling 

males were undertaken by the GSS at  sixty-two sites at the main wetland types in the 

GGS: lakes (n=11), palusplains (n=14), sumplands (n=33) and watercourses (n=4)  

(Bamford and Huang 2009). Of the 13 frog species known from the area, nine species were 

recorded: Crinia georgiana, Crinia glauerti, Crinia insignifera, Heleioporus eyrei, 

Limnodynastes dorsalis, Litoria adelaidensis, Litoria moorei, Myobatrachus gouldii, and 

Pseudophryne guentheri. Two species sensitive to hydrological change (C. glauerti and 
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C. insignifera) were considered likely to decline rapidly due to reliance on small, shallow 

wetlands and near-annual recruitment (Bamford and Huang 2009; Huang 2009).   One 

species (P. guentheri) was assessed as very sensitive to hydrological change due to a 

specific and inflexible breeding biology that relies on early winter rains and very shallow 

wetlands  

 

Resilience 

Disturbances such as fire disrupt community structure by changing, temporarily or 

permanently, factors such as the availability of substrates and resources.  They also alter 

the physical environment, including factors such as temperature and climate.  There has 

been a focus on how communities exhibit resistance and resilience to disturbances, and 

their capacity for restoration (Scheffer et al. 2001; Walker et al. 2002).  The ability of the 

biotic components of an ecosystem to withstand disturbances depends on the resilience and 

resistance of the system.  Resistance can be defined as the capacity of the system to 

withstand change in structure and function.  Resilience represents the capacity of a system 

damaged by disturbance to restore structure and function once the disturbance is removed 

(Carpenter et al. 2001; Peterson et al. 1998). The process involves the degree, manner and 

pace of restoration with some systems possessing the capacity to return to their prior state 

(Westman 1986).   

 

While ecological phenomena normally vary within bounded ranges, rapid, nonlinear 

changes can be triggered by even small differences if threshold values are exceeded. It is 

important to understand and anticipate nonlinear responses and ecological thresholds 

because the outcomes of classical models commonly described in the literature, such as 

‘Clementsian’ succession, may differ significantly for these situations. Models to describe 

such changes have been developed and are described as state-transition models. The main 

features of these models are the identification of alternative ‘states’ of the systems 

(vegetation complexes) that remain the same or change slowly, and a set of ‘ transitions’ 

that can occur between states. In addition, certain ‘ thresholds’ of environmental factors are 

essential for the states. If an ecosystem which has degraded has not crossed certain 

thresholds, transition back to the original state is possible; but if it has crossed certain 
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thresholds, transition back to the original state will not occur without management 

intervention. 

 

In this project we do not have an understanding of the resilience and resistance of 

communities in the Gnangara groundwater system to disturbances such as inappropriate 

fire regimes.  For example how resilient would vegetation and fauna communities and 

species be if a fire interval of < 6 years was implemented on the GGS for an extensive 

period of time.  Further what level of fire frequency or intervals would approach or pass an 

ecological ‘threshold’ on the GGS that would degrade the system thus leading to loss of 

function or structure.   

 

Measuring resilience is however difficult because it entails measuring the ability of the 

ecosystem to have disturbance and change without loss of function or structure.  State and 

transition models are considered likely to improve our understanding of the groundwater-

dependent vegetation communities of the Gnangara groundwater system mound (Pettit et 

al. 2007) and, subsequently adaptive management for these communities. The Gnangara 

ecohydrological study (Sommer and Froend 2009) is currently investigating models and 

applications for groundwater-dependent vegetation communities.  This work may provide 

the basis for developing similar models for the potential for degradation or non linear 

transition states in relationship to fire regimes. 

 

Interaction of fire impacts with other threats on GGS 

Climate change and fire regimes  

Wildfire is a global issue, and the key factors involved – climate/weather, fuels, ignition 

agents and people – will continue to change as they respond to global changes in climate 

(Flannigan et al. 2009). Climatic changes, in terms of increased temperatures, declining 

rainfall and longer drought periods, are expected to interact with fire primarily though an 

increase in fire-weather risk, with the number of very high or extreme fire danger days 

projected to increase significantly in the next 100 years (Flannigan et al. 2009; Hennessy et 

al. 2007). Predictions are that climate change will foster a general increase in area burned 

and fire occurrence (however there will be some areas with no change and some areas with 

decreases) and longer fire seasons for temperate and boreal regions. Changes in fire 
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intensity and severity in the future are difficult to predict and this area needs further 

research. Overall, it is expected that global fire activity will continue to increase as a 

consequence of climate change (Flannigan et al. 2009). 

 

In Australia climate change may lead to complications of future fire management and 

prescribed burning. A report by CSIRO predicted that if the average summer temperature 

increases in south-eastern Australia, the frequency of very high and extreme fire danger 

days will increase by 4-25% by 2020 and by 15-70% by 2050 (Hennessy et al. 2007). 

Changes such as these are likely to be greatest in areas such as savannas that are the most 

fire-prone biomes. Many flora and fauna species in these ecosystems will be vulnerable to 

extensive and frequent fires, especially fauna that have small home ranges and are 

relatively immobile and longer-lived obligate seeder flora species (Yates et al. 2008). Ideal 

conditions/seasons for prescribed burning may also become restricted due to weather 

conditions that pose higher wildfire risk in spring and autumn (Hennessy et al. 2007). 

 

More frequent, high intensity, large scale fires, as a result of climate change, will have 

implications for the biodiversity of the GSS study area. Firstly, the Banksia woodland of 

the GSS study area are generally adapted to fire (Enright et al. 1998). In one GSS study 

area species, Banksia prionotes, adults are killed by fire, but fire stimulates seeds to 

germinate. This type of life history strategy is thought to be particularly vulnerable to 

frequent, widespread fire events, as seed regeneration may be insufficient to replace adults 

lost in the fire if the canopy seed bank has not had sufficient time to recover from previous 

fire (Wooller et al. 2002). Wooller et al. (2002) go on to suggest this will be particularly 

true when fires are widespread, since Banksias have limited dispersal potential. In the GSS 

study area, there are several species that are not killed by fire, but instead resprout from the 

original plant, such as B. attenuata, B. grandis, B. ilicifolia, B. littoralis, B. menziesii 

(Enright et al. 1998). In these species adult trees can sometimes survive low to medium 

intensity fire due to their thick bark, and regenerate from lignotubers, which resprout 

following fire.  Enright et al. (1998) suggest that too frequent fires can still result in the 

local extinction of these species that resprout, but at a much slower rate than species where 

adults are killed by fire. If climate change conditions increase the frequency of fires, 

regenerating species, such as B. prionotes, are likely to be most at risk of decline. 

However, if fires become extremely frequent and/or the intensity of fires occurring is 

severe, other species, such as resprouters, will be unlikely to recover.  
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A number of studies also indicate that frequent, widespread, and/or severe fires will impact 

on priority fauna in the GSS study area. For example, following a major summer fire in 

1985, which was followed by a series of other minor fires, the population size of a number 

of bird species, including the splendid fairy wren (Malurus splendens), western thornbill 

(Acanthiza inornata) and scarlet robin (Petroica multicolor) declined (Brooker 1998). 

Population declines were observed for eight years after fire and resulted in temporary 

cessation of breeding in western thornbills (Acanthiza inornata) and increased nest 

predation and parasitism in splendid fairy wrens (Malurus splendens). Capture rates of the 

honey possum (Tarsipes rostratus) also decline markedly after fire, typically remaining 

low for more than five years post fire, with maximum abundances recorded 20-30 years 

post-fire (Everaardt 2003).  

 

Fire and Predators 

Predation of native mammals by foxes is considered to be the main factor currently 

contributing to the decline and local extinction of mammal species on the Swan Coastal 

Plain (Johnson and Isaac 2009; Kitchener et al. 1978; Reaveley 2009).   

 

Although foxes have been recorded regularly in fauna surveys on the northern Swan 

Coastal Plain (Kitchener et al. 1978; Valentine et al. 2009b) and observed by DEC Swan 

Coastal District staff (Reaveley et al. 2009) as yet, there is no coordinated baiting program 

within the GSS study area except for Whiteman Park where a fox control program has 

been carried out since 1990.    

 

 Introduced predators affect species through direct predation, which can keep prey in a 

‘predator pit’ of low abundance (Pech et al. 1992), in which either the predation alone may 

cause extinction (over-harvesting), or other causes and interactions exacerbate the predation 

effect.  Direct predation may also lead to changes in the habitat use of prey species, so that 

species become confined to refugia where the availability of dense vegetation and food 

provide some degree of protection and resilience (Kinnear et al. 1988). These areas are not 

necessarily typical of a species’ habitat requirements but provide protection from predators. 

For example, in the GSS study area Isoodon obesulus (quenda) is restricted to dense wetland-

associated vegetation, although it occupies upland habitat in areas where predators have been 
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suppressed (Bamford and Bamford 1994; Valentine et al. 2009b).  Populations of quenda and 

Macropus irma (brush wallaby) within Whiteman Park have both increased in number since 

fox baiting commenced (C Rafferty pers.com. 2009). 

 

Inappropriate fire regimes are likely to increase the impacts of fox predation on the GGS as a 

result of the removal of dense wetland-associated vegetation which currently provides some 

degree of protection and resilience to species where fox baiting is currently not in place. 

 

Weeds and fire  

The interaction of pest plants with fire and their effect on fire regimes, particularly fire 

intensity and frequency, has been the subject of considerable study (Brooks et al. 2004; 

D'Antonio 2000; D'Antonio and Vitousek 1992). Pest plants affect fire regimes by 

invading an area and substantially modifying vegetation structure and composition, which 

can affect the intensity and/or frequency of a fire (Levine et al. 2003). For example, the 

grass–fire cycle occurs when an introduced grass species invades a shrubby habitat, alters 

the vegetation structure and creates a continuous fuel bed that can lead to an increase in 

fire frequency, and subsequently result in the conversion of shrublands to grasslands 

(D'Antonio and Vitousek 1992). In addition, introduced grass species may increase fuel 

loads and may contain more combustible elements than native species. These two factors 

subsequently alter fire intensity (Grice 2004; Levine et al. 2003). 

 

Invasion of post-fire vegetation by herbaceous pest plants has been identified as a threat to 

the conservation of south-west Western Australian Proteaceae species (Lamont et al. 

1995). Intense fire can open areas of vegetation and create a rich ash bed, allowing 

invasive pest plants with competitive advantages to rapidly establish with, or instead of, 

native vegetation. Fragmented and remnant areas of native vegetation are particularly 

susceptible to pest plant invasion following fire, often leading to a loss in native 

vegetation. Milburg and Lamont (1995) documented the invasion of remnant sclerophyll 

woodland vegetation by exotic species after fire and found that the number of pest plant 

species, as well as their frequency and cover, increased after fire, whilst the abundance of 

native species decreased. The most abundant pest plant species are perennial grasses 

Eragrostis curvula and Ehrharta calycina. It has been suggested that their abundance 
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increases the susceptibility to fire of the vegetation community, since grasses are normally 

an insignificant component of sclerophyll vegetation (Milberg and Lamont 1995). 

 

On the GGS the invasion of weeds is a major concern following the removal of pine 

plantations and the implementation of 9000 hectares of ecological linkages, as 

recommended under the GSS (Government of Western Australia 2009a).  Thirty species 

have been identified as high priorities for management (Keighery and Bettink 2008) and 

these have been prioritised for their invasiveness, actual and potential distribution, trends, 

classification or rating and ecological impacts.  All of the species satisfy one or more 

ecological impact attribute criteria, based on Platt et al. (2005). These criteria range from 

altered fire regimes, altered nutrient conditions and altered hydrological patterns, to loss of 

biodiversity and allelopathic effects.   Taxa such as veldt grass Ehrharta calycina are 

already present in major sites of infestation in post- pine areas.  These weeds may have 

major implications for the implementation of ecological fire regimes in the future. 

 

Interaction of fire and impact of Phytophthora cinnamomi 

on flora and fauna  

Phytophthora cinnamomi is listed as one of the world’s 100 most devastating invading 

species by the IUCN Species Survival Commission (Cahill  et al. 2008). The plant 

pathogen has been shown to alter plant species abundance and richness, as well as the 

structure of vegetation in sclerophyllous vegetation throughout Australia (McDougall et al. 

2002; Podger and Brown 1989; Shearer et al. 2007a; Weste 1974; Weste et al. 2002). The 

lethal epidemic of Phytophthora ‘dieback’ has been identified as a ‘key threatening 

process’ in the Australian environment (Environment Australia 2009; O'Gara et al. 2005). 

P. cinnamomi is widely distributed in Banksia woodlands of the Swan Coastal Plain 

(Podger 1968; Shearer 1994).  Common species such as Banksia attenuata and B. grandis 

reach 50% mortality in 7 to 12 years, whereas mortality rates for declared rare flora were 

much more rapid, with local extinction of most of the assessed declared rare flora 

occurring in < 3 years (Shearer et al. 2007).  P. cinnamomi infestation also caused 

significant changes in ground and canopy cover in woodlands where the ground cover 

(40%) in old infested areas was reduced compared with adjoining healthy vegetation (68%) 
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and canopy cover was reduced from 48% in healthy to 25% in old diseased areas (Shearer 

et al. 2007). 

 

The first evidence of P. cinnamomi infestation in the GSS study area was observed in 

Banksia woodlands from aerial photographs taken in the 1940s, and more than 50% of the 

area had been destroyed 35 years later.   

 

Analyses of the occurrence and distribution of the pathogen on the study area in 2009 

established that 20,747 ha (10 %) of the area is infested with P. cinnamomi and that the 

pathogen occurs across all land uses, ranging from small urban remnants to large areas in 

the conservation estate (Wilson et al. 2009). Ninety-four percent of the infested area is on 

the Bassendean Dune system with only minor areas on the Spearwood system and Pinjarra 

Plain.  Remote sensing using Landsat data, capable of distinguishing P. cinnamomi 

affected areas, was employed to assess impacts on vegetation cover with time using 

vegetation trend analysis.   

 

Information on the susceptibility of plant species to P. cinnamomi was available for only 

240 of the 1337 species that are known to occur in the GSS study area, and 53% of these 

species have been recorded as displaying a level of susceptibility to the pathogen, or to the 

indirect effects it has on plant communities (Wilson et al. 2009). Eight of the ten 

threatened ecological communities located in the GSS study area were identified as having 

species susceptible to P. cinnamomi. Four were ranked as high risk, one at moderate risk, 

and five as low risk of P. cinnamomi impacts. Results of field assessments of the impacts 

of P. cinnamomi on flora and fauna found that plant species richness and canopy cover are 

lower in infested sites compared to uninfested habitats, and that bird species richness is 

lower in infested habitats (Davis 2009a; Swinburn et al. 2009).  

 

Severe alterations to understorey species composition, overstorey canopy structure and 

fauna are likely to significantly impact on the vegetation community’s capacity to recover 

or undergo secondary succession. The implications for fire regime impacts on these 

damaged communities on the GGS are unclear.  Fire has been shown to influence survival 

and dispersal of P. cinnamomi  on the south coast WA (Moore 2005).   The occurrence of 

fire also compounded the pressure on post-fire establishment of some species (Moore 

2005).  
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Refugia for increasing adaptive capacity and resilience 

For many declining and priority species and communities on the GGS that are threatened 

by inappropriate fire regimes, access to suitable refugia may be necessary for their 

survival.  Providing key refuge sites can buffer species from the impacts of fire regimes. 

This approach has also been identified as being essential as climate change progresses 

(Isaac et al. 2008).  Generally there is a need to obtain a greater understanding of the 

microhabitat buffering potential of natural refuges and such information is lacking for most 

GSS species and communities. However species and communities for which refugia do 

now or may play a critical role in their survival include: 

Western Swamp Tortoise 

Only one viable natural population survives at Ellen Brook Nature Reserve with two other 

locations, Twin Swamps and Mogumber Reserve populations being maintained with 

translocated individuals (Burbidge and Kuchling 2007).  The reserves are critical refugia 

for this species and are highly managed -they are fenced and subject to predator control 

and fire control. 

 

A key factor affecting the survival of adult tortoises is finding suitable aestivation sites 

during the summer.  Natural aestivation sites vary from site to site, from naturally 

occurring holes in clay, to sites under leaf litter or in fallen logs. Mortalities occur during 

the aestivation period from fox predation, raven attacks, rat attacks and desiccation and fire 

(Burbidge et al. 2008).  Research suggests mortalities are lowest in tortoises aestivating in 

underground aestivation sites, both in terms of a refuge from predators and from heat and 

drying. Preliminary studies of the use of artificial aestivating tunnels, installed to promote 

underground aestivation, suggest that these can protect tortoises at least from fire, and 

probably also from heat and predators.   

 

Southern Brown bandiccot (Isoodon obesulus) Quenda  

On the GGS Southern Brown bandiccot (Isoodon obesulus) or Quenda were typically 

found in moist low-lying areas with dense mid-storey vegetation (Valentine et al. 2009b).  

Similarly, studies at Whiteman Park have indicated that quenda are persisting in the dense 

mid-storey level heath associated with wetlands (Bamford and Bamford 1994).  Indeed, 
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when fox baiting was introduced at Whiteman Park, quenda both increased in number and 

began using upland areas as the threat of predation diminished (Bamford and Bamford 

1994).  In our study (Valentine et al. 2009b), quenda were only observed in high densities 

at Twin Swamps Nature Reserves which is both fenced and baited for protection of the 

Critically endangered Western Swamp Tortoise. This information indicates that 

suppression of quenda populations is likely from fox predation in unbaited habitat.  In 

other parts of their range where baiting occurs, such as the jarrah forest on the Darling 

Scarp, quenda inhabit a variety of habitats including open woodland and upland areas.  It is 

considered that quenda may be favouring the dense wetland-associated vegetation habitat 

type to a greater extent because of the presence of foxes.  Hence, the persistence of quenda 

in unbaited areas in the GSS study area is strongly reliant on dense wetland-associated 

vegetation.  It is recommended that sites known to be important for quenda are protected as 

designated refugia from further loss or modification and frequent fire. Wetland sites are 

likely to be particularly high quality sites which will offer protection. 

 

Honey Possum 

Honey possums (Tarsipes rostratus) were more abundant in older sites, with peaks in 

relative abundance at sites 20 – 26 YSLF (Figure X.3; Valentine et al. 2009b). Although 

honey possums are known to return to burnt areas within 2 – 4 years since fire (Bamford 

1986; Everaardt 2003; Richardson and Wooller 1991), higher densities are typically 

recorded in older vegetation, with peaks in abundance in vegetation 20 – 30 years since last 

burnt (Bradshaw et al. 2007; Everaardt 2003). Our results were very similar, with low 

abundance in recently burnt sites (< 7 YSLF), followed by an increase in abundance as 

time since fire increased (Valentine et al. 2009b). Honey possums are dependent on nectar 

and pollen, particularly from plants of the Proteaceae, Myrtaceae and Epacridaceae 

families (Wooller et al. 1984). Capture rates of honey possums are closely linked to food 

sources (Bradshaw et al. 2007) and have been correlated with the densities of flowers and 

the flowering periods of Banksias (Everaardt 2003). Hence, the impact of fire on honey 

possums will be related to the post-fire responses of target food species (Bradshaw et al. 

2007).  Based on this information burning regimes need to ensure retention of long-unburnt 

vegetation for this species.  Fire management guidelines for honey possums have been 

developed by DEC Fire Management Services (Fire Management Guidelines No S2, 

2008).  It is recommended that honey possum distribution maps (where available) be 
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consulted and that prescribed fire should concentrate on frequency, the intervals between 

successive fires and scale as important factors for the species.  They should aim to produce 

a mosaic of recently burnt and long unburnt vegetation and limit mortality of mature age 

food plants.  It is recommended that sites known to be important for honey possum 

distribution and habitat on the GGS are protected as designated refugia from further loss or 

modification and frequent fire.  

 

Development of ecological burning regimes for GGS 

Development of fire regimes that are optimal for biodiversity conservation is one of the 

major challenges in current fire management throughout Australia.  The aim is to 

determine fire regimes that are appropriate for the vegetation type and fire sensitive taxa. 

The fire interval for each vegetation type and for fauna habitats needs to be determined by 

the needs of the flora and fauna at risk from extinction from too frequent or too infrequent 

burning.  To determine appropriate fire intervals, life attribute data is required for species 

within different vegetation types.   

 

Development of “Guidelines for ecological burning regimes for the GGS” has been based 

on this current report summarizing the known impacts of fire on biodiversity, vital 

attributes and key fire response species, and incorporating information on spatial fire 

history analysis (Wilson et al. 2010). The report also incorporated a number of specific 

ecological management objectives identified and developed recently (Gnangara 

Sustainability Fire Workshop 2010). The objectives identified were: 

• Develop age-class distribution (percentage of ideal) for vegetation communities 

and spatial mosaic 

• Increase areas of long unburnt for vegetation and fauna communities 

• Maintain refugia for significant species and wetlands 

• Monitor age classes, refugia, flora and fauna  

• Adopt an adaptive management approach 
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Discussion 

Impacts on biodiversity   

Although fire is a major disturbance regime of the GSS study area, and the impact of 

inappropriate fire regimes has been identified as a significant threat to biodiversity 

conservation (DEC 2009), our understanding of the impacts on biodiversity on the area are 

limited.  The Draft Gnangara Sustainability Strategy recommended that the optimum fire 

regime that will maximise groundwater recharge, while maintaining biodiversity values, be 

implemented (Government of Western Australia 2009a).   

 

The aims of this report were thus to review previous information on the role of fire in 

ecological communities and the responses of biodiversity to fire on the Gnangara 

groundwater system,  and to review the results of the recent fire projects carried out by 

DEC GSS between July 2007 and June 2010.  This information would provide the 

foundation to determine the optimal fire regimes that will maintain biodiversity values and 

that are appropriate for vegetation type and fire sensitive taxa. The fire interval for each 

vegetation type and for fauna habitats needs to be determined by the needs of the flora and 

fauna at risk from extinction from too frequent or too infrequent burning.   

 

Up until recently the information on the impacts of fire on biodiversity on the Gnangara 

groundwater system has been largely limited to studies on declared rare flora and 

threatened ecological communities, and on fauna in urban fragments.  There have been few 

studies of the impacts of fire on frogs, reptiles and mammals (Bamford and Roberts 2003).   

The DEC GSS projects (2007-2020) included field studies to examine patterns of floristic 

diversity between sites with different fire ages,  and to assess post-fire juvenile period of 

plants (Mickle et al. 2010b).   Field studies to examine the response to time since fire by 

reptile, bird and mammal fauna (Davis 2009a; Valentine et al. 2009b) and  food availability 

from B. attenuata and B. menziesii for Carnaby’s Cockatoo in relationship to fire regime were 

also undertaken (Valentine et al. 2009b).   A major aim of these studies was to determine the 

optimal fire regime for species and communities on the GGS.  Knowledge of fire responses 

and sensitive species is vital to implement ecologically based fire regimes to conserve 

biodiversity.  
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Development of ecological fire regimes has commonly been based on plants as they are the 

first trophic level of terrestrial ecosystems (Burrows 2008).  Vital attributes such as 

regeneration requirements, post-fire regeneration strategies, and juvenile periods are useful 

criteria to determine minimum and maximum intervals between lethal fires to conserve 

plant diversity (Burrows et al. 2008).  The plant vital attributes and criteria used to select 

key fire response species for the GGS included juvenile period (greater than 48 months), 

regeneration strategy (any species 100% killed by fire relying on seed for reproduction), 

conservation status (DRF), endemism (GSS endemic), lifeform (from grasses to tall trees), 

and longevity (annuals and perennials). A total of 184 species were selected and ranked by 

importance, and twenty nine of these were identified as the key fire response species.  The 

key plant species identified included the dominant Banksia menziesii and Banksia 

attenuata whose post-fire juvenile period on the GGS was estimated at 8 YSLF.   Burrows 

et al. (2008) defined the juvenile period as the time for at least 50% of a population of 

plants to have flowered following fire. As the first seed set will not necessarily be 

sufficient to maintain a species’ abundance (Friend et al. 1999), Burrows et al. (2008) 

suggested that the minimum fire interval be twice that of the juvenile period of the longest 

maturing plant species.  Arising from the information and data collected on juvenile period 

and post-fire regeneration strategies on the GGS a minimum fire interval of 8-16 years is 

recommended for Banksia woodlands and Melaleuca.  This is based on twice the 

maximum juvenile period of 4 to 5 years for key flora species relying on seed storage for 

reproduction and a maximum juvenile period of 8 years for resprouting species (including 

the dominant Banksia species, see Table 3).  A maximum interval of 40 years was 

recommended and is a conservative estimate based on the work of Enright et al. (1998) 

regarding the maximum age of Banksia species.  These recommendations are also 

supported by information on the peak rate of increase for Banksia attenuata populations 

which occurred for fire frequencies of 7- 20 years, with a maximum rate of increase at 13 

years for completely serotinuos populations (Enright et al. 1998).  Further at very short 

(< 5 years) and very long (> 45 years) fire intervals populations are predicted to decline to 

extinction and degree of serotiny is irrelevant.  

 

A number of adaptive management projects have been undertaken by the DEC Swan 

Coastal District that have examined the burn response of several threatened ecological 

communities and declared rare flora on the Swan Coastal Plain. These include: Banksia 

mimica; Caladenia huegelii; Melaleuca huegelii- Melaleuca systena shrublands on 
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limestone ridges community type 26a described by Gibson et al. (1994b); Macarthuria 

keigheryi (fire response after a prescribed burn), Perth to Gingin Ironstone Association, 

Darwinia foetida and Grevillea curviloba.  Fire management plans and recommendations 

have been made and include; restricting fire to times outside of vegetative and flowering 

seasons, restricting fire frequencies that reduce vigour and seed banks, conducting burns to 

promote flowering. 

 

The DEC GSS project on the effects of year since fire on ground-dwelling vertebrates has 

advanced our understanding of the impacts of fire on the vertebrates and provided strong 

evidence for post-fire seral responses of reptiles and mammals. A significant finding was 

that overall reptile abundance, as well as the abundance of some specific species, was 

higher in long unburnt sites.  Burrowing snake species, including the Priority listed 

Neelaps calonotos and lizards such as Menetia greyii were captured at sites of old fuel age. 

This is likely to reflect a difference in resource availability; vegetation and litter cover 

between recently burnt and long unburnt sites.  In contrast several reptile species preferred 

recently burnt sites, whilst others were most abundant in intermediate fuel age sites.  The 

evidence of post-fire seral responses for reptiles provides strong support for maintenance 

of a diverse range of post-fire aged habitat including retention of long-unburnt Banksia and 

Melaleuca that are important to species such as Neelaps calonotus and Menetia greyii.  

 

Few mammals were trapped, but the response to post fire age of those that were captured 

was clear. While the introduced Mus musculus was more abundant in recently burnt sites, 

Tarsipes rostratus (honey possums) had low abundance in recently burnt sites (< 7 YSLB), 

with a peak in relative abundance at sites 20 – 26 YSLB.  These results were similar to 

previous studies in more southern populations where higher densities are recorded in older 

vegetation 20 – 30 YSLB (Bradshaw et al. 2007; Everaardt 2003).  Capture rates of honey 

possums are closely linked to food sources (Bradshaw et al. 2007) and have been 

correlated with the densities of flowers and the flowering periods of Banksias (Everaardt 

2003). Hence, the impact of fire on honey possums will be related to the post-fire 

responses of target food species (Bradshaw et al. 2007).  Based on this information burning 

regimes need to ensure retention of long-unburnt vegetation for this species.  Distribution 

maps for the species are available for the GGS together with fuel age data.   
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Fire management guidelines for honey possums have been developed by DEC Fire 

Management Services (Fire Management Guidelines No S2, 2008).  It is recommended 

that honey possum distribution maps (where available) be consulted and that prescribed 

fire should concentrate on frequency and scale as important factors for the species.  They 

should aim to produce a mosaic of recently burnt and long unburnt vegetation and limit 

mortality of mature age food plants.  The information obtained from the GSS studies 

provides a strong basis for development of an ecological burning regime for this species. 

 

Although we obtained minimal data in our trapping surveys for species such as quenda 

(Isoodon obesulus), rakali (Hydromys chrysogaster) and bush rat our observations provide 

support for preferred fire regimes on the GGS.  Quenda (Priority 4 species) were typically 

found in moist low-lying areas with dense mid-storey vegetation and only found in high 

densities at Twin Swamps Nature Reserves which is both fenced and fox baited for 

protection of the critically endangered Western Swamp Tortoise (Valentine et al. 2009b).  

Similarly, studies at Whiteman Park found that quenda persist in the dense mid-storey level 

heath associated with wetlands, and  only increased in number and use of upland areas 

after fox baiting (Bamford and Bamford 1994).  In jarrah forest of the Darling Range 

where baiting occurs quenda inhabit a range of habitats including open woodland and 

upland areas.  It is possible that on the GGS quenda may be favouring the dense wetland-

associated vegetation habitat type to a greater extent because of the presence of foxes and 

lack of baiting.  Hence, the persistence of quenda in unbaited areas on the GGS is strongly 

reliant on dense wetland-associated vegetation. Based on this information burning regimes 

need to ensure retention of long-unburnt wetland-associated vegetation for this species. 

 

Substantial populations of Hydromys chrysogaster (Rakali), a Priority 4 species, were 

found at Lake Goolellal and Loch McNess.  The survival of rakali is critically linked to the 

persistence of wetland eco-systems and loss or reduction in size and quality of wetland 

areas would affect the availability of terrestrial habitat and food resource such as large 

aquatic insects, fishes, crustaceans, mussels, frogs, lizards, water birds and tortoises (Olsen 

2008; Woollard et al. 1978).  Loch McNess which is located within Yanchep National Park 

has a high frequency of fires (Sonneman and Kuehs 2010).   The lake also has few islands 

that could provide fire free habitat for water rats.  This information would support the 

provision of burning regimes to ensure retention of wetland-associated vegetation 

particularly along lake edges and the banks for this species. 
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The mootit or bush rat were only located in wetland habitat in the GGS fauna studies 

(Valentine et al. 2009).   This appears consistent with other records on the northern SCP 

where bush rats appear to prefer mesic near-coastal habitats that provide dense understorey 

and ground cover, for example at Loch McNess and in coastal dune swales in Yanchep 

National Park. Based on this information burning regimes need to ensure retention of long-

unburnt wetland-associated vegetation for this species also. 

 

For many declining and priority species and communities on the GGS that are threatened 

by inappropriate fire regimes, access to suitable refugia, particularly of long unburnt 

vegetation, may be necessary for their survival.  Providing key refuge sites can buffer 

species from the impacts of fire regimes. This approach has also been identified as being 

be essential as climate change progresses (Isaac et al. 2008).  One species for which 

refugia now plays a critical role in its survival is the western swamp tortoise 

(Pseudemydura umbrina) which is listed nationally under the EPBC Act 1999 as critically 

endangered. Only one viable population survives at Ellen Brook Nature Reserve with two 

other locations, Twin Swamps and Mogumber Reserve populations being maintained with 

translocated individuals (Burbidge and Kuchling 2007).  The reserves are critical refugia 

for this species and are highly managed -they are fenced and subject to predator and fire 

control. 

 

Information obtained for the honey possum including distribution maps, fuel age data and 

the need to ensure retention of long-unburnt vegetation may provide the basis for 

identifying refugia for this species.  It is recommended that sites known to be important for 

the species are designated as refugia and protected from further loss or modification and 

frequent fire.  Further important work needs to be done to identify appropriate scale of 

burning around such refugia for provision of linkages. 

 

Information obtained for species such as quenda, rakali and bush rat provide support for 

the need to ensure retention of long-unburnt wetland-associated vegetation for these 

species on the GGS.  It is recommended that sites known to be important for the species 

are designated as refugia and protected from further loss or modification and frequent fire.  

Wetlands with high vegetation cover which offers protection would be particularly good 

quality sites suitable for refugia.  
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A range of wetland vegetation is likely to be significantly impacted by inappropriate fire 

regimes including major complexes such as Typha-Baumea, Melaleuca rhaphiophylla, 

Melaleuca preissiana, Melaleuca viminea, Eucalyptus rudis, Juncus kraussi,  

Lepidosperma longitudinale,  Casuarina obesa (Horwitz et al. 2009) and threatened 

ecological communities such as:  Banksia attenuata woodland over species-rich dense 

shrubland,  Aquatic root mat community of Yanchep Caves, communities of tumulus 

springs (organic mound springs,  Woodlands over sedgelands in Holocene dune swales.  

Aquatic invertebrates are also at high risk from fire impacts including rare and endemic 

invertebrate taxa associated with rare wetland types such as cave streams and mound 

springs with characteristic stygofaunal assemblages distinguishable from the unconfined 

aquifer (Horwitz et al. 2009; Sommer et al. 2008).   Wetland birds are also at risk from fire 

regimes.  Approximately 172 bird species have been recorded on the Gnangara 

groundwater system (Bamford and Bamford 2003). About 10% of these are land bird 

species that use vegetation around wetlands, 5% are vagrants or introduced, and of the 

remainder, around half of the species are waterbirds.  It is recommended that sites known 

to be important for these species and communities (high priority wetlands) are designated 

as refugia and protected from further loss or modification and frequent fire.   

 

Other potential consequences of fire on wetlands and water quality have interrelated effects 

and trophic consequences, particularly when considered together with the direct effects of 

the fire on wetland biota described above (Horwitz and Sommer 2005).  They include; 

catchment effects operating through the processes of runoff and deposition that can result 

in elevated base cations, increased alkalinity, elevated nutrient concentration, and sediment 

input, atmospheric effects that  include the return to the ground via rain of dissolved 

volatilised reactive and particulate compounds that have a mildly acidifying and/or 

fertilising effect in wetlands; and rehydration of burnt or overheated (organic) soils can 

have either alkaline consequences, in which case the ash can act to fertilise and increase 

productivity in the short term, or it can have acidic consequences where acid sulfate soils 

are oxidised, in which case the effects are the same as described above for acidification. 

Designation of refugia and protection from frequent fire would result in prevention or 

protection from these degradation processes.   
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 The GSS study area is an important foraging area during the non-breeding season for the 

Critically Endangered Carnaby’s Cockatoo.  Major threatening processes include habitat 

fragmentation and the removal of critical feeding resources (Cale 2003). The productivity 

of key Banksia species Banksia menziesii and Banksia attenuata in relationship with fire 

age was investigated in order to assess food availability for Carnaby’s (Valentine 2010; 

Valentine et al. in prep.). These studies have advanced our understanding of the impacts of 

fire on these key species and food availability.  Significantly different numbers of 

Carnaby’s could be supported in different fire-age categories of B. attenuata with the 

lowest in the 0-5 YSLF and the > 30 YSLF categories, and the highest in the 6-10, 11-19 

and 20-30 YSLF(Valentine 2010).  For B. menziesii there was a very strong trend for 

higher number of Carnaby’s to be supported in >30 YSLF categories.  Thus combined 

(B. attenuata and B. menziesii) there was a significant difference in the numbers of 

Carnaby’s supported by different fire-age categories; the lowest was in the 0-5 YSLF 

category and the highest in the 20-30 YSLF.  The numbers of Carnaby’s supported was 

also high in the 6-10, 11-19 YSLF categories (Valentine 2010).  To maximise food 

availability for Carnaby’s it is recommended that burning regimes are developed to 

increase or maximise the areas of Banksia woodlands in the 6-10, 11-19 20-30 YSLF.  

This will be particularly important as 22,000 ha of pines plantations that currently supply 

food for Carnaby’s are removed as a major recommendation under the GSS by 2028 

(Government of Western Australia 2009a). 

 

Development of ecological fire regimes   

There is a need to develop ecologically appropriate fire regimes in the GSS study area that are 

based on sound, evidence-based rationale for habitat requirements for flora and fauna, 

minimum and maximum fire return intervals.   Determination of fire regimes based on flora 

involves identification of the vital attributes of plant species in each community and 

subsequently ‘key fire response species’ for each community  Having now identified the key 

species over the GGS it is possible to determine the time interval between fires required to 

conserve species, i.e. the maximum and minimum intervals between lethal fires (Bradstock et 

al. 1996; Friend 1999; Gill and McCarthy 1998; Tolhurst 1999).   

 

Fire mosaic patterns based on theoretically derived negative exponential distributions of 

vegetation/fuel age classes across an ecological unit (vegetation complex, habitat type or 
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landscape unit) have been employed to develop ecological fire regimes (Fire Ecology 

Working Group 2002; 2004; McCarthy 2000; Tolhurst 1999; 2000; Wouters et al. 2000).   

There is now a need to develop ecologically appropriate fire regimes in the GSS study area 

that ensures that there will be a fuel age frequency distribution that approaches the theoretical 

distribution and estimate the proportion of landscape required in various fuel age classes / 

seral stages.  The negative exponential function can be aromatised by the GGS key fire 

response species attributes (e.g. juvenile period, longevity of fire sensitive species) to set 

minimum and maximum fire intervals.  The actual age distribution of the vegetation (e.g. 

Banksia woodlands, Melaleuca) or landscape unit (GGS) can then be compared to the 

theoretical age distribution to identify age classes over or underrepresented.  These can then be 

assessed for burning if over represented, or exclusion if underrepresented.   

 

Another approach to determine ecological fire regimes is to use growth stages, in preference to 

age class distributions, and the known or predicted relationships between fauna and habitat 

growth stages (G. Friend pers. comm.).  This involves identification of habitat parameters 
(such as % cover of understorey, canopy, litter, open ground, coarse woody debris, trees – 

various diameters at breast height, shrub composition etc.) associated with the different post 

fire stages of different vegetation types that can be linked with post fire stages and estimated 

fauna fire response curves (MacHunter et al. 2009; McElhinny et al. 2006).  

 

In order to compile information on the burning history and actual age class distribution in the 

GSS study area, it is necessary to assess fire frequency area, fire interval and distribution 

based on DEC fire records and analyses of Landsat imagery.  As part of the GSS fire projects 

this has been addressed in Spatial fire history analysis in the GSS study area (Sonneman and 

Kuehs 2010). Further the theoretical frequency distribution of different vegetation complexes 

and landscape units have been calculated and compared to the actual age distribution to 

identify age classes over or underrepresented in Guidelines for ecological burning regimes for 

the Gnangara Groundwater System (Wilson et al. 2010).  Options for the spatial of 

arrangement and scale of the various burn patches/fuel ages are also discussed. 

 

Determination of fire regimes based on fauna involves identification of the vital attributes of 

species in each community and subsequently ‘key fire response species’ for each community.   

The ‘key fire response fauna species’ on the GGS need to be identified also.  However 

significant differences in the response of animals to fire need to be accommodated (Bradstock 
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et al. 2005; Clarke 2008).  In contrast to plants, animals are mobile and the spatial components 

of their habitats and fire responses need to be assessed more closely.  The maintenance of the 

metapopulation dynamics of fauna species in fire impacted landscapes is important. This 

involves the provision of structural and functional connectivity in seral habitat networks that 

preserve dispersal for metapopulations.  

 

The GSS studies have identified that the dependence of fauna species on fire mediated habitat 

heterogeneity is variable and dependent on species life-history traits, dispersal and territory 

sizes.  There is however little information on these factors or the sizes, shapes, age structure or 

configurations of suitable habitat for fauna in relationship to fire dynamics and fire mosaics.  

However based on the current knowledge of fire impacts on fauna in the GGS some general 

recommendations on spatial aspects of ecological fire regimes can be made. Fire regimes on 

the GGS need to ensure the retention of long-unburnt Banksia woodland important to species 

such as honey possum, some reptiles and birds, due to habitat features including litter and food 

sources. They should ensure the retention and protection of long-unburnt wetland-associated 

vegetation known to be important for fauna species (e.g. rakali, Bush rats, Quenda) as 

designated as refugia.  Regimes need to incorporate spatial aspects of fauna species 

distribution, habitat and home ranges to develop appropriate scale of burning around refugia, 

and for provision of linkages. There is thus a need for further work to be undertaken to 

incorporate spatial aspects of fire sensitive fauna distribution, habitat and home ranges in fire 

regimes.   

 

Determining the options for the scale and spatial of arrangement of the various fuel ages for 

fauna is very complex subject, about which we have little information.  It is recommended that 

aspects be implemented in an adaptive management framework.  These issues are assessed 

further in Guidelines for ecological burning regimes for the Gnangara Groundwater System 

(Wilson et al. 2010).   
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Factors that increase impacts of inappropriate fire regimes  

In Australia climate change may lead to complications of future fire management and 

prescribed burning. The frequency of very high and extreme fire danger days are predicted 

to increase by 4-25% by 2020 and by 15-70% by 2050 (Hennessy et al. 2007). Ideal 

conditions/seasons for prescribed burning may also become restricted due to weather 

conditions that pose higher wildfire risk in spring and autumn (Hennessy et al. 2007). 

 

More frequent, high intensity, large scale fires, as a result of climate change, will have 

implications for the biodiversity of the GSS study area.  Species such as Banksia prionotes, 

where adults are killed by fire, but fire stimulates seeds to germinate, are thought to be 

particularly vulnerable to frequent, widespread fire events (Wooller et al. 2002).  This is 

related to the fact that seed regeneration may be insufficient to replace adults lost in the fire 

if the canopy seed bank has not had sufficient time to recover from previous fire, and that 

they  have limited dispersal potential (Wooller et al. 2002).  Species that are not killed by 

fire, but instead resprout from the original plant, such as B. attenuata, B. grandis, B. 

ilicifolia, B. littoralis, B. menziesii can sometimes survive low to medium intensity fire.  

Enright et al. (1998) suggest that too frequent fires can still result in the local extinction of 

these species, but at a much slower rate than species where adults are killed by fire.  

 

Frequent, widespread, and or severe fires are likely to severely impact many fauna species 

in the GSS study area, for example, the honey possum (Tarsipes rostratus), the splendid 

fairy wren (Malurus splendens), western thornbill (Acanthiza inornata) and scarlet robin 

(Petroica multicolor) and Western Swamp Tortoise. There is a need to determine the 

extent of such impacts under different climate change scenarios.  

 

Other impacts that threaten to further increase the impact of inappropriate fire regimes on 

biodiversity on the GGS such as predators, weeds and the plant pathogen of P. cinnamomi 

need to be assessed.  The impacts of fox predation on the GGS are likely to compound the 

impacts of inappropriate fire regimes as a result of the removal of dense wetland-

associated vegetation which currently provides some degree of protection and resilience to 

species such as Quenda and Rakali where fox baiting is currently not in place.  The 

invasion of weeds is a major concern following the removal of pine plantations and the 

implementation of 9000 hectares of ecological linkages, as recommended under the GSS 
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(Government of Western Australia 2009a).  Thirty species have been identified as high 

priorities for management (Keighery and Bettink 2008).  Taxa such as veldt grass Ehrharta 

calycina are already present in major sites of infestation in post- pine areas.  These weeds 

have major implications for the implementation of ecological fire regimes in the future as 

they can increase fire intensity.  Approximately 20,747 ha (10 %) of the GGS area is 

infested with P. cinnamomi casing severe alterations to understorey species composition, 

overstorey canopy structure and fauna that are likely to significantly impact the vegetation 

community’s capacity to recover or undergo secondary succession. The implications for 

fire regime impacts on these damaged communities on the GGS are unclear, but likely to 

compound the pressure on post-fire establishment of species and communities.   
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Recommendations 

In order to develop ecologically appropriate fire regimes in the GSS study area, it is 

recommended ecological burning regimes are developed that: 

 

• incorporate the impacts and data presented in this report 

• are based on a minimum fire interval of 8-16 years (twice juvenile period) and a 

maximum interval of 40 years for Banksia woodlands and Melaleuca  

• ensure that there will be different fire ages over time in the long term, and a fuel age 

frequency distribution that approaches the theoretical distribution 

• are based on habitat requirements for flora and fauna  

• ensure retention of long-unburnt Banksia woodland important to species such as honey 

possum, some reptiles and birds, due to habitat features including litter and food 

sources   

• ensure retention and protection of long-unburnt wetland-associated vegetation known 

to be important for species as designated as refugia   

• incorporate spatial aspects of fauna distribution, habitat and home ranges  for example 

for Honey possum to identify appropriate scale of burning around refugia and for 

provision of linkages 

• are based on the productivity of Banksia menziesii and Banksia attenuata for food 

availability for Carnaby’s Cockatoo and maintain the amount of habitat in the 20-30 

YSLB and increase the amount of habitat in the 11-19 YSLB, particularly in light of 

the removal of pine plantations over the next 18 years 

• develop an extensive and suitable adaptive management framework to monitor the 

impacts of ecological fire regimes across the landscape that can be used to evaluate any 

changes in condition and progress towards ecological fire management objectives 

 

As part of the GSS fire projects some of these recommendations have been addressed in 

Guidelines for ecological burning regimes for the Gnangara Groundwater System (Wilson 

et al.  2010).  
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In order to compile information on the past burning history in the GSS study area, it is 

recommended that: 

• assessments of fire frequency area, fire interval and distribution based on DEC fire 

records and analyses of Landsat imagery are completed 

• the theoretical frequency distribution of different vegetation complexes is calculated in 

order to assess the ecological aspect of the current fire regimes; and 

• reviews of DEC fire management operations are completed, including: the fire 

planning framework; conditions such as weather that impact fire management 

 

As part of the GSS fire projects some of these recommendations have been addressed in 

Spatial fire history analysis in the GSS study area (Sonneman and Kuehs 2010) and Fire 

management operations on the GSS study area (Muller 2010). 

 

Additional recommendations are that: 

 

• additional botanical work be undertaken to determine juvenile flowering periods for 

more of the plant species on the GGS 

• the implications for fire regimes following the replacement of pine plantations with 

strategic ecological linkages and a parkland (major recommendations of GSS) be 

assessed  

• monitoring of fauna post-wildfire (e.g. Yanchep) be continued  

• work be undertaken to predict changes to wildfire and fire management under 

future climate scenarios over the next 40 years  

• work be undertaken to incorporate spatial aspects of fire sensitive fauna 

distribution, habitat and home ranges in fire regimes 
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Appendix 1. Flora Key Fire Response Species 

List of 184 flora species selected from a list of known GSS species (Mickle et al. 2010a; Mickle et al. 2009) supplemented with data from the 

Vegetation Species List and Response Database(DEC 2008b). The list includes all species with sufficient information on one or more vital 

attributes used to select the key fire response species. The vital attributes used in selecting potential key fire response species included juvenile 

period, regeneration strategy (from Table 1 ), conservation status, endemism, lifeform (a range of structural components from grasses to tall 

trees), and longevity (where known).  

 

1 GSS data from florsitic survey (Mickle et al. 2009) and chronosequence study (Mickle et al. 2010a)  
2 Vegetation Species List and Response Database (DEC 2008b) 
3 Conservation status: Declared Rare Flora, Priority flora (Valentine et al. 2009a) and TEC species,  
4 Endemism codes: GSS – unique to the GSS study area; LE – Locally endemic to Swan Coastal Plain; RE – regionally endemic to South 

Western Australian Floristic Region; and NE – Not endemic, found elsewhere in Western Australia (Valentine et al. 2009a). 
5 Regeneration strategies based on (Burrows et al. 2008) 
6 Indication of number of Floristic survey sites (Mickle et al. 2009) a species occurs in Banksia-dominant or Melaleuca-dominant sites. Total 

number of sites surveyed in brackets.  
7 Indication of number of Chronosequence survey sites (Mickle et al. 2010a) species occurs at. All Chronosequence sites are Banksia-dominant. 

Total number of sites surveyed in brackets. 
* inferred values based on flora base information (Western Australian Herbarium 1998-2009) or inferred from similar species in (DEC 2008b) 
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Mimosaceae Acacia alata                 20 2 Mt Cooke Medium shrub   
Mimosaceae Acacia benthamii P2 LE                     
Mimosaceae Acacia cyclops             1   24 2 Perth coastal Medium shrub Perennial 
Mimosaceae Acacia pulchella     <45 2     7 22 2 Mt Cooke Medium shrub   
Mimosaceae Acacia stenoptera             1   36 2 Brookton Small shrub Perennial 
Protaecea Adenanthos cygnorum subsp. 

chamaephyton 
P3 RE                     

Poaceae Aira cupaniana           6 6   9 2 Mt Cooke Annual grass Annual 
Casuarinaceae Allocasuarina fraseriana                 36 6 Walpole  Understorey tree Perennial 
Poaceae Amphipogon turbinatus       24 4 3   5 12 4 Manjimup Perennial grass Perennial 
Epacridaceae Andersonia lehmanniana     <45 ?2     4 36 4 Dandaragan Small shrub Perennial 
  Angianthus micropodioides P3 RE                     
Haemodoraceae Anigozanthos humilis     12 4     9 24 4 Mogumber Perennial herb Perennial 
Haemodoraceae Anigozanthos humilis subsp. Badgingarra 

(S.D. Hopper 7114) 
P2 RE                     

Goodeniaceae Anthotium junciforme P4 RE                     
Papilionaceae Aotus cordifolia P3 RE 18 2                 
Asteraceae Arctotheca calendula              1   9 2 Mt Cooke Annual herb Annual 
Epacridaceae Astroloma xerophyllum                 48 2 Badgingarra National 

Park  
Small shrub Perennial 

Poaceae Austrostipa compressa       <24 2 4   5 6 2 Walpole  Annual herb Annual 
Poaceae Austrostipa macalpinei           1 1   12 2 Stirling Range  Perennial grass Perennial 
Proteaceae Banksia attenuata       90 5 16 2 9 24 6 Perth  Understorey tree Perennial 
Proteaceae Banksia grandis           1     24 6 Nannup Understorey tree Perennial 
Proteaceae Banksia ilicifolia           5 2   24 6 Nannup Overstorey tree Perennial 
Proteaceae Banksia littoralis             4   24 6 Pemberton Understorey tree Perennial 
Proteaceae Banksia menziesii       96 5 12 1 9 24 6 Perth  Tall shrub Perennial 
Scrophulariaceae Bartsia trixago                 9 2 Mt Cooke Annual herb Annual 
Myrtaceae Beaufortia elegans       <45 2 5 2 7 24 1 Cataby Small shrub Perennial 
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Euphorbiaceae Beyeria cinerea subsp. cinerea P3 NE                     
Asteraceae Blennospora doliiformis P3 RE                     
Rutaceae Boronia purdieana     <45 2     8           
Rutaceae Boronia ramosa     <24 2     4           
Papilionaceae Bossiaea eriocarpa       12 5 1 2 9 12 5 Walpole  Small shrub Perennial 
Asteraceae Brachyscome iberidifolia             2   12 3 Manjimup Annual herb Perennial 
Poaceae Briza maxima           7 2   6 8 Walpole  Annual herb Annual 
Poaceae Briza minor             2   6 8 Walpole  Annual herb Annual 
Colchicaceae Burchardia congesta       12 4 12 2 9 24 11 Cataby Perennial herb Perennial 
Orchidaceae Caladenia flava        <48 4   1 7 9 11 Mt Cooke Geophyte Perennial 
Orchidaceae Caladenia huegelii DRF RE           9 11       
Dasypogonaceae Calectasia sp. Pinjar (C. Tauss 557) P1 GSS 24* 4*                 
Myrtaceae Calytrix flavescens       24 5 9 1 9 30 2 Stirling Range  Small shrub Perennial 
Myrtaceae Calytrix sapphirina     <60 5     3   5 Eneabba Small shrub Perennial 
Cyperaceae Carex tereticaulis P1 RE                     
Lauraceae Cassytha racemosa                 24 2 Walpole  Climber Perennial 
Centrolepidaceae Centrolepis drummondiana       12 2 5 1 3           
Asteracea Cirsium vulgare             1   12 3 Walpole  Annual herb Perennial 
Proteaceae Conospermum stoechadis subsp. 

stoechadis 
    12 5     5           

Epacridaceae Conostephium minus       <45 ?5 3   6           
Epacridaceae Conostephium pendulum     12 5 8 3 8 60 5 Northern Sandplain    Perennial 
Haemodoraceae Conostylis bracteata P3 LE                     
Haemodoraceae Conostylis juncea       <45 4 8   8           
Haemodoraceae Conostylis pauciflora subsp. euryrhipis P4 LE                     
Haemodoraceae Conostylis pauciflora subsp. pauciflora P4 LE                     
Asteracea Conyza bonariensis             2   12 3 Walpole  Annual herb Annual 
Orchidaceae Corymbia calophylla                 48 6 Walpole    Perennial 
Crassulaceae Crassula colorata     12 2     3           
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Cyperaceae Cyathochaeta teretifolia P3 RE                     
Goodeniaceae Dampiera linearis       12 5 4 3 5 10 4 Mt Cooke Small shrub Perennial 
Myrtaceae Darwinia foetida DRF LE >48* 2*                 
Dasypogonaceae Dasypogon bromeliifolius       <45 4 5 2 3 6 7 Nannup   Perennial 
Restionaceae Desmocladus flexuosus       <45 4 5 3 7           
Papilionaceae Dillwynia dillwynioides P3 LE                     
Sapindaceae Dodonaea hackettiana P4 RE                     
Orchidaceae Drakaea elastica DRF LE           12 11       
Droseraceae Drosera menz        12 4 1   9 8 11 Perup   Perennial 
Droseraceae Drosera occidentalis subsp. occidentalis P4 RE                     
Droseraceae Drosera pallida       24 4 1   2 12 11 Manjimup   Perennial 
Poaceae Ehrharta longiflora             1   12 3 Walpole    Annual 
Cyperaceae Eleocharis keigheryi DRF RE 4 to 72* 9*                 
Orchidaceae Elythranthera brunonis       <60 4 2 1 5 24 11 Stirling Range    Perennial 
Orchidaceae Epiblema grandiflorum var. cyaneum DRF GSS 12 11                 
Myrtaceae Eremaea beaufortioides       <45 5 2   6 36 5 Jurien Bay    Perennial 
Myrtaceae Eremaea pauciflora       24 5 1 1 3 48 2 Jurien Bay    Perennial 
Myrtaceae Eucalyptus argutifolia DRF LE 48* 5 or 6*                 
Myrtaceae Eucalyptus gomphocephala                 48 6 Swan Coastal Plain   Perennial 
Myrtaceae Eucalyptus marginata                 48 6 Nannup Overstorey tree Perennial 
Myrtaceae Eucalyptus rudis           1 5   48 6 Perup   Perennial 
Myrtaceae Eucalyptus todtiana           4     48 6 Northern Sandplains    Perennial 
Myrtaceae Eucalyptus x mundijongensis P1 GSS 48* 5 or 6*                 
Santalaceae Exocarpos sparteus             1   18 2 Walpole    Perennial 
Fabroniaceae Fabronia hampeana P2 RE                     
Rubiaceae Galium murale             1   12 2 Manjimup   Annual 
Papilionaceae Gastrolobium capitatum       <45 2 5 1 7           
Papilionaceae Gompholobium aristatum           1     24 2 Nannup   Perennial 
Papilionaceae Gompholobium confertum             1   22 2 Nannup   Perennial 
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Papilionaceae Gompholobium scabrum           1     30 2 Stirling Ranges  Medium shrub Perennial 
Papilionaceae Gompholobium tomentosum       <45 2 9 3 6 20 2 Nannup   Perennial 
Haloragaceae Gonocarpus pithyoides       <24 5 1 2 4           
Proteaceae Grevillea curviloba subsp. curviloba DRF GSS 6 to 72* 2 or 5*                 
Proteaceae Grevillea curviloba subsp. incurva DRF RE 6 to 72* 2 or 5*                 
Proteaceae Grevillea evanescens P1 LE                     
Proteaceae Grevillea thelemanniana P4 RE                     
Haemodoraceae Haemodorum loratum P3 RE                     
Haemodoraceae Haemodorum spicatum       24 4 4 1 5 12 11 Stirling Range    Perennial 
Proteaceae Hakea costata           2     72 1 Northern Sandplain    Perennial 
Proteaceae Hakea varia                   1 Stirling Range    Perennial 
Lamiaceae Hemiandra pungens           2     33 2 Mt Cooke Medium shrub   
Dilleniaceae Hibbertia huegelii       12 5 4   2 24 5 Northern Sandplain    Perennial 
Dilleniaceae Hibbertia hypericoides       12 5 7   4 9 5 Mt Cooke   Perennial 
Dilleniaceae Hibbertia spicata subsp. leptotheca P3 LE                     
Dilleniaceae Hibbertia subvaginata       24 5 1 2 9           
Apiaceae Homalosciadium homalocarpum           5 1   9 2 Mt Cooke Annual herb Annual 
Papilionaceae Hovea trisperma           2     42 2 Perup   Perennial 
Asteraceae Hyalosperma cotula             2   9 2 Mt Cooke Annual herb Annual 
Apiaceae Hydrocotyle callicarpa           1 1   22 2 Mt Cooke Annual herb   
Myrtaceae Hypocalymma angustifolium           2 3   48 5 Avon Wheatbelt   Perennial 
Cyperaceae Isolepis marginata       12 2 5 1 6 6 8 Walpole    Perennial 
Papilionaceae Isotropis cuneifolia subsp. glabra P2 LE                     
Papilionaceae Jacksonia floribunda           5     24 2 Northern Sandplain    Perennial 
Papilionaceae Jacksonia sericea P4 LE                     
Papilionaceae Jacksonia sternbergiana           1       1 Geraldton Sandplain   Perennial 
Papilionaceae Kennedia prostrata             1   19 2 Mt Cooke Prostrate shrub   
Sterculiaceae Lasiopetalum membranaceum P3 RE                     
Asparagaceae Laxmannia sessiliflora           1       2 Northern Sandplain    Perennial 
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Asparagaceae Laxmannia squarrosa       <24 2 1   5           
Goodeniaceae Lechenaultia floribunda           2 2     2 Northern Sandplain    Perennial 
Goodeniaceae Lechenaultia magnifica P1 RE                     
Epacridaceae Leucopogon conostephioides       <45 2 6 2 6 60 2 Northern Sandplain    Perennial 
Epacridaceae Leucopogon squarrosus     <45 2     6           
Stylidiaceae Levenhookia pusilla             2   10 8 Perup   Annual 
Lobeliaceae Lobelia tenuior           1 1   6 8 Walpole    Annual 
Dasypogonaceae Lomandra caespitosa     <45 4 2 1 2 33 4 Walpole    Perennial 
Dasypogonaceae Lomandra hermaphrodita       <36* 4 or 5*                 
Dasypogonaceae Lomandra maritima       <36* 4 or 5*                 
Restionaceae Lyginia barbata     24 4     9 21 5 Walpole    Perennial 
Epacridaceae Lysinema ciliatum       <48 2 1   6 24 8 Nannup   Perennial 
Pittosperaceae Marianthus paralius DRF LE 24* 2 or 5*                 
Haloragaceae Meionectes tenuifolia P3 RE                     
Myrtaceae Melaleuca preissiana           1 7   24 6 Mt Cooke Understorey tree   
Myrtaceae Melaleuca systena   TEC   ? 18-84* ? 1,4,5,6,9*                 
Myrtaceae Melaleuca trichophylla       24 5 6 1 9 36 5 Geraldton Sandplain   Perennial 
Myrtaceae Melaleuca viminea                 60 1 Perup   Perennial 
Asteracea Millotia myosotidifolia           2 1   12 8 Walpole    Annual 
Haloragaceae Myriophyllum echinatum P3 RE                     
Rubiaceae Opercularia vaginata           3 1   24 2 Stirling Range    Perennial 
Iridaceae Patersonia occidentalis       12 4 9   9 36 2 Stirling Range    Perennial 
Proteaceae Persoonia saccata           1     13 5 Nannup Understorey tree Ephemeral 
Proteaceae Petrophile linearis       24 5 13 2 9 25 5 Nannup   Perennial 
Proteaceae Petrophile macrostachya           3     48 5 Northern Sandplain    Perennial 
Proteaceae Petrophile serruriae           1     32 1 Perup   Perennial 
Rutaceae Philotheca spicata       12 5 6   8 21 4 Mt Cooke Medium shrub   
Haemodoraceae Phlebocarya ciliata       <45 4 8 1 6 18 5 Walpole    Perennial 
Loganiaceae Phyllangium paradoxum       12 2 11 5 9 12 2 Walpole    Annual 
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Thymelaeaceae Pimelea sulphurea     12 2     2 24 5 Northern Sandplain    Perennial 
Asteraceae Podotheca chrysantha       <45 2 1   6           
Asteraceae Podotheca gnaphalioides       12 2 7 5 4   2 Northern Sandplain    Perennial 
Euphorbiaceae Poranthera microphylla           3 5   9 2 Mt Cooke Annual herb Perennial 
Asteraceae Quinetia urvillei           2 1   9 2 Mt Cooke Annual herb Annual 
Myrtaceae Regelia ciliata           3 1   60 5 Swan Coastal Plain   Perennial 
Asteracea Rhodanthe pyrethrum P3 RE                     
Primulaceae Samolus junceus                 33 2 Walpole    Perennial 
Aizoaceae Sarcozona bicarinata P3 GSS                     
Cyperaceae Schoenus caespititius       24 4 4   8           
Cyperaceae Schoenus curvifolius       48 4 8 1 8 24 11 Stirling Range    Perennial 
Cyperaceae Schoenus natans P4 RE                     
Solanaceae Solanum nigrum                   8 Walpole    Perennial 
Asteracea Sonchus asper             1     3 Walpole    Biennial 
Asteracea Sonchus oleraceus             3     3 Walpole    Annual 
Rhamnaceae Spyridium globulosum             4   6 2 Walpole    Perennial 
Euphorbiaceae Stachystemon axillaris P4 RE                     
Proteaceae Stirlingia latifolia       12 5 5   9 24 5 Northern Sandplain    Perennial 
Stylidaceae Stylidium adpressum           3       2 Northern Sandplain    Perennial 
Stylidiaceae Stylidium araeophyllum       <45 ?4 7 1 5           
Stylidiaceae Stylidium bicolor     <48 ?4     2           
Stylidiaceae Stylidium brunonianum             3   9 2 Manjimup Perennial herb Perennial 
Stylidiaceae Stylidium calcaratum           2     7 2 Perup Annual herb Ephemeral 
Stylidiaceae Stylidium crossacephalum       <45 ?4 3   7           
Stylidiaceae Stylidium diuroides     <24 ?4     7           
Stylidiaceae Stylidium longitubum P3 RE                     
Stylidiaceae Stylidium maritimum P3 RE                     
Stylidiaceae Stylidium repens           1 4   24 2 Northern Sandplain    Perennial 
Stylidiaceae Stylidium repens            1     24 2 Northern Sandplain    Perennial 
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Stylidiaceae Stylidium rigidulum       <24 ?2 5 3 5           
Stylidiaceae Stylidium schoenoides           2     7 2 Perup Perennial herb Perennial 
Papilionaceae Templetonia retusa             3   48 2 Swan Coastal Plain   Perennial 
Anthericaceae Thysanotus thyrsoideus           2 1     2 Avon Wheatbelt   Perennial 
Apiaceae Trachymene pilosa       12 2 12 9 8 12 2 Perup   Annual 
Stackhousiaceae Tripterococcus paniculatus P1 RE                     
Hydatellaceae Trithuria occidentalis DRF GSS <12* 2*                 
Asteracea Ursinia anthemoides           12 5   12 2 Northern Sandplain    Annual 
Lentibulariaceae Utricularia multifida                 6 2 Walpole    Annual 
Myrtaceae Verticordia lindleyi subsp. lindleyi P4 RE                     
Myrtaceae Verticordia nitens           4     0 2 Avon Wheatbelt   Perennial 
Papilionaceae Viminaria juncea             3   0 2 Walpole    Perennial 
Asteracea Waitzia suaveolens           2     12 2 Perup   Annual 
Apiaceae Xanthosia huegelii       24 5 7   9 32 5 Perup   Perennial 

 

 

 


