

University of Tennessee, Knoxville Trace: Tennessee Research and Creative **Exchange**

Ecology and Evolutionary Biology Publications and Other Works

Ecology and Evolutionary Biology

2010

A new genus to accommodate Gymnopus acervatus (Agaricales)

Karen Hughes University of Tennessee - Knoxville

David A. Mather

Ronald H. Peterson

Follow this and additional works at: http://trace.tennessee.edu/utk_ecolpubs

Part of the Population Biology Commons

Recommended Citation

Hughes, Karen; Mather, David A.; and Peterson, Ronald H., "A new genus to accommodate Gymnopus acervatus (Agaricales)" (2010). Ecology and Evolutionary Biology Publications and Other Works. http://trace.tennessee.edu/utk_ecolpubs/9

This Article is brought to you for free and open access by the Ecology and Evolutionary Biology at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Ecology and Evolutionary Biology Publications and Other Works by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

A new genus to accommodate Gymnopus acervatus (Agaricales)

Karen W. Hughes¹ David A. Mather Ronald H. Petersen

> Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996-1100

Abstract: Phylogenies based on ITS and LSU nrDNA sequences show Agaricus (Gymnopus) acervatus as unique within the Gymnopus/Rhodocollybia complex. These phylogenies imply that a separate genus is necessary, and *Connopus* is proposed. Infraspecific morphological and DNA-based variation within C. acervatus suggests that a western North American clade might be reproductively isolated from the eastern North American/Scandinavian clade and that in this species complex the European and eastern North American clade might be conspecific. A Scandinavian exemplar is selected for bar-coding. Two GenBank sequences with name-phylogenetic placement inconsistencies are identified.

Key words: bar-coding, biogeography, infraspecific variation, Rhodocollybia, taxonomy, Tricholomataceae

INTRODUCTION

Recent contributions to systematics of Agaricales have provided multigene phylogenetic reconstructions (Hibbett 2006; Hibbett et al. 2007; Matheny et al. 2006, 2007; Moncalvo et al. 2002) varying widely in scope. Additional phylogenies at the branch tips of these phylogenies have elucidated smaller taxonomic groups, Grand 2004 (Lentinus/Panus); Hedh et al. 2008 (Paxillus involutus); Hughes et al. 2001 (Collybia); Hughes et al. 2007 (Megacollybia); Hughes and Petersen 2004 (Lentinellus); Jin et al. 2001 (Panellus); Krueger 2002 (Polyporus); Lickey et al. 2003 (Arto-Artomyces/Clavicorona); Mata et al. 2004 (Rhodocollybia), 2007 (Omphalotaceae); and Redhead et al. 2001 (coprinoid mushrooms). An ancillary effect of fine-grain studies at tree tips has been to identify anomalies for further research. One such anomaly is Gymnopus acervatus.

Gymnopus acervatus forms densely cespitose or connate basidiomata (Fig. 1) on reddish brown stipes 4–16 cm high, often found in moss on rotting conifer logs or stumps in moist northwestern North America,

eastern North America and western Europe. In traditional morphology-based systematic treatments of Agaricales (more recently known as euagarics) Agaricus acervatus Fries has been among species considered "collybioid". Once Fries (1836:92) recognized segregate genera from Agaricus, A. acervatus was accepted as belonging in subg. Levipedes of Collybia. Kühner and Romagnesi (1953) included M. acervatus in Marasmius sect. Peronati, but their concept of Marasmius was greatly expanded over that accepted now. Halling (1983) continued placement in Collybia sect. Levipedes. The species was not mentioned by Singer (1986).

Antonin and Noordeloos (1997) included G. acervatus in Gymnopus section Vestipedes together with G. confluens (Pers.: Fr.) Antonin et al., G. peronatus (Bolt.: Fr.) Antonin et al., G. luxurians (Peck) Murrill, G. putillus (Fr.: Fr.) Antonin et al. and others. Diagnostic characters for sect. Vestipedes were (p 22): "Stipe surface hairy or tomentose; pileipellis a simple cutis without rameales- or dryophila-structure." Further on (p 32) additional characters for subsection Vestipedes were: "pileipellis usually a simple cutis with weakly to distinctly coralloid or diverticulate terminal elements; lamellae edge usually sterile with well differentiated cheilocystidia." Of these characters G. acervatus does not exhibit a stipe vesture (the tomentum of the lower stipe cannot be considered as vesture but adventitious and superficial), does not form a pileipellis with coralloid or diverticulate terminal cells and lacks well differentiated cheilocystidia (see Antonin and Noordeloos 1997, Fig. 16 and acknowledged on p 59-60). In short G. acervatus is a discordant element in subsect. Vestipedes.

To separate G. acervatus from Rhodocollybia it is necessary to circumscribe Rhodocollybia or at least to list diagnostic characters for comparison. This task is made more difficult because the R. maculata (typus generis) complex differs significantly morphologically and molecularly from the R. butyracea complex. Of these two, the molecular sequence G. acervatus is more similar to that of the *R. butyracea* complex.

Three relatively recent significant papers have summarized taxonomic characters of Rhodocollybia. Although numerous characters could be applied to multiple genera, these limiting characters appear in all these summaries: (i) "spore print pinkish yellow to pale pinkish brown, never white" (Antonin and Noordeloos 1997, p 115; Knudsen and Vesterholt 2008, p 307); (ii) occasional spores dextrinoid

Fig. 1. Connopus acervatus TENN061292 from Newfoundland, Canada. Numerals on the label are 4 mm high.

(Antonin and Noordeloos 1997, p 115; Mata et al. 2004, p 337; Knudsen and Vesterholt 2008, p 115); (iii) spores cyanophilous, often thick-walled (Knudsen and Vesterholt 2008, p 115; Mata et al. 2004, p 337; Antonin and Noordeloos 1997, p 115); and (iv) "rather large and fleshy basidiomata" (Mata et al. 2004, p 337) or "usually fleshy, putrescent" (Antonin and Noordeloos 1997, p 115).

Spore print of *G. acervatus* is white or off-white, never yellowish or pinkish. Spores of *G. acervatus* are thin-walled, never dextrinoid and never cyanophilous. Basidiomata of *G. acervatus* are hardly fleshy, more mycenoid in stature than rhodocollybioid, and almost always in connate clusters, not gregarious. Comparison of color plates by Antonin and Noordeloos (1997), Knudsen and Vesterholt (2008), Ryman and Holmåsen (1984), Phillips (1991), McNeil (2006) and Trudell and Ammirati (2009) clearly distinguish *G. acervatus* from *R. butyracea* and allied species.

Mata et al. (2006, Fig. 2) included a single ITS sequence for *G. acervatus* in a large phylogeny emphasizing *Gymnopus*. In that analysis unalignable highly variable portions of the ITS sequence were excluded. *Gymnopus acervatus* occurred on a long branch between *Gymnopus* and *Rhodocollybia*, suggesting that it was a unique taxon, but the dataset was so limited that no conclusion could be reached and

discussion concerning placement of *G. acervatus* was almost lacking. Because of uncertainties about relationships based on ITS sequences *G. acervatus* was not included in the remaining phylogenetic analyses based on complete ITS sequence data. In this paper we used nuclear ribosomal ITS and LSU sequences to show that *G. acervatus* is not part of *Gymnopus* s.l. as defined by Mata et al. (2006) but that it apparently falls within Omphalotaceae near *Rhodocollybia*. A new genus, *Connopus*, is proposed and infraspecific clades within *Connopus acervatus* are discussed.

MATERIALS AND METHODS

Abbreviations: PhC = phase contrast microscopy, GSMNP = Great Smoky Mountains National Park, TENN = herbarium of the University of Tennessee, TFB = Tennessee field book, in which notes on fresh specimens are recorded.

Methods for collection and documentation of specimens for DNA extractions and for molecular analyses are given in Mata et al. (2004). PCR primers were ITSIF and ITS4 for the ITS region (Gardes and Bruns 1993, White et al. 1990) and LR0R and LR7 for the nrLSU region (Moncalvo et al. 2002). Sanger dideoxy sequencing primers were ITS5, ITS4, LR5 and LR0R (White et al. 1990, Moncalvo et al. 2002). Cloning was accomplished with the Promega pGEM-T cloning vector and JM109 competent cells using manufacturer directions

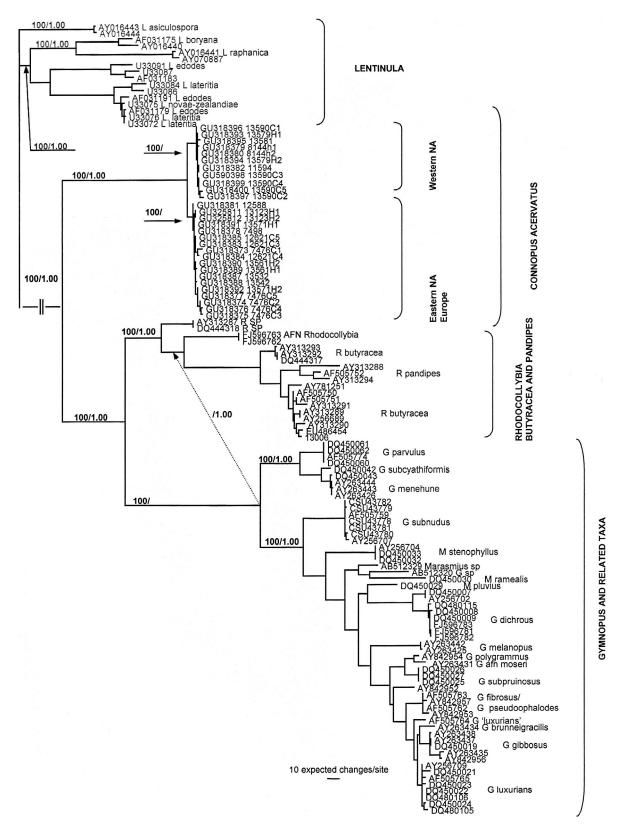


FIG. 2. One of 1000 equally parsimonious trees 1950 bp long based on the ribosomal ITS region. Regions of uncertain alignment were excluded from the analysis (121 bp in ITS1 between bases 214 and 335; 107 bp in ITS2 between bases 753 and 860). Of 792 total characters the number of parsimony informative characters was 511. Gaps were considered informative and were treated as a fifth base. Bootstrap and Bayesian posterior probabilities are to the left of each supported node.

(Promega Corp., Madison, Wisconsin). Cloning was required when a DNA sequence was heterozygous for more than one simple (1–2 bp) insertion or deletion event (indel).

Three datasets were examined: (i) "GCR ITS", an ITS dataset consisting of the 100 closest ITS sequences to *G. acervatus* in GenBank by BLAST match plus all *G. acervatus* sequences used in this study. (All *Gymnopus* and *Rhodocollybia* sequences used in Mata et al. [2004, 2006] are available through GenBank.) In this dataset 228 characters in unalignable regions of the ITS sequences were excluded from the analyses. (ii) "C ITS" dataset consisting of full length ITS *Gymnopus* (*Connopus*) acervatus sequences. (iii) "GCR LSU" dataset consisting of LSU sequences from GenBank within Omphalotaceae. Data from ITS and LSU regions were analyzed separately because of marked differences in variability and non-overlapping datasets.

For both ITS and LSU analyses parsimony analysis was carried out with PAUP* 4b (Swofford 2002). Bootstrap support was computed with 1000 bootstrap replicates. The starting trees were obtained via stepwise addition. One tree was held at each step; MAXTREES was 1000. The branch-swapping algorithm was tree-bisection-reconnection. All characters had equal weight and were unordered. The model selected by Modeltest (Posada and Crandall 1998) for the "C" ITS ribosomal dataset consisting of *Gymnopus* (*Connopus*) acervatus sequences was HKY+ Γ. The HKY model of evolution provides for equal transition and transversion rates with equal rates among sites (Hasegawa et al. 1985).

The model selected for the "GCR ITS" dataset consisting of Gymnopus, Rhodocollybia, G. acervatus was TVM + I + Γ , which recognizes four transition rates. The TVM model of evolution is not available in MrBayes therefore the GTR + I + Γ model was used for Bayesian analysis. The model selected for the "GCR LSU" dataset was GTR + I + Γ . The general time reversible model assumes a symmetric substitution matrix with each pair of substitutions occurring at a different rate and unequal base frequencies. Bayesian analysis was performed with MrBayes (Huelsenbeck et al. 2001) using two chains and 500 000 generations at settings appropriate to each selected model. Chains converged after approximately 50 000 generations. Bayesian analyses yielded posterior partition probability estimates that largely mirrored bootstrap results from parsimony. Preliminary percent sequence differences were estimated for the Gymnopus (Connopus) ITS dataset with the uncorrected distances program in GCG (GCG 2000). Sequence pairs showing maximum and minimum sequence divergence were realigned manually, and percent sequence difference was calculated manually from these sequence pairs.

To test whether alternate topologies of the nLSU dataset, in which *G. acervatus* was imbedded within *Rhodocollybia* could be rejected, a constrained tree, in which *G. acervatus* and *Rhodocollybia* were monophyletic sister clades, was constructed in Mesquite (Maddison et al. 2009). This tree was compared with the Bayesian consensus tree (Fig. 4) using the Shimodaira-Hasegawa test (Shimodaira and Hasegawa 1999, Shimodaira et al. 1999). (GenBank accession numbers for sequences used in this study are in TABLE I.)

RESULTS

We include results of phylogenetic analyses based on the 100 closest ITS BLAST matches to G. acervatus (Fig. 2). In both Bayesian and parsimony analysis G. acervatus forms a well supported clade that is distinct from the Rhodocollybia butyracea/pandipes clade and from Gymnopus. Rhodocollybia is known to be composed of at least two divergent elements, a Rhodocollybia maculata-associated clade and a Rhodocollybia butyraceaassociated clade (Mata 2004, 2006, Fig. 2). The top 100 BLAST matches to G. acervatus did not include members of the R. maculata-associated clade or several Gymnopus species treated in Mata et al. (2006). The placement of Gymnopus with respect to the Rhodocollybia butyracea-associated clade differed among analyses. In parsimony analysis Gymnopus and Rhodocollybia were sister clades; in Bayesian analysis Gymnopus appeared basal to the R. butyracea-associated clade.

Within G. acervatus are two distinct, well supported clades (Figs. 2, 3). Clade 1 is composed of collections from Idaho, Washington and Alaska. Clade 2 is composed of collections from Scandinavia, Newfoundland and Great Smoky Mountains National Park where it is found at high altitudes in relic spruce-fir islands. Percent ITS sequence difference between G. acervatus clades 1 and 2 was 2.99-3.80. Within Clade 1 percent sequence difference was 0-1.22%. Within Clade 2 percent sequence difference was 0-0.82%. The two clades are separated by 17 consistent synapomorphies (average ITS region = 710 bp), and there is no current evidence of hybridization between the two clades. BLAST queries in GenBank indicated that neither Gymnopus nor Rhodocollybia were a good match for G. acervatus (closest BLAST match was 84%). ITS sequences for conspecific individuals rarely differ by more than 3% (see Hughes et al. 2009 and references therein).

We recorded results of phylogenetic analyses based on the ribosomal LSU region that included a wider taxon sampling within Omphalotaceae (Fig. 4). In Bayesian analysis G. acervatus appears as a long branch between Rhodocollybia butyracea and R. maculata clades, making Rhodocollybia polyphyletic. In parsimony analysis G. acervatus is also within the Rhodocollybia clade but both Rhodocollybia butyracea and R. maculata clades are basal to the G. acervatus clade and support for this relationship was poor. Within G. acervatus Scandinavian and eastern NA collections were basal to collections from Idaho. We constrained G. acervatus as a sister clade of Rhodocollybia and obtained 100 constrained MP trees. None of the 100 constrained trees were significantly worse than the Bayesian consensus tree with the Shimodaira-Hasegawa test (P = 0.392-0.894).

TAXONOMY

Connopus R.H. Petersen, gen. nov. MycoBank MB516031

Type species: Agaricus acervatus Fries. 1821. Syst. Mycol. 1:122.

- ≡ Collybia acervata (Fr.) Kummer. 1871. Führ. Pilzk.: 114
- \equiv Gymnopus acervatus (Fr.) Murrill. 1916. North Amer. Fl. 9:362.
- ≡ *Marasmius acervatus* (Fr.) Pears. and Dennis. 1948. Trans. Brit. Mycol. Soc. 31:158.

Basidiomata connata, collybioidea vel mycenoidea. Pileus immaturus conveus, maturus plano-convexus, hygrophanus, levis, pallide-brunneus ad rubro-brunneus. Lamellae librae, secedens, confertis. Stipite rubro-brunneo ad purpureo-brunneo, glabro, fistuloso, cum tomentum album ad basim. Hab: in musci in silvae coniferae in hemispheris septentrionalis.

Basidiomata connate in small to large numbers, collybioid or mycenoid, often with long stipes (FIG. 4). Pileus strongly convex to hemispherical when young, plano-convex by maturity, strongly hygrophanous, smooth, slippery when wet, tan-brown to ruddy brown. Lamellae free to adnexed, seceding early leaving a purplish ring on inner pileus around stipe apex, off-white, close. Stipe ruddy brown to purplish brown, glabrous above, fistulose, developing a white pruina or thin tomentum where protected downward. Flavor and odor negligible. Habitat usually in deep polytrichaceous moss juxtaposed to conifer logs or stumps in temperate to cool forests of the northern hemisphere. Pileipellis a lax trichoderm with occasional, weakly banded, erect terminal cells. Hyphae conspicuously clamped throughout. Basidia four-spored (Fig. 5A). Pleurocystidia absent. Cheilocystidia occasional to absent, slender-lecythiform. Basidiospores (Fig. 5B) small, ellipsoid to cylindrical, hyaline, thin-walled, inamyloid.

Specimens examined.—CANADA: Newfoundland and Labrador, La Nauche Provincial Park, trail to waterfall, 47°10.056′N, 52°53.600′W, 187 m, 15.IX.2006, coll. RHP, TFB 12621 (TENN 61292). FINLAND: Etelä-Häme Prov., Padasjoki, Vesijako Strict Nature Reserve, 15, IX, 1994, coll. RHP, TFB 7476 (TENN53516); Padasjoki, Vesijako Strict Nature Reserve, 15, IX, 1994, coll. RHP, TFB 7491 (TENN53643); RUSSIA: Leningrad Reg., vic. Lodynoe Pole, just outside Nizhnesvirsky Preserve, 30.VIII.1999, coll. RHP, TFB 10646 (TENN 58235); Lodeynopolsky, Kut-Lakhta, 30.VIII.1999, coll. RHP, TFB 10647 (TENN 58236); vic. Lodynoe Pole, just outside Nizhnesvirsky Preserve, 30.VIII.1999, coll. RHP, TFB 10647 (TENN 58236). SWEDEN: Närke, vic. Örebro, Uggelhöjdens Nature Preserve, 59°13.719′N, 14°38.725′E, 11.IX.2008, coll. RHP, A. Methven TFB 13532 (TENN 62879); vic. Örebro, Ullavi klint, 59°22.947'N, 5°00.947'E, 12.IX.2008, coll. RHP, A. Methven, TFB 13542 (TENN 62889); Västergotland, Upphärad, strax SO Kroken, 21.IX.1991, coll. L. & A. Stridvall, TFB 4174 (TENN 50311); vic. Landvetter,

Klippans Nature Reserve, 57°40.0123'N, 12°28.790'E 16.IX.2008, coll. RHP, A. Methven TFB 13571 (TENN 62917); vic. Brobacken, Risveden Nature Reserve, trail to Sälsjon Lake, 57°58.317′N, 12°19.016′E, 17.IX.2008, coll. RHP, A. Methven, TFB 13575 (TENN 62921). UNITED KINGDOM: Scotland, Pitlochry, Kindrogan Field Centre, 3.IX.1997, coll. R. Watling, TFB 7000 (TENN 55919); vic. Pitlochry, Kindrogan Field Centre, 56°44.878'N, 003°32.896'W, 3.1997, coll. RHP, TFB 3840 (TENN 55817). UNITED STATES: Alaska, vic. Juneau, Douglas Island, Otter Point Trail, 58°17.980'N, 134°40.119'W, 20.IX.1995, coll. RHP, TFB 8225 (TENN 53990); Idaho, Bonner County, vic. Priest Lake, Spokane Mushroom Club foray, 28.IX/2002, foray collection, TFB 11594 (TENN 59487); McCall County, vic. McCall, vic. Brundage Ski Resort, Bear Basin Road, 5.IX.2008, leg. & det. A.D. Wolfenbarger, ADW 055 (TENN 62824); vic. McCall, Bear Basin Road, vic. Goose Lake Road, 5.IX.2008, coll. S. Trudell, ADW 0054 (TENN 62825); Massachusetts, Hampshire County, Amherst, IX.1964, coll. P.D. Olexia, det. L.R. Hesler, PDO 61 (TENN 28257); Tennessee, Sevier County, GSMNP, Indian Gap, 7.VII.1946, coll. L.R. Hesler, det A.H. Smith, TENN 17637; Sevier County, GSMNP, Indian Gap, 6.VI.1949, coll. L.R. Hesler, TENN 18992; Sevier County, GSMNP, Indian Gap, Appalachian Trail, 11.VIII.2005, coll. D.J. Lodge, det. E.G. Lickey, TFB 12588 (TENN 61148); Sevier County, GSMNP, Indian Gap, Appalachian Trial north, 30.VII.2006, coll. KW Hughes, TFB 13123 (TENN 61213); Washington, King County, Baring, vic. Barkley's Lake, 30.IX.2002, coll. RHP, TFB 11595 (TENN 59488); Mount Rainier Natl. Park, vic. Longmire, east-facing slope, 26.X.1967, coll. RHP, det. D.E. Stuntz, TENN 30112; Pend Oreille County, Metalline Falls, Forest Service road 310 N of Metalline Falls, 19.XI.2008, coll. D. Parker, TFB 13590 (TENN 62990); Whatcom County, vic. Acme, between Mosquito Road and Timling Falls, 2.X.2002, coll. RHP, TFB 9869 (TENN 58494); Whatcom County, Lake Louise Road, government land, 9.X.1992, coll. RHP and KWH, TFB 5810 (TENN 52213).

Because the ITS phylogeny segregates two general populations of *C. acervatus* (Euro-Scandinavia-eastern North America and moist western North America), careful examination of representative specimens from these regions was undertaken. Three characters proved somewhat distinctive.

First, using mostly northeastern North American material Halling (1983; http://www.nybg.org/bsci/col/vestiped.html#acervatus) described cheilocystidia as uncommon, often buried among basidia, fusoid and variously lobed. His illustration depicted one digitate and one somewhat lobed individual. In material from Massachusetts (TENN 28257) and high-altitude southern Appalachian Mountains (TENN 18992, TFB 13123; TFB 12588) such cheilocystidia are common and relatively conspicuous. Antonin and Noordeloos (1997) described cheilocystidia as "absent or present, 18–60 × 2–9 μm, subcylindrical, clavate, fusiform or slightly coralloid",

TABLE I. GenBank accession numbers for sequences used in this study

GenBank accession number	Herbarium number	Collection number or strain	Species in tree	Geographic origin
AY745709 (LSU)	CUW-PBM2201	PBM2201	Anthracophyllum archeri	Not given
AF261324 (LSU)	TENN56925	TFB4419	Anthracophyllum lateritium	USA, Louisiana
AF261327 (LSU)	JMCR.143	JMCR.143	Caripia montagnei	Not given
DQ444310 (ITS)	TENN59487	TFB11594	Connopus acervatus	USA, Idaho
GU318382 (ITS)	TENN59487	TFB11594	Connopus acervatus	USA, Idaho
GU318381 (ITS)	TENN61148	TFB12588	Connopus acervatus	USA, GSMNP
GU318383-85 (ITS)	TENN61292	TFB12621c3-c5	Connopus acervatus	Canada, Newfoundland
GU325811-12 (ITS)	TENN61213	TFB13123	Connopus acervatus	USA, Tennessee, GSMNP
GU325811-12 (ITS)		TFB13123h1, h2	Connopus acervatus	USA, GSMNP
GU318387 (ITS)	TENN62879	TFB13532	Connopus acervatus	Sweden
FJ750255 (LSU)				
GU318388 (ITS)	TENN62889	TFB13542	Connopus acervatus	Sweden
FJ750253 (LSU)				
GU318389-90 (ITS)	Specimen missing	TFB13561h1, h2	Connopus acervatus	Sweden
GU318391-92 (ITS)	TENN62917	TFB13571h1,h2	Connopus acervatus	Sweden
GU318393-94 (ITS)	TENN62824	TFB13579h1,h2	Connopus acervatus	USA, Idaho
FJ750261 (LSU)				
GU318395 (ITS)	TENN62825	TFB13581	Connopus acervatus	USA, Idaho
FJ750260 (LSU)				
GU318396-400 (ITS)	TENN62990	TFB13590c1-c5	Connopus acervatus	USA, Washington
GU318373-377 (ITS)	TENN53516	TFB7476c1-c5	Connopus acervatus	Finland
FJ750259 (LSU)				
GU318378 (ITS)	TENN53596	TFB7498	Connopus acervatus	Finland
FJ750256 (LSU)				
GU318379-80 (ITS)	TENN53962	TFB8144h1,h2	Connopus acervatus	USA, Alaska
GU318318 (ITS)	TENN61148	TFB12588	Gymnopus acervatus	GSMNP Tennessee,
FJ750259 (LSU)				USA
GU318383-85 (ITS)	TENN61292	TFB12621	Gymnopus acervatus	Canada, Newfoundland
FJ750254 (LSU)				
AF223172 (LSU)		CBS 174.48	Gymnopus acervatus (?)	Not given
AY639408 (LSU)	SFSU-AWW113	AWW113	Gymnopus afn menehune	Not given
AY639409 (LSU)	SFSU-AWW10	AWW10	Gymnopus afn moseri	Not given
AY263431 (ITS)	SFSU AWW10	AWW10	Gymnopus afn. Moseri	Not given
AY639410 (LSU)	SFSU-AWW118	AWW118	Gymnopus aurantipes	Not given
AY639411 (LSU)	SFSU-AWW116	SFSU-AWW116	Gymnopus bicolor	Not available
AF261336 (LSU)	DUKE-RV98/32	RV98/32	Gymnopus biformis	Not available
DQ450056 (LSU)	TENN58624	TFB11016	Gymnopus biformis	Costa Rica
FJ750264 (LSU)	TENN60951	TFB12836	Gymnopus biformis	New Zealand
AY639412 (LSU)	SFSU-AWW01	AWW01	Gymnopus brunneigracilis	Not given
AY263434 (ITS)	SFSU AWW01	AWW01	Gymnopus brunneigracilis	Not given
AY207164 (LSU)	GLM 45930	DDM 0711	Gymnopus confluens	Germany
DQ457670 (LSU)	TENN062527	PBM 2711 AFTOL-ID 1758	Gymnopus contrarius	USA, Colorado
FJ596783 (ITS)	TENN61128	TFB12567	Gymnopus dichrous	USA, NC, GSMNP
FJ596782 (ITS)	TENN60673	TFB12506h1,h2	Gymnopus dichrous	USA, TN, GSMNP
FJ596781 (ITS)	TENN60673	TFB12506h1	Gymnopus dichrous	USA, TN GSMNP
AY256702 (ITS)	TENN56726	TFB10014	Gymnopus dichrous	USA, North Carolina
DQ480115 (ITS)	Missing	TFB10829	Gymnopus dichrous	USA, North Carolina
DQ450009 (ITS)	TENN60161	TFB11554	Gymnopus dichrous	USA, North Carolina
FJ596783 (LSU)	TENN61128	TFB12567	Gymnopus dichrous	North Carolina, USA
DQ450008 (ITS)	TENN48637	TFB2028	Gymnopus dichrous	USA
DQ450007 (ITS)	TENN53792	TFB7920	Gymnopus dichrous	USA
AY639413 (LSU)	SFSU-AR099	AR099	Gymnopus diminutus	Not given
AF291305 (LSU)	FO 21603	FO 21603	Gymnopus dryophilus	Germany

TABLE I. Continued

TABLE I. Continued				
GenBank accession	Herbarium	Collection		
number	number	number or strain	Species in tree	Geographic origin
AF042595 (LSU)	DUKE-RV83/180	RV83/180	Gymnopus dryophilus	not available
FJ596766 (LSU)	TENN60015	TFB11786	Gymnopus dryophilus	Tennessee, USA
FJ596767 (LSU)				
AY640619 (LSU)	TENN57012	TFB9952	Gymnopus dryophilus	North Carolina, USA
AJ406564 (LSU)	Not given	GEL4613	Gymnopus dryophilus incorrect id?	not available
FJ750265 (LSU)	TENN61125	TFB12563	Gymnopus dysodes	Tennessee, USA
DQ449994 (LSU)	TENN59140	TFB11039	Gymnopus earleae	Tennessee, USA
AY207167 (LSU)	GLM 45932	GLM 45932	Gymnopus erythropus	not available
AY842953 (ITS)	Not given	PR23TN	Gymnopus fibrosipes	Not given
AF505763 (ITS)	TENN56660	TFB9699	Gymnopus fibrosipes	Costa Rica
AM946450 (LSU)	C-42389	C42389	Gymnopus fusipes	Denmark
AY639414 (LSU)	NYBG-REH6509	REH6509	Gymnopus fusipes	Not given
AY256710 (LSU)	TENN59217	TFB11333	Gymnopus fusipes	France
AY256711 (LSU)	TENN59300	TFB11439	Gymnopus fusipes	Austria
AF135795 (LSU)	TENN55904	TFB6985	Gymnopus fusipes	United Kingdom
AY639415 (LSU)	SFSU-AWW12a	AWW12a	Gymnopus gibbosus	Not given
AY639417 (LSU)	SFSU-AWW112	AWW112	Gymnopus gibbosus	Not given
AY263435 (ITS)	SFSU AWW112	AWW112	Gymnopus gibbosus	Not given
AY263437 (ITS)	SFSU AWW66	AWW66	Gymnopus gibbosus	Not given
AY263438 (ITS)	SFSU AWW95	AWW95	Gymnopus gibbosus	Not given
AY842956 (ITS)	Not given	PRH	Gymnopus gibbosus	Not given
AY207166 (LSU)	F-GLM 45933		Gymnopus hariolorum	Germany
AY639418 (LSU)	SFSU-AWW03	AWW03	Gymnopus indoctus	Not given
DQ449984 (LSU)	TENN52970	TFB6520	Gymnopus iocephalus	North Carolina, USA
DQ480106 (ITS)	DUKE VLUX		Gymnopus luxurians	Not given
DQ480105 (ITS)	DUKE 54		Gymnopus luxurians	Not given
AY639421 (LSU)	SFSU-DEH1304	DEH1304	Gymnopus luxurians	Not given
AY256709 (LSU)	TENN57910	TFB10350	Gymnopus luxurians	USA, North Carolina
AY256709 (ITS)	TENN57910	TFB10350	Gymnopus luxurians	USA, North Carolina
DQ450023 (ITS)	TENN57914	TFB10355	Gymnopus luxurians	USA, South Carolina
AF505764 (ITS)	TENN58634	TFB11026	Gymnopus luxurians	Costa Rica
DQ450019 (ITS)	DEH2318	TFB11585	Gymnopus luxurians	USA, Hawaii
DQ450024 (ITS)	TENN59547	TFB11711	Gymnopus luxurians	Dominican Republic
DQ450022 (ITS)	TENN50619	TFB4283	Gymnopus luxurians	Switzerland
DQ450021 (ITS)	TENN50937	TFB4439	Gymnopus luxurians	USA, Tennessee
AY263442 (ITS)	SFSU AWW50	AWW50	Gymnopus melanopus	Not given
AY639422 (LSU)	SFSU-AWW54	AWW54	Gymnopus melanopus	Not given
AY263425 (ITS)	SFSU AWW 54	AWW54	Gymnopus melanopus	Not given
AY639423 (LSU)	SFSU-AWW02	AWW02	Gymnopus menehune	Not given
AY639425 (LSU)	SFSU-AWW87	AWW87 AWW02	Gymnopus menehune	Not given
AY639424 (LSU) AY263443 (ITS)	SFSU-AWW02 SFSU AWW15	AWW15	Gymnopus menehune Gymnopus menehune	Not given Not given
AY263444 (ITS)	SFSU AWW87	AWW87		_
AY263426 (ITS)	SFSU DED5866	DED5866	Gymnopus menehune Gymnopus menehune	Not given Not given
DQ450043 (ITS)	DEH2320	TFB11587	Gymnopus menehune	USA, Hawaii
DQ450035 (LSU)	TENN54460	TFB11005	Gymnopus mesoamericanus	Costa Rica
AY639426 (LSU)	SFSU-AWW05	AWW05	Gymnopus nonnulus	Not given
DQ450060 (ITS)	TENN58113	TFB10419	Gymnopus parvulus	Costa Rica
DQ450060 (ITS) DQ450061 (ITS)	TENN58115 TENN58115	TFB10419 TFB10421	Gymnopus parvulus	Costa Rica
AF505774 (ITS)	TENN58115 TENN58116	TFB10421 TFB10422	Gymnopus parvulus	Costa Rica
DQ450062 (ITS)	TENN58119	TFB10425	Gymnopus parvulus	Costa Rica
AY207168 (LSU)	F-GLM 45934	111010140	Gymnopus peronatus	Germany
AF223173 (LSU)	CBS 426.79	culture only	Gymnopus peronatus	Not given
DQ450017 (LSU)	TENN50540	TFB4204	Gymnopus peronatus	Sweden
= ×100017 (E50)	121.1100010	1121401	Sumopus peronanas	

TABLE I. Continued

GenBank accession number	Herbarium number	Collection number or strain	Species in tree	Geographic origin
AY842954 (ITS)	Not given	PR2542TN	Gymnopus polygrammus	Puerto Rico
AF042596 (LSU)	DUKE-RV182.01		Gymnopus polyphyllus	Not given
AY842957 (ITS)	Not given	PR24TN	Gymnopus pseudomphalodes	Not given
AF505762 (ITS)	NYBG REH 7348	REH 7348	Gymnopus pseudomphalodes	Not given
AY639427 (LSU)	SFSU-AWW126	AWW126	Gymnopus sepiiconicus	Not given
AF261326 (LSU)	DUKE-JEJ.PR.213	JEJ.PR.213	Gymnopus sp.	Puerto Rico
AF261334 (LSU)	DUKE-RV.PR.98.08	PR.98.08	Gymnopus sp.	Puerto Rico
AF261335 (LSU)	DUKE-RVPR98.13	RVPR98.13	Gymnopus sp.	Puerto Rico
AF261333 (LSU)	DUKE-RVPR98.46	RVPR98.46	Gymnopus sp.	Puerto Rico
FJ750263 (LSU)	TENN58602	TFB10494	Gymnopus sp. nov.	Costa Rica
AB512320 (ITS)	Not given	Strain 7090106	Gymnopus sp.	Japan, Okinawa,
OQ450042 (ITS)	TENN59550	TFB11714	Gymnopus subcyathiformis	Dominican Republic
CSU43779 (ITS)	Not given	JFM 1302	Gymnopus subnudus	USA
CSU43780 (ITS)	Not given	JFM 1480	Gymnopus subnudus	USA
CSU43781 (ITS)	Not given	JFM 1482	Gymnopus subnudus	USA
CSU43778 (ITS)	Not given	JFM 898	Gymnopus subnudus	USA
CSU43782 (ITS)	TENN48353	TFB1818	Gymnopus subnudus	USA
AF505759 (ITS)	TENN57899	TFB10338	Gymnopus subnudus	USA, North Carolina
FJ750262 (LSU)	TENN61138	TFB12577	Gymnopus subnudus	Tennessee, USA
XY256707 (ITS)	Missing	TFB6928	Gymnopus subnudus	USA. MN
Y639429 (LSU)	SFSU-DED6674	DED6675	Gymnopus subpruinosus	Not given
Y842952 (ITS)	Not given	Isolate PRA	Gymnopus subpruinosus	Puerto Rico
Q450025 (ITS)	TENN59474	TFB11063	Gymnopus subpruinosus	USA, Hawaii
Q450027 (ITS)	TENN59477	TFB11066	Gymnopus subpruinosus	USA, Hawaii
Q450026 (ITS)	TENN56242	TFB9529	Gymnopus subpruinosus	USA, California
Y639430 (LSU)	SFSU-AWW106	AWW106	Gymnopus termiticola	Not given
Y639432 (LSU)	SFSU-AWW127	AWW127	Gymnopus vitellinipes	Not given
Y016444 (ITS)	TENN58112	TFB10418	Lentinula asiculosp.ora	Costa Rica
Y016443 (ITS)	TENN56421	TFB9447	Lentinula asiculosp.ora	Costa Rica
AY016440 (ITS)		AAR de Meijer #3700	Lentinula boryana	Brazil
AF031175 (ITS)	Not given	R.G. Thorn 960624/09	Lentinula boryana	Costa Rica
AF042579 (LSU)	ATCC42962		Lentinula edodes	Not given
J33087 (ITS)	TMI1633		Lentinula edodes	Thailand
AF031191 (ITS)	TMI1546		Lentinula edodes	Nepal
AF031179 (ITS)	Duke RV95-376	RV95-376	Lentinula edodes	Australia
F031183 (ITS)	Not given	Strain STCL125	Lentinula edodes	China
J33084 (ITS)	TMI1485		Lentinula lateritia	PNG
J33086 (ITS)	TMI1502		Lentinula lateritia	PNG
J33072 (ITS)	CLARK UNIV	DSH 92-147	Lentinula lateritia	PNG
J33076 (ITS)	TENN50062	TFB3577	Lentinula lateritia	Tasmania
J33091 (ITS)	TMI818		Lentinula nov.ae-zelandiae	Japan
J33075 (ITS)	Not given	NZFS 210	Lentinula nov.ae-zelandiae	New Zealand
Y016441 (ITS)	TENN54887	TFB9156	Lentinula raphanica	USA, Florida
Y016442	TENN56477	TFB9564	Lentinula raphanica	Puerto Rico
Q450029 (ITS)	TENN55766	TFB9168	Marasmiellus aff. pluvius	USA, TN GSMNP
Y256708 (LSU)	TENN59540	TFB9889	Marasmiellus juniperinus	USA, Louisiana
AF261330 (LSU)	Not given	HN2270	Marasmiellus opacus	Not given
AF261329 (LSU)	Not given	JEJ.574	Marasmiellus opacus	Not given
OQ450030 (ITS)	TENN50324	TFB4727	Marasmiellus rameales	Sweden
OQ450030 (LSU)				
XY207236 (LSU)	F-GLM 45958		Marasmiellus ramealis	Germany
AY639435 (LSU)	SFSU-DED5258	DED5258	Marasmiellus synodicus	Not given
AY639436 (LSU)	BRNM568-	** *	Marasmius alliaceus	Not given

TABLE I. Continued

GenBank accession number	Herbarium number	Collection number or strain	Species in tree	Geographic origin
			Marasmius alliaceus	
AY207234 (LSU)	F-GLM45959 TENN55620	GLM 45959		Germany
AY635776 (LSU)		TFB8960	Marasmius alliaceus	Russia
AF261585 (LSU)	Not given	HN4730	Marasmius androsaceus	Not given
AY639437 (LSU)	SFSU-DED6628	DED6628	Marasmius applanatipes	Not given
AY639438 (LSU)	SFSU-DED6628	DEDCCOO	Marasmius copelandii	Not given
AF261332 (LSU)	DAOM175382	DED6628	Marasmius scorodonius	Not given
AF261331 (LSU)	Not given	JEJ.586	Marasmius scorodonius	Not given
DQ450006 (LSU)	TENN50346	TFB4749	Marasmius scorodonius	Switzerland
EU522806 (LSU)	Not given	TM03_419	Marasmius scorodonius	Canada
AB512329 (ITS)	Not given	Strain 0801Y51	Marasmius sp.	Japan, Okinawa,
DQ450032 (ITS)	TENN59444	TFB11558	Marasmius stenophyllus	USA, North Carolina
DQ450033 (ITS)	TENN59449	TFB11559	Marasmius stenophyllus	USA, North Carolina
AY207240 (LSU)	GLM 45964		Micromphale foetidum	Germany
AF261328 (LSU)	DUKE-JEJ.VA.567	P7700 /0F	Micromphale foetidum	USA, Virginia
AF042628 (LSU)	DUKE-RV83/67	RV83/67	Micromphale perforans	Not available
AF042577 (LSU)	DUKE-RVPR1308	RVPR1308	Neonothopanus nambi	Puerto Rico
AF135175 (LSU)	DUKE- RVPR27	RVPR27	$Neonothopanus\ nambi$	Puerto Rico
AF135172 (LSU)	Not given	JM	Omphalotus japonicus	Not given
AF042621 (LSU)	Not given	T1946.8	Omphalotus nidiformis	Not available
DQ470816 (LSU)	CBS 102282	Culture only	Omphalotus olearius	Slovenia?
FJ596762 (ITS)	TENN59896	TFB11778h1	$Rhodo colly bia\ afn.$	USA, TN, GSMNP
FJ596763 (ITS)	TENN59896	TFB11778h2	$Rhodocolly bia\ afn.$	USA, TN, GSMNP
AY639439 (LSU)	SFSU- DLLargent9199	DLLargent9199	Rhodocollybia badiialba	Not given
AY207163 (LSU)	GLM 46024		Rhodocollybia butyracea	Germany
AY639440 (LSU)	NYBG-REH6705	REH6705	Rhodocollybia butyracea	Not available
DQ444317 (ITS)	VT OKM27562	OKM27562	Rhodocollybia butyracea	USA
EU486454 (ITS)	UBC F16294		Rhodocollybia butyracea	Canada
AF505750 (ITS)	Missing	TFB10726	Rhodocollybia butyracea	Russia
AY781251 (ITS)	Not given	olrim421	Rhodocollybia butyracea	Sweden
AF505751 (ITS)	TENN59317	TFB11456	Rhodocollybia butyracea	Austria
AY313291 (ITS)	TENN59317	TFB11456	Rhodocollybia butyracea	Austria
GU318386 (ITS)	TENN60927	TFB13006	Rhodocollybia butyracea	USA, Tennessee,
FJ740252 (LSU)				GSMNP
GU318386[ITS]	TENN60927	TFB13006	Rhodocollybia butyracea	USA, GSMNP
FJ750252 [LSU]				
FJ750251 (LSU)	TENN61089	TFB13085	Rhodocollybia butyracea	New Zealand
AY313293 (ITS)	TENN53580	TFB7452	Rhodocollybia butyracea	Sweden
AY313292 (ITS)	Missing	TFB8250	Rhodocollybia butyracea	USA
AY313290 (ITS)	TENN56303	TFB8801	Rhodocollybia butyracea	Mexico
AY313289 (ITS)	TENN55660	TFB9000	Rhodocollybia butyracea	Turkey
AY639441 (LSU)	SFSU-DED5873	DED5873	Rhodocollybia laulaha	Hawaii
AM946462 (LSU)	TAA147123		Rhodocollybia maculata	Estonia
AY639880 (LSU)	TENN062341	PBM2481	Rhodocollybia maculata	Isolate=AFTOL-ID 540
AF042597 (LSU)	DUKE-RV94/175	RV94/175	Rhodocollybia maculata	Not available
AF505752 (ITS)	TENN58622	TFB11014	Rhodocollybia pandipes	Costa Rica
AY313288 (ITS)	TENN59546	TFB11707	Rhodocollybia pandipes	Dominican Republic
AY313294 (ITS)	TENN53838	TFB7899	Rhodocollybia pandipes	USA, North Carolina
AY313287 (ITS)	TENN58798	TFB10712	Rhodocollybia sp.	Greenland
, ,	TENN58798	TFB10712	Rhodocollybia sp.	Greenland
DQ444318 (ITS)	LEINING AND	TERTO/12	Knodocouwma sp	Greenland

BRNM = Moravian Museum; C = Copenhagen; F = Field Museum of Chicago; NZFS = New Zealand Forest Service; SFSU = San Francisco State University, TENN = University of Tennessee; TMI = Tottori Mycological Institute; h = within collection haplotype; c = clone number.

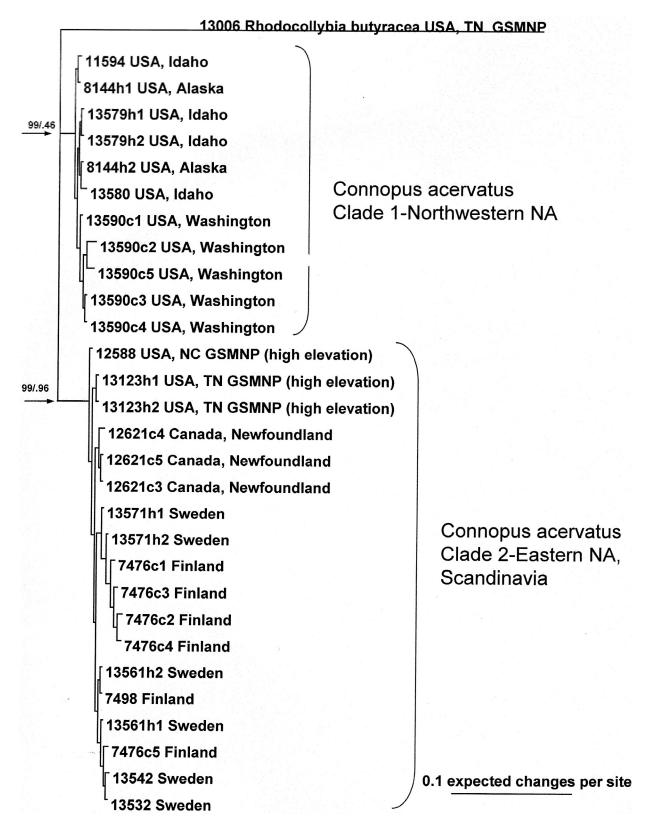


FIG. 3. Bayesian majority rule consensus tree based on complete ribosomal ITS sequences. Bootstrap and Bayesian posterior probabilities are to the left of each supported node.

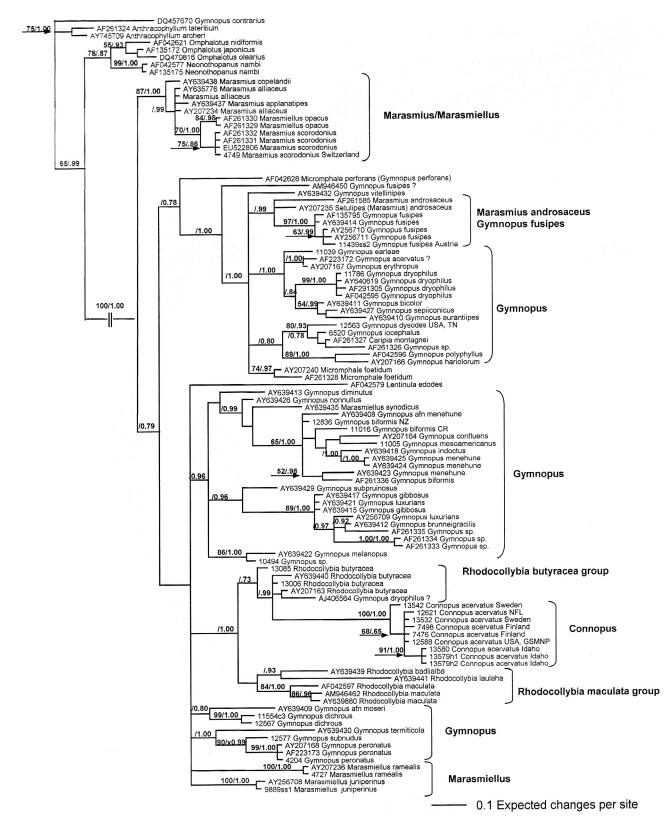


FIG. 4. Bayesian majority rule consensus tree based on ribosomal LSU sequences. Bootstrap and Bayesian posterior probabilities are to the left of each supported node. ? = GenBank name-phylogenetic placement disagreement; Ss = single spore (monokaryon) isolate.

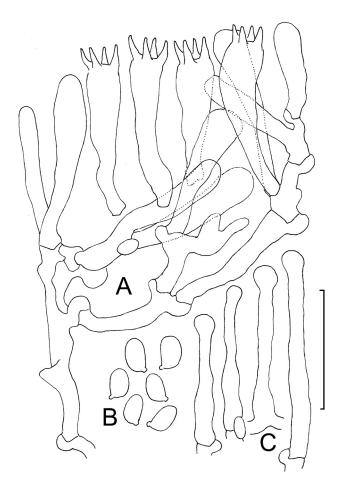


FIG. 5. Connopus acervatus TENN58236 from western Russia. A. Basidia. B. Basidiospores. C. Cheilocystidia. Bar = $20~\mu m$.

but cheilocystidia were not illustrated. A similar taxon, C. terginoides, while reportedly differing by "well-differentiated cheilocystidia", was not accepted as a discrete species (Antonin and Noordeloos 1997:60). In material from Russo-Scandinavia (TFB 10646, TFB10647; TFB 13542; TFB 13571; TFB 13575), maritime Canada (TFB 12621) and highaltitude southern Appalachian Mountains (TENN 17637) we see only slender-lecythiform or thermometric structures (Fig. 5C, 1.5–2 μm diam), emergent up to 15(-20) µm from the lamellar edge, and even these are rare and capricious (locally common in TFB 13542), but in other Euro-Scandinavian specimens cheilocystidia seem absent. No previous literature describes cheilocystidia of western North American C. acervatus. Our observations (TFB 5810, TFB 8225, TFB 11595, TFB 13590) show cheilocystidia locally common, otherwise rare, 3–3.5 \times 30–60 μ m, not capitulate, simply rounded at apex, arising from a conspicuous clamp, hyaline, thin-walled, emergent from hymenium up to 15 µm.

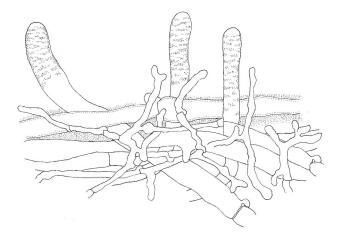


FIG. 6. Connopus acervatus TENN 62921. Pileipellis structure of Euro-Scandinavian specimens. Standard bar = $20~\mu m$. Interhyphal stippling represents shallow glutinous exudate.

Second, pileipellis of Euro-Scandinavian specimens (FIG. 6) was observed as constructed of two hyphal types: (i) relatively seldom branched, wide (6–8 μm diam), thin-walled, occasionally clamped, hyaline hyphae with common curved, erect, subtly banded terminal cells; and (ii) intermixed, slender (1.5–3 μm diam), frequently branched, frequently and conspicuously clamped hyphae. The former were illustrated by Antonin and Noordeloos (1997) but not the latter.

Halling (1983) recognized that *Gymnopus acervatus* exhibited a unique pileipellis organization in the genus, although his data emphasized North American collections. He described the pileipellis as "... a tangled trichodermium when young, developing into a layer of repent, cylindrical, branched hyphae, not diverticulate or coralloid, not radially arranged." A young pileipellis was illustrated. Our observation of pileipellis structure of eastern North American specimens showed the same hyphal types as found in Euro-Scandinavian basidiomata, but the wider hyphae were frequently lobed or gnarled, and if banded the banding was indistinct. Instead these hyphae often appeared spotted (PhC) with some round inclusions (Fig. 7).

Pileipellis structure of western North American pilei seems to differ somewhat (Fig. 8). The outermost layer comprises wide (6–8 μm diam) hyphae tightly interwoven into an almost parenchymatous layer with common erect termini without inclusionary spots or superficial banding, firm-walled, conspicuously clamped. When squashed this tissue does not flatten out as other specimens do but squashes intact or shatters into small aggregations. The subpellis layer is loosely interwoven; hyphae 3.5–5 μm diam, frequently branched, conspicuously clamped, firm-

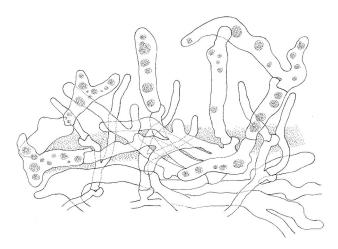


FIG. 7. Connopus acervatus TENN61213. Pileipellis structure of eastern North American specimens. Bar = $20~\mu m$. Interhyphal stippling represents shallow glutinous exudate.

walled, free (not agglutinated or adherent). In short the two hyphal types as found elsewhere are present in this material but differ somewhat in location and congestion.

Pileipellis (as "cortical layer") structure has been detailed by Clémençon (2004). Using that terminology, in radial section the cortical layer of Euro-Scandinavian basidiomata generally conforms to a plagiotrichoderm but constructed of two hyphal types. Eastern North American basidiomata exhibit a cortical layer closer to a loose clavicutis. Western North American material shows a cortical layer more or less like a plagiotrichoderm which, when viewed in tangential section, loosely resembles a clavicutis (see

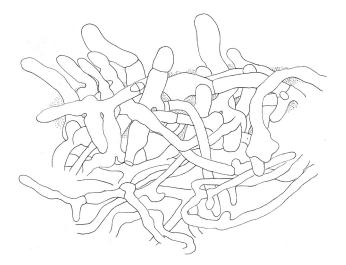


FIG. 8. Connopus acervatus TENN62990. Pileipellis structure of western North American specimens. Bar = $20~\mu m$. Interhyphal stippling represents shallow glutinous exudate.

Clémençon, Fig. 9.63), also known as "dryophila-structure".

Third, basidiospores of Euro-Scandinavian specimens seem slightly larger (5–7 \times 3.5–4.5 $\mu m)$, western North American specimens intermediate (5–6.5 \times 2.5–3 $\mu m)$ and eastern North America smaller (4.0–5.5 \times 2.5–3 $\mu m).$

A few microscopic characters seem to have escaped description. (i) Especially in Swedish specimens (TFB 13575) caulocystidia are common over the stipe apex, appearing as a delicate, loose hyaline pruina (30×) against the purple-brown stipe surface. Presence of such caulocystidia technically would dictate placement in Gymnopus sect. Vestipedes but can hardly qualify as vesture. (ii) In squash mounts of both pileipellis (peridermal scalp) and stipe surface small amounts of glutinous material are expressed from the tissues (PhC). This material often takes the form of individual hyphal lengths and must be interpreted as minimal viscid material. When notes accompanying specimens address pileus texture, "viscid" never appears but "wet", "moist" and "slippery" are common, perhaps referencing this embedding material. Pileipellis hyphal walls are not gelatinized, so the leaching substance appears as a hyphal exudate not a matrix. (iii) All examined basidiomata, regardless of geographic origin, exhibited adventitious white pruina on the lower stipe. This tomentum varies greatly in extent, from several millimeters at stipe base to covering the stipe nearly to the pileus. Upward on the stipe the pruina consists of some superficial, interwoven hyphae with individual slender (1.5–2 \times 50-750 μm) hyphae extending outward. Downward the hyphae juxtaposed to stipe surface form a loose thatch with more densely scattered extending hyphae. Toward the stipe base the thatch often forms a soft, white tomentum up to 500 µm thick, and surface hyphae congregate into strigose, apparently coherent synnemata up to 1000 µm long. The thatch itself often engulfs surrounding moss leaves and other detritus. Individual stipes disappear into the engulfing tomentum at base but remain discrete. Whether a single primordium produces multiple basidiomata or whether a cluster of individual primordia is involved remains unresolved. Thatch hyphae are loosely interwoven, firm-walled, conspicuously and frequently clamped, hyaline and consistent in diameter (3.5- $4 \mu m$).

Notes accompanying specimens often identify conifer logs, stumps or forest, but less commonly specify particular trees. Among them are *Larix* (United Kingdom), *Picea* (Sweden, GSMNP), *Pseudotsuga* and *Thuja* (Washington state), *Picea abies*, *Betula*, occasional *Populus*, with *Pinus sylvestris* overstory (Russia).

DISCUSSION

In a paper on the Omphalotaceae with ribosomal ITS sequences Gymnopus acervatus appeared on a long branch between Rhodocollybia and Gymnopus (Mata et al. 2006, Fig. 2). That phylogeny excluded several unalignable regions from the Omphalotaceae dataset to achieve a phylogeny for Omphalotaceae overall. Gymnopus acervatus was excluded from analyses because it could not be reasonably aligned with full length Gymnopus or Rhodocollybia ITS sequences. Placement of G. acervatus within Gymnopus is not supported by the current study. At the ITS level G. acervatus sequences consistently form a clade well separated from other collybioid genera and are not easily aligned with other collybioid genera in variable regions within ITS1 and ITS2 (Fig. 1). In LSU-based phylogenetic reconstructions the closest taxonomic group to G. acervatus was affiliated with Rhodocollybia, either between the two major Rhodocollybia clades rendering Rhodocollybia paraphyletic (Bayesian analysis) or derived from Rhodocollybia, but LSU trees constrained so that G. acervatus is monophyletic (as in the ITS-based tree) are not significantly different from the unconstrained tree.

Morphologically *G. acervatus* is not a *Rhodocollybia*. *Rhodocollybia* is defined by a pinkish cream spore print. *Gymnopus acervatus* has white spores more consistent with other genera of Omphalotaceae (i.e. *Mycena, Marasmius, Clitocybe, Tricholoma*, etc.) and spores are neither dextrinoid, cyanophilous nor thickwalled. Because "*Gymnopus acervatus*" is neither *Rhodocollybia* nor *Gymnopus* based on ITS and LSU sequences a new genus to accommodate this species is proposed here.

Percent ITS sequence difference between collections in Connopus Clade 1 (western North American collections) and Clade 2 (eastern North American and European collections) is at the margin of percent sequence divergence suggestive of different molecular species (2.99-3.80%; see Hughes et al. 2009). While sequence divergence within species vary with species concepts and taxonomic groups, the observed sequence difference, the well supported western North American clade and lack of any observed hybridization suggests that the western North American collections might be a distinct species. While Clade 2 ITS Scandinavian and eastern North America sequences are similar, morphological differences in cheilocystidia, pileipellis structure and basidiospore dimensions were observed. Further study is needed to determine whether collections in clades 1 and 2 are reproductively isolated and/or whether European and eastern North American collections are conspecific.

With several ITS sequences representing Connopus acervatus a question could be raised about a "representative sequence" or a candidate for barcode sequence. We consider that the notion of bar-coding should not bypass the International Code of Botanical Nomenclature and its conventions. Thus it follows that because the epithet originated from Fries (1821:121), an exemplar sequence must be based on a southern Swedish collection vouchered by an accepted herbarium specimen. Even within the sequences included in our phylogeny, small but distinct sequence differences can be seen. We suggest that sequence GU318387 (ITS) and FJ750255 (LSU) (TFB 13532 = TENN 62879) serve as exemplar sequences for the purposes of bar-coding. This collection is heterozygous and two sequences were deposited. Within Scandinavia several different haplotypes have been recovered.

GenBank is noted for inaccurate phylogenetic designations and the error rate might be as high as 20% (Bridge et al. 2003, Nilsson et al. 2006). Correction of inaccuracies ultimately must be based on specific published phylogenies that cover the groups in question. As part of this study we identified sequences in GenBank with assigned names that are not congruent with their placement in the phylogeny as follows: large subunit sequence (FIG. 3) AF223172 (Moncalvo et al. 2002) = CBS 174.48 Gymnopus acervatus. This sequence is not congruent with true G. acervatus but is congruent with Gymnopus erythropus, AJ406564 Gymnopus dryophilus (E. Langer, no paper cited). This sequence falls within Rhodocollybia.

ACKNOWLEDGMENTS

We thank Drew Parker who provided collection TFB 13590, Steve Trudell who provided collections from Idaho and Aaron Wolfenbarger who provided initial morphological determinations for Idaho material. We also thank Brian O'Meara for help with the Shimodaira Hasegawa test and two anonymous reviewers for comments and suggestions.

LITERATURE CITED

Antonin V, Noordeloos ME. 1997. A monograph of *Marasmius, Collybia* and related genera in Europe. Libri Bot 17:1–256.

Bridge PD, Roberts PJ, Spooner BM, Panchal G. 2003. On the unreliability of published DNA sequences. New Phytolog 160:43–48.

Clémençon H. 2004. Cytology and plectology of the hymenomycetes. Berlin, Germany: J. Cramer.

Fries EM. 1836–1838. Epicrisis systematic mycologi. Typographia Academica. Uppsala, Sweden.

Gardes M, Bruns TD. 1993. ITS primers with enhanced

- specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118.
- GCG. 2000. Wisconsin Package. Version 10.3. San Diego, California: Accelrys Inc.
- Grand E. 2004. Systematics and species concepts in the genera *Lentinus* Fr. and *Panus* Fr., with emphasis on the *Lentinus tigrinus*, *L. crinitis* and *Panus lecomtei* complexes [Doctoral dissertation]. Knoxville: Univ Tennessee Press. 116 p.
- Halling RE. 1983. The genus *Collybia* (Agaricales in the northeastern United States and adjacent Canada. Mycol Mem 8.
- Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 21:160–174.
- Hedh J, Samson P, Erland S, Tunlid A. 2008. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus *Paxillus involutus*. Mycol Res 112:965– 975.
- Hibbett DS. 2006. A phylogenetic overview of the Agarico-mycotina. Mycologia 98:917–925.
- -, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch T, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, [Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiß M, White MM, Winka K, Yao Y-J, Zhang N. 2007. A higherlevel phylogenetic classification of the Fungi. Mycol Res 111:509-547.
- Huelsenbeck JP, Ronquist F, Mielsen R, Bollback JP. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314.
- Hughes KW, Petersen RH. 2004. A phylogenetic reconstruction of *Lentinellus*. Bibliothec Mycol 198:249–268.
- ——, ——, Johnson JE, Moncalvo J-M, Vilgalys R, Redhead SA, Thomas T, McGhee LL. 2001. Infragenic phylogeny *Collybia* s. str. based on sequences of ribosomal ITS and LSU regions. Mycol Res 105:164–179.
- ——, ——, Lickey EB. 2009. Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species delimitation across basidiomycete fungi. New Phytol 182:795–798.
- ———, Mata JL, Psurtseva NV, Kovalenko AE, Morozova OV, Lickey EB, Cifuentes-Blanco J, Lewis DP, Nagasawa E, Halling RE, Takehashi S, Aime MC, Bau T, Henkel T. 2007. *Megacollybia* (Agaricales). Rep Tottori Mycol Inst 45:1–57.
- Jin J, Hughes KW, Petersen RH. 2001. Phylogenetic relationships of *Panellus* (Agaricales) and related

- species based on morphology and ribosomal large subunit RNA sequences. Mycotaxon 79:7–21.
- Knudsen H, Vesterholt J, eds. 2008. Funga Nordica. Copenhagen: Nordsvamp. 965 p.
- Krueger D. 2002. Monographic studies in the genus *Polyporus* (Basidiomycotina) [Doctoral dissertation]. Univ Tennessee Press. 166 p.
- Kühner R, Romagnesi H. 1953. Flore analytique des champignons superieurs. Paris: Masson et Cie.
- Lickey EB, Hughes KW, Petersen RH. 2003. Phylogenetic and taxonomic studies in *Artomyces* and *Clavicorona* (Homobasidiomycetes: Auriscalpiaceae). Sydowia 55: 181–254.
- Maddison D, Maddison W. 2009. Mesquite: a modular system for evolutionary analysis. Version 2.72. http://mesquiteproject.org
- Mata JL, Halling RE, Hughes KW, Petersen RH. 2004. *Rhodocollybia* (Agaricales) in Neotropical montane forests. Mycol. Prog. 3:337–351.
- ———, Hughes KW, Petersen RH. 2006. An investigation of /omphalotaceae (Fungi: Euagarics) with emphasis on the genus *Gymnopus*. Sydowia 58:191–189.
- Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo J-M, Ge Z-W, Yang Z, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNotis M, Danielle GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS. 2006. Major clades of *Agaricales*: a multilocus phylogenetic overview. Mycologia 98:982–995.
- ———, Wang Z, Binder M, Curtis JM, Lim Y-W, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin JF, Wilson AW, Froslev T, Ge Z-W, Kerrigan RW, Slot JC, Yang Z-L, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS. 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451.
- McNeil R. 2006. Le grand livre des champignons. Waterloo, Belgium: Michel Quintin. 574 p.
- Moncalvo J-M, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clemencon H, Miller OK Jr. 2002. One hundred seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400.
- Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Köljalg U. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. Publ Lib Sci One 1:e59.
- Phillips R. 1991. Mushrooms of North America. London: Little, Brown & Co. 319 p.
- Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinform 14:817–818.
- Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple JS. 2001. *Coprinus* Pers. and the disposition of *Coprinus* sensu lato. Taxon 50:203–241.
- Ryman S, Holmåsen I. 1984. Svampar. Stockholm: Interpublishing. 718 p.
- Shimodaira H, Hasegawa M. 1999. Multiple comparisons of

- loglikelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116.
- Singer R. 1986. The Agaricales in modern taxonomy. 4th ed. Koenigstein, Germany: Koeltz Scientific Books. 981 p., 88 pl.
- Swofford D. 2002. PAUP*: phylogenetic analysis using parsimony (* and other methods) Version 4.0. Sunderland, Massachusetts: Sinauer Associates Inc.
- Trudell S, Ammirati J. 2009. Mushrooms of the Pacific Northwest. Portland, Oregon: Timber Press. 349 p.
- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. San Diego, California: Academic Press. p 315–322.