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Abstract 

 
 

Abstract 

With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising 

woody perennial plants that occur from Scandinavia to South Africa. According to previous 

studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, 

basal clade, and the southern species, present in South Africa, form a robust monophyletic 

group. In this work a molecular phylogenetic analysis from European and from Central and 

South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 

5´trnK-matK, as well as the nuclear DNA marker ITS, in order i) to state the monophyly of 

the northern and southern species, ii) to determine the phylogenetic relationships between the 

species and contrasting them with previous systematic research studies and iii) to compare the 

results provided from nuclear data and explore possible evolutionary patterns. All species 

were monophyletic except for the widely spread E. arborea, and E. manipuliflora. The 

paraphyly of the northern species was also confirmed, but three taxa from Central East Africa 

were polyphyletic, suggesting different episodes of colonization of this area. The inheritance 

path of chloroplast markers and the mitochondria region cox3 from the analysis of a 

controlled hybrid and its parents was tested. The maternal inheritance of organelles is 

described for the first time in Erica, enabling the hypothesis that incongruences between 

chloroplast and ITS marker trees may be the result of a reticulate evolution within the genus. 

An approximation of nuclear DNA amount by the quantification of the relative genome 

amount via flow cytometry with DAPI was assayed for selected samples, all revealing to have 

a similar genome size, with the exception of E. bauera that seemed to present a higher ploidy 

level. The vitality test of pollen grains after storage from two Erica species was carried out 

using a FDA solution and applying UV-light fluorescence microscopy techniques with a 

positive yield of up to two living cells within the pollen tetrad after finalizing the storage 

period. 
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Zusammenfassung 

Erica L. ist mit mehr als 840 Arten eine der umfangreichsten Gattungen der Ericaceae. Erica 

ist eine immergrüne Pflanze, die sich von Europa bis zu nach Südafrika ausbreitet hat. 

Bisherige Studien zeigen, dass die nördlichen Erica-Arten, d.h. die in Europa und im 

Mittelmeerraum vorkommenden Arten, eine paraphyletische Gruppe bilden, währenddessen 

die südlichen Arten als eine monophyletische robuste Gruppe dargestellt werden. In dieser 

Arbeit wurde eine molekular phylogenetische Analyse der europäischen und zentral- und 

südafrikanischen Erica-Arten durchgeführt. Dabei wurden sowohl chloroplastische als auch 

nukleare DNA-Marker eingesetzt. Die entsprechenden untersuchten Regionen sind trnL-trnL-

trnF und 5´trnK-matK, und ITS. Die Analyse beabsichtigte i) die Feststellung der Monophylie 

der nördlichen und südlichen Erica-Arten, ii) die Bestimmung der phylogenetischen 

Beziehungen zwischen den Arten und Vergleich gegenüber ehemaligen Studien und iii) die 

Gegenüberstellung der nuklearen Information, um neue mögliche evolutive Muster zu 

untersuchen. Alle Arten waren monophyletisch mit der Ausnahme von E. arborea und E. 

manipuliflora. Die Paraphylie der nördlichen Arten wurde bestätigt. Allerdings waren drei 

Taxa aus Zentralafrika polyphyletisch. Dies lässt vermuten, dass verschiedene 

Besiedlungsperioden stattgefunden haben könnten. Der Vererbungspfad der Chloroplasten-

Marker sowie der Mitochondrien-Region cox3 aus einem kontrollierten Hybrid wurden 

getestet. Dabei wurde zum ersten Mal die maternale Vererbung der Organellen bei Erica 

beschrieben. Dies ermöglicht die Hypothese, dass Inkongruenzen der Chloroplasten und ITS-

Bäume das Resultat einer  netzähnlichen Evolution innerhalb der Gattung sein könnte. Die 

relative Genomgröße wurde via Durchflusszytometrie mit DAPI für selektierte Proben 

kalkuliert. Alle untersuchten Proben zeigten eine ähnliche Genomgröße mit der Ausnahme 

von E. bauera. Diese hat vermutlich einen höheren Ploidiegrad. Die Vitalität der Pollenkörner 

nach der Lagerung wurde via Fluoreszenzmikroskopie mit einer FDA-Lösung getestet. Dies 

ergab ein positives Ergebnis von ca. zwei lebendigen Zellen innerhalb der Pollentetrade nach 

der Lagerung. 
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1 Introduction 

Erica L. is a flowering plant (angiosperm) genus that taxonomically belongs to the calcifuge 

family Ericaceae (Oliver 1989; Luteyn 2002) (Table 1-1). Comprising around 125 genera and 

4500 species, Ericaceae is a heliophilic family of acid loving edaphic conditions, presenting a 

worldwide geographic allocation and hence a corresponding diverse climatic distribution 

pattern among the temperate and cool tropical regions of all continents, excluding Antarctica 

(Luteyn 2002). With approximately 840 species, Erica is the second largest genera within its 

family preceded by ca. 1000 Rhododendron species including Azalea, and followed by 

Vaccinium with ca. 450 species, Cavendishia with ca. 130 species and Gaultheria with only 

around 115 species (Luteyn 2002). In present time the genus Erica is grouped together with 

other 23 genera in the monophyletic subfamily Ericoideae (Kron and Chase 1993), which 

includes five tribes: Bejarieae, Phyllodoceae, Empetreae comprising the genus Corema D. 

Don, Rhododeae, and Ericeae (Kron et al. 2002). The last one containing the genera 

commonly known as true heaths or heathers: Calluna Salisb., Daboecia D. Don and Erica L. 

(Oliver 1989). Early classification by Bentham (1839) subdivided the Ericeae tribe in two 

subtribes: Salaxideae and Euriceae where Calluna and Erica were included, but not 

Daboecia, which was categorized in the Rhododendroideae subfamily of Ericaceae due to the 

variance shown to the anatomical ericoid model such as deciduous corolla and septicidal 

capsule (Oliver 1991). While Calluna and Daboecia are occurring as monotypic genera, Erica 

presents the largest number of species of the whole subfamily (Fagúndez et al. 2010). 

Table 1-1. Taxonomy of the Genus Erica (Oliver 2000). 

Kingdom Plantae  

Order Ericales 

Family Ericaceae 

Subfamily Ericoideae 

Tribe Ericeae 

Genera Erica, Calluna, Daboecia 
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Erica is distributed in whole Europe comprising the Atlantic islands, the Middle East: 

Lebanon, Syria and Turkey, Yemen in the south-western corner of the Arabian Peninsula, and 

all the way through the African continent including Madagascar and the Mascarene Islands, 

showing mainly a vertical dispersion line from Norway to the Cape of Good Hope (Oliver 

1989, 1991 and 2000). Twenty different Erica species are disseminated in the European and 

nearby areas including the Middle East and Arabian Peninsula (Ojeda et al. 1998; Fagúndez et 

al. 2010). 

A diversification of around 750 species, meaning an approximately 95% of the total species, 

is found in a ca. 90.000 km2 land area of the south western Cape Province of South Africa 

between latitudes 31° and 34°30´S, with a high level of endemism and considered to be the 

epitome of floral biodiversity of the fynbos biome (Oliver 1991; Oliver 2000; Goldblatt and 

Manning 2002). By this the South African Cape flora is assumed to be a biodiversity hot spot 

outside of the tropics (Segarra-Moragues and Ojeda 2010) and the only place in the world 

with such a high number of diverse Ericaceae species (Goldblatt and Manning 2002), 

constituting an extraordinary and unique distribution event in the plant kingdom. 

In addition to the described northern and southern heather species, there are several hybrids 

produced as a consequence of interspecific fertilization when parent plants overlap their 

growing habitat or geographical distribution. Natural hybrids are already described in South 

Africa as E. × vinacea L. Bol. (E. fastigiata L. × E. fervida L. Bol.) (Oliver 1986), and in the 

European region:  Erica × stuartii M. T. Masters (E. tetralix L. × E. mackayana Bab.), Erica × 

veitchii Bean (E. arborea L. × E. lusitanica Rudolphi.), Erica × watsonii Benth. (E. ciliaris L. 

× E. tetralix L.), Erica × williamsii Druce. (E. vagans L. × E. tetralix L.), and Erica × 

nelsonii (E. tetralix L. × E. cinerea) (Fagúndez 2006, 2012b; Rose 2007; Nelson, 2012). The 

biogeography of these hybrids comprises mostly western Ireland and Galicia in north-western 

Spain, Asturias in northern Spain, southern England, north-western France, and the Lizard 

Peninsula in Cornwall in England, respectively (Fagúndez 2006; Nelson 2012). The artificial 

hybrid Erica × darleyensis (E. carnea L. × E. erigena R. Ross.) is normally a sterile plant but 

there is also new evidence that some clones are able to produce viable seeds after deliberate 

cross pollination making it a naturalized hybrid, that is an artificial plant now capable of 

growing by itself (Nelson 2012).  

A linkage of Erica species between the European and the African continent is given 

nowadays mainly by: Erica arborea, Erica australis, Erica scoparia, Erica ciliaris, Erica 
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erigena, Erica multiflora, Erica umbellata, Erica sicula and Erica terminalis (Oliver 1991, 

2000; Amor et al. 1993, Desamoré et al. 2011). The first one trespasses the Sahara desert 

occurring from Malawi, in the south, to Yemen, in the east, as well as in the Emi Koussi 

summit of the Tibesti Mountains, a volcanic group in the central Sahara desert located in 

northern Chad (Oliver 1991). Hansen (1950) already suggested Erica arborea as the most 

primitive European species of its genus and as a possible common ancestor of the whole 

group. Erica australis grows in north and west heathlands of the Iberian Peninsula, 

comprising Portugal and Spain, and it is also contemporary in northwest Morocco (Amor et 

al. 1993). Erica scoparia is distributed within Macaronesia, south-western Europe and north 

western Africa (Desamoré et al. 2011).  

The tribe Ericeae can be botanically referred as a group of woody perennial shrubs or 

subshrubs of 0.2-1.5 m high, although some Erica species such as Erica arborea, Erica 

terminalis and Erica scoparia found in southern Europe and tropical regions of Africa may 

form tree plants that can reach up to 20 m high (Oliver 1991 and 2000). European Ericas 

grow typically in heathlands and moorlands in the north or in maquis and garigue in the south 

of the continent. Heathlands or moorlands are highly dynamic habitats (Fagúndez 2012a) 

developed, as a consequence of breeding grazing animals and as a result of the collection of 

wood and scrub for fire since the Mesolithic age (Rees 1996; Rackham 2003; Simmons 2003). 

These ecosystems still play an important role in the traditional European cultural landscape 

(Fagúndez 2012a). Maquis and garigue are shrubland regions along the shore of the 

Mediterranean and thus much affected by drought (Small and Wulff 2008). These landscapes 

with characteristic sclerophyllous shrub vegetation present a high canopy mat that is a high 

content of organic humus, with characteristic acid and low nutrient soil properties, and with 

low presence of tree plants. As reported by Oliver (1991) Erica is sometimes the only shrub 

capable of growing under such extreme conditions of pure organic matter. 

In South Africa, concentrated in the Cape Town Region, Erica species are mainly confined to 

grow in acidic sandstone, quartzitic habitats or humic calcareous soils (Oliver 1991) with arid 

or semi-arid climatic states at high altitudes under the presence of dense fog, as well as other 

plants of the Ericaceae family in the Andean Neotropics: Ecuador and Colombia, occurring at 

Andean altitudes and open moist environment (Luteyn 2002). 

According to their geographical habitat, different characteristic botanic features can be 

noticed for Erica and its tribe Ericeae. For example where European Erica species have the 
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faculty to resprout from lignotubers after a fire event occurs; this surviving capacity is rather 

unusual for South African Erica species (Ojeda et al. 1998) which are more prone to be 

seeders as a post fire response for survival (Segarra-Moragues and Ojeda 2010). Parameters 

such as predilection for acidic soils, pubescence and plant height can be related to temperate, 

Mediterranean and Atlantic heaths respectively (Ojeda et al. 1998), being a morphological 

manifestation of the chorological pattern diversity of heathers in the European territory (Ojeda 

et al. 1995). 

Descriptive morphological aspects of heathers are their typical leaves, inflorescence and 

fruits. Leaves are ‘ericoid’ and determined by a narrow, needle like shape and sulcate abaxial 

surface, with a whorled arrangement, and a waxy layer in the upper epidermis (Oliver 2000; 

Oliva et al. 2009). Of all heathers only Erica presents a rolling-in of the leaf margins, with 

exception of some species that grow in moist locations and thus present a flat orbicular leaf 

(Oliver 2000). This kind of leaf morphology is one of many other xerophytic characteristics of 

plant organs, among other traits, for prevention of water loss for example through 

transpiration and high light radiation damage (Oliva et al. 2009). 

The hermaphrodite flowers in Erica species are arranged in inflorescences and consist 

principally of ovaried flowers with stamens containing usually eight not fused anthers as 

described by Oliver (2000). Anthers present two appendages, and are so variable that are an 

important characteristic to discriminate between different species (Schumann et al. 1995). 

Pollen grains inside the anthers are described either as trizonocolpate or as trizonocolporate 

and are arranged in tetrads or monads with viscin threads lacking, presenting a range size 

between 17.4 µm and 82 µm (Oliver 2000). 

In Erica corollas are persistent and vary in shape, colour and texture (Stevens 1971). While 

European Ericas have bell shape flowers, the South African ones developed a high variation 

in form (Schumann et al. 1995), what can be associated with a particular pollination 

syndrome. Tubular, flask, globose, urn, bell, bottle and cup shape, as well as white, red or 

yellow colours, are all distinctive corolla characteristics that can be found (Schumann et al. 

1995). Ericas are self-pollinated, cross pollinated or both depending on the species itself, and 

there are three pollination syndromes described: insect, bird and wind pollinated flowers, 

leading to marked morphological characteristics (Hagerup and Hagerup 1953; Oliver 1991). 

As described by Schumann et al. (1995) entomophilous pollinated plants comprise around 

80% of the South African species. Flowers tend to be flask, urn, egg, or conical shaped, and 
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the anthers present appendages. Bird pollinated ones have straight or curved tubes, and bi or 

tricolour flowers. The wind pollinated plants are considered to be 5% of the total South 

African species and have small, rounded egg or open mouth corollas. 

In the genus Erica the fruits are complete dehiscent capsules, with exception of a few species 

with partially dehiscent or indehiscent fruits (Oliver 2000). The endocarp is sclerified and 

responsible for the dehiscence behaviour of the fruit (Oliver 2000). Seeds contained in the 

capsule have been much more studied for the European than the South African Erica species. 

They are normally dark brown to black and may have a size range between 0.3-1.5 mm long x 

0.26-0.5 mm wide (Fagúndez and Izco 2004a, 2004b and 2010), where their morphological 

descriptive characters such as seed coat anatomy can be implemented for taxonomic purposes 

to explain phylogenetic relations at a subgeneric level. 

There are three aspects that can be distinguished where Erica plays an important role: the 

social, the environmental and the economic aspect. Until the eighteen century and even 

nowadays heathers had primarily a significant value as a basic commodity for human use. 

They were implemented as a natural resource for the manufacture of brooms and brushes, 

construction of roofs, as mattress stuffing, source of nectar for honey and beeswax, as fuel for 

cooking and heating, and for flavouring beverages and foods (Small and Wulff 2008), proving 

to be of important help as a tool for household and work duties. 

The environmental aspect of Erica includes the constitution of moorland among other 

ecosystems, habitat for birds and insects, and also as an important constituent of the food 

chain as a source of nutrients such as minerals for the heathland fauna (Rees 1996; Small and 

Wulff 2008). Some species of Erica are also considered to be metallophyte or capable of 

tolerating polluted soils, due to associated mycorrhiza in their root systems (Bradley et al. 

1982), such as Erica andevalensis and Erica australis (Abreu et al. 2008; Oliva et al. 2009). 

Erica may serve as a natural source of decontamination of polluted areas. 

Nowadays heathers have also an economic aspect to be considered. They are being 

domesticated and cultivated for gardening purposes as flowering ornamental plants due to 

their hardiness, that is their characteristic resistance to survive drought and colder periods as 

well as nutrient poor soil environments, making them so a considerable option adequate for 

horticulture (Small and Wulff 2008). Due to their gardening properties heathers have 

developed a major economic importance as ornamental crops. Thus breeding and production 
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of heaths has become a gain factor of the horticultural industry. These plants will be breed and 

produced for the local market in Germany as well as for export in the international market 

with 110 million Calluna and 10 million Erica plants cultivated for economic purposes 

nationwide in the year 2012 (Sondergruppe Azerca, personal communication).  

Since the classical review performed by Stevens (1971) there have been important advances 

about the knowledge of the phylogenetics and systematics of the family Ericaceae. Among 

them, the use of molecular markers to assess evolutionary relationships has clarified its 

phylogenetics, leading to a new systematic approach of the family (Kron et al. 2002) and to 

the differentiation of several taxonomic groups within it like the Ericoideae (Gillespie and 

Kron 2010). Erica L., one of the largest genus of the family, was first investigated by 

McGuire and Kron (2005) and later in an extensive study by Pirie et al. (2011).  

Considering the above mentioned qualities and important facts of Erica as a crop as well as a 

natural component of the environment, it is of biological as well as of horticultural breeding 

relevance to learn and understand more deeply about the interspecific phylogenetic 

relationships, among other qualities such as genome DNA quantification and pollen storage to 

facilitate a possible interspecific cross pollination between European and South African 

species. This becomes even more important when the systematics of the genus Erica is still 

unresolved (Fagúndez and Izco 2008).  

To accomplish the desired analysis of the plants a four step approach was followed in this 

project. First a molecular phylogenetic analysis of the different Erica species was done via 

standard PCR amplification and subsequently sequencing of chloroplast and nuclear DNA 

data. Specific primers for markers located in the large single copy region of the chloroplast 

genome of high evolution rate were used: the trnL gene, a group I intron, with a conserved 

secondary structure that is homologous along land plants, together with the trnL-trnF 

intergenic spacer region that differs in its length and base pair composition (Gielly and 

Taberlet 1994; Hao et al. 2009), and the 5´trnK-matK-intron, a group II intron, and matK 

gene, a rapidly evolving and ubiquitous open reading frame located within the trnK intron 

(Hilu et al. 2003; Hausner et al. 2006). Universal primers were implemented for amplification 

of the ribosomal nuclear marker region ITS, an internal transcribed spacer, consisting of two 

spacers with valuable characters suitable for phylogenetic studies (Baldwin et al. 1995). The 

obtained matrices were then implemented for the calculation of the phylogenetic trees to 
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develop an interpretive framework, based on the evolutionary history of encoded DNA 

marker regions, and so to depict the relationships of the contemplated species.  

Since a hypothesis based on a hybrid origin for some species is presented, in the second step 

the parental inheritance of mitochondria and chloroplast was tested by analysing one artificial 

hybrid and its respective parents through standard PCR amplifications and further sequencing 

of mitochondrial marker region cox3, a cytochrome c oxidase subunit III gene, useful for 

phylogenetic differentiation with high amplification efficiency (Duminil et al. 2002; Tian et 

al. 2013), together with the already above mentioned chloroplast markers.  

In the third step the intact cell nuclei of leaves were isolated, stained and then measured by 

means of flow cytometry methods to obtain the quantification of the relative total plant 

nuclear genome. This procedure enables a fast estimation and comparison of differences in 

genome DNA amount between the given species by analysing fluorescence intensities 

between the samples (Arumuganathan and Earle 1991). This should enable to indirectly 

speculate which plants are more prompt to be cross pollinated when their genome size show 

to be similar.    

In the last step the pollen vitality was tested after storage of pollen grains under cold 

conditions and subsequently staining them for ultraviolet light exposure for the fluorescence 

microscopic analysis (Pinillos and Cuevas 2008). This method should allow the definition of a 

possible viable storage time period of the pollen grains and by this to pursue a possible cross 

pollination between Erica species, especially between European and South African species 

with different seasonal flowering time during the year.   

The present work has the aim to create useful information as an approach to clarify the 

phylogenetic relations within as well as between European and South African Erica species. 

That is to try to explain the north to south origin and the connections of the plant genus. This 

will provide information for biological purposes for better understanding of the natural 

environments involved, and on the other hand, in an economic level to directly support cross 

breeding within and between these plant species, supporting at the same time the 

sustainability of plant breeders, and so enabling the development of new Erica varieties 

available in the market in the future time. 
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2 Materials and Methods  

2.1 Erica Species  

For the current study a total of 244 plants of 20 different European, 160 different South 

African, and three Central East African Erica species were analysed. Species names, origin of 

the sample collection and voucher accession numbers are reported in Table 2-1, 2-2 and 2-3 

for the European, South and Central East African plant samples respectively. Calluna vulgaris 

and Daboecia cantabrica were used as outgroup of the genus Erica, data comprised in Table 

2-4. Plant samples were obtained from the collections of: Dr. Jaime Fagúndez from the 

University of Santiago de Compostela in Spain, the Bundesgarten-Belvedere Vienna in 

Austria, Kirstenbosch National Botanical Garden from Cape Town in South Africa, Botanic 

Gardens of the Rheinische Friedrich-Wilhelms-Universität Bonn in Germany, and from the 

Gartenbauzentrum Straelen in Germany. Voucher specimens are deposited in the SANT 

herbarium of the University of Santiago de Compostela and are accessible through GBIF 

(global biodiversity information facility).  
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Table 2-1.  Erica species from Europe and Middle East analyzed in this work. 

Species Collection Place / Altitude [m] / 
Year  

Voucher  
Specimens SANT herbarium / 

Collector 
Erica andevalensis 
Cabezudo & Rivera 

Huelva, Spain/1999 Fagúndez 

Erica arborea L.  León, Spain/640 m/2009 
 

Fagúndez 

Erica arborea  L. Jaén, Spain//730 m/2009 
 

Fagúndez 

Erica arborea L. Vizcaya, Spain/2004 
 

Fagúndez 

Erica arborea L. Dalmatia, Croatia/2007 
 

Fagúndez 

Erica arborea L. Ciudad Real, Spain/ 
640 m/2010 

 

Fagúndez 

Erica arborea L. Ciudad Real, Spain/ 
730 m/ 2010 

 

Fagúndez 

Erica arborea L. Thasos, Greece/2007 Carni 

Erica arborea L. La Gomera, Spain/1999 
 

Fagúndez 

Erica arborea L. Madeira, Portugal/2004 
 

Fagúndez 

Erica arborea L. Turkey AAD 17714  

Erica arborea L. Tenerife, Spain/2010 
 

Kuppler 

Erica australis L. León, Spain/1130 m/ 2009 
 

Fagúndez 

Erica australis L. Jaén, Spain/740 m/ 2009 
 

Fagúndez 

Erica carnea L. Italy/2006 Andrés  

Erica carnea L. BBG  

Erica ciliaris L. A Coruña, Spain/290 m/ 2009 
 

Fagúndez 

Erica ciliaris L. Lugo, Spain/415 m/ 2009 
 

Fagúndez 

Erica ciliaris L. A Coruña, Spain/280 m/ 2009 
 

Fagúndez 

Erica ciliaris L. Cádiz, Spain/2002 Fagúndez, Reyes 

Erica cinerea L. Lugo, Spain/465m/ 2009 
 

Fagúndez 

Erica cinerea L. A Coruña, Spain/280 m/ 2009 
 

Fagúndez 

Erica cinerea L. A Coruña, Spain/280 m/ 2009 
 

Fagúndez 

Erica cinerea L. Connemara, Ireland/ 
40 m/ 2009 

Fagúndez 

Erica cinerea L. Connemara, Ireland/ 
110 m/ 2009 

Fagúndez 

Erica erigena R. Ross A Coruña, Spain/290 m/ 2009 Fagúndez 
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Table 2-1 continued 
  

Species Collection Place / Altitude [m] / 
Year 

Voucher  
Specimens SANT herbarium / 

Collector 

Erica erigena R. Ross A Coruña, Spain/280 m/ 2009 
 

Fagúndez 

Erica erigena R. Ross Connemara, Ireland/ 
40 m/ 2009 

Fagúndez 

Erica lusitanica subsp. 

cantabrica Rudolph. 
Oviedo, Spain/2004 Fagúndez 

Erica lusitanica subsp. 

cantabrica Rudolph. 
Guipuzkoa, Spain/2004 Fagúndez 

Erica lusitanica subsp. 

lusitanica Rudolph. 
Ciudad Real, Spain/2000 

 
Fagúndez 

Erica lusitanica subsp. 

lusitanica Rudolph. 
Huelva, Spain/1999 Fagúndez, Reyes  

Erica mackayana Bab. Lugo, Spain/465m/ 2009 Fagúndez 

Erica mackayana Bab. A Coruña/280 m/ 2009 Fagúndez 

Erica mackayana Bab. Connemara, Ireland/ 
70 m/ 2009 

Fagúndez 

Erica mackayana Bab. Connemara, Ireland/ 
70 m/ 2009 

Fagúndez 

Erica mackayana Bab. Connemara, Ireland/ 
70 m/ 2009 

Fagúndez 

Erica maderensis (Benth.) 
Bornm. 

Madeira, Portugal/1850 m/2004 Fagúndez 

Erica maderensis (Benth.) 
Bornm. 

Madeira, Portugal/1800 m/2004 Fagúndez 

Erica manipuliflora Salisb. Dalmacia, Croatia/2007 Fagúndez 

Erica manipuliflora Salisb. Cyprus/230m/2009 Fagúndez 

Erica manipuliflora Salisb. Mar Roukos, Lebanon/2010 Fagúndez, Bou-Daguer 

Erica manipuliflora Salisb. BGV  

Erica multiflora L. Sicily, Italy/95m/2009 Fagúndez 

Erica multiflora L. Sicily, Italy/640m/2009 Fagúndez 

Erica multiflora L. Valencia, Spain/2000 Fagúndez 

Erica platycodon (Webb & 
Berthel.) S.Rivas-Martínez 
subsp. maderincola (D.C. 
McClin.) S. Rivas-Martínez 
et al. 

Madeira, Portugal/750 m/2004 Fagúndez 

Erica platycodon (Webb & 
Berthel.) S.Rivas-Martínez 
subsp. maderincola (D.C. 
McClin.) S. Rivas-Martínez 
et al. 

Madeira, Portugal/1850 m/2004 Fagúndez 
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Table 2-1 continued 

  

Species Collection Place / Altitude [m] / 
Year 

Voucher  
Specimens SANT herbarium / 

Collector 
Erica platycodon (Webb & 
Berthel.) S.Rivas-Martínez 
subsp. platycodon 

Tenerife, Spain/1999 Fagúndez 

E. scoparia L. subsp. azorica 
(Hochst.) D. A. Webb 

Açores, Portugal/2009 
 

 Pene 

E. scoparia L. subsp. azorica 
(Hochst.) D.A. Webb 

Açores, Portugal/2009 
 

 Pene 

Erica scoparia L. subsp. 
scoparia 

Cádiz, Spain/2002 Fagúndez, Reyes 

Erica scoparia L. subsp. 
scoparia 

Ciudad Real, Spain/  
730 m/ 2010 

Fagúndez 

Erica sicula Gussone subsp. 
sicula 

Sicily, Italy/160 m/ 2009 Fagúndez 

Erica sicula Gussone subsp. 
sicula 

Sicily, Italy/250 m/ 2009 
 

Fagúndez 

Erica sicula Gussone subsp. 
sicula 

Sicily, Italy/240 m/ 2009 
 

Fagúndez 

Erica sicula Gussone subsp. 
libanotica 

Kyrenia, Cyprus/630 m/ 2009 
 

Fagúndez 

Erica sicula Gussone subsp. 
libanotica 

Kyrenia, Cyprus/390 m/ 2009 Fagúndez 

Erica sicula Gussone subsp. 
libanotica 

Kyrenia, Cyprus/420 m/ 2009 Fagúndez 

Erica sicula Gussone subsp.  
libanotica 

Nahr Ibrahim, Lebanon/ 2010 Fagúndez, Bou-Daguer 

Erica sicula Gussone subsp. 
libanotica 

Aaqoura, Lebanon / 
1440 m/ 2010 

Fagúndez, Douaihy 

Erica sicula Gussone subsp. 
libanotica 

Nahr Ibrahim, Lebanon/2010 Fagúndez, Bou-Daguer 

Erica sicula Gussone subsp. 
cyrenaica 

Libya Guichard 

Erica sicula Gussone subsp. 
libanotica 

Antalya, Turkey/ 1992 Turland 

Erica spiculifolia Salisb. Serbia/2000 m/2005 Lazarevic 
Erica spiculifolia Salisb. Romania/2005 Bita-Nicolae 
Erica spiculifolia Salisb. BGV  
Erica terminalis Salisb. Valencia, Spain/ 2002 Izco 
Erica terminalis Salisb. Málaga, Spain/ 2002 

 
Fagúndez 

Erica tetralix L. A Coruña, Spain/290 m/ 2009  
 

Fagúndez 

Erica tetralix L. Connemara, Ireland/ 
40 m/ 2009 

Fagúndez 
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Table 2-1 continued 
  

Species Collection Place / Altitude [m] / 
Year 

Voucher  
Specimens SANT herbarium / 

Collector 
Erica tetralix L. Connemara, Ireland/ 

70 m/ 2009 
Fagúndez 

Erica tetralix L. Connemara, Ireland/ 
70 m/ 2009 

Fagúndez 

Erica tetralix L. Connemara, Ireland/ 
110 m/ 2009 

Fagúndez 

Erica tetralix L. Ciudad Real, Spain/ 2000 Fagúndez 

Erica umbellata L. Lugo, Spain/465 m/ 2009 
 

Fagúndez 

Erica umbellata L. Toledo, Spain/700 m/ 2000 Fagúndez, Zuazua 

Erica vagans L. A Coruña, Spain/280 m/ 2009 
 

Fagúndez 

Erica vagans L. León, Spain/2010 Fagúndez 

Erica × stuartii M. T. 
Masters 

Connemara, Ireland/ 
70m/ 2009 

Fagúndez 

BGV: Belvederegarten Vienna 

Table 2-2. Erica species from South Africa analysed in this work. 

Species Source /  
Voucher Specimens SANT 

herbarium 
Erica abietina subsp abietina L.  KBG 156/94 

Erica acuta Andr. KBG/ 1402/82 

Erica albens L. KBG/ 790/07 

Erica amoena Wendl. KBG/ 488/94 

Erica aneimena Dulfer KBG/ 974/86 

Erica annectens Guth. & Bol. KBG/ 479/90 

Erica banksii Andr. KBG/ 174/79 

Erica bauera Andr. GBZS/ 40 

Erica baueri Andr. KBG/ 335/05 

Erica bergiana L. BGV/ 83 

Erica blancheana L. Bolus KBG/ 398/88 

Erica blandfordia Andr. KBG 192/04 

Erica blenna Salisb. KBG/ 487/03 
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Table 2-2  continued  
Species Source /  

Voucher Specimens SANT 
herbarium 

Erica bolusiae Salter KBG/ 1466/84 

Erica brachialis Salisb. KBG / 517/85 

Erica caffra L. GBZS / 42 

Erica calycina L. GBZS / 30 

Erica cameronii L. Bolus  KBG / 125/72 

Erica canescens  KBG / 701/05 

Erica capitata L. KBG / 1467/84 

Erica caterviflora Salisb. KBG / 159/95 

Erica cerinthoides L. BBG / 16917 

Erica chamissonis Klotzsch ex Benth. KBG / 227/04 

Erica chrysocodon Guth. & Bol. KBG / 41/82 

Erica clavisepala Guth. & Bol. KBG / 395/88 

Erica coarctata Wendl. KBG / 611/86 

Erica coccinea L. KBG / 211/75 

Erica conica Lodd. BGV / 92 

Erica conspicua Soland. KBG / 283/72 

Erica corifolia L. KBG / 100/04 

Erica cruenta Soland. BGV / 93 

Erica cubica L. KBG / 342/84 

Erica curviflora L. BGB / 22593 

Erica curvirostris  KBG / 177/98 

Erica cyanthiformis Salisb. BGV / 95a 

Erica cyanthiformis Salisb. BGV / 95d 

Erica cyrilliflora Salisb. KBG / 141/07 

Erica deflexa Sincl. KBG / 697/83 
 

Erica demissa Klotzsch ex Benth. KBG / 241/89 

Erica densifolia Willd. KBG / 157/09 

Erica denticulata L. KBG / AH 1009 
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Table  2-2 continued 
 

Species Source /  
Voucher Specimens SANT 

herbarium 

Erica diaphana Spreng. KBG / 348/04 

Erica dichrus Spreng. GBZS / 39 

Erica discolor Andr. KBG / 411/03 

Erica dodii Guth. & Bol. KBG / 794/07 

Erica doliiformis Salisb. BBG / 22592 

Erica duthieae L. Bolus KBG / 163/07 

Erica elimensis L. Bolus BGV / 99 

Erica empetrina L. KBG138/95 

Erica erasmia  KBG / 426/03 

Erica eugenea Dulfer KBG / 131/94 

Erica fairii H. Bolus KBG62/71 

Erica fascicularis L. BGV / 101 

Erica fasciculata Thunb. GBZS / 27 

Erica ferrea Berg. KBG / 457/82 

Erica fimbriata Andr. KBG / 792/07 

Erica foliacea Andr. KBG / 720/82 

Erica fontana L. Bolus KBG / 61/77 

Erica formosa Thunb. BGV / 102 

Erica fourcadei L. Bolus KBG / 290/07 

Erica georgica Guth. & Bol. BBG / 22594 

Erica gibbosa Klotzsch ex Benth.  BGV / 104 

Erica glabella subsp. glabella  KBG / 624/75 

Erica glandulosa Thunb. BGV106 

Erica glauca var. glauca Andr. KBG / 94/04 

Erica glomiflora Salisb. KBG / 795/07 

Erica gracilis Wendl. BGV / 107 

Erica grandiflora L. BGV / 108 

Erica grata Guth. & Bol. GBZS / 23 
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Table  2-2 continued 
  

Species Source /  
Voucher Specimens SANT 

herbarium 

Erica haemastoma Wendl. KBG / 460/82  

Erica haematocodon Salter KBG / 526/87 

Erica halicacaba  KBG / 136/07 

Erica hebecalyx Benth. BGV / 110 

Erica heleogena Salter KBG / 140/07 

Erica heliophila Guth. & Bol. GBZS / 25 

Erica hirtiflora Curtis BGV / 112 

Erica humifusa Hibbert ex Salisb. KBG / 813/07 

Erica imbricata L. KBG / 194/04 

Erica inflata Thunb. KBG / 45/09 

Erica infundibuliformis Andr. KBG / 183/07 

Erica insolitanthera H. A. Baker KBG / 242/94 

Erica laeta Bartl. GBZS / 33 

Erica leptopus var. leptopus Benth. KBG / 714/83 

Erica leucantha Link KBG / 864/89 

Erica leucotrachela H. A. Baker KBG / 988/77 

Erica longifolia Ait. BGV / 114 

Erica lowryensis H. Bolus KBG / 482/03 

Erica lutea Berg. KBG / 158/95 

Erica mammosa L. GBZS / 32 

Erica margaritaceae Soland. BGV120 

Erica massonii  L. KBG / 47/98 

Erica melanthera L. KBG / 290/94 

Erica modesta Salisb. KBG / 462/87 

Erica mollis Andr. GBZS / 21 

Erica monadelphia Andr. KBG610/83 

Erica multumbellifera  KBG / 405/98 
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Table 2-2 continued 
  

Species Source /  
Voucher Specimens SANT 

herbarium 

Erica nabea Guth. & Bol. KBG / 564/06 

Erica nana Salisb. KBG / 115/74 

Erica nevillei L. Bolus KBG / 86/04 

Erica oatesii Rolfe KBG / 823/89 

Erica oblongiflora Benth. KBG / 4/84 

Erica oreotragus E. G. H. Oliv. KBG / 796/07 

Erica ostiaria Compton KBG / 147/79 

Erica pageana L. Bolus GBZS / 26 

Erica parilis Salisb. KBG / 97/04 

Erica parvula Guth. & Bol. KBG / 544/88 

Erica patersonia Andr. BBG / 112675 

Erica patersonii L. Bolus KBG/ 4/89 

Erica peltata Andr. KBG / 348/09 

Erica penicilliformis Salisb. KBG340/06 

Erica perspicua Wendl. BGV / 123 

Erica peziza Lodd. KBG / 169/79 

Erica physodes L. KBGAH 2311 

Erica pillansii H. Bolus BGV / 124 

Erica pubescens L. BGV / 125 

Erica pyxidiflora Salisb.  KBG / 130/07 

Erica quadrangularis Salisb. KBG / 164/07 

Erica quadrisulcata L. Bolus KBG / 543/87 

Erica recta H. Bolus KBG / 211/73 

Erica regia subsp. regia Bartl. KBG / 1613/70 

Erica retorta Montin KBG / 336/84 
Erica rubens Thunb.  BGV / 126 
Erica scabriuscula Lodd. KBG / 428/03 
Erica serpifolia Andr. GBZS / 20 
Erica sessiliflora L. BGV / 129 
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Table 2-2 continued 
  

Species Source /  
Voucher Specimens SANT 

herbarium 

Erica shannonii Lodd. KBG / 607/83 

Erica sitiens Klotzsch KBG / 49/05 

Erica sonderiana Guth. & Bol. KBG / 804/07 

Erica sparrmanii L. KBG / 180/92 

Erica sparsa Lodd. BGV / 130 

Erica spectabilis Klotzsch ex Benth. KBG / 193/84 

Erica stokoei L. Bolus KBG / 62/83 

Erica strigilifolia Salisb. KBG / 249/89 

Erica stylaris Spreng. KBG / 721/83 

Erica subdivaricata Berg. KBG / 655/84 

Erica taxifolia Bauer KBG / 58/82 

Erica tenuis Salisb. KBG/ 446/90 

Erica toringbergensis H. A. Baker KBG / 45/92 

Erica totta Bartl. KBG / 156/95 

Erica tragulifera Salisb. KBG / 349/04 

Erica transparens Berg. KBG / 801/07 

Erica transparens Berg. BGV / 135 

Erica triflora L. BGV / 136 

Erica tumida Ker-Gawl. KBG / 98/04 

Erica turgida Salisb. BGV / 134 

Erica uberiflora E. G. H. Oliv. ex. Simocheilus multiflorus 
Klotzsch  

KBG / 250/89 

Erica urna-viridis H. Bolus KBG / 192/93 

Erica uysii H. A. Baker KBG / 2/84 

Erica vallis-aranearum E. G. H. Oliv. KBG / 545/84 

Erica ventricosa Thunb. GBZS / 34 

Erica verecunda Salisb. KBG / 230/06 

Erica versicolor Andr. KBG / 197/08 

Erica verticilata Berg. BBG / 17637 

Erica vestita Thunb. KBG / 176/05 

Erica viridescens Lodd. 
 

GBZS / 28 
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Table 2-2 continued  
Species Source /  

Voucher Specimens SANT 
herbarium 

Erica viridiflora Andr. KBG / 505/02 

Erica viscaria Ait. KBG / 91/04 

Erica walkeriana Sweet BGV / 140 

Erica winteri H. A. Baker KBG / 343/84 

Erica zwartbergensis  KBG / 361/09 

BBG: Bonn Botanical Garden; BGV: Belvederegarten Vienna; BZS: Gartenbauzentrum Straelen; KBG: Kirstenbosch  South  Africa; 
GBZS: Gartenbauzentrum Starelen 

Table 2-3. Analyzed Erica species from Central East Africa. 

Species Collection Place / 
Altitude [m] / Year 

Voucher  
Specimens SANT 

herbarium / Collector 

Erica kingaensis Engl. subsp. Bequaertii 

(De Wild.) R.Ross 
Rwenzori, Congo/3000 

m/1997 
Pulgar 

Erica rossii L. J. Dorr Rwenzori, Congo/3000 
m/1997 

Pulgar 

Erica trimera subsp. trimera (Engl.) 
H.J.Beentje 

Rwenzori, Congo/3500 
m/1997 

Pulgar 

 

Table 2-4. Genera used as outgroup for Erica. 

Species Collection Place / 
Altitude [m] / Year 

Voucher  
Specimens SANT herbarium / 

Collector 

Calluna Vulgaris (L.) Hull Pontevedra, Spain/900 
m/ 2010 

 

3223 J. Fagúndez 

Daboecia cantabrica (Huds.) 
K. Koch 

Pontevedra, Spain/900 
m/ 2010 

3224 J. Fagúndez 
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Table 2-5.  Species used for parental inheritance analysis of chloroplast and mitochondria 

organelles. 

Species Collection Place 

Erica arborea  L. (mother plant) K. Kramer´s private garden, Germany 

Erica carnea L. (father plant) K. Kramer´s private garden, Germany 

E. ×oldenburgensis (hybrid) K. Kramer´s private garden, Germany 

2.2 Preparation of plant material for molecular analysis 

Herbarium specimen samples as well as fresh plant material were stored in Silica Gel Orange 

(Roth, Karlsruhe, Germany) for long term preservation at room temperature. 20 mg of silica 

gel dried leaves were harvested and put in a 2 ml tube. The tubes were then frozen at -80°C 

for 24 h. Subsequently the frozen leaf samples were fine grinded to a powder using a Qiagen 

Tissuelyser (Retsch GmbH, Haan, Germany) with 3 mm stainless steel grinding balls for 4 

min at a frequency of 30/s. 

2.3 Plant DNA extraction 

Extraction of nuclear and chloroplast DNA from plant leaves was performed using the 

DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following its manufacturer´s protocol. The 

extracted plant genomic DNA of each sample was then dissolved in 200 µl TE buffer and 

stored at -20°C.  

2.4 Polymerase chain reaction 

The nuclear and chloroplast genome regions were amplified from the same accession for each 

species using a standard PCR method. Amplification reactions for all PCR assays presented a 

final volume of 50 µl with 1 µl of plant DNA. The amplification solution contained: 1x Go 

Taq® reaction buffer green (Promega GmbH, Mannheim, Germany), 200 µM of each dATP, 

dCTP, dGTP and dTTP (Promega GmbH, Mannheim, Germany), 0.40 µM of each 
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oligonucleotide primer forward and reverse and 1.5 U/µl Go Taq® DNA polymerase 

(Promega GmbH, Mannheim, Germany). Control tubes without DNA samples were 

performed as negative controls. 

All PCR oligonucleotide primers used in this study were synthesized by biomers.net GmbH, 

Ulm, Germany, dissolved at 100 µM in sterilized double distilled water, and stored at -20°C. 

2.4.1 Chloroplast marker region trnL-trnL-trnF 

Universal primers trnTc and trnTf developed by Taberlet et al. (1991) were implemented 

(Table 2-5) for PCR amplification and sequencing of the two chloroplast DNA regions trnL 

intron and trnL-trnF spacer together. Location of the trnL intron and trnL-trnF spacer regions 

sequenced and position of the primers are shown in Figure 2-2. 

Amplification of the assay was performed in a thermal cycler Tgradient thermoblock 

(Biometra, Göttingen, Germany). The conditions used consisted of a lid temperature of 99°C 

and a first step at 94°C for 2 min for denaturation followed by 35 cycles consisting of 1 min 

denaturation at 94°C, annealing at 52°C for 30sec and 2 min at 72°C. At the end a final 

extension at 72°C for 5 min. Storage at 10°C ran until the samples were collected. 

Table 2-6. Primer sequences for detection of trnL intron and trnL- trnF spacer 

Primer Primer sequence (5´- 3´) Size of PCR product (bp) Reference 

trnLc cgaaatcggtagacgctacg 

800-900 (Taberlet et al. 1991) 
trnFf atttgaactggtgacacgag 
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Figure 2-1. cpDNA trnL intron and trnL- trnF spacer regions. Positions and directions of 

primers used for amplification and sequencing are shown by arrows. Coding regions are 

represented as boxes; dark thin lines represent intron and spacer regions. 

2.4.2 Chloroplast marker regions 5´trnK-matK-intron and matK gene  

The chloroplast regions 5´trnK-matK intron and part of the matK gene were amplified and 

sequenced with two primer pairs. The forward primer matK6 (Shaw et al. 2005), the new 

reverse primer matK79 designed in this work for Erica species (Table 2-6), and the primers 

matK1F and matK1600R (McGuire and Kron 2005) (Table 2-7) respectively. Reverse primer 

matK79 amplified an overlapping region between the gene and the intron which was used to 

align both region parts as one. Location of 5´trnK-matK intron and matK gene regions 

sequenced and position of the primers are shown in Figure 2-3. 

Amplification of the two assays were performed in a thermal cycler Tgradient thermoblock 

(Biometra, Göttingen, Germany). The conditions used consisted of a lid temperature of 99°C 

and a first step at 94°C for 2 min for denaturation followed by 35 cycles consisting of 1 min 

denaturation at 94°C, annealing at 53°C for 30sec and 2 min at 72°C. At the end a final 

extension at 72°C for 5 min. Storage at 10°C ran until the samples were collected. 
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Table 2-7. Primer sequences for detection of 5´trnK-matK-intron 

Primer Primer sequence (5´- 3´) Size of PCR product (bp) Reference  

matK6 tgggttgctaactcaatgg 
800-900 

(Shaw et al. 2005) 

matK79R actcctgaaagataagcga Designed in this work  

Table 2-8. Primer sequences for detection of matK gene 

Primer Primer sequence (5´- 3´) Size of PCR product (bp) Reference  

matK1F acgaattcatggtccggtgaagtgttcg 
800-900 (McGuire and Kron 2005) 

matK1600R tagaattccccggttcgctcgccgttac 

 

Figure 2-2. cpDNA 5´trnK-matK intron and matK gene regions. Positions and directions of 

primers used for amplification and sequencing are shown by arrows. Coding regions are 

represented as boxes; dark thin line represent intron region. 

2.4.3 Nuclear ribosomal DNA region 

Molecular detection of the ITS region of the plant samples was carried out with a single 

primer set for the standard PCR as well as for the sequencing process. Primers ITS17se and 

ITS26se developed by Sun et al. (1994) were used (Table 2-4). Location of the ITS region 

sequenced and position of the primers are shown in Figure 2-1. 
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Amplification of the assay was performed in a thermal cycler Tgradient thermoblock 

(Biometra, Göttingen, Germany). The conditions used consisted of a lid temperature of 99°C 

and a first step at 94°C for 2 min for denaturation followed by 35 cycles consisting of 1 min 

denaturation at 94°C, annealing at 68°C for 30sec and 2 min at 72°C. At the end a final 

extension at 72°C for 5 min. Storage at 10°C ran until the samples were collected. 

Table 2-9. Primer sequences for detection of ITS 

Primer Primer sequence (5´- 3´) Size of PCR product (bp) Reference 

ITS17se acgaattcatggtccggtgaagtgttcg 
900 (Sun et al. 1994) 

ITS26se tagaattccccggttcgctcgccgttac 

 

Figure 2-3. nrITS (internal transcribed spacer) region. Positions and directions of primers 

used for amplification and sequencing are shown by arrows. Coding regions of the ribosomal 

subunits are represented as boxes; dark thin lines represent ITS spacer regions. 

2.4.4 Mitochondrial marker region cox3 

The mitochondrial marker region cox3 was analysed via standard PCR. Amplification and 

sequencing was achieved using a single primer set developed by Duminil et al. (2002). 
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2.5 Gel electrophoresis 

All amplified PCR products obtained in this work were separated by electrophoresis on 1% 

agarose gel (Bio Budget technologies GmbH, Krefeld, Germany) with 1x TAE buffer. TAE 

buffer mixed with agarose was heated in the microwave for 5 min until the agarose particles 

completely dissolved, and cooled down to a temperature of about 35 – 40°C. Once 

polymerized, the gel was placed in the electrophoresis apparatus (Bio-Rad, CA, USA) with 

the wells near the cathode, so that the negative DNA samples towards the positive anode ran. 

Per well an aliquot of 15 µl of PCR product was given. To estimate the size of the sample 8 µl 

of a 1000 bp DNA ladder (GeneRuler™, Fermentas, St. Leon-Rot, Germany) was loaded. The 

gels ran for about 50 min by 100 V. 

After the electrophoresis was finished, the gels were submerged in a 1.5:5 1xTAE - ethidium 

bromide (Serva Electrophoresis GmbH, Heidelberg, Germany) solution for 20 min. Ethidium 

bromide has the capacity to intercalate nucleic acids and to fluoresce orange when exposed to 

ultraviolet light, allowing the amplified DNA samples to be detected and analyzed. 

At the end the gels were viewed under ultraviolet light to analyze the results. Black and white 

pictures were done with a digital camera to record the data. 

2.6 DNA sequencing 

All PCR amplified products were cleaned up with ExoSAP-IT® (USB/Affymetrix Inc., High 

Wycombe, United Kingdom) previously diluted in distilled water until reaching a 

concentration of 1:1. Afterwards the clean-up protocol was completed as described by the 

manufacturer. The already cleaned up PCR products were then sent for sequencing to the 

companies Macrogen Inc. (Seoul, Korea), Eurofins MWG GmbH (Ebersberg, Germany), and 

Sequiserve GmbH (Vaterstetten, Germany) which also sequenced and edited the sequences of 

the hybrid Erica x Stuartii, allowing the detection of both paternal sequence information. 
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2.7 DNA sequence alignment  

Raw DNA sequences obtained from the nuclear and chloroplast genome of the analyzed 

plants were edited and aligned using the software Geneious 5.0.4 (2013) and manually 

corrected to create the corresponding contiguous sequences (contigs) of each plant species. 

Contigs sequences were trimmed at the beginning and at the end, when presenting not 

readable parts. Only unambiguous sequences were aligned, so that cloning was not necessary 

to be conducted. Subsequently the compiled alignments of the different DNA regions were 

generated for the further calculation of the phylogenetic trees. 

2.8 Phylogenetic analysis 

Matrices of the aligned DNA sequences of the different examined regions were implemented 

for the calculation of the phylogenetic trees. The chloroplast DNA regions data sets: trnL-

trnL-trnF and 5´trnK-matK intron and matK gene were first treated individually and then 

combined in a concatenated alignment as one data set to create the different phylogenetic 

trees. Data matrix of nuclear ribosomal region ITS was treated separately, to create its own 

phylogenetic tree.  

Phylogeny was inferred using maximum parsimony analysis performed with the software 

PAUP* 4.0b10 (Swofford 2002). The strict consensus tree was calculated performing 

parsimony Ratchet algorithm (Nixon 1999) generated by Prap2 (Müller 2004) employing 10 

random addition cycles of 200 replicates with 25% upweighting to 2 of the characters in the 

iterations, with command file for PAUP* 4.0b10. Heuristic searches were conducted for most 

parsimonious analysis with the following setting options: with unordered and unweighted 

characters, that is all positions were stated to be equally likely to change and all characters 

changes were assumed to be equally likely to occur, 100 random replicates, TBR (tree-

bisection-reconnection) branch swapping, ignoring uninformative characters, and alignment 

gaps treated as missing data. Internal support of branches was assessed by bootstrapping 

(Felsenstein 1985) with 1000 random replicates. Decay values for further approach of support 

of the tree topology were calculated using PRAP2 and PAUP* 4.0b10 with setting options 

implemented in the ratchet. Phylogenetic trees were outgrouped with the Ericoideae genera 
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Daboecia cantabrica and Calluna vulgaris. Generated trees were arranged and plotted with 

the software TreeGraph2 (Stöver and Müller 2010). 

2.9 Test for data congruence 

Congruence of chloroplast and nuclear DNA data matrices was tested manually for each 

topological node as well as with the incongruence length difference test (ILD) (Faris et al. 

1995). The probability threshold (p value) to reject the null hypothesis was set to p > 0.05. 

The ILD test was calculated in Paup* (Swofford 2002). 

2.10 Parental inheritance of mitochondria and chloroplast organelles  

Resulted DNA sequence alignments of mitochondrial region cox3 and chloroplast regions 

trnL-trnL-trnF and matK gene were manually compared base by base with each other. This 

enabled the determination of sequence array similarity of the hybrid with the corresponding 

sequence array of the parent. 

2.11 High-resolution flow cytometry  

Flow cytometry was implemented as a method for relative quantification of total plant nuclear 

genome of selected South African and European Erica plant species. Procedure was 

performed as described below. 

2.11.1 Nuclei isolation and staining 

Cell nuclei were extracted from new sprout shoots of ca. 1.5 cm long using CyStain UV 

precise P kit (Partec, Germany). Plant shoots were cut into small pieces with a scalpel in Petri 

dishes containing 800 µl of nuclei extraction buffer, and incubated at room temperature for 1 

hour. The samples were then filtrated through a 50 µm CellTrics disposable filter (Partec, 
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Germany), stain with 1.6 ml staining solution and kept in the dark approximately 1 hour until 

their subsequently measurement. 

2.11.2 Nuclei analysis 

Measurement was performed at the facilities of the Institute for molecular medicine and 

experimental immunology (Univeritätsklinikum Bonn, Germany) in a BD FACSCanto II flow 

cytometer (BD Biosciences, Germany). 405 nm violet Laser was used for excitation and a 

450/40 nm band pass filter was required for recording the DAPI fluorescence. The relative 

total genome amount was represented by the mean peak position in a DAPI fluorescence 

intensity histogram. The measurement of the analysed plant species was done in two times 

due to irregular acquisition of samples in the wild. Each time a sample species used for the 

previous test was used as a reference for comparison. Data was featured using Flowjo analysis 

software version 9.3.1 (http://www.flowjo.com). 

2.12 Pollen storage and vitality test 

Pollen vitality of Erica species was tested after a total time storage period of six months. This 

analysis was achieved by a fluorescence microscopy technique describe below. 

2.12.1 Pollen material and storage 

Pollen was obtained from flowers cultivated in the greenhouse that were full developed, when 

corolla and internal organs reach their normal adult morphology (Schumann et al. 1995). 

Anthers were separated from the flowers and dried in open 2 ml single tubes (Eppendorf, 

Hamburg, Germany) in an exsicator filled with silica gel (Roth, Karlsruhe, Germany) at 5°C 

for 1 week. Afterwards the tubes were sealed and stored at -20°C for a total period of time of 

approximately six months. 



2. Materials and Methods 

34 
 

2.12.2 Stereo microscope techniques  

Pollen grains were observed under a stereo microscope Leica MZ16F (Wetzlar, Germany) 

with a digital camera JVC 3CCD ky-F75U (Japan) before the store procedure started. This 

enabled there storage and documentation in pictures of their morphological aspects such as 

shape and size. Pictures were viewed with the software Diskus v. 4.80.6346 (Königswinter, 

Germany). 

2.12.3 Fluorescence microscope techniques 

Pollen vitality was tested under the microscope Leica Leitz DMRB (Wetzlar, Germany) with 

a digital camera Hitachi HV-20A (Japan), applying fluorescence methods. Fluorescein 

diacetate (FDA) (Sigma-Aldrich, USA) at an excitation wavelength of 450 to 490 nm was 

used to test the quality of the pollen grains. FDA was prepared before use in a stock solution 

in acetone at 2 mgml-1 (Heslop-Harrison et al. 1984). The working solution for this assay had 

a concentration of 6 x 10-5 M FDA in 0.5 sucrose (Pinillos and Cuevas 2008). Pictures were 

viewed with the software Diskus v. 4.80.6346 Fluorescence HV20 (Königswinter, Germany). 
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3 Results 

The main purpose of this study is to clarify the phylogenetic relationship at a species level of 

the genus Erica principally using European taxa as well as including a representative group of 

species with an African origin, that is from Central and South Africa. To reach this objective, 

molecular phylogenetic assays based on nuclear and chloroplast DNA regions with specific 

primer pairs and subsequently sequencing were carried out, enabling the calculation of the 

respective trees based on the created data matrices. Chloroplast and mitochondria inheritance 

in Erica was molecular analysed, elucidating their parental origin for the given species. 

Eighteen Erica species were selected and their relative total DNA was measured applying 

flow cytometry. At the end two different Erica plant species were chosen to test their pollen 

vitality through fluorescence microscopic methods. 

3.1 Analysis of combined chloroplast data 

Combined sequences of total aligned and concatenated chloroplast regions data set: trnL-trnL-

trnF, 5´trnK-matK-intron and matK gene of 244 taxa samples, resulted in a matrix length of 

2738 total characters, with 1898 characters being constant, 351 variable characters parsimony 

uninformative, and 489 characters parsimony informative. Displayed in Figure 3-1 is the strict 

consensus tree of 1723 equally parsimonious trees found.  

The tree was highly resolved with strong support in the nodes with a bootstrap proportion of 

100%, and decay value of 3 indicating the monophyly of the clade of the European and 

African Ericas compared to the outgroup genera. The hybrid Erica x Stuartii was grouped 

together with the Erica tetralix clade with a strong support confirmed by a bootstrap 

proportion of 100% and decay value of 6 for the clade node. 

The concatenated alignment had 980 (35.8%) identical sites, with a pairwise identity of 

85.9%. Ungapped lengths of total sequences showed a mean of 2191.7 bases long. 

Insertions/deletions (indels) were 1-20 bp large. Most indels were in the non-conservative 

DNA of the respective chloroplast regions studied. GC content for the analysed chloroplast 

region was 25.9% for the total taxa. Polymorphism search under the parameters of a minimum 
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coverage of 1 read and minimum variant frequency of 0.25 per read resulted in a 

transition/transversion ratio of 1. 

3.2 Analysis of nuclear data  

Aligned ITS sequences of 242 taxa samples resulted in a matrix length of 945 total characters, 

with 522 characters being constant, 142 variable characters parsimony uninformative, and 281 

characters parsimony informative. Displayed in Figure 3-2 is the strict consensus tree of 86 

equally parsimonious trees found after the search.  

The tree was highly resolved with strong support in the nodes with a bootstrap proportion of 

99%, and decay value of 14 indicating the monophyly of the clade of the European and 

African Ericas compared to the outgroup genera. From the hybrid Erica x Stuartii two ITS 

sequences were obtained from the same individual, meaning that not different samples were 

used for this purpose. One sequence of Erica x Stuartii was grouped together with the Erica 

mackayana clade and the other one clustered together with the Erica tetralix clade showing a 

strong support confirmed by bootstrap proportions of 90% and 100% and decay values of 3 

and 7 for the clade nodes respectively.  

The alignment presented 351 (37.1%) identical sites, with a pairwise identity of 94.9%. 

Ungapped lengths of total sequences showed a mean of 836.6 bases long. Insertions/deletions 

(indels) were 1-7 bp large. Most indels were in the regions between 130-400 bp and 600-880 

bp; in between conserved regions were observed. GC content of the ITS region was 45.5% for 

the total taxa. Polymorphism search under the parameters of a minimum coverage of 1 read 

and minimum variant frequency of 0.25 per read resulted in a transition/transversion ratio of 

5.75.  

3.3 Incongruence length difference test 

ILD test resulted in a low probability (p=0.01) accepting the null hypothesis, that is the 

overall topology of both nuclear and chloroplast trees is significantly incongruent, indicating 

that the observed data cannot be merged together in a single tree. As well incongruence 

patterns were tested manually by comparing both trees, leading to the decision of not merging 
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them, due to important differences located in the node topologies which can be seen in 

Figures 3-1 and 3-2 and discussed in the next chapter. 
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Figure 3-1. Strict consensus of 1723 most parsimonious trees of chloroplast data 

(Length=1446, CI=0.704, RI=0.871) with decay (D) and bootstrap (bold) values. 
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Figure 3-1. (Continued) Strict consensus of 1723 most parsimonious trees of chloroplast data 

(Length=1446, CI=0.704, RI=0.871) with decay (D) and bootstrap (bold) values. 
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Figure 3-1. (Continued) Strict consensus of 1723 most parsimonious trees of chloroplast data 

(Length=1446, CI=0.704, RI=0.871) with decay (D) and bootstrap (bold) values. 
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Figure 3-1. (Continued) Strict consensus of 1723 most parsimonious trees of chloroplast data 

(Length=1446, CI=0.704, RI=0.871) with decay (D) and bootstrap (bold) values. 
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Figure 3-1. (Continued) Strict consensus of 1723 most parsimonious trees of chloroplast data 

(Length=1446, CI=0.704, RI=0.871) with decay (D) and bootstrap (bold) values. 
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Figure 3-2. Strict consensus of 86 most parsimonious trees of nuclear data  

(Length=1278, CI=0.479, RI=0.846 with decay (D) and bootstrap (bold) values. 
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Figure 3-2. (Continued) Strict consensus of 86 most parsimonious trees of nuclear data  

(Length=1278, CI=0.479, RI=0.846 with decay (D) and bootstrap (bold) values. 
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Figure 3-2. (Continued) Strict consensus of 86 most parsimonious trees of nuclear data  

(Length=1278, CI=0.479, RI=0.846 with decay (D) and bootstrap (bold) values. 
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Figure 3-2. (Continued) Strict consensus of 86 most parsimonious trees of nuclear data  

(Length=1278, CI=0.479, RI=0.846 with decay (D) and bootstrap (bold) values. 
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Figure 3-2. (Continued) Strict consensus of 86 most parsimonious trees of nuclear data  

(Length=1278, CI=0.479, RI=0.846 with decay (D) and bootstrap (bold) values. 
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3.4 Parental inheritance of cell organelles  

The analysis of the artificial hybrid E. × oldenburgensis and its parent plants (Erica arborea 

as the mother plant and Erica carnea as the father plant) resulted in a clear pattern of maternal 

inheritance for both organelles. Chloroplast and mitochondrial sequences were identical to its 

mother plant Erica arborea, but clear punctual differences were found when the sequences 

were compared with its father plant Erica carnea. 

3.5 Relative quantification of total plant nuclear genome 

Flow cytometry analyses results of the relative total cell genome size from plant leaves of 18 

different plant samples from the genus Erica in two terms is shown in Figures 3-3 A and B. 

Erica laeta was rated twice to be used as a possible reference standard control for both 

measurements. Relative fluorescence units (RFU) represent the estimation of absolute nuclear 

DNA amount. Comparing the peaks in the G0/G1 phase of the cell cycle Erica cinerea 

presents the smallest relative nuclear DNA content with approximately 30 RFU and Erica 

bauera presents the largest relative nuclear DNA content with approximately 180 RFU. All 

samples reveal to have the same ploidy level, except for the Erica bauera sample that 

apparently resulted to have a higher one, as it can be deduced from the first two peaks of the 

graphic together with the resulted RFU values.  
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Figure 3-3. (Continued) 
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Figure 3-3 (Continued) Flow cytometric histograms of genome analysis made in two terms (A 

and B) of 10 and 9 Erica species respectively. Cell nuclei were stained with DAPI. Peaks 

show the relative quantification of total nuclear genome in relative fluorescence units (RFU) 

from the analysed plant leave cells in the different cell cycle stages G0/G1, S and G2. Erica 

laeta was measured each time to be used as a possible control standard of the procedure.  
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3.6 Stereomicroscopic structure of flowers and pollen grains 

Plant samples were viewed under the stereomicroscope before pollen grains were collected 

and stored. Structures of hermaphrodite flowers of Erica ventricosa THUNBERG 1785 and 

Erica bauera ANDREWS 1812 with their pale pink petals, stamens with anthers, stigma and 

pollen grains can be seen in Figures 3-4 and 3-5. As already described by Schumann et al. 

(1995) the first one is commonly known as ‘Franschhoek heath’ growing to 900 mm high 

with tubular corolla flowers of 12 to 16 mm long with lobes curling backwards and minutely 

crested anthers, exists in cultivation in England since the nineteenth century and flowers from 

October until January. The second one is also ordinary called ‘bridal heath’ or ‘Albertinia 

heath’ is one of the most grown Ericas characterized to be an up to 1.5 m high shrub when 

grown in cultivation, with typical grey-green leaves and white pinkish tubular corollas of 16 

to 20 mm long and anthers with long awns, flowering in spring and autumn. 

 

Figure 3-4. Erica ventricosa A: tubular corolla flower with pale pink petals; B: stigma and 

stamens with minutely crested anthers and pollen grains; C: pollen grain tetrads. 

C 
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Figure 3-5. Erica bauera A: tubular corolla flower with pale pink petals; B: stigma and 

stamens with anthers presenting long awns; C: stigma, anther and pollen grains; D: pollen 

grain tetrads. 
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3.7 Fluorescence microscopic structure of pollen tetrads 

Random pollen samples were viewed under the fluorescence microscope before and after the 

storage period to score their vitality after the fluorochromatic reaction test. Figures 3-6 and 3-

7 show some examples of living as well as dead cells within a pollen tetrad for the studied 

species Erica ventricosa and Erica bauera respectively.  

   

Figure 3-6. Pollen tetrads of Erica ventricosa at day=0 detected under the fluorescence 

microscope. Living cells are bright green after the fluorochromatic reaction with fluorescein 

diacetate (FDA) seen under the fluorescence microscope with UV-light. 

   

Figure 3-7. Pollen tetrads of Erica bauera at day=0 detected under the fluorescence 

microscope. Living cells are bright green after the fluorochromatic reaction with fluorescein 

diacetate (FDA) seen under the fluorescence microscope with UV-light. 
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3.8 Pollen vitality 

The percentage of fluorescent pollen cells within the pollen tetrad samples incubated in FDA 

solution during the storage time is given in Figures 3-8 A and B. In the case of E. Bauera 

week = 0 (Fig. 3-8 B) it was not possible to distinguished the fourth cell because of its 

position and thus considered 3-4 cells together in the same category for this time period. The 

percentage of non-viable tetrads, that is the percentage of tetrads presenting cero living cells, 

is presented in Figures 3-9 A and B for Erica ventricosa and Erica bauera respectively. 

Pollen grains of both species present at the end of the selected storage period tetrads with at 

least one or two living cells, comprising around 20-50% of the total observed tetrads. The 

number of non-viable tetrads increases up to 50-80% and the ones with four living cells 

decreases up to 15-40% during the total storage period of the pollen grains.  

 

 

Figure 3-8. Pollen vitality of flowers (n=3) of A Erica ventricosa and B Erica bauera after 

different storage periods at -20°C. Average number of living cells within a pollen tetrad 

detected under the fluorescence microscope. 
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Figure 3-9. Pollen viability flowers (n=3) of A Erica ventricosa and B Erica bauera after 

storage at -20°C. Percentage of non-viable tetrads detected under the fluorescence 

microscope.
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4 Discussion 

Elucidating molecular phylogenetic of the studied Erica species in this work aims their 

arrangement in groups or clades according to their genetic relationship within and between the 

given northern and southern heather species. The parental inheritance of the cell organelles 

chloroplast and mitochondria in Erica was also molecularly tested enabling the understanding 

of the plastid inheritance as well as of the hybrid origin. Relative total genome DNA of 

eighteen selected Erica species was quantified via flow cytometry. Finally the pollen vitality 

of two different Erica plant species was assessed during a period of time of around six months 

by means of fluorescence microscopic procedures.  

Using molecular characters such as nuclear or chloroplast DNA regions comprising genes, 

introns and spacers, is considered a suitable tool to explain evolutionary processes and 

phylogenetic structures among individuals (Álvarez and Wendel 2003). This is based on their 

sequence array itself compared among the taxa with emphasize on variation patterns, and on 

DNA-nucleotide mutations within the sequences, considering that non-genic DNA regions 

evolved rapidly. Chloroplasts have a genome range in size from 120 to 170 kbp for all land 

plants and are structured in four intercalated parts mainly: two inverted repeats (IR) disposed 

as mirror images of each other, a large single copy (LSC), and a small single copy (SSC). The 

small and large single copy regions have a substitution rate of up to two or three times higher 

than the two inverted repeats (Shaw et al. 2007). Nuclear ribosomal DNA region internal 

transcribed spacer (ITS) is positioned between ribosomal genes 18S and 26S, and comprises 

the sequences: ITS1, 5.8S and ITS2 (White et al. 1990). Because the ITS region is 

conservative throughout organisms but divergent in their nucleotide order, is considered 

adequate for phylogenetic studies as well (Baldwin et al. 1995; Sun et al. 1994). 

McGuire and Kron (2005) performed the first phylogeographic analysis in Erica in which a 

small set of European and South African species were included, confirming the hypothesis of 

a European origin of the genus as well as the monophyly of the South African taxa. Recently 

Pirie et al. (2011) obtained a similar result, but from a much extent sample of approximately 

45% of the total Erica species from European, South African and other African regions 

including Central Africa, Madagascar and the Mascarene Islands. They stated the monophyly 

for the whole African clade including E. arborea in a basal polytomy. Although here only 
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29% of the total Ericas has been assessed, the results in the current work are also principally 

in accordance with a European origin of the genus and the monophyly of the South African 

clade.  

In this study three species from Central East Africa are also included in the cpDNA tree. E. 

trimera was positioned, together with the European species E. umbellata, as sister to the 

South African clade but E. rossii and E. kingaensis are merged within the scoparia-vagans 

European clade. Considering that no nuclear information was generated for these samples, it 

may be assumed with the available data that migration episodes could have occurred north-

south in both directions in different moments at least between the European and Central East 

African nucleus as has already been demonstrated in E. arborea (Désamoré et al. 2011). Yet, 

in the present work, the hypothesis of a single episode of migration to the Cape region 

together with an intense radiation afterwards is also supported by the given results. 

The monophyly of the studied northern and southern species is clearly supported by the 

resulting trees for both nuclear and chloroplast markers, with the exception of E. arborea and 

E. manipuliflora. Although populations of E. arborea are monophyletic in the nuclear data, 

they have two clades unresolved in the plastid data. There, a polytomy with other taxa in the 

chloroplast tree appears. Désamoré et al. (2011) explained the occurrence of different 

haplotypes within the E. arborea by different episodes of migration and the existence of 

refugia during the last glaciations, principally at the Iberian Peninsula. In their work the 

highest genetic variability, that is the highest number of haplotypes, was found in the Iberian 

Peninsula and in the East African populations, suggesting an African centre of origin and a 

reservoir on the western end of the Mediterranean. As for E. manipuliflora, one population is 

sister to the E. scoparia clade both for cpDNA and ITS trees (Figures 3-1 and 3-2). E. 

manipuliflora shows a high morphological variability (McClintock 1989; Fagúndez and Izco 

2010), and in-depth studies on this taxon should be performed to clarify its taxonomic 

arrangement. Pirie et al. (2011) either found a strong support for analysed species with more 

than one sample, or they found non-supported para or polyphyly, just as obtained for E. 

arborea in this work. 

Several basal branches of the cpDNA tree are not or only poorly supported by bootstrap 

(Figure 3-1). E. lusitanica species are positioned as sister to the rest of the Erica species and 

they are divided in two clades. One clade joins together E. umbellata, a distinct Iberian 

species, with the East African species E. trimera, sister to one more clade which includes E. 
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australis, the different populations of E. arborea and another clade with all the South African 

species. The second branch includes the core of the northern species and the other two eastern 

African species. E. cinerea, together with its close relative E. maderensis, and E. sicula are 

positioned in basal branches with low supporting values. E. spiculifolia is the sister species of 

the rest. This species has several exclusive characters within the northern species such as the 

absence of bracteoles, a characteristic raceme and a distinct chromosome number (Fagúndez 

and Izco 2008). But it should be considered that these mere morphological differences in 

cladistics may only describe in this case an autapomorphy of the given species, that is a 

singular attribute only found in a group within a clade, saying nothing about relativeness with 

the other ones, solely just showing differences from the rest. A basal position on the whole 

genus for E. spiculifolia was obtained by McGuire and Kron (2005) from their phylogenetic 

analysis with chloroplast and nuclear markers. 

The position of E. terminalis is another case of an unresolved species. It has been related to E. 

tetralix and its relatives (Bayer 1993), but seed morphology clearly resembles it to E. cinerea 

and mostly to E. maderensis (Fagúndez and Izco 2009). E. terminalis also has some clear 

differential characters such as pollen in monads, a character only shared with E. spiculifolia 

among the northern heathers (Oldfield 1959; Nelson 2009). 

Two main branches are supported by the bootstrap analysis within the northern clade. The 

first one corresponds to the Atlantic heathers, all glandular species that occur in humid 

habitats in temperate, oceanic climates. The clade includes E. tetralix, E. ciliaris, E. 

mackayana and E. andevalensis. This last species is a close relative of E. mackayana and has 

been considered a subspecies of the former one (McClintock 1989). The second clade 

includes a set of Mediterranean and Atlantic species and E. carnea from the high altitudes of 

the Alps, living up to 3000 m altitude. They share several characters such as the absence of 

anther appendages, mostly glabrous stems and a very light pink corolla with a broad mouth 

and exserted anthers. E. carnea and E. erigena, two very similar species included by Bentham 

in its own subgenus because of its basal anther insertion (Bentham 1839; Hansen 1950; Bayer 

1993; Fagúndez and Izco 2003) are joined and are sister to a second clade where E. 

multiflora, E. manipuliflora, E. vagans and E. scoparia, including E. platycodon, are merged 

with the two eastern African species E. rossii and E. kingaensis. E. scoparia and its close 

Macaronesian relatives are distinguished by its clear anemophilous syndrome: small flowers, 

greenish corolla, exserted anthers, peltate style end and absence of nectariferous disk. It has 
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been suggested that these characters are highly correlated with the pollination type and have 

evolved independently in a wide number of plant lineages as an adaptation to ecological 

conditions and pollinators availability (Friedman and Barret 2009), and also that these 

dramatic changes can take place in a short time and only with a few genes being involved. 

The chloroplast genome has largely been the first choice for phylogenetic analyses in plants 

(Chat et al. 2004; Shaw et al. 2007) mainly because of its conserved structure and the 

presence of the single copy regions with a high nucleotide substitution rate (Perry and Wolfe 

2002). In turn, the nuclear genome has been used mostly as an aim to reinforce the phylogeny 

obtained from chloroplast markers and to prevent errors occurring due to hybridization and 

introgression events or lineage sorting (Doyle 1992). Results from the nuclear ITS markers 

were poorly supported for some samples and problems aroused because of high presence of 

double peaks or polymorphisms in the chromatograms after sequencing (Figure 3-2). As a 

consequence such samples were removed from this analysis. 

Several clades were obtained equal to those of the cpDNA trees such as the E. tetralix-ciliaris 

clade or the E. scoparia-vagans clade with the exception of the absence of E. multiflora 

whose position was unresolved (Figure 3-2). E. arborea is again placed with the South 

African species in a strongly supported clade, but this time E. lusitanica is its closest relative. 

Several morphological characters are shared by these two species such as a whitish corolla; 

however other features such as seed morphology are strikingly different (Fagúndez and Izco 

2010). Two other clades form a polytomy with the arborea-South African clade, one of E. 

umbellata and a second one with E. australis and E. cinerea including E. maderensis. Both E. 

umbellata and E. australis are endemic to the western half of the Iberian Peninsula and 

northern Morocco. This area has been known as a tertiary refugium in several groups (Postigo 

Mijarra et al. 2008) and probably for E. arborea, where the highest diversity of haplotypes 

was found (Désamoré et al. 2011). E. australis and E. umbellata, together with E. arborea, 

are the closest relatives to the South African species according to cpDNA and ITS trees, as 

found by McGuire and Kron (2005) and Pirie et al. (2011). 

The southern heathers studied here represent only around 23% of the total South African 

Ericas species described so far. More species should be analysed before stating general 

information, but only small phylogenetic variation was present between the species studied, 

particularly when compared with the European Erica species. Here only few different clades 

comprising different species elucidate from the trees revealing a tight relationship and narrow 
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origin between the taxa. They all form a robust group in both trees. There could be several 

reasons to explain the higher number of Erica species in this region with such a close 

phylogenetic relationship. One is the fact that South African species are mostly seeders, in 

contrast with the European resprouter species. Seeders may show to have higher diversity 

forced by natural selection after a fire event, and considering that the cape floristic region has 

a favourable climate with mild temperatures and winter rainfall that may so induce the post 

fire germination of the plants (Segarra-Moragues and Ojeda 2010). Another point is the 

absence of a glaciation period in the south of Africa which was probably responsible for the 

extinction of many European species. A last argument could be the ability of Erica to 

interspecific cross pollinate, and so assuming a hybrid origin for the South African Erica 

species. Further clarification of the phylogenetic relationship and origin should include more 

South African Erica species. 

Although several authors have claimed for the use of combined trees even if low values of 

IDL test have been obtained (Gillespie and Kron 2010) in this study the trees obtained from 

the combined cpDNA and the ITS were clearly incongruent and the topology of the trees were 

markedly different (test IDL), leading to the final decision of not merging them. Conflicts 

present among both trees may be due to different evolutionary history of markers, as a result 

of analytical artefacts such as paralogy or long-branch attraction, or as a result of biological 

phenomena such as incomplete linage sorting or hybridization, among others (Pirie et al. 

2009; Blanco-Pastor et al. 2012; de Viliers et al. 2013). Then it is important to accept the 

given incongruences between trees and not to join them, otherwise relevant evolutionary 

information will be discarded while contradictory merged data will decrease the clades 

support or even lead to equivocal relationships (McDade 1992; Bull et al. 1993; Lecointre and 

Deleporte 2005; Pirie et al. 2009). 

Angiosperms normally present a maternal-inherited plasmatic organelles DNA, but they may 

also follow a bi-parental or only paternal-inherited plastid and mitochondria DNA (Harris and 

Ingram 1993; Hagemann 2004). No specific analysis had been performed before in Erica or 

the Ericeae (see discussion for Calluna in Rendell and Ennos 2002). Although no 

confirmation was obtained by Kron et al. (1993) in Rhododendron, and by Rendell and Ennos 

(2002) in Calluna, these studies suggest the maternal path as the most probable case for the 

chloroplast inheritance in both groups. However, a strict paternal inheritance of the 

chloroplast has been documented in the related family Actinidiaceae (Ericales) for the 
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kiwifruit, but with a maternal inheritance of mitochondria (Chat et al. 2004). The detail 

analysis obtained from E. × oldenburgensis, an artificial hybrid from controlled parental 

specimens, clearly shows the mother inheritance of both organelles chloroplast and 

mitochondria at least for this particular cross. In the case of the hybrid E. × stuartii is clearly 

clustered with a different parental species when chloroplast or when both sequences obtained 

from nuclear DNA are analysed (Figures 3-1 and 3-2). Assuming also a maternal inheritance 

of the chloroplast for these species, E. tetralix is the maternal parent, while the paternal is E. 

mackayana. A strongly nuclear DNA inheritance is given by E. mackayana, since one of the 

sequences of the hybrid is clustered with its populations in a well-supported clade. The 

position of other species like E. cinerea, E. umbellata, E. lusitanica and E. australis, and 

other clades is also markedly different when chloroplast and nuclear DNA are used on the 

phylogenetic reconstruction. A possible explanation is a homoploid hybrid origin for these 

species. This could be the case of E. lusitanica, a tall shrub that shares several phenotypic 

characters with E. arborea. Both species were originally included in the same section Arsace 

(Hansen 1950; Bayer 1993). However, some features are strikingly different for the two 

species such as seed morphology (Fagúndez and Izco 2010). E. lusitanica is positioned within 

the E. arborea and the South African clade in the ITS tree, but its position on the chloroplast 

tree is unresolved and not related to the arborea-South African clade. The origin of E. 

lusitanica could be interpreted as homoploid hybridization between two lineages, with E. 

arborea as a probably parental species. Differences between plastid and nuclear markers trees 

could rely on the fact that the first ones are uniparentally inherited while the second ones have 

a biparentally DNA heredity pathway, meaning that lineage sorting of plastid happens faster, 

increasing species monophyly while lacking hybridization events compared to the nuclear-

encoded DNA markers (Palumbi et al. 2001; Chan and Levin 2005; Hedrick 2007; de Viliers 

et al. 2013). Although it remains open to properly identify the causes of the tree 

incongruences by running a proper test to identify potential incomplete linage sorting versus 

hybridization, that is for example by coalescent simulations techniques, a reticulate evolution 

within these species can be suggested as a possible explanation for the incongruences found 

for the phylogeny of the group using different data sets. 

Although genome quantification through flow cytometry is a well and rapid implemented 

method nowadays with the capacity of measuring large populations in a short time without the 

exert need of using tissue with dividing cells (Shapiro 2003; Doležel and Bartos 2005; 

Loureiro et al. 2006; Nowack et al. 2007), it is also a method that requires a precise handling 
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and can present some problems such as the need of fresh tissue material, the presence of by 

products in the cell disturbing the nuclei staining, and the lack of DNA reference standards for 

the measurement (Doležel and Bartos 2005; Clarindo and Carvalho 2011). Erica species are 

diploid with 2n=24, with the exception of E. spiculifolia with 2n=36 (Maude 1940; Nelson 

and Oliver 2005) and their C-value interpreted as the constancy of DNA per organism is of 

2C DNA amount in the G1 phase (Swift 1950), in this study the ploidy number of the 

individual analysed plants it was not corroborated but Erica bauera certainly showed a double 

peak. Because in the G1 phase of the cell cycle only two copies of unreplicated genome can be 

found, this can be interpreted as higher ploidy level, that is as a higher number of 

chromosome copies for this karyotype, or as a higher DNA amount of this sample. According 

to the resulted measurements, between the other Erica species there was a very similar 

relative amount of DNA present. This can lead to the conclusion that if the ploidy level as 

well as the relative DNA amount of the samples is similar, than it can be thought of a possible 

crossing between plant species aiming the creation of new varieties.   

A fluorochromatic reaction with fluorescein diacetate (FDA) is a reliable method to be 

implemented to assess pollen vitality (Pinillos and Cuevas 2008). In this study a simple 

protocol for the storage of pollen grains was performed. Stamens were stored for a period of 

time of around six months to achieve so a possible pool of living pollen tetrads capable of 

crossing Erica plant species that flower in different seasons of the year. It could be observed 

that even after the final storage period both South African Erica species chosen still showed a 

number of pollen tetrads with one or two living cells, although the number of dead ones 

increased linearly with the time. Although it is already well known that plants can dispose of 

pollen grain units as a single cell or in groups of two or more cells (Copenhaver 2005), 

nevertheless, it remains open to proof if this amount of living cells within the pollen unit 

would be suitable enough for the pollination event itself, that is if the pollen tube will 

germinate and fertilize the ovule, or if it is necessary that always four living cells within the 

pollen tetrad are present to achieve a positive pollination event of the plants. 

Considering the factor that heathers as already described may present the capability of 

interspecific fertilization when parent plants coexist in one habitat or better when pollen 

grains achieve the stigma of another plant, meaning by this the faculty of positive interspecific 

fertilization through cross pollination ending in the generation of viable seeds that will so 

germinate into a F1 hybrid, then a proper elucidation of the Erica phylogenetic tree, as well as 
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a complex study of their genome amount and pollen storage capacity, aiming a better 

understanding and clarification of the species relations will encourage and facilitate their plant 

breeding by promoting the interspecific crossing of Erica plants, and by this their diversity. 
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5 Summary  

The angiosperm (flowering plant) genus Erica L. is taxonomically included in the large 

family their Ericaceae. It normally grows as a woody perennial shrub or subshrub and some 

species can reach up to tree heights of several meters. The allocation of the genus Erica is 

confined mainly in a north to south vertical dispersion line, comprising whole Europe with 20 

species described and all the way across the African continent until the Cape of Good Hope, 

there, a high level of diversification with around 750 species can be found so far. A species 

bonding for the European and African region is presented mainly by the following species: 

Erica arborea L. and Erica australis L. Erica scoparia L., Erica ciliaris L., Erica erigena R. 

Ross., Erica multiflora L., Erica umbellata L., Erica sicula Gussone and Erica terminalis 

Salisb. Heathers are of considered importance as a useful crop for horticulture and other 

human commodities, as well as for the conservation of ecosystems and landscapes.  

In the current work a total of 244 plants from Europe and South and Central East Africa were 

studied. Samples came from the collections of: Dr. Jaime Fagúndez from the University of 

Santiago de Compostela in Spain, the Bundesgarten-Belvedere Vienna in Austria, 

Kirstenbosch National Botanical Garden from Cape Town in South Africa, Botanic Gardens 

of the Rheinische Friedrich-Wilhelms-Universität Bonn in Germany, and from the 

Gartenbauzentrum Straelen in Germany. Plant samples were analysed using molecular 

phylogenetic methods applying specific primers for DNA marker regions: trnL-trnL-trnF and 

5´trnK-matK in the chloroplast, as well as the nuclear DNA marker ITS, for amplification and 

sequencing for the subsequently calculation of the matrix and phylogenetic trees. The parental 

inheritance of cell organelles: mitochondria and chloroplast was tested by analysing one 

artificial hybrid and its respective parents via mitochondrial marker region cox3, and the 

above implemented chloroplast markers.  

Cell nuclei of leaves stained with DAPI were measured by means of flow cytometry methods 

to estimate the quantification of the relative total plant nuclear genome. In the last step pollen 
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vitality of two Erica species was tested after storage of pollen grains under cold conditions 

and subsequently staining of them with FDA solution for exposure under the fluorescence 

microscope, by this a possible viable storage time period of the pollen grains of around six 

months was attempted.   

• Northern and Southern heathers relationship: results agree with a European origin of 

the genus Erica and the monophyly of the South African clade. 

• Infraspecific variability of Northern and Southern heathers: monophyly of the studied 

northern and southern species is clearly supported. All species show to be 

monophyletic except for the widely spread E. arborea, and E. manipuliflora. 

• Paraphyly of the northern species was also corroborated, although three taxa from 

Central East Africa were polyphyletic, underlying different episodes of colonization. 

• Combined analysis: trees resulted from the combined cpDNA and the ITS analysis 

were clearly incongruent and the topology of the trees were markedly different (test 

IDL). 

• Hybridization and evolution in Erica: a maternal inheritance of both cell organelles 

mitochondria and chloroplast is suggested. 

• Relative genome: all tested samples revealed to have a similar genome size, with the 

exception of E. bauera that seemed to present a higher ploidy level. 

• Vitality of pollen grains after storage proved to have a positive result of two living 

cells within a pollen tetrad after the storage period of six months. 

After this work an even higher amount of Erica plant species should be further tested to be 

able to accomplish an even more extensive phylogenetic analysis of the Erica genus, in fact, a 

reticulated network study aiming a better comprehension of the relationships and origin 

between the existing species should be done. 
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