
brought to you by COREView metadata, citation and similar papers at core.ac.uk

her Connector 
Transcriptomic Shock Gener
Current Biology 21, 551–556, April 12, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.02.016
provided by Elsevier - Publis
Report
ates

Evolutionary Novelty in a Newly Formed,
Natural Allopolyploid Plant
Richard J.A. Buggs,1,2,3,* Linjing Zhang,1,2,4

Nicholas Miles,1,2 Jennifer A. Tate,5 Lu Gao,6 Wu Wei,6

Patrick S. Schnable,6 W. Brad Barbazuk,1,7

Pamela S. Soltis,2,7 and Douglas E. Soltis1,7
1Department of Biology, University of Florida, Gainesville,
FL 32611, USA
2Florida Museum of Natural History, University of Florida,
Gainesville, FL 32611, USA
3School of Biological and Chemical Sciences,
Queen Mary University of London, London E1 4NS, UK
4School of Life Sciences, Shanxi Normal University,
1 Gongyuan Street, Linfen City 041000, Shanxi Province,
People’s Republic of China
5Massey University, Institute of Molecular Biosciences,
Palmerston North 4442, New Zealand
6Center for Plant Genomics, Iowa State University, Ames,
IA 50011, USA
7Genetics Institute, University of Florida, Gainesville,
FL 32610, USA

Summary

New hybrid species might be expected to show patterns of
gene expression intermediate to those shown by parental

species [1, 2]. ‘‘Transcriptomic shock’’ may also occur, in
which gene expression is disrupted; this may be further

modified by whole genome duplication (causing allopoly-

ploidy) [3–16]. ‘‘Shock’’ can include instantaneous partition-
ing of gene expression between parental copies of genes

among tissues [16–19]. These effects have not previously
been studied at a population level in a natural allopolyploid

plant species. Here, we survey tissue-specific expression
of 144 duplicated gene pairs derived from different parental

species (homeologs) in two natural populations of 40-gener-
ation-old allotetraploid Tragopogon miscellus (Asteraceae)

plants. We compare these results with patterns of allelic
expression in both in vitro ‘‘hybrids’’ and hand-crossed

F1 hybrids between the parental diploids T. dubius and
T. pratensis, and with patterns of homeolog expression in

synthetic (S1) allotetraploids. Partitioning of expression
was frequent in natural allopolyploids, but F1 hybrids and

S1 allopolyploids showed less partitioning of expression
than the natural allopolyploids and the in vitro ‘‘hybrids’’ of

diploid parents. Our results suggest that regulation of
gene expression is relaxed in a concerted manner upon

hybridization, and new patterns of partitioned expression
subsequently emerge over the generations following

allopolyploidization.

Results and Discussion

Variation in Relative Gene-Copy Expression
Changes in patterns of parental gene expression are
frequently observed in hybrids and allopolyploids; this
*Correspondence: r.buggs@qmul.ac.uk
phenomenon has been termed transcriptomic shock [3–13,
16]. Study of natural transcriptomic shock in the wild is
hampered by the rarity of known, recently formed polyploid
species that still co-occur with their parental species.
Tragopogon miscellus (Tm) (Asteraceae) is a young natural
allotetraploid species that formed multiple times during the
past 80 years in the NW USA from the diploids T. dubius (Td)
and T. pratensis (Tp), which were introduced from Europe
and remain extant in areas of polyploid formation [20]. Allo-
polyploid populations formed reciprocally, with an immediate
and conspicuous phenotypic difference: populations with Td
as the maternal parent have inflorescences with long ligules
while thosewith Tp as thematernal parent have inflorescences
with short ligules (see Figure 1A).
To explore transcriptomic shock in the formation and early

generations of allopolyploidy in T. miscellus populations, and
unravel the effects of hybridization and whole-genome dupli-
cation, we investigated tissue-specific Td and Tp gene expres-
sion in: the diploid parents Td and Tp, as 1:1 mixes of cDNA
from five pairs (designating these as in vitro ‘‘hybrids,’’
showing simple additivity of parental gene expression); true
synthetic diploid F1 hybrids (n = 6); synthetic first-generation
(S1) allopolyploids (n = 6); and in two naturally occurring Tm
allopolyploid populations of reciprocal origin (n = 10+8). We
examined expression of 144 gene pairs: 126 with quantitative
Sequenom MassARRAY allelotyping assays previously devel-
oped using 454 and Illumina sequencing data [21], and 18
using previously developed qualitative cleaved amplified poly-
morphic sequence (CAPS) assays [22–24]. We examined the
expression of both copies of these genes in transcriptomes
of up to seven tissues of each of 40 plants. Example data for
four genes are shown in Figure 2.
For many genes, we found cases of lack of expression of

a homeolog in all tissues of individual plants (e.g., gene
07259_1424 in four short-liguled allopolyploid plants, Fig-
ure 2A). These cases of nonfunctionalization [17] were
excluded from our analysis of tissue-specific transcriptomic
shock. They are likely a consequence of a genomic change.
Consistent with this hypothesis a Sequenom analysis on
genomic DNA of a sample (n = 168) of these cases in Tm
showed that 89.9% had one homeolog missing from the
genome. This corresponds with previous studies showing los-
ses of homeologs in Tm [22–24].
To understand differences among the plant groups in the

variability of relative expression of Td and Tp genes, we
calculated the standard deviation of expression for every Se-
quenom gene assay within each tissue sample transcriptome
and used these statistics to generate the boxplots shown in
Figure 1B. The five plant groups showed a significant differ-
ence (Wilcoxon test X2 = 62.49, p < 0.0001). Nonparametric
comparisons of each pair of plant groups using the Wilcoxon
method showed a small difference between the F1 hybrids
and S1 allopolyploids (Z = 3.07, p < 0.0021), no significant
difference between diploid in vitro ‘‘hybrids’’ and the two
populations of natural allopolyploids (p > 0.5 in all three
comparisons), and a significant difference in every other
comparison (p < 0.0001 in six comparisons). We also made
a similar comparison of the variation of tissue samples within
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Figure 1. Transcriptomic Shock in Tragopogon

(A) Examples of inflorescences from the groups

of Tragopogon plants sampled. Identity of

plants is shown by abbreviations used in the

main text (Tp = T. pratensis, Td = T. dubius,

Tm = T. miscellus, F1 = diploid hybrid between

Tp and Td, S1 = first-generation allopolyploid

produced between Tp and Td).

(B) Variation in quantitative results for relative

allele/homeolog expression (excluding cases of

apparent nonfunctionalization) from Sequenom

data, based on 126 genes; showing boxplots of

standard deviation among genes within samples.

Number of samples within each group is shown

above boxplots; box fill colors indicate plant

groups that differed with a significance greater

than p = 0.0001.

(C) Variation in quantitative results for relative

allele/homeolog expression (excluding cases of

apparent nonfunctionalization) from Sequenom

data, showing boxplots of standardized standard

deviation among samples within genes. Number

of genes analyzed in each group is shown above

boxplots; box fill colors indicate plant groups that

differed with a significance greater than p =

0.0001. The standard deviation of relative gene

expression among samples in diploid in vitro

‘‘hybrids’’ may have been increased by pipetting

errors.

(D) Mean percentage of tissues showing tissue-

specific silence of alleles/homeologs in a series

of Tragopogon diploids and polyploids for 126

genes assayed using Sequenom and 18 genes

assayed using CAPS. Error bars show standard

error.
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genes for each group (Figure 1C), following the same method
as that above, except that we standardized the standard
deviation for each gene within each plant group by the
average standard deviation shown by each gene across all
samples. This showed a similar pattern: the five plant groups
differed significantly (Wilcoxon test X2 = 278.03, p < 0.0001),
due to highly significant differences (p < 0.0001) between all
pairs of groups except F1s and S1s (Z = 2.79, p = 0.0052)
and the two natural Tm populations (Z = 2.85, p = 0.0043).
The high standard deviation shown by diploid in vitro
‘‘hybrids’’ among tissues within genes (Figure 1C) may have
been increased by small pipetting errors that shifted the over-
all ratio of the two transcriptomes in each sample away from
1:1, but this factor would not affect the measurement of
standard deviation among genes within tissue samples
(Figure 1B).

These results suggest that F1 hybrids have lower variation of
relative Td:Tp expression levels among plants and tissues than
is observed when cDNAs of the parental diploids are mixed (in
vitro ‘‘hybrids’’). Yet after 40 generations following allopoly-
ploidization, variation in relative Td:Tp expression is observed
among plants and tissues in natural Tm populations. This
difference in variation of expression between the groups
occurred despite the fact that the six F1 and six S1 plants
were derived from a total of eight
unique crosses (i.e., between different
parental combinations, see Table S1
available online), whereas the 18 Tm
plants studied were from two natural
populations, each ofwhich appears to have its origin in a single
cross [25].

Tissue-Specific Silence in Gene-Copy Expression
Of particular interest are cases where relative expression of
gene copies is so skewed that one copy is not detected at all
in the transcriptome of a tissue; we call this tissue-specific
silence (TSS). Taking Sequenom and CAPS assays together,
the mean percentage of assays showing TSS per gene was
highest in the diploid in vitro ‘‘hybrids’’ (Figure 1D; in Wilcoxon
matched pair analysis for diploid data compared with the four
other groups, TSS was more frequent for diploids with p <
0.0001 in all four comparisons except for that with short-lig-
uled Tm, where p = 0.0243). F1 hybrids and S1 allopolyploids
had the lowest frequency of TSS and these two plant groups
did not differ significantly. The two natural allopolyploid
populations both had more frequent TSS than the F1s and
S1s (p < 0.0001), and TSS differed in frequency between the
two natural Tm populations (p = 0.0416). In no group was there
a significant difference in the frequency of TSS of Td versus Tp
homeologs. Thus, it appears that in diploid parental species it
is common for a gene to be entirely unexpressed in some of the
tissues examined, but these genes are globally activated by
hybridization, such that copies from both parents are
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Figure 2. Examples of Results for Individual

Genes

(A–D) Tissue-specific relative expression of gene

copies derived from T. dubius and T. pratensis in

diploid in vitro ‘‘hybrids,’’ F1 hybrids, S1 synthetic

allopolyploids, and natural populations of T. mis-

cellus. Results for four example gene pairs are

shown, measured using Sequenom analysis (the

full data set of 126 Sequenom assays and 18

CAPS gene assays are shown in Figure S1).

Columns represent tissues, and lines represent

plants. Columns are grouped by gene, and rows

are in plant groups. Tissue abbreviations are as

follows: P = Phyllary, S = Style, T = Stigma, O =

Ovary, A = Pappus, C = Corolla, L = Leaf. Colors

show relative tissue-specific expression of Td

and Tp gene copies (see legend). Cells joined

by diagonal gray lines represent groups of

tissues that were assayed together. The Arabi-

dopsis thaliana homologs of the four genes

shown are: (A) Histidine kinase 3; (B) a remorin

family protein; (C) a haloacid dehalogenase-like

hydrolase family protein; (D) a metal ion binding

protein.
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expressed. In many genes, tissue-specific silencing of one ho-
meolog occurs in the first 40 generations of allopolyploidy
(while total silencing of both copies of a gene in the same
tissue is rare). The Sequenom and CAPS assays gave the
same general pattern with small differences likely due to differ-
ences in sample size and genes sampled (Figure 1D).

We then asked whether the same genes showed TSS in the
diploid in vitro ‘‘hybrids,’’ F1 hybrids, S1 allopolyploids, and
natural allopolyploids. There was a significant correlation
between the percentage of TSS shown by individual genes in
the diploid in vitro ‘‘hybrids’’ and in the natural allopolyploids
(R2 = 0.307, F = 48.23, p < 0.0001), for 111 genes assayed using
Sequenom, which were expressed in at least one tissue in
every diploid in vitro ‘‘hybrid.’’ There was a weaker correlation
between F1s and natural allopolyploids (R2 = 0.097, F = 11.73,
p < 0.0009) and between S1s and natural allopolyploids (R2 =
0.106, F = 12.92, p < 0.0005). Therefore, the same genes
tended to show TSS in the diploid in vitro ‘‘hybrids’’ and natural
allopolyploids despite loss of TSS upon hybridization. It must
be emphasized that in the diploids TSS involves total nonex-
pression of that gene in a tissue, whereas in allopolyploids
exhibiting TSS, the expression of one homeologous gene
copy is retained.

While there are general trends across all genes, five genes
that we studied showed patterns that are found with some
regularity among plants after hybridization and/or whole-
genome duplication (Figures 2B–2D; Figure S2). For example,
gene 15567_808 (Figure 2C), a putative haloacid
dehalogenase-like hydrolase family
protein, showed zero TSS in all but one
F1 hybrid, but the pattern of tissue-
specific expression found in this one
hybrid – Td bias in the stigma, style
and corolla – was also found in most of
the synthetic and natural allopolyploids
examined. Two genes showed patterns
of TSS that are found across all groups
(diploid through natural allopolyploids)
(Figures S2D and S2E). Two genes
showed patterns of tissue-specific
expression that were to some extent
found in diploid in vitro ‘‘hybrids,’’ F1 hybrids, and S1 allopoly-
ploids but absent in natural Tm populations (Figure 2D; Fig-
ure S2G): for example, a metal ion-binding homolog
28476_597 (Figure 2D) tended to show high relative expression
of the Td copy in the stigma and corolla of diploid in vitro
‘‘hybrids,’’ F1 and S1 plants, but this expression pattern was
not present in the majority of the natural 40-generation-old
allopolyploids.

Transcriptomic Shock as a Reduction in Tissue-Specificity
of Gene Expression

The general trends of our results suggest that transcriptomic
shock upon hybridization [26] includes the activation of allele/
homeolog expression in all tissues, causing a loss of tissue-
specific expression patterns seen in the diploid parents. Such
activation has been shown for repetitive and transposable
elements [26–29], but has seldom been considered in terms
of the tissue-specific activation of protein-coding genes. A
rare example is in the derepression of Polycomb group
proteins in hybrid endosperm [30]. Activation of homeologs
has also been found occasionally in cotton F1 hybrids and allo-
polyploids by Chaudhary et al. [7], who termed it ‘‘transcrip-
tional neofunctionalization.’’ Here, we show this to be wide-
spread in Tragopogon.
Our findings may fit a newly proposed transcriptomic shock

scenario in which activity of small interfering RNA molecules,
which influence gene expression, is temporarily lost in F1

hybrids and early allopolyploids, but restored as subsequent
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generations stabilize [31, 32]. Novel expression in hybrids
could also be due to trans-activation between the two parental
genomes, whereby a regulatory element produced by one
parental genome activates gene expression in the other
genome; perhaps this is uncoupled in subsequent
generations.

Previous studies in domesticated cotton allopolyploids,
using methods that distinguish among tissues and between
homeologs, have led to the conclusion that allopolyploidiza-
tion causes ‘‘an immediate,massive, and saltational disruption
of ancestral expression patterns’’ [7, 14–16, 33]. Alterations in
gene expression have also occurred upon allopolyploidization
in Arabidopsis [4, 5, 9, 12], wheat [3, 10, 13, 34, 35], and Bras-
sica [11]. Our results shed new light upon these disrupted
expression patterns in a wild, nonmodel plant.

Our results might appear to contrast with those of a study in
the young natural allohexaploid Senecio cambrensis, where
hybridization was found to be the most influential step with
respect to the transcriptome [8]. Gene expression changes
that occurred over five generations of a synthetic allopolyploid
line and over the w100-year existence of the natural allopoly-
ploid Senecio cambrensis were smaller than those that
occurred at the time of hybridization [8]. However, the Senecio
experiment did not distinguish between homeologs or among
tissues, and we therefore do not know whether expression
changes occurring upon hybridization were due to loss of
tissue-specific expression patterns. Regardless, the results
for Senecio might be expected to differ from those reported
here because in Senecio the hybridization step was between
a diploid and a tetraploid, not between two diploids as in
Tragopogon. Hence, in Senecio the F1 hybrids were triploids,
which are likely to have genome dosage effects [36].
Frequency of Expression Subfunctionalization

Wealso examined a special category of TSS, reciprocal tissue-
specific silence of homeologs, that may be indicative of rapid
subfunctionalization, the partitioning of multiple functions of
an ancestral gene between its duplicate descendents [16]. In
the in vitro ‘‘hybrids’’ of Tragopogon diploid transcriptomes,
we found 26 cases of reciprocal TSS, where a gene was not
expressed by one diploid parent in a certain tissue but not ex-
pressed by the other diploid parent in another tissue (3.97% of
655 plant 3 gene combinations examined that did not show
apparent nonfunctionalization). In contrast, we found just six
cases of reciprocal TSS in F1 hybrids (0.74% of 807 plant 3
gene combinations), zero cases in S1s (0% of 707), and eight
cases in natural allopolyploids (0.37% of 2152; for an example
identified using CAPS, see Figures S2F and S3). Thus, the acti-
vation of genes by transcriptomic shock seems to cause lower
reciprocal TSS after hybridization than wemight expect if gene
expression were strictly additive of that in parental diploids.

Models of subfunctionalization involving tissue-specific
expression tend to assume identical expression patterns of
ancestral and newly duplicated genes [17]. Under such a
condition, reciprocal TSS has been shown to occur in F1

hybrids [15], synthetic allopolyploids [14, 16], and allopolyploid
domesticated cotton [16]. However, the data presented here
show that different tissue-specificpatternsof homologexpres-
sion are common in the diploid parents of Tm. The data also
suggest that the activation of genes by transcriptomic shock
seems to cause lower reciprocal TSS after hybridization than
we might expect if gene expression were strictly additive of
that in parental diploids. This suggests that instantaneous
subfunctionalization is the exception, not the norm, in the
evolution of gene expression in new allopolyploids.

Conclusions

The patterns of transcriptomic shock shown here are likely to
affect profoundly the evolutionary success of the natural pop-
ulations of allopolyploid Tragopogon miscellus. If genes in the
diploid parental species have finely tuned patterns of tissue-
specific expression, disruption of these patterns could have
negative fitness consequences in an unchanging environment,
but might be highly beneficial after a long-range migration,
such as that undergone by Tragopogon species when intro-
duced to the NW USA from Europe [37, 38]. Current models
for the evolution of genetic complexity and diversity rely
upon gene and genome duplication [19, 39–42]; divergence
in the location or timing of gene expression is likely to be
one possible early step in the functional divergence of dupli-
cated genes [17, 42, 43]. In light of these models, the data pre-
sented here suggest that rather than being a saltational leap to
a new fitness peak, allopolyploidization, for the majority of
genes, provides the genetic and transcriptomic resources for
novel trajectories of evolution, by activation of gene expres-
sion (as well as by genetic redundancy at all loci). Even though
allopolyploid formation inevitably involves a genetic bottle-
neck, subsequent generations display diverse patterns of
tissue-specific gene expression, whose phenotypic effects
may be exposed to natural selection and thus gradually lead
the new allopolyploid species to new adaptive peaks.

Experimental Procedures

Seed Sources

Seeds were collected from natural populations of T. miscellus (Tm) of inde-

pendent and reciprocal origin: the short-liguled form (with T. pratensis [Tp]

as the maternal parent) from Moscow, ID and the long-liguled form (with

T. dubius [Td] as the maternal parent) from the only known natural popula-

tion, which is found nearby in Pullman, WA (for Soltis and Soltis collection

numbers, see Table S1). Samples of Td were obtained from Pullman, WA;

Palouse, WA; and Spokane, WA, and those of Tp were obtained from Mos-

cow, ID and Spangle, WA (see Table S1). These seeds were grown in the

greenhouse (at Washington State University, Pullman, WA) and allowed to

self-fertilize for one generation. After self-fertilization, seeds were germi-

nated and grown under controlled conditions in a greenhouse at the Univer-

sity of Florida (Gainesville, FL). Five plants of each diploid parent and ten

plants of each Tm population were used in the experiment.

Six F1 hybrids and six first-generation synthetic allopolyploids (S1s)

formed between Td and Tp, were grown in the same greenhouse [44]. The

crosses that gave rise to these synthetic lines are shown in Table S1. Five

of the F1s and S1s were Tp 3 Td crosses, and one F1 and S1 were a Td 3

Tp cross. The latter cross had a much lower success rate in terms of viable

progeny than the former [44]. The synthetic allopolyploids were produced

using colchicine treatment of F1 hybrids [44]. These hybrids were different

individuals to those included as F1 hybrids in this experiment. In only one

case was an F1 from exactly the same parental diploid pair as an S1, due

to the difficulties of successfully inducing whole genome duplication with

colchicine and nurturing the new allopolyploid to flowering.

Tissue Dissection and RNA Extraction

Leaf and inflorescence tissue was collected from all plants and flash frozen

in liquid nitrogen [23]. Inflorescenceswere dissected on dry ice into up to six

tissue types: corolla, pappus, ovary, stigma, style, and phyllary. Sometimes

the quantities of stigma and style tissues available were not sufficient to

provide the quantity of RNA needed, so the two tissues were combined.

Tissues were ground with a mortar and pestle at 280�C, and RNA was

extracted using the RNAeasy kit with on-column DNase digestion from

QIAGEN (Valencia, CA). First-strand cDNA synthesis was carried out on

500 ng of RNA using Superscript II reverse-transcriptase (Invitrogen, Carls-

bad, CA) and polyT primers. In the CAPS analyses, cDNAs from diploids
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were analyzed separately and the data combined for the analyses (below); in

the Sequenom analyses, cDNAs for specific tissues were combined from Tp

and Td to make in vitro ‘‘hybrids,’’ allowing quantification of the relative

expression levels of homologs.

Allele/Homeolog Assays

We wished to characterize the expression of genes derived from Td and Tp

in tissues of the five plant groups. In diploid hybrids these genes are present

as alleles, but in allopolyploids they are present as homeologs. Allele/home-

olog expression was analyzed in the tissue transcriptomes isolated above,

using 18 CAPS markers (including one set of homeolog-specific PCR

primers) and 128 Sequenom MassARRAY assays. The CAPS assays were

carried out on tissue transcriptomes of all the plants mentioned above,

and the Sequenom assays were carried out on the same set of transcrip-

tomes with the omission of those from two short-liguled Tm plants. Below

we outline how the assays were implemented.

For theCAPSmarkers, alleles/homeologswere amplified by PCR from the

cDNA using 10 primer sets from Tate et al. [23], seven primer sets from

Buggs et al. [24], and one primer set from Tate et al. [22]. Putative identities

of these genes are provided in the original papers cited. The PCR products

were digested using the enzymes and conditions specified in the above

publications, which cut only one of the two alleles/homeologs, due to a

single nucleotide difference in the enzyme cut site between the two

alleles/homeologs. CAPS and allele/homeolog-specific PCR products

were visualized on high-resolution 4%Metaphor agarose (Lonza, Allendale,

NJ) gels. Qualitative results were scored as 0 for expression of both alleles/

homeologs, 1 for expression of only the Tp allele/homeolog and 21 for the

expression of only the Td allele/homeolog.

Sequenom MassARRAY assays were developed as described in Buggs

et al. [21]. In this technology, a short section of DNA containing a SNP is

amplified froman individual by PCR. This is followed by a single-base primer

extension reaction over the SNP being assayed, using nucleotides of modi-

fied mass. The different SNP-alleles therefore produce oligonucleotides

with mass differences that can be detected using Matrix-Assisted Laser

Desorption / Ionization Time-Of-Flight mass spectrometry. This provides

a trace in which peak heights correspond to the frequency of each different

oligonucleotide, allowing measurement of the relative frequency of two

SNP-alleles at one locus. This can be used to measure quantitative gene

expression [45]. Up to 40 different assays can bemultiplexed in one reaction

mix if primers are designed to give unique mass ranges for each single-

base-extended primer. We identified single base-pair differences between

homologous genes in Td and Tp using 454 and Illumina sequencing and de-

signed Sequenom assays to measure the expression of 139 gene pairs as

alleles/homeologs in the plant groups in this study [21].

The Sequenom assays were carried out at Iowa State University. The

accuracy of our assays in measuring relative expression of alleles/

homeologs was checked by running three replicates of a T. miscellus leaf

transcriptome that had been Illumina deep-sequenced [21]. Where the three

replicates gave a result in agreement with the Illumina count data, the

assays were deemed to be accurate. Where there were insufficient Illumina

count data, the accuracy of the assays was checked using genomic DNA

from six F1 hybids between Td and Tp and mixes of Td and Tp genomic

DNA in ratios of 1:3, 1:1, and 3:1. Where the majority of these gave an ex-

pected result, the assays were deemed to be accurate. By the first method,

111 assays were found to be accurate and a further 17 by the second

method, giving a total of 128 working assays. Two of these were not used:

one because one diploid was polymorphic, and one because the assay

failed to work on a homeolog that had not been covered in the Illumina run.

Where one homeolog was found to be silenced in all tissues of an indi-

vidual Tm plant by Sequenom analysis, genomic DNA was extracted from

that plant using a modified CTAB protocol [46], and Sequenom analysis

carried out, to test for genomic loss of that homeolog. Only 73 of the Seque-

nom assays that had worked on cDNA worked consistently on genomic

DNA, probably due to intron splicing.

Analysis

Raw Sequenom MassARRAY allelotyping data consist of areas under

amass-spectrometer peak for expression of each allele/homeolog.We con-

verted the data to quantitative measures of relative expression of the two

alleles/homeologs, where 0 represents equal expression of both alleles/

homeologs, 1 represents expression of only the Tp allele/homeolog and

21 represents the expression of only the Td allele/homeolog. Results

from both CAPS and Sequenom gene expression analyses on tissue-

specific cDNAs were clustered separately using Cluster 3.0 [47], using a
hierarchical centered Pearson correlation with average linkage. The two

clustered datasets were visualized in Java Treeview 1.1.4r3 [48] (Figure S1).

To compare variation in relative gene expression among the plant groups

(parental diploid in vitro ‘‘hybrids,’’ F1 hybrids, S1 allopolyploids, long-lig-

uled natural allopolyploids, and short-liguled allopolyploids), we calculated

the standard deviation of expression both among genes within tissue tran-

scriptomes (Figure 1B) and among tissue transcriptomes within genes (Fig-

ure 1C). The former statistics did not include variation caused by small

pipetting errors in the production of the diploid in vitro mixes, whereas the

latter inevitably did. Differences between the mean standard errors of

each group were tested in JMP using Wilcoxon tests among all groups

and nonparametric comparisons for each pair of groups using theWilcoxon

method.

For the data sets from both CAPS and Sequenommethods we calculated

the mean percentage of tissue-specific assays from each of the five plant

groups that displays tissue-specific silence (TSS; Figure 1D). Only a 1 or

21 in the Sequenom result for an assay was scored as nonexpression of

one gene copy. If all Sequenom assays for a plant yielded a result of all 1

or all 21, except for a single tissue, we counted this as a putative nonfunc-

tionalization, as comparison with results from assays on genomic DNA

showed that occasional false positives occurred, spuriously showing slight

expression of one homeolog in only one tissue where that homeolog had

been lost from the genome. The TSS data were analyzed in JMP using Wil-

coxon matched pair analysis and bivariate fits.

Supplemental Information

Supplemental Information includes three figures and one table and can be

found with this article online at doi:10.1016/j.cub.2011.02.016.
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