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Abstract

Despite the great wealth of cosmological knowledge accumulated since the
early 20" century, the nature of dark-matter, which accounts for ~ 85% of the
matter content of the universe, remains illusive. Unfortunately, though dark-matter
is scientifically interesting, with implications for our fundamental understanding
of the Universe, it cannot be directly observed. Instead, dark-matter may be
inferred from e.g. the optical distortion (lensing) of distant galaxies which, at linear
order, manifests as a perturbation to the apparent magnitude (convergence) and
ellipticity (shearing). Ensemble observations of the shear are collected and leveraged
to construct estimates of the convergence, which can directly be related to the
universal dark-matter distribution. Imminent stage IV surveys are forecast to accrue
an unprecedented quantity of cosmological information; a discriminative partition of
which is accessible through the convergence, and is disproportionately concentrated
at high angular resolutions, where the echoes of cosmological evolution under gravity
are most apparent.

Capitalising on advances in probability concen-
tration theory, this thesis merges the paradigms of
Bayesian inference and optimisation to develop hy-
brid convergence inference techniques which are scal-
able, statistically principled, and operate over the Eu-
clidean plane, celestial sphere, and 3-dimensional ball.
Such techniques can quantify the plausibility of infer-

ences at one-millionth the computational overhead of

competing sampling methods. These Bayesian tech-

niques are applied to the hotly debated Abell-520 Simulated 3-dimensional weak
lensing convergence field. Each
spherical shell is at progressively
logues contain insufficient information to determine increasing distance (redshift).

merging cluster, concluding that observational cata-

the existence of dark-matter self-interactions. Further, these techniques were ap-
plied to all public lensing catalogues, recovering the then largest global dark-matter
mass-map. The primary methodological contributions of this thesis depend only on
posterior log-concavity, paving the way towards a, potentially revolutionary, complete
hybridisation with artificial intelligence techniques. These next-generation techniques
are the first to operate over the full 3-dimensional ball, laying the foundations for sta-
tistically principled universal dark-matter cartography, and the cosmological insights

such advances may provide.



Impact Statement

(1) Impacts on theoretical methodology

This thesis merges the paradigms of Bayesian inference and applied mathe-
matics (optimisation) to develop truly next-generation hybrid Bayesian inference
methodology. Such hybrid techniques are broadly applicable, retain the principled
statistical interpretation of Bayesian analysis, and inherit the remarkable compu-
tational efficiency of optimisation approaches. These techniques are abstracted to
operate over not only standard Euclidean planes, but also curved manifolds such
as the 2-sphere and the 3-dimensional ball, for which pre-existing algorithms are
few and far between. In fact, this thesis is the first body of research to consider
variational techniques over the 3-dimensional ball. As these methodological ad-
vances are dependent only on posterior log-concavity, they are primed for further
hybridization with artificial intelligence techniques, e.g. learnt prior distributions,

which has the potential to revolutionize computational imaging over the coming years.

(2) Impacts on the reconstruction of cosmological dark-matter

Methodological developments in this thesis are applied to the field of gravi-
tational lensing, in which dark-matter is reconstructed: routinely over Euclidean
tangent planes, occasionally over the celestial sphere, and most naturally over the
3-dimensional ball. Though a variety of methods exist to perform this inference
over tangent planes, this thesis also considers the inference of dark-matter over the
celestial sphere, which is lacking in the existing literature. Notably, abstraction to the
3-dimensional ball provides the methodological and computational foundations upon
which the universal dark-matter distribution may be reconstructed. In each case, the
approach developed in this thesis recovers the most accurate dark-matter inferences
to date and, for the first time, can quantify the uncertainty in such inferences at
one-millionth the computational overhead of competing sampling methods'.

This thesis introduces a variety of novel techniques with which one may quantify
the uncertainty in both local dark-matter sub-structures and global cosmological
statistics. This hybrid methodology was applied to the hotly debated Abel-520
merging cluster, believed to contain spurious dark cores? which would have significant
implications for dark-matter self-interactions. Despite reconstructing concurrent

dark-matter distributions, the existence of such dark cores is statistically inconclusive

'Note that the vast majority of pre-existing approaches simply do not support uncertainty
quantification to which one may compare.
2A dark core is a seemingly over-dense region with no optical counterpart.



Impact Statement

at 99% confidence. The spherical methodology developed in this thesis was applied
to all public weak lensing data-sets producing, what was at the time, the most
comprehensive dark-matter mass-map to date. The work presented in this thesis
advances the field in several key ways, priming the community to construct principled
scientific statements in light of next-generation, now imminent, stage IV weak lensing

surveys.

(3) Impacts on the broader scientific community

Hybrid Bayesian inference and uncertainty quantification methods developed
throughout this thesis depend only on posterior log-concavity, and are thus widely
applicable. For example these methods may be directly applied to magnetic resonance
imaging, determining both the plausibility that apparent medical abnormalities are
real, and the accuracy of their location. Moreover, as these inference methods
are abstracted to the sphere and ball they are applicable to a broad range of non-
Euclidean inverse problems, e.g. diffusion tensor imaging, computer vision, radio

interferometry, geophysical modeling, and beyond.
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Chapter 1

Introduction and historical context

How did the Universe, as we know it, come to be? This fundamental question as to
the nature of the cosmos has been pondered for millennia, despite which it remains
as compelling as it is involuted to this day. Only within the past century have the
necessary tools with which such a question may begin to be addressed been developed.
In recent decades cosmologists have converged to a robust theoretical understanding
of the state of the Universe as it was roughly 13.8 billion years ago. This consensus
understanding has now been corroborated by substantial observational evidence,
extracted, in large part, from the cosmic microwave background (CMB). Contrasting
the largely homogeneous CMB to the highly structured cosmic web we observe here
and now, would appear to indicate substantial cosmological evolution under gravity,
which must be understood. To this end, cosmologists are effectively attempting to
unravel the narrative arc of the Universe, having access only to its first and final
chapter; requiring a comprehensive understanding of the individual components of

the Universe, and the interactions between such components, e.g. matter and gravity.

“Science is built up of facts, as a house is built of stones; but an accumulation
of facts is no more a science than a heap of stones is a house.”

Henri Poincaré (1902)

One of the most direct avenues through which cosmologists may study both
gravity and (in particular dark) matter is through the cosmological phenomenon of
gravitational lensing, which is the primary topic of this thesis. In this first part a
holistic background is provided, setting the scene for the novel research provided
in later chapters. This chapter summarizes the historical context within which
gravitational lensing exists, before proceeding to a description of the current state
of the field. Emphasis is placed on major theoretic and experimental strides made
during the mid to late 20th century moving into the early 21st century. In tandem
to the astrophysical discussion a more general discussion of inverse problems within
science is then broached before presenting the context within which this thesis is
set. The themes raised within this introduction are introduced so as to motivate

extended mathematical background presented in chapters 2 through 4.



CHAPTER 1. INTRODUCTION AND HISTORICAL CONTEXT

1.1 Early history of gravitational lensing
Newton (1704)

One may attribute the earliest reference to the concept we now know as gravita-
tional lensing to none other than Sir Isaac Newton in Book 4, Part 1 of his renowned
‘Opticks’ published in 1704, which reads

“Do not bodies act upon light at a distance and by their action bend its ray’s;
and is not this action (caeteris paribus) strongest at the least distance?”
Sir Isaac Newton (1704)

This statement is somewhat surprising as, under a Newtonian interpretation
of gravity, the notion of light bending within a gravitational field is somewhat
confused. Nevertheless, the consensus today is that this was the first, albeit incorrect
(perhaps more diplomatically incomplete), conception of gravitational lensing. Shortly
following the 1919 observation of gravitational lensing, the then president of the
Royal Society, J.J. Thomson, noted that Newton had “in fact suggested this very
point in the first query”. However, Newton never returned to this topic and so the
first formal calculation of such a deflection of light cannot strictly be attributed to

him.

Soldner (1804) and Cavendish (1784)

This first published calculation of light deflection by a gravitating body was
written by Johann Georg Soldner a century later in 1804 (Soldner, 1804). However
in 1921, a further century later documents dated to 1784 by the eminent Henry
Cavendish were uncovered, within the collection of the Duke of Devonshire, explicitly
stating the influence of gravity on light (Dyson, 1921) — perhaps the most relevant
under the title ‘On the bending of light by gravitation’ Both Soldner and Cavendish’s
papers address gravitational interactions of light rays passing close to massive bodies,
however it is interesting to note that certain boundary conditions within Soldner’s
derivation were incorrect within a Newtonian setting. Fortuitously, any erroneous
factors cancelled in the penultimate stages of the derivation, and so the results, to
linear-order, remained unchanged. It was in this contribution that Soldner explicitly
calculated the gravitational deflection of a light ray passing the limb of the Sun to

be ~ 0.84 arc-seconds.

Einstein (1905-1916)

Often referred to as Albert Einstein’s annus mirabilis, ‘miracle year’, 1905
marked the beginning of the theory of relativity, within which Einstein published
several seminal papers. The first paper translates roughly to ‘Concerning a heuristic
point of view towards the emission and transformation of light’ (Einstein, 1905¢) in

which the photoelectric effect was first postulated, winning Einstein the physics Nobel

16



CHAPTER 1. INTRODUCTION AND HISTORICAL CONTEXT

prize in 1921 after a, somewhat sceptical, Robert Millikan confirmed the theoretic
predictions in 1916 (Millikan, 1916). Einstein’s second paper presents a theory of
Brownian motion (Einstein, 1905a) which is largely unrelated to gravitational lensing,
however has found wide-spread use e.g. within probability theory, as discussed in
later chapters. Einstein’s third (Einstein, 1905d) and fourth (Einstein, 1905b) papers,
the former being titled ‘On the electrodynamics of Moving Bodies’, presented a truly
novel interpretation of the nature of gravity. Where Newton conceived of gravity as
an attractive force between masses, Einstein drew on the field of differential geometry
to introduce the notion of gravity as curvature of an underlying Riemannian manifold.
Further to this, the revolutionary mass-energy relation was derived. Using both these
novel concepts, within a relativistic framework it is entirely consistent that light,
just as matter, will deflect when passing close to massive bodies. This gravitational
deflection, or lensing, of light was explicitly stated in a review published in the
Jahrbuch der Radioactivitdt und Elektronik in 1907.

Subsequently in 1911 Einstein further published a theoretical linear-order de-
flection value (Einstein, 1911), consistent with that previously derived by Soldner
and Cavendish, though derived from a starkly different interpretation of gravity.
Importantly, at this point the theory of general relativity was in its infancy and
incomplete, hence Einstein had considered spatial curvature alone, neglecting tempo-
ral curvature. Of course, for any theory to be accepted it must first be confirmed
through observation which, at the time, raised some concern. The problem was that
the angular resolution required to observe such sub arc-second deflections around the
Sun was, at the time, perceived to be unachievable. Furthermore, observations were
fundamentally predicated on a total solar eclipse. Such eclipses occur roughly 2-4
times per annum, however only a ~ 50 mile diameter circular patch of the Earth’s
surface experiences totality, per solar eclipse. Therefore, to recover the requisite
observations within a time-frame of years, observers would be required to travel to
remote locations around the globe. At the time such exploration was notoriously

expensive, not to mention time consuming.

Nonetheless, Erwin Finlay-Freundlich and William Wallace Campbell set out to
just such a total solar eclipse located in Feodosiya, Crimea in 1914. Unfortunately,
before the 1914 eclipse occurred the western world spiralled into a global conflict,
now known as the first world war. All experimental equipment was confiscated and
expedition members were taken into custody. The observation was not made. In
hindsight, this delay perhaps benefited relativity as it allowed time for the theory to
mature, and the theoretic predictions to be adjusted. By 1916 Einstein’s theory of
general relativity was complete (Einstein, 1916) and a new, corrected, theoretical
prediction of the solar deflection angle was calculated to be ~ 1.7 arc-seconds —

precisely a factor of 2 more than the Newtonian prediction.
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Dyson, Eddington and Davidson (1919)

In May 1919 a Royal Astronomical Society expedition, purportedly conceived
by Frank Watson Dyson, set out to perform observations of Mercury’s solar transit,
during a total solar eclipse. On the globe there were only two locations at which
the eclipse was total: Principe (off the west coast of Africa), and Sobral (in Brazil).
Sir Arthur Eddington led the expedition to Principe, whilst simultaneously Andrew
Crommelin and Charles Davidson travelled to Sobral. After six and a half minutes of
totality, and substantial post-processing and analysis of astro-graph plates, Eddington
reached a deflection of 1.61+0.30 arc-seconds (Dyson et al., 1920). The Sobral plates
however, being out of focus, gave measurements of 0.93 arc-seconds which were

subsequently accounted for in the statistical analysis.

“Thus the results of the expeditions to Sobral and Principe can leave little doubt
that a deflection of light takes place in the neighborhood of the Sun and that it is
of the amount demanded by Einstein’s general theory of relativity, as attributed

to the Sun’s gravitational field.”
Sir Joseph John Thomson (1919)

At this juncture, physicists had both a working relativistic theory of gravity, in
which light naturally deflects around massive bodies, and observational confirmation
thereof. Hence, the birth of the field of gravitational lensing can arguably be
attributed to this date.

Khwolson (1924), Einstein (1936), and Zwicky (1937)

Orest Khwolson, sometimes written Chwolson, in 1924 published a short note in
Astronomische Nachrichten, astronomical notes, demonstrating that certain geometric
configurations of source and lens can produce multiple images of a single source
(Khvolson, 1924), an effect which we now refer to as strong gravitational lensing
— an extreme example of which is an Einstein-Khwolson ring (see e.g. Kochanek
et al., 2001). Khwolson was not alone in this realization; both Oliver Lodge (Lodge,
1919), and Eddington present similar works at that time, though all agreed the effect
would not be observable. In 1936, it is reasonable to conclude that Einstein held
much the same opinion, believing the lensing effect to be unobservable in practice.
However, purportedly with urging from Rudi W. Mandl, Einstein published a short
note in Science presenting explicit formulae for certain geometric factors relating to
gravitational lensing (Einstein, 1936). Notably, Einstein included the formula for the
magnification factor in addition to introducing the concept of micro-lensing, since
coined by Paczynski, in which the fluctuation in variable intensity stars could be
explained by intervening massive bodies. Little did Einstein know that such micro-
lensing events would, a century later, be leveraged to detect far flung exoplanets

(Gaudi, 2012), and upon which further great discoveries may yet depend.
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Building on his then recent detection of a mysterious dark matter component
in the Coma cluster (Zwicky, 1933), Fritz Zwicky published two short articles in
Physical Review. In the first of these articles Zwicky argues that galaxies, or galaxy
clusters, provide far more effective gravitational lenses than stars (Zwicky, 1937a).
Importantly, this conclusion was met by assuming a galactic mass of O(10?) times
larger than what was, at the time, the expectation — a value justified by Zwicky’s
recent discovery of dark matter. In the second of these articles Zwicky determined
that, if one considers a dark! component within massive clusters, the probability
that nebulae acting as gravitational lenses will be found is “practically a certainty”
(Zwicky, 1937D).

1.2 Modern history of gravitational lensing

Liebes, Klimov, Refsdal and Zel’dovich (1962 - 1963)

Between 1937 and the early 1960s Fritz Zwicky’s vision of dark matter cartogra-
phy through gravitational lensing (Zwicky, 1937a,b) remained incomplete, indeed in
many regards it simply wasn’t addressed. Despite the obvious reason that the world
had been plunged once again into global conflict, the angular deflections predicted
by gravitational lensing were simply too small to be feasibly measured. Bluntly
put, the rapid progression of the theory of gravity, and the theoretical predictions
such advances entail, had dramatically outpaced the development of astronomical
imaging technology. In a somewhat morbid sense, the second world war led to
great technological advances in many scientific disciplines; particularly in the field of
radio communications — which, at the time, was inextricably linked to astronomical
imaging. This, along with steady advances in computing made throughout the middle
of the 20th century, placed astronomy in a far better technical state than it had been
just a few short decades prior.

Gravitational lensing had something of a renaissance, leading to a string of
theoretical publications, which further developed the underlying geometric framework
(Klimov, 1963; Liebes Jr, 1964; Refsdal and Bondi, 1964; Zel’dovich, 1964). Sjur
Refsdal further demonstrated various important characteristics exhibited by variable
intensity light sources, e.g. quasars, when gravitationally lensed (Refsdal, 1964).
Refsdal highlighted that observation of such events would provide a geometric means
by which one might infer the expansion rate of the universe — postulated many years
prior by Hubble (Hubble, 1929) or Friedmann (Friedmann, 1922). Of particular
interest, Zel’dovich presented an analysis of the effect of gravitational lensing on
cosmological scales (Zel’dovich, 1964), reinforcing the foundations upon which the

study of gravitational lensing and the cosmic microwave background rely today.

'In this context dark refers to matter which cannot be observed, but for which we may observe
downstream effects e.g. perceived gravitational attraction to visually empty regions of space.
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Boyle and Smith (1969)

For modern cosmological surveys to become a reality, a sufficiently precise
imaging device was required, one which ideally was not restricted to the large
unwieldy dishes of radio telescopes. In the mid 1960s, Bell Labs were working on
precisely such a device, though for entirely separate applications. In 1969, Willard
Boyle and George E. Smith noticed that two of their primary projects, a picture phone
and semi-conductor bubble memory, could be combined into what was referred to as
a ‘charge bubble device’ — known now as a charge coupled device (CCD). Originally,
an electrical impulse across the surface of a semi-conductor would trigger memory
storage within said surface, however Boyle and Smith realized that such memory
storage could equally be triggered via Einstein’s photoelectric effect (Einstein, 1905¢;
Boyle and Smith, 1970). Due to industrial development time, CCD imaging only
became widespread within astronomical imaging in the 1980s, narrowly missing out
on the first detection of gravitational lensing in 1979, made on a traditional radio
telescope. Both Boyle and Smith shared the physics Nobel prize in 2009 for the

‘invention of an imaging semiconductor circuit - the CCD sensor’.

Walsh et al (1979)

In 1979 Dennis Walsh, Bob Carswell, and Ray Weymann made the first obser-
vation of a multiply imaged galactic source on the Kitt Peak National Observatory
2.1 meter radio telescope (Walsh et al., 1979). In a remarkably reserved abstract,
published in Nature, the authors announced the detection of a pair of blue stellar
objects that were, in fact, multiple images of the same, gravitationally lensed, quasar
labelled SBS 09574561 A/B — therefore crediting the team with the first confirmed

detection of a strongly gravitationally lensed source image.

Irwin et al (1989)

In 1989 Mike J. Irwin and Geraint F. Lewis published a paper titled “Photometric
variations in the Q223740305 System: First detection of a micro-lensing event” in
which they present, as the title suggests, the first detection of a micro-lensing event
(Irwin et al., 1989). Interestingly, they also quote an upper-bound on the lensing mass
as < 0.1 solar masses and illustrate that subsequent monitoring of the aforementioned

quasar system could provide an elegant probe of the intervening mass distribution.

Tyson, Valdes and Wenk (1990)

Within a year of the first detection of gravitational micro-lensing, J. A. Tyson,
F. Valdes and R. A. Wenk detected the first signatures of galaxy cluster lensing
in two, high-velocity dispersion i.e. the highly dynamical, clusters A1689 and CL
1409452 (Tyson et al., 1990). Observations of background galaxy elipticities were
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averaged to remove residual intrinsic effects, and a so-called ‘alignment statistic’ was
computed for a grid of possible lens locations. The most likely alignment statistic was
determined, from which the lensing mass centre was computed and compared against
the luminosity profile. Tyson et al, found that the lensing distortions were roughly
correlated to both the light centre and profile, leading the authors to conclude that
the observations supported theories of baryonic dark matter — or at least theories

with dissipatively coupled dark matter.

Kaiser and Squires (1993)

In 1993 N. Kaiser and G. Squires released, a now classic, paper in which they
considered, for the first time, what researchers now refer to as mass-mapping (Kaiser
and Squires, 1993): the reconstruction of the integrated mass distribution field from
coherent distortions of background galaxies. In this paper, Kaiser & Squires determine
analytic relations between linear-order lensing components and the integrated lensing
potential, from which the lensing forward model is derived. This forward model
allows one to calculate an analytic relation between the unobservable magnification
and the observable distortions of distant galaxies. One may invert this relation to
compute estimates of the magnification. Such a lensing inversion method is referred
to as Kaiser-Squires (KS) inversion. As will be discussed in many areas of this thesis,
this KS approach is sub-optimal for modern weak lensing mass-mapping (see e.g.
Lanusse et al., 2016; Jeffrey et al., 2018; Price et al., 2021a), however at the time

this was a seminal paper, and is still widely used today.

Brainerd et al (1996)

Subsequently, weak gravitational lensing of distant galaxies was detected in a
paper by Tereasa G. Brainerd, Roger D. Blandford and lan Smail, accepted to the
Astrophysical Journal in 1996 (Brainerd et al., 1996), within which the polarization of
weakly lensed images was measured. Brainerd et al conclude that the weak lensing on
galactic scales provides “a viable and potentially powerful probe of the outer parts of
normal galaxies”. Additionally, the authors discussed the possibility of corroborating

measurements made using deep Hubble space telescope (HST) data archives.

Bacon, Refregier and Ellis (2000)

At the turn of the millennium David J. Bacon, Alexandre R. Refregier, and
Richard S. Ellis reported a 3.40 detection of weak gravitational lensing by large scale
structure (Bacon et al., 2000), from measurements made on the William Herschel
Telescope (WHT), a phenomenon now referred to as ‘cosmic shear’. Analysing
this detection, the group found agreement with theoretical predictions of cluster-
normalized cold dark matter (CDM) and the current consensus A-CDM cosmology,

with a matter density parameter §2,,, = 0.3. Further to this ground breaking detection,
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the authors discuss the future of cosmic shear observations with ground-based
telescopes. It should also be noted that later that same year two other groups,
spearheaded by Van Waerbeke (Van Waerbeke et al., 2000) and Wittmann (Wittman
et al., 2000), also reported successful detections of cosmic shear, corroborating the

conclusion drawn by Bacon et al.

Massey et al (2007)

Until now researchers had largely, though not wholly, only considered 2D pro-
jected maps of dark matter, hence it is fitting to end this overview of the historical
context with the first attempt at a 3D dark matter map. In 2007 Massey et al, for
the first time, conducted a full 3-dimensional analysis of an observational cosmic
shear data-set (Massey et al., 2007b), acquired through the Hubble Space Telescope
COSMOS survey. In a paper published in Nature, the group recovered a Euclidean
3-dimensional map of the dark-matter distribution over a 1 deg? patch of the celestial
sphere, out to a redshift of z =1 (Massey et al., 2007a). Despite the limited resolu-
tion of Massey’s 3D reconstruction, its existence demonstrates that the cosmological
community is finally approaching the vision, proposed by Fritz Zwicky seven decades

earlier, of universal dark matter cartography.

1.3 Gravitational lensing in the 215 century

In the wake of first detection (Bacon et al., 2000) weak gravitational lensing has
rapidly advanced, both in theoretical knowledge and technical capacity, engendering
a staggering number of important contributions over the past two decades. A
large factor driving this expansion is the runaway growth of computing bandwidth,
as famously predicted by Moore (Moore, 1965). Many developments build upon:
advances in computational algorithms, probabilistic methodology, and data reduction
techniques. In particular, over roughly the past decade, astrophysics has rapidly
evolved, and is evolving still, into the so-called era of big data, in which scientists have
far more data than ever before. In a very real sense the tables have now turned: where
once astronomers were limited by insufficient data, in today’s age astrophysicists
are struggling to process the data into useful information. Reverberations of such
a paradigm shift are particularly egregious within the field of cosmology, where
large scale wide-field sky surveys are staged to gather hundreds of petabytes of raw
astrophysical data. Such data must be transformed into scientifically meaningful
quantities, from which cosmological information may be extracted. This process is
often extremely computationally taxing, in certain cases prohibitively so e.g. for high
resolution cosmological imagery — within which interesting, and potentially decisive,
lensing information is forecast to be stored (see e.g. Munshi et al., 2008; Copeland
et al., 2018; Taylor et al., 2018).

Weak gravitational lensing, at linear order, manifests itself into two fields;

the perturbation of the apparent magnification (convergence) and the ellipticity
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(shearing) of distant galaxies. As is detailed in chapter 4, the convergence is not
an observable quantity, however it can be mathematically related to the observable
shear. Hence, lensing surveys collect observational catalogues of cosmic shear, which
are subsequently leveraged to infer the convergence. Prototypical weak lensing
analysis pipelines can roughly be decomposed into various stages, several of which are
experimental in nature, and are thus susceptible to a variety of epistemic uncertainties
which are typically difficult to account for (see e.g. Mandelbaum, 2017). The
convergence field, from which potentially decisive cosmological information may
readily be extracted (see e.g. Munshi et al., 2008; Peel et al., 2018), is typically
inferred from cosmic shear, through theoretically motivated relations. Colloquially
this inverse problem is referred to as ‘mass-mapping’ and is often seriously ill-posed,
introducing significant uncertainty which has previously not been accounted for
(Price et al., 2021a,b). Though a large proportion of the cosmological information

is encoded in 2nd

-order statistics of the cosmic shear (see e.g. Alsing et al., 2016;
Taylor et al., 2018), the weak lensing community has become increasingly interested
in extracting higher order, non-Gaussian information from the convergence field
(Takada and Jain, 2004; Munshi et al., 2012; Kayo et al., 2013; Lin, 2016; Munshi and
Coles, 2017; Peel et al., 2017b). Extraction of scientifically relevant, non-Gaussian
information from weak lensing convergence fundamentally requires a principled
understanding of any and all uncertainties introduced during the lensing pipeline.
After all, scientific statements of belief are of limited use when one does not have
a principled understanding of the degree to which such beliefs are plausible — see
chapter 3 for a discussion on this topic.

At the time of writing this thesis, a variety of mass-mapping techniques are rou-
tinely adopted throughout the weak lensing community, several of which are discussed
in section 4.2.4. Perhaps most pervasive is that of Kaiser-Squires (Kaiser and Squires,
1993) and variants thereof, which are considered the industry standard throughout
the literature. Under certain conditions the KS estimator for the convergence is equiv-
alent to the maximum likelihood estimator which, by the Gauss-Markov theorem, is
of minimum variance. However, such estimators are patently sub-optimal in realistic
settings: in which noise overwhelmingly dilutes the lensing signal, the survey area is
incomplete, and is of non-trivial geometry. Moreover, as the decomposition of spin
signals (Newman and Penrose, 1966; Goldberg et al., 1967) over bounded manifolds
is degenerate the mass-mapping problem is inherently ill-posed (see e.g. Bunn et al.,
2003). With this in mind, direct inversion methods, e.g. the KS estimator, lack
sufficient regularity properties, and thus often exhibit poor reconstruction fidelity.
More complex mass-mapping techniques have been developed (e.g. VanderPlas et al.,
2011; Alsing et al., 2016; Lanusse et al., 2016), which share a commonality in that

they attempt to regularise this ill-posed inversion, with varying degrees of success?.

2This topic is discussed in sections 2.1.3, 3.1.3, and 4.2.4.
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Though these techniques can be shown, both practically and theoretically, to produce
robust convergence estimators they have, until recently, lacked a principled means
by which the uncertainty in such estimators may be quantified (Price et al., 2021a).
Those that are constructed within a statistical framework typically require strong
assumptions of Gaussianity, which inadvertently degrades the quality of cosmologi-
cally interesting non-Gaussian information®, at times severely. Methods which are
statistically principled and do not rely on Gaussianity, e.g. sampling methods, are
computationally infeasible for the high angular resolutions at which the discrimi-
natory lensing information exists. At the time of this thesis, mass-mapping is very
much an open problem.

As is evident from the breadth of research around mass-mapping, and the
study of inverse problems more generally, it is clear that research in this space is
partitioned into (at least) three, regrettably rigid, schools of thought: probabilistic
(Bayesian) inference, traditional optimisation, and artificial intelligence (machine
learning). Each of these mindsets boasts a distinctly contrasting set of merits and
drawbacks, despite which hybrid approaches are few and far between. Divisions such
as this are glaringly sub-optimal, as scientific cross-pollination may well mitigate any
individual drawbacks, particularly for technically challenging applications, such as
cosmology. At its root, cosmology is a maximally statistically limited field of study, i.e.
astrophysicists can recover observations of only a single Universe, hence cosmological
inference problems benefit greatly from a Bayesian perspective, which does not
fundamentally depend on the repeatability of outcomes (see e.g. Robert, 2001).
Bayesian approaches are often reliant on sampling methods (discussed in section
3.2.1), which are computationally challenging in complex and/or high-dimensional
settings. Furthermore, there is an inherent level of both complexity and ambiguity
associated with the selection of the prior function, as discussed in section 3.1.3.
Hence, although Bayesian approaches may appear ideal in theory, they are often
restricted by prohibitive computational overhead. Conversely, one may adopt more
efficient approaches, e.g. machine learning, which typically provide rapid solutions
to highly complex (potentially non-linear) problems, with no obvious avenue through
which to quantify the plausibility of such solutions*. Equivalently one may adopt
image processing techniques, which often require minimal computational overhead,
have very recently been shown to support approximate notions of plausibility, but
are fundamentally limited to linear, low complexity problems.

At its core, the work presented in this thesis builds upon recent developments
in the field of probability concentration theory (Pereyra, 2017), to bridge between

the image processing and Bayesian schools of thought. In this way, one may perform

3The late universe is inherently non-Gaussian due to, e.g. baryonic interactions.

4t is certainly worth mentioning that research into artificial intelligence techniques which support
principled uncertainty quantification is currently a growing interest within the machine learning
community.
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remarkably efficient Bayesian inferences which scale to high dimensions, retaining
the computational efficiency of optimisation techniques, whilst gaining the ability
to perform statistically principled uncertainty quantification (Price et al., 2021a,b).
Though this thesis is grounded within the application domain of cosmology, the
majority of the techniques developed are applicable to a large class of inverse problems,
e.g. diffusion magnetic resonance imaging (dAMRI), geophysics, and 360° computer
vision. This highlights a somewhat novel aspect of the rapidly evolving field of astro-
informatics: as research in the realms of astro-informatics and astro-statistics can
often be abstracted, developed techniques invariably find a diverse range of tangential
applications. Hence, research in the field of astro-informatics is of importance to,
and has far reaching impact in, many fields of research as opposed to one, which has

historically largely been the case in science.

“Astro-informatics includes a set of naturally-related specialities including data
organization, data description, astronomical classification taxonomies,
astronomical concept ontologies, data mining, machine learning, visualization,
and astrostatistics”

Kirk D. Borne 2009

Overview of background chapters

The content of this thesis is configured as follows. Chapters 2-4 provide
the information and context necessary for one to properly appreciate the later re-
search chapters. In chapter 2 we introduce inverse problems both conceptually and
mathematically, with an emphasis on how such problems become ill-posed and/or ill-
conditioned. Subsequently, we discuss how one may solve such problems via iterative
optimisation methods, drawing on the field of convex optimisation. Finally, we high-
light aspects of proximal analysis and how they may be leveraged to solve optimisation
problems over non-differentiable functions (which are increasingly popular throughout
the literature). In chapter 3 we consider the discipline of probabilistic inference,
primarily as an avenue by which one may approach inverse problems discussed in
the previous section. A holistic overview of Bayesian methodology, including the
consideration of posterior definition, is provided. We conclude this section with an
overview of sampling methods, maximum a posteriori inference, credible regions, and
recent advances in probability concentration theory — which underpin much of the
original research discussed in later chapters. Chapter 4 provides a mathematically
rigorous dissection of gravitational lensing (the science application domain in which
this thesis is grounded). It is demonstrated mathematically how one may progress
from linear-order cosmological perturbations to the, typically assumed, relations
which describe the deflection of photons as they propagate through space-time. The

weak gravitational lensing inverse problem is defined from these relations, and current
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methods adopted by the scientific community to solve said problem are contrasted —

setting the scene for the research of this thesis.

Overview of doctoral research chapters

With the necessary mathematical concepts introduced, the research content of
this thesis is covered in chapters 5-10. These chapters are largely based on a proper
sub-set of 6 first-author publications, completed during the funding period of my
doctoral studies. Where applicable, the relationship to specific publications, and the
necessity of any additional a priori expertise (beyond that discussed in chapters 2-4),
are clarified. Throughout these chapters the ‘royal we’ is adopted so as to avoid con-
fusion. In chapter 5 the novel sparse Bayesian planar mass-mapping algorithm, and
scalable uncertainty quantification techniques, developed in Price et al. (2021a) are
presented. The efficacy of super-resolution operators is demonstrated, and the algo-
rithm is leveraged to reconstruct observations of the Abel-520 merging cluster, which
is considered by some to provide evidence of a non-zero dark-matter self-interaction
cross-section. In chapter 6 the scalable Bayesian uncertainty quantification method-
ology, presented in chapter 5, is leveraged to effectively recover pixel-level Bayesian
error bars, or ‘local credible intervals’, of recovered maps. These efficient uncertainty
quantification techniques are benchmarked against state-of-the-art proximal sampling
methods, so as to quantify the magnitude of potential approximation discrepancies.
In chapter 7 the aforementioned Bayesian algorithm is leveraged to quantify the
uncertainty in the location of recovered features, e.g. dark-matter haloes, and the
aggregate peak statistic (Lin, 2016).

Having considered the mass-mapping inverse problem over Euclidean tangent
planes, we extend this discussion to encompass wide fields of view, over which the
lensing inverse problem is naturally spherical. Chapter 8 presents the work of
Price et al. (2021c¢), in which a holistic analysis of inverse problems defined over
spherical manifolds is considered in detail. Highly optimized C++ software developed
during this work is leveraged to solve a diverse set of spherical inverse problems,
and the uncertainty quantification techniques of chapters 5 and 6 are extended to
S?. Penultimately, in chapter 9 the spherical techniques considered in chapter 8 are
leveraged, so as to extend the sparse Bayesian mass-mapping algorithm of chapter 5 to
the full celestial sphere. Such an extension is strongly motivated both experimentally
(see e.g. Wallis et al., 2021) and theoretically by Gauss’s Theorema Egregium?.
This spherical mass-mapping algorithm is demonstrated on highly realistic N-body
simulations, before being applied to generate, what was at the time, the largest, most
comprehensive map of the celestial dark-matter distribution.

Finally, in chapter 10 the discussion is abstracted from inverse problems over

spherical manifolds to the full 3-dimensional ball, i.e. B3 := R+ x S?. Rotationally

A fundamental theorem of differential geometry which states that curvature is an immutable
characteristic of a manifold.
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symmetric and radially distributed inverse problems, which are legion, are most
naturally defined over B3. This chapter, for the first time, considers such problems
which until recently have been fundamentally limited to ad hoc approximate methods,
e.g. spherical tomography, laying principled foundations upon which the complete
3-dimensional lensing problem can be considered (see e.g. Massey et al., 2007a,b, for
a FEuclidean attempt). Next generation, non-Euclidean signal processing techniques,
such as those developed throughout this thesis, may well constitute one of the major
developments necessary to truly realize Fritz Zwicky’s vision of universal dark-matter
cartography. Moreover, the degree of plausibility in such cosmological cartography
is quantifiable, which is of paramount importance for principled scientific progress
i.e. progress that is self-consistent, unbiased, and accurately reflects any statistical

limitations of observed data.
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Chapter 2

Inverse problems

This chapter introduces the concept of an inverse problem, providing mathematical
and conceptual discussions of both what is meant by ill-posedness of an inverse
problem, and why regularisation is often not only beneficial, but required. A
simple, yet highly informative example is provided in this regard. Following this we
introduce the notion of convexity, a mathematical description of convex optimisation
in its various incarnations, and demonstrate how gradient based algorithms can be
extended to include non-differentiable (but Lipschitz continuous) functions. Finally,
we introduce the concept of sparsity in the context of compressive (often ‘compressed’)
sensing, before concluding with a mathematical discussion of naturally sparsifying
dictionaries on non-Euclidean manifolds, e.g. the celestial sphere.

“All models are wrong, but some are useful.”
George E. P. Box (1976)

2.1 Concept of an inverse problem

Suppose a pebble is dropped into a small bounded pond, which inevitably sends
ripples propagating across the surface and reflecting from the boundaries. Suppose
you can see that the surface is still and flat before you drop the pebble, that you
know the mass of the pebble and the height it falls from before hitting the surface.
Without dropping the pebble, it is trivial to predict exactly what form the ripples
will take, how fast they will propagate, and what the distribution of ripples will be
after a time t. This is the ‘forward model’. Suppose instead you have no a priori
knowledge of the pebble, and instead observe the pond at a time t after the pebble
was dropped. Given the distribution of ripples apparent at time ¢ what was the mass

of the pebble? This is the ‘inverse problem’.

2.1.1 Introduction to inverse problems

In the majority of scientific scenarios, observations of a quantity are made from
which the question is asked, what underlying process led us to observe the quantity
to take a certain value — and so science is, in a great many cases, attempting
to solve the inverse problem. How does one actually solve problems of this type?

Typically the process is to first construct a physically motivated forward model which
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accurately models the observations that we see at time ¢. The question is then:
given a forward model, informed by our understanding of the underlying physics,
which model parameters re-produce the results we observe. Canonically, such inverse
problems are considered to be probabilistic in nature, resulting in the widespread
adoption of frequentist or Bayesian mindsets — which both address similar problems

in distinctly different ways (see e.g. Robert, 2001).

In the aforementioned case of the pebble and pond, observing the well-defined
distribution of ripples on a pond after an extended time, ¢, theoretically contains
sufficient information to precisely predict where the pebble was dropped, and even
the energy with which the pebble hit the surface of the water. Provided we construct
an accurate!' forward model which describes the dynamical system of ripples on the
surface of a pond, and provided (somewhat idealistically) that our measurement
device is perfect, we can fully deduce the position and energy of the pebble’s impact.
Therefore, should the inverse problem be formulated to infer the position and energy
‘parameters’ then the problem is determined to be well-posed — which is to say, we
have enough information to solve this problem precisely and uniquely (.e. find a

unique solution to the initial position).

Suppose instead the inverse problem is attempting to infer the mass of the
pebble dropped. Once the pebble hits the surface this particular information is lost
— a large pebble dropped from lower will produce the same energy as a small pebble
dropped from higher, or in other words, the solution space is degenerate. Therefore
this particular inverse problem is ill-posed — which is to say, we do not have enough
information to solve this problem uniquely, but we can reasonably recover bounds

(upper and lower limits) on what the mass could be.

It is perhaps apparent that there are, at the least, two further factors which
must be considered. In practice observations of said ripples are imperfect, and
thus in realistic scenarios the data with which one attempts to infer the model
parameters (e.g. the mass, position etc.) has an inherent degree of uncertainty.
Therefore, even given a perfect forward model one can, for instance, determine only
a likely region over which the pebble was initially dropped rather than a precise
point. Throughout we have implicitly assumed a pebble was dropped which, though
correct by design, is by no means a certainty. In this sense such problems are
inherently uncertain, and inferences as to the characteristic of model parameters
must be carefully considered. This heuristic introduction is surprisingly informative.
However, practical application of these ideas requires a formal understanding of the
underlying mathematical framework of inverse problems — a comprehensive general

review of which can be found in various articles, a good example being Tarantola
(2005).

'In practice, forward-models need only be sufficiently accurate.
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2.1.2 TIll-posedness and ill-conditioning

Consider the canonical case in which one collects observations y € H; (i.e.
the distribution of ripples at time t) which can be related to the parameters of
interest « € Hy (i.e. the characteristics of the dropped pebble) by a well defined
forward model F': D(F') C Hg +— H1, where D(-) denotes the domain over which a
function is defined and H; 2 are standard Hilbert spaces with associated norms |||
and inner products (-,-). Further define the range of the forward model to be R(H).
Mathematically an inverse problem is said to be #ll-posed in the sense of Hadamard

(1902) if it fails to satisfies any of the following three conditions:
(i) A solution exists.
(ii) The solution is unique.
(iii) The solution is a continuous function of the input data.

In this thesis we will consider bounded linear operators F € L(Ho,H1), where
L(H2,H1) is the set of linear operators between Hilbert spaces H2, for which
condition (i) requires that the forward model is surjective R(F') = H; (ii) requires
that F' is injective 7.e. the nullity V' (F) = {0} (iii) requires that the inverse of F is
bounded. Throughout this thesis, we refer to ill-posedness implicitly in the sense
of Hadamard, though there are other complimentary definitions throughout the
literature.

Alternatively, one can consider an inverse problem to be ill-posed in the sense
of Nashed if the set of observations and data is open, i.e. the range of the forward
operator is not a closed subset of Ha (Schuster et al., 2012), or ill-posed in the sense
of Tikhonov over set M if the solution does not converge to the true solution in the
limit of the approximation order going to zero, i.e. the solution does not exhibit
conditional stability (Kabanikhin, 2008). A concise example for which F' is ill-posed is
the differential operator F' = 0. Consider f(z), f(z+3d) € C([0,1]), the error between
datum is given by || f(x) — f(x+0)| < 6 and so is bounded and may be small but the
error on the differential |0, f(z) — 0z (f(z+ )| is unbounded, may be large and is
not necessarily a continuous function of the data. As such, the differential operator
contradicts condition (iii) of Hadamard, and is therefore ill-posed.

Another key concept worth discussing is the notion of conditioning, which simply
put considers by how much a small variation in the input of a function relates to a
variation in the output. Under translation y — y+ Ay such that F(y) — F(y+ Ay) =
AF(y) the relative condition number is given by

i s IAFWI/IF@ o)

=0 pagj<e  [1AYll/llyll

If the relative condition number is large, a small perturbation Ay to datum y (i.e.
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the presence of measurement error) can result in exceedingly large perturbations in
the solution space. In this sense the operator F' is considered to be ill-conditioned
(numerically unstable), conversely small relative condition number corresponds to
well-posed operators, F'. Note that not all ill-conditioned problems need necessarily

be ill-posed and wvice versa though this is often the case in practice.

2.1.3 Regularisation

Often the inverse problem in question is ill-posed and/or ill-conditioned, moti-
vating one to inject prior knowledge as to the nature of the problem so as to stabilize
the inversion process — or to regularise the inverse problem. Such stabilizing terms
are colloquially referred to as ‘regularisation functionals’ in the signal processing
community, though these are somewhat analogous to the prior function considered
within the Bayesian community (see e.g. Robert, 2001; Sivia and Skilling, 2006). In
later chapters these terms are used somewhat interchangeably, despite originating
from distinctly contrasting mind-sets. One should notice that the way in which
regularisation is considered in this thesis is application oriented, and external to
this thesis regularisation is a far more general mathematical, and in many ways
philosophical, concept. In broad strokes: regularisation of an ill-posed and/or ill-
conditioned inverse aims to infuse the problem with superior regularity properties,
e.g. the regularised problem may be characterized by a lower condition number (see
equation 2.1), or the solution space may be restricted to a small subset H} C H;
to encourage convergence, avoid discontinuities, or break redundant degeneracies of
the solution space. This thesis primarily considers regularisation functions which
restrict or re-weight the solution space Hi, so as to bias towards solutions which
exhibit a known, or at least a priori assumed, structure of z. Specifically we leverage
regularisation functions which promote sparsity (see e.g. Donoho, 2006), which will

be a recurring theme throughout.

Returning to the case of the pebble and the pond: a basic form of prior knowledge
could be that the pebble mass is necessarily positive. Further, one may sample the
pebbles surrounding the pond, and find them to be on average of mass m, with some
approximate distribution about this value (e.g. Gaussian distributed). In such a case,
it would be sensible to leverage this prior knowledge to re-weight the degenerate
solution space, biasing towards pebbles of masses similar to those surrounding the
pond, thus regularizing the inverse problem. Furthermore, given that the pebble was
dropped by a person standing on the ground, it is highly unlikely the pebble was
dropped from much more than three metres or less than a metre. Hence, one may
include additional restrictions on the feasible set of solutions, further reducing the
degeneracy of the solution space. With these additional constraints on the pebble
mass, the solution space is now significantly less degenerate, increasing the regularity

of the inverse problem.
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Sparsity

A form of regularisation increasingly often adopted throughout the literature is
that of a sparsity promoting function. Conceptually, sparsity promoting functions
bias, or for certain implementations restrict, the space of possible solutions towards
solutions which can be expressed by the fewest coefficients in a given dictionary?
(Elad, 2010; Gkioulekas, 2010). A dictionary in which the solution is a priori assumed
sparse, is referred to as a sparsifying dictionary. In this sense, leveraging sparsity
to increase regularity can be thought of as a mathematical implementation of the
philosophical notion of Occam’s Razor, or equivalently the principle of parsimony
(Jefferys and Berger, 1992).

In practice, dictionaries localized entirely in the temporal domain, e.g. the
Fourier basis, are often ineffective — as they do not effectively capture sharp, sudden
features (Graps, 1995; Valens, 1999). Conversely, dictionaries localized solely in the
real domain, e.g. the Dirac basis, are often ineffective as they capture only such
sharp, sudden features. Throughout this thesis we will adopt wavelet dictionaries,
see e.g. Figure 2.1, which are, by construction, highly localized in both the temporal
and real domains (Lee and Yamamoto, 1994; Meyer, 1995; McEwen et al., 2015a).
Such wavelets are widely effective, as a large class of physical signals are sparse when
projected onto their atoms (see e.g. Daubechies, 1988, 1992; Mallat, 2008; Baldi
et al., 2009; Starck et al., 2010; Carrillo et al., 2012; Leistedt et al., 2013; Chan et al.,
2017; McEwen and Price, 2019).

Figure 2.1: Top & Bottom: Spherical ridgelet and wavelet dictionary coefficients respec-
tively of a diffusion tensor imaging (DTI) signal at scales j € [3,5]. Notice the frequency and
pixel space localization of both dictionaries, and the relative degree to which the DTI signal
is sparse when projected into each dictionary (McEwen and Price, 2019).

2A dictionary is the term attributed to a spanning set of basis functions which need not necessarily
be orthogonal to one another.
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2.1.4 Example ill-posed inverse problem

At this juncture it is informative to consider a simple example. One of the
most simple imaging inverse problems for which regularisation is necessary is a noisy
deconvolution problem. This example closely follows an example by Farrens (2018).

Suppose one captures an image y € Ho = RY with N € Z-q pixels, using a
camera whose lens introduces a point spread function h € RY. In theory our image
is related to the true image = € Hy = RY, where for simplicity we assume that no
pixels are missing or faulty, through the forward model given by the convolution ®
equation

y=2®B=(z,Th)gy = F | Fla]- F[h]], (2.2)

where F[-| represents the Fourier transform, 7 denotes the straightforward Euclidean
translation x — x — 7, and the entire equation is given by the convolution theorem on
Euclidean space. Provided the observed image y is collected perfectly, the problem
is well-posed in the sense of Hadamard and the true image = can be safely computed

by naively inverting the forward model such that
i=F""! [—} =z (2.3)

Consider a more realistic situation in which, perhaps due to statistical variability
in the number of photons observed per camera pixel during the shutter exposure, the
observed image y is instead contaminated with low-level Gaussian noise n ~ N (0,0) €
R with o < max(z), such that the measurement equation (the combination of the
forward model and any factors external to the forward model e.g. the presence of
noise) is given by

Flul+ 7ol o)

yzx@h—i—n:fz]:_l{ 7]
where the second equation is the modified, naive inversion. This inverse problem
is now ill-posed in the sense of Hadamard, and equally importantly is severely ill-
conditioned — which is to say the presence of very low-level fluctuations (noise) in
the observations results in a complete scrambling of the estimate of x. Hence, direct
inversion approaches are typically highly ineffective. Images for each stage of this

example are presented in Figure 2.2.
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QOriginal Image

Convolved Image

Noisy Convolved Image Deconvolved Image

Figure 2.2: Considers both the clean and noisy naive deconvolution of an image y € Ho = RY
for N € Z~¢ modeled to have been captured under a blurring via convolution with a point
spread function h, i.e. y =2 ®h where x € H; = RY is the true image. Notice that both
the noisy and clean convolved images are indistinguishable to the human eye, whereas the
naively de-convolved images are highly dissimilar. Note that we denote the mean squared

error by the shorthand (z,z).
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2.2 Convex optimisation

Drawing again on the pebble and pond analogy; suppose one can quantify one’s
a priori assumptions as to the nature of the pebble into a regularisation function
f(z), and model any aleatoric uncertainty by a data-fidelity function g(z). Then the
problem becomes location of solutions which extremise some combination of these
functions, typically through iterative optimisation techniques. This section provides
a mathematical and conceptual overview of (convex) optimisation, including details
of convex tools for dealing with non-differentiable terms such as proximal calculus.
Additionally a discussion of wavelets, the concept of sparsity and the functional

mechanics of a variety of proximal operators is discussed.

2.2.1 Affinity, linearity, and convexity

Functions

It is informative to first lay down some definitions which will clarify further
statements. A linear function between Hilbert spaces H1 and Hs with cardinality
|H1| =m and |Hz2| =n is a function f:Hy — Ha such that for f(x € H1) = Az € Ho
for rank-2 tensor A € Ho X H1. An affine function is defined as above but that
f(z) = Az +t where t € Hz is a translation vector. Therefore an affine function is
similar to a linear function, but conserves the relative distance between points (Boyd,
2004).

A convex function is a function which, between f(x) epi(f)
any distinct points x1,x2 € H, lies below the secant y \
line connecting points x; and xz9. Formally, a E
function f(x):H — R is convex over the interval S . :
Z CH if Jensen’s inequality (Jensen, 1906), i i N

flazi+ (1 —a)xz) <af(w1)+(1—a)f(x2), (2.5) 2 -
evaluation at point line segment %
S |
Vae€l0,1],x1,29 € Z CH is satisfied. If the equal- Z% ! ! i
ity of equation 2.5 is prohibited the function is i i | i

said to be strictly convex. Equivalently, this can Figure 2.3: Illustration of the epi-
graph of convex and non-convex
functions, thus describing both con-
sidering the epigraph of a function, i.e. the set of vex sets and functions. The dashed

points above f(z) contained within Z, as in Figure line corresponds to 7 C #, over

. . which we are considering the con-
2.3. The epigraph of a function f(z):Z CH—R vexity of f(z). In terms of sets: as

is given by the line segment joining any two
points is contained by the blue re-

. ion, the top blue region is a convex
epi(f)={zr|zel,reR, flz) <r}.  (26) ;get (adaptelc)l from 1\gIIT 2012)

be explained, perhaps more satisfyingly, by con-

A function f is convex if, and only if, epi(f) is a convex set. The ‘only if’ can be seen
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by first supposing that f is convex, and considering epigraph elements x;,y; € epi(f).

For any z; € [0,1] such that ), z; =1 we can write
= (z,y) = Zz‘Z(Cﬂi,yz‘) = (Zzz‘wz‘,zzz‘yi),
=>y= Zziyi < ZZif(in) < f(ZzZ:cz) = f(x), (2.7)

and thus the epigraph of a convex function is a convex set, as laid out above. Equally
this logic can be inverted to prove the ‘if’, showing that if epi(f) is a convex set
then necessarily f(x) belongs to the space of convex functions. Further to this, a
convex function is proper if and only if epi(f) # () and does not contain a line parallel
to r. Some common examples of convex functions include: all affine functions, all
norms, and positive semi-definite quadratic functions. Importantly, by definition a
convex function has a point zyi, € Z which is a global minimum, and so optimisation

algorithms can be applied effectively due to the absence of multimodality.

Sets

Consider now sets rather than functions. An affine set A C R™ with cardinality
n € Z~ is defined such that the straight line through any two distinct points a,b € A
is contained within A, i.e. Va,b € Aa+b=c € A. In general this is not limited to
only two points i.e. Vai,as,...,a; € A for i € Z<,, we have Z;’:l a; =ce< A. With this
more general approach an affine set contains all affine combinations of its constituent
components. Further define the affine hull of A to be the smallest affine set which
contains A.

A convex set C CR"™ is a set such that the line segment connecting any two
points within the set is also contained within the set. Clearly, all affine sets are
necessarily convex though the opposite is not true. Again, we can generalize to
n-points within C and state that a set is convex if and only if it contains all convex
combinations of its components (Boyd, 2004). The convez hull is the set of all convex
combinations of points within a set C’, and is equivalent to the smallest convex set

which contains C.
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2.2.2 The primal problem

The general form of a constrained (regularised) optimisation problem is given by,

minimize fo(z)
subject to  fi(x) <0,i=1,....m
=0,i=1

hi(x) ey D, (2.8)

where the optimisation variable x € H is the variable we are optimizing with respect
to, fo(z) : H — R is the objective function (sometimes cost or loss function) which one
minimizes such that constraints f;(z) and h;(x) are met — these constraints are in
effect regularizing the optimisation. This form of the optimisation is typically referred
to as either the constrained optimisation or the primal problem. As fi(z): H— R
is an inequality, it is commonly referred to as an inequality constraint, similarly
hi(z) : H+— R is considered an equality constraint.

If there are no constraints h;(z) or f;(x) the domain of the problem is the domain
of fo(z). If there are constraints, the domain of the problem is typically restricted

and can be given by the intersection of the domains of all functions involved

D= ﬁ D(fi) N () D(hi). (2.9)
=0 =1

A highly interesting and widely applicable subset of optimisation problems, is
the set of convex optimisation problems (Nesterov, 2013), where now f;(x) € C"
belong to the subspace of convex functions C", and h;(z) € A is necessarily affine.
Further to this, consider the case in which one restricts both the objective function
and any inequality constraints to be convex. Under such considerations the domain

D¢ of the solution space is given by

m
Dc =) D(fi), (2.10)

i=0
demonstrating that the feasible set is also convex. Hence, by definition, the problem
has a unique global minimum which belongs to the set. It is informative to note that,
if instead the functions f;(z) are concave and we maximize rather than minimize,
then this too is a convex optimisation problem (which is discussed in section 3.2.2).

A typical problem in the constrained setting, 7.e. with constraints, could be given by,

xoptimal = argmin [f(x)} s.t. h(SU) <e, (2'11)
zEH

where € € Ry is contour defining a level-set of h. Such level-sets are typically
projections onto balls of the data likelihood, thus enforcing hard constraints on

solution data fidelity.
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2.2.3 Duality and the Lagrangian

One can instead consider a weighted linear combination of the initial objective
function fo(x) and all constraints f;(z) and h;(x), with coefficients A; and p; respec-
tively. Formally this is equivalent to defining a Lagrangian L :H x R™ xRP — R
such that,

p
L p) +ZA fil@)+ > wihi(o), (2.12)
=1

where the domain of the optimisation is now given by D(L) = H x R™ x RP. Analogous
to the standard method of Lagrangian multipliers, the variables A\; and p; represent
Lagrangian variables and are often referred to as dual variables (Boyd, 2004; Nesterov,
2013).

From the Lagrangian £ we can now define the Lagrangian dual function g(\,p)
as (Kuhn and Tucker, 1951),

g = inf [ £(e. A )| = int [f0<x>+im<x>+zm<x> NCREY
=1 =1

where the infimum is the greatest lower bound on the £. Note that the dual function
g is necessarily concave as the arguments of the infimum are affine functions. Thus,
even if the original problem is non-convex, the dual problem can be solved uniquely for
optimal dual variables A°P* and p°P'. Interestingly, the solutions of the Lagrangian
dual problem provide a lower-bound on the optimal solution p°P' of the primal
problem. To see this, consider a feasible point x € D, then for \;,u; € R>¢ Vi and
(A, i) € D(g), i.e. such that X and p are dual feasible, we have

non-positive =0
m p
Z Aifi(w) + thz’(fﬂ) <

= L\ ) = +ZAfz +Zuu ) < fo(2)

= g0\ = inf [a:c,x,m} < L(x M) < fola). (2.14)

Hence, the optimal value of g(\, ) provides a natural lower bound on the optimal
value of fo(z) (Boyd, 2004). The real question is then: given that solutions of the
dual problem for g provide lower bounds on the solutions of the original problem for
f, what is the optimal lower bound which can be constructed? This in itself forms a

maximization problem over g(\,u) such that we wish to

maximize g(A\,p) s.t. A p€Rsg, (2.15)
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which is often referred to as the Lagrangian dual problem and is a convex problem.

The optimal solution g°P*

is the greatest lower bound on the optimal value of the
primal problem p°P', and as such the difference p°P* — g°P* < 0 can be constructed
which is known as the (optimal) duality gap. If the optimal duality gap is zero, then
the lower bound has strong duality, which is to say the optimal solution of both the
primal and dual problems is the same — or colloquially the solution is primal dual

optimal.

Often, but by no means always, if the primal problem is convex then the primal
dual optimal solution will exhibit strong duality. In fact, this property is not solely
attributable to convexity, instead strong duality is attributed based on the constraint
qualifications, e.g. Slater’s theorem, which are beyond the scope of this thesis, yet
worth noting. Nonetheless, throughout this thesis we consider cases for which duality
is at least close to strong, and discuss any dissimilarities incurred by deviations
from strong duality. The Lagrangian dual problem is often referred to, somewhat
confusingly, as the unconstrained optimisation problem; constructed by locating the
infimum (in this case the minimizer) of the Lagrangian, such that the problem is
written as

2oPtmal — aromin [ﬁ(x, /\)] , (2.16)
z€D

where we have simplified to the setting in which only a single inequality constraint is
considered. Colloquially the weighting factor A, which is a dual variable, is referred
to as the reqularisation parameter, optimal selection of which is a subject of current
research in this area and is by no means a solved problem. The practical difference
between the primal and dual problems is subtle, and may seem esoteric and/or
superficial, but it is certainly worth considering. Within the constrained setting
(the primal problem) the domain D, of the solution space is strictly restricted to
the intersection of the constraints and the objective function, whereas within the
unconstrained problem (the dual problem), the domain Dy is open but a scalable
bias factor A penalizes solutions which stray far from the expected ‘center’ of Djy.
In this sense, the unconstrained problem supports a more reasonable, probabilistic
approach to constraining the solution space — this links with the discussion of section
3.1.3.

Consequently, within the image-processing community the primal problem is
typically considered, as the restrictions imposed on the solution space often result
in greater reconstruction fidelity, rate of convergence, and do not require selection
or computation of dual variables. Conversely the unconstrained setting supports a
principled Bayesian interpretation, and thus can be shown to support uncertainty
quantification (see section 3.2.2). As such, the dual problem is often chosen for
scientific applications, in which one typically places more weight on uncertainty

quantification than reconstruction fidelity.
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2.2.4 Moreau-Yosida envelopes and proximal calculus

Having discussed how one may formulate inverse problems as optimisation
problems, how does one actually compute optimal solutions to such problems?
Generally, for differentiable f;(x) and h;(z) there exists a comprehensive set of
algorithms which can be leveraged to locate z°P', typically leveraging 1%*-order
gradient information through differential operators to converge to extremal solutions.
Suppose instead at least one of f;(x), h;(x) does not belong to the space of continuously
differentiable functions — for instance if one adopts a £1-norm sparsity regularisation
functional f;(-) = ||-||;, which is increasingly common throughout the literature
(Combettes and Pesquet, 2011). One then requires mathematical tools with which
to access analogous 1%'-order information of non-differentiable functions, which we

discuss in this section.

First let us define a lower semicontinuous (l.s.c.) function to be a function
g :H — R such that H is a closed subset of R”. Additionally the gradient of g,
denoted Vg, is Lipschitz continuous with Lipschitz constant Br;, € R>q if

IVg(z) = V()| < Bupllz —2'l,  V(z,2') e HxH. (2.17)

Typically, Lipschitz continuity is a stronger constraint than ‘just continuous’ but a

weaker constraint than continuously differentiable.

With the concept of lower semicontinuity introduced, let us define a convex
function f(x) € C for x € H, and the Moreau-Yosida regularised approximation of f,

the Moreau-Yosida envelope, given by the function f,(x) such that (Moreau, 1962)

1
fu@) = jof [ £+ g =I5, (2.18)

Jointly Convex

where the bracketed term is the Lagrangian dual £(z,2’) of a constrained minimization
of f. The Moreau-Yosida envelope is given as an infimal convolution® of the non-
differentiable function f(x) and a smooth function. As the Lagrangian £ is convex and
the epigraph of the infimum is a projection of a convex set, then the Moreau-Yosida

envelope is necessarily a convex function (Yang, 2015).

Consider now the primal problem for the Moreau-Yosida regularised minimiza-

3Convolution with a function over the infimum operator, corresponding to addition under the
infimum.
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tion,
1 2 1 T, ./ / 1 2
fu(@) = —|lzl|” = = sup |z" 2" — pf(a’) — S|«
. 2p ,UI’E’H[ 2 }

o 1 2 1 / 1 mal*
= gllell® = S s+ 511
x 1 1 2
Viux) == ——argmax |zl ' — puf(2') — =||2||*], 2.19
() = = angmax | (@) = S ll'I?] (2.19)
where * represents the complex conjugation. Now the proximity operator, often
denoted prox(-), is given by the dual problem over 2’ on the RHS. Noting that the

proximal operator is generally defined to be

. 1 2 /

prox, ;(z) = argmin | — ||z — 2’| + f(2) |, (2.20)
uf z'e€H [2/'L :|

we can rearrange the final line of equation 2.19 to relate the proximal operator and

the gradient of the Moreau-Yosida envelope by

= prox, ¢(z) =z — pV f.(x). (2.21)

This proximity operator is therefore solving for the gradient of the smooth Moreau-
Yosida envelope which is a differentiable approximation to the gradient of the
enveloped function f(z), which need not be differentiable, only Lipschitz continuous
with Lipschitz constant S, = p~1 (Moreau, 1962; Combettes and Pesquet, 2011)
Finally, consider a minimization problem of the general form min f(x) s.t. x € H
for solution domain D as previously defined. Suppose f(z) € C has domain D(f) # 0

t

then a solution z°P' exists, is unique, and minimizes f(z) over D(f) if, and only if,

it also minimizes the Moreau-Yosida envelope,

. e 1 2
inf f, (x) = inf inf [f(w’)+ﬂllw—w’H |

1
— f . f / T _ 112
xl,relH;gH[f(w)Jr MIIHj || }

= inf fu(@) = inf f(2), (2.22)

where in the second line the infimum over z is trivially given by d, , and thus the
final line follows. Therefore, introducing a Moreau-Yosida envelope minimization
problem — 7.e. substituting the differential for the corresponding proximal projection
— around non-differentiable terms f(x) in a convex optimisation problem for which

strong duality holds necessarily converges to the same solution (Yang, 2015).
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Proximal projection of the /;-norm

As discussed previously in section 2.1.3, one often wishes to adopt sparsity
promoting regularisation functionals. The function which most naturally measures
sparsity is given by the fp-norm, or the Hamming distance, however the fyp-norm is
non-convex and typically far from smooth, resulting in optimisations which are at
best, highly complex, and at worst NP-complete. One can adopt the £y-norm and
attempt to locate global minima through locally optimal choices, 7.e. through greedy
algorithms (Temlyakov, 1999; Donoho et al., 2012), though such approaches do not
support desirable certificates of optimality.

One might reasonably consider adopting the ¢;-norm ||z||, € C for z € H C R",

which is defined as

n
l-norm = |z, = Z]:L"ZL (2.23)
1=0

to approximate the £yp-norm. In fact, for sufficiently sparse « (Donoho, 2006), solutions
to optimisations regularised by the £y and ¢1-norm functions are concurrent. This
approximation, colloquially referred to as convex relazxation, is a useful tool which
allows one to enforce sparse regularisation whilst retaining convexity of the objective.
However, the ¢1-norm is discontinuous, and therefore non-differentiable, at the origin
and thus one must consider the proximal projection to access the gradient information
required to locate extremal solutions.

The proximal projection of A|-||;, with positive semi-definite regularisation
coefficient A € R>g can be derived by forming the Moreau-Yosida envelope (Moreau,
1962)

Proxy., (¥) = argmin E | —a'||3+ )\||33'||1} , (2.24)
z'eH

which in this case is block separable and thus may be solved for each index i € Z>¢
by
1 /\2 / / /
0 & V[ (ai —a)?] +0[ell] = i — i+ 201 Jaf] (229

As the modulus sub-gradient is given by 0{|x}|} = sign(«}) ¥z} # 0 the optimal
solution to equation 2.25 z} is given by z} = x; — )\sign(aﬁ;’*). Notice from this
equation that 7 <0 = x; < —\ and correspondingly z; > 0 = z; > A. Therefore
V! # 0 one has |x;| > X and sign(z;) = sign(z}) and thus 27 = 2; — A sign(z;). Note
that the sign function for complex numbers is adjusted to x;/|x;| when |z;| > 0.
Consider now the case ; = 0 where the modulus sub-gradient is the interval [—1,1]

and thus the solution to equation 2.25 is given by
0Oc—zi+ AL 1=z €[\ = | <A, (2.26)
and therefore leads us to the proximal projection of the ¢1-norm defined generally to
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P () Oiffed <AL _g o () (2.27)
roxy .|, (x;) = = Softy(x .
M (= A ] 3 Ja] > A

This operator is commonly known as the piecewise soft-thresholding operator (Boyd,
2004; Parikh et al., 2014). Note further that if instead one considers A|U(-) +b||,
for a unitary linear transformation W :H — H' s.t. WTW = (1/d)I, where b € H', and
d € R>o the proximal projection is given by

Proxyjjw(.)+b|, (x)=x+ Ao’ (SOftA/d(\IJ:U +b)— WYz —b), (2.28)

which follows straightforwardly from the fundamental properties of proximal calculus
e.g. pre/postcomposition, affine addition (Combettes and Pesquet, 2011). This
facilitates derivation of optimisation iterations required for analysis setting, in which
U takes the form of some sparsifying dictionary (a set of basis functions which need
not necessarily be orthogonal) e.g. a wavelet dictionary. In certain cases the proximal
operator does not support an analytic form, hence further sub-iterations are required

which are beyond the scope of this discussion (see e.g. Cai et al., 2018b).

Proximal projection of the />-norm

In cosmology, amongst other application domains, e.g. texture reconstruction,
one might reasonably regularise an inverse problem by biasing towards solutions with
particular statistical properties, which may be expected from theory. By construction,
such functions exhibit distinct similarities to the logarithm of Gaussian distributions
(see e.g. Hiller and Chin, 1990; Horowitz et al., 2019; Kodi Ramanah et al., 2019),

resulting in the ¢y-norm function ||z||, € C for x € H, which is defined as

n
lynorm == |lz]l, = | Y |zf*. (2.29)
=0

The proximal projection of |-||, with regularisation coefficient A € R>( approximates
the gradient and can be derived by forming the Moreau-Yosida (Moreau, 1962)
envelope

ool
Proxy, (#) = argmin [ < [|z — 2|3 4+ All2'|l,]. (2.30)
z'eH 2

Now consider the components of 2’ € H parallel and perpendicular to z, e.g. a

substitution such as 2/ = 2~ 4y for y € H s.t. 7y =0 and for scaling constant

= =l

¢ € R, then the envelope becomes the 2-dimensional minimization

. 1 1
argmin. 2yl + 5 e Il + M/ + i), (231)

yEH,cG]RZO
which is clearly minimized for y = 0. At this minimum the problem reduces for
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|z|l, > A to the 1-dimensional minimization
.l 2
Proxy., () = argmin [Q(c— z||5) —i—c)\],
CERZO
1
V(5= llzlly)’ +eA] = ¢~ lzll, + A =0
=" =zl — A (2.32)

When |[|z||, < A the scalar ¢* which minimizes the objective is clearly ¢* = 0. Together
2

this simply gives us the proximal projection of ||-||, as

X
PI"OX)\H,”Q(.%') :maX{H:BHQ—/\,O}W (2.33)
2

Proximal projection of the indicator function of the /»-ball

For the primal problem, i.e. constrained optimisation, the data fidelity term
fi(z) € C is included as a hard constraint which constitutes an indicator function on

the f;-ball 1 B which is a projection onto a sub-space chi C H such that

0 z e B,
]].B(S = ¢ (234)
fi +oo QB‘SZ,,

for f-ball chi centred at z € H with radius § € R>(, defined by Bf% (z):={x: fi(z) <d}.

Forming a Moreau-Yosida envelope (Moreau, 1962) as before we get

PI'OX‘_[[Bg (x) = argn?l-[in [Hx —'|3+ ]IB? ($/)] ,
f S J
= argmin [Hx - 35/”3} = ProjB? (x) (2.35)
I/Echi v

i.e. the Prox165 operator is simply the projection onto the f;-ball ProjB? () which
fi i

is given intuitively, which is to say geometrically, for f; = ||H§ =% by
x x—zEBgQ(z:O),
Proxy ; (z) = 62 (2.36)
2 |§:§|5+z x—ng@(z:O),

where ng (z=0) is the ¢5-ball centred on the origin.
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2.2.5 Proximal algorithms

Having demonstrated how proximal operators may be leveraged to access
gradient information, it is informative to highlight how this information can be
incorporated into classical optimisation algorithms to form proximal optimisation
algorithms. As a large array of classical algorithms has been developed, many of which
facilitate proximal versions, there are in principle a wide variety of proximal algorithms
to choose from, e.g. proximal primal-dual (Parikh et al., 2014), proximal ADMM
(Boyd et al., 2011; Parikh et al., 2014), some of which have recently been developed to
support artificial intelligence techniques (Adler and Oktem, 2018). Throughout this
thesis the proximal forward-backward splitting algorithm (Combettes and Pesquet,
2011) is typically adopted, though it is worth stressing that the contributions presented

in this thesis are largely independent of the choice of algorithm.

Proximal Forward-Backward Splitting

Consider again the canonical optimisation problem of minimising an uncon-
strained objective composed of the sum of a proper [l.s.c. convex function f(z) and
a convex [;,-Lipschitz differentiable convex function g(x) € C, for € H;. In this
case the objective can be split into differentiable and non-differentiable components
to define the proximal gradient method, which for our choice of functions f,g gives

the proximal forward-backward iterations

z" = Proxye, (2 — N'V f(2")), (2.37)
N—_— ———

backward forward

where the forward step is a standard gradient descent over the differentiable function
f, and the backward step is a proximal projection over the non-differentiable function
g. The proximal gradient method can be interpreted as: a majorisation-minimisation
or fixed point iteration, or (perhaps more satisfyingly) as an Euler discretized
integration of a gradient flow differential equation (Parikh et al., 2014). Regardless
of the choice of interpretation the forward-backward iteration steps can be seen
in the pseudo-code of Algorithm 1. A full derivation and consideration of these
iteration steps is beyond the scope of this thesis and can be found in external articles
(Daubechies et al., 2004; Combettes and Wajs, 2005; Komodakis and Pesquet, 2015).

Algorithm 1 Proximal Forward-backward Splitting
Input: f(z), g(z), € Roo, (0
Output: 2°Pt ¢ CV.
Do:
1: v 2 — yvg(2®),
2: 2 v 4 N(prox,, v — z(0)),
3 t+t+1.

Until: Stopping criterion satisfied.

45



Chapter 3

Probabilistic inference

This chapter provides an overview of Bayesian methodology with an emphasis on how
it can be leveraged to produce scientific statements and, perhaps more importantly,
quantify the degree to which such statements are plausible, 7.e. the uncertainty
inherent in such statements. In section 3.1.1 we introduce the notion of Bayes’
theorem, before discussing, in detail, the terms associated with Bayes’ theorem in
sections 3.1.2 and 3.1.3. After exploring how one formulates inference (inverse)
problems in a Bayesian sense, we discuss how to solve such problems in section 3.2,
focussing primarily on sampling methods in section 3.2.1 and optimisation methods
in section 3.2.2. Finally, in sections 3.2.3 onwards we show how one uses the results
from aforementioned methods to quantify the degree to which solutions (scientific

statements) are plausible, in a principled Bayesian manner.

“Probability theory is nothing but common sense reduced to calculation.”

Pierre-Simon Laplace (1819)

3.1 Probability theory & scientific reasoning

Probability theory, a mathematical manifestation of logical reasoning (Jaynes,
2003), underpins a substantial portion of scientific reasoning today, including e.g.
Bayesian inference and frequentist statistics. This becomes apparent when one
notices that many, if not most, scientific problems can be described generally as
inverse problems. Such problems are typically ill-posed, often severely so', leading
to degenerate latent spaces, over which one wishes to reason. As such, they are most
naturally solved in a probabilistic manner, hence aspects of probability theory are
a near necessity for many, if not all, scientific disciplines. Interestingly, the theory
of probability is isomorphic to the provably singular consistent set of axioms for
plausible reasoning (Cox, 1946). If mathematics is the language of science, then the
theory of probability is perhaps its most common vernacular.

Much of this thesis is focussed on Bayesian methodology, a sub-domain of
probability theory which is prevalent throughout the cosmological scientific commu-

nity. Bayesian inference provides a principled statistical framework, within which

1See section 2.1.2 for details in this regard.
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quantification of the uncertainty in scientific propositions, in light of observed data
and reasoned a priori expectations, exists naturally (Robert, 2001). In a Bayesian
paradigm, once a probabilistic model is defined, the resulting probabilities directly
describe the degree to which a given scientific proposition is plausible. Furthermore,
such inferences are principled and easily interpretable. Contrasting this, frequentist
type approaches fundamentally depend on the repeatability of outcomes, recovering
direct statements of plausibility only in the limit of infinite realizations. In many
areas of science, in particular the study of the Universe, it is typically difficult to
observe very many realizations, hence frequentist reasoning in this regard is somewhat

limited.

3.1.1 Bayes’ theorem

The prototypical inverse problem is structured as follows: suppose one recovers
observations y of some underlying quantity of interest x which may be degraded in
some manner, e.g. through instrumental noise; given such data, under some assumed
forward model M relating y with x, and with some a priori assumptions as to the
nature of z. In such a paradigm, what scientific inferences can be made of x, and to
what degree are these inferences plausible?? Such inverse problems can be described
concisely by Bayes’ theory

Plaly, M) = T,

(3.1)

where P(A|B) denotes the conditional probability of event A occurring, given that B
is known to have occurred. This equation is straightforwardly derived by considering
that P(A)+ P(A) =1 and P(A,B) = P(A|B)P(B), i.e. the sum and product
rules of probability theory respectively. The left-hand term of equation 3.1 is
colloquially referred to as the posterior distribution, or density, and is the key
quantity of interest for many aspects of Bayesian inference (see e.g. Sivia and Skilling,
2006). The posterior distribution is equivalent to the product of: the likelihood
distribution £(x) = P(y|z, M) which encodes data-fidelity; the prior distribution
P(x) which encodes the practitioner’s a priori assumptions as to the nature of x;
and the reciprocal of the Bayesian evidence z = P(y|M) = [ dxP(y|z, M) which is
a normalization factor which can be leveraged to conduct, e.g. model comparison,
amongst other statistical tests (see e.g. Robert, 2001, for further details in this
regard).

So far we have commented on how Bayes’ theorem allows one to recast the
conditional probability, i.e. the plausibility, of parameter configuration z under
model M being the ‘true’ parameters, in light of observable data y. This process is

colloquially referred to as parameter inference and is concerned with probabilistic

2Formal mathematical definitions of these objects is avoided as the discussion is quite general.
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objects such as P(z|y, M). Alternatively, one may be fundamentally interested in
the probabilistic object P(M|y) i.e. a direct assessment of the plausibility of a model
M in light of observations y (Cox, 1946; Good, 1962). In this thesis we are primarily
concerned with parameter inference, hence much of the following discussion will focus

on this application of Bayes’ theorem.

3.1.2 Likelihood & data-fidelity
The first readily computable term £(z) = P(y|z, M), the likelihood distribution,

is a conditional probability which encodes the odds of having observed data y under
model M, given some parameter configuration z. Typically one constructs £ by first
considering the forward model M to generate simulated observations § = Mz, before
evaluating the potential sources of degradation in observations y e.g. the distribution
of instrumental noise. In such cases the likelihood, more often than not, takes the

form

L(z)=F(y—7,P), (3.2)

where F is a generic function which maps the difference between observed and
simulated data (y —¢) onto an assumed probability distribution D, from which it is
assumed the noise on observations y has been drawn, 7.e. n ~D.

Note that F may, or may not, require additional free variables P which are
often introduced to ensure £(z) can accurately model the data acquisition system.
Further note that the function F may be difficult to formulate mathematically, and
can instead be approximated through machine learning techniques (Gutmann et al.,
2016; Alsing et al., 2019). There are therefore, at least, two components which
require thought; these being specification of a model M and an error distribution D.
For the purposes of this thesis we will operate under the assumption that the forward
model M is known to be correct, and thus are only concerned with specification of
the distribution D from which our observation degradation is presumed to have been

sampled.

The multivariate Gaussian likelihood

A central limit theory argument for the Gaussianity of D ~ N (u,Y) is often
introduced such that the likelihood distribution is given by the exponential of the
Mahalanobis distance (Mahalanobis, 1936)

L(z)=F(y—5,%) = %exp(— %[y—ﬂ—u}TE’l[y—ﬂ—u]), (3.3)
(2m)*[5[2

where observations ¥y are k-dimensional, u is the mean vector, and X is the covariance
of y modelling both the variance and inter-dependence of each observation y;, for

index 7 € Z<},. For computational simplicity, one is often required to compute the
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natural log-likelihood which in this case is given by

In (£()) = 2 n(2m) LS| - S —g-w)S G- (34

In many cases ¥ is taken to be diagonal, with elements Y = diag(c?), i.e. observations

y are taken to be independent, therefore the log-likelihood reduces neatly to

constant=C 2;
k - t1 1 M 2 1
Yi —Yi — i
In (£(2)) = =5 In(27) - ZIH(HUi)_i E :(Ui) =C— §||Zi||§> (3.5)

which clearly demonstrates that a multivariate Gaussian likelihood (a Bayesian
concept) reduces under the natural logarithm to a quadratic loss (an optimisation
concept) over whitened® random variables. Furthermore, for independent random
variables, i.e. diagonal covariances, the log-likelihood is straightforwardly given by
the fs-loss. Due to the monotonicity of the logarithm function, should a practitioner
choose to minimise the fo-loss to recover an estimate of x, i.e. ordinary least squares
(OLS) optimisation, they are implicitly recovering the maximum likelihood solution

(as the prior is implicitly uniform).

From the Gauss-Markov theorem, both OLS and maximum likelihood estimation
are the minimum variance estimators of the set of linear unbiased estimators, and
are thus perhaps ‘optimal’ in a somewhat naive sense. For inverse problems of
interest, which are typically seriously ill-posed and or ill-conditioned, the adoption of
a uniform prior (correspondingly a constant regularisation function over a potentially
infinite domain) is patently sub-optimal. For such problems the information content
of the data is often of too poor a quality to effectively constrain the posterior, and
thus a priori bias can be introduced through weakly informative priors, so as to
recover more desirable estimators overall. In this sense, a trade-off between bias
and variance is implicit to all inverse problems, solved in such a manner. Though
this similarity between optimisation functions and Bayesian likelihoods is somewhat
obvious it is interesting nonetheless: when a #»-loss function is selected, whether it
be for e.g. image-processing or machine learning, it is an implicit assumption of
independent multivariate Gaussianty of the loss argument. Of course this avenue of
comparison between loss functions and Bayesian likelihoods (and further Bayesian
posteriors) is not limited to Gaussian distributions, though for brevity this discussion

will be truncated here.

3 A whitened random multivariate object is one in which the variance over each component is
uniform, and often set to 1. This can be achieved, as in this case, by simply dividing each component
by the corresponding standard deviation.
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3.1.3 Prior specification & regularisation

The second term highlighted in the numerator of Bayes’ theorem (equation 3.1)
is the prior function P(z), which captures any a priori assumed knowledge as to
the nature of . Conceptually, this knowledge codifies our a priori beliefs of the
system in question, and can be predicated on past experimental results, i.e. through
empirical Bayes (Casella, 1985), or simply prejudices inherited from theory (see e.g.
Sivia and Skilling, 2006). The classical collections of prior distributions, from which
one typically selects, are outlined below.

It should be noted that Bayesian priors have, until recently, typically been
restricted to mathematical forms which can be implemented numerically. Such
approximate priors are typically of limited efficacy for complex inference. Over
the past decade, Bayesian inference problems have become increasingly complex,
motivating researchers to develop more representative prior distributions (functions).
Recently, researchers have developed methods to integrate so called plug-and-play
machine learning techniques to learn far more realistic prior distributions directly from
the data, drastically enhancing the state-of-the-art in Bayesian inference techniques

(see e.g. Venkatakrishnan et al., 2013; Laumont et al., 2021).

Ignorance priors

In the absence of justifiable prior knowledge of, or prejudice regarding, z an
uninformative prior is often adopted to communicate a lack of insight. One might
reasonably interpret this as a statement of maximal ignorance of x, a concept which
is rationalized in accordance with Laplace’s principle of indifference. The idea of
epistemic ignorance has since been discussed by other prominent academics, e.g.
Henri Poincaré (Poincaré, 1912) and John Maynard Keynes (Keynes, 1921), and
remains an area of mathematical philosophy to date.

One might reasonably, albeit naively, presume that being indifferent across the
posterior space, i.e. assigning each possible solution equal weight, communicates
a state of maximal a priori ignorance. Such a prior density is referred to as a
uniform (sometimes flat) distribution, and is in some cases a reasonable choice.
However, on closer inspection such priors can fail in a variety of ways: e.g. they
are inconsistent under re-parameterization (see e.g. Trotta, 2017), as in the Borel-
Kolmogorov paradox (Jaynes, 2003); they often suffer from the concentration of
measure phenomenon, in which uniform sampling over n-dimensional spaces becomes
asymptotically concentrated onto an infinitely thin (n— 1)-dimensional shell as n — oo
(Giannopoulos and Milman, 2000), which is highly discriminate; and due to being
improper, uniform prior distributions can lead to seemingly paradoxical results (see
e.g. Stone, 1976).

Such failure modes are antithetical to intuitive inductive reasoning, and more

broadly conflict with the basic desideratum of coherence. There exist a diverse
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spread of formal rules and principles by which ignorance priors, which are robust
in this regard, may be constructed — the most widely accepted is the principle
of transformation groups. This principle equates the state of ‘total confusion’ and
‘complete ignorance’, which is to say that one’s hypothetical a priori degree of belief
f(0) is invariant under the action of a group G, related to inherent symmetries of the
space on which 6 lives (see e.g. Jaynes, 1968; Kass and Wasserman, 1996). Consider a
hypothetical observation of X ~ N(6,1) for location family parameter § € R. Suppose
an independent hypothetical observation Y was made such that Y = X +a, i.e. the
observation is translated by 7, : R+ R such that 7,(x) = x +a. The group of all
such translations is G; = {7,|a € R} for 7,7 = T44p. A prior density 7(z) is invariant
under the action of G; if, and only if, 7(7,X) = 7 (X)), which for location parameters
is satisfied uniquely by the uniform prior.

Suppose instead X ~ AN(01,0%), then 7, becomes the affine transformation
Agp: R— R such that A, () = a+ bz, thus defining the affine transformation group
Go = {Aupla € R,b e Ry} Additionally, consider transformations ggp : R x Rsg
R x R over the parameter space such that g, 4(6,0) = (a+0b6,bo), hence defining
the parameter space transformation group Gz = {gqpla € R,b € R5o}. Under such
conditions, should X ~ N (#1,07) and Y = A, X then Y ~ N (62,03) where 02,09 =
9ab(01,01), hence the model is said to be invariant under Gz. An ignorance prior
which is invariant under left multiplication by Gs, i.e. 71 (gqpX) =7 (X), is given
by 71(0,0) < 0~2. Equivalently, should one instead consider right multiplication,

i.e. mR(Xgap)=mr(X), then mr(f,0) x o~ L.

These two prior densities 7,7
correspond to the left and right invariant Haar measures respectively, the optimal
selection of which is a topic far beyond the scope of this thesis (see e.g. Kass and
Wasserman, 1996). Deriving invariant densities is, in general, non-trivial, motivating
the relaxation to relative invariance, i.e. m(X) o< m(gqpX), which represent a larger

class of priors which are more straightforward to locate (Hartigan, 1964).

Reference priors

Alternatively, and perhaps more intuitively, one may communicate a state of
ignorance by maximizing the contribution of the data to the posterior (Bernardo,
1979). Conceptually, this is achieved by maximizing the shared information between
the prior and the posterior, i.e. in a sense minimizing the new information introduced
by the choice of prior. The mutual information Z(x) between prior P(z) and posterior

distribution P(z|y, M) is given by (Shannon, 1948)
_ P(xly, M)

where K,y denotes the expectation under the likelihood, and the bracketed term is

Yl
the Kullback-Leibler divergence (Kullback, 1997), which measures the relative entropy
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between two probability distributions. The reference prior P(z) is consequently
selected, either numerically or via variational methods, such that it maximizes Z(x).
For cases in which no nuisance parameters exist, the reference prior is given by
Jeffreys’ prior, i.e. the square root of the determinant of the Fisher information (see
e.g. Jeffreys, 1946; Jaynes, 1968), which is invariant under re-parameterization. For
scale parameters the Jeffreys’ prior is equivalent to the aforementioned left invariant

Haar prior (see e.g. Ghosh, 2011).

Conjugate priors

Conceptually, conjugate priors lie somewhat orthogonal to ignorance priors, in
that they are not explicitly constructed with the principle of indifference in mind.
Instead, conjugate priors are largely selected such that the posterior and prior densities
belong to the same family (Schlaifer and Raiffa, 1961; Lindley, 1972). In this sense, the
families to which the prior and posterior belong are said to be conjugate. Conjugate
priors are primarily advantageous as they reduce a, potentially highly complex,
Bayesian inference problem to an iterative modification of the (hyper-) parameters
of the prior. This characteristic is convenient for both theoretical interpretation and
computational implementation, particularly when the dimensionality of the prior is
exceedingly large (Fink, 1997).

It has been shown that all exponential family probability distributions support
conjugate priors (Diaconis and Ylvisaker, 1979), one such family being that of the
Gaussian distribution, which features in later areas of this thesis. Suppose one draws
likelihood from a zero-mean multivariate Gaussian distribution, i.e. D~ N(0,X.), as
given by equation 3.3. Further, suppose one holds a priori belief that z should be well
approximated by a Gaussian random field; in such a case one may reasonably assign
a Gaussian prior P(z|Xp) ~ N (0,Xp), again with the functional form presented
in equation 3.3. Note that priors selected in this way, though conjugate, are also
typically weakly informative. Under these conditions the posterior distribution

P(z|ly, M, X p) is given by

exp [— [y — Maz] TEzl [y — Mz] + xTE;:E)}

V@r)rms T

P(aly, M, Sz.p) = (3.7)

As the posterior still belongs to the family of Gaussian distributions, it is entirely

described by its mean f,), and covariance matrix
-1
Sepy = [~ 02log P(xly, M, Sz, 5p)] . (3.8)
A possible solution x* of interest is that which, from the monotonicity of the logarithm
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function, extremizes (see e.g. MacKay, 2003) the log-posterior
Ts—1 Ty—1
log P(z|y, M,Yz x) x (y — Maz) 'S, (y — Mz) +2'55 , (3.9)

which recovers the solution which maximizes the posterior odds, the mazrimum a

posteriori (MAP) solution, given by
a* = (E + MIS M) TIMIS Ly (3.10)

Hence, a Bayesian inference problem in which the prior is conjugate to a multivariate
Gaussian likelihood returns, as a MAP estimator, the classic Wiener filter (Wiener
et al., 1964). Wiener filters are routinely adopted throughout the disciplines of
cosmology and astrophysics (see e.g. Elsner, F. and Wandelt, B. D., 2013; Jeffrey
et al., 2018; Kodi Ramanah et al., 2019; Starck, J.-L. et al., 2021), however the
inversion of matrices in equation 3.10, especially for modern complex datasets, can
be substantially problematic, e.g. as they are rarely sparse. Alternatively, one may
recover the Wiener filtering result by instead iteratively minimizing the negative log-
posterior (see e.g. Elsner, F. and Wandelt, B. D., 2013; Horowitz et al., 2019), before
leveraging either Laplace’s approximation (see e.g. MacKay, 2003, pages 341-343) or

the covariance of equation 3.8 to quantify the plausibility of such solutions.

Weakly informative priors

Priors which do not attempt to communicate a state of indifference, but instead
attempt to introduce a priori assumed knowledge as to the nature of a given
system are referred to as weakly informative priors — as they inform the posterior
inference (see e.g. Lemoine, 2019). This class of prior is extremely broad and
includes, e.g. regularizing priors and symmetry priors (sometimes structural priors).
Regularisation priors attempt to promote solutions which exhibit problem specific
regularity properties, typically stabilizing posterior inference. As such the discussion
around them is inextricably linked to discussions around regularisation in optimisation
(see section 2.1.3).

In the purist Bayesian sense, regularizing priors are often considered a frequentist
construct (Rubin, 1984), and as such constitute a branch along which research
surrounding Bayesian inference and optimisation collide. A popular example of a
regularizing prior, is that of the Laplacian distribution P(x|u,\) ~ Laplace(u, ),

sometimes referred to as the double exponential distribution, which can be written as
A
P(x!u,)\):§exp(—)\].’r—ul), (3.11)

for positive A € Ry, and mean p. As the Laplace distribution can be considered the

product of two Gaussian distributed variables, it exhibits a greater prior concentration
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around p. Hence, for ;1 =0 a prior drawn from the Laplacian distribution biases
towards solutions x* for which many coefficients are zero-valued. In words, a Laplace
prior biases towards solutions which are sparsely distributed (Tibshirani, 1996), as
discussed in section 2.1.3. This becomes apparent when one notices that the negative
log-prior for a Laplacian distribution is given by the ¢;-norm, the closest convex
relaxation of the Hamming distance (Donoho, 2006) (see section 2.2.4).
3.1.4 Marginalization of nuisance parameters

A question outstanding from the previous subsections is how one should handle
additional parameters introduced to the inference which, though only of tangential
interest, can dramatically affect our final scientific statements. Such parameters z are
called nuisance parameters and include, e.g. the scaling parameter \ used to parame-
terize the Laplacian distribution (see weakly informative priors in section 3.1.3). It is
often unclear how to select such parameters, leading to inherent uncertainties which
are accounted for by jointly inferring both x and z, before marginalizing (integrating)

over z, i.e.

P(y|z,z, M)P(z,z|M)
P(y|M)

P(z|y, M) :/P(:U,z]y,/\/l)dz:/ dz (3.12)
where the final equality is simply a substitution of Bayes theorem given in equation 3.1.
Formally, this is the Bayesian approach for dealing with nuisance parameters, however
for an increasingly large set of inference (inverse) problems obtaining normalizations
required to evaluate such integrals is intractable (Gelman and Meng, 1998). In such
cases, more computationally efficient prior specific approaches are strongly motivated

(see e.g. Pereyra et al., 2015).

3.2 Bayesian algorithms & uncertainty quantification

Having discussed how one constructs the posterior distribution, we will now
discuss the mechanics of how the mathematical definition of the posterior distribution
can be mapped onto scientific statements, with corresponding plausibilities. Though
many approaches may be adopted, we will limit our discussion to the two most
popular: Markov chain Monte Carlo (MCMC) sampling (see e.g. Robert and Casella,
2013, for a review), and Bayesian optimisation methods (see e.g. Robert, 2001,
chapter 4). Furthermore, we will, to a reasonable extent, ground our discussion
within the application of Bayesian methodology to image processing.

3.2.1 Sampling the posterior density

Markov chain Monte Carlo (MCMC) methods are designed to sequentially
gather a large number of posterior samples, which under certain conditions can be
shown to trace the underlying posterior distribution (Sivia and Skilling, 2006; Robert
and Casella, 2013). Such sampling methods, as the name implies, are a composition

of Markov methods — which describe the evolution of probability density in a dynamic
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system of states (Hastings, 1970; Gilks et al., 1995) — and Monte-Carlo methods —

which recover numerical results through large scale (pseudo-) simulation.

A Markov chain is an n-sequence of ordered states X = {z;|i € Z<,} which
depend probabilistically on the previous state configuration z;—;. For MCMC
methods, a chain of states is sequentially generated such that the transition probability

T («'|x) between states x,z" satisfies detailed balance (Gilks et al., 1995)
P(z|ly, M)T (2'|z) = P(2' |y, M) T (z|2"), (3.13)

such that the limiting distribution of the Markov chain tends to the posterior
P(z|y, M), i.e. the process must be ergodic (see e.g. MacKay, 2003). The exact
details of how one constructs such transition probabilities and state update schemes
is the core concept from which the discipline of sampling methods has, at least in
large part, been born. Often, though not always, such methods define functions
T (z'|z) which exploit 15%-order gradient information to explore the posterior space;
typically via diffusion (Roberts et al., 1997). Those that are not reliant on gradient
information, e.g. Metropolis-Hastings (Hastings, 1970), are typically computationally

ineffective in high dimensional spaces (see e.g. Katafygiotis and Zuev, 2008).

Though gradient-based methods have been applied widely with resounding
success, they are by construction limited to differential log-posteriors, hence they do
not support current state-of-the-art image-processing priors, e.g. sparsity promoting
Laplace distributions (see sections 3.1.3, 2.1.3). In recent years, such methods have
been modernized (Pereyra, 2016; Durmus et al., 2018) by leveraging aspects of
proximal analysis (see 2.2.4) to accommodate non-differentiable priors. These state-
of-the-art MCMC methods are, somewhat unimaginatively, referred to as proximal

sampling methods.

Proximal sampling methods

One such proximal MCMC algorithm adopted later in this thesis is the proximal
modernization of the Metropolis-adjusted Langevin algorithm (MALA) (Robert
and Casella, 2013), called the Px-MALA algorithm (Pereyra, 2016). Consider the
Langevin diffusion (Roberts et al., 1997) of Lipchitz differentiable prior density 7 € C*
for x € C™,

dL(t) = %Vlogw [£(t)]dt +dW(D), (3.14)

for Brownian motion W(t). In the infinite ¢ limit d£(t) approaches the posterior
density, and as such a Langevin diffusion can be used to continuously sample
the posterior density 7. Discrete sampling is a practical necessity, hence a Euler-

Maruyama approximation of the Markov chain which, under certain conditions
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(Durmus et al., 2018), retains ergodicity is adopted
, s . .
2D = (0 4 §V10g7r(x(l)) + V6wl D), (3.15)

where § € R>( is the step-size of the discretization, and w™! ~ A/(0,1,) is an n-
dimensional sequence of Gaussian random variables. Equation 3.15 contains the
term Vlogﬂ(w(i)) which is not defined if the density 7 is not strictly differentiable
everywhere.

Consider the general case in which m = f + g for lower-semi continuous log-prior
f € C! and Lipchitz-continuous log-likelihood g € C! which are both convex (see
section 2.2.1). Under such conditions, and introducing a Moreau-Yosida (Moreau,
1962) envelope discussed in section 2.2.4, the Markov chain described by equation

3.15 becomes

2+ = (1 - é)w(i) + éproxuf(ulc(i)) —6Vg(zD) + V200, (3.16)
[ 7

which is named the MYULA (Moreau-Yosida unadjusted Langevin algorithm) Markov
chain (Durmus et al., 2018). Such a chain is scalable, and exhibits competitive con-
vergence properties (Roberts and Tweedie, 1996), however an asymptotic estimation
bias exists. To mitigate this bias, at the cost of marginally reduced computational
efficiency, a Metropolis-Hastings accept-reject step (Chib and Greenberg, 1995) is

introduced, under which a proposed state z’ is accepted with probability

T(fvlw’)ﬁ(fﬂ’)] 7

p=min [1’ T (2! |z)m(x)

(3.17)
where T (2'|z) is the MYULA transition probability kernel (Pereyra, 2016).
Proximal algorithms, such as Px-MALA provide asymptotically exact avenues
through which one can sample from, under the aforementioned conditions, posterior
densities which are not strictly differentiable, and have been adopted for various
applications (see e.g. Cai et al., 2018a; Price et al., 2019a). However, broadly speaking,
sampling methods become computationally taxing in high dimensions as the number
of samples required to achieve sufficient convergence increases dramatically. This
motivates research into alternate, perhaps approximate or accelerated, methods with
which one can recover, in a Bayesian sense, scientific statements with principled

measures of plausibility.

3.2.2 Maximum a posteriori estimation

Once a sufficiently large set of posterior samples has been collected, the question
becomes: which solution is the best? The irreducible representation of this question
is simply: how does a Bayesian define best? Unfortunately this is a rather open

ended question with countably infinite answers. Nonetheless, two straightforward
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potential answers come to mind. Suppose one simply averages over the posterior
samples one recovers the posterior mean, which may seem reasonable: on average,
this is the solution one may expect. Alternatively, one may select the solution which
maximizes the posterior odds: this is the most plausible solution, referred to as the
Bayes estimator. Effectively these two potential solutions correspond to the mean
and maximum of the posterior distribution. It is not necessarily clear which point

estimate best characterizes the posterior, hence the ambiguity around optimality.

In this thesis we will focus on methods which search for the Bayes estimator
which maximizes the posterior odds, for quasi-concave functions (Boyd, 2004) (on
which we are primarily focussed); this is given by the mazimum a posteriori (MAP)
solution. Given a posterior as defined generally by equation 3.1 one can locate the

MAP solution by locating extremal solutions, i.e. solutions for which

Pyle, M) P(z)
P(y|M)

0 [Py, M)] = 0 | < 0u [Pyl M)P()] =0, (3.18)
where the proportionality follows from the realization that the evidence P(y|M) €
R+, and therefore acts as a scaling coefficient which does not affect the position of
the solution. Typically this problem is solved over the log-posterior, as it is often
more straightforward numerically. From the monotonicity of the logarithm function

one can instead locate extremal solutions

0 [log P(x]y, M)] o< O, log [P(y|z, M) P(z)] = 0 [log P(y|z, M) +1log P(z)] = 0.
(3.19)
Under the canonical substitution f(z)=logP(x) and g(x) = log P(y|x, M), and con-
sidering the process of nullity under 9, to be isomorphic with standard minimisation,

computing the MAP estimator reduces to the Lagrangian dual problem

gMAP — arggrcnin [h(x) = f(x) —i—g(x)} (3.20)
where h(z) is the negative log-posterior, referred to as the objective or loss function.
Notice that this equation takes the form seen in equation 2.16 implying that MAP
estimation is unconstrained optimisation, however with the added benefit of a
principled statistical interpretation (Kaipio and Somersalo, 2006). Estimation of
the MAP solution has seen wide-spread adoption for high-dimensional problems in
which h(z) belongs to the space of convex functions, for which large-scale convex
optimisation algorithms can be leveraged (Green et al., 2015), as discussed in section
2.2. Solving such problems via sampling methods, as discussed in section 3.2.1, is often
computationally expensive, motivating the adoption of rapid convex optimisation

techniques.

The reader may have noticed the somewhat glaring issue: though MAP esti-

o7



CHAPTER 3. PROBABILISTIC INFERENCE

mation can be an effective tool for locating (in some sense) optimal solutions for
Bayesian inference problems, it is unclear how one may quantify the plausibility
of such solutions — a necessity for principled scientific inquiry. Leveraging recent
results (Pereyra, 2017), in the following subsections, and as a core concept explored
in this thesis, I will demonstrate how one can quantify the plausibility of such MAP

solutions in a fully consistent, principled manner.
3.2.3 Posterior credible regions

Having now covered how to construct the Bayesian posterior we will now discuss
the plausibility of scientific statements one may make using the posterior. Perhaps
the most useful quantity one can calculate from the posterior is accessed through
credible regions of the posterior (see e.g. Robert, 2001). Suppose one attempts to
make scientific statements about parameters x € R", in light of observations y € R™.

A posterior credible region C,, at 100(1 — «)% confidence is given by

p(z € Culy) = / p(zly, Mg, dr=1-a, (3.21)

z€R

where I, is the usual set indicator function defined by I¢, (z) =1Vx € C, and 0
elsewhere. In words, this is saying that a Bayesian credible region at 100(1 —a)%
confidence is a closed region of the posterior hyper-volume which contains 100(1 — )%
of the probability, i.e. the statement that the true solution z'"¢ € C, is assigned
100(1 — @)% confidence. There are clearly many regions one may construct which
satisfy equation 3.21, hence there is an infinite degeneracy as to the question of which

region a Bayesian should select.

HPD-credible region

The decision-theoretical optimal credible region, in the sense of minimum volume,
is referred to as the highest posterior density (HPD) credible region (Robert, 2001).
The HPD credible region is defined concisely by the set

Co = {z|P(z|ly, M) < ea}. (3.22)

where €, is an iso-contour of the posterior density, sometimes referred to as the
level-set threshold, which satisfies [ P(z|y,M)dxr =1—a. Conceptually, one may
quantify the plausibility of scientific statements in a relatively straightforward manner:
recover a (pseudo-) optimal estimator for x, e.g. the MAP estimator as discussed
in section 3.2.2; and locate the boundary values x + dx for which the posterior
P(z+dz|ly, M) € C, and saturates the level-set €¢,. One may then conclude that
the true value of x is contained within the region spanned by dx with 100(1 —a)%
confidence.

However, to compute the level-set threshold ¢, associated with such posterior

iso-contours requires evaluation of an n-dimensional integral over the parameter
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space. Consequently, for high-dimensional inferences the true HPD credible region
is impractical to compute. As such, one is either restricted to low-dimensional

parameter spaces, or approximate techniques must be developed.

Approximate HPD-credible region

A powerful approximate method which has recently been derived (Theorem 3.1
in Pereyra, 2017), which will be leveraged throughout this thesis, is that of the
approzimate HPD credible region, C!,. This approximation is derived from probability
concentration theory, and can be used to approximate the level-set threshold €, with-
out the need to evaluate any, often computationally intractable, high-dimensional
integrals. Suppose the posterior density P(z|y, M) is log-concave over R", and
is composed of a prior and likelihood which both belong to the exponential fam-
ily. Under such presuppositions, the posterior density can be written generally as
P(z|y, M) = exp|—h(x)]/z where h(x) is as defined previously, i.e. the objective
function (optimisation) or the product of the log-prior and log-likelihood (Bayesian),
and z is the evidence. It has been shown (Theorem 1.2 in Bobkov and Madiman,

2011a) that the concentration of log-concave densities obeys

1
P<% | log P(z|y, M) —E[log P(z|y,M)] | > t) < 3¢, (3.23)
where E is the standard expectation, t € [0,21/n], and constant ¢ € R~ which can,
without loss of generality, be set to 1/16. Consider the substitution ¢t = 7y/n € [0,2],
under which it can be shown (Lemma 3.1 in Pereyra, 2017) that

P(| h(z)—E[h(z)] | >7n) < 3¢ "7 /16, (3.24)

This relation is a consequence of the concentration properties of log-concave random
vectors, which implies that as the dimensionality n grows the probability becomes
increasingly concentrated around the (n — 1)-dimensional hyper-spherical shell {x :
h(z) =E[h(x)]}. This result is not dissimilar, albeit in a different domain, from the
concentration of measure phenomenon (Giannopoulos and Milman, 2000) discussed
previously. As per the definition of a credible region, see equation 3.21, the RHS term
is equivalent to the confidence level. Hence the substitution parameter 7, can be
calibrated such that o = 3¢ "7a/16 = 7, = V/16log(3/a)/n. With these substitutions,
and rearranging the expectation of the probability inequality of equation 3.23, one
finds

P(h(z) >E[h(z)] +71an) <o (3.25)

Leveraging proposition 1.2 (Bobkov and Madiman, 2011b), it can be shown (Pereyra,
2017) that for log-concave functions, with MAP solution MAP | the computationally
intractable expectation of equation 3.25 can be bounded by E[h(z)] < h(xMAP) 4.
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Substituting this expression for the expectation into equation 3.25, allows us to
define the approximate credible set C/, = {z : h(z) < €, }, with level-set threshold
¢/, = h(zMAP) + 7,4/n +n. Importantly, by construction C, C C’, making this ap-
proximation conservative, hence the degree of plausibility in a given statement of
belief will never be over-estimated — which is a prudent safeguard against reaching
incorrect conclusions. Furthermore, this approximation requires only that one recov-
ers the computationally inexpensive MAP solution, from which one may quantify the
plausibility of scientific statements in a principled manner (see e.g. Pereyra, 2017;
Cai et al., 2018a,b; Price et al., 2019a,b, 2021a,b).

Of course this computational advantage comes at the cost of approximation
error, which we necessarily must consider. As the approximation is conservative the
error is positive, and thus bounded below at 0. Derivation of the the upper-bound
(see Pereyra, 2017) is drastically more complicated and beyond the scope of this
discussion. Nevertheless, the inequality which constrains the approximation error is
given by

0< e, —€a <nav/n+mn, (3.26)

where 7, = 1/16log(3/a) + v/1/a. In high dimensional settings, i.e. n — oo, the
upper bound of this error may appear large, however in practice the error is relatively
small (as found in e.g. Cai et al., 2018b; Price et al., 2019a). In fact, in later chapters
of this thesis it will be demonstrated that this approximation error is very small
indeed. Perhaps most crucially, this approximation circumvents calculation of the
high dimensional integral present in equation 3.21, and so can be computed efficiently

in arbitrarily high dimensional settings.
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Chapter 4

Gravitational lensing & dark matter

In this chapter we will consider, in some detail, the relevant mathematical background
underpinning the field of gravitational lensing, with a particular focus on how the
quantities of interest emerge from theory and how they can be modelled on the sky.
The structure of the chapter is as follows. To begin our discussion, in section 4.1 we will
introduce core Cosmological concepts e.g. in subsection 4.1.1 we discuss space-time
metrics and geodesics before using perturbation theory to derive the fundamental lens
equations underpinning gravitational lensing in section 4.1.4. Following this, in section
4.2.4 we will explicitly draw relations between theoretical variables and physically
observable fields, and highlight how one can recover cosmological information from
such observations through solving severely ill-posed inverse problems (see section
8.3 for a discussion on this topic). Finally, in section 4.2.4 we explore the current
leading algorithms developed by the weak lensing community for solving such inverse
problems. Though substantial mathematical discussion is presented throughout this
chapter, review articles are recommended for a broader discussion of the field (see

e.g. Bartelmann and Schneider, 2001; Bartelmann, 2010).

“The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither

understand nor deserve”

Eugene Wigner (1960)

4.1 Weak gravitational lensing

Originating from Newton’s ‘Naturalis Principia Mathematica’ published in
1687, modern Cosmology is based on the fundamental assumption that the Universe
as we observe it is homogeneous and isotropic. In other words we sit at no special
position in space or time, often referred to as the ‘Copernican Principle’ despite
widely being attributed to Giordano Bruno (before being burnt at the stake for
‘heresy’ in 1600). Homogeneity is a property which implies that a vector field is
identical in magnitude and direction at every co-ordinate, i.e. that the structure of
the Universe is translation invariant. It is perhaps obvious that the late universe is,

in fact, far from homogeneous, however deviations from homogeneity on a universal
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scale are substantially damped, and so to a good approximation the Universe can be
considered homogeneous (Planck Collaboration, 2018). Interestingly, inhomogeneities
are currently believed to be the late Universe manifestations of quantum level
fluctuations, dramatically magnified during a postulated inflationary period during
the early evolution of the cosmos (see e.g. Challinor and Peiris, 2009). Isotropy
is the property of a vector field which states that the statistical properties of the
Universe are independent of direction, i.e. the physical laws of the Universe are
rotation invariant. Importantly, isotropy manifests itself in the aggregate statistics
of the universe rather than the absolute distribution — so viewed in a given direction
the overall shape on different scales is, on average, uniform (Planck Collaboration,
2018). Again, on small scales the universe we observed today is far from isotropic,
however on a cosmic scale these anisotropies are comparatively negligible (Saadeh
et al., 2016).

The fabric of such a Universe is perhaps best described mathematically by
(pseudo-) Riemannian manifolds, upon which all matter and energy exists, and
can move and interact freely under the known forces of nature. Theory suggests
that matter, amongst other potential factors, dictates the topology of the manifold
upon which it exists, which in turn determines the equations of motion by which
the matter must abide. Conversely, massless particles, e.g. photons, are forced to
travel along null geodesics determined by the Riemannian metric of a prescribed
manifold interpretation of the Universe (see e.g. Hobson et al., 2006). As the path
of massless particles depends on the metric, which in turn is dependent on the
dynamical distribution of matter in the Universe, one can construct inverse problems
(see chapter 2) or equivalently inference problems (see chapter 3) through which

cosmological information may be extracted.

Specifically, gravitational lensing is the term
ascribed to the study of the apparent deflection
of photons as they travel from a distant source to
observers here and now. Such deflections indicate
curvature of the underlying manifold, which in
turn can be used to infer properties of, amongst

other quantities, the intervening matter distribu-

tion — both observable and dark. The gravita-

tional lensing effect is sensitive over many scales; .
Figure 4.1: Hubble Space Tele-

ranging from micro-lensing which can be used  g.ope image of the SDSSCGB:8842.3

e.g. for exoplanet detection (Gaudi, 2012), to and 8842.4 galaxies within Ursa Ma-
jor. Note the arc like structures sur-

rounding the central halos: these are
for the study of e.g. dark-matter profiles (see e.g. caustic curves along which images

Kochanek, 1991; Koopmans and Treu, 2003) or of galaxies within an Einstein radius
have been spread. These events are
referred to as strong lensing events.

Credit to NASA & ESA.

strong-lensing (see Figure 4.1) which can be used

dark-matter self-interactions (Markevitch et al.,

62



CHAPTER 4. GRAVITATIONAL LENSING & DARK MATTER

2004). Weak gravitational lensing is concerned

with distortions to images of distant galaxies, in particular linear order perturbations
to their ellipticity (third-flattening) and apparent magnitude (brightness). As the
name implies, such perturbations are particularly small, hence in practice the effect is
integrated over billions of galaxies prior to the extraction of cosmological information.
In this sense, weak gravitational lensing is expanding into the so called ‘big data’
regime, particularly with next generation surveys on the not too distant horizon. In
the following sections we will discuss how the weak gravitational lensing phenomenon
emerges as a consequence of general relativity; beginning by outlining the space-time
metric, before deriving the core relations which underpin the study of gravitationally
lensed images. Subsequently, the discussion will cover how observations over the

celestial sphere here and now can be modelled, from which cosmological information

may be inferred.

4.1.1 Space-time metrics: the Robertson-Walker metric

General relativity is built upon differential geometry, the analysis of fields
defined over manifolds. Fundamentally, such analysis requires an, ideally analytic,
measure of the distance between points, referred to as the Riemannian metric. The
manifold interpretation of the universe was first introduced to Cosmology in the early
20th century (Friedmann, 1922; Lemaitre, 1933; Robertson, 1935; Walker, 1937), and
has led to the current adoption of the term space-time manifold. In the absence of

time, the space-time metric reduces to the Fuclidean measure
di* = da® + dy* + d2?, (4.1)

where there is clearly no time dependence. When a fourth, time-like, dependence is
introduced the flat 3+ 1-dimensional space-time measure (3 space-like dimensions

and 1 time-like dimension) is simply given by the Minkowski metric

ds* = Adt* — da® — dy? — d2?, (4.2)

di?

where c is the speed of light in a vacuum. Consider further the case where the universe
has some intrinsic curvature K, under which the spatial measure dI? (projected onto
spherical polar co-ordinates x,y, z — 1,6, ¢, for mathematical simplicity) transforms
to (Hobson et al., 2006)

2

d
L ) —r2d6? — 2 sin?(0)dv)?, (4.3)

=ds® =cPdt? — | —
1—-Kr2

from which, should one transform to co-moving distance r — r/a(t) and note that

K = k/a?(t), one recovers the co-moving Robertson- Walker measure
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dr?

2_ 252 2
ds® = c*dt* —a*(t) Ty

+7r2 (d6? +sin® 0dy)?) |. (4.4)

=d0?2

Let dx = dr/v/1—kr?, from which we can define,

sin(y) if k=1=$3,
fr(x)=1{x if k=0=R3 (4.5)
sinh(y) if k=-1=H3

for spherical, flat, and hyperbolic universes respectively. This expression allows us to

simplify the measure to
ds? = dt* — a*(t) | dx* + f7 ()92 = a*(7) [dr? = (dx* + [R(0d)]. (4.6

Finally, adopting the full tensor notation we can write the measure as ds* = g dxtdx”,
where the Einstein summation convention is adopted and g,,, is a rank-2 tensor called
the space-time metric or often just metric. The Robertson-Walker metric (Robertson,
1935; Walker, 1937) can then be read from the measure

1 0 0 0
0 —1 0 0
G = a*(7) 0 2y 0 (4.7)
K
0 0 0 —f2(x)sin?(0)

4.1.2 Perturbation theory and gauge transformations

For clarity, we will now discuss how a general space-time metric is perturbed
within the framework of cosmological perturbation theory. In a flat FLRW homoge-
neous background space-time (Friedmann, 1922; Lemaitre, 1933; Robertson, 1935;

Walker, 1937) the unperturbed metric is given by
ds? = g datde” = a® (1) [dr? — §;5dx'da?], (4.8)

with Greek indices € [0,3] and roman indices € [1,3] with the 0! component being
time-like (the standard convention). Suppose this metric includes tensor perturbations
A, B;, and h;j of varying rank such that (Weinberg, 2008)

ds? = a®(7)[(1+2A)d7? — 2B;dx’ dr — (8;5 + hij)da'dz’], (4.9)

where A are rank-0 scalar perturbation, B; are rank-1 vector perturbations of rank
1, and h;; are rank-2 tensor perturbations. Consider now the SVT (scalar, vector,

tensor) decomposition of these perturbed components (Stewart, 1990). As A is a
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scalar perturbation it consists only of a scalar component, whereas B; contains both
scalar and vector components such that B; = 9;B + B;. Correspondingly, the rank-2
symmetric tensor h;; can be decomposed into scalar, vector and tensor components
such that,

hij = 205@' + 28<i8j>E + 28(1-EA']') + QEij,

1 N . .
= 20(5@' +2 (6)18] — §5UV2) E+ (%Ej + 8]-Ei +2Eij7 (4'10)
—_————
— S
8.0, 0 Ej)

where we have explicitly included the expansion of the notational shorthand which
we will adopt for 9,;0;, and a(,Ej). Note that all vector quantities are divergence
free 9'B; = 9'F; = 0 and all tensor quantities are transverse and traceless 81E5 =
54 EZ; = 0. Further note that when considering Einstein equations, as we often do in
cosmology, there exists no linear order SVT mixing and so components are trivially

separable.

Let us now adopt the unperturbed metric presented in equation 4.8 and perform
an affine spatial transformation z; — &' = ' 4 ¢'(7,z) for some ¢ < 1. Under this
affine transformation, the differential element dz’ is transformed, at linear order,
such that

da' = dz' — 0,84 dr — O, di*,

' o (4.11)
= ds® = a®(7) [dr? — 20,&d& " dT — (6; + 20,¢;))dz "di”],

Interestingly by simply applying a spacial transformation we have created spurious
vector perturbations B; = 0-§; and EZ =¢;. These artificial perturbations are called
gauge modes and can be introduced just as easily through equivalent temporal
transformation e.g. 7+ 7+£%(7,2). Physical quantities must necessarily be gauge-
invariant, which is to say that physical quantities must be invariant under the group
of Lorentz transformations, i.e. the concatenation of the non-Abelian Lie group of
rotations and boosts. In fact, as the physics of a system must further be unchanged
under affine translations, they must be Poincaré invariant (Hobson et al., 2006). In
essence, this simply states that physical theories should be consistent between frames

of reference.

To address such gauge-modes, begin by defining an arbitrary co-ordinate transfor-
mation X* — X+ &H(r,x) where €9 =T, and ¢' = L = 'L+ L. As the space-time

interval is by definition invariant, as one might reasonably expect, one may say that
ds* = g, dX"dX" = jopdX *dX 7, (4.12)

for dummy 4-vector indices «, 3, and original or transformed metric g,, and gog

respectively. Rearranging equation 4.12 one finds a relation between the original and
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transformed metrics such that

OX>9Xh _

=22 92 = 4.1

Considering permutations of u,v,«, € [0,3] one may construct equations which

govern the transformation of metric components (Challinor, 2009),

A A=A-T —HT,
B; + B; = B; +0;T — 0, L, (4.14)
hij — ilij = hz‘j — 28(iLj) — 2’HT(5@‘]‘,

where H is the conformal Hubble parameter H = 0;a/a. With this in mind, one may

now define the gauge-invariant Bardeen potentials (Bardeen, 1980):

V=A+H(B—-0.E)+0,(B—-0.E),

Alternatively one can exploit a degeneracy of the gauge functions 1" and L to nullify
two of the scalar metric perturbations, which may result in a simplification of the
algebra relating to certain cosmological theories (Hobson et al., 2006). Perturbation
theory permits the selection of gauge, though it is required that physical observable
quantities must necessarily be invariant to this choice, or gauge-invariant. A complete
description of cosmological perturbation theory, with an emphasis on the synchronous
and Newtonian gauges (which is often adopted to simplify the mathematics of

gravitational lensing) can be found in (e.g. Ma and Bertschinger, 1995).

4.1.3 The geodesic equation

The geodesic equation defines the path of particles over a manifold. It can be

derived by first defining the Lagrangian:

1 det dzv 1

FTat N ax T 2

guui#iya (4.16)

where & = dz/d\ with affine parameter \. We can now use £ as the argument for

the standard Euler-Lagrange equations

d oL oc 1 1
- — = = V./_L-y 5 sV T , TN
A\ O(dxH/dN) ~ dxH 5 Guraw B T+ gunu8"2Y) + 9uad " = S g 3"
wH 1 TN 2 (417)
:>gu)\x :_§(guA,V+gu)\,u_guu,)\)m €,
EQFAMV

where I'y,,,, denotes Christoffel symbols which appear throughout the mathematics

of general relativity. Contracting the inverse metric simplifies the LHS by g**g,\ =
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0 = g gunit = #*, for « = \. The RHS is correspondingly transformed, resulting

in the geodesic equation

22>\ dzt da?

0= htadibete i
d\? i d\x d\’

(4.18)

Y T
i S O

where we have explicitly unpacked the dot notation for clarity (see e.g. Hobson et al.,
2006, for comprehensive details). Note that if, and only if, Fﬁy = 0 particles will
travel along straight paths, as the curvature is null. However, if F/);V # 0 then particles

travel along curved paths over a given space-time manifold.

4.1.4 Lensing in the conformal Newtonian gauge

The gauge typically adopted in the gravitational lensing setting is that of
the Newtonian gauge (Bartelmann, 2010) which is defined by the choice of gauge
B = FE =0 for the Bardeen potentials, defined in equation 4.15. This choice is
primarily for simplicity, as the metric g, is diagonal which leads to straightforward
calculation of the geodesic equations (see e.g. Ma and Bertschinger, 1995). Perhaps
more crucially, within the conformal Newtonian gauge ¥ is (in the Newtonian
limit) the gravitational potential which provides a simple physical interpretation.
Immediately this choice of gauge implies the weakly perturbed FRLW metric, see

equation 4.9, in the Newtonian gauge is given by
ds? = a*(7)[(142¥)dr?* — (1 — 2®)d;;dx"da’], (4.19)

from which one can straightforwardly read off the metric. It is interesting to note
that, in the absence of anisotropic stress, the Bardeen potentials ¥ = & are equivalent,
hence this form of the metric is approximately the weak-field limit of Minkowski
space, in which ¥ acts as the gravitational potential (Challinor, 2009).

Consider now the four-momentum of a photon with space-like magnitude p,
given by P* = 0yz* and p? = gz-jP"Pj respectively. By definition, photons are null
and so have vanishing four-momentum, i.e. P*P, = 0. Within the Newtonian gauge
expressed in equation 4.19, this implies that the time-like component = 0 of the

photon momentum is given by

= PO = ’5’(1 +ow) /2 = 5[1 —U+ gw +O(T3)] ~ ’5’(1 — ), (4.20)

at linear order for small perturbations in the potential ¥. Considering the space-like
components u € [1,3] of the geodesic equation, given by equation 4.18, under the

transformation of variables z* = r8® one finds
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d*z’ i dxtdx”

d\2 PN d)
. 2 2
dtdrd (dr6)drdt __p, datde” (dr\"(dr
dhdt dr\ dr dtd)] ™ dr dr \dx dt |’

) 2 A A
d<d(7"91)drdt> :_lp%’)O(M) +2pi.dixoﬁ+ri, dﬂd:ﬂkldtdr

dr dr dtd\ dr 9 dr dr Ik dr dr | d\dt’
(4.21)

where the second line is a straightforward application of the chain rule. In the

Newtonian gauge, the Christoffel symbols are given at linear order by

Lo =H+ ¥ 00 =0"Y
o =05(H—) [l = 6" 83 0m® — 26(;0p) ®

Substituting these expressions for the Christoffel symbols into equation 4.21 allows
us to explicitly evaluate the right hand term in the final line of equation 4.21 giving

us

[ dt dt dz’ ; ; dx? dz* | dt dr
() 4200 (H - @) S+ [ 0700 ® — 2000 @ | S | Ty (4.2
[a (dr) TG +<5 O3k 0m® = 20(;0h >dr dr]d)\dt (4.22)

This expression is deceptively concise, due to the efficiency of Einstein notation,
and in actuality is describing a substantial number of terms. However, the only
component which is non-negligible is the component along the line of sight, i.e.

7 =k =3, hence this expression is well approximated to linear order by

B _ 201

(1 ) [a?0 (4.23)
which, after again applying a transformation of variables z = r#* and noticing that
the late Universe is matter dominated, i.e. p oca™', allows us to rewrite the final

line of equation 4.21 as the set of differential equations

d<1d(rei)> l 9 (W + @)—”{dw)]. (4.24)

dr\a? dr a? dr

This set of differential equations can be trivialized by expanding the bracketed term

on the left hand side, doing which cancels terms on the right hand side, resulting in

d?(r0?) N

0 50, (U + B). (4.25)
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Integrating equation 4.25, relabelling m +— j, and inverting the order of integration

gives us our desired equation

r—r

6 (r) = 6'(0) — 6 /0 “aro v e[, (4.26)

r
which describes the deviation in observed angle on the sky of a point source by
the intervening gravitational potential as it travels to us here and now. However,
structural information is encoded into collections of photons, e.g. images of distant
galaxies. As such, it is necessary to consider collections of deviations in angular
position of a source image defined on the 2-sphere. In effect we wish to differentiate
under the integrand of equation 4.26. With substantial algebraic wrangling, assuming
anisotropic stress is minimal ¥ = ®, and adopting Born’s approximation (see e.g.
Bernardeau et al., 2010; Kitching et al., 2017), one may convert equation 4.26 into
the form
fr(r—7)

3i :91—2/0 A7 RSy (P) R T, (4.27)

a’(0;)
which is written simply as 8¢ = ' + o, and is colloquially referred to as the lens
equation. Further to this, introducing angular co-ordinate differentials 0; = f ;(1 (r)Op
allows one to write down an expression for an effective lensing potential
: ron fk(r=7) i
A :2/ dr ————®(fr(7)0",7). 4.28

) =2 [ ar LK e ) (1.29)

Now, define the Jacobi matrix jji = (0/3"/067) permitting one to map linear order

perturbations of #° and o onto interpretable geometric quantities such that

:ll_’i 0]—{“ 72], (4.29)

gl
0 1-k Y2 M

72 I—k+m

where the convergence « is a spin-0 scalar field which represents an isotropic stretching

(magnification) of the source image, and is formally defined to be
1 )

and the shear quantities 1,79 are the real and complex components of the spin-2
vector field respectively, representing a perturbation of the third-flattening (ellipticity)

of a source galaxy, and is formally defined to be

1 .
n=5(01-03), m=é=0l, y=mntin (4.31)

It is important to note that the local Newtonian potential ® in equation 4.28 must
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necessarily satisfy the Poisson equation, such that (Bartelmann and Schneider, 2001)

2 () = S 5
\V4 (I)( 71)_ QCL("") 5(T7 )7f (r_f) (4.32)
:>li:§v2¢:8"8j/0 dfm@(fk(f)ei,f),
BUWHE [ ) flr ) D))
K:#/O o' fKIzT) Ka(r) ' (4.33)

The overwhelming majority of weak lensing literature only considers the scalar
contribution, and it is assumed that the potential is highly non-relativistic ¢ < c?.
Even in this restricted setting it can be shown (Grimm and Yoo, 2018; Yoo et al.,
2018) that the forms of k and 7 presented in equations 4.33 and 4.31 are gauge-
dependent and so necessarily not observable. Nonetheless, within the scope of this

thesis we will consider expressions 4.30 and 4.31 to be adequately precise.

4.2 Dark matter inference

In actuality, from equation 4.29 one may notice that the physically observable
quantity for gravitational lensing is a circular source of unit radius, referred to as

the reduced shear, g which is defined by

, (4.34)

which raises an interesting issue. Consider the general transformation of the lensing
potential, defined in equation 4.28, given by

9(0%) = &/(0%) = T 6,000+ Ao(0), (4.35)

under which the convergence & is transformed by (Bartelmann, 2010) x(6°) — x'(6%) =
A& (09) + (1)), and the shear trivially transformed as (%) — Ay(#?). Under such a
generalized transform the reduced shear g is invariant, however both x and ~ are
not invariant and therefore suffer from a degeneracy of the form of the transform
(see e.g. Gorenstein et al., 1988; Bradac et al., 2004). For weakly lensed sources the
shear || ~ |g| < 1 and so the shear is conserved under the transformation. Thus,
in the weak lensing setting, « is, in effect, an observable quantity. In all cases the
convergence £ is not an observable quantity as the underlying intrinsic magnification
is an a priori unknowable of the lensing system. Conversely, the intrinsic shearing
field can be modelled to sufficient accuracy (Troxel and Ishak, 2015). In practice,
measurements of the shear v are typically recovered and an inverse problem can be
drawn to construct estimators for x from ~.

Individual measurements of v are overwhelmingly dominated by the intrinsic

Intrinsic

ellipticity -~y , hence observational data is often binned into pixels and the
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measurements within a given pixel are averaged (Bartelmann and Schneider, 2001).
If the number of measurements within a pixel is large the residual zero-mean intrinsic

Intrinsic>

value (y ~ (0. In contrast to this, the observable shear value has non-zero

mean and thus is revealed, i.e.
N = (,yLensing +,Ylntrinsic> ~ ,YLensing (436)

However, for typical surveys only a limited number of galaxies can be observed within

a given pixel. Upcoming stage IV survey Euclid forecasts ~ 30 gals/arcmin?

, & count
which is also forecast to be a rough upper limit due to blending complications at

high-redshift (see e.g. Chang et al., 2013).
4.2.1 Spin operators and the flat-sky

Often it is preferable to work directly on the sphere and so we require definitions
of the physical quantities gk and 27y in terms of spherical mapping operators, which
will simplify the projection onto the spin-spherical harmonic basis functions. Note
that in the following sections we will explicitly denote a spin-s field sx: s =0 denotes
a scalar field which is SO(2)! invariant, and s = 2 denotes a field which under the
group of SO(2) rotations transforms as x — e~ 2%z for ¢ € R. Consider the spin
raising and lowering operators (Newman and Penrose, 1966; Goldberg et al., 1967):
i

S11

3t = —sinise(ag + 9%) sinF* 9, (4.37)
where w = (1)) € S? are angular co-ordinates on the 2-sphere, and where + denote
raising and lowering respectively. Equations 4.30 and 4.31 can be recast to form
(Bunn et al., 2003)

oh(rw) = (30130 olrw),  i(rw)= 2000 o(re),  (439)

where the 0% differential operators do not necessarily commute. This recasting
drastically simplifies extension to the spherical case in later sections, and provides
a more intuitive understanding of the fundamental relationship between gx and o7,
which will be a core concept revisited often through this thesis. For small fields
of view the sphere is, to a good approximation, flat. This allows computationally
taxing spherical harmonic transforms to be replaced by Fourier transforms which
have significantly lower complexity — as at high frequencies the harmonic and Fourier
coefficients of a signal become coincident. This small-field simplification is colloquially
referred to as the flat-sky approximation, and analysis within this approximation is
often referred to as weak lensing on the plane.

On the plane, the spin raising and lowering operators reduce by first fixing the

1SO(2) denotes the special orthogonal group which has an irreducible representation on the
sphere as rotations on the local tangent plane.
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basis vector perpendicular to the tangent plane, varying 6 and 1, and exploiting the
chain rule to find dy < —0, and 0y, o 9. Transforming the differentials in equation
4.37 reduces the spin raising and lowering operators on the tangent plane to (Bunn
et al., 2003; Wallis et al., 2021)

+ __  naEs L SFS ) A .
0" = —sin 9(89:& Sineaw) sin™%0 ~ <8w:t28y), (4.39)
4.2.2 Inference over a Euclidean tangent plane
From equation 4.38, exploiting the approximation given in equation 4.39, one
can derive the lensing forward model on the plane, which is a mapping relation

between the unobservable convergence field gk and the observable shear field o7y

straightforwardly as follows

ok(r,w) = %(?ﬁﬁf +0701) 0b(r,w)  oy(r,w) = %5+5+ 0d(r,w),
1 1
()IQ(T,UJ) = 5 [a:m: + ayy] 0¢(T7w) 2’7(7”)0‘)) = 5 [8x:c - 8yy + 27181’?/} 0¢(T7w)7
- 1 ~ B 1 ] -
Flor] = 0k, = 5 (k2 + ki] Droky,  Fl27] = 2Vhurk, = 3 (k2 — kz + 2ikoky] 0Pk, ky s

(4.40)

where F represents the usual Fourier transforms, tilde is used for Fourier coefficients
and the shorthand 9., = 0,9, has been used. Note that in line 3 the real-space
arguments have been explicitly dropped for clarity. Clearly one can now substitute
for oﬂgkz,ky to draw a Fourier space relation between the convergence field and the
shear field such that,

k2 — k2 4 2ik,k
z Y

EDkz’ky

(4.41)
where this is our final expression, and is the planar forward model for weak lensing
convergence reconstruction (Kaiser and Squires, 1993) (see chapter 2 for a discussion
of forward models). This forward model is a good approximation of the full spherical
forward model (derived below) when the sky-fraction considered is small, i.e. small-
field surveys, but can be shown (Kitching et al., 2017; Wallis et al., 2021) to rapidly
degrade for wide-fields. Fundamentally, spherical manifolds have non-zero intrinsic
curvature, a result from Gauss’s Theorema Egregium which is a fundamental theory

of differential geometry.

4.2.3 Inference over the celestial sphere

To work with spin-s signals on the sphere, for s € Z, it is necessary to first

define the action of the spin-s raising and lowering operators, given in equation 4.37,
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on the spherical harmonic coefficients (Newman and Penrose, 1966; Goldberg et al.,
1967; Hu, 2000)

O Yo (w) = £[(0F5)((£5+1)]"? si1 Vim (W), (4.42)

where ¢ € Z>o and m € Z<, are the standard spherical harmonic indices. It is then
abundantly clear that any spin-s function can be written as s repeated applications
of 3* such that we have the recursive relation (see e.g. McEwen et al., 2013a, 2015a;
Wallis et al., 2017; Wallis et al., 2021)

N|=

s)!
(LF )J

swm(w) = (_1)min(s,0) [(Ej:s)

[0 Yo (), (4.43)
With these tools we are now ready to derive the spherical relation. As with the
planar derivation, let us derive the spherical relationship between the convergence
field k, the shear field v and the lensing potential ¢ given in equation 4.38. First

derive the harmonic relation between v and ¢,

1
2Fem = (27[2Yem) e = /s2 dQ(w) 27 2Y, = 5/82 dQ(w) 070" 0p2Ye,
= 5/82 dQ(W)5 0 nygm ()(b— §/§’2 dQ(W) [m} 0¢0}/£m
R Lr(f+2)!95 -
= 2%m = 5 {&_25,} ’ 0Pem; (4.44)

where d)(w) = sinfdfd¢ is the rotation invariant measure on the sphere, the Haar
measure of S?, (-,-)g2 denotes the inner product over S?, and where we have dropped
real-space arguments after line 1 for clarity. Notice that in line 2 we have used the
conjugate relation for spherical harmonics, and exploited the recursive relations given
by equation 4.43. Now let us similarly derive the harmonic space relation between

the spin-0 convergence o« and the lensing potential ¢,

1
oRem = <0/<;|0§/gm>82 = /32 dQ(w) ()K;onjn = Z /S2 dQ(w) [6+67 +676+}0¢)0an
_1 - At
=7 /., d0) 0197 +575"| 0V 00
1 dQ(w) [5+5_ oY _pp +0 0 oYfem} 0P
4 Js2
1

=5 |, 49) [((L+D)] 060Y7,
S2
= 0fom = —% V(fﬂL 1)} 0em, (4.45)

where lines 1-3 are straightforward algebraic wrangling, and the penultimate line
exploits the recursive relations provided in equation 4.43. With spherical harmonic

space relations 4.44 and 4.45 in mind we can now explicitly state the spherical weak
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lensing forward model (Wallis et al., 2021)

-1 [(f+2)!

1
. T s
2Vem = G005 1) (5—2)!] 0Rem = WeoRem, (4.46)

where Wy is the harmonic space weighting kernel. When projected into real-space,

this relation is given by

< L e (A ) IEE
rw) = m 2Yom(w) = Bem 0Yem(w),
27(r,w) Z:,)m;;w 2Yom (W) ;)mz;ﬂ(ﬂl)[(ﬁ—?)J 0Rem 0Yem (W)

(4.47)

where the first equality is the discretized inverse spin-2 spherical harmonic transform
with Eigen-functions oYz, (Newman and Penrose, 1966; Goldberg et al., 1967),
oYz is the standard forward spherical harmonic transform. Introducing ,Y,,Y !,
defined to be operators which perform the forward/inverse spin-s spherical harmonic

transforms respectively, one finds the spherical forward-model in operator form

2y(r,w) = 2 Y T WY g (r,w). (4.48)

Notice that both the planar relation 4.41 and
the spherical relation 4.48 describe an a priori known
mapping between a desired field of interest, in this
case the convergence ok, and an albeit approximately

observable field 9y. As discussed in a general sense

in chapter 2 and a probabilistic sense in chapter 3

such mappings represent the forward model, and can Figure 4.2: Hemispherical plot

be used to construct inverse (inference) problems of the convergence at z =1, ex-
tracted from large scale N-body

simulations (see Takahashi et al.,
to ok, in light of observations of 2. In the following 2017).

through which we can extract information pertaining

subsection we will discuss how researchers leverage such methods to infer the a priori
unobservable convergence, and by proxy the line of sight total matter distribution,
from weak gravitational lensing observations. A hemispherical plot of o« is displayed

in Figure 4.2.

4.2.4 Dark matter mass reconstruction techniques

Knowing now how both the convergence s and shearing - fields emerge from
cosmological theory, and how one relates these quantities via the weak lensing
forward model ¢, we will now discuss how one leverages noisy, and often incomplete,
observations of the shearing field to infer the convergence field. Such inferences,
colloquially referred to as dark matter mass-maps, belong to the set of principle

cosmological observables (Clowe et al., 2006), and will occupy much of the discussion
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within this thesis.

Inferences in the weak lensing domain are described by ill-posed, and often
severely ill-conditioned, inverse problems (Hadamard, 1902) which take the general
form of a noisy axisymmetric deconvolution problem with in-painting dependent on
masking geometries. A substantial set of solutions to such problems exists throughout,
e.g., the image processing community, however only a comparatively small number
have been applied in the weak gravitational setting. In this short subsection we
will provide an overview of the main approaches currently adopted throughout the
mass-mapping scientific community?, although this brief summary is not intended to

be comprehensive.

Uniform prior: Kaiser-Squires

Perhaps the most naive solution to the weak lensing inverse problem is simply

to directly invert the forward model in Fourier space such that
k= D_lﬁl Rom = W[l%m (449)

on the plane and celestial sphere respectively. These methods are referred to as
Kaiser-Squires (KS) inversion (Kaiser and Squires, 1993) and Spherical Kaiser-Squires
(SKS) inversion (Wallis et al., 2021) respectively. Note that * represents Fourier
coefficients, ~ represents spherical harmonic coefficients, D represents the planar
Fourier relation given by equation 4.41 and W, represents the spherical harmonic
relation given by equation 4.48. Decomposition of spin-signals on bounded manifolds
is known to be degenerate (Bunn et al., 2003) due to local loss of orthogonality
between basis eigenfunctions. Therefore, in the presence of non-trivial masking
geometries, which is more often than not the case, these estimators are patently
sub-optimal.

Moreover, as these methods do not directly consider noise present in vy (a
combination of instrumental noise and residual intrinsic ellipticity) a subsequent
post-processing of the maps is undertaken; a large Gaussian smoothing kernel is
convolved with the initial estimate of k. For large spatial scales (at which the Universe
is to a good approximation Gaussian) this convolution is somewhat well informed,
though for the small scales a non-negligible fraction of the information content is
inherently non-Gaussian (Taylor et al., 2018). Thus the information content at such

scales is severely degraded by this convolution.

2 The set of algorithms discussed in the following sections is far from exhaustive, however
an example from each train of thought is included to broaden the discussion. Furthermore, the
algorithms selected represent novel contributions upon which subsequently developed algorithms are
largely derivative.
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Gaussian family priors: Wiener Filtering

The Wiener filter is a linear filtering technique, often solved through Bayesian
sampling methods or less commonly through optimisation methods (see chapters 2 and
3) which is explicitly restricted to Gaussian family posterior distributions (Teyssier
et al., 2009; Jeffrey et al., 2018). Such posteriors are typically constructed from
Gaussian distributed likelihoods and weakly informative conjugate priors. Consider
noise covariance NN, signal covariance S and forward model D, in such a case the

likelihood and prior functions are given by

1 1 _
P(v]%,D) = Nerr ke [—5( ~Dr)IN" (y=Dr)| ~N(O,N)  (4.50)
Plr) = —— METR | a0, 451
()= = [~ 5] ~V(.S) (4.51)

from which the full posterior can be constructed as

(k—W~)T(S~1 +DN-1D")(x —Wv)} (4.52)

P(k]7,D) o exp | — :

where the operator W is the Wiener filter (Wiener et al., 1964) defined by W =
SDT[DSD 4+ N]~!. A more comprehensive discussion of the Wiener filter as a
Bayesian method can be found earlier in this thesis, specifically in section 3.1.3.

This posterior is often approximated via Markov chain Monte Carlo (MCMC)
sampling methods which naturally recovers the complete posterior distribution,
from which one can compute ‘optimal’ solutions with associated credible regions.
However, as the Wiener posterior is straightforwardly log-concave, one may also
rapidly minimize the negative log-posterior via convex optimisation techniques, before
leveraging e.g. the Laplace approximation (see e.g. Laplace, 1986) for posterior
uncertainties. Bayesian sampling methods, in which the Wiener filter is most often
computed, support principled uncertainty of x (computed from the posterior samples),
however there are two primary disadvantages of such approaches.

Currently, MCMC sampling algorithms are typically highly computationally
demanding, in many cases prohibitively so, as they typically require very many
posterior samples for convergence. Hence, sampling methods are typically restricted
to low-dimensional settings and computationally tractable posterior distributions?.
Additionally, though assumptions of Gaussianity are well-motivated in many cases,
e.g., for cosmic microwave background (CMB) research (see e.g. Horowitz et al.,

2019; Kodi Ramanah et al., 2019)4, they are inherently sub-optimal for weak lensing.

3To some small extend this motivates the choice of Gaussian forms as they lead to several
computational speed-ups. In some cases such posteriors can be solved analytically, though this can
involve the inversion of prohibitively large covariance matrices.

4The CMB is extremely close to Gaussian, thus validating Gaussian type likelihood and prior
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Weak lensing is primarily set in the late universe, as such the matter (both visible
and dark) distribution has undergone highly non-linear evolution under gravity, at
least on the spatial scales of interest. As the convergence is inherently non-Gaussian,
prior assumptions of Gaussianity are ill-informed and severely degrade the quality of

weak lensing information.

Sparse regularisation: GLIMPSE

In contrast to the methods discussed so far GLIMPSE?® is a more classical
image-processing reconstruction algorithm which draws on proximal convex opti-
misation methods (see section 2.2), sparsity and wavelets to construct remarkably
high-resolution point estimates of the convergence field (Leonard et al., 2014; Lanusse
et al., 2016). However, GLIMPSE is not posed in a framework which supports prin-
cipled statistical uncertainties on reconstructed convergence maps. Such uncertainty
quantifications are a fundamental necessity when using these high-quality maps for
cosmological inference, hence, despite producing excellent point estimate convergence
reconstructions, cosmological inference is somewhat less statistically principled than
e.g. sampling methods.

The GLIMPSE algorithm considers a general linear inverse problem of the form
v =Pk +n, (4.53)

for shear observations v € CV, which are generated from an underlying convergence
x € CM by the forward model ® € CM*N : i ~, and under additive Gaussian noise
n~N(0,%, € CN). Note that in many weak lensing settings the noise n is at least an
order of magnitude larger than the signal v and N < M, hence such inverse problems
are often seriously ill-posed and or ill-conditioned (Hadamard, 1902) (see section
2.1.2 for a more substantive discussion). In the GLIMPSE setting the measurement
operator, the operator through which observations or measurements are modelled, is
given by

® = TDF, (4.54)

for standard Fourier transform F, the aforementioned planar forward relation in
Fourier space D and the inverse NDFT (non-uniform Fourier transform) matrix T
(Keiner et al., 2009). Two regularisation terms are introduced which encode sparsity
in the starlet wavelet dictionary (Starck, J.-L. et al., 2006a,b) and reality of the
convergence field, such that the Lagrangian dual type optimisation problem (see

section 2.2) in the synthesis setting is given by

. 1
KOPIMaAl — aromin (3, % [y — ®k] 4 Ajwo UFk||, + Ig)=0(K) |, (4.55)
K

terms.
Shttp://www.cosmostat.org/software/glimpse
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where A\ is a regularisation parameter which controls the weighting between the
two terms, X, is the shear covariance, Ig(.)—¢ is the indicator function for vanishing
imaginary convergence, w is an adaptive re-weighting recalculated after each step in
the algorithm and o is the Hadamard product (element-wise product).

Refinements of the GLIMPSE algorithm have been introduced, i.e. the inclusion
of higher-order lensing observables such as the spin-3 flexion, though for brevity we
will truncate our discussion here. The reader is pointed to the original articles for a
far more detailed overview of this algorithm (see e.g. Leonard et al., 2014; Lanusse
et al., 2016). As GLIMPSE does not introduce, either implicitly or explicitly, an
internal bias towards Gaussian signals® it is currently the algorithm of choice for
high-resolution mass-mapping — in which signal information content is substantially
non-Gaussian. In particular, the algorithm is an effective means by which to recover
non-parametric reconstructions of dark matter haloes. The algorithm’s efficacy on
larger scales is less well constrained, and depends highly on the statistical metric
with which one determines performance, i.e. GLIMPSE recovers far better estimates
of the peak statistic (Jain and Van Waerbeke, 2000) than the power-spectrum (see
e.g. Jeffrey et al., 2018).

Furthermore, the selection of the regularisation (hyper-) parameters A in the
objective is somewhat ill-motivated. Through an iterative grid-search over simulated
k maps, the value of A which maximizes the correlation between the GLIMPSE
estimate of k and the simulated maps is located. This (pseudo-) optimal value
of A is then fixed and assumed to perform well on real data applications. In a
sense this can be thought of as an implicit empirical Bayes approach, in which the
regularisation (hyper-) parameter X is assigned an infinitely concentrated hyper-
prior distribution, e.g. a delta function. In a, somewhat approximate, Bayesian
sense this handling of model (hyper-) parameters is predicated on the notion that
simulated x maps are indistinguishable from the true convergence of the Universe,
a claim to which the authors seem to attribute infinite plausibility. One might,
quite reasonably, be uncertain as to the value of A\, and instead marginalize over
this nuisance parameter, as is done in later chapters of this thesis (see section 3.1.4
for a compact discussion). Last but not least, the current implementation of the
GLIMPSE algorithm is structurally restricted to reconstructions of planar patches
and does not facilitate the wide-field spherical reconstructions required (Wallis et al.,
2021) by stage IV surveys, e.g. Euclid (Laureijs et al., 2011).

6Sources of such Gaussian biases include e. g- post-processing smoothing (as in Kaiser-Squires) or
strong Gaussian priors (as in Weiner filtering).
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Deep learning: Convolutional neural networks

Over the past year deep machine learning techniques have been applied (Jeffrey
et al., 2020), in an end-to-end fashion, in an attempt to ‘learn’ a generalized inverse
mapping function between the observed shearing and desired convergence cosmological
fields. In much the same way as the GLIMPSE algorithm the inverse problem forward
model is given by v = ®x +n, for forward model ® and additive Gaussian noise n.
Where GLIMPSE (Lanusse et al., 2016) adopts approximate, though highly effective,
wavelet priors to stabilize the reconstruction, deep learning approaches’ instead

attempt to learn the parameters © of a mapping function Fg such that
k= Fo(y). (4.56)

Such a learnt function is recovered by minimisation of a well defined loss function,
e.g. the mean squared error (MSE). In theory Fg can approximate inversion of the
forward model with arbitrary precision, whilst implicitly introducing regularisation
via choices made during the training of the network parameters ©. For example, if
one samples from a known prior distribution P(x), generating simulated data vectors
P(v|k), which are adopted during training of model parameters © under an MSE
loss function, then Fg,, for optimized model parameters Oyt is an estimate of the
posterior mean (Jaynes, 2003).

Though it is undeniably difficult to overstate the potential of such approaches,
there are a few interesting caveats worth noting. Though a learnt mapping function
Fo, under certain conditions, has a principled Bayesian interpretation it is unclear
how the benefits of Bayesian methodology, e.g. exploration of the posterior space,
and principled uncertainty quantification, can be fully supported®. Furthermore, the
performance of such end-to-end deep learning techniques often generalizes poorly
under re-specification of the inverse problem at hand, i.e. when the noise distribution
or magnitude varies. Hence, end-to-end deep learning approaches must often be
retrained from scratch under problem variable re-specification. For many applications
this is simply an inconvenience, however for cosmological applications, wherein
training data is generated through computationally expensive simulations, this
becomes a major blocker. Nevertheless, deep learning approaches, perhaps more
specifically hybrid deep learning approaches (see e.g. Adler and Oktem, 2018; Lunz
et al., 2018), are certainly strong contenders for upcoming, now imminent, stage IV

weak lensing surveys (e.g. Laureijs et al., 2011).

"This specifically relates to end-to-end deep learning approaches. There are, of course, myriad
machine learning techniques each with (often) nuanced interpretations.

8Certainly this problem has yet to be solved in a satisfactory manner, and is already forming a
highly interesting avenue for future research.
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Chapter 5

Hypothesis testing of dark matter

This chapter is based on research presented in M. A. Price, J. D. McFEwen, X.
Cai, T. D. Kitching, and C. G. R. Wallis, “Sparse Bayesian mass-mapping with
uncertainties: hypothesis testing of structure”, Monthly Notices of the Royal
Astronomical Society, vol. 506, no. 8, pp. 3678-3690, September 2021.

Price et al. (2021a)

Note: This chapter assumes knowledge of the following. Mathematical context
of weak gravitational lensing, presented in sections 4.1.4 and 4.2.2. Convex
optimisation techniques, specifically sections 2.2.3 and 2.2.4. Probabilistic

inference techniques, discussed at length in chapter 3.

In this chapter we present a new mass-mapping formalism. We formulate the
lensing inverse problem as a sparse hierarchical Bayesian inference problem from which
we derive an unconstrained convex optimisation problem. We solve this optimisation
problem in the analysis setting, with a wavelet-based, sparsity-promoting, #1-norm
prior: similar priors have been shown to be effective in the weak lensing setting
(Leonard et al., 2014; Lanusse et al., 2016; Peel et al., 2017a; Jeffrey et al., 2018).
Formulating the problem in this way allows us, for the first time, to recover maximum
a posteriori (MAP) estimators (see section 3.2.2), from which we can exploit analytic
methods (Pereyra, 2017; Cai et al., 2018b) to recover approximate highest posterior
density (HPD) credible regions, and perform hypothesis testing of structure in a
variety of ways (see section 3.2.3). We apply our algorithm to a range of catalogs
drawn from Bolshoi N-body simulation cluster catalogues (Klypin et al., 2011), and
the hotly debated A520 cluster catalogs (see e.g. Clowe et al., 2012; Jee et al., 2014).
We then demonstrate the aforementioned uncertainty quantification techniques on

our MAP reconstructions from these catalogs.

5.1 Introduction

Gravitational lensing is an astrophysical phenomenon, that can be observed on
galactic to cosmic spatial scales, through which distant images are distorted by the
intervening mass density field. Due to its nature, lensing is sensitive to the total

mass distribution (both visible and invisible) along a line of sight (Bartelmann and
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Schneider, 2001; Munshi et al., 2008; Heavens, 2009; Bartelmann, 2010). Therefore,
as the majority of massive structures in the universe predominantly consist of dark
matter, lensing provides a novel way to probe the nature of dark matter itself. Weak
gravitational lensing (WL) is a regime in which one makes the approximation that
lensed sources have (at no time) come radially closer than an Einstein radius to
the intervening mass concentrations — which ensures that sources are not multiply
imaged. The effect of weak lensing on distant source galaxies is two-fold: the galaxy
size is magnified by a convergence field x; and the galaxy ellipticity (third-flattening)
is perturbed from an underlying intrinsic value by a shearing field v (see section 4.1.4

for an extended discussion).

Due to the mass-sheet degeneracy the weak lensing convergence field is not
directly observable (see section 4.2.4). In the weak lensing regime, the shearing field
does not suffer such degeneracies and can accurately be modelled from observed
ellipticities. Therefore, observations of v are typically inverted to recover estimators of
k. Such estimators are colloquially named dark matter mass-maps, and constitute one
of the principle observables for cosmology (Clowe et al., 2006). Standard cosmological
protocol is to extract weak lensing information in the form of second order statistics
(Kilbinger, 2015; Alsing et al., 2016; Taylor et al., 2018) which are then compared to
theory. In this approach mass-maps are not required. However, as two-point global
statistics are by definition sensitive only to Gaussian contributions, and weak lensing
is inherently non-Gaussian, it is informative to consider higher-order statistics (Coles
and Chiang, 2000; Munshi and Coles, 2017). Many higher-order statistical techniques
can be performed directly on mass-maps (k-fields), which motivates investigation

into alternate mass-map reconstruction methodologies.

Reconstructing mass-maps from shear observations requires solving an (often
seriously) ill-posed inverse problem (see section 4.2.4). Many approaches to solving
this lensing inverse problem have been developed (e.g. Kaiser and Squires, 1993;
VanderPlas et al., 2011; Lanusse et al., 2016; Chang et al., 2018; Jeffrey et al., 2018;
Wallis et al., 2021), with the industry standard being Kaiser-Squires (KS; Kaiser
and Squires, 1993). Although these approaches often produce reliable convergence
estimators, they lack principled statistical approaches to uncertainty quantification
and often assume Gaussianity during the reconstruction process, or post-process by
Gaussian smoothing, which is sub-optimal when one wishes to analyze small-scale
non-Gaussian structure. Most methods refrain from quantifying uncertainties in
reconstructions, but those that do often do so by assuming Gaussian priors and
adopting Markov-chain Monte-Carlo (MCMC) techniques (see e.g. Corless et al.,
2009; Schneider et al., 2015; Alsing et al., 2016) — see section 3.2.1 for further
discussion. The computational cost of MCMC approaches is typically excessive.
Recent developments in probability concentration theory have led to advancements

in fast approximate uncertainty quantification techniques (Pereyra, 2017; Cai et al.,
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2018a,b), which will be leveraged throughout this chapter (see section 3.2.3).

The structure of this chapter is as follows. In section 5.2 we provide the details of
our algorithm, as well as some updates to super-resolution image recovery. In section
5.3 we present the uncertainty quantification techniques, both mathematically and
mechanistically. In sections 5.4 and 5.5 we apply both our reconstruction algorithm
and the uncertainty quantification techniques to the aforementioned datasets and
analyze the results. Finally, in section 5.6 we draw conclusions from this work
and propose future avenues of research. Section 5.2 relies on a moderate level of
understanding in the fields of proximal calculus and compressed sensing. For the
reader solely interested in practical application of these techniques we recommend

sections 5.4 onwards.

5.2 Sparse convergence estimators

Several alternate approaches for solving the inverse problem between convergence k
and shear v which do not assume or impose Gaussianity have been proposed, some of
which are based on the concept of wavelets and sparsity (Pires et al., 2009; Jullo et al.,
2014; Lanusse et al., 2016; Peel et al., 2017a). We propose a mass-mapping algorithm
that relies on sparsity in a given wavelet dictionary (see sections 2.1.3 and 3.1.3).
Moreover, we formulate the problem such that we can exploit recent developments
in the theory of probability concentration, which have been developed further to
produce novel uncertainty quantification techniques (Pereyra, 2017). Crucially, this
allows us to recover principled statistical uncertainties on our MAP reconstructions
(as in Cai et al., 2018a,b) as will be discussed in detail in the following section.

As discussed in section 4.2.4, galaxies have an intrinsic ellipticity. To mitigate
the effect of intrinsic ellipticity we choose to project the ellipticity measurements
onto a grid and average. If we assume that galaxies have no preferential orientation
in the absence of lensing effects, then the average intrinsic ellipticity tends to zero.
This is a good approximation for the purposes of this discussion, but weak correlation
between the intrinsic alignments of galaxies has been observed (Troxel and Ishak,
2015; Piras et al., 2018).

5.2.1 Hierarchical Bayesian framework

Hierarchical Bayesian inference provides a rigorous mathematical framework through
which theoretically optimal solutions can be recovered. Moreover it allows one to
construct measures of the uncertainty on recovered point estimates. Look to chapter

3 for a detailed discussion, much of which will be assumed in the following analysis.
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As is common for hierarchical Bayesian models, we begin from Bayes’ theorem
for the posterior distribution,
p(y|r)p(x)

P = T b Tmln)an ol

where p(7y|k) is the likelihood function representing data fidelity, N is the dimension-
ality of k and p(k) is a prior on the statistical nature of k. The denominator is called
the Bayesian evidence which is constant and so can be dropped for our purposes.
Typically the Bayesian evidence is used for model comparison (see e.g. Robert, 2001;
Sivia and Skilling, 2006), which we will not be considering within the context of this
discussion. Given Bayes’ theorem, and the monotonicity of the logarithm function,

we can easily show that the maximum posterior solution is defined by,

argmax [p(sl)| = argmin | ~log(p(s}) )], (5:2)

KkeECN KeECN
as discussed in section 3.2.2. This step is crucial, as it allows us to solve the more
straightforward problem of minimizing the log-posterior rather than maximizing the
full posterior. Conveniently, in most physical situations the operators associated
with the log-posterior are convex. Drawing from the field of convex optimisation, the
optimal solution for the posterior can be recovered extremely quickly — even in high

dimensional settings.

5.2.2 Sparsity and inverse problems
Let v € CM be the discretized complex shear field extracted from an underlying
discretized convergence field x € C by a measurement operator ® € CM*N : i 1 .

In the planar setting ® can be modeled by,
® = MF~!DF. (5.3)

Here F is the discrete fast Fourier transform (FFT), F~! is the inverse discrete fast
Fourier transform (IFFT), M is a standard masking operator, and D is a diagonal
matrix applying the scaling of the forward model in Fourier space as defined in
equation (4.41). In the case of independent and identically distributed i.i.d. Gaussian

noise, measurement of v will be contaminated such that:
7:¢/§+N(070—i2)7 (54)

where N (0,02) € CM is additive i.i.d. Gaussian noise of variance o2 for pixel i. Often
in weak gravitational lensing experiments the total number of binned measurements
is less than the number of pixels to be recovered, M < N, and the inverse problem

becomes ill-posed (see section 2.1.2).
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Likelihood function

In such a setting the Bayesian likelihood function (data fidelity term) is given by
the product of Gaussian likelihoods defined on each pixel with pixel noise variance
o2, which is to say an overall multivariate Gaussian likelihood of known covariance
Y = diag(0?,03,...,02;) € RM*M_ Let ®;x be the value of ®x at pixel i, then the

overall likelihood is then defined as,

ocHexp( (@it — % ) Hexp( <<I>/£ 71>2>:exp<w>a
2

(5.5)
where |||, is the f3-norm and ¢ = S72¢ is a composition of the measurement
operator and an inverse covariance weighting. Effectively this covariance weighting
leads to measurements v = E_%’y which whiten the typically non-uniform noise
variance in the observational data . This likelihood function allows one to map
from the number count of observations per pixel to a corresponding noise variance
(assuming an intrinsic ellipticity dispersion of ~ 0.37), from which the noise (under a
central limit theory argument of Gaussianity) may be correctly incorporated into
the reconstruction. In practice this requires only the number density of observations

per pixel, which is trivially inferred from raw observational data catalogues.

Prior function

To regularise this inverse problem, we then define a sparsity promoting Laplace-type

prior:
() o< exp (= Winl), ), (5:6)

where W is an appropriately selected wavelet dictionary, and u € R+ is a regularisation
parameter — effectively a weighting between likelihood and prior, as discussed in
section 2.2.3. Note that one may choose any convex log-prior within this formalism
e.g. an fo-norm prior from which one essentially recovers Wiener filtering (see
Padmanabhan et al., 2003; Horowitz et al., 2019, for alternate iterative Wiener
filtering approaches). From equations (9.1) and (5.2) the unconstrained optimisation

problem which minimises the log-posterior is,

q_) 12
K™ = argmin ,uH\IJT/<cH1+HFLify||2
KkeCN 2

Objective function

, (5.7)

where the bracketed term is called the objective function. To solve this convex optimi-
sation problem we adopt a forward-backward splitting algorithm (e.g. Combettes and
Pesquet, 2011). A full description of this algorithm applied in the current context is
outlined in Cai et al. (2018b).
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Proximal iterations

Let f(k) = u||WTk|, denote our prior term, and g(k) = ||®x —~||3/2 denote our data

fidelity term. Then our optimisation problem can be re-written compactly as,

map _ argcn]in {f(m) —|—ug(n)}. (5.8)

The forward-backward iteration step is then defined to be,
KU = PIOX,,(i) ¢ (m(i) - M(i)Vg(/i(i))> ) (5.9)

for iteration i, with gradient Vg(x) = &)T(CDH —7). If the wavelet dictionary WV is a
tight frame (i.e. WTW =1) the proximity operator is given by,

prox,¢(z) =z +WV (softu,\(\lﬁz) — \UTz), (5.10)

where soft,(2) is the point-wise soft-thresholding operator derived in section 2.2.4,
and \ is a parameter related to the step-size (which is in turn related to the Lipschitz
differentiability of the log-prior) which should be set according to Cai et al. (2018b).
The iterative algorithm is given explicitly in the primary iterations of algorithm 2.
Adaptations for frames which are not tight can be found in Cai et al. (2018b) and

are readily available within our framework.

Our algorithm has distinct similarities to the GLIMPSE algorithm presented
by Lanusse et al. (2016), but crucially differs in several aspects. Most importantly
we formulate the problem in a hierarchical Bayesian framework which allows us to
recover principled statistical uncertainties. In addition to this we include Bayesian
inference of the regularisation parameter, a robust estimate of the noise-level (which
can be folded into the hierarchical model), and we use super-resolution operators

instead of non-discrete fast Fourier transforms.

5.2.3 Reduced shear

Due to a degeneracy between v and & the true observable quantity is in fact the reduced
shear g =~[1— k]~ (Bartelmann and Schneider, 2001). Deep in the weak lensing
regime one can safely approximate v~ g < 1 which ensures that the optimisation
problem remains linear. However, when reconstructing regions close to massive
structures (galaxy clusters) this approximation is no longer strictly valid and we
must unravel this additional factor. We adopt the procedure outlined in Wallis et al.
(2021), which is more comprehensively discussed in Mediavilla et al., pg 153. We find

that these corrections typically converge after ~ 5-10 iterations.

86



CHAPTER 5. HYPOTHESIS TESTING OF DARK MATTER

5.2.4 Regularisation parameter selection

One key issue of sparsity-based reconstruction methods is the selection of the regu-
larisation parameter u. Several methods have arisen (Paykari et al., 2014; Lanusse
et al., 2016; Peel et al., 2017a; Jeffrey et al., 2018) for selecting p, though often the
regularisation parameter is chosen somewhat arbitrarily — as the integrity of the
MAP solution is assumed to be weakly dependent on the choice of u. However, to
extract principled statistical uncertainties on the recovered images, one must select

this parameter in a principled statistical manner.

We apply the hierarchical Bayesian formalism developed by Pereyra et al. (2015)
— the details of which are elegantly presented by the authors, though we will outline
roughly the underlying argument here. First define a sufficient statistic f to be
k-homogeneous if 3 k € Rwq such that f(nz) =n*f(x), Yz € RN, ¥y > 0. All norms,
composite norms and composition of norms with linear operators are 1-homogeneous
— and so our /1-norm is 1-homogeneous. If a sufficient statistic f is k-homogeneous,
then the normalization factor C(u) of p(k|u) is given by (proposition 3.1 of Pereyra
et al., 2015),
Clp)=Ap™w, (5.11)

where A is a constant independent of u. The proposed Bayesian inference model
then implements a gamma-type hyper-prior, which is a typical hyper-prior for scale-
parameters N

o) = P My (0 (512
where without loss of generality o = 5 = 1. The result is effectively insensitive to their
value, e.g. in numerical experiments values of «, 3 € [1072,10°] produced essentially

no difference in p.

Now, let us extend the inference problem of the log-posterior to the case where
w1 is an additionally unknown parameter. In this context we compute the joint MAP

estimator (k™3P ;MaP) € CV x R+ which maximizes p(#, |y) such that,

ON+1 € O plogp(k™P, p™Ply), (5.13)

where 0; is the i-dimensional null vector and 9sh(s’) is the set of sub-gradients of

function h(s) at s’. This in turn implies both that,
= 0y € Ok logp(k™*P, ™) and = 0 € 0y logp(k™P, ™*P|y).  (5.14)

From equation (5.14 - LHS) we recover the optimisation problem with known regu-
larisation parameter p given in equation (5.7). However, from equations (5.11, 5.12,

5.14 - RHS) it follows that the MAP regularisation parameter p is given by (Pereyra

87



CHAPTER 5. HYPOTHESIS TESTING OF DARK MATTER

et al., 2015),
N
Mmap _ _k +a—1
f(rmap) 4+ 37

where we recall that N is the total dimension of our convergence space.

(5.15)

It is precisely this optimal p value which we wish to use in our hierarchical
Bayesian model. Hereafter we drop the map superscript from p for clarity. To
calculate p we perform preliminary iterations found in algorithm 2. Typically we find
that these preliminary iterations take ~ 5-10 iterations to converge, and recover close
to optimal parameter selection for a range of test cases. Note that, in this case the
optimal selection of u is that which maximizes the SNR of a recovered image. Another
factor which can influence the quality of reconstructions is the selection of wavelet
dictionary. In this chapter we consider Daubechies (8 levels) and SARA dictionaries
(Carrillo et al., 2012, 2013), though a wide variety of wavelet dictionaries exists, see
e.g. starlets (Starck et al., 2010). The 8-level SARA dictionary is a combination of
the Dirac and Daubechies 1 to 8 wavelet dictionaries. It is important to note that
we use the SARA dictionary, not the complete SARA scheme (Carrillo et al., 2012,

2013), which involves an iterative re-weighting scheme that is not considered here.
Algorithm 2 Forward-backward analysis
Input: v € CM, kO e CN, ), p0 =i=t=0, Ti2 € Ry
Output: k™ ¢ CV, e Ry
Precomputation:
Do:
1: k) « argmin, [f(m) —i—u(t)g(ﬁ)},
2: ) [(N/k) +a—1)/[f(xD)+ 8],
3 t—t+1,
4: On convergence, 1 becomes fixed.
Until: Iteration limit reached.
Primary Iterations:

Do:
1 oD 0 - /\&DT(JM@ -7),
2: m < Wiplitl)
3: kD p D LW (softy (1) —n),
4: g —i+1.

Until: Stopping criterion satisfied.
£ —k D], obj(r (") —obj(x("T1))
oy, < Tiand Ty < T

i.e.

5.2.5 Super-resolution image recovery

Gridding of weak lensing data is advantageous in that it can provide a good under-
standing of the noise properties — a necessary feature for principled uncertainty
quantification. However, an inherent drawback of projecting data into a grid is the
possibility of creating an incomplete space due to low sampling density — often referred
to as masking. Decomposition of spin signals on bounded manifolds is inherently

degenerate (Bunn et al., 2003); specifically the orthogonality of eigenfunctions is

88



CHAPTER 5. HYPOTHESIS TESTING OF DARK MATTER

locally lost at the manifold boundaries, leading to signal leakage between Fourier (or,
on the sphere, harmonic) modes. One approach to mitigate this problem is to avoid
the necessity of gridding by substituting a non-uniform discrete Fourier transform
(NFFT) into the RHS of equation (9.4) as presented by Lanusse et al. (2016). A
downside of this NFFT approach is that the noise is more difficult to handle, leading
to complications when considering uncertainty quantification. Another approach is
to perform super-resolution image recovery.

Suppose the dimension of our gridded measurement space is M, as before, and
the desired dimension of our solution space is N/, where N’ > N. In this setting we
have shear measurements v € CM and recovered convergence x € CV ". Let us now

define a super-resolution (subscript SR) measurement operator to be,
dsp =MF,' DZFy,, (5.16)

where Fy, is a high resolution (dimension N’) fast Fourier transform, Z € CNV>*V’
is a Fourier space down-sampling which maps &’ € CV" on to & € CV, where tilde
represents Fourier coefficients, D is the planar forward model given by equation (4.41),
and M is a standard masking operator. Finally, F; !'is a low resolution (dimension
M) inverse fast Fourier transform. For completeness the super-resolution adjoint

measurement operator is given by,
bl =y Z1 DIy M, (5.17)

where MT is adjoint masking (gridding), D' is the adjoint of D (which is self-adjoint
hence Df = D), and Zt e CM'*XM ig zero padding in Fourier space which acts by
mapping 7 € CM to 4 ¢ CM’. Note that when considering the KS estimate in
the super-resolution setting a rescaling function to account for the different Fourier
normalization factors must be introduced (which we absorb into the Fourier operators).
As before, this super-resolution measurement operator is concatenated with the
inverse covariance weighting to form an analogous composite operator ®gg which is
used throughout the following analysis.

Conceptually super-resolution allows partial inpainting of higher resolution
Fourier modes. In this way one is able to recover high resolution structure for images
from comparatively low resolution datasets. Such high resolution structure is of
course dependent on the prior information injected when solving the inverse problem.
Interestingly this raises another consideration: in scenarios where the pixel-level
observation count is very low the noise level dilutes high frequency components
and can limit the efficacy of reconstruction algorithms. In such a setting gridding
observational data onto a lower resolution map, with inherently lower pixel-level noise,
and performing a super-resolution reconstruction can recover far better estimates of

the high frequency modes, and thus often recovers greater reconstruction fidelity.
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5.3 Bayesian hypothesis testing

Extending the concept of HPD credible regions
outlined in chapter 3, one can perform knock-out Colltiftoy (5
Remove feature Z
hypothesis testing of the posterior to determine
o sgt
the physicality of recovered structure (Cai et al., e

2018b). To perform such tests one first creates ‘ Caleulate: € = £(5%) + g(+%")

a surrogate image ~*8' by masking a feature of i
interest Qp C € in the MAP estimator x™?P. It Yes + £<é % No

is then sufficient to check if ;

F(r%8) 4+ g(k%") < €l,. (5.18)

Figure 5.1: Schematic of hypothesis
If this inequality holds, we interpret that the testing. The feature Z is entirely gen-
eral and can be constructed by any
well defined operator on the MAP
strong statistical statement can be made. Should selution x™2P.

physicality of Q2p is undetermined and so no

8! be larger than €/, then it no longer belongs

the objective function evaluated at x
to the approximate credible set C/, and therefore (as €, is conservative) it cannot
belong to the HPD credible set C,,. Therefore, for £%" which do not satisfy the above
inequality we determine the structure Qp to be strictly physical at 100(1 — )%

confidence level. A schematic of hypothesis testing is provided in Figure 5.1.

In pixel-space we begin by masking out a feature of interest, creating a rough
surrogate image — setting the pixels associated with a selected structure to 0 — this
rough surrogate is then passed through an appropriate wavelet filter A as part of
segmentation-inpainting to replace generic background structure into the masked
region. Mathematically, this amounts to the iterations,

(5.19)

Rl set — K"%lg 0, + ATsofty, (Aﬁ(i)’sgt)HQD,

where (1p C Q is the sub-set of masked pixels, Io_q,, is the set indicator function
and \; is a thresholding parameter which should be chosen appropriately for the

image.

A second straightforward method for generating surrogate images is to blur local
pixel substructure into one collective structure — in a process called segmentation-
smoothing. This approach provides a simple way to determine if the substructure in
a given region is physical or likely to be an artifact of the reconstruction process. For
example, if several massive peaks are located near one another, one can blur these
structures into a single cohesive peak. This would be useful when considering peak
statistics on convergence maps — which is often used to constrain the cosmological
parameters associated with dark matter. One can conduct such blurring of structure

by: specifying a a subset of the reconstructed pixels Qp C 2; convolving «™*P with
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a Gaussian smoothing kernel; and replacing pixels that belong to p with their

smoothed counterparts. This can be displayed algorithmically as,
K8 = RmapHQ/QD + (Kmap * g(ov X))]IQD7 (520)

where G(0, x) is a chosen Gaussian smoothing kernel and * is a trivially extended 2D
version of the usual 1D Fourier convolution operator,

In the scope of this chapter we focus primarily on pixel-space features, but it
is important to stress that the knock-out approach is entirely general and can be
applied to any well defined feature of a MAP estimator — 4.e. masking certain

Fourier space features, removal of global small scale structure etc.

5.4 Illustration on simulations

We now consider a selection of realistic simulations to illustrate our sparse reconstruc-
tion method on cluster scales which are particularly challenging for a variety of factors.
Further to this, we showcase the aforementioned uncertainty quantification methods
in a variety of idealised cluster scale MAP reconstructions. We place emphasis on

uncertainty quantification rather that the reconstruction fidelity.

Datasets

In this section we focus primarily on 4 large clusters (those with significant friends-of-
friends, 7.e. significant substructure) extracted from the Bolshoi N-body simulation
(Klypin et al., 2011). On the cluster scale we showcase our formalism on a variety
of Bolshoi N-body simulation data sets. The Bolshoi N-body cluster simulation
catalogs we work with in this section are those used in Lanusse et al. (2016), which
were extracted using the CosmoSim web tool!. Construction of these weak lensing
realizations assumed a redshift of 0.3, with a 10 x 10 arcmin? field of view, and have
convergence normalized with respect to lensing sources at infinity. Explicitly this
results in pixel-dimensions of ~ 2.5 arcseconds. Due to the relatively low particle
density, these images were subsequently de-noised by a multi-scale Poisson de-noising

algorithm.

Method

Typically, we begin by creating an artificial shear field 4 € CM from a known ground-
truth convergence field k, that is extracted from a given dataset. This is a common
approach in the imaging community and presents a closed scenario in which the
true input is known. These 4 fields are created by 4 = ®x +N(0,02) where o, i.e.
the noise covariance, is determined entirely from a pre-defined number density of
observations ng, per arcminute?, an assumed intrinsic ellipticity dispersion of 0.37,

and the resolution of the images (in this case 10 x 10 arcminutes). In this way the

Mhttps://www.cosmosim.org
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noise can be tuned to directly mimic that present in practical settings. Using the
simulated noise covariance (which in practice would be provided by the observation
team) we then utilise the SOPT? framework to perform our reconstruction algorithm
on 4 such that we recover a MAP estimator of the convergence k™. From this
reconstructed convergence field a recovered SNR is computed and a selection of
hypothesis tests are conducted to showcase the power of this formalism. In the case
where the underlying clean 7 are unavailable (i.e. application to A520 data) we
conduct the same analysis as before but instead of creating artificial noisy 4 maps
we used the real noisy observational data.
Throughout our analysis the recovered SNR (dB) is defined to be,

[[# = Rmap

SNR = 20 x log;, (”“”2> (5.21)

when the ground-truth convergence is known. Furthermore we quantify the topological
similarity between the true convergence and the estimator via the Pearson correlation

coefficient which is defined to be

iy [P (6) — F™P)[k(i) — &)

i=

SN (i) — e S (n(i) — AP

, (5.22)

where Z = (z). The correlation coefficient r € [—1, 1] quantifies the structural similarity
between two datasets: 1 indicates maximal positive correlation, 0 indicates no

correlation, and -1 indicates maximal negative correlation.

5.4.1 Bolshoi cluster catalogs

The Bolshoi cluster data used consists of 4 large clusters extracted from the Bolshoi
N-body simulation (Klypin et al., 2011; Lanusse et al., 2016). These images were
then multi-scale Poisson de-noised to create suitable ground truth simulations. We
choose to analyze the same clusters considered in Lanusse et al. (2016), as they
showcase a wide variety of structure on all scales. Hereafter, we restrict ourselves to
the SARA dictionary (Carrillo et al., 2012) truncated at the 4" Daubechies wavelet
(DB4) for simplicity — 4.e. the combination of the Dirac, and DB1 to DB4 wavelet
dictionaries only.

To investigate the SNR, gain of our formalism over KS in the cluster scale setting,
we created realizations of noisy pseudo-shear maps for assumed number density
of galaxy observations ng, € [500,100,30,10] from one Bolshoi cluster map, upon
which we applied our reconstruction algorithm pipeline, the results of which are
presented in Table 5.1. It should be noted that for comparison’s sake the KS estimate
without convolution with a Gaussian smoothing kernel is provided in addition to an

optimally smoothed KS estimator. This has been done to highlight the difference

ZA highly optimised sparse optimisation solver, https://github.com/astro-informatics/SOPT
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in reconstruction fidelity between the raw KS estimator and the KS estimator after
post-processing (Gaussian smoothing), a discrepancy often not addressed by the
community. As this post-processing convolution is known to degrade the quality of
non-Gaussian information (which cosmologists are becoming increasingly interested
in) such plots demonstrate the trade-off between non-Gaussian information and
reconstruction fidelity. As can be seen in Figure 5.2 and Table 5.1, sparse approaches
significantly outperform the smoothed (and non-smoothed) KS approach in all cases,
over all metrics tracked. Importantly sparse approaches are able to recover reasonable
results even when the noise level entirely dilutes the true signal, as in the ng, = 10
setting, making such approaches on (at least) cluster data very attractive for future

studies.

Input KS KS Sparse | Difference
Ngal Smooth

SNR (dB)
500 | 2917 | 6.276 | 27.506 | -+ 21.230
100 | -4.497 | 5774 | 21.955 | + 16.181
30 | -10.400 | 5340 | 21.462 | + 16.122
10 | -15.970 | 5.041 | 14.409 | + 9.368

Pearson Correlation
500 0.166 0.902 0.977 + 0.075
100 0.076 0.796 0.970 + 0.174
30 0.039 0.689 0.955 + 0.266
10 0.029 0.716 0.949 + 0.233

Table 5.1: Contains both reconstruction SNR and Pearson correlation coefficient (topological
correlation) metrics for the raw KS (no smoothing), an optimally smoothed KS (grid search
for smoothing kernel which maximizes the recovered SNR), and our sparse reconstructions
of the Bolshoi-3 cluster simulated with realistic noise derived from the presented number
density of galaxy observations nga1. The difference column is calculated as the difference
between the Sparse and smoothed KS recovered SNR, given in log-space.

93



CHAPTER 5. HYPOTHESIS TESTING OF DARK MATTER

Ground Truth &

E——
S o o o
[\ 5N D co

o=
S
10
—_
&
SNR = 27.506 dB
£ Pearmsison = 0.977
o
(e}
™
—_
®
o0
< SNR = 21.955 dB
Pearmsiston = 0.970
o
(e
—_
«®
o0
<
SNR =21 462 dB
Prarrataton = 0.955
o
™
—_
®
o0
<

SNR =14.409 dB
Pearrmizton = 0.949

Smooth KS Sparse

Figure 5.2: Top to bottom: Ground truth convergence map, simulations with noise levels
corresponding to nga1 € [500,100,30,10] respectively. Notice the clear effectiveness of sparse
reconstruction over the standard KS method for a range of input SNR values. The numerical
details can be found in Table 5.1. The vertical labels indicate the input ng, used to simulate
realistic noise for a given row, whereas horizontal labels indicate the reconstruction type.
An optimal (grid searched to maximise the recovered SNR) Gaussian smoothing kernel was
applied to the KS recovery to yield the KS (smooth) recovery in an attempt to remove noise
from the KS estimator (obviously this is not possible in practice, where the ground truth is
unknown: results shown therefore present the best possible performance for the smoothed KS
estimator). Clearly, in all cases, the super-resolution sparse approach produces convergence
maps which are far more representative of the ground truth across the aforementioned
metrics.

94



CHAPTER 5. HYPOTHESIS TESTING OF DARK MATTER

Hypothesis Testing: Bolshoi Clusters

Perhaps more interestingly, we now perform a series of hypothesis tests as discussed
in Section 5.3. For each of the remaining 3 Bolshoi cluster we construct three
possible example hypothesis tests which one may wish to perform. In this case
these hypotheses were either: structure removal followed by segmentation-inpainting;
or Gaussian smoothing of certain structures (i.e. smoothing multiple peaks into a
single larger peak which may be of interest when conducting peak-count analysis).
Though these are both extremely useful considerations, it is important to stress the
generality of our approach such that any well defined operation on the reconstructed
image, with a clear understandable hypothesis, is applicable. To ensure the mindset
behind hypothesis testing is clear, we will walk through a typical application. The
top row of Figure 5.3 displays the hypothesis tests applied to the first Bolshoi cluster.
Conceptually, the correct way to interpret Hypothesis 1 (H1, red) is:

“The central dark core is likely just an artifact of the reconstruction.”

This structure is then removed from the image by segmentation-inpainting (lower
left image), and the objective function is then recalculated. It is found that the
objective function is now larger than the approximate level-set threshold 6/99%, the
surrogate segmentation-inpainted image falls outside of the 99% HPD credible region,
and so the hypothesis is rejected. This implies that the structure is not simply an
artifact, but is necessary to the integrity of the reconstruction, i.e. this structure
is now determined to be physical at 99% confidence. However, had removing this
region not raised the objective function above egg% , then the conclusion is that there
is insufficient evidence to reject the hypothesis (which is not equivalent to saying
that the region is strictly not physical).

An identical thought process can be applied to H2 and H3 of the top row in
Figure 5.3, H4 in the second row of Figure 5.3, and all three hypothesis tests H7-9
presented in the final row. In each case a substructure of the £k™2P is removed via
segmentation-inpainting and it is queried whether the resulting surrogate solution
k58" € C! . Each of the large substructures H7-9 on the final row, and H4 of the second
row, are determined to be physical at 99% confidence. Conversely, the comparatively
smaller substructures considered in H2 and H3 of the top row do not saturate the
level-set threshold, and are therefore undetermined. All numerical data related to
hypothesis testing of the Bolshoi cluster reconstructions can be found in Table 5.2.

H5 and H6 of the middle row of Figure 5.3 have a slightly different interpretation.
In these cases the central region has been blurred by segmentation-smoothing (con-
volution with a Gaussian smoothing kernel) — the difference between these two cases
being simply the degree of smoothing. Here the hypothesis is: ‘The central region

is likely to be just a single peak, rather than two’. As in the previous example, the
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Test Initial Threshold Surrogate Reject
f(r)+9(k) €99% f(r#) +g(k") | Ho?

Bolshoi-1

H1 95426 163408 805513 v

H2 95426 163408 134080 X

H3 95426 163408 100582 X
Bolshoi-2

H4 97121 165103 824260 v

H5 97121 165103 221492 v

H6 97121 165103 366981 v
Bolshoi-3

H7 83419 151401 369939 v

HS8 83419 151401 234305 v

H9 83419 151401 314089 v

Table 5.2: Displays the MAP objective function, level-set threshold at 99% confidence,
surrogate objective function and whether the removed region was successfully identified
as being physical. This data-set corresponds to Figure 5.3, the caption of which provides
detailed descriptions of each hypothesis test.

objective function is recalculated and is now greater than egg% and so the hypothesis
is rejected. The natural conclusion is thus that the data is sufficient to determine

that at least two peaks are physically present at 99% confidence.

5.5 Application to Abel-520 observational catalogs

We perform an application of our entire reconstruction pipeline to real observational
datasets. We select two observational datasets of the A520 cluster (Clowe et al.,
2012; Jee et al., 2014) — hereafter for brevity we refer to them as C12 and J14 (as in
Peel et al., 2017a)3. For a full description of the datasets, how they were constructed,
and how they account for different systematics we recommend the reader look to
the respective papers. These initial investigations claim to have detected several
over-dense regions within the merging A520 system, the most peculiar of which
was a so called ‘dark core’ (location 2 in Figure 5.4) for which multi-wavelength
observations could not determine an optical counterpart. Such a dark core would
provide a contradiction to the currently understood model of collisionless dark matter
— the idea being that during the collision of two massive clusters, dark matter was
stripped from each cluster through self-interactions, forming an over-dense residual
between the two clusters, which would naturally not exhibit an optical counterpart.

The J14 catalog contains approximately twice the number of galaxies than that
of C12, though both are derived from the same ACS (four pointings) and Magellan
images. In addition, J14 combines these images with the CFHT catalog used in the
author’s previous work (Jee et al., 2012). The C12 observing area extends over a
larger angular surface than the J14 so for this analysis we limit both datasets to

the region spanned by both sets. Due to the number density of measurements being

3http ://wuw.cosmostat .org/software/glimpse
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’ ’
H1 H2 H3
HA4

Figure 5.3: General: Hypothesis testing of three selected structures in the Bolshoi-1 cluster
convergence field. The number density of galaxy observations ng, was set idealistically to
500 arcminute ™2 simply for demonstration purposes. Additionally super-resolution was not
active and the masking was trivially set to the identity, again to simplify the example for
demonstration purposes. All numerical details can be found in Table 5.2. Top row: We
correctly determine that region 1 (red) is physical with 99% confidence. Regions 2 (blue) and
3 (green) remain within the HPD region and are therefore inconclusive, given the data and
noise level. Middle row: We correctly determine that all three null hypotheses (red, blue
and green) are rejected at 99% confidence. In H4 the conclusion is that the left hand peak
was statistically significant. In H5 and H6 the conclusions is that an image with the two
peaks merged is unacceptable, and therefore the peaks may be considered distinct at 99%
confidence. Bottom row: We correctly determine that all three hypothesis regions H7-9
(red, blue and green) Qp are physical with 99% confidence.

very low we are forced to project the measurements into a 32 x 32 grid — to ensure
that the average number of galaxies in each grid pixel is at least above 1, though
ideally we want many galaxies in each pixel to minimise the noise contribution from
intrinsic ellipticity. In fact, even at this resolution, the space is incomplete in several
pixels, but we draw a compromise between the completeness of the space and the
resolution of the data. The data covariance was constructed directly from the number
density of observations per pixel (directly inferred during catalogue gridding), with
an assumed intrinsic ellipticity dispersion of 0.37. Combining this data covariance,
the associated gridded datasets, and the associated mask, MAP reconstructions of
the C12 and J14 convergence maps were recovered at a super-resolution magnification

of 8. Reconstructions are presented in Figure 5.4.
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5.5.1 Hypothesis testing of local structure: A520 datasets

We conducted hypothesis tests on the three primary over-dense regions, in addition
to the contested dark core, in both the C12 and J14 datasets. In the absence of
an optical counterpart, detection at high confidence of the dark core (location 2 in
Figure 5.4) would provide a contradiction to the collisionless model of dark matter
— indicating potential self-interaction of dark matter. Due to the high estimated
noise-level present in the data, and the limited data resolution, only the two largest
peaks in both datasets (peaks 1 and 3 of Figure 5.4) sufficiently raised the objective
function to reject the hypothesis at any meaningful confidence. This is to say that;
given the limited, noisy data and using the measurement operator and prior (¢1-term)
presented in this chapter we can say that the data is insufficient to statistically
determine the physicality of local small scale substructure (such as the dark core)
in both the C12 and J14 datasets. The initial conflict between C12 and J14 was

Figure 5.4: Left to Right: Super-resolution sparse Bayesian reconstruction of [C12] and
[J14] respectively. In a Bayesian manner it is found that the two datasets do not globally
disagree at 99% confidence. However, given the data resolution and noise-levels, only peaks 1
and 3 (in both datasets) could be determined to be statistically significant. This is not to
say they do not exist, but implies that the data quantity and quality is insufficient to make
a robust, principled statistical statement which could be used as evidence of their existence.
The contested peak 2 is not detected at any reasonable confidence in either dataset.

over the existence and position of a dark core (location 2 in Figure 5.4), with a
notably large mass-to-light ratio, which indicated the possibility of self-interacting
dark matter. A subsequent inquiry was conducted (Peel et al., 2017a) using the
GLIMPSE reconstruction algorithm (Lanusse et al., 2016) and concluded that this
peculiar peak existed in the J14 dataset but not in the C12 dataset. As such, our
conclusions agree well with Peel et al. (and generally with those drawn in both C12
and J14). However, within our Bayesian hierarchical formalism (which constitutes
a principled statistical framework) we push this conclusion further to say that the

data are insufficient to determine the physicality of these peaks.
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5.5.2 Hypothesis testing of global structure: A520 datasets

Interestingly we can perform a final novel hypothesis test of global structure. This
hypothesis is as follows: ‘The two MAP estimates are consistent with both sets of
data’, i.e. the MAP convergence estimate recovered from the J14 (C12) data is
within the credible-set (at 99% confidence) of the C12 (J14) objective function. We
find that the J14 (C12) MAP reconstruction is an acceptable solution to the C12
(J14) inverse problem and so the MAP solutions do not disagree — numerically this
is shown in Table 5.3. Given the inherent limitations of the data we are forced to
conclude:

“The data are insufficient to determine the existence of individual substructures

at high confidence — though the two largest over-dense regions are found to be

globally physical at 99% confidence. The two maximum a posteriori estimates

are also found to be consistent at 99% confidence.”

Hypothesis Initial Threshold Surrogate Reject
Test f(k)+g(k) €99% f(r%8Y) +g(x%8%) | Hg?

Cl2 & J14 99231 168044 125601 X

J14 & C12 98943 167243 134391 X

Table 5.3: Displays the MAP objective function, level-set threshold at 99% confidence,
surrogate objective function and whether the null hypothesis Hy is rejected. As can be
seen, both MAP solutions fail to reject the null hypothesis in the other’s objective function.
This leads us to conclude that the two datasets do not disagree at 99% confidence. Further
discussion akin to the Kullback-Leibler divergence (see e.g. Kullback, 1997) of the two
posteriors is beyond the scope of the current discussion, but perhaps of interest in future
work.

5.6 Summary

We have presented a sparse hierarchical Bayesian mass-mapping algorithm which
provides a principled statistical framework through which, for the first time, we can
conduct uncertainty quantification on recovered convergence maps without relying
on any assumptions of Gaussianity. Moreover, the presented formalism draws on
ideas from convex optimisation (rather than MCMC techniques) which makes it
notably fast and allows it to scale well to big data, i.e. high resolution and wide-field
convergence reconstructions (which will be essential for future stage IV surveys, such
as LSST and Euclid). Additionally, we demonstrate a hierarchical Bayesian inference
approach to automatically approximate the regularisation parameter, and show that
it produces near optimal results in a variety of cases. We however note that this
approach does not work generally, and can be unstable in extreme settings.

We showcase our Bayesian inference approach (with emphasis on the application
of the uncertainty quantification techniques) on both simulation datasets and obser-
vational data (the A520 merging cluster dataset). Our mass-mapping formalism is
shown to produce significantly more accurate convergence reconstruction than the

Kaiser-Squires estimator on all simulations considered. Hypothesis tests of substruc-
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ture are demonstrated. It is found that neither of the two A520 datasets considered
could provide sufficient evidence to determine the physicality of any contested sub-
structure (7.e. the existence of so called ‘dark cores’) at significant confidence. It is
informative to note that our methods were, in fact, sufficiently sensitive to detect
the largest peaks in both datasets at 99% confidence. Nonetheless, global hypothesis
tests indicate a good agreement between the two sets of data. These conclusions are
roughly in agreement with those drawn previously but go further to demonstrate
just how uncertain these types of cluster-scale weak lensing reconstruction inherently
are (typically as a limitation of the relative information content of low-resolution,

noisy datasets).
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Chapter 6

Local credible intervals

This chapter is based on research presented in M. A. Price, X. Cai, J. D.
McFEwen, M. Pereyra, T. D. Kitching, and LSST Dark Energy Science
Collaboration, “Sparse Bayesian mass mapping with uncertainties: local credible
intervals”, Monthly Notices of the Royal Astronomical Society, vol. 492, no. 1,
pp. 394-404, Dec. 2019.

Price et al. (2019a)

Note: This chapter assumes knowledge of the following. Sparse Bayesian
convergence estimators, as presented in chapter 5 — in particular we will adopt
the MAP estimators of section 5.2. Proximal analysis, discussed at length in
sections 2.2.4 and 3.2.1.

In this chapter we introduce a further uncertainty quantification technique called
local credible intervals (cf. pixel-level error bars). Both hypothesis testing and local
credible intervals were previously developed and applied to the radio interferometric
setting (Cai et al., 2018a,b). We also remark that there are alternative methods
through which one may test structural content of images (see e.g. Repetti et al.,
2019). This chapter serves as a benchmark comparison of the recently developed
sparse hierarchical Bayesian formalism (see Price et al., 2021a)! to a bespoke MCMC
algorithm, Px-MALA (Pereyra, 2016; Cai et al., 2018a,b; Durmus et al., 2018). This
comparison is grounded in the context of cosmic shearing signals, the primary topic
of this thesis. Px-MALA utilizes Moreau-Yoshida envelopes and proximity operators
(tools from convex analysis) to efficiently support non-differentiable terms in the
prior or likelihood, thus permitting non-smooth sparsity-promoting priors (on which
our sparse Bayesian mass-mapping framework is based) in high dimensional settings.

Full details pertaining to proximal sampling algorithms can be found in section 3.2.1.

6.1 Introduction

As photons from distant sources (galaxies) travel through space-time to us here their
trajectories are perturbed by local mass over and under-densities, causing the observed

shapes of structures to be warped, or gravitationally lensed. This cosmological effect

1See chapter 5
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is sensitive to all matter (both visible and invisible), and so provides a natural
cosmological probe of dark matter. On large scales the lensing information is
primarily Gaussian in nature, though on smaller scales (at higher resolutions) there
becomes a non-negligible non-Gaussian contribution which encodes information about
baryonic interactions and clustering amongst other non-linear effects. Analysis of such
effects is expected (Munshi et al., 2008) to provide competitive and more importantly
complementary constraints on cosmological parameters — in particular parameters
related closely to dark matter such as og and 25;. Consequently, mapping techniques
which preserve the non-Gaussian information content are a crucial step forward for

dark matter analysis via weak gravitational lensing.

In chapter 5 we discussed a new sparse hierarchical Bayesian formalism for
reconstructing the convergence field (Price et al., 2021a). This not only regularizes
the ill-posed inverse problem (see section 2.1.2) but allows us to explore the Bayesian
posterior in order to recover principled uncertainties on our reconstruction. It is
important to note here that this mathematical framework is entirely general and
can be applied for any posterior which belongs to the set of log-concave functions —
of which both sparsity enforcing Laplace type priors and standard Gaussian priors
are members. Often hierarchical Bayesian inference problems are solved by Markov
Chain Monte Carlo (MCMC) techniques (see e.g. Trotta, 2017), which explicitly
return a large number of samples from the full posterior distribution — from which
one can construct true Bayesian uncertainties. Samples of the posterior via MCMC
algorithms construct theoretically optimal estimates of the posterior (in the limit of a
large number of samples), but in practice can be extremely computationally taxing to
recover fully. In fact, when the dimensionality becomes large these methods become
unfeasible — often referred to as the curse of dimensionality. In the context of
lensing inverse problems each pixel constitutes a dimension, and so for a pixelisation
of 1024 x 1024 (which is typical) the dimension of the problem is O(10°).

Recent advancements in probability density theory (Robert, 2001) allow conser-
vative approximations of Bayesian credible regions of the posterior from knowledge
of the MAP solution alone (Pereyra, 2017). The sparse Bayesian method presented
in previous work (see Price et al., 2021a) recasts the maximisation of the posterior
distribution as a convex optimisation problem from which the mazimum a posteriori
(MAP) solution can be rapidly computed. Uncertainty quantification is then con-
ducted utilizing the aforementioned approximate credible regions of the posterior.
In Price et al. (2021a) hypothesis testing (determining the statistical significance
of a feature of the recovered convergence map) was introduced to the weak lensing

setting as a form of uncertainty quantification.

The remainder of this chapter is structured as follows. In section 6.2 we introduce
the concept of local credible intervals, an additional form of uncertainty quantification,

to the weak lensing setting. In section 6.3, we conduct a series of mock scenarios to
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compare the uncertainties recovered by our maximum a posteriori (MAP) approach,
and the full MCMC (Px-MALA) treatment. Finally we draw conclusions in section
6.4. For the reader interested only in the application and benchmarking section 6.3

onwards is relevant content.

6.2 Local credible intervals

Local credible intervals can be inter- " Calculate MAP
preted as error bars on individual pixels solution: k™aP
or super-pixel regions (collection of pix- ~Define: sma lsupcr_
els) of a reconstructed x map. This con- pixel ©;
cept can be applied to any method for N
which the HPD credible-region (and thus Caéczl?;ili‘?rige:
the approximate HPD credible-region) —%

Create Surrogate: ;¢ =

can be computed. Mathematically local <+ € < € + step-size
KM (T — (q,) + &Co,

credible intervals can be computed as i T

follows (Cai et al., 2018b). @ ,
N3 «  [TTTTTTTo '

Select a partition of the x domain No
+

) = U;; such that super-pixels Q; (e.g.

Max/Min: & =&
an 8 x 8 block of pixels) are indepen-

dent sub-sets of the x domain Q;N€; = Figure 6.1: Schematic of the process to con-
@,V {i# j}. Clearly, provided the super- struct local credible intervals. At each itera-
tive step the super-pixel region is uniformly

) ) i increased (decreased) by a step-size. Once the
can be of arbitrary dimension. We define Jevel-set threshold €/, is saturated the iteration

pixels ; completely tessellate Q they

indexing notation on the super-pixels €); is terminated.

via the index operator (g, which satisfy analogous relations to the standard set
indicator function, i.e. (o, =1 if the pixel of the convergence map x belongs to €2;
and 0 otherwise. For a given super-pixel region {2; we quantify the uncertainty by
finding the upper and lower bounds {;gi, £q, respectively, which raise the objective
function above the approximate level-set threshold €/, (or colloquially, ‘saturate the

HPD credible region C7,’). In a mathematical sense these bounds are defined by

€5, = max {£&|f(kie) +9(kig) < e}, (6.1)
¢ EeR>o

where k; ¢ = K™ (I—(q,) +£Co, is a surrogate solution where the super-pixel region
has been replaced by a uniform intensity £. We then construct the difference image
Zi(fgi —&g,) which represents the length of the local credible intervals (cf. error
bars) on given super-pixel regions at a confidence of 100(1 — a)%. In this section we
locate &% iteratively via bisection, though faster converging algorithms could be used
to further increase computational efficiency. A schematic diagram for constructing

local credible intervals is found in Figure 6.1. Conceptually, this is finding the
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maximum and minimum constant values which a super-pixel region could take, at
100(1 — @)% confidence — which is effectively Bayesian error bars on the convergence
map.

In plain english, starting from the MAP convergence solution x™# — at which
all pixels are in positions which minimise the objective function — we then select a
sub-set, of the pixels, e.g. an 8 x 8 block of pixels. We start by averaging the pixels in
the block which is selected. We then set the pixels within this block to the average
value. Following this we iteratively raise/lower the now uniform value of the pixels
within this block whilst keeping the rest of the image fixed. After each iteration we
check if the surrogate solution (k™* with the block of interest replaced by some
constant value) is an acceptable solution, i.e. the objective function is below the
threshold €/,. We find the values (upper and lower bounds) at which the objective
function is equal to the threshold €/,. We then take the difference between these
bounds, which is the local credible interval for a given ‘block of interest’ (super-pixel

region).

6.3 Evaluation on simulations

For computing Bayesian inference problems one might ideally adopt MCMC sampling
approaches as they are (assuming convergence) guaranteed to produce optimal
results, however these approaches are computationally demanding and can often
be computationally unfeasible. Therefore it is beneficial to adopt approximate but
significantly computationally cheaper methods, such as the MAP estimation approach
presented in chapter 5 — first presented in Price et al. (2021a).

However, the approximation error introduced through these approximate meth-
ods must be ascertained. Therefore, in this section we benchmark the uncertainties
reconstructed via our MAP algorithm to those recovered by the state-of-the-art
proximal MCMC algorithm, Px-MALA (Pereyra, 2016; Durmus et al., 2018). Addi-
tionally we compare the computational efficiencies of both approaches, highlighting
the computational advantages provided by approximate methods. For simplicity and
brevity throughout we will refer to any uncertainties recovered via our aforementioned
maximum a posteriori reconstruction method as ‘MAP uncertainties’. Additionally we
will refer to the mazimum a posteriori reconstruction method discussed throughout
this chapter as the ‘MAP algorithm’.

6.3.1 Datasets

We select four test convergence fields: two large scale Buzzard N-body simulation
(DeRose et al., 2019) planar patches selected at random; and two of the largest dark
matter halos from the Bolshoi N-body simulation (Klypin et al., 2011). This selection
is chosen so as to provide illustrative examples of the uncertainty quantification

techniques in both cluster and wider-field weak lensing settings.
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Bolshoi N-body

The Bolshoi cluster convergence maps used were produced from 2 of the largest halos

in the Bolshoi N-body simulation. These clusters were selected for their large total

mass and the complexity of their substructure, as can be seen in Figure 6.3. Raw

particle data was extracted from the Bolshoi simulation using CosmoSim?, and was

then gridded into 1024 x 1024 images. These images inherently contain shot-noise

and so were passed through a multi-scale Poisson de-noising algorithm before being

re-gridded to 256 x 256. The de-noising algorithm consisted of a forward Anscombe

transform (to Gaussianise the noise), several TV-norm (total-variation) de-noising

optimisations of different scale, before finally applying an inverse Anscombe transform.

Finally, the images were re-scaled onto [0,1] — a similar de-noising approach for

Bolshoi N-body simulations was adopted in related articles (see Lanusse et al., 2016).

Buzzard N-body

The Buzzard v-1.6 shear catalogs are ex-
tracted by ray-tracing from a full end-to-end
N-body simulation. The origin for tracing is posi-
tioned in the corner of the simulation box. Access
to the Buzzard simulation catalogs was provided
by the LSST-DESC collaboration®.

In the context of this chapter we restrict
ourselves to working on the plane, and as such
we extracted smaller planar patches. To do so
we first project the shear catalog into a coarse
HEALPix* (Corski et al., 2005) gridding (with
Nsige of 16). Inside each HEALPix pixel we tes-
sellate the largest possible square region, onto
which we rotate and project the shear catalog.
Here HEALPix pixelisation is solely used for its
equal area pixel properties. After following the
above procedure, the Buzzard v-1.6 shear catalog
reduces to ~ 3 x 103 planar patches of angular
size ~ 1.2deg?, with ~ 4 x 10 galaxies per patch.
In previous work (Price et al., 2021a) we utilized
60 of these realisations, but for the purpose of

this analysis we select at random two planar re-

Buzzard-2

Figure 6.2: Two ~ 1.2deg? planar
random extractions from the Buz-
zard V-1.6 N-body simulation catalog,
each containing O(10°) galaxies.

2https://www.cosmosim.org
3http ://1lsst-desc.org

4http ://healpix.sourceforge.net/documentation. php
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gions to study, which we project onto a 256 x 256 grid. These plots can be seen in
Figure 6.2.

6.3.2 Method

To draw comparisons between our MAP uncertainties and those recovered via Px-
MALA we conduct the following set of tests on the aforementioned datasets (see
section 6.3.1). Initially we transform the ground truth convergence ™ into a
clean shear field 4™ by 4™ = ®x™. This clean set of shear measurements is then
contaminated with a noise term n to produce mock noisy observations v such that
v =~" 4 n. For simplicity we choose the noise to be zero mean i.i.d. Gaussian noise
of variance 02, i.e. n ~N(0,02). In this setting o, is calculated such that the signal

to noise ratio (SNR) is 20 dB (decibels) where

o = 1/ 10502 sy (6.2)
n N . .

Throughout this uncertainty benchmark-

ing we use a fiducial noise level of 20 dB. For
further details on how a noise level in dB maps
to quantities such as galaxy number density and
pixel size see Price et al. (2021a). The noise
level of 20 dB considered here is somewhat op-
timistic (corresponding to between 30 and 100
galaxies per square arcmin for a band-limit of
~400), which is appropriate for the purposes Bolshoi-7
of benchmarking against MCMC simulations,
which is the focus of the current discussion.
Less optimistic simulations would simply in-
crease the absolute level of the quantified un-

certainties but not their relative level.

We then apply the reconstruction algo-
rithm discussed in chapter 5, to recover maz-
map

1mum a posteriori convergence estimate s

(see section 3.2.2), along with the objective Bolshoi-8

function — with regularisation parameter p Figure 6.3: Two of the largest clusters

and noise variance o2. Adopting these quanti- extracted from the Bolshoi simulation
database, labeled as Bolshoi 7 and 8
somewhat arbitrarily. In both cases at
in section 6.2, we conduct uncertainty quan- jeast one massive sub-halo is located

tifications on k™, To benchmark the MAP within the FoF (friends of friends) sub-
catalog.

ties, and leveraging the statistical tools outlined

reconstructed uncertainties we first construct

an array of local credible interval maps for super-pixel regions of sizes [4,8,16] at 99%
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confidence. These local credible interval maps are then compared to those recovered
from the full MCMC analysis of the posterior (see section 3.2.1). We adopt two
basic statistical measures to compare each set of recovered local credible interval
maps: the Pearson correlation coefficient r; and the recovered SNR. The Pearson
correlation coefficient between our MAP local credible interval map &2 ¢ RV and
the Px-MALA local credible interval map ¢P* € RY ', where N’ is the dimension of

the super-pixel space, is defined to be

L (e gmen) (P - )
V(€ — gman)2, 567 — gv)?

r

(6.3)

where z = (). The correlation coefficient r € [—1, 1] quantifies the structural similarity
between two datasets: 1 indicates maximally positive correlation, 0 indicates no
correlation, and -1 indicates maximally negative correlation.

The second of our two statistics is the recovered SNR which is calculated between
EMAP and £PX to be

SNR =20 xlo & and RMSE = 100 x w %
#10 \Tlgw —gmer] e, )

(6.4)
where £P* recovered by Px-MALA is assumed to represent the ground truth Bayesian
local credible interval, and ||.||, is the fo-norm. The SNR is a measure of the absolute
similarity of two maps — in this context, rather than the structural correlation which
is encoded into r, the SNR is a proxy measure of the relative magnitudes of the two
datasets. Additionally, we compute the root mean squared percent error (RMSE).

Conceptually, the SNR roughly compares the absolute magnitudes of recovered
local credible intervals and the Pearson correlation coefficient gives a rough measure
of how geometrically similar the local credible intervals are. In this sense the closer
r is to 1 the more similar the recovered local credible intervals are, and the higher
the SNR the smaller the approximation error given by equation (10.12). Thus, a
positive result is quantified by both large correlation and large SNR.

6.3.3 Numerical benchmarking results

As can be seen in Figures 6.4 and 6.5 the local credible intervals recovered through
our sparse hierarchical Bayesian formalism are at all times larger than those recovered
via Px-MALA — confirming that the uncertainties are conservative, as proposed
in chapter 3, specifically section 3.2.3. Moreover, a strong correlation between the
reconstructions can be seen.

The largest correlation coefficients r are observed for super-pixel regions of
dimension 16 x 16 in all cases ((r) ~0.9), peaking as high as 0.98 for the Buzzard 1
extraction — which constitutes a near maximal correlation, and thus an outstanding

topological match between the two recovered local credible intervals. Additionally,
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in the majority of cases the recovered SNR is > 10 dB — in some situations rising as
high as ~ 13 dB (corresponding to ~ 20% RMSE percent error) — which indicates
that the recovered MAP uncertainties are close in magnitude to those recovered via
Px-MALA. However, for super-pixels with dimension 4 x 4 the structural correlation
between £™P and &P* becomes small — in one case becoming marginally negatively
correlated. This is likely to be a direct result of the error given by equation (10.12)
inherited from the definition of the approximate HPD credible region — as this
approximation has the side-effect of smoothing the posterior hyper-volume, and for
small super-pixels the hyper-volume is typically not smooth, thus the correlation

coefficient r decreases.

We conducted additional tests for Super | Pearson SNR RMSE
large 32 x 32 dimension super-pixels, Pixel | Correlation | (dB) Error
which revealed a second feature of note. Bolshoi-7
For particularly large super-pixel re- 4x4 0.463 11.737 | 25.892 %
gions (32 x 32 or larger) the SNR be- 8x8 0.848 11.994 | 25.137 %
comes small for both Buzzard maps. 16x16 0-945 12509 | 23.690 %

L . 32x32 0.937917 11.6928 | 26.0233 %
This is a result of the assumption that
hi ol th ) bl Bolshoi-8
within a super-pixel there exists a stable ol 0163 11467 | 26.710 %
mean which is roughly uniform across 8x8 0.929 11.490 | 26.637 %
the super-pixel. Clearly, for buzzard 16x16 0.941 11.350 | 27.070 %
type da,ta, on large Scales thlS breaks 32x32 0.921363 10.2934 | 30.5724 %
down and so the recovered local credi- Buzzard-1
ble intervals deviate from those recov- x4 0.164 10.666 | 29.289 %
. .. 91 10.4 29.94
ered via Px-MALA. It is important to S8 0.916 0473 9.948 %
- 5 o 16x16 0.984 9.262 | 34.427 %
stress this is a breakdown of the as- | 4y 00 | (633803 | 2.34041 | 76.3000 %
sumptions made when constructing local Buzzard-2
credible intervals and not an error of AxA 0.140 10.653 | 29.333 %
the approximate HPD credible region. 8x8 0.904 10.465 | 29.973 %
The numerical results are summarised in 16x16 0.926 9.217 | 34.605 %
Table 6.1. Typically, structures of inter- 32x32 0.643482 2.60863 | 74.0574 %

est in recovered convergence maps cover Table 6.1: Comparisons between the local
super-pixel regions of roughly 8 x 8 to credible interval maps recovered via MAP and
those recovered via Px-MALA. Note that larger
super-pixels corresponds to coarser resolutions
tions our MAP uncertainties match very whereas smaller super-pixels leads to higher
resolution. This is because the super-pixel size
is the size of the groups of pixels used to tile
the original image — therefore larger tiling
data is gridded such that it best rep- components leads to fewer tiles, and therefore
lower resolution.

16 x 16, and so for most realistic applica-

well with those recovered through Px-

MALA. In most situations weak lensing

resents the features of interest, and so
structures of interest (by construction) typically fall within 8 X 8 to 16 x 16 dimension

super-pixel regions for 256 x 256 gridded images — for higher resolution images the
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structures of interest, and corresponding optimal super-pixels will follow a similar

ratio.

Overall, we find a very close relation Px-MALA | MAP .
between the local credible intervals recov- Time (s) | Time (s) Ratio
ered through our MAP algorithm with Buzzard-1
those recovered via Px-MALA — a state- 133761 ‘ 0.182 ‘ 0.734 x105
of-the-art MCMC algorithm. We find Buzzard-2
that MAP and Px-MALA local credible 141857 ‘ 0.175 ‘ 0.811 x10°
intervals are typically strongly topolog- Bolshoi-7
ically correlated (Pearson correlation co- 95339 ‘ 0.153 ‘ 0.623 x10°
efficient ~ 0.9) in addition to being phys- Bolshoi-8

92920 | 0.143 | 0.650 x10°

ically tight (RMSE error of ~ 20— 30%).
Moreover, we find that the MAP local
credible intervals are, everywhere, larger
than the Px-MALA local credible inter-

vals, corroborating the assertion that the

Table 6.2: Numerical comparison of compu-
tational time of Px-MALA and MAP. The
MAP approach typically takes O(1071) sec-
onds, compared to Px-MALA’s O(10°) seconds.
Therefore for linear reconstructions MAP is

lose to O(10%) times faster.
approximate HPD level-set threshold e/, close to O(107) times faster

is in fact conservative.

We now compare the computational efficiency of our sparse Bayesian reconstruc-
tion algorithm against Px-MALA. It is worth noting that all Px-MALA computation
was done on a high performance workstation (with 24 CPU cores and 256Gb of
memory), whereas all MAP reconstructions were done on a standard 2016 MacBook
Air. The computation time for MAP estimation is found to be O(seconds) whereas
the computation time for Px-MALA is found to be O(days). Specifically, we find the
MAP reconstruction algorithm is of O(10°) (typically > 8 x 10°) times faster than
the state-of-the-art Px-MALA MCMC algorithm. Moreover, the MAP reconstruc-
tion algorithm supports algorithmic structures that can be highly parallelized and
distributed.

6.4 Summary

In this chapter we introduce the concept of local credible intervals (cf. pixel-level error
bars) — developed in previous work and applied in the radio-interferometric setting
— to the weak lensing setting as an additional form of uncertainty quantification.
Utilizing local credible intervals we validate the sparse hierarchical Bayesian mass-
mapping formalism presented in Price et al. (2021a). Specifically we compare the
local credible intervals recovered via the MAP formalism and those recovered via a
complete MCMC analysis — from which the true posterior is effectively recovered.

To compute the asymptotically exact posterior we utilise Px-MALA — a state-of-
the-art proximal MCMC algorithm. Using the local credible intervals; we benchmark

the MAP uncertainty reconstructions against Px-MALA. Quantitatively, we compute
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the Pearson correlation coefficient (r, as a measure of the correlation between
hyper-volume topologies), recovered signal to noise ratio and the root mean squared
percentage error (SNR and RMSE, both as measures of how tightly constrained is
the absolute error). We find that for a range of super-pixel dimensions the MAP and
Px-MALA uncertainties are strongly topologically correlated (r > 0.9). Moreover,
we find the RMSE to typically be ~ 20 —30% which is tightly constrained when
one considers this is a conservative approximation along each of at least O(10%)
dimensions. Additionally we compare the computational efficiency of Px-MALA
and our MAP approach. In a 256 x 256 setting, the computation time of the MAP
approach was O(seconds) whereas the computation time for Px-MALA was O(days).
Overall, the MAP approach is shown to be O(10°) times faster than the state-of-the-
art Px-MALA algorithm.

A natural progression is to extend the planar sparse Bayesian algorithm to
the sphere, which will be the aim of upcoming work — a necessity when dealing
with wide-field stage IV surveys such as LSST® and EUCLIDS. Additionally, we will
expand the set of uncertainty quantification techniques to help propagate principled
Bayesian uncertainties into the set of higher-order statistics typically computed on

the convergence field.

5https ://www.lsst.org
6http ://euclid-ec.org
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Figure 6.4: Local Credible Intervals (cf. Bayesian error bars) at 99% confidence for the Bolshoi-7 (top) and Bolshoi-8 (bottom) cluster sparse
reconstruction in both the Px-MALA setting (top) and MAP (bottom) for super-pixel regions of dimension (4 x 4),(8 x 8), and (16 x 16) — left to right
respectively. Note that these plots display the variation about the mean of each set of LCI’s, with the mean being given numerically in the sub-figure
legends — this is done to best display the topological similarity whilst also conveying the absolute difference in size between the methods. Notice
that the mean of the MAP LCls is in all cases larger than that of the corresponding Px-MALA LCIs. Further note that the smaller the dimension of
the super-pixel the larger the local credible interval which is because adjusting fewer pixels raises the objective function by less, and so the smaller
super-pixels can be raised/lowered by more before saturating the level-set threshold. All numerical results are displayed in Table 6.1.
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Figure 6.5: Local Credible Intervals (cf. Bayesian error bars) at 99% confidence for the Buzzard-1 (top) and Buzzard-2 (bottom) cluster sparse
reconstruction in both the Px-MALA setting (top) and MAP (bottom) for super-pixel regions of dimension (4 x 4), (8 x 8), and (16 x 16) — left to right
respectively. Note that these plots display the variation about the mean of each set of LCI’s, with the mean being given numerically in the sub-figure
legends — this is done to best display the topological similarity whilst also conveying the absolute difference in size between the methods. Notice
that the mean of the MAP LCIs is in all cases larger than that of the corresponding Px-MALA LCIs. Further note that the smaller the dimension of
the super-pixel the larger the local credible interval which is because adjusting fewer pixels raises the objective function by less, and so the smaller
super-pixels can be raised/lowered by more before saturating the level-set threshold. All numerical results are displayed in Table 6.1.
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Chapter 7

Peak count and location uncertainties

This chapter is based on research presented in M. A. Price, J. D. McEwen, X.
Cai, T. D. Kitching, and LSST Dark Energy Science Collaboration, “Sparse
Bayesian mass mapping with uncertainties: peak statistics and feature
locations”, Monthly Notices of the Royal Astronomical Society, vol. 489, no. 3,
pp. 3236-3250, Dec. 2019.

Price et al. (2019b)

Note: This chapter assumes knowledge of the following. Mathematical context
of weak gravitational lensing, presented in sections 4.1.4 and 4.2.2. A general
understanding of higher-order convergence statistics (see e.g. Munshi et al.,
2008; Lin, 2016; Munshi and Coles, 2017). This section adopts the dark matter
reconstruction algorithm presented in chapter 5, with the approzimate

HPD-credible regions derived in section 3.2.5.

In this chapter we propose two novel uncertainty quantification techniques,
designed to answer two questions frequently asked of the recovered convergence map.
The first of these questions asks where a feature of interest in the reconstructed
convergence map could have been observed — typically this has been addressed by
bootstrapping; however we can now infer it directly in a Bayesian manner. Drawing
on the stone and pond analogy of chapter 2, this locational uncertainty quantification
technique addresses the question of: what is the likely region over which the stone
was initially dropped? The second question pertains to the weak lensing peak
statistic (Lin, 2016), asking: given a magnitude threshold what is the maximum and
minimum number of peaks which could have been observed, within some well defined

confidence?

7.1 Introduction

In an empty universe the null geodesics along which photons travel correspond directly
to straight lines. However, in the presence of a non-uniform distribution of matter
the null geodesics are perturbed via gravitational interaction with the local matter
over or under density, i.e. the photons are gravitationally lensed (Schneider, 2005;

Munshi et al., 2008; Heavens, 2009; Grimm and Yoo, 2018). As this gravitational
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interaction is sensitive only to the total matter distribution, and the overwhelming
majority of matter is typically dark, gravitational lensing provides a natural probe
of dark matter itself (Clowe et al., 2006).

A wealth of information may be calculated directly from the shear field (often in
the form of second order statistics (Kilbinger, 2015) — such as the power spectrum as
in Alsing et al., 2016; Taylor et al., 2018) though recently there is increasing interest in
extracting non-Gaussian information from the convergence field, e.g. peak statistics,
Minkowski functionals, extreme value statistics (Coles and Chiang, 2000; Munshi
and Coles, 2017; Peel et al., 2017b; Fluri et al., 2018; Peel et al., 2018). Primarily,
the interest has arisen as higher-order statistics of the convergence field have been
shown to provide complementary constraints on dark matter cosmological parameters
which are typically poorly constrained by second-order statistics (Pires et al., 2010).
However, to make principled statistical inferences from the convergence field, the
inversion from 7 to k¥ must be treated in a principled statistical manner — something
which until recently was missing from convergence reconstruction algorithms which
were either not framed in a statistical framework (see e.g. Kaiser and Squires, 1993;
VanderPlas et al., 2011; Lanusse et al., 2016; Jeffrey et al., 2018; Wallis et al., 2021)
or made assumptions of Gaussianity (see e.g. Corless et al., 2009; Schneider et al.,
2015; Alsing et al., 2016). As the information of interest in higher-order convergence
statistics is non-Gaussian, assumptions of Gaussianity in the reconstruction process
severely degrade the quality of the cosmological information.

A mass-mapping framework was developed in chapter 5 which addressed precisely
this issue. This new sparse hierarchical Bayesian mass-mapping formalism can be
rapidly computed, can be extended to big data, and provides a principled statistical
framework for quantifying uncertainties on reconstructed convergence maps (see
Price et al., 2021a). Notably, it has been shown to accurately reconstruct very high
dimensional Bayesian estimators, many orders of magnitude faster than state-of-the-
art proximal MCMC algorithms. In chapter 6 we discuss a recent article (Price et al.,
2019a), in which this algorithm was quantitatively benchmarked against Px-MALA
(Pereyra, 2016; Durmus et al., 2018).

The structure of this article is as follows. In section 7.2 we develop a novel
Bayesian inference approach to quantifying the uncertainty in reconstructed feature
location, which we then showcase on illustrative N-body cluster simulation data in
section 7.3. We then introduce a novel Bayesian inference approach for recovery
of principled uncertainties on the aggregate peak count statistic in section 7.4.
Following this we showcase this Bayesian inference approach to quantify uncertainty
in the aggregate peak statistic in section 7.5 on N-body large scale structure (LSS)

illustrative simulation data. Finally we draw conclusions in section 7.6.
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7.2 Bayesian peak locations

Often one wishes to know the location of a
feature of interest within the reconstructed
convergence k™*P. Typically, this uncertainty
is assessed wvia bootstrapping of the recovered
image for a large number of simulated noise
fields (as in e.g. Peel et al., 2017a). With the
concept of approximate HPD credible regions
in mind (see section 3.2.3), we propose a novel
Bayesian approach to quantifying uncertainty
in the peak location which we will refer to as

the ‘Bayesian location’.

In essence the Bayesian location is com-
puted as follows: A feature of interest is re-
moved from the recovered convergence map,
this feature is then inserted back into the con-
vergence map at a new position to create a
surrogate convergence map, if this surrogate
map is within the approximate credible set
then the position at which the feature was
inserted cannot be rejected, if the surrogate
is not in the approximate credible set then
the position can be rejected. This process is

computed for a sample of the total possible

Figure 7.1: Combined plot of the 99%
confidence Bayesian locations at SNR
=12,15,17,20 dB. The outer rings rep-
resent the noisier position iso-contours
whereas as the data becomes cleaner the
iso-contour ring becomes smaller (there-
fore the rings represent iso-contours at
SNR =12,15,17,20 dB, from the outer
rings inwards respectively). N-splitting
Circular Bisection (see section 7.2.2)
was used to efficiently compute each iso-
contour. For input SNR’s below ~ 10
the smaller local features cannot be de-
termined to be physical via the initial
hypothesis test, hence the truncation at
SNR =12.

insertion positions, eventually providing an iso-contour of ‘acceptable’ positions. This

iso-contour, at a well-defined confidence level, is the Bayesian location.

7.2.1 Bayesian locational uncertainties

Suppose we recover a (MAP) convergence field k™?P via optimisation of the objective
function defined in equation (9.7) which contains a feature of interest (e.g. a large
peak). Let us define the sub-set of pixels which contain this feature to be Qz C €,
where (2 is the entire image domain. To begin, extract the feature Z = x™*Plq_,
i.e. a convergence field which contains only the feature of interest. Now we adopt
the process of segmentation inpainting (Cai et al., 2018a,b; Price et al., 2021a) to
create a convergence field realization without the feature of interest Z, but instead
with background signal replaced in 2z. Mathematically segmentation inpainting is

represented by the iterations
R Sel = gmaple, o 4 Asofty (ATk(84)Ig (7.1)
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where A is an appropriately selected dictionary. To this end, we simply use the
Daubechies 8 (DB8) wavelet dictionary with 8-levels and A is the soft-thresholding
parameter.

Following the wavelet inpainting, in order to separate the true feature from
the background residual convergence the signal which was inpainted into the region
Q) z is subtracted from the extracted feature Z, thus effectively accounting for the
residual background signal which would likely have been present even in the absence
of the feature Z. At this junction the surrogate convergence x°¢ is hypothesis tested
for physicality (Cai et al., 2018b; Price et al., 2021a). If a feature is not found to
be physical, the algorithm terminates at this point as, fundamentally, it is illogical
to evaluate the uncertainty in position of an object for which existence cannot be
statistically determined.

Now that we have successfully isolated Z we can insert it back into the surrogate

field k%8 at a perturbed position. It is then sufficient to check if
Fs) 4 g(55) = h(w5") < €, (7.2

where k%Y represents the surrogate with the feature Z inserted at a perturbed
location, and h(k) is the objective function discussed in chapter 5. Notice that this
is simply a Bayesian hypothesis test, as outlined in chapter 5. In fact, all MAP
uncertainty quantification techniques discussed in this thesis are hypothesis tests
of varying complexity. If the inequality does hold, then the conclusion is that at
100(1 — a))% confidence we cannot say that the feature could not be found at this
location. If the equality does not hold then Z in its observed form could not have been
found at the new location at 100(1 — )% confidence. The question then becomes,
which perturbed positions are acceptable and which are not.

With the above in mind, we propose a typical inverse nested iterative scheme
to determine the pixel-space iso-contour for a given feature in the reconstructed
convergence field. Schematically this iterative process is outlined in Figure 7.2.
Essentially, inverse nesting is: start in a ring 1 pixel from the MAP peak location in

the first iteration, moving the ring one pixel outwards after each iteration.

7.2.2 N-splitting circular bisection

Inverse nested iterations are sufficiently fast for low-dimensional reconstructions
(256 x 256), however as the dimensionality of the reconstructed domain grows it
becomes increasingly beneficial to adopt more advanced algorithms to compute the
Bayesian location in an efficient manner. We propose a novel iterative algorithm for
computing the pixel-space position iso-contour which we call N-splitting Circular
Bisection (N-splitting), the full details of which can be found in appendix A.1. A
brief outline of N-splitting is given below. Suppose we wish to compute positions

on the Bayesian location iso-contour at equiangular intervals A© (defined clockwise
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Calculate MAP so-
lution: £™2P (9.7)

Remove feature Z )
o s — j,map
by equation (7.1). ‘ ‘ Extract feature Z = x™*Plq
l ~ B l

/
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Reject pixel:
| o

o st
Is: £%° € C, 7 ‘

Figure 7.2: Schematic representation of the inverse nested iterations to determine the
Bayesian location (see section 7.2). The Bayesian location is a positional uncertainty on a
feature of interest Z within a recovered convergence field. Once a complete ring of pixels
has been rejected the algorithm returns a binary map of accepted pixels which we call the
Bayesian location. Any pixel outside of this location is rejected at 100(1 — )% confidence.
Alternately the probability iso-contour bounding the set of acceptable pixels can be located
by N-splitting circular bisection as described in section 7.2.2 and Appendix A.1.

about the peak location) relative to the y-axis. Then we require n = 27/A®© sampling
angles which are trivially given by ©; = iA©, where i is an iterative factor which
sets the angle for a given direction ©;.

Once ©; is defined for a single direction, the distance d!, along direction ©; such
that the objective function saturates the level-set threshold €, is found by bisection.

Mathematically, this is formally defined to be,

i, = min [d| () > €, | for Ti=|qsin(6;),¢2c08(0,) | 12 € Ruo|, (7.3)
where d? = g3 + ¢3, the sub-space I'; C R? lies on the line of infinite extent along a
given direction ©; sourced at the peak location, and ﬁzgt is the surrogate convergence
map constructed by inserting the feature of interest Z into a perturbed location
[q18in(©;), g2cos(©;)]. Once a representative set of positions on the location iso-
contour are computed, the convexr hull is taken — the convex hull is simply the
smallest convex set which contains all samples of the location iso-contour (see section
2.2.1). The envelope of this closed convex set of acceptable pixels is taken as the

Bayesian location.
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7.3 Illustrative example of the Bayesian location

In this section we perform sparse Bayesian reconstructions of a large cluster extracted
from the Bolshoi N-body simulation (Klypin et al., 2011; Lanusse et al., 2016), upon
which we construct and assess the performance of Bayesian locations for each of
the four largest sub-halos. In line with previous work of Price et al. (2021a) and
in the related article of Lanusse et al. (2016) we refer to this extracted cluster as
Bolshoi-3. We grid the Bolshoi convergence field onto a discretized complex map of
dimension (1024 x 1024) so as to demonstrate that the sparse Bayesian approach can
construct Bayesian estimators efficiently even when the dimension of the problem is
in excess of O(10%), i.e. dimensions at which MCMC techniques can become highly

computationally challenging.

7.3.1 Method

First, we construct a complex discretized set of artificial shear measurements 7 € CM
by 4 = ¢k, where x € CM is the input Bolshoi-3 convergence map. Notice that for
simplicity we restrict ourselves to the situation in which dim (%) = dim(k), i.e. the
measurements process is lossless. We then contaminate these mock measurements
with noise n, which for simplicity we select to be i.i.d. Gaussian noise n ~ N(0,02)
of zero mean and variance o2. The variance is selected such that the SNR, of the

noisy artificial shear maps can be varied, and is therefore set to be,

® 2
on = || | ]\';”2 x 10720 (7.4)

The MAP convergence field k™2P is recovered via the sparse Bayesian mass-

mapping algorithm using DB10 wavelets (10-levels), and the Bayesian location for

the set of 4 peaks is constructed.

7.3.2 Analysis and computational efficiency

To demonstrate this uncertainty quantification technique we construct 99% confidence
Bayesian locations for the 4 largest sub-halos in the Bolshoi-3 cluster, for input SNR
in decibels (dB) of € [12,15,17,20]. In Figures 7.1 and 7.3 it is apparent that, as
expected, the positional uncertainty iso-contour at 99% confidence is smaller for
less noisy data, growing in proportion to the noise. In our analysis 32 N-splitting
directions (pointings) were used, though as can be seen in Figures 7.1 and 7.3 as few as
16 directions would easily have been sufficient given the smoothness of the iso-contour.
Computationally, reconstruction of the MAP convergence field and computation of
the Bayesian location for the complete set of peaks took ~ 5 minutes on a standard
2016 MacBook Air. Notably, this is a conservative (Pereyra, 2017) and tight (Price
et al., 2019a) approximate Bayesian inference in an over 10-dimensional space on a
personal laptop in minutes. Further to this, the sparse Bayesian algorithmic structure

is easily parallelisable and so this computational efficiency can be optimized further.
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True Peak SNR: 20 SNR: 17 SNR: 15 SNR: 12

Figure 7.3: Left to right: Sparse Bayesian reconstructions of Bolshoi-3 peaks 1 to 4 (top to bottom respectively) followed by Bayesian locations (see
section 7.2) at 99% confidence for input SNR of 20.0 to 12.0 dB— which are overlaid on the sparse Bayesian MAP recovered convergence maps k™?P at
the corresponding SNR level. As the input artificial shear becomes more contaminated with noise, the relative information content decreases, and so
inferred uncertainty of the reconstructed peak positions increases, as one would logically expect. Note the asymmetry in the 99% iso-contour, which
motivates the N-splitting searching algorithm (see section 7.2.2 and Appendix A) rather than a naive circular inference (e.g. finding the maximal x
and y displacements and assuming a circular iso-contour). Finally, observe that the 99% iso-contour for Peaks 3 and 4 are proportionally more tightly
constrained than Peaks 1 and 2. This is due to the local information density typically being higher in more signal dense regions — perturbations to pixels
in more information dense regions are more tightly constrained and can therefore move less distance before saturating the approximate level-set threshold
el,. This effect has been observed in the context of local credible intervals as presented in Cai et al. (2018b) and introduced to the weak lensing setting in
Price et al. (2019a).

Peak 3 Peak 2 Peak 1

Peak 4
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CHAPTER 7. PEAK COUNT AND LOCATION UNCERTAINTIES

7.4 Aggregate uncertainty in peak counts

Building on the notion of an approximate HPD credible region discussed in section
3.2.3 we now ask the question: given a reconstructed convergence field x™?P, and
at a given SNR threshold K, what is the maximum and minimum peak count at
100(1 — )% confidence. In this analysis, we choose to define a peak in K™*P by a
pixel k™ (z), for z € R? which is larger than the 8 pixels which surround it (as in
Lin, 2016). A point of the peak statistic is computed as follows: A threshold K € R+
is taken on k™?P and the peak count (number of peaks which have intensity larger
than K) is taken on the sub-set of pixels larger than the threshold.

Formally we define the ezcursion set QT C Q as QT = {z | k™*P(z) > K }, where
Q) is the complete set of recovered pixels. Define a further sub-set II C QT as the set

of peaks in Q7:
H(Kmap) — {.T | Kmap(x) > Iimap(ﬂj,), \V/SL‘/ EN(x) }’ (75)

where N (x) represents the set of immediately surrounding pixels. Note that this
definition is not valid for pixels on the boundary of the field, and so these pixels are
necessarily not considered. This not only excludes the outer edge of kK™2P but also any
pixels surrounding masked regions (of which there are typically many). Conceptually,
we would then like to know at a given threshold K what is the maximum and
minimum number of peaks which could exist such that the surrogate solution k8"
still belongs to the approximate HPD credible set C?,. Let n2®* be the upper bound
on the number of peaks, and 7" be the lower bound on the number of peaks, for
a given threshold K, at 100(1 — )% confidence. Further let n = [II(k™*P)| € Rsg
be the number of peaks calculated from the MAP solution ™?P at threshold K.

Formally these quantities are given by,

pin/max = min fmax { |TT(58")| € Rog | h(k*5) < €, |, (7.6)

Hsgte(clﬂ
where |II(k)| is the cardinality of the peak set of a convergence field . It is not at
all obvious how one should locate the extremum of such optimisation problems as
they are inherently non-linear, non-convex problems. We can, however, propose a

logical iterative approach to calculate well motivated approximations to the upper

max

min
o .

and lower peak count limits 7 o

and 7

7.4.1 Approximate Bayesian lower bound on peak counts

It is perhaps conceptually more straightforward to minimise the cardinality of the
peak set and so we will first describe this process. To calculate an approximate bound
on 7™M we begin by creating the initial peak set I from the recovered convergence
K™2P_ The peak in II(k™#P) with lowest magnitude is located. The shortest distance

Tmin from the pixel location x to a pixel ' such that xk™?P(z') = y (where y is some
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magnitude at which it is assumed the peaks influence is sufficiently small) is computed
in Euclidean space as ryi, = |« — 2/|. For the current discussion we simply set y = 0.

Let us define the region of interest 24 C ) to be a circular aperture centred
on the peak pixel location x with radius ryi,. Conceptually, this acts as a proxy
for the area effected by a large over-density sourced at the location of the peak.

€ CV*N which has the action of scaling the

Now, define a down-scaling kernel Sk ,
magnitude of the sub-set k™"l , of pixels belonging to the region of interest (24
onto [0, K]. Application of the down-scaling operator returns a surrogate solution

k58t Mathematically this is the isometric transformation

K

sgt — S map) _ map]l
R K,.Q (ﬁ ) K O\Qa + max (Kmap]IQA)

(5P, ). (7.7)

Application of Sk, to an isolated region €4

‘ Initial surrogate: k8! = x™maP
‘ Calculate excursion peak set: IT1(x%")

Find lowest peak: (z)

conserves the local topology of the field, i.e.

is an isometric transformation over €2 4, which

is desirable as it means we are making no as-

sumptions about the halo profile around a given ‘

peak. l
Removal of a peak through the action of ‘ Define aperture ‘ Repest stops.
. sgt . . around peak: 4
Sk,0, creates a surrogate solution x°8" which is i

likely to minimise the increase in the objective LIy el e T L

. . . . . peak set: %' = Sk o, (k")
function, at least in a decision theoretic sense. l

As such Sk o, is a good stratagem for excluding

In credible set?: %' C/, ? }» JJXes o

peaks from II(k™?P) as it will likely maximise No
Min number of peaks:
et = ||

the number of peaks which can be removed
from IT(x™2P) before the level-set threshold €, is

saturated. Thus, it will likely be near decision-

Figure 7.4: Schematic representation
of the iteration steps in finding the
Bayesian lower bound n3'"" at confi-

(7.6), which is precisely what we want. dence 100(1— )% of the peak count |II|
for a given MAP reconstruction k™?P.

theoretically optimal at minimizing equation

A schematic of the iterative process pro-
posed to find the Bayesian lower bound on the peak statistic can be seen in Figure
7.4. In words, the process is as follows. Within each iteration, the lowest intensity
peak within the peak set is removed forming a new surrogate convergence field
k8 the objective function is recalculated and if the objective function is below the
approximate level-set threshold €/, then the lowest peak within %" is now removed,
so on and so forth until the objective function rises above €/, at which the iterations

are terminated and the minimum number of peaks is recovered.

7.4.2 Approximate Bayesian upper bound on peak counts

Now we invert our perspective in order to approximate the maximum number of
peaks which could be observed at a given threshold K at 100(1 — «)% confidence.
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Here we will be considering the non-linear maximisation problem constructed in
equation (7.6).

First, we introduce the notion of the inclusion set 2, conjugate to Q7 such
that Q- UQT =Q and Q- NOQT = &, defined by QO = {x|s™*P(z) < K}. With this
in mind, we can now cast the maximisation problem into a minimisation problem
analogous to that used before. We now wish to minimise the number of peaks that
belong to the inclusion set 0~ which is by definition equivalent to maximizing the
number of peaks which belong to the excursion set T, which is precisely what we
want. Analogously to section 7.4.1 to construct our approximate bound we calculate
the further sub-set I~ C 2~ which is defined similarly to the relation in equation
(7.5) such that,

I (5) = {2 | K7 (z) > K™2P(2f), ¥ 2’ € N (2) }, (7.8)

i.e. the sub-set of peaks below a threshold K. In contrast to section 7.4.1 we now
locate the largest peak in II”. Suppose that this peak is found at II~(x), we now
construct a circular aperture about x with radius ryi, as defined before. Let this
circular aperture set of pixels be Q4 C €.

Now we define an up-scaling kernel S;(,QA € CN*N which has action,

K+A

— (k™1 7.9
max (k2P ) (+"1n,) (7.9)

S}(,QA (K™MP) = KM PIg\q , +
which deviates from the the down-scaling operator in the numerator of the second
term. Here A is an infinitesimal quantity added such that the re-scaled peak within
Q 4 falls infinitesimally above the threshold K and is therefore counted as a peak. In
practice we set A to be ~ 1075 and find that adjusting this quantity by O(10?) has
negligible effect on the recovered uncertainties.

With these conceptual adjustments we then follow the same iterations discussed

max

in section 7.4.1 to find the approximate Bayesian upper bound on the peak count 1}

min max)

Schematically this is given in Figure 7.5. Finally we return the tuple (n2™,n,n%

which is in the form (minimum, most likely, maximum) at 100(1 — «)% confidence.

7.4.3 Limitations of re-scaling

Suppose the SNR threshold K is large enough such that during iterations in schematic
of Figure 7.4 the cardinality of the excursion peak set |II(x%8")| — 0. In this situation
even though the approximate level-set threshold €/, is not saturated, the algorithm is
forced to stop as there are simply no more peaks to exclude (push down). At this
point the strategy for removing peaks becomes locally ill-defined. Effectively this is
a clipping artifact. To avoid this effect entirely, if |TI(k%")| = 0 at any point within
the iterations at a given threshold, the lower bound ™™ at threshold K is set to 0,

i.e. we are infinitely uncertain by construction.
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Analogously, consider the case when K is

‘ Initial surrogate: %' = x™maP

I

‘ Calculate inclusion peak set: I1~ (k%)

I

‘ Find highest peak: (z)

small enough that during the iterations in Fig-

ure 7.5 the cardinality of the inclusion peak set

==

[T~ (k%")] = 0. In this situation there are sim-

ply no more peaks to include (pull up). Again

we remove this clipping effect by setting n;'** 1

at threshold K to |II(k%")|. Typically these ‘ Dcﬁn; apo;tu;c ‘ Remeat stems.
aro eak:

clipping effects only occur for very small K <2 roun II 4

or very large K > 8 thresholds, and so a wealth

‘ Add peak to excursion peak

set: k%8t = S;{,QA(HSgt)

of information can be extracted from the inter- T

vening scales. Low thresholds clip the upper Tn credible set?: #°t € C", #,,YP,S,,,
limit n3'** as the cardinality of the peak set No

drops to 0 quickly, but the objective function ‘ Calculate excursion peak set: TI(x%") ‘
rises comparatively slowly, as this SNR range is ]

statistically dominated by noise. High thresh-

Max number of peaks:
T = ()

olds clip the lower limit n™" simply due to
Figure 7.5: Schematic representation
of the iteration steps in finding the

thresholds. Bayesian upper bound 1% at confi-

Further to this, the decision-theory ap- dence100(1—a)% of the peak count |II|
for a given MAP reconstruction x™2P.

the inherently low count of peaks at high SNR

proach adopted here for locating the maximal
and minimal values of the cumulative peak statistic is based on several assumptions:
removing lower peaks increases the objective function by less than larger peaks; the
extent of a peak (dark matter over-density) is approximated by a circular aperture;
and removal of a peak has little to no effect on locations in the image domain which
are outside of this aperture. All three of these assumptions are very reasonable.
Although further computational optimisations are not an immediate concern
since our approach is already highly computationally efficient, we acknowledge that
this iterative approach for removing peaks can easily be formulated as a bisection
style problem which is likely to drastically reduce the computation time further
— particularly for low thresholds, as it mitigates the number of trivial noise peak
removal recalculations which are done in the brute force approach presented above.
In future, should computational efficiency become of primary interest this speed up

will be considered.

7.5 Illustrative example of peak uncertainties

In this section we apply the sparse Bayesian mass-mapping pipe-line to high resolution
(2048 x 2048) convergence maps extracted from the Buzzard V-1.6 N-body' simulation,
upon which we construct the cumulative peak statistic (number of peaks above
a threshold as a function of the threshold). Additionally, we recover the 99%

LObtained due to our affiliation with the LSST-DESC collaboration.
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approximate Bayesian constraints on the peak count at each threshold, from which
we infer the 68% constraint so as to aid the reader in comparison to typical 1o

error-bars quoted in related literature.

7.5.1 Simulated data-sets
The Buzzard V-1.6 N-body simulation

convergence catalog (DeRose et al., 2019)

0125

has a quarter sky coverage and is ex-
tracted by full ray-tracing. For wide-
fields the flat sky approrimation breaks
down (Wallis et al., 2021) and so this
quarter sky coverage was reduced to
smaller planar patches. The complete
quarter sky convergence catalog was pro-
jected into a coarse HEALPix? (Gorski
et al., 2005) pixelisation (Ngqe =4). In-

side of each pixel, we further tessellated

00000

. . Figure 7.6: Input 2048 x 2048 convergence
the largest square region which we then map extracted from the Buzzard N-body sim-

project into a 2048 x 2048 grid. These ulation.

gridded convergence maps formed our ground truth, discretized convergence fields.
As HEALPix samples in such a way as to provide equal area pixels, and the Buzzard
simulation galaxy density is fairly uniform, each extracted square region contained
~2x 107 galaxies leading to ~ 5 galaxies per pixel.

Due to a comparatively low density of samples, Poisson noise is prevalent, and
thus extracted planar regions were passed through a multi-scale Poisson de-noising
algorithm. This consisted of a forward Anscombe transform (in order to Gaussianise
the Poisson noise), several TV-norm (total-variation) de-noising optimisations of
differing scale, followed by an inverse Anscombe transform (as in Lanusse et al., 2016;
Price et al., 2019a). A more involved treatment could be applied, but this approach

is sufficient to demonstrate our peak reconstructions.

7.5.2 Application to Buzzard V-1.6

We select at random one of many planar patches produced for the following application.
Following the methodology presented in section 9.3.2 we generate an artificial shear
catalog which we then contaminate with independent and identically distributed
(i.i.d.) Gaussian noise such that the SNR of mock shear measurements is 30 dB — i.e.
an idealized noise-level simply for illustrative purposes.

The MAP convergence estimator £k™?P is recovered from these noisy mock shear
measurements via our sparse Bayesian mass-mapping framework. From «™?P we

then calculate 02 = ((xk™#P)2) which we then use as a measure of the noise-level in

2http ://healpix.sourceforge.net/documentation. php
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the reconstructed convergence field. Implementing the uncertainty quantification
technique presented in section 7.4 we then construct the cumulative peak statistic
for SNR thresholds K € [20,80) at increments of 0.25¢ with upper and lower 99%
approximate Bayesian confidence limits. Figure 7.7 displays the recovered cumulative
peak statistic in both a linear and logarithmic scale. Typically, similar figures in
the literature will quote 1o error-bars, and so for comparisons sake we convert the
Bayesian 99% confidence limits into the 68% confidence limits which are comparable
to lo constraints ( in Figure 7.7 we provide both confidence limits for clarity).

Complete reconstruction of the peak statistics for 24 threshold bins, each with
approximate Bayesian upper and lower bounds, for a 2048 x 2048 resolution con-
vergence map, with DB11 (11-level) wavelets, took ~ 2 hours on a 2016 MacBook
Air. This is a non-trivial Bayesian inference in over 4 x 10% dimensions, and so 2
hours is a very reasonable computation time — though further speedups are possible,
e.g. we can trivially parallelize the calculations for each threshold leading to an
increase in computational efficiency by a factor of the number of thresholds taken
(in our case 24). Additionally, the computational bottleneck is for lower thresholds
as many low-intensity peaks must be removed, and thus an adaptive scheme could
be implemented as discussed previously to avoid unnecessary sampling of these
thresholds. With the aforementioned speed-ups, computation of the complete peak
statistic is likely to take O(minutes) on a personal laptop.

Following this initial analysis we reduce the SNR to investigate the effect of
increased noise on shear measurements to the cumulative peak statistics within
our Bayesian framework. We first decrease the SNR to 25 dB, seen in Figure 7.8,
following which, we then reduce the input SNR further to 20 dB, the corresponding
results being plotted in Figure 7.9. This higher noise level of 20 dB is still a very
optimistic (somewhat unrealistic) estimate of what upcoming surveys may reach;
however in this section we are primarily focused on demonstrating the methodology
and leave detailed realistic simulations and forecasting for future work. A detailed
description of how these noise levels in dB translate into observation constraints (e.g.

galaxy number density e.t.c.) can be found in Price et al. (2021a).

7.5.3 Analysis of peak statistic

Figures 7.7, 7.8 and 7.9 clearly show that as the noise level in the discretized complex
shear field increases the iso-contours of the cumulative peak statistic at 99% and 68%
loosen noticeably. Therefore this, unsurprisingly, indicates that cleaner measurements
are likely to give tighter constraints on cosmological parameters — though it should
be noted that increasing the number of data-points (i.e. pixels) would have a similar
effect to reducing the noise level per pixel.

For an input SNR of 20 dB (Figure 7.9) the first feature of note is the shaded
blue region which indicates that for high thresholds the lower bound on the number of

peaks at 99% confidence is consistent (and clipped) at 0 — this is saying that at 99%
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confidence the true number of peaks at a threshold in the blue shaded region could be
0. Note that in the blue region the Bayesian upper bound is still entirely valid, it is
only the Bayesian lower bound which, in our novel approach, is no longer well defined.
Clearly the upper and lower bounds on the peak count statistic are dependent on the
threshold one is considering and the total area over which observations are made — for
wide-field surveys, more data is collected which is likely to reduce the variance of the
statistic. In a general sense we summarize the mean (over all considered thresholds

K) order of magnitude percentage spread on the peak statistic for the considered
SNR thresholds below.

Bayesian Uncertainty in 2048 x 2048 Buzzard Peak statistic: SNR = 30 dB

—— Sparse DB8: MAP —— Sparse DB8: MAP
99% Confidence. I\ 99% Confidence.
N 68% Confidence s000 4| 68% Confidence

Cumalative Peak Count (logarithmic)
Cumalative Peak Count (linear)

g

5 4 s
Threshold (no) Threshold (no)

Figure 7.7: Cumulative peak statistic for a 2048 x 2048 planar convergence map extracted
from the Buzzard V-1.6 simulation (see section 7.5.1) contaminated with i.i.d. Gaussian
noise such that the discretized simulated shearing fields are of SNR 30 dB. The purple
outer contours are the computed upper and lower bounds at 99% confidence, with the inner
red contours representing the 68% (~ 1o) bounds, included to aid comparison to similar
literature which typically quote 1o errors. Note that the information content drops for
higher o thresholds as fewer peaks are present, leading to larger relative uncertainty as fewer
samples are recovered. Further note that this example is computed in a highly idealized
low-noise setting.

At input SNR of 20 dB, for thresholds € [20,60) on a single 2048 x 2048 planar
patch the upper and lower bounds exist and are of O(48%) at 99% confidence and
of O(13%) at 68%. At input SNR of 25 dB, for thresholds € [20,80) on a single
2048 x 2048 planar patch the upper and lower bounds exist and are of O(25%) at 99%
confidence and of O(7%) at 68%. At input SNR of 30 dB, for thresholds € [20,80)
on a single 2048 x 2048 planar patch the upper and lower bounds exist and are of
O(15%) at 99% confidence and of O(3%) at 68%. These illustrative examples imply
that for the Bayesian peak statistic to tightly constrain the cumulative peak statistic,
comparatively larger and or cleaner data-sets may be required — or, of course, a more
informative prior (though this must be well justified). However, to reduce the shot
noise introduced via intrinsic ellipticities more galaxies must be observed within a

given pixel.
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Bayesian Uncertainty in 2048 x 2048 Buzzard Peak statistic: SNR = 25 dB

—— Sparse DB8: MAP —— Sparse DB8: MAP
R 99% Confidence. \ 99% Confidence.
R 68% Confidence s000{\ 68% Confidence
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Figure 7.8: Cumulative peak statistic for a 2048 x 2048 planar convergence map extracted
from the Buzzard V-1.6 simulation (see section 7.5.1) contaminated with 4.i.d. Gaussian
noise such that the discretized simulated shear (see section 9.3.2) are of SNR 25 dB. The red
inner contours represent the upper and lower bounds at 68% (~ lo) confidence, with the
outer purple contours representing the computed bounds at 99% confidence.

Bayesian Uncertainty in 2048 x 2048 Buzzard Peak statistic: SNR = 20 dB
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Figure 7.9: Cumulative peak statistic for a 2048 x 2048 planar convergence map extracted
from the Buzzard V-1.6 simulation (see section 7.5.1) contaminated with i.i.d. Gaussian
noise such that the discretized simulated shear (see section 9.3.2) are of SNR 20 dB. The red
inner contours represent the upper and lower bounds at 68% (~ 1o) confidence, with the
outer purple contours representing the computed bounds at 99% confidence. The shaded
blue region indicates threshold values for which at 99% confidence the data cannot rule out
the possibility that no peaks exist above this threshold (note that in these regions the lower
bound is technically 0 and there still exists a well defined upper bound which is given).
Comparing this plot to Figure 7.7 we see that as the noise level increases the 68% and 99%
confidence iso-contours expand (as one would expect) and that in all cases the MAP peak
statistics do not disagree at 99% confidence.
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One way to increase this is to simply increase the observed number density of
galaxy observations, however to do so one must observe galaxies at lower magnitude
(for a fixed redshift), which inherently leads to more bright distant galaxies being
detected which results in galaxy blending. Hence, increasing the number density
significantly above ~ 30 gals/arcmin? is typically quite difficult in practice. Alterna-
tively, the pixelisation can be adjusted to ensure that the mean galaxy count per pixel
is above a given threshold — though for weak lensing the majority of non-Gaussian
information is stored at fine-scales, which require small pixels, and so using larger
pixels to reduce the noise level is sub-optimal for information extraction.

Within the definition of the up- and down-scaling kernels (see sections 7.4.1 and
7.4.2) we define a circular aperture around a selected peak which we define to be the
extent of the peak. These regions are roughly equivalent to super-pixel regions as
described in Cai et al. (2018b). In previous work it was shown (Price et al., 2019a)
that for local credible intervals (c.f. pixel level error bars) the typical error in the
approximate HPD credible region is of O(12.5%), and is conservative — note that
the quoted 25% mean RMSE error is split approximately equally between the upper
and lower bounds, therefore this roughly corresponds to a mean error of 12.5% on
both. Therefore the bounds drawn on the peak statistic here are likely to be ~ 12.5%
less tight than the true Bayesian bounds — which could be formed if one were to
reconstruct the 4 x 10% dimensional posterior via MCMC.

In this chapter (particularly the second half) we are primarily concerned with
demonstrating how one may recover principled uncertainties on aggregate statistics
of the convergence map — such as, but not limited to, the peak statistics. Hence
we do not provide detailed analysis of how these Bayesian uncertainties may effect
cosmological constraints derived from such statistics — this is saved for future work.
However it is worth mentioning that one could either leverage these uncertainties to
define the data covariance in a Bayesian manner (as opposed to MC which is fast but
may not necessarily be fully principled, or MCMC which is O(10°) times slower than
our MAP approach) before then running a standard likelihood analysis, or perform a
grid search in parameter space using these uncertainties again as the data covariance.
Correctly accounting for the uncertainties introduced during mass-mapping has been
shown to be an important consideration for the future prospects of statistics such as
this (Lin, 2016).

7.6 Summary

Leveraging the sparse Bayesian mass-mapping framework previously developed (Price

et al., 2019a, 2021a) we have presented two novel Bayesian uncertainty quantification

techniques which can be performed directly on weak lensing convergence maps.
The first of these techniques recovers the uncertainty in the location of a feature

of interest within a reconstructed convergence map — e.g. a large peak — at some
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well defined confidence. We call this locational uncertainty the ‘Bayesian location’.
Additionally, for computational efficiency we develop a novel sampling scheme of the
position iso-contour of a given feature which we call ‘N-splitting circular bisection’.
We find that sampling the position iso-contour in this way could be many orders of
magnitude faster in high dimensions than typical inverse nesting approaches. To
evaluate this technique, we perform sparse Bayesian reconstructions of 1024 x 1024
convergence maps extracted from Bolshoi N-body simulation datasets upon which we
compute the Bayesian location of the four largest sub-halos for a range of noise-levels.

The second of theses techniques quantifies the uncertainty in the cumulative
peak statistic of a recovered convergence map. With this technique we can for the
first time provide principled Bayesian lower and upper bounds on the number of
observed peaks at a given signal to noise threshold, for a single observation, at well
defined confidence. We extract 2048 x 2048 convergence maps from the Buzzard
V-1.6 N-body simulation, upon which we calculate the cumulative peak statistic
with Bayesian upper and lower bounds at 99% for a range of input noise-levels. We
also provide the 68% confidence bounds which we infer from the 99% bounds to aid
comparison to typical bootstrapping (MC) approaches.

For upcoming wide-field surveys convergence reconstruction will likely be done
natively on the sphere (a single collective sample) to avoid projection effects, making
bootstrapping approaches difficult and at worst infeasible due to the fact that they
are only asymptotically exact. Bayesian approaches require only a single set of
observations to make exact inferences, and so extend trivially to the more complex
spherical setting. Moreover the novel uncertainty quantification techniques presented
in this section and those presented previously in Cai et al. (2018b) and Price et al.
(2019a, 2021a) can be rapidly computed and support algorithmic structure which
can be highly parallelized, making them the ideal tools for principled analysis of

convergence maps.
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Chapter 8

General spherical inverse problems

This chapter is based on research presented in M. A. Price, L. Pratley, J. D.
McFEwen, “Sparse image reconstruction on the sphere: a gemeral approach with
uncertainty quantification”, submitted to IEEE Transactions on Image
Processing, 2021.

Price et al. (2021c)

Note: This chapter assumes knowledge of the following. Convexr optimisation
and proximal analysis, as outlined in section 2.2. Bayesian methods,
particularly those discussed in section 3.2.2 and 3.2.8. An understanding of
analysis of signals over spheres is helpful, including e.g. the construction of
spherical wavelet dictionaries. The spin operators of section 4.2.4 will be

adopted without definition.

In previous chapters we considered the mass-mapping inverse problem over
tangent planes, however such planar techniques are insufficient for upcoming stage
IV surveys, which are forecast to observe a large portion of the celestial sphere.
Hence, to avoid projection effects, mass-mapping techniques must be extended to the
sphere. More broadly, inverse problems defined naturally on the sphere are becoming
increasingly of interest. As a first step towards spherical mass-mapping, in this
chapter we formulate a general framework for evaluation of inverse problems on the
sphere, with a strong emphasis on flexibility and scalability. We consider flexibility
with respect to the prior selection (regularisation; see sections 3.1.3 and 2.1.3), the
problem definition, e.g. the problem formulation (constrained/unconstrained) and
problem setting (analysis/synthesis), and optimisation adopted to solve the problem
(see section 2.2). We discuss and quantify the trade-offs between problem formulation
and setting. Crucially, we consider the Bayesian interpretation of the unconstrained
problem (see section 3.2.2) which, combined with recent developments in probability
density theory (see section 3.2.3), permits rapid, statistically principled uncertainty
quantification (UQ) in the spherical setting. Linearity is exploited to significantly
increase the computational efficiency of such UQ techniques, which in some cases
are shown to permit analytic solutions. We showcase this reconstruction framework

and UQ techniques on a variety of spherical inverse problems. This chapter lays the
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foundations upon which the mass-mapping algorithm of chapter 5 can be extended

to the celestial sphere in chapter 9.

8.1 Introduction

Increasingly often one wishes to solve inverse problems natively on the sphere
(S?) rather than on n dimensional Euclidean space (R"), e.g. in astronomy and
astrophysics (see e.g. Aghanim et al., 2020; Price et al., 2021b; Wallis et al., 2021),
biomedical imaging (see e.g. Tuch, 2004; McEwen and Price, 2019), and geophysics
(see e.g. Ritsema et al., 2011). Straightforwardly from Gauss’ Theorema Egregium —
which states that the curvature of surfaces embedded in R? is immutable, and thus
planar projections of curved manifolds (e.g. the sphere) inherently incur (significant)
distortions — analysis over such domains must necessarily be conducted natively
on the sphere. Though many Euclidean techniques may provide inspiration for
counterparts on the sphere, there are a still a great many critical differences between
these paradigms which must be considered. Typically, inverse problems of interest,
particularly on the sphere, are (often severely) ill-posed and/or ill-conditioned,
motivating the injection of prior knowledge to stabilize the reconstruction. Such
problems can be solved in a variety of ways (e.g. sampling methods and machine
learning methods) though, for robustness and scalability, in the spherical setting
variational methods (e.g. optimisation) are the most effective.

Due to recent advances in the theory of compressed sensing (Candeés et al., 2006;
Candes et al., 2006; Donoho, 2006) sparsity priors (e.g. ¢1-regularisation) are now
routinely adopted, where the solution to an inverse problem can be constrained
and found by promoting sparsity in a dictionary, such as wavelets or gradient space
(variational norms) — see sections 3.1.3 and 2.1.3 for further discussion. Recent
developments in proximal convex optimisation algorithms facilitate the practical
application of non-differentiable priors (see section 2.2.4), where they can be dis-
tributed and scale to high dimensional parameter spaces (Onose et al., 2016; Pratley
et al., 2019). The spherical counterparts for discrete gradient spaces (McEwen et al.,
2013a), wavelet families (Narcowich et al., 2006; Starck, J.-L. et al., 2006a; Baldi
et al., 2009), and scale-discretized wavelet families (Wiaux et al., 2008; Leistedt
et al., 2013; McEwen et al., 2013b, 2015¢; McEwen et al., 2018) have been developed,
and have found wide applications — see previous papers in this series (McEwen
et al., 2013a; Wallis et al., 2017) for a more comprehensive overview of this topic.
Somewhat restricted investigations of some aspects have already been conducted,
e.g. considering sparsity in spherical harmonic space (Rauhut and Ward, 2012) and
sparsity in various redundant dictionaries (Abrial et al., 2007; McEwen et al., 2013a;
Wallis et al., 2017).

Variational inference techniques to solve inverse problems may be constructed

in either the analysis or synthesis setting where signal coefficients or coefficients of a
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sparse representation are recovered respectively (Elad et al., 2006). For Euclidean
settings the analysis problem typically provides greater reconstruction fidelity, a
characteristic often attributed to the lower cardinality of the analysis solution space
(Elad et al., 2006; Cleju et al., 2012; Nam et al., 2013). However, comparisons
between the analysis and synthesis settings on the sphere are not so clear, due to
the approximate effective cardinality of different spaces on the sphere (Wallis et al.,
2017). There also exists a more fundamental binary classification of optimisation
problems: constrained and unconstrained, corresponding to regularisation via hard
and soft constraints respectively (Boyd, 2004), as discussed in section 2.2. Hard
constraints (constrained formulation) do not depend on variables such as Lagrangian
multipliers, the optimal selection of which is an open problem, and instead constrain
the solution to a certain sub-space. Soft constraints (unconstrained formulation)
can be considered as Bayesian inference problems (see e.g. Robert, 2001) and thus
support a principled statistical interpretation (Feeney et al., 2014; Pereyra, 2017;
Cai et al., 2018b).

Traditionally, although variational approaches may support a probabilistic
interpretation they typically recover point estimates and do not quantify uncertainties
(see section 3.2.2). Fully probabilistic approaches (e.g. Markov chain Monte Carlo
sampling methods, discussed in section 3.2.1) exist but are computationally expensive
in the high dimensional setting of the sphere, motivating the development of hybrid
techniques, e.g. those presented in chapter 5. Recent developments in the field
of probability density theory (Pereyra, 2017) address precisely this consideration,
facilitating flexible generation of scalable, fully principled Bayesian uncertainty
quantification (UQ) techniques for variational approaches. Many such techniques
have been developed (Cai et al., 2018b; Repetti et al., 2019; Price et al., 2019a,b,
2021a), with applications in a variety of domains. In this chapter, we leverage these
UQ techniques (specifically those discussed in chapters 5-6) to recover Bayesian local
credible intervals, in effect pixel-level error bars, and other forms of hypothesis tests
on discrete spherical spaces. Interestingly we show how these uncertainties for a
variety of common objectives can be computed rapidly (by exploiting linearity) and
in some cases analytically. Such computational savings are a key component for the
future of scalable UQ for spherical inverse problems. Looking forward one might
note that these UQ techniques for variational imaging rely only on log-concavity of
the posterior (convexity of the objective), such that a great many combinations of
likelihood (data-fidelity) and prior (regularisation functionals) are permissible.

In the spirit of open access software and scientific reproducibility, the spherical
reconstruction software (S2INV) developed during this project is made publicly avail-
able.! S2INV is an object oriented C++ software package (with python extensions)
which acts as a spherical extension to the SOPT (Carrillo et al., 2012, 2013; Onose

1https ://github.com/astro-informatics/s2inv
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et al., 2016) software package for flexible, efficient sparse optimisation. We use
fast exact spherical harmonic (McEwen and Wiaux, 2011) and spherical wavelet
transforms (Leistedt et al., 2013) to rapidly solve linear and ill-conditioned spherical
inverse problems.

The remainder of this chapter is structured as follows. In Section 8.2 we provide
the mathematical context which underpins analysis of spin signals on the sphere. In
Section 8.3 we present variational regularisation approaches to solve spherical inverse
problems and consider the unconstrained and constrained formulations, in both
the analysis and synthesis settings. Furthermore, we discuss the generalization of
planar regularisation functionals to their spherical counterparts, and briefly highlight
highly optimized, scalable spherical reconstruction open-source software available as
a by-product of this work. In Section 8.4 we develop principled Bayesian uncertainty
quantification techniques which can be leveraged for spherical inverse problems, and
present acceleration methods exploiting function linearity and/or objective analytic
solutions. A diverse selection of numerical experiments are presented in Section 8.5

before providing concluding remarks in Section 8.6.

8.2 Spin-signals on the sphere and rotation group

One often wishes to consider the frequency space representation of signals; whether
this be embedded within regularisation methods, necessary to fully capture a desired
forward model, or simply adopted to exploit computational symmetries (e.g. fast
convolution algorithms). In the Euclidean setting, the frequency information of a
signal is efficiently expressed through projection onto Fourier space, the Fourier
transform. For spherical settings frequency information is expressed though projection
onto the space of spin spherical harmonics. In this section we review the mathematical

background fundamental to the analysis of signals defined on the sphere.

8.2.1 Spin spherical harmonic transforms

The space of square integrable spin-s functions sf € L%[S?], for s € Z, with inner
product (-|-)s2, are defined by their response under local rotations of x € [0,27)
about the tangent plane centered on the spherical co-ordinate w = (6,1)) € S?, given
by sf'(w) = e X, f(w) where sf’ is the rotated function (Newman and Penrose,
1966; Goldberg et al., 1967). Such functions are most naturally represented by the
spin-weighted spherical harmonics Yy, € LQ[SQ] which are a set of complete and
orthogonal basis functions for degree ¢ € Z~ and integer m € Z,|m| < ¢,|s| < {. We
adopt the Condon-Shortley phase convention (Condon et al., 1951), which results
in conjugate symmetry ;Y (w) = (=1)*""_;Y;_,,,(w), where (-)* denotes complex
conjugation.

A spin-s function  f € L?[S?] may be decomposed into the spin spherical harmonic

basis by
sffm = <sf£m|snm>82 = /S2 dQ(w) sf(w) s}/;n(w)v (81)
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where dQ(w) = sin(0)dfdy is the standard rotation invariant measure (Haar measure)
on the sphere. Equivalently, by the orthogonality and completeness of Yy, (w), one

can exactly synthesize the signal space representation by

oo 4
sf(w) = Z Z sf@m s}fém(w)a (82)

L=0m=—¢
where the sum over ¢ is often truncated at L, and where it is assumed that fs,, =
0,V¢ > L. In this sense, signals are considered to be bandlimited at L. For notational
brevity we adopt the shorthand operator notation Y and Y~! to denote the forward
and inverse spherical harmonic transforms.

This transformation allows one to probe the frequency content of spin signals
defined on the sphere, which facilitates, e.g, efficient convolutions over spherical
manifolds, in much the same way that one can compute convolutions over R?
through the Fourier convolution theorem. In many cases signals have 0 spin and
so these relations collapse to the simpler form most readers are likely familiar with.
Nevertheless, a variety of interesting physical settings exist where signals exhibit
non-zero spin, e.g. weak gravitational lensing, the cosmic microwave background, or

quantum mechanical systems.

8.2.2 Scale-discretized directional spherical wavelets

Leveraging the above spin-s spherical harmonic basis, and the associated convolutional
properties, one can construct wavelet dictionaries naturally on the sphere. To do
so one must first define a general rotation R,, for Euler angles p = (a, 3,7) € SO(3)
with o € [0,27),8 € [0,7), and € [0,27), with action (R, f)(w) =e ", f(R,'w).
The directional scale-discretized wavelet coefficients of any square integrable spin-s

function ,f € L2[S?] are given for scale j by the directional convolution

WY (p) = (o f ® TD)(p) = (o f, Rps TD)ga = /S2 AQ(w) s f (W) (Rps ) * (W),
(8.3)

where ® represents the directional spherical convolution and ,¥0U) € L2[S?] is the
wavelet kernel at scale j € Z~(, which determines the compact support of a given
wavelet scale (Leistedt et al., 2013).

Typically wavelet coeflicients have negligible energy concentration over the low-
frequency domain in harmonic space, hence a scaling function 4T € L2[S?] is introduced
(McEwen et al., 2015¢; McEwen and Price, 2019) with coefficients W= € L2[S?]
defined by the axisymmetric convolution ® with a signal ,f € L?[S?] such that

W)= (fO V) (W) = (of, RusT)g2 = /82 dQW)sf(W)(RuwsT)* (W),  (8.4)
where Ry, = R(y,9,0) is a simplification of R,. One can straightforwardly show that
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the pixel-space representation of signals may be exactly synthesized

() = AW T R o) +3 Lo, W ()R ¥ D)),
(8.5)

if, and only if, the wavelet admissibility condition holds (see e.g. McEwen et al.,
2015¢). There exist many functions which are admissible, e.g. spherical needlets
(Marinucci et al., 2007), ridgelets (McEwen and Price, 2019) and curvelets (Chan
et al., 2017), however in this work we choose to adopt the directional scale-discretized
wavelet harmonic space kernel (Wiaux et al., 2008; McEwen et al., 2018). For
notational brevity we define operators W and W' for the synthesis and analysis
wavelet transforms respectively, with corresponding adjoint operators Wi and (\U_I)T
(for further details see e.g. Wallis et al., 2017).

8.3 Generalized spherical imaging

Imaging inverse problems are found in countless areas of both science and industry;
consequently a great wealth of effort has been spent developing signal processing,
Bayesian inference and, more recently, machine learning techniques for solving
such problems. However, these techniques have overwhelmingly been restricted to

Euclidean settings, in large part due to their prevalence and relative simplicity.

As such, planar imaging benefits greatly from the flexibility such a dictionary of
techniques affords, whereas techniques developed for non-Euclidean manifolds (e.g.
the sphere) are comparatively rare. One might reasonably consider applying planar
techniques to spherical settings, e.g. through the analysis of planar projections,
however these fundamentally fall short (Wallis et al., 2021) as a result of Gauss’
Theorema Egregium — a core concept of differential geometry, which dictates that
one may not flatten a ball without incurring significant distortions. Nonetheless,
one can certainly consider the development of analogous techniques defined natively
on the sphere. Previously, the spherical total variation TV-norm was constructed
(McEwen et al., 2013a), and the analysis and synthesis settings were compared in a
spherical setting (Wallis et al., 2017). In this section we extend the discussion to
include the constrained and unconstrained formulations, supported by a variety of

proximal optimisation algorithms, and a variety of regularisation functionals.

On the sphere the setup of such imaging problems is as follows: consider the
case in which one acquires complex measurements y € C™, which may or may not
be natively on the sphere, but can be related to an estimated or true spherical signal

x € CNs2 through the linear mapping
& c CM*Ne2 . g e CNs2 s y e CM,| (8.6)
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commonly referred to as the measurement operator, which simulates measurement
acquisition. Suppose observations are contaminated with stochastic noise n € CM such
that y = @z +n which is classically ill-posed (see e.g. Hadamard, 1902). Furthermore,
when one considers that spherical observations are often incomplete, i.e. | M| < |Ng2|,
such problem instances quickly become (seriously) ill-conditioned (see section 2.1.2).
A diverse set of techniques exists to solve such inverse problems. This thesis is
primarily concerned with variational approaches, for which we develop uncertainty
quantification techniques in Section 8.4. Variational approaches consider the inverse
problem as a minimisation problem over a chosen objective function, which is typically
the combination of a data fidelity term and a regularisation term — selected to
stabilize reconstruction with a priori assumptions as to the nature of the problem
instance. Such optimisation problems are comprehensively discussed in section 2.2.
Given an objective function over which to minimise, one must make a variety of

decisions regarding optimisation formulation.

8.3.1 Constrained and unconstrained optimisation

Suppose one selects data-fidelity term f(x) and regularisation functional g(x), then
the unconstrained optimisation problem has the Lagrangian formulation (see e.g.
Boyd, 2004, and section 2.2.3)

= arxgergin {f(a:) + )\g(:c)}, (8.7)

where = {CNs2, RNs2, Rgﬁf}, and the regularisation parameter A\ € Ryg is a
Lagrangian multiplier that balances the relative contributions of the two functions
to the objective. In effect A allows for a smooth re-weighting (soft constraint) of
the solution space instead of the strict boundary (hard constraint) imposed in the
constrained problem. When one formulates such optimisations in the unconstrained
setting, the solution which minimizes the objective is in fact the maximum a posteriori
(MAP) estimator z* = 2MAP,

Interestingly, it is well known that the unconstrained problem has direct links to
Bayesian inference and supports a principled statistical interpretation, as discussed
in section 3.2.2. However, until recently such Bayesian interpretations have been re-
stricted to point estimators and/or severely restricted objective functional forms. One
can leverage recent advances in probability concentration theory (Pereyra, 2017) to
develop unconstrained optimisation techniques which support principled uncertainty
quantification, as previously discussed in section 3.2.3. Therefore, when considering
spherical imaging problems, where Bayesian sampling methods are impractical, in sci-
entific domains, where uncertainty quantification is a desirable feature, unconstrained
optimisation exhibits significant advantages. However, this advantage comes at the

additional complexity of optimal selection of the regularisation parameter A. Popular
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methods for selection of A have adopted criteria such as: the Akaike information
criterion (AIC; Akaike, 1998), Bayesian information criterion (BIC; Schwarz et al.,
1978), or Stein’s unbiased risk estimator (SURE; Stein, 1981; Pesquet et al., 2009)
and others (Vidal and Pereyra, 2018). Optimal regularisation parameter selection
is still very much an open problem (for various reasons including bias vs variance
considerations). In this work we adopt a recently developed hierarchical Bayesian
inference approach (Pereyra et al., 2015) which treats the regularisation parameter as
a nuisance variable (Robert, 2001) over which a majorisation-minimisation algorithm
marginalizes. Effectively this method produces automatic, somewhat robust A selec-
tion with a straightforward, natural Bayesian interpretation, facilitating principled

uncertainty quantification (see section 5.2.4 for an overview of this method).

Suppose instead that one is unwilling to accept a trade-off in either the data-
fidelity or regularisation functional, 7.e. one requires that the data-fidelity is strictly
below a given threshold, or that solutions belong to a restrictive sub-space of the
regularisation support or measurement operator. For such inverse problems, the
problem instance is formulated as a constrained optimisation problem, in which one
function is minimized subject to the constraint that the other function belongs to
some constrained set (Boyd, 2004). Here we consider the common form in which
the regularisation functional is minimized subject to the constraint that the solution

belongs within a level-set of the data-fidelity term, i.e.

" =argmin [g(z)| st f(z) <5, (8.8)

e
where 0 is a specified threshold (defining an iso-contour or level-set) of the data-
fidelity term, typically determined by the noise variance. This optimisation restricts

solutions to the sub-space x € B? where Bff is the f-ball centred at z € €2 with radius
J, i.e. B?(z) ={x: f(z) <d}.

This formulation of the constrained problem requires calibration of § which can
be computed from the estimated noise variance, and has a well defined interpretation.
The calibration of additional Lagrangian multipliers (regularisation parameters) is
not required, hence the constrained setting is typically more straightforward to adopt.
For many problem instances the constrained setting provides greater reconstruction
fidelity, though this is likely to be problem dependent. In this sense the soft constraint
adopted by the unconstrained setting (when selected appropriately) allows for bias
to be traded for variance (and wice versa) and thus in particularly ill-posed problem
instances, where the prior weighting is large (i.e. high bias situations), may produce
estimates that are more accurate. Furthermore, the constrained problem does
not have an associated or well defined posterior distribution over the latent space,

prohibiting principled uncertainty quantification.
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8.3.2 Analysis and synthesis settings

Often one adopts regularisation functions which are computed on projections of the
image space, e.g. wavelet space, harmonic space, gradient space etc. (see sections
2.1.3 and 3.1.3). In such settings one can formulate optimisation problems that
consider the inverse problem latent space to be the image space or the projected
space, giving rise to the analysis and synthesis formulations respectively. In this way
one recovers solutions in pixel-space z* (analysis) or projected space o*, which are
then inverted to form pixel-space estimates x* = Wa* (synthesis) (Elad et al., 2006;
Cleju et al., 2012; Nam et al., 2013).

This is most easily illustrated by considering a simple example. Consider the
wavelet Lasso regression problem in the analysis form, i.e. an ¢; wavelet regularisation
functional ga(z) = |[W ™ z||, and an £y data-fidelity term fa(z) = |[®z —y||3. Clearly
in the analysis formulation the optimisation problems are precisely those given in
Section 8.3.1. However, in the synthesis settings the regularisation functional takes the
form gg(a) = ||a||;, while the data-fidelity term is given by fs(a) = ||<D\|foz—y||§. With
these definitions the synthesis optimisation problem reads in much the same way as
those presented in Section 8.3.1 and, in fact, for situations in which the measurement
operator is orthogonal, 7.e. W1 = Wi, these formulations are equivalent. However,
they have very different geometric properties when this is not the case (Elad et al.,
2006; Cleju et al., 2012; Nam et al., 2013). Notice that we adopt over-complete
spherical wavelet transforms where W1 = W and sampled spherical harmonic
transforms which are not orthogonal, i.e. Y71 # YT (McEwen et al., 2013a) — a
notable difference to the discrete Fourier transform in Euclidean settings. Therefore
on the sphere the analysis and synthesis settings are not equivalent, and often produce
noticeably different results.

In practice the analysis setting has consistently been demonstrated to exhibit
greater reconstruction fidelity, a feature attributed to the lower cardinality of the
analysis solution space (Elad et al., 2006; Cleju et al., 2012; Nam et al., 2013).
However, in previous work it was concluded that this characteristic may not generalize
to the spherical setting (Wallis et al., 2017). In Section 8.5 we revisit this analysis
and find that the variation in relative performance, both in terms of reconstruction
fidelity and computational efficiency, of each setting is dependent on the problem
instance under consideration. Therefore, flexibility with respect to reconstruction
formulation supports development of scalable spherical imaging algorithms tailored
for specific applications. In this work we discover that implicit bandlimiting is often a
determining factor when one considers inverse problems on the sphere, which impacts
the effective cardinality of the spaces considered. In this sense it is beneficial to either
(i) adopt the synthesis setting in which signals are implicitly bandlimited during
reconstruction or (ii) explicitly bandlimit the analysis setting, which some settings

can be computationally inefficient on the sphere. An example of such computational
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savings in the synthesis setting is demonstrated in Section 8.5.3, where an iterative
Wiener filtering approach is adopted. In this case the analysis/synthesis formulations

require 6,2 spherical harmonic transforms respectively.

8.3.3 Regularisation functionals on the sphere

Having discussed the variety of ways one may formulate and construct an optimi-
sation on the sphere, we should now consider spherical counterparts to common
regularisation functionals and how one can develop these for the spherical setting.
Such regularisation functionals include e.g. sparsity promoting |[|-||; regularisers,
typically in a sparsifying dictionary W, which are often motivated by the theory
of compressed sensing (Candes et al., 2006; Candes et al., 2006; Donoho, 2006);
Gaussian ||||3 regularisers, which are often iterative implementations of harmonic
Wiener filters (Hiller and Chin, 1990; Kodi Ramanah et al., 2019); and spherical
total-variation (TV) priors (McEwen et al., 2013a), which are effective for edge
detection and segmentation tasks.

Most imaging problems exist in the discrete settings, and so depend on approxi-
mations to the underlying continuous ¢,-norms. In spherical settings one often adopts
equiangular sampling (McEwen and Wiaux, 2011), which does not uniformly sample
the continuous norms. Typically this results in disproportionate weight being applied
to pixels located at the poles, due to progressively increased sampling density away
from the equator. To account for this spherical (directional wavelet) counterparts to

the traditional norms are defined by
1
sellzll, = llwozll, = wllall, = (3D sllasal})?, (8.9)
j n

respectively, where w € S? is the corresponding map of reciprocal pixel areas on the
sphere, o is the Hadamard product, and j,n € Z~ are wavelet scale and direction
respectively. This reformulation provides a closer approximation to the underlying
continuous /,-norm on the sphere.

With these corrected norms one can straightforwardly consider, e.g., sparsity
in spherical wavelet space ¢||WTz||;. Such a generalization permits multi-resolution
algorithms (Leistedt et al., 2013) resulting in wavelet scale projections of varying
resolution, which provide a significant increase in computational efficiency, a funda-
mental bottleneck of variational methods on the sphere. In theory one could leverage
the exact quadrature weights inherent to the underlying spherical sampling theorems
(McEwen and Wiaux, 2011), however in this work we find simple weights w;,, which

capture the pixel area to be sufficient.

8.3.4 [Efficient flexible imaging on the sphere

Variational approaches efficiently locate optimal solutions wvia iterative algorithms,

which typically leverage 15*-order (gradient) information to navigate towards extremal
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values. Furthermore, for convex objectives, such algorithms permit strong guarantees
of both convergence and the rate of convergence. Imaging problems often adopt non-
differentiable regularisation functionals (e.g. ¢1-norms) for which proximal operators
may be used to navigate the objective function, thus motivating proximal convex

optimisation algorithms.

Convex optimisation algorithms require successive iterations to converge; as such,
any operators evaluated must be efficient and precise, so as to facilitate accurate,
scalable methods. These considerations are more pronounced when considering
optimisation over spherical manifolds, wherein underlying operators (e.g. spin-s
spherical harmonic transforms) scale poorly with dimension (x O(L3) in the best
case scenario). Additionally, a large subset of optimisation algorithms require adjoint
1 operators, which are often incorrectly approximated by their inverse operators,
introducing unpredictable errors and breaking convergence guarantees. Furthermore,
on the sphere one must also consider the weighting scheme presented in Section 8.3.3,
which can be incorporated into proximal optimisation algorithms through a direct
operator that performs the weighting, or by weighting norms. To avoid additional
complications (e.g. under certain norms weighting operators do not represent tight

frames, necessitating additional sub-iterations) we simply weight the norms directly.

During this research we developed a highly optimized object oriented (OOP)
C++ software framework (S2INV) which permits all the aforementioned flexibility.
The equiangular sampling theorem on the sphere of (McEwen and Wiaux, 2011)
is adopted through the SSHT? package, which permits fast and efficient spin-s
spherical harmonic transforms, whilst permitting machine precision computation.
Additionally, we adopt optimized scale-discretized directional wavelets on the sphere
(Wiaux et al., 2008; McEwen et al., 2013b, 2015¢) through the S2LET? package
(Leistedt et al., 2013; Wallis et al., 2017), which are optimally sampled and support
machine precision synthesis. We leverage a recently developed, highly optimized
C+4 OOP sparse optimisation framework SOPT* (Carrillo et al., 2012, 2013; Onose
et al., 2016), which facilitates a variety of proximal convex optimisation algorithms,
e.g. forward-backward (Beck and Teboulle, 2009; Combettes and Pesquet, 2011),
primal dual (Boyd, 2004; Combettes et al., 2014; Komodakis and Pesquet, 2015), and
the alternating direction method of multipliers (Boyd et al., 2011), with appropriate
modifications for the spherical setting. In this way S2INV provides a scalable, flexible,
open-source software package, which is fully customizable and supports a wide variety
of novel, fully principled, uncertainty quantification techniques on the sphere, which

we discuss in Section &.4.

2https ://astro-informatics.github.io/ssht/
3https ://astro-informatics.github.io/s2let/
4http ://astro-informatics.github.io/sopt/
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8.4 Spherical Bayesian uncertainty quantification

The unconstrained reconstruction problem has a straightforward Bayesian interpre-
tation which is as follows. The posterior distribution of a spherical image z € CNs2
defined over, e.g., the celestial sphere or the globe, given observations y € CM is

given by Bayes’ theorem,

P(y|z; M)P(z; M)

P(zly: M) =
(zy; M) f(chQ P(ylx; M)P(z; M)dx’

(8.10)

where the likelihood encodes data fidelity, the prior encodes a priori information of
the image, and M represents some model, which includes the mapping ® € CM*Ns2
x — y, and some understanding of the noise inherent to y (see e.g. Robert, 2001).
Note that the marginal likelihood (Bayesian evidence) is a constant scaling of the
posterior and can be used for model comparison, which we do not consider further in

this thesis.

Typically sampling methods, e.g. Markov chain Monte Carlo, are adopted
to sample from the posterior distribution from which one can determine a point
estimation of the solution to the inverse problem and the distribution of uncertainty
about such a solution. Although these methods recover asymptotically exact estimates
of the posterior distribution, they typically require large numbers of samples to
converge. Each sample requires at least a single evaluation of the posterior which in
spherical settings is computationally demanding — for moderate resolutions L > 103

sampling methods rapidly become computationally intractable.

Instead consider a variational approach that maximizes the posterior odds,

referred to as the mazimum a posteriori (MAP) solution defined by

gMAP = argmax [P(xly,/\/l)} x arg;nin [—log( P(y|z; M)P(z; M) )}, (8.11)

h(z)=f(z)+g(z)

where the second line follows by the monotonicity of the logarithm function. For
convex objective functions h(x) this takes the form of a convex optimisation problem
(Boyd, 2004), and therefore Equation 8.7 explicitly returns the MAP solution, as
asserted in Section 8.3.1. Hence, leveraging state-of-the-art convex optimisation
techniques one can efficiently locate the solution which maximizes the posterior
odds. However this is still a point estimate which, though useful, does not obviously
support uncertainty quantification. Recently, approximate contours of the latent space
have been derived facilitating variational regularisation methods with principled
uncertainty quantification. We discuss these approximate methods and develop
uncertainty quantification techniques on the sphere, which we accelerate by exploiting

function linearity.
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8.4.1 Highest posterior density credible regions

A credible region C, C CNs? of the posterior latent space at credible confidence
100(1 — )%, for « € [0,1], satisfies the integral equation (Robert, 2001)

P(x € Coly; M) = / v Py M)lc,de=1-a, (8.12)
zeC's?

where [, is the standard set indicator function. The optimal credible region in
the sense of minimal volume (Robert, 2001) is the highest posterior density (HPD)
credible region defined by C,, = {x : h(z) < €.}, where €, € Ry is an iso-contour
of the log-posterior. Determination of the HPD region requires computation of the
integral in Equation 8.12, which is computationally unfeasible in even moderate
dimensional spherical settings, due to dimensionality and functional complexity
considerations. Convex objectives h(x) support the conservative approximate HPD
credible region C/, defined by (Pereyra, 2017)

Co CCL CCNe2 = {x ch(z) < e;} for ¢, =h(zMAP)4+/16Nlog(3/a)+ N,

(8.13)

which allows one to approximate C, with only knowledge of the MAP solution
2MAP and the dimension N = CNs2. An upper bound on the approximation error
exists (Pereyra, 2017). Therefore for convex objectives, given zMAP one may
draw statistically principled conclusions. This credible set approximation has been
leveraged to develop fast Bayesian uncertainty quantification techniques in a variety
of settings (Pereyra, 2017; Cai et al., 2018b; Price et al., 2019a,b; Repetti et al., 2019;

Price et al., 2021a).
8.4.2 Bayesian hypothesis testing on the sphere

The most straightforward uncertainty quantification technique one may generate by
leveraging the approximation of Equation 8.13 is that of hypothesis testing (Cai et al.,
2018b; Price et al., 2021a,b). The concept of hypothesis testing is to adjust a feature of

MAP generating a surrogate solution 5", of which we ask is

the recovered estimator x
e Ol If 25" ¢ O, = 2™ ¢ C', which follows from the conservative nature of the
approximation in Equation 8.13, the feature of interest is considered to be statistically
significant (necessary to the reconstruction) at 100(1 — «)% confidence. Conversely
% € C!, indicates that the surrogate solution remains within the approximate

credible set and we conclude that the feature is indeterminate.

8.4.3 Local credible intervals on the sphere

Suppose one recovers an optimal solution AP through unconstrained convex
optimisation (see Section 8.3.1) and wishes to quantify the uncertainty associated
with a given pixel or super pixel (collection of pixels). With knowledge of the

approximate level set threshold €/, and therefore the approximate HPD credible set
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C!, at well defined confidence 100(1 — «)%, one simply needs to iteratively compute
the extremal values a given region of interest may take, such that the resulting
solution falls outside of the approximate HPD credible set, i.e. 25" ¢ C/,. One must
then define which types of regions (super-pixels) on the sphere one is interested in.

Formally, select independent partitions of the latent space 2 = U;§2; for which
we define super-pixel indexing functions (. such that x; € ; = (o, =1 and x; ¢
Q; = (o, =0. For a given ; locate upper (lower) bounds 551_, &g, respectively, which
saturate the HPD credible region C?, (Cai et al., 2018b; Price et al., 2019a). This is

achieved by the following optimisations,

&, = fnax {2 ¢ f(@ig) +olwie) < e}, (8.14)
where z; ¢ = MAP o /9, TE&Cq, is a surrogate solution where the super pixel region has
been replaced by a uniform intensity £&. The collective set of these bounds {|§;§l —&q, |}
is taken to be the local credible interval map (Cai et al., 2018b), which can simply
be recovered wvia bisection. Though conditional local uncertainty quantification
techniques such as this have demonstrated utility in certain circumstances (Cai
et al., 2018b; Price et al., 2019a,b, 2021a), in the high dimensional spherical settings
they can quickly become dilute (Price et al., 2021b). This makes intuitive sense, as
small (local) objects (super-pixels) in high dimensional settings become statistically
insignificant. As such, in high-dimensional spherical settings global or aggregate
(statistical) uncertainty quantification techniques are often more meaningful (see e.g.
Price et al., 2021b).

Gridding schemes

One can construct rectangular partitions directly on the latent space (e.g. uniform
gridding). However, in the spherical setting it is sometimes more meaningful to define
a super pixel by a fixed physical area surrounding a defined central pixel. Practically
this is computed as follows: define a central pixel on the sphere, rotate this pixel to
a pole (where higher angular resolution provides greater fine tuning of super-pixel
area), select a given angular deviation from the pole, define this spherical cap as the

super pixel. In this way all super pixels are, by definition, of equal area.

8.4.4 Acceleration through linearity

Naive computation of local credible intervals through bisection can often require
many evaluations of the objective function, which is particularly costly when one
considers functions on the sphere. To avoid this computational bottleneck we exploit
the linearity of such operators. Consider the generalized convex objective function

for the analysis setting which, without loss of generality, can be written as

h(z) = f(2) +g(z) = [|®z —y[l> + Wz |2, (8.15)
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Consider again the partition z°"" = x(q o, +£(q, upon which the applications of
any linear operator £ is given trivially by linearity to be La™" = Lal¢, , +&Ll¢, -
Explicitly expanding Equation 8.15 with linearity one finds

02Ty +EPLeo, —yll? + Wil o +EWTTe, 12 = lla+ 0[5 + [+ £d]|2,

(8.16)

for constant (per credible interval) vectors defined to be
a=%zl, , —y b=,  c=Vlal, ~ d=V, (8.17)

In this way the local credible optimisation problems in Equation 8.14 can be re-written
instead as

la+8bl133 + le+&dlg: < e, (8.18)

which is clearly just a 1-dimensional polynomial root finding problem. One could
approach this inequality from an iterative perspective, forming an upper bound
through the Minkowski inequality, which is then leveraged as initialization for
bisection. For polynomials of order < 5 (see Abel-Ruffini theorem) Equation 8.18
permits analytic solutions. In practice the computational difference between the
analytic solution and solving an inequality bounded bisection problem is marginal,

though in high dimensions this speed up is non-negligible.

Gaussian regression

Suppose one adopts both a Gaussian likelihood and prior (e.g. iterative Wiener
filtering approaches), in such a setting we have p; = po = ¢1 = g2 = 2 which reduces
Equation 8.18 to the binomial inequality ||a+ &b|3 + ||+ £d||3 < ¢, which expands

to give
[Iol13 + 112> +2[a-b+c-d]€ + [llally +lle]3] < (8.19)

One could gain some geometric insight by considering the case in which a-b+c-d =0,
as in such a case the resulting credible region about the posterior is symmetric,
however we do not consider this further here. Nonetheless, per credible region the

interval is trivially recovered.

Lasso regression

Consider the Lagrangian dual of the Lasso regression (e.g. sparse reconstruction), in
which we have p; = ps =2 and q; = ¢ = 1, such that the general polynomial Equation
8.18 reduces to a 2"d-order polynomial [|a+ £b||3 + |jc +£&d||, < ¢/, which, assuming

the intersection of the partitions projected into W is negligible, i.e. the dictionary W

has sufficient localization properties on the sphere, results in the inequality

101126% +2[a -0+ [ldll, )&+ [llall; + llell,] £ eas (8.20)
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which can be analytically solved. Typically the partitions §2; projected into W exhibit
overlapping support and so this inequality is not exact. In such cases one can perform

bisection, computing only the ¢ term at each iteration.

8.5 Numerical experiments

In this section we showcase the variational regularisation and uncertainty quantifica-
tion techniques presented in section 8.3 and section 8.4 on a diverse set of numerical
experiments. For each scenario we create mock observations y = ®z of a ground
truth signal = which are related through the forward model ¢ : x — y from which we
formulate an ill-posed inverse problem (e.g. add noise, mask, blur, etc.). We solve

J:MAP)

this inverse problem for an estimator x* ( of = the success of which we quantify

by the recovered signal to noise ratio, defined by SNR = 20logq(||z|5/[|x —2*||5)-

8.5.1 Earth satellite topography

Suppose a satellite performs observations y € RM of the Earth’s topography (geo-
graphic elevation) which can be related to the true topography x € RVs? through
a mapping (forward model) gy € RM*Ns2 . 1 9. Consider the scenario in which
incomplete, i.e. |M| < |Ng2|, observations y are contaminated with independent and
identically distributed (i.i.d.) Gaussian noise n ~ N (0,02) € RM, and blurred with
an axisymmetric smoothing kernel with full width half maximum (FWHM) ©. In

such a case observations are modeled by y = ®grz +n for measurement operator
®pr =DY'OY and oL, =Yle (Y 1)iDI, (8.21)

where Y,Y ! are forward and inverse spherical harmonic transforms correspondingly,
D,D' are masking and projection operators correspondingly, © is the axisymmetric
convolution with the harmonic representation of © which is trivially self-adjoint, and
T represents the adjoint operation.

As n is a univariate Gaussian the data-fidelity (log-likelihood) term is simply
given by #SQHCDET:L‘ - y||§ Here we adopt a sparsity promoting ¢1-norm wavelet
regularisation ¢||WT(-)||, (Laplace distribution log-prior), and solve both the con-
strained formulation through the proximal ADMM algorithm (Boyd et al., 2011) and
the unconstrained formulation through the proximal forward backward algorithm
(Boyd, 2004; Beck and Teboulle, 2009; Combettes and Pesquet, 2011), in both the
analysis and synthesis settings. Notice the use of spherical (wavelet) space norms,
outlined in Section 8.3.3, which better approximate spherical continuous norms.

To quantify the impact of analysis versus synthesis (and constrained versus
unconstrained) settings we consider all settings in two paradigms (i) varying levels of
inpainting without deconvolution (ii) varying scales of deconvolution with 50% masked
pixel inpainting. Generally, each problem setup performs comparably in all settings

considered (see Figure 8.1). Certainly it cannot be said that one reconstruction
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paradigm is optimal in all settings, which
leads us to conclude that it is likely that
problem formulation optimality is am-
biguous and should be selected on a
case by case basis. Interestingly, notice
the underperformance of the constrained
analysis problem in the heavily masked
regime (see the bottom plot of Figure
8.1). This was observed in prior analy-
sis (Wallis et al., 2017) and reported as
evidence that the synthesis setting may

produce more optimal results.

Note that the synthesis setting im-
plicitly bandlimits the observations =z,
therefore restricting the solution space
cardinality — a factor known to impact
reconstruction fidelity (Elad et al., 2006).
To account for this bias we reran the
analysis optimisation with an explicitly
bandlimited measurement operator, re-
sults of which can be seen in Figure 8.2
(which also demonstrates the uncertainty
quantification of Section 8.4.3). It was
found that the analysis setting performs
similarly to the synthesis setting for this
problem, leading us to conclude that the
optimality of optimisation formulation

is at best ambiguous.

—=— Constrained Synthesis
—=— Constrained Analysis

—=— Unconstrained Synthesis
—— Unconstrained Analysis
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Figure 8.1: Top: Recovered SNR for a va-
riety of problem setups versus variety of ax-
isymmetric blurring kernel scales, for a fixed
inpainting of 50% masked pixels. Bottom:
Recovered SNR for a variety of problem setups
over a variety of inpainting scenarios versus
% of pixels observed. Discussion: Generally
each setup performs similarly and it would ap-
pear that no single setting is optimal in all
cases. Notice the underperformance of the
analysis constrained formulation in the heav-
ily masked regime for the inpainting problem.
We find that this asymmetry is due to the im-
plicit spherical harmonic bandlimiting of the
synthesis problem.

8.5.2 360° camera blur deconvolution

Suppose a 360° camera captures a greyscale spherical image y € RMs2 which can be

related to the true image 2 € RVs? through the forward model ®3g00 € RMs2*Ns2

x — y. Consider that the camera captures complete |Mg2| = | Ng2| observations but

introduces low-level i.i.d. Gaussian noise n ~ A(0,02) € RMs? and a certain amount

of lens blurring characterized by axisymmetric convolution with a Gaussian smoothing

kernel with FWHM = ©. In this case observations are modeled by y = ®3gpox +n

for measurement operator

B350 = YTIOY and @l = YiO (YT,

(8.22)
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Reconstruction

Figure 8.2: Left: Simulated observations contaminated with 30dB Gaussian i.7.d. noise,
convolved with a ~ 268 arc-minute Gaussian blurring kernel, and with 60% of pixels masked.
Original dataset was extracted from the Earth Gravitational Model (EGM2008) publicly
released by the U.S. National Geospatial-Intelligence Agency (NGA) EGM development
team. Right: Unconstrained reconstruction using ¢1-norm wavelet sparsity regularisation
(log-prior) in the analysis setting, adopting the proximal forward-backward algorithm (Boyd,
2004; Beck and Teboulle, 2009; Combettes and Pesquet, 2011).

where Y,Y ™! are forward and inverse spherical harmonic transforms correspondingly
(see section 8.2), © is the axisymmetric convolution with the harmonic representation
of ©.

As in the previous example the data-fidelity is given by the ga||®36007 — yl|3.
Depending on the degree to which x is piece-wise constant the TV-norm ||z || =
s2|| V||, (promoting gradient sparsity) constitutes a good choice of regulariser. For
image deconvolution an analysis wavelet sparsity promoting regulariser \If||\|f_1av||1
is often also considered. Here we consider both regularisation functionals g(x) =

{s2ll#|lpy, wl[ W 2|[;} in the constrained analysis setting;:

) 1
x* = argmin [g(m)] s.t. —5s2l|P3007 — yll3 <6, (8.23)
seCNs2 20

where § € R is the radius of the ¢3-ball 822 which balances sparsity against data-
fidelity, and is defined straightforwardly from the known (in general unknown) noise
variance. We perform an example reconstruction with both priors in the constrained
formulation of the analysis problem using the proximal primal dual algorithm (Boyd,
2004; Combettes et al., 2014; Komodakis and Pesquet, 2015). Both priors produce
similar results, with wavelet sparsity regularisation recovering SNR=17.60 dB and

TV-norm marginally superior at SNR = 17.65 dB — seen in Figure 8.3.
8.5.3 CMB temperature anisotropies

Suppose one captures masked (and therefore incomplete) measurements of the
cosmic microwave background (CMB; Aghanim et al., 2020) y € Cs2 that can be
related through a mapping operator ®cyp € CMs2XNs2 to the full-sky CMB signal
x € CNs2 which can be decomposed into harmonic coefficients @, = (x, Ys,,) which
(for Gaussian fields such as CMB; Aghanim et al., 2020) are uncorrelated and isotropic

E[Z},,Z0rm’] = 000 Oy C, where Cy is the angular power spectrum.
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Observations Reconstruction

Figure 8.3: Left: Simulated observations contaminated with 30dB Gaussian noise and
convolved with a ~ 78 arc-minute Gaussian blurring kernel (e.g. motion blur). Right:
Spherical TV-norm ||| regularized reconstruction through proximal primal dual algorithm
in the analysis setting. Image sourced from the SUN 360 dataset (Xiao et al., 2012).

These considerations motivate the choice of a multivariate Gaussian prior
P(2|M) = exp (—2TC"14/2) for vectorized harmonic coefficients # and covariance
C given by diagonal elements Cy. Consider the case in which |Mg| < |Ng2| with
i.i.d. Gaussian noise n ~ N(0,02) € CMs2 then the whitened harmonic coefficients

3= C_%fc are modelled as y = ®c\p2’ +n for measurement operator
— DYC3 I chyipt
o =DYC2  and Py =C2Y'DT, (8.24)

for spherical harmonic transform Y and masking and projection operators D, Df
respectively. For diagonal noise covariance > = ¢l the univariate Gaussian likelihood
is given by P(y|z'; M) = ﬁy”‘bCMBf/ —yHg, and so the synthesis unconstrained
optimisation is given by

i a2 L i
AP — argmin (|73 + 5 5sel Ponnd’ — yll]. (8.25)
x

where the pixel space signal is recovered by zMAP = Y~1C24#MAP/ This is the convex
optimisation formulation of what is commonly known as Wiener filtering, which is
often adopted for highly Gaussian fields, e.g. the CMB. As expected for Wiener
filtering problems of this type (see e.g. Figure 6 in Kodi Ramanah et al., 2019), we
recover maps which exhibit inpainting of low-¢ modes (large scale structure) into the

masked regions. The results of this experiment can be seen in Figure 8.4.

8.5.4 'Weak gravitational lensing

The following example considers spherical imaging of dark matter (Hu, 2000; Wallis
et al., 2021). A more extensive analysis that applies the method presented to obser-
vational data, and not just simulations, is performed in (Price et al., 2021b) which
leverages many of the methods developed in this work. At first order, gravitational
lensing manifests itself into the spin-0 convergence gz (r,w) € Cs? (the integrated
matter field along the line of sight) and the spin-2 shear oy(r,w) € CNs2 (the ellipticity

of observed images) which can be related to the lensing potential gé(r,w) € CNs2?
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Observations Reconstruction

Figure 8.4: Left: Simulated Gaussian random field generated from lambda cold dark matter
(A-CDM) best fit power spectrum, masked by a Planck survey mask (Aghanim et al., 2020)
and polluted by 30dB 4.i.d. Gaussian noise. Right: Unconstrained reconstruction using an
{o-norm Wiener prior solved by the proximal forward-backward algorithm, in the synthesis
setting (for computational efficiency). The purpose of this reconstruction is to observe
recovered low-£, large-scale information into the masked region (see e.g. Kodi Ramanah et al.,
2019).

by oz(r,w) = $(040_ +0_-04) o¢ and oy(r,w) = 30404 op, where Dy are spin-
raising /lowering operators (Newman and Penrose, 1966; Goldberg et al., 1967).
One can then relate gx and oy to one another in harmonic space by o4em = We 0Zem,
for harmonic space kernel defined in the literature (see e.g. Price et al., 2021b;
Wallis et al., 2021). As gz is not directly observable, typically observations of oy
are collected and used to reconstruct gz. Suppose one recovers observations y € CM
which can be related to the € CNs? wvia the forward model ®yy, € CM*Ns2 : g ¢,
Consider the scenario in which observations y are contaminated with i.7.d. Gaussian
noise n ~ N(0,0%) € CM| then the observations are modelled by y = ®wrx +n for

measurement operator
Owr, = DaY 'WoY and ol =Y W(,Y)TDT, (8.26)

for self-adjoint harmonic space multiplication W with the axisymmetric kernel W,
masking and projection operators D, DT, and spin-s forward and inverse spherical

harmonic transforms .Y, Y ™! respectively.

Since principled statistical interpretation is crucial for this science application,
one may consider the unconstrained formulation of this inverse problem which we
solve here with the proximal forward-backward algorithm in the analysis setting,
with univariate Gaussian likelihood (data-fidelity) and sparsity promoting Laplace

type spherical wavelet prior (regulariser),

. B 1
gMAP _ argmin [)\\I,H\Il 1:1:||1 + ES2||¢WLSL‘ — y||§] ) (8.27)

zecs?

for automatically marginalized regularisation parameter A\ € Rs( (see Section 8.3.1).
Note that sparse priors are often adopted in the weak lensing setting, recovering

state-of-the-art results (Lanusse et al., 2016; Price et al., 2021a,b). Images from
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this experiment can be seen in Figure 8.5. A more in depth application of the
methods developed in this section to dark matter reconstruction can be found in
Price et al. (2021b), in which global hypothesis testing (leveraging the techniques
of Section 8.4.2) is performed to determine whether two reconstruction methods

produce commensurate estimates.

R observations & observations

P 127N e

Reconstruction

s N

Figure 8.5: Top: Simulated weak lensing shear field generated from a ground truth
N-body simulation (Takahashi et al., 2017) signal, which was further contaminated with
5dB i.i.d. Gaussian noise and masked using realistic pseudo-Euclid survey mask. Bottom:
Unconstrained reconstructed dark matter mass-map using ¢;-norm wavelet sparsity prior
solved through using the proximal forward-backward algorithm in the analysis setting. See
related works (Price et al., 2021b) for a comprehensive analysis of this application, with
uncertainty quantification.

8.6 Summary

We present and discuss a flexible, general framework for variational imaging on the
sphere. We consider different formulations of inverse problems as either constrained
or unconstrained problems (Boyd, 2004) in both the analysis and synthesis settings
(Elad et al., 2006; Wallis et al., 2017). The implications, advantages, and disad-
vantages of each choice within the context of imaging on the sphere are considered
both qualitatively and quantitatively. Crucially, we highlight the direct relationship
between the unconstrained setting and Bayesian inference. We combine this real-
ization with recent developments in the field of probability density theory (Pereyra,
2017) to demonstrate how one can perform rapid, statistically principled uncertainty
quantification on reconstructed signals (building upon work in Pereyra, 2017; Cai
et al., 2018b; Price et al., 2019a,b; Repetti et al., 2019; Price et al., 2021a).
Furthermore, we demonstrate mathematically how one may exploit linearity and
general inequality relations to dramatically accelerate such uncertainty quantification
techniques in all settings. It is shown that in a variety of interesting cases these
uncertainty quantification techniques reduce to computationally trivial 1-dimensional

Pt order polynomial root finding problems, which can often be solved analytically.
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While such computational savings are key for scalable, statistically principled spherical
imaging, they are likely also of use for standard 2-dimensional Euclidean imaging.
The aforementioned techniques are demonstrated on an extensive suite of nu-
merical experiments, which simulate a diverse set of typical use cases. Specifically,
we consider a spread of deconvolution, inpainting, and de-noising problems, e.g. from
resolving blurred 360° camera images, to imaging the dark matter distribution on the
celestial sphere. It is found that that optimality of problem formulation (constrained
versus unconstrained) and setting (analysis versus synthesis) is highly situationally
dependent on the sphere. The authors make the scalable, open-source spherical

reconstruction software developed during this work (S2INV), publicly available.
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Chapter 9

Dark matter on the celestial sphere

This chapter is based on research presented in M. A. Price, J. D. McFEwen, L.
Pratley, and T. D. Kitching, “Sparse Bayesian mass-mapping with
uncertainties: Full sky observations on the celestial sphere”, Monthly Notices of
the Royal Astronomical Society, vol. 500, no. 4, pp. 5436-5452, Jan. 2021.

Price et al. (2021b)

Note: This chapter assumes knowledge of the following. Mathematical context
of weak gravitational lensing, presented in sections 4.1.4 and 4.2.3. Bayesian
methods, particularly those discussed in section 3.2.2 and 3.2.3. An
understanding of analysis of signals over spheres is helpful, including e.g. the
construction of spherical wavelet dictionaries. The spin operators of section
4.2.4 and wavelet dictionary of section 8.2.2 will be adopted without definition.
A general understanding of the content provided in chapter 8 is necessary, the

content of chapter 5.

In this chapter we leverage the results of chapter 8 to extend the hierarchical
Bayesian-sparse formalism developed in chapters 5 and 6 to the 2-sphere which, for
the first time, allows mazimum a posteriori (MAP) convergence reconstruction with
principled Bayesian uncertainties in very high-dimensions natively, on the sphere,
without making any assumptions or impositions of Gaussianity (see sections 3.2.2
and 3.2.3). Throughout this chapter we refer to our estimator, formed within this
framework, as the DarkMapper estimator (and by extension the DarkMapper code-
base). The reconstruction formalism developed in this chapter, and any uncertainty
quantification techniques that follow, support any choice of likelihood or prior such
that the posterior function belongs to the (rather comprehensive) set of log-concave
functions (see 2.2.1). As such, one can incorporate various experimental or systematic
effects in future, e.g. more complex (realistic) noise models or intrinsic alignment

corrections etc.

9.1 Introduction

Mapping from shear to convergence (mass-mapping) requires solving an (often

seriously) ill-posed inverse problem — mass-mapping takes the form of a typical noisy
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deconvolution problem with a spin-2 kernel (Wallis et al., 2021), which is classically
ill-posed. The most naive mass-mapping technique for small fields of view is planar
Kaiser-Squires (KS; Kaiser and Squires, 1993), which is straightforward inversion of
the forward model in Fourier space. This estimator does not take into account noise
or boundary effects, and so is typically post-processed via convolution with a large
Gaussian smoothing kernel, thus heavily degrading the quality of high-resolution non-
Gaussian information. Moreover, decomposition of spin-fields on bounded manifolds
is known to be degenerate (Bunn et al., 2003) and so for non-trivial masking the KS

estimator is ill-defined and can be shown to perform poorly (see Section 9.3).

Many, perhaps more sophisticated, approaches to mass-mapping on the plane
have been developed (e.g. VanderPlas et al., 2011; Jee et al., 2016; Lanusse et al.,
2016; Jeffrey et al., 2018) though all either lack a principled statistical framework
or rely heavily on assumptions or impositions of Gaussianity. In previous work we
present a sparse hierarchical Bayesian formalism for planar mass-mapping (Price
et al., 2019a,b, 2021a) that provides fully principled statistical uncertainties without
the need to assume Gaussianity and without the computational overhead of MCMC
methods (e.g. Corless et al., 2009; Schneider et al., 2015; Alsing et al., 2016).

One key assumption of these ‘planar’ mass-mapping techniques is that the area
of interest on the sky can be well approximated as a plane. This assumption is
colloquially referred to as the the flat-sky approximation. For small-field surveys this
approximation is typically justified. However for future wide-field Stage IV surveys
mass-mapping must be constructed natively on the sphere (Hu, 2000; Chang et al.,
2018) to avoid errors due to projection effects, which can be large (Vallis et al., 2018;
Wallis et al., 2021). Naturally one can naively invert the spherical forward model to
form the spherical Kaiser-Squires estimator (SKS; Wallis et al., 2021) which avoids
projection effects but is seriously ill-posed, as is the KS method. It should be noted
that alternative techniques for spherical reconstruction have also been developed
(e.g. Pichon et al., 2010).

The structure of this chapter is as follows. Section 9.2 provides a cursory intro-
duction to Bayesian analysis (see chapter 3 for further discussion) before presenting,
and discussing, both the general hierarchical Bayesian formalism and our Dark-
Mapper estimator. In this section we explicitly outline the likelihood and weakly
informative priors used throughout this paper, but place emphasis on the generality
of this formalism. In section 9.3, using high resolution N-body (Takahashi et al.,
2017) simulations, pseudo-Euclid masking (a masking of the galactic plane and the
ecliptic) and noise realizations representative of a variety of weak lensing survey
eras ( including Stage IV) we demonstrate the drastic increase in reconstruction
fidelity of DarkMapper over SKS. Penultimately, in Section 9.4 we apply both the
SKS and DarkMapper estimators to a global weak lensing dataset constructed via

the concatenation of the majority of publicly available observational datasets. To
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the best of our knowledge this is the first such global spherical dark-matter mass-
map. Furthermore, we perform global Bayesian uncertainty quantification on these

reconstructions. Finally, in Section 9.5 we draw conclusions.

9.2 Spherical Bayesian mass-mapping

Hierarchical Bayesian frameworks facilitate a natural, mathematically principled
approach to uncertainty quantification. For an elegant and approachable introduction
to Bayesian methods see e.g. Robert (2001). This section introduces Bayesian
inference and proceeds to demonstrate how one may cast the spherical mass-mapping
inversion as a hierarchical Bayesian inference problem. For notational ease, we drop

spin subscripts on x and v henceforth.

9.2.1 Bayesian inference

First consider the posterior distribution given by Bayes’ Theorem,

o p(yEs M)p(K; M)
Pl M) = o T M) MY dr ©-1)

where the likelihood function p(-y|k; M) represents the probability of observing a
shear field v given a convergence field k and some well defined model M (which
includes both the mapping ® : k — v and some assumptions of the noise model). The
second term in the numerator, p(x; M) is referred to as the prior which encodes some
a priori knowledge as to the nature of k. Finally, the integral denominator is the
Bayesian evidence (or marginal likelihood) which can be used for model comparison,
though we do not consider this within the scope of the current discussion.

One approach to estimate the convergence field is given by maximizing the
posterior odds conditional on the measurements v and model M. Such a solution is
referred to as the mazimum a posteriori (MAP) solution, k™*P. This can done by
either maximisation of the posterior or — due to the monotonicity of the logarithm

function — minimisation of the log-posterior,
argmax [p(li\%/\/l)} = argmin {—log(p(/ih;/\/l) )} (9.2)
K K

This is a particularly helpful realization as the latter problem is more straightforward
to compute and, for log-concave posteriors, allows one to to pose the problem as
a convex optimisation problem for which one may draw on the field of convex

optimisation.
9.2.2 Spherical sparse mass-mapping

In this section we consider the ill-posed linear inverse problem of recovering the
complex discretized spherical convergence x € CNs? on the complex S2-sphere from
a typically incomplete (M < N) set of M complex discretized shear measurements
v € CM. Throughout we adopt the McEwen-Wiaux (MW) pixelization scheme, which
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provides theoretically exact spin spherical harmonic transforms (SSHT) due to exact
quadrature (McEwen and Wiaux, 2011).

We begin by defining the measurement operator (operator which encodes the
forward model) which maps from a fiducial convergence field to the observed shear

measurements

decCM*Ne2 . g e CVs2 15 ye CM. (9.3)

In the spherical setting, by noting the spherical lensing forward model given by

equation (4.48) this measurement operator, and its adjoint, naturally take the forms,
d=MYWoY and of = YIw,yY'Mf (9.4)

where ,Y and ,Y represent the forward and inverse spin-s spherical harmonic trans-
forms respectively, M is a masking operator, and W is harmonic space multiplication
by the kernel Wy defined in equation (4.48). It should be noted that, from symmetry,
W is trivially self-adjoint. Additionally, it is important to note that adjoint (7)
spin-s spherical harmonic transforms are not equivalent to the corresponding inverse
spherical harmonic transforms — an important caveat often overlooked throughout
the field.

Likelihood Function

Suppose now that measurements v are acquired under some additive Gaussian noise
ni ~ N(0,02) € CM where o; is the noise standard deviation of a given pixel which
is primarily dependent on the number of observations within said pixel, which is in
turn dependent on the pixel size and number density of galaxy observations. Then
the data acquisition model is simply given by v = ®x +n. In such a setting the
Bayesian likelihood function (data fidelity term) is given by the product of Gaussian
likelihoods defined on each pixel with pixel noise variance o2, which is to say an overall
multivariate Gaussian likelihood of known covariance ¥ = diag(o?,03,...,03%,) €
RM*M " Tet &k be the value of Ok at pixel i, then the overall likelihood is then
defined as,

ocnexp<m> Hexp< (®ir— 7,>2>:exp<w>7

(9.5)

where |||, is the fz-norm and ¢ = S22 is a composition of the measurement
operator and an inverse covariance weighting as defined in Section 9.2.2. Effectively
this covariance weighting leads to measurements v = E_%'y which whiten the typically
non-uniform noise variance in the observational data (shear field).

This likelihood is therefore structured to correctly account for the covariance

of observational data. In this case the covariance matrix is taken to be diagonal
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but not necessarily proportional to the identity matrix — therefore accounting for
varied numbers of observations per pixel. There are several points which should be
noted. In the above we have explicitly ignored the complicating factor of intrinsic
galaxy alignments which in practice would lead to non-diagonal covariance. This
extension can easily be supported, given a sound understanding of the effects of
intrinsic alignments on the data covariance (which in practice may be challenging).
Additionally here we, for simplicity, assume each pixel contains a sufficient number
of galaxy observations that a central limit theorem (CLT) argument for pixel noise
can be justified. Largely this assumption is acceptable, however as the resolution
increases (pixel size decreases) the noise becomes increasingly non-Gaussian.
Finally, the forward model considered here (Section 9.2.2) begins from x and
ends at masked, gridded v measurements, however there are several steps which
must take place before one acquires such measurements. One may therefore wish to
extend this model to incorporate such complicating factors as pixelization effects,
reduced shear (see section 9.2), point squared function (PSF) errors etc. It should
then be explicitly noted that this mass-mapping formalism requires only that the
posterior belong to the (rather comprehensive) set of log-concave functions, and as
such one can directly interchange the noise model or introduce complicating factors

where desired, provided the posterior remains log-concave.

Prior Function

As this inverse problem is ill-posed (often seriously), maximum likelihood estimators
(MLE) are sub-optimal and must be regularized by some prior assumption as to
the nature of the convergence field. In this work we select a sparsity promoting,
Laplace-type prior in the form of the ¢;-norm ||.||; — though as discussed in section
9.2 this formalism supports any log-concave priors of which there are many to choose
from (e.g. most exponential family priors).

Laplace-type priors are often adopted when one wishes to promote sparsity in
a given dictionary or basis. Wavelets W are localized in both the frequency and
spatial domains and thus constitute a naturally sparsifying dictionary for most
physical signals. There are several wavelet constructions on the sphere that may be
considered (see e.g. Schroder and Sweldens, 1995; Barreiro et al., 2000; Narcowich
et al., 2006; Starck, J.-L. et al., 2006a; Marinucci et al., 2007; McEwen and Scaife,
2008; Wiaux et al., 2008; Baldi et al., 2009; McEwen et al., 2011, 2018; Chan
et al., 2017; McEwen and Price, 2019) with varying localization and un-correlation
properties. In this analysis we adopt the scale-discretized wavelets (Wiaux et al.,
2008; Leistedt et al., 2013; McEwen et al., 2013b, 2015¢) scheme as not only does
it satisfy quasi-exponential localization and asymptotic un-correlation properties
(McEwen et al., 2018) but also supports directionality which may often be of interest

for the weak lensing setting.
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Specifically we adopt a Laplace-type wavelet log-prior |[W(-)||;. Note that, as
||-||; is a discretization of the continuous ¢;-norm it must be re-weighted by wavelet
pixel size, which in practice is as simple as multiplying a given wavelet coefficient by
a factor proportional to sin(f) where 6 is the angular deviation of the given pixel
from the pole. Throughout this chapter any reference to the ¢1-norm applied to a
spherical space refers explicitly to this spherically re-weighted norm. With our choice

of /1-norm regularisation the prior can be written compactly as
il
p(k) o exp (= ][ W'k, ), (9.6)

where U is the analysis forward-adjoint spherical wavelet transforms (see chapter
8 for details) with coefficients \i/;r, and pu € Ry is the regularisation parameter (see
chapter 5 for details on how this parameter is computed). It is assumed here that the
spherical wavelet dictionary W is a naturally sparsifying dictionary for the convergence
field defined on the sphere. In practice one may select whichever dictionary one’s
prior knowledge of the convergence indicates is likely to be highly sparsifying.

Conceptually, a sparsity-promoting prior can be thought of as a mathematical
manifestation of Occam’s Razor — the philosophical notion that the simplest answer
is usually the best answer. Mathematically, this is equivalent to down-weighting
solutions with large numbers of non-zero coefficients, which may match the noisy
data perfectly, in favour of a less perfect match but with significantly fewer non-zero
coefficients. Alternatively, one may view sparsity priors (in this context) as a relative
assumption of the sparsity of the true signal and noise signal when projected into a
sparsifying dictionary. This is to say that the assumption is that the noise signal
will be less sparse in W than the true signal. Typically noise signals are relatively
uniformly distributed in wavelet space, whereas most physical signals are sparsely
distributed and therefore this relative interpretation of the sparsity prior makes
reasonable sense (see e.g. Mallat, 2008).

Note that the only constraint on the posterior is that it must be log-concave
(such that the log-posterior is convex). Hence one can select any log-concave prior
within this framework, e.g. one could select an fo-norm prior which with minor
adjustments produces Wiener filtering (see e.g. Horowitz et al., 2019; Price et al.,
2021c, for alternate iterative Wiener filtering approaches), or a flat prior which

produces the mazimum likelihood estimate (MLE).
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Implementation

The minimisation of the log-posterior in equation (9.2) is (in the analysis setting)

therefore precisely the same as solving,

KNP = argmin | pl| Wik, +
reCs?

&) =112

Objective function

We solve this convex optimisation problem using the S2INV code (see e.g. Price et al.,
2021c¢, and chapter 8) which is largely built around the SOPT C++ object oriented
framework! (Carrillo et al., 2012, 2013; Onose et al., 2016; Pratley et al., 2018),
utilizing an adapted proximal forward-backward splitting algorithm (Combettes and
Pesquet, 2011), although a variety of alternate algorithms are provided within S2INV.
Wavelet transforms on the sphere are computed using S2LET? (McEwen and Wiaux,
2011; Leistedt et al., 2013; McEwen et al., 2015b,c; Chan et al., 2017; McEwen et al.,
2018), which in turn makes use of SSHT? (McEwen and Wiaux, 2011; McEwen et al.,
2013a) to compute spherical harmonic transforms, and SO3* (McEwen et al., 2015c¢)
to compute Wigner transforms.

To deal with the non-differentiable ¢1-norm prior, gradient operators V are, in
some sense, replaced by proximal operators when applied to the non-differentiable
term (Moreau, 1962). The iteration steps are provided in the schematic of Figure
9.1, for full details of the derivation of the proximal forward-backward algorithm
iterations look to Combettes and Pesquet (2011). These primary optimisations are
terminated once the objective function is updated by less than a set threshold (in

our experiments 10~%) between iterations.

Reduced shear

Figure 9.1 displays a schematic representation of the steps taken in computing x™P.
A degeneracy between the convergence field k and shear field ~ exists, and as such ~
is not a true observable. Instead the reduced shear g is the true observable where
g(w) =7v(w)[1 — Kk(w)]!, when working sufficiently within the weak lensing regime
k< 1and v~ g < 1. Although typically the reduced shear need not be accounted
for, for completeness we correct for the reduced shear (see e.g. Mediavilla et al., 2016;
Price et al., 2021a; Wallis et al., 2021). We add correcting iterations outside our
primary iterations to maintain the linearity of the overall reconstruction. Our reduced

shear correction iterations are displayed schematically in the final loop of Figure 9.1.

1https ://github.com/astro-informatics/sopt
2http ://astro-informatics.github.io/s2let/
3https ://astro-informatics.github.io/ssht/
4http ://astro-informatics.github.io/so3/
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Figure 9.1: Schematic of proximal forward-backward splitting algorithm used (Combettes
and Pesquet, 2011). Note that the first iterative block represents the Majorise-Minimisation
(MM) algorithm marginalization over the regularisation parameter (which here is treated as
a nuisance parameter), the second iterative block represents the primary proximal forward
backward iterations, and the final (optional) block represents the reduced shear outer
iterations. Note that the softy ,(7) operation is the soft thresholding operation, which is the
proximal projection of the £1-norm (see e.g. Pereyra, 2017; Cai et al., 2018a,b, for details).
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Reduced shear iterations are deemed to have converged once the convergence update

max; ’/ig-i) = /<e§i+1)] < 10719 where j runs over all pixels.

Computational efficiency

As discussed in section 9.2, all iterations consist of a forward step which includes
application of the measurement operator before computing the data fidelity term,
followed by the backward step which includes application of the spherical wavelet
transform. The measurement operator is dominated by the spin spherical harmonic
transforms which scale as O(L3). Similarly the computational efficiency of the
wavelet transform is dominated by underlying harmonic transforms, however with
directionality N (i.e. wavelet on the rotation group) the transform scales as O(N x
L3). The overall forward-backward algorithm scales additively as O(K x (N +
1) x L3) ~ O(K x N x L3) where K is the total number of iterations required for
convergence. The SKS operator also requires the application of spin spherical
harmonic transforms and therefore scales as O(L3). However the SKS method
requires only a single application of the transform and thus the ratio of computational
efficiency between the two algorithms effectively scales as O(K x N) — which is to
say the difference in computational efficiency is primarily determined by the choice
of wavelet complexity and the magnitudes of the associated convergence criteria.

In practice, including the marginalisation preliminary iterations and subsequent
annealing iterations to optimise convergence, we find O(10?) iterations are sufficient
for convergence. We consider axisymmetric wavelets (N = 1), thus the DarkMapper
algorithm is O(10?) times slower than SKS but with greatly superior reconstruction
performance and the ability to quantify uncertainties in a statistically principled
manner. It is interesting to note that MCMC methods typically require a very
large number of samples, with each individual sample requiring at least one spin
spherical harmonic transform. Therefore the increase in computational efficiency
of this approximate Bayesian inference over sampling methods is roughly given by
O(nsamples/ 102) where Ngamples is the total number of samples required for convergence
of a given MCMC sampling method. As MCMC methods often require at least
O(10°) this increase in computation speed is (many) orders of magnitude. In the
spherical setting an ((10%) increase in computation speed results in computations
which would take O(decades) taking O(days).

9.3 Simulated observations

In this section we apply the spherical Kaiser-Squires (SKS) estimator, both with and
without post-processing smoothing, and the spherical sparse hierarchical Bayesian
(DarkMapper) estimator developed in this chapter to a range of realistic N-body
simulations which are masked throughout by a pseudo-Euclid mask so as to best

match upcoming Stage IV surveys.
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9.3.1 Data-set

Throughout this analysis we perform reconstructions and uncertainty quantification
on simulated convergence maps generated from the high resolution Takahashi N-
body simulation datasets (Takahashi et al., 2017)°. These mock convergence maps
are generated via multiple-lens plane ray-tracing, and are provided for a range of
co-moving distances. Specifically, simulated convergence maps are presented at every
150Mpc/h for redshift z5 € [0.05,5.3]. The cosmological parameters selected for this
suite of simulations are €, =1, =0.279, Qcqm = 0.233,€, =0.046,h =0.7,03 = 0.82
and ns = 0.97 which are consistent with the WMAP 9 year result (Hinshaw et al.,
2013).

We select redshift slice 16 which corresponds to the slice with redshift z; ~ 1.
To mitigate the Poisson noise present in such N-body snapshots we convolve the
Takahashi convergence with a very small smoothing kernel sufficient only to remove
the noise whilst adjusting the signal as little as possible. Finally we apply a pseudo-
Euclid masking (a straightforward masking of the galactic plane and the ecliptic) so

as to best mimic the setting of upcoming Stage IV surveys.

9.3.2 Method

As in previous work (Price et al., 2019a,b, 2021a) we begin by applying the measure-
ment operator ® (see equation 9.4) to the fiducial ground truth, full-sky Takahashi
convergence map £ to create artificial masked clean shear measurements v € CM. A
noise standard deviation o; is computed (see Section 9.3.2) for each pixel ¢ individu-
ally and used to construct a known diagonal covariance .5 Hence we create noisy
simulated shear observations v, = +n and a simulated data covariance 3 which
would in practice be provided by the observation team — this covariance is defined
by the number of galaxy observations within a given pixel of the sky.

We then apply the standard SKS estimator and the DarkMapper estimator,
presented in section 9.2, to these noisy artificial measurements ~,, to create estimates
of the fiducial convergence map . For DarkMapper we simply adopt dyadic axisym-
metric spherical wavelets (N =1 and A =2 for simplicity), with scale-discretized
harmonic tiling (McEwen et al., 2018) (adopting minimum wavelet scale jo =0
and maximum wavelet scale jpax = 10 resulting in a total of 11 wavelet scales).
Additional complexity may produce better results at the cost of computational
efficiency. Furthermore scale-discretized wavelets are only one possible choice of
spherical wavelets (see Section 9.2). Other wavelets on the sphere could be adopted
and are interchangeable within this reconstruction formalism, provided they support

exact synthesis of a signal from its wavelet coefficients.

SThese datasets can be found at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_
raytracing/.

SNote we here do note consider off diagonal terms which may arise due to intrinsic galaxy
alignments though in future this can be incorporated, albeit perhaps not straightforwardly.
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We adopt the signal to noise ratio (SNR) as a metric to compare how closely
each convergence estimator matches the true convergence map. This recovered SNR
in decibels (dB) is defined to be,

7 — el

Recovered SNR = 20 x log;, (HEH2> , (9.8)

from which it is clear that the larger the recovered SNR the more accurate’ the
convergence estimator. Additionally, we record the Pearson correlation coefficient
between recovered convergence estimators £™* € CMs2 and the fiducial convergence
r € CNs? as a measure of topological fidelity of the estimator. The Pearson correlation

coefficient is defined to be

{Hmap(l) R k(i) — R}
(9.9)
\/Z { rnap I{map}2\/z _I{}Z

where Z = (z). The correlation coefficient r € [—1,1] quantifies the structural similarity
between two datasets: 1 indicates maximal positive correlation, 0 indicates no
correlation, and -1 indicates maximal negative correlation.

In practice the SKS estimator (as with its predecessor the KS estimator) is
post-processed via axisymmetric convolution with an often quite large Gaussian
smoothing kernel. The absolute scale of this kernel is typically chosen ‘by eye’
(which is to say arbitrarily), but in order to maximise the performance of the SKS
estimator we iteratively compute the smoothing scale which maximises the recovered
SNR, yielding the best possible reconstruction that can be provided by the SKS
estimator (i.e. with optimal smoothing). We then use this optimal SKS estimator
for comparison. Note that this may only be performed in simulation settings where
the fiducial convergence is known. Further note that such ad hoc parameters do not
exist within the DarkMapper formalism, for which a principled statistical problem is

posed and solved by automated optimisation algorithms.

Noise simulation

For weak-lensing surveys the noise level of a given pixel is dependent on: the number
density of galaxy observations ng, (typically given per square arc-minute), the size
of said pixel, and the variance of the intrinsic ellipticity distribution ¢2. Knowing

the area A of a given pixel the noise standard deviation o; is simply given by,

2

g
L c , 9.10
7 \/Ax(180/7r)2><3600><nga1 (9.10)

2

where 3600(180/7)? converts steradians to arcmin? — this relation is simply a

7Accuracy here is in regard to the pixel-level deviation not structural correlation, for which
specific estimators may be designed.
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reduction in the noise standard deviation by the root of the number of data-points.
Thus, larger pixels which (assuming a roughly uniform spatial distribution of galaxy
observations) capture more observations have smaller noise variance. In practice
the value of o; (and therefore the covariance ) can be determined using the true

number of galaxies in a given pixel rather than ng,).

The typical intrinsic ellipticity standard deviation is o, ~ 0.37. Upcoming Stage
IV surveys, e.g. Euclid (Laureijs et al., 2011) and LSST, are projected to achieve a

2

number density of nga1 ~ 30 per arcmin® — a soft limit due to blending complications.

For academic discussion we also consider the case of a potential future space-based
survey which may push the number density as high as ng, ~ 100 per arcmin?, in
addition to lower number densities ng, € [5,10] per arcmin® which are representative

of past Stage III surveys.

9.3.3 Reconstruction results

For an angular bandlimit /.« = 2048, a pseudo-Euclid mask and input ng, €
[5,10,30,100] we compute the spherical Kaiser-Squires (SKS) estimator, an idealized
(optimally smoothed) SKS estimator, and the DarkMapper estimator. The results
can be found in Figure 9.2 and numerically in Table 9.1. In all cases the DarkMapper
estimator provides the highest reconstruction fidelity both in terms of recovered
SNR and Pearson correlation coefficient. Note that for £, = 2048 and the number
density of galaxy observations selected the mean number of galaxies per pixel is
O(10—-103).

It is important to note that the optimal smoothing kernel for the SKS estimator
cannot be known and thus in practice is often selected ‘by eye’ which is to say
selected ad hoc. Therefore the smoothed SKS results here constitute an upper bound.
The DarkMapper framework is fully principled and requires no ad hoc parameter
selection and is therefore likely to perform in much the same way when applied to

observational data.

For Stage III survey settings with ng. = 5,10 the increase in SNR (A SNR)
of the DarkMapper estimator over the SKS (optimally smoothed SKS) estimator
was +15.286 (+4.532) dB and +14.093 (4+6.191) dB respectively. Recall that dB
is measured on a logarithmic scale (see equation 9.8) and so this increase is quite
dramatic. Furthermore the Pearson correlation coefficient increased from 0.403 (0.759)
to 0.904 and 0.532 (0.860) to 0.935 for nga = 5,10 respectively. For the Stage IV
Euclid-type setting with ng, = 30, the increase in performance SNR (A SNR)
was found to be +11.858 (4+8.513) dB, along with which the Pearson correlation
coefficient rose from 0.723 (0.854) to 0.964. As this setting is highly representative of
the observations which will be made in Stage IV surveys this strongly suggests that

algorithms such as DarkMapper should be adopted for weak lensing mass-mapping.
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Ground Truth convergence
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Figure 9.2: The top row displays the ground truth Takahashi convergence map as described
in Section 9.3.1 with close up of a small region. Top to bottom: Increasing number density
of galaxies (nga1) and therefore decreasing noise levels. At the top we have ng, =5 which
is representative of current Stage III surveys, at the bottom we have ng, = 30 which has
been forecast for upcoming Stage IV surveys, e.g. FEuclid or LSST. Left to right: The
spherical Kaiser-Squires (Wallis et al., 2021) estimator without the ad hoc smoothing kernel
post-processing, the optimally smoothed spherical Kaiser-Squires estimator, and finally the
DarkMapper estimator. Discussion: Clearly the DarkMapper estimator is visibly superior
in all cases, numerically recovering both significantly larger SNR and Pearson correlation
coefficients. All reconstructions have are plotted on the same colour-scale to aid comparison
(Green, 2011).
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Crnax = 2048 SKS SKS (smooth) | DarkMapper Difference
Settingngay | SNR  Peoy | SNR Pey | SNR Peor | A SNR (dB)
(dB) (dB) (dB)
Stage 5 -9.792  0.403 | 0.962 0.759 | 5494 0.904 | +15.286 (+4.532)
IIT
10 -6.794  0.532 1.108 0.806 | 7.299 0.935 | +14.093 (4+6.191)

Stage 30 -2.091 0.732 1.254  0.854 | 9.767 0.964 | +11.858 (+8.513)
IV
[Ideal 100 [2956 0.887 [n/a  n/a [12.132 0.980 [ 49.176 (n/a) \

Table 9.1: Numerical results from reconstructions of Takahashi simulations as discussed in
Sections 9.3.1 and 9.3.2. In each case the DarkMapper estimator drastically outperforms
both the SKS estimator and the optimally smoothed SKS estimator (which cannot in practice
be achieved due to ad hoc smoothing kernel selection) in both recovered signal to noise
ratio (SNR) and the Pearson correlation coefficient P.o,. Highlighted are the results most
representative of the imminent Stage IV surveys, such as Euclid and LSST. As Stage IV
surveys forecast large sky fractions to avoid projection effects (see e.g. Vallis et al., 2018;
Wallis et al., 2021) mass-mapping must be performed natively on the sphere. Thus this
spherical mass-mapping formalism is, at least currently, the optimal choice for Stage IV weak
lensing mass-mapping. Note that no post-processing by smoothing increased the recovered
SNR for the idealized ng, = 100 setting for the SKS estimator and so was recorded as n/a.

9.4 Application to public data

Finally we apply both the SKS and DarkMapper estimators to a collated map of
the majority of the public wide field weak lensing observational datasets in order to
reconstruct a single global dark-matter mass-map computed natively on the sphere.
Furthermore we demonstrate straightforward global uncertainty quantification on our
reconstruction. Specifically we perform convergence reconstructions on the DESY1
(Flaugher and DES Collaboration, 2015; Abbott et al., 2018; Morganson and DES
Collaboration, 2018), CFHTLens (Erben et al., 2012), and the KiDS450 (Fenech
Conti et al., 2017; Hildebrandt et al., 2017) weak lensing shear datasets. See specific
acknowledgements and related papers for further details. Note that throughout we
have not chosen to perform reduced shear iterations, assuming that the observed
shear is approximately the reduced shear v ~ g (in a more detailed analysis one could

perform such further iterations)

9.4.1 Joint spherical dark matter mass-map

All aforementioned weak lensing shear observational datasets were collated into a
single joint global dataset. For each data-set we select only galaxies with non-zero
catalog weight w(i) € Rso and perform a correction for the multiplicative bias by
w(?) and additive by ¢ 2(7) biases per observation. Specifically this correction for

ellipticities ej 2() is given by

_ 2jw()lend) — ()] 2 w(d)le2(d) —ca(4)]

Ry ()]

X w(i) [+ meorr(j)]

Sh®] =

> w(j)[1 +mcorr(j)]

. (9.11)
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where j are observations such that observation j belongs to pixel ¢, mcorr is the
catalog magnification correction and #, denote the real and imaginary components
of the shear field v respectively. This joint global dataset was then projected onto an
equi-angularly sampled (MW) spherical shear map vops with an angular bandlimit
of lmax = 2048. During this projection the number of galaxies projected into each
pixel was recorded to create a complimentary map of observations per pixel, from
which the data covariance Yo is directly determined (as discussed in Sections 9.2
and 9.3.2)

To this spherical shear map 7ops (With corresponding data covariance Yqps) we
apply DarkMapper outlined in Section 9.2 with the same parameter choices outlined
in Section 9.3 (see Price et al., 2021a, for a planar equivalent). Additionally, we
provide the SKS (Wallis et al., 2021) reconstruction which we present in both its
fundamental form (without post-processing Gaussian smoothing) and in its typical
form (with post-processing Gaussian smoothing with full width at half maximum
FWHM = © = 25 arcmins)®. The results of all reconstruction algorithms can be
seen both globally, and with enhanced regions in Figure 9.3, where all subplots
share the same colour-scale (Green, 2011). It is immediately apparent that the SKS
estimator, in the absence of smoothing, is overwhelmingly dominated by noise (hence

the motivation for post-processing).

In contrast to this, the SKS estimator with a © = 25 arcmin post-processing
Gaussian smoothing is largely in agreement with the DarkMapper estimator, however
this smoothed SKS estimator unsurprisingly lacks any significant small-scale structure.
Further note that the smoothed SKS estimator does not mirror all high intensity
structure, e.g. peaks and voids, recovered by the DarkMapper estimator, which
indicates more significant deviations between the two estimators. The most egregious
of these cases is highlighted in the red boxed KiDS450 patch of Figure 9.3. These
structural dissimilarities between the smoothed SKS and DarkMapper estimator may
reasonably be attributed to large noise fluctuations and boundary effects, both of
which are not reasonably accounted for by the SKS estimator. Observation of such
significant differences indicates that more principled reconstruction algorithms (such
as DarkMapper) are important considerations when attempting to perform future

statistical and scientific inference from dark matter mass-maps.

All reconstructions were performed on a 2016 MacBook air and took ~ 30
hours to compute. A further ~ 100 hours were optionally undertaken for annealing
iterations to optimise the convergence. Note that this is by no means a benchmark

of computational performance.

8 All data products aforementioned within this section are publicly available and may be found at
https://doi.org/10.5281/zenodo.3980652.

166


https://doi.org/10.5281/zenodo.3980652

CHAPTER 9. DARK MATTER ON THE CELESTIAL SPHERE

SKS smoothed DarkMapper (ours)

KiDS450

CFHTLens

KiDS450

DES Y1

—— ]
—0.00798 0.00000 0.00814

Figure 9.3: Top to bottom: Global reconstruction of the majority of public weak lensing
datasets, magnified view of a variety of patches. Left to right: Spherical Kaiser-Squires
(SKS) estimator without Gaussian smoothing kernel, SKS estimator with FWHM = © =25
arcmin smoothing kernel (as in other studies), DarkMapper (our) estimator. Discussion:
Note the overall agreement between both the smoothed SKS estimator and our DarkMapper
estimator, however notice the significant increase in small-scale detail captured by the
DarkMapper estimator. All reconstructions are plotted on the same colour-scale to aid
comparison (Green, 2011). As these plots are enhanced regions of Mollweide projections they
exhibit very slight visual distortions which are not present in the true datasets, which is a
limitation of planar projections (see e.g. Wallis et al., 2021). These data-sets can be found
online at https://doi.org/10.5281/zenodo.3980652.
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9.4.2 Local uncertainty quantification

Given significant structural dissimilarities between the SKS and DarkMapper conver-
gence estimators we performed several hypothesis tests of local structure. Specifically
we addressed the missing peaks observed in the smoothed SKS estimator of the lower
(red) region of Figure 9.3 but not in the corresponding DarkMapper estimator. We
did so by performing local hypothesis testing of structure as described in chapter 5

(see e.g. Price et al., 2021a, for more comprehensive details).

In all cases the hypothesis test of local structure could not reject the existence
of such structure at reasonable confidence. This is unsurprising given the notably
high noise level inherent to Stage III weak lensing surveys (which reduces the
magnitude of the objective function thus making the approximate level set threshold
¢/, more difficult to reach) and the extremely high dimensionality ~ O(107) of the
reconstruction (which directly increases the level set threshold €/, in equation 10.12;

see section 3.2.3).

9.4.3 Global uncertainty quantification

For high dimensional cases it is often more informative to consider global features of
the reconstruction (Price et al., 2021a), see chapters 5 and 8 for further discussion.
A question one may wish to address is for which smoothing scales © does the SKS
estimator provide solutions that are not in disagreement with the DarkMapper

estimator at some well defined confidence.

To address this question within our global uncertainty quantification we consider
the SKS estimator with a variety of Gaussian smoothing kernels, specifically © = 5i
for integer i € [0,6], which is to say a uniform sampling of different (in practice
arbitrary) smoothing choices ranging from no smoothing (the basic SKS estimator)
to the typically adopted case of © ~ 30 arcminute smoothing. In this way we can
directly address the question of which smoothing scales produces solutions ' (©)
which belong to the DarkMapper approximate HPD-credible region C!, (are consistent
with the DarkMapper estimator) and which solutions are unacceptable (i.e. those
solutions which reject the null hypothesis that the surrogate is within the credible
set) at 100(1 — )% confidence. The results of this global uncertainty quantification
(at 99% confidence) can be found numerically in Table 9.2. Despite the high noise
level present in the joint dataset, the uncertainty quantification technique is sensitive
enough to reject the SKS estimator for ©® = 0,5,10 arcminutes, which is to say
that these smoothing scales are in disagreement with the DarkMapper estimator
at 99% confidence and are unlikely to be physically meaningful. This provides
statistically rigorous evidence for the community’s intuition that SKS estimators
require considerable smoothing to be considered meaningful.

This raises an interesting point worth noting: the SKS estimator (by construc-

tion) locates solutions within C! which exhibit relatively little small-scale structure,
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Surrogate 3" Analysis (€gqq, = 842789) Hypothesis test
Estimator © (arcmin) Obj (k™) Obj (k™) /egge, | K™ € Cogey
SKS 0 6151070 7.298 X

5 2584510 3.067 X
10 891266 1.058 X
15 586741 0.696 v
20 513223 0.609 v
25 488887 0.580 v
30 478245 0.567 v

Table 9.2: Description: Uncertainty quantification of convergence estimators and smooth-
ing scales, in each case the convergence surrogate solution x5 is defined by estimator (i.e.
SKS) and Gaussian smoothing scale FWHM = © in arcmins. For each surrogate both the
objective function and the ratio of the objective function to the level set threshold at 99%
confidence eég% is presented. The right hand column indicates whether a given surrogate
KS" belongs to the credible set (and is therefore not rejected as a possible solution to the
reconstruction). Shaded in red are solutions which are rejected by Bayesian hypothesis
testing. Discussion: Clearly, the SKS estimator without smoothing is unequivocally re-
jected, which is concurrent with the community’s intuition that smoothing is required for
the SKS estimator to produce physically meaningful solutions. The minimal smoothing scale
required for any SKS solution to not be rejected is © ~ 15 arcminutes, therefore with a typical
smoothing of © € [25,30] arcmins the SKS solution belongs to the DarkMapper credible
set and cannot be rejected at 99% confidence (i.e. the two estimators are not necessarily
conflicting). Nevertheless, the DarkMapper estimator contains greater fine-scale structure.

whereas the DarkMapper estimator locates solutions within C/, which retain signif-
icantly greater small-scale structure. Therefore, though the two solutions do not
disagree at 100(1 — )% confidence, the DarkMapper estimator places relatively more
probability on small-scale structures. Note that if both estimators provided details
of the HPD credible set then a stronger discussion of the relative cardinality of the
intersection of both HPD credible sets could be used to quantify the level of statistical
agreement. However, in this case the SKS estimator does not support a principled

statistical interpretation and so can only justifiably be treated as a point estimate.

9.5 Summary

In this chapter we have extended the previously presented (Price et al., 2021a)
sparse Bayesian reconstruction formalism to the spherical setting (see chapter 5) by
adopting the general framework presented in chapter 8, resulting in a sparse spherical
Bayesian mass-mapping algorithm which we refer to as DarkMapper. This algorithm
is general and accommodates any log-concave posterior. Throughout this analysis we
adopt a Laplace-type sparsity promoting wavelet prior with a multivariate Gaussian
likelihood.

The DarkMapper mass-mapping algorithm was benchmarked against spherical
Kaiser-Squires (Wallis et al., 2021) in a variety of realistic weak lensing settings
(ranging from Stage I1I to future space based surveys) using the Takahashi (Takahashi

et al., 2017) N-body simulations and a pseudo-Euclid masking. In all cases we perform
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analysis at a typically adopted angular bandlimit of ;. = 2048. We do not consider
intrinsic alignments in this discussion, but highlight how they may be included should
one wish it. In all simulations the DarkMapper algorithm dramatically outperforms
(in both recovered SNR and recovered Pearson correlation coefficient) the SKS
estimator, even when artificially selecting the optimal SKS smoothing kernel (i.e.
even when biasing our evaluation in favour of SKS as strongly as possible). We
extend approximate Bayesian uncertainty quantification methods (Pereyra, 2017;
Cai et al., 2018b; Price et al., 2019a,b; Repetti et al., 2019; Price et al., 2021a) to
the spherical setting and explain how one may leverage these methods from local
uncertainty quantification to general global (or aggregate) uncertainty quantification.

The DarkMapper estimator was applied to a joint observational shear dataset
constructed by collating the majority of publicly available weak lensing data —
specifically the DESY1 (Flaugher and DES Collaboration, 2015; Abbott et al., 2018;
Morganson and DES Collaboration, 2018), CFHTLens (Erben et al., 2012), and the
KiDS450 (Fenech Conti et al., 2017; Hildebrandt et al., 2017) surveys. To the best of
our knowledge this is the first joint spherical reconstruction of all public weak lensing
shear observations. For comparison we also computed the SKS estimator of this
joint dataset. We find, as with the simulated benchmarking, that the DarkMapper
algorithm recovers significantly more fine-scale structure without the need for any
assumptions of Gaussianity or ad hoc smoothing parameters (i.e. the smoothing scale
for SKS post-processing). This demonstrates that the algorithm works as expected

on observational data.

Finally, uncertainty quantification was carried out to determine for which smooth-
ing scales the SKS point estimates provide solutions that are acceptable solutions to
the DarkMapper Bayesian inference problem (i.e. within the highest posterior density
credible region) — this is to say the smoothing scales at which both convergence
estimates are not conflicting at 99% confidence. It was found that all SKS reconstruc-
tions with smoothing scales below ~ 15 arcminutes were rejected at 99% confidence,
indicating that significant smoothing is required for agreement between the SKS
and DarkMapper estimators. This reaffirms the community’s understanding that
SKS estimators must undergo significant smoothing to recover physically meaningful
convergence maps. Moreover, we demonstrate that the DarkMapper estimator locates
permissible solutions with significantly greater small-scale structure than those which
are located by the SKS estimator. More constraining statistical statements were
limited by the inherently high noise level in current observational shear data.

With the advent of Stage IV surveys the pixel noise level is projected to drop
dramatically (due to increased galaxy number density), which will inevitably facilitate
significantly more constraining statistical statements. As the DarkMapper estimator
not only provides dramatically increased reconstruction fidelity over the SKS estimator

but also supports a principled Bayesian interpretation, it will be of important use
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for application to Stage IV datasets. Note that just as we have extended this sparse
hierarchical Bayesian mass-mapping formalism to the sphere (S?) one can extend it
to the ball (B?) and thus recover similar results for the case of full 3D mass-mapping.

This is an avenue for future investigation (see chapter 10).
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Chapter 10

Variational regularisation on the ball

This chapter is based on research presented in M. A. Price, and J. D. McEwen,
“Bayesian variational reqularisation on the ball”, submitted to IEEE Signal
Processing Letters, 2021.

Price and McEwen (2021)

Note: This chapter is highly technical and assumes knowledge of the following.
Convex optimisation algorithms and proximal analysis, as presented in chapter
2. Bayesian methods, particularly those discussed in section 3.2.2 and 3.2.3. A
general understanding of the content provided in chapter 5 is helpful. Look to
Leistedt and McEwen (2012) for further details of Fourier-Laguerre wavelet

construction etc.

Having developed a framework for general inverse problems over the sphere in
chapter 8, and leveraging said framework for spherical mass-mapping in chapter 9,
we will now develop an analogous framework within which one may consider inverse
problems defined over the full 3D ball, e.g. universal dark matter cartography (see
e.g. Massey et al., 2007a,b). In this final chapter we develop scalable techniques, with
associated open-source software, which leverage variational regularisation methods
to solve ill-posed and/or ill-conditioned inverse problems natively on the 3D ball (see
section 2.1.2 and chapter 2 more broadly). Furthermore, leveraging recent develop-
ments in the theory of probability density theory (Pereyra, 2017), we demonstrate
how convex variational regularisation techniques can be combined with advances in
probability density theory to construct computationally efficient signal reconstruc-
tion techniques on the ball with principled uncertainty quantification, or ‘Bayesian

variational regularisation’ (see sections 3.2.2 and 3.2.3).

10.1 Introduction

Inverse problems on Euclidean manifolds have been researched extensively and
associated techniques have found effective application in countless domains. However,
increasingly often one wishes to consider inverse problems defined on curved, non-
Euclidean manifolds, e.g. diffusion magnetic resonance imaging (MRI; Tuch, 2004)

and 2D dark matter reconstructions on the sphere, and many aspects of geophysics
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(Simons et al., 2011; Marignier et al., 2020; Kendall et al., 2021), astrophysics
(Heavens, 2003; Leistedt et al., 2015), and molecular modelling (Boomsma and
Frellsen, 2017) on the 3D ball, for which very few techniques have been developed.

Inverse problems are often solved by Bayesian Markov chain Monte Carlo
(MCMC) sampling methods (see section 3.2.1) or variational approaches (optimisa-
tion etc., see section 2.2). MCMC methods are highly computationally demanding
on the ball, due to the computational complexity of transforms on curved mani-
folds, and are unfeasible for many applications. Variational methods, which solve
inverse problems through classical optimisation techniques, are typically scalable
and robust, supporting both theoretical guarantees, and can support principled
uncertainty quantification (see section 3.2.3 and chapter 5). Such techniques are
thus perfectly suited to scientific analysis on the ball, where computational efficiency
and probabilistic interpretations are highly desirable. Variational methods have
been considered over the sphere (McEwen et al., 2013a; Wallis et al., 2017; Price
et al., 2021c¢), often leveraging ideas from compressed sensing (Candes et al., 2006;
Donoho, 2006), and typically promoting sparsity in spherical wavelet dictionaries,
(e.g. Leistedt et al., 2013; Chan et al., 2017; McEwen and Price, 2019), to recover
state-of-the-art results. Spherical techniques have been used tomographically (as
concentric spherical shells) to model radially distributed datasets, however holistic
approaches, which perform analysis natively on the underlying manifold (the ball),
are crucially missing. Wavelet transforms on the 3D ball have been developed to
support radially distributed problems (Michel, 2005; Fengler et al., 2006; Lanusse
et al., 2012; Leistedt and McEwen, 2012; Durastanti et al., 2014; Khalid et al., 2016),
however these dictionaries have, to our best knowledge, not been leveraged to perform

variational inference on the ball.

10.2 Bayesian variational regularisation on ball

In this section we develop mathematical techniques for the analysis of spin signals on
the 3D ball and wavelets on the directional ball, scalable convex optimisation algo-
rithms on the ball, and variational regularisation techniques which support principled
Bayesian uncertainty quantification. Throughout we adopt separable eigenfunctions
on the ball, with radial basis functions given by the Laguerre polynomials (Pollard,
1947; Weniger, 2008) and angular basis functions given by the spin spherical harmon-
ics Yy (Newman and Penrose, 1966; Goldberg et al., 1967; McEwen and Wiaux,
2011; McEwen et al., 2015¢). As spin spherical harmonic transform are more common
in the associated literature, we will focus primarily on the novel radial components
(Leistedt and McEwen, 2012), and the Bayesian interpretation (Pereyra, 2017; Cai
et al., 2018b; Price et al., 2021a,b). Many of the spherical analysis details can be
found in chapter 8, should they be required.
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10.2.1 Spin signals on the ball

Here we discuss the construction of
Spherical-Laguerre basis functions on
the 3D ball, developed in previous
work (Leistedt and McEwen, 2012) and
adopted throughout this chapter. First
let us define the Laguerre basis functions

along the radial half-line K,(r) as

-
€ 27

K,(r)= (pi!Q)!\/ﬁL’(?)(:)’ (10.1)

where LI(,Z)

is the p*M-associated 2"d-
order Laguerre polynomial (Pollard,
1947; Weniger, 2008), and 7 € Ryq is

a scale factor that adds a scaling flex-

0.2r

0.1F

0 (o) (o) -0 —— 0
-0.1
KP(T) v p € [076]7 S [071]
=05 02 04 06 08 1

0.02

0.01

0

0.01f

-0.02

rle(r) le € [O,6J, = [0,.1]

0 0.2 0.4 0.6 0.8 1

Figure 10.1: First six spherical Laguerre ba-
sis functions Kp(r) for r € [0,1]. Functions
rK,(r) can be viewed as basis functions in

Cartesian co-ordinates, satisfying the usual or-
thogonality relation (rKy(r)[rKq(r))r. = Opq-
This figure is originally from Leistedt and
McEwen (2012), to which the reader is referred
for further details.

ibility.
Figure 10.1) are orthonormal on Rsg,
i.e. (Kp|Kg)r,

Gram-Schmidt orthogonalization and ex-

These basis functions (see
= 0pq, and complete, by

ploiting polynomial completeness on L?(R~q,r2e~"dr) (Leistedt and McEwen, 2012).

Any square-integrable function f € L?(R+q) can be projected into this basis as

fo= 1K) = [ drrf (), () (10.2)
which supports exact synthesis by
f(r)= Z TpEp(r). (10.3)
p=0

Real-world functions are typically to a good approximation bandlimited, i.e. the
Fourier-Laguerre coefficients of signals f € R are such that f, =0,Vp > P, and so
this summation is truncated at P. We adopt the Gauss-Laguerre quadrature (see
e.g. Press et al., 2007), which is commonly used to numerically evaluate integrals
over the radial half-line, and was used to develop an exact sampling theorem on

Spherical-Laguerre space (Leistedt and McEwen, 2012).

Suppose we adopt these radial basis functions which we then combine with
the spin-s spherical harmonic angular basis functions Y, (w) (Newman and Pen-
rose, 1966; Goldberg et al., 1967) for s € Z and w = (6,%) € S?, where 6 = [0,7) is
the colatitude and v € [0,27) is the longitude. In such a case, we can straightfor-

wardly define the Spherical-Laguerre basis functions s Zp,,(r) = Kp(r)sYem(w) for
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r=(rw)e€ B3 = R<g X SQ, which are orthogonal <5ngp|sZg/m/p/>B3 = 040 O Opp
and onto which any square integrable spin-s function on the ball ;f € L?(B?) can be

projected by
imp = (o1 Zomphes = [ dplr)f (1) Ziy 1), (10.4)

where du(r) = d3r = r?sinfdrdf dy is the rotation invariant measure (Haar measure)
on the ball. By considering the separability and completeness of angular and radial

basis functions this projection supports exact synthesis, such that

P—1L— 14
Z Z Z sSomps Zemp(7), (10.5)

=0 ¢ L

where L, P € Z~ are the angular (McEwen and Wiaux, 2011) and radial (Leistedt
and McEwen, 2012) bandlimits respectively. In this work, by considering the rela-
tions presented in this subsection, fast adjoint Spherical-Laguerre transforms were
constructed, facilitating variational regularisation on the ball (see Section 10.3).
10.2.2 Directional scale-discretized spin wavelets on the ball

Here we extend the Spherical-Laguerre wavelets on the 3D ball developed in
previous work (Leistedt and McEwen, 2012) to 4D directional scale-discretized
wavelets on the ball. Furthermore, we extend the discussion to include spin-signals,
which arise in various areas of physics e.g. quantum mechanics and weak grav-
itational lensing (Price et al., 2021b). Consider the radial translation operator
T, for r € R (see e.g. Leistedt and McEwen, 2012; McEwen and Leistedt, 2013,
for further details), and rotation R,, for Euler angles p = (a,3,7) € SO(3) with
a€[0,2m), B €[0,m), and v € [0,27), with action (R,sf)(w) = e‘isgsf(Rp_lw). Fur-
ther define the concatenation of these transforms to be the 4D transformation
Ly =T,R, for h=(r,p) € H* ;=R x SO(3). Leveraging this composite trans-
formation one can straightforwardly define the directional wavelet coefficients
Wswjl € L2(H*) of any square integrable spin-s function 4 f € L2[B3] by the directional

convolution ®

W (B) = (o .07 )(B) = (oS Lna¥ s = [ du(r)f(r) (Cact (),
(10.6)
where (U7 € L2[B?] is the wavelet kernel at angular and radial scales j,j’ € Z
respectively. These scales determine the volume over which a given wavelet function
has compact support (Leistedt and McEwen, 2012). Typically, wavelet coefficients
do not capture low frequency signal content, which instead is captured by axisym-
metric scaling functions ;Y € L2(B?) with coefficients WY € L2(B?) defined by the

axisymmetric convolution ® with a spin-s signal 5 f € L?(B?) such that

W(r) = (of ©sT)(r) = (sf. Lrs s :/Bg du(r)sf(r)(LesT)(r),  (10.7)
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where L, is an axisymmetric simplification of the full 4D transformation £;. For
suitable choices of wavelet and scaling generating functions (those which satisfy

wavelet admissibility) these projections support exact synthesis by

J J ., .
)= [ W TN T+ 3 S [ dpmwr () (),
8 j=Jog'=Jg

(10.8)
where du(h) = d*h = r?sin 3drdadBdy is the Haar measure on H*. By construction
(Leistedt and McEwen, 2012) this wavelet dictionary exhibits both good frequency
and spatial localisation, permits exact synthesis, and leverages optimal sampling
theories for efficient transforms. Furthermore, by adopting adjoint Spherical-Laguerre
transforms (see subsection 10.2.1) fast adjoint 4D wavelet transforms on the ball

were constructed.

10.2.3 Efficient transformations over the ball

Variational methods on the ball require an additional level of complexity over those
defined on the spherical manifolds, which are already significantly computationally
expensive. The forward and inverse Spherical-Laguerre transforms are computed
through the FLAG! package (Leistedt and McEwen, 2012) with computational
complexity ~ O(L*), built on spin spherical harmonic transforms provided by the
SSHT? package (McEwen and Wiaux, 2011; McEwen et al., 2013a). Similarly, forward
and inverse wavelet transforms on the 3D ball are computed through the FLAGLET?
package (Leistedt and McEwen, 2012) with computational complexity ~ O(NL?),
where N € Z~ is the wavelet directionality, built on the wavelet transforms provided
by the S2LET* package (Wiaux et al., 2008; Leistedt et al., 2013; McEwen et al.,
2015¢; Chan et al., 2017; McEwen et al., 2018; McEwen and Price, 2019). Both
these transforms on the ball (FLAG and FLAGLET) scale at least quartically
with bandlimit. Therefore, even optimally sampled transforms on the ball are very

computationally expensive, motivating attention to scalable implementations.

10.2.4 Maximum a posteriori estimation

Consider measurements y € RM, e.g. observations on the sky with some radial
component, which may be related to some intrinsic underlying field of interest
on the ball z € RVe3 by a sensing operator ® € RM*Ne3 : 31— y. Further suppose
measurements are polluted with noise n, then our measurement model is generally
given by y = ®x 4+ n, which is both classically ill-posed in the sense of Hadamard
(Hadamard, 1902) and may be seriously ill-conditioned. There are many methods for

inferring « from y, in this work we will consider a Bayesian variational approach, so as

1https ://astro-informatics.github.io/flag/
2https ://astro-informatics.github.io/ssht/
3http ://astro-informatics.github.io/flaglet/
“https://astro-informatics.github.io/s2let/
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to benefit from the computational efficiency of variational methods (a key component
on the ball) whilst retaining the principled statistical interpretation provided by
Bayesian methods (see e.g. Robert, 2001)

In a Bayesian sense, given a sufficient understanding of our physical system
(including e.g. the forward model and the noise distribution etc.) we can assign
a likelihood distribution P(y|z;®), which acts as a data-fidelity constraint on our
solutions. Furthermore, suppose we have some a priori knowledge as to the nature
of our latent variable, e.g. x is presumed to be sparse in a given dictionary, then
we can straightforwardly define a Bayesian prior distribution P(z), which acts as a
regularisation functional to stabilize our inference. With these distributions defined

we can construct our posterior distribution through Bayes’ theorem
P(xly; ®) o< P(yla; @) P(x), (10.9)

where we drop the normalization term (Bayesian evidence) as it does not affect our
solution, and for simplicity. A reasonable choice of solution, in a Bayesian sense,
is that which maximizes the posterior odds (i.e. the most likely one), called the

mazimum a posteriori (MAP) solution (see section 3.2.2 for further details), given by

eMAP = argmax [P(x]y;dD)} o argmin [—log( P(y|z; ®)P(z) )} (10.10)

N. N.
ERTH? 2ER T )= () +e(a)

where the second line comes from the monotonicity of the logarithm function. The
final line highlights that MAP estimation, for the common class of log-concave distri-
butions, yields convex objectives h(z), and this is equivalent to unconstrained convex
optimisation. Such optimisation problems typically leverage 15t-order information to
efficiently converge to global (from convexity) extremal solutions (Combettes and
Pesquet, 2011). For convex but non-differentiable objectives (e.g. sparsity priors)
gradient information is accessed through the proximal projection (Moreau, 1962), and
thus extremal solutions are efficiently recovered via proximal optimisation algorithms
(Boyd et al., 2011; Combettes and Pesquet, 2011). Such algorithms permit strong
guarantees of both convergence and rate of convergence, however they still only

recover point estimates and do not naively support uncertainty quantification.

10.2.5 Uncertainty quantification of MAP estimation

Bayesian methods often consider credible regions (regions of high probability concen-
tration) C, € CVe3 of the full posterior distribution, at 100(1 —«)% confidence, by
evaluating
Pz € Culy;®) = / Pl ®)odr=1—a, (10.11)
r€R B3

which is computationally intractable in high dimensional settings, such as data on

the ball, even for moderate resolutions. In our method we adopt a recently derived
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conservative approximation (which is valid for all log-concave posteriors or convex
objectives) to the highest posterior density (HPD) credible set C/, O C, (Pereyra,
2017) defined by

C! cCNss = {:U th(z) < e'a} for ¢, =h(z™MAF) 4 /16N log(3/a)+ N, (10.12)

which allows one to approximate C, with knowledge only of the MAP solution
2MAP and the dimension Ngs. This approximation is discussed at length in section
3.2.3, to which we recommend the interested reader. This is a crucial realization
for variational methods on complex manifolds (such as the ball), as the necessity
for scalable, computationally efficient approaches is paramount. Furthermore, the

approximation error is bounded above (Pereyra, 2017) thus affording sensitivity

/

guarantees (i.e. €,

cannot become arbitrarily larger than €,). The error in this
approximation has been assessed in a variety of application domains (Cai et al.,
2018b; Price et al., 2019a) and has been benchmarked against proximal MCMC

methods (Pereyra, 2016).

A number of uncertainty quantification techniques have recently been developed
which are built around this approximation, in a variety of settings, many of which
exploit linearity (Price et al., 2021¢) to facilitate extremely rapid computation. In this
chapter we consider, for the first time on the ball, perhaps the most straightforward
uncertainty quantification technique, Bayesian hypothesis testing (Cai et al., 2018b;
Repetti et al., 2019; Price et al., 2021a). Bayesian hypothesis testing is conducted

as follows. A feature of xMAP SUR

is adjusted to construct a surrogate solution x
from which it is determined if this solution belongs to the credible set at confidence
100(1 — a)%. If 25YR does not belong to C’, then it necessarily does not belong
to Cy, (from the conservative nature of the approximation in Equation 10.12) and
therefore the feature is statistically significant at 100(1 — )% confidence. Conversely,
if z5UR € C’ then the statistical significance of the feature of interest is indeterminate.
In this section we consider features Q C zMAP to be local sub-structure and thus
hypothesis tests in this case relate to the physicality of local structure, 7.e. whether

these structures are aberrations or physical signals.

One can straightforwardly leverage Bayesian hypothesis testing to constrain

the maximum and minimum intensities a partition of MAP

U

can take, such that
the resulting surrogate 25YR saturates the approximate level-set threshold €/,. In
this sense one can recover local voxel level Bayesian error bars coined local credible
intervals (Cai et al., 2018b; Price et al., 2019a; Repetti et al., 2019; Price et al.,
2021c). The concept of Bayesian hypothesis testing can further be leveraged to
consider hypothesis tests which quantify the uncertainty in e.g. feature location
(Price et al., 2019b) and global features (Price et al., 2021b). These uncertainty

quantification techniques are comprehensively considered in chapters 5 - 9.
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10.3 Numerical experiment

In this section we consider a noisy inpainting directional deconvolution inverse
problem, which is (seriously) ill-posed and ill-conditioned. Such an example is
representative of a diverse set of practical applications. Consider again the problem
setup outlined in Section 10.2.4, where we model the acquisition of observations by

the sensing operator
®=MB !KB and ¢'=BKB "M, (10.13)

where B and B! represent forward and inverse spin-0 Spherical-Laguerre trans-
forms (see Section 10.2.1), K is multiplication with a skewed Gaussian kernel in
Spherical-Laguerre space (which is trivially self-adjoint), M represents masking, and {
denotes the operator adjoint. It is important to note that B~! % BT which is a poorly
motivated approximation often adopted in settings involving spherical harmonic trans-
forms. Additionally, we define as a baseline the naive direct inversion PR = =1y
for &1 = B~'K~!BMT, where K~ is simply division by the Spherical-Laguerre space
convolutional kernel. As we are considering ill-posed inverse problems (Hadamard,

1902) the naive inverse zP™R

can give (potentially non-physical) solutions which lie
far from the true signal. Moreover, the noise contribution, which is typically highly

oscillatory, may (and often does) dominate the solution.

We consider the case in which n is independent and identically distributed noise
drawn from a univariate Gaussian distribution n ~ A(0,02). Our likelihood function
is thus given by a Gaussian distribution with zero mean and variance o2. Suppose our
prior knowledge indicates that x is likely to be sparsely distributed when projected
into the ball wavelet dictionary W, described in Section 10.2.2. A prior distribution
which naturally promotes sparsity is the Laplacian distribution, which one might

adopt, such that the posterior is given by

2
—B3(| Pz —yl3

P(zly; ®) o eXP( 552

) exp (— Ag|Wiz]|,), (10.14)
where gs||-|| and g||-|| are the standard £,-norms weighted by pixel-size so as to better
approximate the continuous £,-norms on the ball. By following the logic presented

in Section 10.2.4 one finds the MAP estimate is given by

59| Pz — y||3
202

aMAP = argmin [

zeRVE3

+Aq,uw*:crrl], (10.15)

with regularisation parameter \ € Ry which we marginalize over (Pereyra et al.,

2015), to maintain a principled Bayesian interpretation.
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10.3.1 Experiment details

We generate a ground truth signal 2 TRVE by smoothing a random signal on the ball,
effectively generating a pseudo-Gaussian random field, which is bandlimited at L in
the angular domain and P = L along the radial line. This ground truth is mapped
by ® to simulated observations which are subsequently polluted with i.i.d. noise,
drawn from a univariate Gaussian distribution, to form simulated observations vy,

such that the input signal to noise ratio,

q)'TRUE

SNR =20 x loglo <WE—’!/H2

is 30dB. An analogous SNR definition is used to quantify the reconstruction fidelity
between z and a recovered solution z*. Both the naive inversion (SNR= —2.707dB),
and MAP (SNR= 10.293dB) estimators are recovered, and are presented in Figure
10.2. Note that the variational solution is recovered in the analysis unconstrained
setting through the proximal forward-backward algorithm (Beck and Teboulle, 2009;
Combettes and Pesquet, 2011). This dramatic improvement in reconstruction fidelity
is compounded by the fact that our estimator also supports principled Bayesian
uncertainty quantification, namely hypothesis testing of structure e.g. the diffuse,
high intensity region €2 highlighted in Figure 10.2 was correctly determined to be
physical at 99% confidence.

10.4 Summary

Whilst there are many methods which consider reconstruction over the 3D ball by
analysing individual concatenated spherical shells, to the best of our knowledge,
this is the first work which develops variational regularisation methods natively on
the ball. Leveraging recent developments in probability concentration theory, we
demonstrate how MAP estimation (unconstrained optimisation) permits principled
uncertainty quantification. Our Bayesian variational approach benefits from the com-
putational efficiency of convex optimisation whilst facilitating principled uncertainty
quantification. We demonstrate that our variational approach is effective at solving
seriously ill-posed and ill-conditioned inverse problems on the ball, recovering very
accurate, robust estimates of the underlying ground truth. In future collaborative
work we will apply these methods to more realistic simulations and observational
data, in a variety of application domains. As a by-product of this work an open
source, flexible, scalable object oriented C++ software package, B3INV® was created
which is constructed on the convex optimisation package SOPTS (Carrillo et al.,
2012, 2013; Onose et al., 2016; Pratley et al., 2018). Additionally, fast adjoint
operators were constructed and collected into the FLAG and FLAGLET codebases.

5https://github.com/astro—informatics/bSinv
Shttp://astro-informatics.github.io/sopt/
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This methodology lays the foundations upon which full 3D universal dark matter
mass-mapping may now be considered, which is a substantial step between the first
forays of Massey et al. (2007a,b) and the vision outlined by Fritz Zwicky nearly a

century ago.

SNR = —2.707 dB

SNR = 10.293 dB Bayesian Hypothesis Test

Figure 10.2: Description: Variational inference results for 3D directional deconvolution
with inpainting using pseudo-Gaussian simulations for L = P = 32 (upsampled to 128),
roughly approximating physical fields e.g. atmospheric fields — these methods trivially extend
to realistic simulations. Specifically the ground truth is smoothed with a directional kernel,
50% of observations are masked, and the remaining observations are corrupted with 30dB
i.i.d. Gaussian noise n ~ N (0,02). Panels: Input ground truth (top left), naive inversion
(baseline, top right), mazimum a posteriori (MAP) estimator using ball wavelet ¢1 sparsity
(bottom left), and Bayesian hypothesis test of local structure € (bottom right, see Section
10.2.5). Discussion: Notice that naive direct inversion recovers a poor estimator (SNR =
—2.707dB). Alternatively, treating the problem as a Bayesian variational problem not only
recovers a very good estimate (SNR = 10.293dB), but also supports principled uncertainty
quantification. The Bayesian hypothesis test of local substructure € in the bottom right
sub-figure correctly determines the physicality of this feature at 99%-confidence. The MAP
estimate and uncertainties were recovered in ~ 2 minutes of non-dedicated compute on a
MacBook Air 2016 respectively, which can trivially be sped up through e.g. OpenMP and
MPI.
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Chapter 11

Conclusions & future work

ond_grder

While a great deal of cosmological information is concentrated in
statistics of the cosmic shear, potentially decisive non-Gaussian information is encoded
into higher order statistics of the convergence; hence, the lensing community’s ongoing
motivation to develop methods by which the convergence may be inferred. Existing
methods are limited in a variety of ways, e.g. scalability, statistical interpretability, or
degradation of non-Gaussian information, as chapter 4 discusses at length. Effectively,
those methods with scientific utility, e.g. sampling methods, are computationally
intractable at high-resolutions, or are fundamentally reliant on posterior Gaussianity.
Moreover, for upcoming stage IV wide-field surveys the flat-sky approximation does
not hold, therefore the lensing inverse problem must necessarily be considered over
the celestial sphere (S?). All but a small subset of convergence inference methods
are limited to Euclidean tangent planes (R?), limiting their scientific applicability
going forward. The most general lensing inverse problem is, of course, most naturally
defined over the 3D ball (B?), for which no algorithms currently exist.

Merging the paradigms of optimisation and Bayesian inference, this thesis
addresses this methodological void by developing computationally efficient mass-
mapping techniques which support: uncertainty quantification, are not reliant on
Gaussianity, operate over {R?, S, B3}, and can support an expansive set of posterior
models. Exploiting recent advances in the theory of probability concentration,
convex optimisation, and proximal calculus we develop next-generation Bayesian
mass-mapping techniques; over R? in chapter 5, S? in chapter 9, and pave the way
for mass-mapping over B> in chapter 10. The super-resolution planar techniques
are applied the hotly debated Abel-520 merging cluster, quantifying the degree
to which purported evidence of dark-matter self-interactions is plausible. Initial
reconstructions of two Abel-520 observational catalogues reported high o detections
of an anomalous dark core!, however in our Bayesian framework neither data-set
contain sufficient information to determine the physicality of this dark core at 99%

confidence. Additionally, in chapter 9 our spherical reconstruction algorithm is

'In this context, a dark core is an over-dense region of the convergence with no apparent optical
counterpart, often taken to indicate the existence of a frictional force or ‘self-interaction’ between
dark matter, by which the dark matter component of a cluster is stripped from its optical counterpart.
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applied to all public weak lensing observational data, generating the largest spherical
map of dark matter to date?.

Scalability of such techniques stems from a conservative approximation of pos-
terior credible regions, derived from the concentration properties of log-concave
densities in high-dimensions (see section 3.2.3). The numerical error of such ap-
proximations is explored in chapter 6, and found to be of O(10%) which is traded
for a factor of @(10%) gain in computational efficiency. In chapter 7 the notion
of approximate posterior credible regions is leveraged to quantify the uncertainty
in both the location and count of convergence peaks (over-dense regions). Such
uncertainty quantification techniques are directly applicable to a variety of tangential
domains, e.g. location of features such as tumours in magnetic resonance images. In
chapter 10 we abstract the aforementioned inference techniques to the full 3D ball,

setting the scene for principled 3D dark matter reconstruction in the near future.

In summary, the primary original contributions of this thesis are the following:

> Development of highly scalable, statistically principled Bayesian techniques

for imaging of dark matter, amongst other applications.

> Development of a variety of novel Bayesian uncertainty quantification tech-

niques supported by such imaging approaches.

> Quantifying the plausibility of evidence suggesting self-interactions of dark

matter in the Abel-520 merging cluster.

> Abstracting these techniques from R? to the celestial sphere S?, a necessity

for scientific analysis of imminent next-generation weak lensing surveys.

> Reconstructing, what was at the time, the most comprehensive map of the

celestial dark matter distribution to date.

> Developing techniques which, for the first time, facilitate efficient variational

Bayesian inference on B?>.

Despite the substantial progress made in this thesis, the lensing inversion prob-
lem is far from solved. Though the computational foundations for 3D mass-mapping
have been laid, it is as yet unclear how best to incorporate radial (photometric
redshift) information into the statistical model. Perhaps more fundamentally, op-
erations over B3 scale quartically with resolution, motivating further research into
computational efficiency. Throughout this thesis we do not consider the problem of

prior misspecification. Techniques developed during this thesis are reliant only on

2This has since been overtaken by the subsequent introduction of new DES data.
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posterior log-concavity, and thus objective (negative log-posterior) convexity. These
two realizations motivate potential future research into e.g. convex machine learning
priors, which can more accurately model one’s a priori knowledge of a given system.

The cosmological phenomenon of gravitational lensing is uniquely sensitive to
the total mass distribution throughout the universe, both visible and invisible, and
is thus a novel probe as to the nature of both dark matter and energy. Of the two
linear order manifestations of gravitational lensing, the convergence field constitutes
one of the principle cosmological observables, containing information which directly
constrains e.g. modified theories of gravity, exotic theoretical physics, and neutrino
hierarchies. With next-generation stage IV weak lensing surveys now imminent,
techniques (such as those presented in this thesis) which extract such information in

an efficient, statistically principled manner are of critical importance.
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Appendix A

Circular bisection details

A.1 N-splitting circular bisection

In this appendix we consider the N-splitting Circular Bisection (N-splitting) algorithm
for iteratively sampling the Bayesian 100(1 — )% confidence iso-contour of the
position of a feature in a reconstructed convergence map — or the Bayesian Location
at 100(1 — )% confidence.

As in the text, we begin by defining the number of directions to sample ny from
which we then form the angular increment A®© = 27 /np. Starting from a vector
ng oriented along the positive y-axis define the (i+ 1) pointing to be the vector
ni+1 = Raen; where i € (1,n7), and where R g is rotation by angle A© clockwise on
2D Euclidean space — a irreducible representation of which is the standard clockwise

rotation matrix,

R — [ cos(A©O) sin(A@)] . (A1)

—sin(ABO) cos(AO)

Now we know the direction along which we wish to sample we construct the

(i+1)*™" bisection problem which is

it = mdin{ delip | fEE) +9() > €, |, (A.2)
where ngt is a surrogate convergence map with the feature of interest inserted into
perturbed location dn;41 and I'; 11 C R2 lies on the directional line of infinite extent

centered at the original peak location with unit vector n;;1, i.e. T'iy1 = {an;11|a €

R<o}. A pictorial representation of how the problem is set up is provided in Figure
Al

For bisection we must first make an initial guess dy which we define to be square
root of the number of pixels contained within the mask, as this is a typical measure
of the length of a masked region. This choice is particularly logical as, if a feature
of interest can be removed entirely from its masked location without saturating the
level-set threshold €/, then it by definition must be inconclusive, i.e. the data is
insufficient evidence to say that the peak is physical. To optimize the convergence of

this algorithm further (for high sampling rates, low angular increments A® < 7/4)
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Figure A.1: Representation of how the problem is broken up in N-splitting circular
bisection. First the n; directions are specified (left) at equiangular separations 6 about the
peak location (blue ball). Bisection iterations are conducted as in equation (A.2) along
each of the directions, recovering a set of samples d; of the Bayesian location iso-contour
at 100(1 —a)% confidence (right). Provided a sufficient number of samples are taken, this
boundary will fully represent the iso-contour. We find typically ~ 16 samples are needed for
512 x 512 convergence reconstructions though more or less may be needed depending on the
resolution and application.

we also propagate information between pointing’s. For bisection problems associated
with pointing ¢ > 1 the initial guess is now set to be twice the previous optimal value
d;i. This increases the computational efficiency by ~ 20%, in most cases.
Propagating information in this way relies on the assumption that the iso-contour
we are searching for is somewhat smooth and continuous, which is the case for most
convergence reconstructions. If there is uncertainty as to the smoothness of the
iso-contour it is recommended that information is not propagated and the number of

pointings is increased to correctly map the iso-contour structure.

A.1.1 Convergence properties

Standard inverse nesting algorithms iteratively sample the entire sub-space of the
reconstructed domain bounded by the iso-contour at 100(1 —«)% confidence, making
them inefficient when one is only interested in the boundary.

Consider the case where the iso-contour of a reconstructed 512 x 512 convergence
map is a circular region of radius R. Here inverse nesting will have to sample a
square region out to R, which is to say the total number of samples Tieqt Will at least
be R? —1, where 1 is removed for the central location. For our N-splitting algorithm
we define np pointings, and assume that the iso-contour is relatively smooth. As the
first bisection problem ng makes a large first guess it typically takes 4 — 5 iterations
to converge with a single pixel accuracy. The subsequent np — 1 bisection problems
converge within 3 —4 iterations. Therefore the total number of calculations Ti_gplit

is conservatively Ti_spiit = 5 +4(np — 1), which is essentially independent from R.

187



APPENDIX A. CIRCULAR BISECTION DETAILS

There is in fact a small inverse dependence which is incorporated in the number of
iterations needed for convergence, though this dependence is found to be small.

Comparing the computational efficiency of the two algorithms Es12 where,

_ TN_Sth _ 5 + 4(nT — 1)

Tnest RQ (A ' 3)

Typically, we find an angular separation between pointings of 7/4 (i.e. 16 pointings)
is sufficient to accurately recover the iso-contour. Additionally, the circular radius is

typically 15— 30 pixels which indicates that,

54+4x15 54+4x15

qgz = 0072 <Esip < g = 0.289, (A.4)

i.e. N-splitting circular bisection on 512 x 512 dimensional reconstructions is ~ 4 —14
times faster than inverse nesting. However, in the future we may be interested
in recovering high dimensional 2048 x 2048 convergence maps. In this setting the
number of iterations for N-splitting to converge is assumed to change by 1-2, and the
number of pointings to faithfully recover the iso-contour will be increase by a factor

of ~ 2. Additionally, the radius of the circle R increases by a factor of 4. Thus,

5+4x31 54+4x31

gz = 0-009 < Eagus <~ 5 = 0.0360, (A.5)

i.e. the conservative increase in computational efficiency of N-splitting over inverse
nesting for 2048 x 2048 becomes a factor of ~ 30— 112. Further optimisations are
possible, such as trivially parallelizing the bisection problems of each pointing. Doing
so removes the scaling with the number of pointings, but now information about

starting positions cannot be propagated.
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Appendix B

Public lensing catalogues

B.1 Data availability

All observational data utilized throughout chapter 9 are publicly available and can be
found in the corresponding references. All joint reconstruction data-sets are publicly
available and can be found online at https://doi.org/10.5281/zenodo.3980652.

Dark Energy Survey (DES) acknowledgements

This project used public archival data from the Dark Energy Survey (DES). Funding
for the DES Projects has been provided by the U.S. Department of Energy, the
U.S. National Science Foundation, the Ministry of Science and Education of Spain,
the Science and Technology FacilitiesCouncil of the United Kingdom, the Higher
Education Funding Council for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute
of Cosmological Physics at the University of Chicago, the Center for Cosmology
and Astro-Particle Physics at the Ohio State University, the Mitchell Institute
for Fundamental Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do
Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico and the Ministério da Ciéncia, Tecnologia e Inovagao, the Deutsche
Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy
Survey.

The Collaborating Institutions are Argonne National Laboratory, the University
of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones
Energéticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago,
University College London, the DES-Brazil Consortium, the University of Edinburgh,
the Eidgendssische Technische Hochschule (ETH) Ziirich, Fermi National Accelerator
Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciéncies
de 'Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig-Maximilians Universitdt Miinchen and the associ-
ated Excellence Cluster Universe, the University of Michigan, the National Optical
Astronomy Observatory, the University of Nottingham, The Ohio State University,
the OzDES Membership Consortium, the University of Pennsylvania, the University
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of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the
University of Sussex, and Texas A&M University.

Based in part on observations at Cerro Tololo Inter-American Observatory,
National Optical Astronomy Observatory, which is operated by the Association of
Universities for Research in Astronomy (AURA) under a cooperative agreement with

the National Science Foundation.

Kilo Degree Survey (KiDS) acknowledgements

Based on data products from observations made with ESO Telescopes at the La Silla
Paranal Observatory under programme IDs 177.A-3016, 177.A-3017 and 177.A-3018.

We use cosmic shear measurements from the Kilo-Degree Survey (Kuijken et al.,
2015; Fenech Conti et al., 2017; Hildebrandt et al., 2017), hereafter referred to as
KiDS. The KiDS data are processed by THELI (Erben et al., 2013) and Astro-WISE
(McFarland et al., 2013; de Jong et al., 2015). Shears are measured using lensfit
(Miller et al., 2013), and photometric redshifts are obtained from PSF-matched
photometry and calibrated using external overlapping spectroscopic surveys (see e.g.
Hildebrandt et al., 2017).
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