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ORGANIZATION OF THE THESIS 
 

The thesis is based on a series of published articles and manuscripts of the author on gene 

flow in the tropical African forest understorey focusing on intra-specific gene flow, species 

delimitation and inter-specific gene flow and the inference of historical migration patterns.  

 The thesis is organized in seven chapters starting with a general introduction 

outlining the evolutionary importance of gene flow and the principle research questions of 

this thesis. Here the study of gene flow is used at different spatial and temporal scales to 

infer the history of species as well as the present state and the future evolutionary potential 

of species in the tropical African rainforest (chapter 1). This chapter is followed by an 

introduction of the tropical African rainforest understorey as study system with particular 

emphasis on the current knowledge on patterns of gene flow and major existing hypotheses 

on its history to be tested in this thesis (chapter 2). The third chapter is a presentation of 

the existing and in this thesis refined knowledge about the study taxa and the reasons for 

their selection (chapter 3). In the next three chapters the results gained during my research 

are summarized focusing on three issues: 1) the extend of local intra-specific gene flow 

(chapter 4), 2) the different degrees of inter-specific gene flow and the challenges of 

delimiting species (chapter 5) and 3) the research into tropical African vegetation history 

using large scale genetic pattern (= phylogeographic pattern) (chapter 6). Each chapter 

summarizes the content of one to four original articles of the author - it starts with an 

introduction to the respective topic and ends with a discussion highlighting the major 

findings and their contribution to current research in the field. The thesis ends with general 

concluding remarks and an outlook giving insights into the ongoing research and 

guidelines for future research activities (chapter 7). Finally, an overall summary of the 

entire thesis is provided (chapter 9).   

 The thesis is written as an integral text refering in each chapter to the relevant 

original articles which are printed in their original version in the appendix. 
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LIST OF PUBLICATIONS RELEVANT FOR THE THESIS 
 

The publications are ordered thematically according to the chapters of this thesis and are 

followed by information on the specific contribution to each publication by A.C. Ley. 

 

Chapter 3: The studied plant family Marantaceae: taxonomy, biogeography, ecology 

and phylogeny 

 

[1] Al-Gharaibeh, M.M., Borchsenius, F., McKechnie, L, Sanmartin, I., Ley A.C. 

(manuscript) Phylogeny of the pantropically distributed family Marantaceae. 

   

Own contribution: Ideas, collection of specimens in the field and through 

collaboration partners, large part of laboratory acquisition of sequences, partial 

writing of the manuscript. 

 

 

Chapter 4: Gene flow within species: breeding system, clonality and dispersal 

distance 

 

[2] Ley, A.C., Hardy, O.J. (2016a) Polymorphic microsatellite loci for Haumania 

danckelmaniana and transferability into H. liebrechtsiana (Marantaceae). 

Applications in Plant Sciences 4(3): apps.1500116. doi: 10.3732/apps.1500116 

 

Own contribution: Collection of specimens in the field, laboratory manipulations, 

statistical analyses, writing of the manuscript. 

 

[3] Ley, A.C., Hardy, O.J. (2016b) Spatially limited clonality and pollen and seed 

dispersal in a characteristic climber of Central African rain forests: Haumania 

danckelmaniana (Marantaceae). Biotropica 58(5) : 618-627. 

 

Own contribution: Part of the ideas, collection of specimens in the field, part of 

statistical analyses, writing of the manuscript. 

 

 

Chapter 5: Species delimitation and and gene flow across species boundaries 

 

[4] Ley, A.C., Hardy, O.J. (2010) Species delimitation in the Central African 

herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic 

DNA sequences. Molecular Phylogenetics and Evolution 57: 859–867. 

 

Own contribution: Ideas, collection of specimens in the field, laboratory 

manipulations, large part of statistical analyses, writing of the manuscript. 

 

[5] Ley, A.C., Hardy, O.J. (2013) Improving AFLP analysis of large-scale patterns of 

genetic variation - a case study with the Central African lianas Haumania spp. 

(Marantaceae) showing interspecific gene flow. Molecular Ecology 22(7): 1984-

1997. 
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Own contribution: Part of the ideas, collection of specimens in the field, laboratory 

manipulations, parts of the statistical analyses, large part of writing of the 

manuscript. 

 

[6] Ley, A.C., Hardy, O.J. (2014) Contrasting patterns of gene flow between sister plant 

species in the understorey of African moist forests - the case of sympatric and 

parapatric Marantaceae species. Molecular Phylogenetics and Evolution 77: 264-

274. 

 

Own contribution: Ideas, collection of specimens in the field, laboratory 

manipulations, large part of statistical analyses, writing of the manuscript. 

 

[7] Ley, A.C., Hardy, O.J. (submitted) Hybridization and asymmetric introgression after 

secondary contact in two tropical African climber species Haumania 

danckelmaniana and H. liebrechtsiana (Marantaceae). International Journal of 

Plant Sciences. 

 

Own contribution: Part of the ideas, collection of specimens in the field, large part 

of laboratory manipulations and statistical analyses, writing of the manuscript. 

 

 

Chapter 6: Phylogeographic pattern and their concordance with the refuge 

hypothesis 

 

[8] Ley, A.C., Heuertz, M., Hardy, O.J. (2016) The evolutionary history of central African 

rain forest plants: phylogeographic insights from sister species of the climber 

genus Haumania (Marantaceae). Journal of Biogeography. doi:10.1111/jbi.12902 

 

Own contribution: Large parts of the ideas, collection of specimens in the field, 

laboratory manipulations, statistical analyses, writing of the manuscript. 

 

[9] Ley, A.C., Dauby, G., Köhler, J., Wypior, C., Röser, M., Hardy, O.J. (2014) 

Comparative phylogeography of eight herbs and lianas (Marantaceae) in central 

African rainforests. Frontiers in Genetics 5: article 403. doi: 

10.3389/fgene.2014.00403 

 

Own contribution: Part of the ideas, collection of specimens in the field, most 

laboratory manipulations, analyses of chloroplast distribution pattern and genetic 

diversity, writing of the manuscript. 
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1 The evolutionary importance of gene flow  
 

The evolution of plant diversity in the different ecosystems of the world is still to date one 

of the major fields of biological research. New species are described every year (Dunn and 

Moore 2016), more complex processes of differentiation and speciation are revisited 

(Damasceno et al. 2014), new techniques for more complex genetic data acquisition and 

analysis are developed and implemented (next generation sequencing (NGS), Davey et al. 

2011, Elshire et al. 2011), our understanding of the importance of the interaction of a 

multitude of different factors for evolution in space and time becomes more sophisticated 

(Heuertz et al. 2014) and consequently our disposition and capability grows to merge 

disciplines that have formerly been regarded rather independently (Cutter 2013).  

 At the base of evolution is the exchange among individuals of (un)altered 

information encoded in the genome and its transmission from generation to generation, 

called gene flow. Gene flow is the spatial movement of alleles, achieved in plants largely 

by pollen transfer and seed dispersal (Bradshaw 1972, Ennos 1994, Petit et al. 2005, Zeng 

et al. 2012). It is highly important for species reproduction and evolution (Slatkin 1985, 

Herrera and Pellmyr 2002) as regular outcrossing (xenogamy) fosters genetic diversity. 

The latter supports species´ survival by presenting a source of variable genetic material 

which allows overcoming deleterious mutations and presents a pool of preadaptations from 

which the one yielding highest fitness values under a given environment is selected 

(Takebayashi and Morrell 2001, Coyne and Orr 2004, Wright et al. 2013). The interruption 

of gene flow through the isolation of individuals or populations through e.g. restricted 

dispersal and/or the establishment of barriers (geographic, ecological, genetic, etc.), in 

contrast, will lead to a reduced genetic diversity rendering the taxa more vulnerable to the 

potential accumulation of deleterious effects of inbreeding and diversity loss through drift. 

Depending on the quantity and quality of the remaining genetic diversity in these isolated 

populations a further lack of gene flow can either lead to extinction or an independent 

genetic development (Wright 1943), which can potentially lead to speciation. 

Based on our knowledge of genetic processes and their resulting phylogeographic 

patterns (Avise 2000, Knowles and Maddison 2002) information on the current gene flow 

between individuals, populations and species therefore not only provides information on 

the current evolutionary status of a taxon under consideration (species delimitation) but 

might also provide information on the past and the future of the species or clade under 

study. Additional geographic, ecological, geological and palynological data might thereby 

mailto:cbdunn@esf.edu
mailto:kbmoore@esf.edu
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strengthen potential conclusions by reducing the number of potential inferences to be 

drawn from the same genetic patterns (Cruzan and Tempelton 2000, Werneck et al. 2011, 

Hardy et al. 2013). 

 More and more appreciation is given to the fact that processes of gene flow on all 

levels of differentiation (individuals, populations, species) interact and all together shape 

the evolutionary history of a given taxon and/or ecosystem (Cutter 2013, Parmentier et al. 

2014). Thus data on breeding system, dispersal distance and spatial genetic structure might 

give additional hints for interpretation of phylogeographic pattern of a species 

(phylogeography) and the evolution of entire species clades (phylogeny). Consequently, 

“despite a number of challenges conferred by genomic information, the melding of 

phylogenetics, phylogeography and population genetics into integrative molecular 

evolution is poised to improve our understanding of biodiversity at all levels“ (Fig. 1.1, 

Cutter 2013). 

 In this thesis such a broad genetic approach across former disciplinary entities 

is conducted to investigate evolutionary patterns in herbs and climbers of the family 

Marantaceae in the understory of tropical African rainforests.  

The specific questions of this thesis are:  

1) what are the intraspecific genetic prerequisites of species from the rainforest 

understorey shaped by breeding system and dispersal,  

2) how can current species be delimited and is there interspecific gene flow, 

 and finally  

3) how do intra- and interspecific gene flow determine spatial genetic patterns and 

what conclusions do these large-scale spatial patterns allow for on the history of 

the species and the tropical African rainforest. 

 

 

 
 
Fig. 1.1: The timescales of evolution. Evolution can be broken down into four broad timescales 

corresponding to key biological features associated with population genetic and molecular evolutionary 

processes. Ne = effective population size; dS = number of synonymous-site substitutions per synonymous 

site; dN = number of non-synonymous substitutions per non-synonymous site. Source: Cutter 2013.
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2 The history of the tropical African rainforest and its 

understorey 
 

Most of our planet’s plant diversity is harbored in the tropics on a comparably small 

surface (Myers et al. 2000, Mutke and Barthlott 2005). Here the tropical rainforest 

organized in different strata (“Stockwerkbau”) up to 80m in height (Richards 1954) is 

characterized by a very high spatial diversity (Hubbell 1997) with an often low individual 

density per species. How this diversity arose - the history of this vegetation - and how it is 

maintained is still to date a matter of debate and subject to considerable research (e.g. 

Plana 2004, Rull 2008, Hardy et al. 2013, Linder 2014).  

 Considering the African tropics, two major hypotheses of the origin of its high 

species diversity currently prevail and are tested interdisciplinary combining data from 

fields such as climatology, palynology, phylogeny and phylogeography: 

Allopatric speciation during glacial cycles (Maley 1996) - refugia: Climatic conditions 

during glacial cycles oscillated between dry-cool and humid-warm conditions forcing 

rainforest plants during adverse dry-cool conditions to retract into areas of more 

suitable (stable) humid climatic conditions (= refugia) in swamps, gallery forests and 

mid-altitude montane regions (Dupont 2001). Through time (i.e. drift) and differential 

selection these now isolated populations in different refugia developed 

incompatibilities, eventually forming two species. Localities of refugia are suggested 

based on palaeo-ecological and floristic data (richness and endemism), especially of 

poorly dispersing or young taxonomic groups (Fig. 2.1, Maley 1996). Independent 

evidence for this hypothesis is now researched using phylogeographic data (Hardy et al. 

2013, Heuertz et al. 2014, Ley et al. 2014). 

Ecological differentiation (Smith 1997): Populations of the same species experience 

different selection pressures along an ecological gradient leading eventually to 

parapatric speciation. Thereby gradients could exist between different vegetation types 

e.g. forest to savanna (Smith 1997), or within the same vegetation type among different 

microhabitats or along large scale environmental (rainfall, seasonal, temperature etc.) 

clines (Fig. 2.2, 2.3). Support for this hypothesis was claimed in some zoological 

(Fieldsa 1994, Freedman et al. 2010) and botanical studies (Holstein and Renner 2011). 

 There is further evidence for a successional effect of both hypotheses on genetic 

traces of differentiation within the same species (Duminil et al. 2013) and a call for caution 

to prevent misinterpretetation of phylogeographic data due to the multiple interactive  
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Fig. 2.1: Current extent of tropical rainforest (thick black line) and postulated Pleistocene rainforest refugia 

in tropical Africa (grey areas, after Maley 1996). 
 

 

Fig. 2.2: Average annual precipitation in tropical Africa. Data Source: Bioclim: bio_12. 

 

Fig. 2.3: Seasonal inversion: Precipitation July-January in tropical Africa. Data Source: Bioclim: prec_7-

prec_1. 
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impacts of different processes on genetic differentiation and their similar resulting 

geographic patterns (Heuertz et al. 2013). Compilations of dated phylogenies for tropical 

regions suggest that repeatedly different events at different moments in time have 

promoted repeated flushes of speciation in those areas together having led to the high 

species diversity seen in those areas today (Plana 2004, Rull 2008).  

Evidence in plants for the two before mentioned hypotheses has mainly been 

searched through studies on intra-specific gene flow mostly focused on economically 

important trees (Ude et al. 2006, Daïnou et al. 2010, Dick 2010, Allal et al. 2011, Sebbenn 

et al. 2012, Audigeos et al. 2013). Climbers, shrubs and herbs of the tropical understorey 

that differ remarkably in their life histories are rarely considered. However, the 

understorey contributes substantially to the overall forest diversity (Gentry and Dodson 

1987, Poulsen and Balslev 1991, Poulsen 1996, Chittibabu and Parthasarathy 2000, 

Hubbell et al. 2005) and plays thus an important role in the maintenance of the ecological 

stability of this system (but see Psychotria in Loiselle et al. 1996, Polypodiaceae in 

Hooper and Haufler 1997, Piper in Lasso et al. 2009). 

Large trees are generally out-crossed (Bawa 1979, Ward et al. 2005, Devy and 

Davidar 2006) and exhibit a low population density (Hubbell and Foster 1983, Bawa 1990) 

requiring long-distance pollen dispersal (Stacy et al. 1996, Lacerda et al. 2008) resulting in 

extensive gene flow. Further, also fruits of large trees are generally widely dispersed due 

to their large size and high production making foraging on these species energetically 

viable for large-bodied dispersers with large home ranges (Carbone et al. 1991).  

In contrast, understorey herbs and shrubs generally produce smaller fruits. They are 

often self-compatible, exhibit mixed-mating breeding systems (Bawa 1990, Richards 

1997) and form aggregated populations due to asexual spreading (Myers et al. 2000, 

Kinsman 1990, Sagers 1993). It is hypothesized that the combination of these traits in 

understorey plants might much more than in large trees facilitate the diversification of 

populations in response to local natural selection or genetic drift and may lead to different 

patterns of diversity (Lasso et al. 2011). Additionally, the shorter generation times and the 

asexual passing-on of somatic mutations to “offspring” from non-reproductive individuals 

(Ohta 1993, Kay et al. 2006) might accelerate the rate of molecular evolution in shrubs and 

herbs. 

 Climbers might be hypothesized to be somewhat intermediate between large trees 

on the one hand and herbs on the other hand. Climbers ascend to the forest canopy using 

other plants as support (Bongers et al. 2002). By flowering high up in the canopy, climbers 
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might take advantage of the same long-distance dispersing vectors as canopy trees, but 

their local population structure might be more similar to some clonal understory herbs 

because their high rate of clonality and the fact that flowering individuals are mainly 

restricted to gaps and forest edges with favorable light conditions lead to a rather clumped 

spatial distribution (Terauchi 1990, Schnitzer et al. 2000, 2012, Nabe-Nielsen and Hall 

2002, Ledo and Schnitzer 2014). Overall, clonality in climbers serves primarily to reduce 

competitors by impeding their recruitment (Penalosa 1982, Stevens 1987, Bongers et al. 

2002, Doucet 2003). Thereby, climbers often show a particular vigorous clonal growth 

after environmental disturbance (i.e., an opening of the closed forest canopy), resulting in a 

higher climber diversity and abundance in treefall gaps than in non-gap areas (Schnitzer 

and Carson 2001, Dalling et al. 2012, Ledo and Schnitzer 2014). The mating system has 

rarely been documented in climbers, but both predominantly outcrossing and selfing has 

been recorded (see Terauchi 1990, Foster and Sork 1997, Meeus et al. 2011). 

 

 
 
Fig. 2.4: Example of a Marantaceae dominated understorey of tropical African rainforest (here: 

Sarcophrynium prionogonium).  

Thus I here set up to investigate gene flow in tropical forest understorey climbers 

and herbs (Fig. 2.4, 2.5) which are bound to the shady underneath of the much more 

investigated large canopy trees but are potentially characterised by very different 

evolutionary prerequisites. The challenge will be to reconcile the different findings from 

different life forms to a coherent picture of the evolutionary history of tropical African 

rainforest. 
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Fig. 2.5: Study species: Haumania danckelmaniana (A-D); H. liebrechtsiana (E); Halopegia azurea (F, G); 

Marantochloa monophylla (H, I); M. incertifolia (J); M. congensis (K-N); Megaphrynium trichogynum (O-

Q); Mega. macrostachyum (R-T). 
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3 The studied plant family Marantaceae: taxonomy, 

biogeography, ecology and phylogeny 
 

 

Relevant publication (see Appendix 1):  

[1] Al-Gharaibeh, M.M., Borchsenius, F., McKechnie, L, Sanmartin, I., Ley A.C. 

(manuscript) Phylogeny of the pantropically distributed family Marantaceae. 

 

As major research objects I chose taxa from the pantropically distributed plant family 

Marantaceae due to their well known taxonomy, perennial herb and liana growth form, 

presence in many different habitats of the tropical rainforest understorey and the high 

diversity of ecological traits found among its species. 

The Marantaceae Petersen (32 genera / 530 species, Zingiberales, Andersson 1998) 

are a pantropically distributed family of perennial herbs and lianas from the understory of 

tropical rainforests with about 40 species in Africa (Dhetchuvi 1996, Jongkind 2008, Ley 

2008, Fig. 2.4, 2.5), 50 species in Asia (Suksathan 2009) and 450 species in America 

(Andersson 1998). New species are being described continuously (Dhetchuvi 1996, 

Suksathan and Borchsenius 2003, Braga 2008, Jongkind 2008, Kennedy 2012, 2014, Ley 

and Claßen-Bockhoff 2012).  

 

 
 

Fig. 3.1: Pattern of species diversity of Marantaceae in tropical Africa based on Schnell (1957), Dhetchuvi 

(1996), Jongkind (2008) and Ley and Claßen-Bockhoff (2012). Postulated refugia after (Maley 1996); 

DRCongo, Democratic Republic of Congo; RCongo, Republic of the Congo. Inset shows phytochoria after 

(White 1979): UG, Upper Guinea; LG, Lower Guinea; C, Congolia (Source: Ley et al. 2014). 
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In Africa the distribution pattern of the family closely follows the continuous 

distribution of lowland rainforest from Senegal to Kenia interrupted at the Dahomey gap 

(Fig. 3.1). One species is reported from Madagascar. The diversity center of the family in 

Africa lies in Gabon, Equatorial Guinea and Cameroon with a maximum of 33 species per 

1° grid cell.  

 African Marantaceae show almost uniformly typical traits of forest understorey 

plants such as self-compatibility, clonal growth via rhizomes, adventive shoots and bulbils 

and animal pollination and dispersal (Ley 2008). They inhabit a diversity of different 

habitats from swamps, to river and creek banks, to the understorey of primary to secondary 

forest on terre firme (Dhetchuvi 1996) often forming a dominant layer in the rainforest 

understorey leading to the introduction of an own forest type (“Marantaceae forest”, 

Letouzey 1968). Often several species can be encountered in sympatry (pers. observ.).  

Floral morphology and respective adaptation to different pollinators are manifold 

and show patterns of parallel evolution among clades (Ley and Claßen-Bockhoff 2010). 

Pollinator sharing between congeners is suggested by the finding of identical pollinators in 

sympatric species (Ley and Claßen-Bockhoff 2009). Further, there is a potential for a high 

rate of geitonogamy (Ley and Claßen-Bockhoff 2009) and thus increased selfing especially 

in large clones based on tested self-compatibility and observed pollinator behavior (Ley 

and Claßen-Bockhoff 2013). Likewise, fruit morphology is very diverse among species 

suggesting the adaptation to very different dispersal agents (for a summary see Ley 2008). 

Phylogenetic analyses at the level of the order Zingiberales suggested a start of the 

diversification of the family about 64mya (Kress and Specht 2006). Currently, five major 

clades are recognized which are largely endemic to a single continent each (Prince and 

Kress 2006a). The African species fall into two different major phylogenetic clades and 

three isolated genera (Prince and Kress 2006b). The species level resolution of the two 

larger clades can be found in Ley and Claßen-Bockhoff (2011). The origin of the family is 

proposed to be in Africa (Prince and Kress 2006b).  

However, still the backbone of the currently available phylogenetic tree is not yet 

resolved leaving the relationships among major clades as an open question. Furthermore, 

some of the major clades are still lacking a species-resolution. Dating is based on fossils 

solely from outside of the family Marantaceae rendering the relative ages of specific clades 

within the family rather imprecise (see Kress and Specht 2006). Thus the sister clades of 

the African clades and their respective ages are still vague as well as the resolution of the 

relationships within the African genus Haumania.  
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Therefore, we here conducted a new phylogenetic analysis including more taxa and 

genetic markers than ever before. The major questions of this study were 1) how are 

African clades related to each other and to clades from other continents and 2) what is the  

species-resolution of the genus Haumania. 

. The obtained results from Al-Gharaibeh et al. (in prep., [1])) are now providing a 

higher resolution and support for the backbone of the Marantaceae phylogeny in 

comparison to what was achieved in all previous studies. The addition of more molecular 

data and taxa than in previous studies strengthened the hypothesized topology and 

suggested generic limits of the relationships within the family Marantaceae (compare to 

Prince and Kress 2006a, Suksathan et al. 2009, Ley and Claßen-Bockhoff 2011, 

Borchsenius et al. 2012). Major new findings include highly supported infrasectional 

topologies of major clades and many subclades that were not achieved in any of the 

previous studies. Additionally, at least four potentially non-monophyletic genera were 

identified: Calathea, Ischnosiphon, Maranta and Schumannianthus. Only the genus 

Haumania was left with uncertain affinity within the Marantaceae family phylogeny. 

The resolution within the African genus Haumania suggests a sister relationship of 

H. danckelmaniana from Cameroon and Gabon with H. liebrechtsiana from Gabon and 

the Congos together being sister to H. leonardiana from the North of the Democratic 

Republic of the Congo (Al-Gharaibeh et al. (in prep., [1])). This topology was already used 

in this thesis to specifically select sister species for analyses on their divergence (see e.g. 

Ley and Hardy 2010 [4]).  

In the future we aim at further reinvestigating the biogeographical pattern and the 

timing of divergence within in the family Marantaceae using new biogeographical tools 

(e.g. LAGRANGE, Ree et al. 2013) and fossils within the family Marantaceae to test e.g. 

whether observed pattern of parallel evolution (see Ley and Claßen-Bockhoff 2010) also 

evolved at the same time and to which historical (geological, climatic, etc.) events the 

major diversification events of Marantaceae corellated. Of course sampling of species goes 

on to get closer to a final tree of the Marantaceae with a complete species sampling. 

Current major sampling shortcomings are in the highly diverse American genera 

Goeppertia and Calathea with over 400 species (Borchsenius et al. 2012). Furthermore, it 

would be desirable to obtain more nuclear markers (biparentally inherited) to confirm the 

current tree topology as phylogenies based predominantly on markers from the maternally 

inherited chloroplast genome can sometimes be misleading (see Petit and Excoffier 2009, 

Ley and Hardy 2010 [4]). 
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4 Gene flow within species: breeding system, clonality and 

dispersal distance 
 

Relevant publications (see Appendix 2-3): 

[2] Ley, A.C., Hardy, O.J. (2016a) Polymorphic microsatellite loci for Haumania 

danckelmaniana and transferability into H. liebrechtsiana (Marantaceae). 

Applications in Plant Sciences 4(3): apps.1500116. doi: 10.3732/apps.1500116 

 

[3] Ley, A.C., Hardy, O.J. (2016b) Spatially limited clonality and pollen and seed 

dispersal in a characteristic climber of Central African rain forests: Haumania 

danckelmaniana (Marantaceae). Biotropica 58(5) : 618-627. 

 

Breeding system, reproduction and dispersal are important aspects of plant evolution 

determining a species ability to spread and migrate and thereby affecting the spatial 

genetic structure (SGS) and finally the long-term survival of a species. Frequent long-

distance gene dispersal (i.e., high gene flow) will ensure relatively high genetic diversity 

within populations, which is important for the long-term survival of a species, including 

the preadaptation to a changing environment (Kremer et al. 2012). It may, however, 

prevent local adaptation and speciation and thereby evolutionary diversification 

(Ackerman and Ward 1999, Coyne and Orr 2004, but see also Smith et al. 2005). 

Restricted gene flow instead might allow for local adaptation and speciation (see Galen et 

al. 1991, Sambatti and Rice 2006, Akerman and Bürger 2014), but also carry along the risk 

of extinction due to an accumulation of deleterious alleles and/or the lack of appropriate 

variants preadapted to a changing environment (Couvet 2002). Very little is known of this 

from species of the tropical rainforest understorey. 

Generally, gene dispersal is composed of pollen and seed dispersal whereby seed 

dispersal goes less far than pollen dispersal at least in the canopy (Dainou et al. 2010, 

Budde et al. 2013). And while large fruit crops in trees attract more large-bodied dispersers 

with larger home ranges, therefore increasing dispersal distances (Carbone et al. 1991, 

Haskell et al. 2002) it might be the contrary with the small fruits produced by many 

herbaceous understorey plants. Genetic studies in the subtropical understorey already 

indicated a less efficient long-distance dispersal in comparison to trees (Zeng et al. 2012) 

but the relative contribution of pollen and seed dispersal to overall gene dispersal in the 

tropical understorey is still unknown.  

The aim of this study (Ley and Hardy 2016b [3]) was to characterize, for the first 

time, the breeding system and the spatial extent of clonality and gene dispersal of a 
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frequent Central African rain forest climber species: Haumania danckelmaniana (J. Br. & 

K. Schum.) Milne-Redh. (Marantaceae) (Fig. 2.5 A-D). To this end, the SGS of its 

populations was assessed at different scales using newly established microsatellite markers 

to: (1) quantify clonal diversity and growth at a very local scale; (2) assess the breeding 

system (outcrossing rate) from the population inbreeding coefficient; and (3) estimate 

indirectly the mean gene dispersal distance using isolation by distance model predictions. 

Microsatellites (SSR – Simple Sequence Repeats) are suitable tools to assess intra-

specific genetic variation for the determination of breeding system, clonal sizes and 

dispersal distances due to their high variability, codominance and evolutionary neutrality 

(Bruford et al. 1998). Formerly restricted to model organisms, next generation sequencing 

now allows the easy and cost-efficient primer establishment also for non-model organisms 

(Micheneau et al. 2011). 

Here primers for eight polymorphic microsatellites with four to nine alleles per 

locus were established for the perennial climber Haumania danckelmanniana (Ley and 

Hardy 2016a [2]) using the 454 GS-FLX Titanium platform (454 Life Sciences, a Roche 

Company, Branford, Connecticut, USA) through a procedure that combined multiplex 

microsatellite enrichment and pyrosequencing (Malausa et al. 2011, Micheneau et al. 

2011). Positive transferability with the related species H. liebrechtsiana was observed for 

the same eight markers. Seven of these were used in the subsequent study of clonality, 

breeding system and gene dispersal distance in Haumania danckelmanniana sampled in 

southeastern Cameroon (Ley and Hardy 2016b [3]) as well as in two further studies on 

hybridisation (Ley and Hardy submitted [6]) and phylogeographic pattern (Ley et al. 2016 

[8]). 

Plants from the forest understorey are frequently reported to be self-compatible, 

exhibit clonal growth via rhizomes, adventive shoots and/or bulbils and are animal 

pollinated and dispersed (Bawa 1990, 1992, Sagers 1993, Myers et al. 2000). Strict 

autogamy has been discussed as a dead end in evolution (Stebbins 1957, Schemske and 

Lande 1985, Husband and Schemske 1996, Takebayashi and Morrell 2001) and only 20–

25% of plant taxa are predominantly selfing (Barrett and Eckert 1990) as genetic diversity 

can only be ensured through out-crossing between individuals. This is thus the prevalent 

mechanism in the plant kingdom (Charlesworth and Charlesworth 1987) and many 

mechanisms have evolved to prevent selfing (Barrett 2002). A certain degree of selfing, 

however, has been hypothesised as advantageous as a mean of self-assurance in an 

ecosystem such as the tropical forest understorey of an overall low or variable pollination 
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frequency (Schoen et al. 1996, Barrett and Harder 1996, Anderson et al. 2003, Rathcke 

2003, Ley and Claßen-Bockhoff 2009). Thus, the results of low inbreeding (FIScorr <= 

0.0001) in H. danckelmaniana (Ley and Hardy 2016b [3]) fits into this picture suggesting 

predominant outcrossing and supporting earlier findings of self-incompatibility in this 

species (Ley and Claßen-Bockhoff 2013).  

The evolutionary advantage of clonality - vegetative propagation without genetic 

changes - is said to lie in the establishment of a local population able to persist through 

times of adverse conditions where sexual reproduction is hindered by a temporal or spatial 

lack of suitable partners for reproduction (Haddadchi et al. 2014) and/or dispersal agents 

(Ehrlen and Lehtilä 2002, Honnay and Bossuyt 2005, Honnay et al. 2006, Silvertown 

2008). The established clonality of Haumania danckelmanniana was found moderate 

(clonal extend: 15–25 m, clonal diversity 0.4–0.65; compare with Ellstrand and Roose 

1987, Vandepitte et al. 2010, Schleuning et al. 2011) indicating the importance of 

recruitment from seeds at this locality (Ley and Hardy 2016b [3]).  

Of course these results will still have to be verified under different disturbance 

regimes as this is known to be the main factor in determining clonal growth (Vandepitte et 

al. 2010, Schleuning et al. 2011). Here it would be of particular interest to compare H. 

danckelmanniana to its sister species H. liebrechtsiana to confirm personal observations of 

larger clones in this latter species and test the hypothesis that this higher clonality is 

correlated with an observed higher invasion potential in H. liebrechtsiana (Ley and Hardy 

2010 [3]), Ley et al. 2016 [8]) - all of which seems to have profoundly influenced the 

evolutionary history of the genus and thus the current distribution patterns of the 

Haumania species in the Guinea-Congolian lowland rainforest (see Ley et al. 2016 [8]). 

Furhter, a very limited gene dispersal distance was detected in H. danckelmanniana 

(rg = 9–50 m, neighborhood sizes Nb = 23–67; Ley and Hardy 2016b [3]). This is in 

accordance with the large, heavy and unconspicuous fruits of H. danckelmanniana which 

are probably only narrowly gravity or rodent dispersed (Ley 2008). It is, however, in 

disaccordance with its long distance pollinators (Ley and Claßen-Bockhoff 2009). Here we 

assume that population density has a non-negligible part to play in determining gene 

dispersal distance restricting pollen transfer distance in densely flowering populations (Ley 

and Claßen-Bockhoff 2009). As the pollinating large carpenter bees in Haumania are 

known as long distance dispersers (Pasquet et al. 2008) their specific behavior, i.e. their 

search rules, foraging constancy and foraging range (optimal foraging theory, Pyke 1984, 

Karron et al. 1995, Degen and Roubik 2004, Jha and Dick 2010) in those massiv flowering 
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patches might have an important impact. In tropical trees highly variable pollinator ranges 

are recorded with sometimes considerable gene flow due to insects flying long distances 

(in the range of 100 m to 14 km see Ward et al. 2005, Hamrick and Murawski 1990, Stacy 

et al. 1996, Dick and Heuertz 2008). Flight distances of small bees of the tropical 

understorey are still unknown (but see Bawa 1990) but are hypothesized to be much 

smaller due to the dense understorey structure.  

With its narrow dispersal distance H. danckelmanniana is an ideal candidate for 

phylogeographic analyses (Ley and Hardy 2010 [4], Ley et al. 2016 [8]) as its spatial 

genetic pattern will be more pronounced and need more generation for its deletion (Maley 

1996). Indeed the SGS was marked (Sp = 0.011–0.026) but still lower than in herbs 

(Vekemans and Hardy 2004, Lasso et al. 2011) and more similar to that reported in 

tropical trees (Dick et al. 2008). This might be due to the combination of its high 

outcrossing rate, limited clonality and the limited pollen and seed dispersal being partly 

reversed by limited drift due to a high population density. The SGS might increase with 

augmented clonality as in many herbs, especially under more severe disturbance regimes 

(see Vandepitte et al. 2010, Schleuning et al. 2011). 

This is, to our knowledge, only the second study on clonality and gene flow in a 

tropical African climber (see Foster and Sork 1997) with several genetic measures for a 

climber reported here for the first time which will be considered when interpreting large 

scale phylogeographic pattern in this species (see later chapters). 

Next it would be interesting to compare the here obtained data to herbal rainforest 

understorey species and investigate their breeding system, reproduction (clonality) and 

dispersal distance. In contrast to the current finding of predominant outcrossing in the 

climber from this study (Ley and Hardy 2016b [3]) it is actually expected to find a lot 

more selfing. For the species of perennial herbs within the Marantaceae e.g. self-

compatibility has already been proven in hand pollination experiments (Ley and Claßen-

Bockhoff 2013). These herb species further show a lower floral density and a much lower 

pollinator frequency. It would be interesting to see which influence this has on the species´ 

SGS given the rather small pollinators visiting those species and the dense structure of the 

rainforest understorey. Potentially the importance of selfing might increase as means of 

self-assurance as already hypothesized elsewhere (Barrett and Harder 1996, Schoen et al. 

1996, Anderson et al. 2003, Rathcke 2003).  
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5  Species delimitation and gene flow across species boundaries  
 
Relevant publications (see Appendix 4-7): 

 

[4] Ley, A.C., Hardy, O.J. (2010) Species delimitation in the Central African 

herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic 

DNA sequences. Molecular Phylogenetics and Evolution 57: 859–867. 

 

[5] Ley, A.C., Hardy, O.J. (2013) Improving AFLP analysis of large-scale patterns of 

genetic variation - a case study with the Central African lianas Haumania spp. 

(Marantaceae) showing interspecific gene flow. Molecular Ecology 22(7): 1984-

1997. 

 

[6] Ley, A.C., Hardy, O.J. (submitted) Hybridization and asymmetric introgression after 

secondary contact in two tropical African climber species Haumania 

danckelmaniana and H. liebrechtsiana (Marantaceae). International Journal of 

Plant Sciences. 

 

[7] Ley, A.C., Hardy, O.J. (2014) Contrasting patterns of gene flow between sister plant 

species in the understorey of African moist forests - the case of sympatric and 

parapatric Marantaceae species. Molecular Phylogenetics and Evolution 77: 264-

274. 

 
 

The species is the fundamental unit of biological classification important for any kind of 

communication among politicians to evolutionists (Agapow et al. 2004). The first 

classifications were based on simple morphological observations but soon new and more 

complex concepts of species arose by adding more and more featuring characteristics from 

ecology to reproduction and genetics (reviewed by Mayden 1997, Harrison 1998, 

deQueiroz 1999). These concepts are often incompatible in their definitions and thus 

different in their results (see e.g. Duminil and Di Michele 2009).  

The species concept - the theoretical concept of the species - is closely tied to 

species delimitation, i.e. how to determine the boundaries and numbers of species from 

emperical data (deQueiroz 2007). Many different methods are proposed here by now 

(Carstens et al. 2013). One of them is the DNA barcoding initiative trying to establish a 

universal standard of genetic species identification using a short genetic marker in an 

organism's DNA (Hebert et al. 2003, CBOL Plant Working Group, 2009).  

 A major challenge in genetic species delimitation is the ongoing nature of evolution 

– far from reaching a final steady state of total species resolution but presenting ongoing 

varying degrees of gene flow within and between populations and species (Cutter 2013). 

Thus, species delimitation remains a difficult task to date in many groups of organisms 
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(Ellis et al. 2006), notably in species rich ecosystems like tropical rainforests (Lee 2003, 

Dayrat 2005, Duminil et al. 2012). 

Frequently, interspecific hybridization is observed between closely related plant 

species with overlapping distribution ranges, especially in zones of secondary contact after 

isolation in different refugia (Rieseberg 1999, Marchelli and Gallo 2001, Haselhorst and 

Buerkle 2011). Although well studied in temperate regions (Petit et al. 2002, Fussi et al. 

2010), interspecific hybridization is little documented in tropical regions while it may be 

frequent in these high species diversity areas.  

 Here we conducted several studies on species delimitation and the degree of sister 

species differentiation in the Central African rainforest understorey using phylogenetic and 

phylogeographic approaches and three different marker systems (chloroplast and nuclear 

DNA sequences, AFLP, microsatellites) covering chloroplast and nuclear DNA. 

We started by determining the degree of speciation in the two closely related 

climber taxa from the tropical African genus Haumania J. Leonard (Ley and Hardy 2010 

[4]). The two species H. danckelmaniana (J. Br & K. Schum.) Milne-Redh. and H. 

liebrechtsiana (De Wild. & Th. Dur.) J. Leonard display distinct vegetative traits (Ley and 

Hardy 2010 [4], Ley and Hardy submitted [6] – Fig.1) despite a high similarity in 

reproductive traits (Ley and Claßen-Bockhoff 2009) and a partial overlap in distribution 

area (Dhetchuvi 1996) which might facilitate gene flow.  

Phylogenetic and phylogeographic analyses were combined using 54 nuclear (nr) 

and 200 chloroplast (cp) DNAsequences in comparison to morphological species 

descriptions (Ley and Hardy 2010 [4]). The nuclear dataset unambiguously supported the 

morphological species concept in Haumania (Ley and Hardy 2010 [4] – Fig.2). However, 

the main chloroplastic haplotypes were shared between species (Ley and Hardy 2010 [4] – 

Fig.3) and, although a geographic analysis of cpDNA diversity (kinship distance curve, 

Hardy and Vekemans 2002) confirmed that individuals from the same taxon were more 

related than individuals from distinct taxa, cp-haplotypes displayed correlated geographic 

distributions between species (Ley and Hardy 2010 [4] – Fig.4). Hybridization was the 

most plausible reason for this pattern (see Lexer et al. 2006, Acosta and Premoli 2010) 

supported by the partial overlap in the distribution range between the two taxa, ecological 

data showing high similarities in habitat preference, flowering time and probably 

pollinators (Dhetchuvi 1996, Ley 2008, Ley and Claßen-Bockhoff 2009).  

The study Ley and Hardy 2010 [4] highlighted the gain of information on the 

speciation process in Haumania by adding georeferenced molecular data to the 
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morphological characteristics. It also showed that nr and cp sequence data might provide 

different but complementary information, questioning the reliability of the unique use of 

chloroplast data for species recognition by DNA barcoding (CBoL Plant Working Group 

2009) highly recommending the use of nuclear markers for species delimitation (see also 

Acosta and Premoli 2010). 

To address the lack of coverage of the nuclear genome in the former study (Ley and 

Hardy 2010 [4]) we conducted a second study (Ley and Hardy 2013 [5]) in which 

amplified fragment length polymorphisms (AFLP) were used. This improved the study of 

patterns of population genetic variation and gene flow (Gaudeul et al. 2004, Schönswetter 

et al. 2004, 2008, Schorr 2009, Oberprieler et al. 2010). AFLP are a valuable addition to 

cpDNA sequences as they provide a large number of mostly nuclear markers, they can be 

obtained at a relatively low cost in any taxon without prior genomic knowledge, and recent 

advances in laboratory methods have become increasingly reliable in producing 

reproducible AFLP patterns (DeHaan et al. 2003; Odiwuor et al. 2011). Thus, AFLPs have 

already repeatedly been used to address questions on species history (Gaudeul et al. 2004; 

Sch€onswetter et al. 2004, 2008; Schorr 2009) and to identify hybridization events 

(Oberprieler et al. 2010). 

However, the reliability of AFLP scoring is still critical (O’Hanlon and Peakall 

2000, Vekemans et al. 2002, Gort et al. 2006, Meudt and Clarke 2007, Bonin et al. 2007). 

Therefore, first a novel approach based on quantitative genetics to assess band 

reproducibility and account for it when estimating genetic relatedness was developed (Ley 

and Hardy 2010 [5] – Fig. 1). This method can be applied after the use of an automated 

method for AFLP scoring (tinyFLP, Arthofer 2010).  

We thus developed 123 new AFLP markers based on two primer pairs that 

amplified reliably and showed some degree of polymorphism in the pretests (EcoRI AAC - 

MseI CAC, EcoRI AAC - MseI CAG) and submitted it to the novel approach to select 

reliable bands from their degree of reproducibility (Ley and Hardy 2013 [5]). Applying 

Bayesian clustering to the so established AFLP dataset confirmed the recognition of the 

two Haumania species obtained by the single-locus nrDNA (5S) sequence data before (see 

Ley and Hardy 2010 [4] – Fig.2). These nrDNA (5S) data were, however, incongruent 

with the results of the cpDNA data set in assigning a given individual to one or the other 

species and the AFLP data showed a continuous gradient of assignations of individuals to 

one or the other species (Ley and Hardy 2013 [5] – Fig. 3). Further supported by the decay 

of the relatedness between individuals of distinct species with geographic distance this 
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demonstrated that hybridization occurred between the two species and affected also the 

nuclear genome (see also Hardy and Vekemans 2001, Palma-Silva et al. 2011). This study 

thus underlined the importance of including the nuclear genome into the interpretation of 

species history as cpDNA data can occasionally be misleading due to its solely maternal 

inheritance (see also Duminil et al. 2012).  Although the AFLP markers might have been 

substantially affected by nongenetic factors, their analysis using the new methods 

developed considerably advanced our understanding of the pattern of gene flow in the two 

model species.  

Next we tried to quantify the degree of hybridization in more detail (Ley and Hardy 

(submitted) [6]). We concentrated on the area of distributional overlap and included for the 

first time morphological intermediates.  

 265 individuals from nine populations in Northern Gabon were investigated using 

seven microsatellites (from Ley and Hardy 2016a [2]) and the chloroplast (cp) sequence 

trnC-petN1r (from Ley and Hardy 2010 [4]). 13 % and 41 % of intermediates were found 

based on morphological versus genetic data, respectively, (Ley and Hardy (submitted) [6]) 

indicating only a partial congruence of both datasets supporting the assumption that 

intermediate morphological characters are not mandatory for hybridization (see also 

Riesenberg 1995). There was an equal amount of backcrosses to both parental species (15 

%). Genetic diversity within each species was highest in populations in the center of the 

study area where both species co-occurred, corroborating the positive effect of 

hybridization on intraspecific diversity (Andersson 1948, Soltis and Soltis 1999, Shimizu-

Inatsugi et al. 2009, Symonds et al. 2010). Intermixed populations showed higher 

distinction from populations of pure H. danckelmaniana than from pure H. liebrechtsiana. 

A comparison at local scale of SSR and cpDNA sequence data revealed a unidirectional 

introgression from H. liebrechtsiana into H. danckelmaniana, with H. danckelmaniana 

acting predominantly as mother and H. liebrechtsiana as father (=pollen donor) (see also 

Currat et al. 2008, Excoffier et al. 2009, Li et al. 2015). This is in line with the theoretical 

expectation of chloroplast capture in the case of an invading species (Petit et al. 2004, 

Tsitrone et al. 2003, here: H. liebrechtsiana) into the range of a local species (here: H. 

danckelmaniana) and the proposed phylogeographic scenario for the genus Haumania 

(described next in Ley et al. 2016 [8]).  

We next compared the pattern of gene flow between other sister species with 

different pattern of distributional overlap (Ley and Hardy 2014 [7]) - here among three 

species from the herbaceous genus Marantochloa Brongn. & Gris. (Marantaceae) (Fig. 
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2.5). These species are sympatrically distributed in the understorey of the Central tropical 

African rainforest (Dhetchuvi 1996). Data from the chloroplast and nuclear genomes 

(DNA sequences and AFLP) were used and compared to the existing data on species 

delimitation and gene flow in the two parapatric climber sister species from the genus 

Haumania J. Leonard (Ley and Hardy, 2010, 2013).  

 

 

Fig. 5.1: Comparison of the degree of geographic range overlap and gene flow of species pairs. (A) total 

range overlap with inter-specific incompatibility, (B) total range overlap with considerable inter-specific 

gene flow in the plastid and nuclear genomes, (C) partial overlap with the formation of a hybrid zone. 

 

 

Highly contrasting patterns were found (Ley and Hardy 2014 [7] - Fig. 3): while 

there was no evidence of gene flow between M. congensis and M. monophylla, species 

identity between M. monophylla and M. incertifolia was maintained despite considerable 

gene flow. We hypothesize that M. incertifolia originated from an ancient hybridization 

event between M. congensis and M. monophylla, considering the current absence of 

hybridization between the two assumed parent species, the rare presence of shared 

haplotypes between all three species and the high percentage of haplotypes shared by M. 

incertifolia with each of the two parent species. Hybridisation among the three species 

might be facilitated by the overlap in distributional ranges and their high similarities in 

habitat preference, flowering time and probably pollinators (Dhetchuvi 1996, Ley 2008, 
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Ley and Claßen-Bockhoff 2009). The current absence of gene flow between M. congensis 

and M. monophylla might be based on reinforcement after a relatively ancient event of 

speciation and long re-contact and sympatry (Butlin 1987, Ortiz-Barrientos et al. 2009).  

Thus the observed pattern in Marantochloa were in contrast to those found in the 

two parapatrically distributed species from the genus Haumania (Fig. 5.1) forming a 

hybrid zone restricted to the area of overlap (Ley and Hardy 2010 [4], Ley et al. 2016 [8]). 

Hybridization in Haumania is typical for a recent re-contact of two once allopatric species 

that are still compatible and can form hybrids in a secondary contact zone (compare to 

Petit et al. 2002). In the case of Haumania, the two species do not seem to have developed 

prezygotic barriers (see also Coyne and Orr 2004, Wu and Ting 2004) such as observed 

between Marantochloa congensis and M. monophylla, and their hybridization has not 

resulted in the formation of a new species as hypothesized for M. incertifolia (Ley and 

Hardy 2014 [7]). Further, interspecific gene flow in Haumania is much more intense for 

the chloroplast than for the nuclear genome, leading to chloroplast captures (Ley and 

Hardy 2010 [4], Ley et al. 2016 [8]), whereas gene flow between M. monophylla and M. 

incertifolia involved both genomes alike (Ley and Hardy 2014 [7]).  

This work (Ley and Hardy 2014 [7]) thus illustrates the diversity of 

speciation/introgression patterns that can potentially be encountered in the flora of tropical 

Africa. Further examples of sister species comparisons and their degree of speciation 

between can be found in Ley et al. 2014 [9]. In the future it would be interesting to 

illuminate more in detail the relation of genetic differentiation to phylogenetic distance 

between species, and the degree of overlap in distributional range and ecological niche. 

 

The key conclusions from these four studies on species delimitation and inter-specific gene 

flow are:  

 The reliability of the unique use of chloroplast data for species recognition by DNA 

barcoding is questioned. Instead the use of nuclear markers for species delimitation 

is highly recommended (Ley and Hardy 2010 [4]). 

 A novel approach for AFLP analyses after automated AFLP scoring was developed 

based on quantitative genetics to assess band reproducibility and account for it 

when estimating genetic relatedness (Ley and Hardy 2013 [5]).  

 A case of unidirectional introgression was detected in line with hybridization after 

secondary contact which might be common in Central Africa as the forest flora in 
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this area has undergone repeated cycles of fragmentation and expansion following 

past climate changes (Ley and Hardy submitted [6]). 

 Different levels of inter-specific differentiation and hybridisation were detected 

illustrating the diversity of speciation/introgression patterns that can potentially 

occur in the flora of tropical Africa (Ley and Hardy 2014 [7]). 

 

Based on these findings of frequent hybridization in Central tropical Africa, it is 

highly recommended for any future genetic study to always include 1) chloropolast and 

nuclear markers to cover the full genetic information and uncover potential events of 

hybridization and 2) to include sister species to ensure that detected spatial genetic patterns 

are not due to hybridisation which would totally change the interpretations of results (see 

also Ley et al. 2014 [9]). 

In the future it would be worthwhile exploring further the different processes that 

might have led to one or the other degree of species differentiation. As outlined in chapter 

2, different mechansims of speciation are already suggested for tropical Central Africa 

such as genetic differentiation in allopatry due to climatic cycles (Maley 1996) and/or 

ecological niche separation along ecological gradients (Smith 1997). Each of them might, 

however, be accompagnied by many additional factors of specific species life-history traits 

and genetic processes that merit further research. Tools to differentitate between those two 

major hypotheses are already out there and have been applied to some tropical species 

complexes (see based on phylogenetic data: Couvreur et al. 2011). However, still the 

interaction of both processes in the diversification of the tropical African biota should not 

be underestimated (Smith et al. 2005; see also Mayol et al. 2015). 

One such example that might merit further investigation is the differentiation of the 

here investigated species of the genus Haumania. Here allopatric differentiation might 

have been coupled with ecological differentiation allowing H. liebrechtsiana rather than H. 

danckelmaniana to extend its current range and invade the respective other species. More 

finescale ecological analysis within the secondary contact zone might allow detecting 

whether hybridisation is correlated with different ecological traits and habitat preferences 

shaping the invasion by H. liebrechtsiana (see Abbott and Brenan 2014, Curry 2015). Here 

the ecological background of invasion/invasibility would have to be illuminated in more 

detail. Details on ecological differences between H. danckelmaniana and H. liebrechtsiana 

are still unknown. 
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6 Phylogeographic pattern and concordance with the refuge 

hypothesis 
 

Relevant publications (see Appendix 8-9): 

[8] Ley, A.C., Heuertz, M., Hardy, O.J. (2016) The evolutionary history of central African 

rain forest plants: phylogeographic insights from sister species of the climber 

genus Haumania (Marantaceae). Journal of Biogeography. doi:10.1111/jbi.12902 

 

 [9] Ley, A.C., Dauby, G., Köhler, J., Wypior, C., Röser, M., Hardy, O.J. (2014) 

Comparative phylogeography of eight herbs and lianas (Marantaceae) in central 

African rainforests. Frontiers in Genetics 5: article 403. doi: 

10.3389/fgene.2014.00403 

 

The origin of the high species diversity in the African lowland rain forest, a diversity 

hotspot within this continent (Barthlott et al. 2005), is still a matter of debate. The current 

lowland tropical rain forest in Africa covers two large blocks, from Sierra Leone to 

western Ghana (Upper Guinea), and from southern Nigeria to the eastern Democratic 

Republic of the Congo (Lower Guinea and Congolia) being divided into three distinct 

regions (phytogeographic domains) based on species composition (White 1979). The 

changing climatic conditions following glacial cycles, i.e. cycles of cooling and drying in 

tropical Africa (e.g. 10 to 70 Kyr bp, 130 to 190 Kyr bp for the last and penultimate glacial 

periods, respectively, Petit et al. 1999), have been proposed as an important factor shaping 

current species distributions in this region. It is hypothesised that these glacial cycles 

forced rain forest plants to retreat into localized refuge areas of suitable climate, thereby 

isolating populations, which potentially led to allopatric speciation, essentially during the 

Pleistocene (Maley 1996). Palynological data document cyclic vegetation changes from 

forest to grasslands and vice versa during the Quaternary (Dupont et al. 2000, see also 

Alexandre et al. 1998). However, palynological data are rare and unevenly distributed in 

tropical Africa (Bonnefille 2007). The locations of postulated refugia during the 

Pleistocene have thus been proposed essentially from current centres of species diversity 

and endemism (e.g. Maley 1996, Robbrecht 1996, Sosef 1996, Colyn et al. 1991, see Fig. 

1.2). However, this might confound the impact of past forest fragmentation and 

environmental effects on speciation events (Dauby et al. 2014). To shed more light on the 

refuge hypothesis and its impact on the phytogeographic domains of tropical Africa, it is 

desirable to gain further independent evidence, notably from phylogeographic patterns 

(Hardy et al. 2013, Dauby et al. 2014, Heuertz et al. 2014). 
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 Phylogeographic studies on tropical African trees already showed a partial 

concordance of geographic patterns of genetic diversity and allelic endemism with 

postulated Pleistocene refuge areas (e.g., in genera: Milicia, Dainou et al. 2010; Santiria, 

Koffi et al. 2011; Symphonia, Budde et al. 2013; Erythrophleum, Duminil et al. 2013; 

multispecies patterns in: Hardy et al. 2013, Dauby et al. 2014, Heuertz et al. 2014) 

suggesting that climatic oscillations have indeed influenced plant species in the 

hypothesised way. However, these studies dealt only with trees and were often restricted to 

Lower Guinea (excluding Congolia) or concentrated on the more obvious differentiation 

between West and Central Africa (or Upper and Lower Guinea, see Plana 2004, Koffi et 

al.  2011, Cubry et al.  2013, Duminil et al. 2013). Further, to demonstrate the importance 

of refugia in genetic divergence and speciation, one would have to investigate in-depth the 

history of phylogenetically close taxa from different refugia.  

Here we aim to test the refuge hypothesis in forest understorey plants (herbs and 

climbers) as a major driver of genetic differentiation to explain the development of distinct 

phytogeographic domains in the tropical central African rain forest. To address this aim 

the phylogeographic pattern in several pairs of plant sister species from the family 

Marantaceae were studied and compared. 

A first study concentrated on the sister species Haumania danckelmaniana and H. 

liebrechtsiana (Marantaceae) (Ley et al. 2016 [8]). Seven polymorphic microsatellite loci 

(from Ley and Hardy 2016a [2]) were genotyped in a total of 513 individuals from both 

species trying to cover the entire distribution area of each species. The microsatellite data 

supported the recognition of the two morphological species, H. danckelmaniana and H. 

liebrechtsiana, as formerly found based on pDNA and AFLP data (Ley and Hardy 2010 

[4], 2013 [5]). Using population genetic structure analyses three distinct homogeneous 

genetic clusters were detected in H. danckelmaniana and two in H. liebrechtsiana. These 

clusters corresponded geographically with the patterns found in the plastid DNA sequences 

(see Ley and Hardy 2010 [4]). Genetic diversity and endemism was unevenly distributed 

between clusters and in both datasets (pDNA and microsatellites) most clusters exhibited 

signals of population expansion. 

These results indicate a complex history involving allopatric differentiation with 

each species originating in a different phytogeographic domain - H. danckelmaniana 

originating in Lower Guinea and H. liebrechtsiana in the large swamps close to the Congo 

River in Congolia – divided by a dry corridor which has been and partly still is savanna 

dominated (Maley 1996, Anhuf et al. 2006). These observed patterns were thus globally 
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consistent with the refuge hypothesis suggesting that the allopatric division potentially 

resulted from past forest fragmentation (Maley 1996) and was followed by population 

expansion which probably occurred during a phase of forest expansion. Most areas 

proposed as refugia are characterised by a pronounced topographical structure in the case 

of H. danckelmaniana or azonal water in the case of H. liebrechtsiana in the Congo Basin 

swamps that might have provided a suitable microclimate for forest patches where 

individuals of both species could survive in periods of adverse climate conditions (Leal 

2001). In addition to the so far postulated refugia in Lower Guinea the analyses of H. 

danckelmaniana suggests the retraction of the species to even more areas, i.e. 

SECameroon/NRCongo and NGabon (Ley et al. 2016 [8]). These areas might be 

recognized as additional refugia as already suggested for several other plant groups (see 

also Robbrecht 1996, Sosef 1996, Laraque et al. 1998, Budde et al. 2013).  

From here the species expanded into their current distribution range at times of 

favourable climate conditions during warmer and more humid periods following the 

expansion movements of larger rain forest trees for which equivalent hypotheses of range 

expansion exist (Hardy et al. 2013, Dauby et al. 2014). Inter-specific introgression - 

concordant across genetic datasets (Ley and Hardy 2010 [4], 2013 [5], submitted [6]) – 

was detected probably as a consequence of either a short isolation time and/or a slow 

genetic divergence, which did not yet lead to incompatibility between the two species (see 

also Holstein and Renner 2011).  

The presented scenario (Ley et al. 2016 [8] – Fig.2) illustrates evolutionary 

processes that likely have contributed to shaping the African phytogeographic domains. As 

the forest flora of Central Africa has undergone repeated cycles of fragmentation and 

expansion following past climate changes (Dupont et al. 2000), we expect that similar 

scenarios of hybridization after secondary contact may be common.  

Thus in a second phylogeographic study to get a bigger picture we added more 

sister species pairs to our phylogeographic analyses (Ley et al. 2014 [9]). Here the 

phylogeographic patterns (chloroplast-DNAsequences) within and between eight 

(sister)species of widespread rainforest herbs and climbers from four genera of 

Marantaceae (Halopegia K. Schum., Haumania J. Leonard, Marantochloa Brongn. & 

Gris, Megaphrynium Milne-Redh., Fig. 2.5) were investigated, searching for congruent 

patterns across species that might have been driven by a common vegetation history, and 

congruence of these patterns with postulated rainforest refugia that might support the 

importance of these areas for species survival and population differentiation.  
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Using 1146 plastid DNA sequences (trnC-petN1r) sampled across African tropical 

lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic region, intra-

and interspecific patterns of genetic diversity, endemism and distinctiveness were 

analysed. Intraspecific patterns of haplotype diversity were concordant among most 

species as well as with the species-level diversity pattern of Marantaceae (Fig. 6.1; Ley et 

al. 2014 [9] - Fig.4). Highest values were found in the hilly areas of Cameroon and 

Gabon. The level of genetic diversity at the plastid gene sequenced (7–19 haplotypes per 

species, see also nucleotide diversity) was similar to that found for the same plastid 

marker in tree species from Lower Guinea (6–24 haplotypes per species, Dauby et al. 

2014). Equally, genetic differentiation between areas (GST) were comparable to values 

found in maternally inherited markers in many other angiosperm taxa, including tropical 

African trees (see Duminil et al. 2007, Dauby et al. 2014). This is in contrast to our 

expectation of more sub-structuring in (perennial) herbs/climbers than in trees and may 

indicate rather similar dispersal and population structure in both growth form groups. 

Within the Marantaceae, GST values seemed to correlate superficially with dispersal 

ability (see also Petit et al. 2003).  

The spatial distribution of endemic haplotypes, an indicator for refuge areas in 

general, however, was not congruent across species Ley et al. 2014 [9]. Each proposed 

refuge (see Maley 1996) exhibited high values of endemism for one or a few species 

indicating their potential role as area of retraction for the respective species only. Thus, 

evolutionary histories seem to be diverse across species. In fact, areas of high diversity 

might have been both refuge and/or crossing zone of recolonization routes i.e., secondary 

contact zone. We hypothesize that retraction of species into one or the other refuge 

happened by chance depending on the species’ distribution range at the time of climate 

deterioration. The idiosyncratic patterns found in Marantaceae species are similar to those 

found among tropical tree species, especially in southern Lower Guinea (Hardy et al. 

2013, Dauby et al. 2014, Heuertz et al. 2014). 
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Fig. 6.1: Geographic distribution of standardized (i.e., centered and reduced) genetic diversity and endemism 

for eight Marantaceae species in Lower Guinea for grid cell size 0.75◦. Genetic distinctiveness of each grid 

cell (S’i ). Distinctiveness above or below average is based on standardized pairwise genetic distance (S’kij 

computed for each species) among populationswheregeneticdistanceis estimated as the number of mutational 

steps between two individuals drawn from two populations (vij). Species along barplots from left to right are: 

Halopegia azurea, Haumania danckelmaniana, H. liebrechtsiana, Marantochloa congensis, M. incertifolia, 

M. monophylla, Megaphrynium macrostachyum and Mega. trichogynum. Source: Ley et al. 2014. 

 

The key conclusions from these studies are:  

- Individual pattern of genetic diversity and endemism in species are congruent with 

formerly proposed Pleistocene refuge areas (Ley et al. 2016 [8], Ley et al. 2014 

[9]). 

- Based on genetic pattern additional refugia are proposed here: 

SECameroon/NRCongo and NGabon (Ley et al. 2014 [9]). 

- The specific scenario of allopatric speciation in the genus Haumania illustrates 

evolutionary processes that likely have contributed to shaping the African 

phytogeographic domains (Ley et al. 2016 [8]). 

- The idiosyncratic phylogeographic patterns across Marantaceae species indicate 

diverse evolutionary histories across species, similarly found among tropical tree 

species (Ley et al. 2014 [9]). 
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Concerning future directions it is noteworthy that the current studies focused 

mostly on Central Tropical Africa due to a dense sampling in that particular area (see also 

Budde et al. 2013). Next it would thus be of interest to extend the phylogeographic work to 

Upper Guinea and Congolia to estimate the respective role of those areas in the evolution 

of the investigated taxa. Upper Guinea has been separated repeatedly from Lower 

Guinea/Congolia at the Dahomey gap (Dupont et al. 2000, Salzmann et al. 2006) and is 

today carrying a composition of taxa (e.g. mammals, plants, Jongkind 2008, Linder et al. 

2012) or genetic populations (Duminil et al. 2015) partly distinct from Lower 

Guinea/Congolia.   

Further unresolved is also the exact process of expansion of Haumania 

liebrechtsiana out of the Congolian refuge at the Congo River into Gabon (Ley et al. 2016 

[9]). Here additional sampling would be needed in the Republic of the Congo to 

investigate in more detail the northwards expansion of the species elucidating the 

relationship between the two detected genetic H. liebrechtsiana clusters from WGabon and 

DRCongo/RCongo and finding exactly the current southern boarder of the secondary 

contact zone between H. danckelmaniana and H. liebrechtsiana.  

In the future, it would further be desirable to expand this line of study to other 

sister species pairs of different growth forms (trees, shrubs) looking for common suture 

zones between species that might reflect common pattern of forest expansion from refugia 

after climate change (see for trees Hardy et al. 2013) and find further explanatory support 

for the observed divisions of the tropical African rainforest into distinct phytogeographic 

domains. 
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7 Concluding remarks and outlook  
 

The here presented compilation of publications on gene flow in the tropical Africa 

rainforest understorey sheds new light on the patterns of intra- and inter-specific gene 

flow, species delimitation and historical migration of species in this habitat. Due to the 

wealth of tropical understorey species but the difficulty to access this ecosystem our 

knowledge on the evolution and functioning of this tropical habitat is still lacking behind. 

The comparisons of species within this thesis and with other taxa from the literature 

suggest that there are actually many different patterns that exist in this ecosystem. My 

results and conclusions thus urge the effort of conducting even more analyses on different 

species before we will get to an overall picture. Here, the combination of the conducted 

genetic studies in this thesis illuminates the interest in undertaking in general more 

overarching genetic studies per species - as pattern of intra- and inter-specific gene flow as 

well as local and regional gene flow interfer with each other - together shaping a species´ 

evolutionary history and future potential (see also Cutter 2013). 

In the future new techniques of data acquisition (e.g. next generation sequencing – 

with potential to cover larger portions of all parts of the genome) and methods of data 

evaluation will facilitate and refine these kinds of research efforts. One avenue is certainly 

the use of coalescence modelling to infer the history of taxa that lead to the 

phylogeographic pattern seen today. We here already applied methods of coalescence 

modelling implemented in DIYABC (Cornuet et al. 2010) to the genus Haumania yielding 

a first insight into the advantages and shortcomings of coalescence modelling depending 

on the available data of the respective study species at hand (Ley et al. 2016 [8]). In an 

ongoing project of the phylogeographic patterns in the genus Sarcophrynium K. Schum. 

(Marantaceae) using large datasets obtained through genotyping by sequencing (GBS) we 

are currently applying new spatially-explicit models of coalescence of genetic data which 

allow analysing more complex evolutionary models and accounting for the limited 

dispersal ability of species of the tropical understorey (SPLATCHE: Ray et al. 2010, 

PhyloGeoSim: Dellicour et al. 2014). We combine these analyses with ecological niche 

modelling based on ever-refined climatic models (Maxent: Phillips et al. 2006, Phillips and 

Dudık 2008) as further independent source of data to support emerging scenarios of 

evolutionary history of species and communities. 

Based on the here obtained genetic data on the current state and past history of taxa 

a line of research to be reinforece in the future will be the estimation of the plant´s genetic 
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potentials for the future. In another ongoing project (www.caballiance.org) we are thus 

going beyond the investigation of plant responses to past climatic changes looking into the 

potential reactions of plants under future climate change. In common garden experiments 

we check the existing degree of phenotypic variability of a given study plant and identify 

fitness traits under selection (Ley et al. in prep.). Thereby the already detected centers of 

genetic diversity will play an important role as they are the most probable areas - if any – 

which may carry the necessary preadapations to survive changing climatic conditions in 

the future (see Thomassen et al. 2010, 2011). Furthermore, new genetic techniques 

facilitate here now also in non-model plants the use of coding genetic markers for the 

identification of the specific trait under selection and the geographic localities where 

genetic adaptation has taken place (see Jaramillo-Correa et al. 2015, Mayol et al. 2015). 

For the tropics current models predict that rainforest plants are already operating near a 

high temperature threshold and climate change might be too fast for evolutionary 

adaptation to keep up with (Clark 2004, Douthy and Goulden 2008). However, very little 

has so far actually been tested on tropical plants (but see Ensslin and Fischer 2015). These 

first results again indicate very different potentials depending on plant species. 

The presented research lines thereby go far beyond fundamental research having 

great importance for current conservation efforts in helping to define the most promessing 

areas and their characteristics for the protection of this highly diverse tropical ecosystem in 

the future. 
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 9 Summary  
 

The thesis summarizes a set of studies on gene flow in the tropical Africa forest 

understorey focusing on i) intra-specific gene flow considering breeding system and the 

spatial extent of clonality and gene dispersal, ii) species delimitation and different levels of 

inter-specific gene flow (hybridization) and iii) historical migration scenarios of species 

inferred from phylogeographic pattern in the family Marantaceae. Furthermore, reciprocal 

interactions of gene flow from all three investigated genetic-geographic levels are 

considered. 

 The first comparative investigation of the spatial genetic structure in a climber 

species against data from the literature on tropical trees and herbs revealed an intermediate 

level of spatial genetic structure in the latter explained by a combination of rather species 

specific traits such as moderate clonality, narrow seed dispersal and high population 

density with a presumably important impact on pollinator behaviour. In the future, these 

results should be compared under different disturbance regimes and to further taxa with 

contrasting life forms and pollination and dispersal systems to gain a more general picture 

of the pattern and determinants of spatial genetic structure in understory plants of tropical 

African rainforest in contrast to trees. 

 In the analysis of genetic species boundaries different levels of inter-specific gene 

flow were detected from total absence to frequent gene flow between species correlated 

with phylogenetic distance and geographic range overlap. Hybridisation was probably 

facilitated by cross-compatibility (low phylogenetic divergence), sympatry (incl. same 

habitat) and pollinator sharing. A case of asymmetric hybridization was attributed to the 

effect of unidirectional invasion of one species into the range of the other species. The 

ecological prerequisites of the respective species for becoming either the invaded or the 

invasive species still need further investigation. The different marker systems (AFLP, cp & 

nrDNA, SSR) used in this study yielded complementary information questioning the 

reliability of the unique use of chloroplast data for species recognition by current DNA 

barcoding initiatives. 

 Comparing phylogeographic pattern across eight herb and climber species in 

Central Africa revealed commonly high levels of diversity in Lower Guinea (Cameroon, 

Equatorial Guinea, Gabon) versus low levels in Congolia suggesting a frequent origin of 

species in Lower Guinea. Within Lower Guinea patterns were little congruent indicating 

an idiosyncratic history of species with random retraction of species to different refugia 
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during incidents of adverse climate conditions, i.e. glacial cycles. The contrasting patterns 

of one species congruent with a Congolian origin revealed a potential mechanism for the 

establishment of phytochoria in Central Africa. Next, the expansion of data to Upper 

Guinea to identify the role of Upper Guinea in tropical African species evolution and the 

application of ecological niche-modeling and spatially explicit coalescence modeling are 

envisioned to account for more complex models of evolution. 

 Phylogeographic pattern do not only reveal past events of species persistence and 

migration but also help to identify current centers of diversity important for responses to 

future climatic changes. In an ongoing effort centers of genetic diversity and distinction 

and signs of local adaptation to different climate regimes are researched in different plant 

taxa yielding insights into species’ resources for potential responses to future climatic 

changes with important implications for conservation actions.  

The here presented thesis thus sheds new light on the patterns of gene flow in the 

tropical Africa rainforest understorey contributing to our understanding of the vegetation 

history of tropical Africa and its currently ongoing evolutionary processes and forms the 

basis for an estimation of the future potential of those tropical plants in a changing world. 
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Appendix 1 Al-Gharaibeh, M.M., Borchsenius, F., McKechnie, L, Sanmartin, I., Ley A.C. 

(manuscript) Phylogeny of the pantropically distributed family Marantaceae. 

 
 Phylogenetic resolution of problematic taxonomic groups can be improved and strengthened by 

increasing the amount of molecular data and the sampling of ingroup taxa. Here we reassess the 

phylogeny of the pantropically distributed family Marantaceae compiling a complete genera 

sampling and using both chloroplast and nuclear markers. Phylogenetic analyses were conducted 

on a set of four genetic markers (chloroplast markers: trnL, matK, rps16 and nuclear marker: ITS) 

for 187 ingroup taxa representing all 29 Marantaceae genera under Maximum Likelihood (ML), 

Maximum parsimony (MP) criteria and Bayesian Inference (BI). The resulting tree topology 

focusing on the resolution of major clades was mostly congruent among applied methods and with 

preexisting family phylogenies. A few relationships within genera or clades were newly resolved 

here. A genus, Monophyllanthe, added to the phylogeny here for the first time appeared within the 

Stachyphrynium clade as sister to the genus Marantochloa. Only the affinity of the genus 

Haumania to one of the other major clades still remained uncertain. Four genera, Calathea, 

Ischnosiphon, Maranta and Schumannianthus were identified as being non-monophyletic. Such a 

robust phylogeny based on multiple molecular markers from both genomes and a complete 

sampling of Marantaceae genera will be a solid base to investigate in the future the timing of 

speciation and the migration events leading to the currently observed biogeographical patterns in 

this family. 

 

Appendix 2 Ley, A.C., Hardy, O.J. (2016a) Polymorphic microsatellite loci for Haumania 

danckelmaniana and transferability into H. liebrechtsiana (Marantaceae). 

Applications in Plant Sciences 4(3): apps.1500116. doi: 10.3732/apps.1500116 

 
• Premise of the study: Microsatellite markers were developed for the species Haumania 

danckelmaniana (Marantaceae) from central tropical Africa. 

• Methods and Results: Microsatellite isolation was performed simultaneously on three different 

species of Marantaceae through a procedure that combines multiplex microsatellite enrichment and 

next-generation sequencing. From 80 primers selected for initial screening, 20 markers positively 

amplifi ed in H. danckelmaniana , of which 10 presented unambiguous amplifi cation products 

within the expected size range and eight were polymorphic with four to nine alleles per locus. 

Positive transferability with the related species H. liebrechtsiana was observed for the same 10 

markers. 

• Conclusions: The polymorphic microsatellite markers are suitable for studies in genetic diversity 

and structure, mating system, and gene fl ow in H. danckelmaniana and the closely related species 

H. liebrechtsiana. 

 

Appendix 3 Ley, A.C., Hardy, O.J. (2016b) Spatially limited clonality and pollen and seed 

dispersal in a characteristic climber of Central African rain forests: Haumania 

danckelmaniana (Marantaceae). Biotropica 58(5) : 618-627. 

 
Gene dispersal and clonality are important aspects of plant evolution affecting the spatial genetic 

structure (SGS) and the long-term survival of species. In the tropics these parameters have mostly 

been investigated in trees and some herbs, but rarely in climbers which frequently: (1) show clonal 

growth leading to a patchy distribution pattern similar to that of understory herbs; and (2) flower in 

the canopy where they may have access to long-distance dispersal like canopy trees. We thus 

hypothesize for climbers an intermediate genetic structure between herbs and trees. The study aims 

at assessing breeding system and spatial extent of clonality and gene dispersal in Haumania 

danckelmaniana (Marantaceae), a common climber in the tropical rain forests from western Central 

Africa. In eastern Cameroon, 330 ramets were sampled at three spatial scales and genotyped at 

seven microsatellite loci. Clonality was moderate (clonal extend: 15–25 m, clonal diversity 0.4–

0.65) indicating the importance of recruitment from seeds at this locality. The low inbreeding (FIS) 

suggested predominant outcrossing. The rate of decay of the relatedness between individuals with 
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distance indicated limited gene dispersal distance (rg = 9–50 m, neighborhood sizes Nb = 23–67) 

in accordance with narrowly gravity dispersed seeds and restricted pollen transfer distance in 

densely flowering populations. The marked SGS (Sp = 0.011–0.026) was similar to that reported in 

tropical trees, but might increase with augmented clonality as in many herbs, especially under more 

severe disturbance regimes. 

 

Appendix 4 Ley, A.C., Hardy, O.J. (2010) Species delimitation in the Central African 

herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic 

DNA sequences. Molecular Phylogenetics and Evolution 57: 859–867. 

 
Species delimitation is a fundamental biological concept which is frequently discussed and altered 

to integrate new insights. These revealed that speciation is not a one step phenomenon but an 

ongoing process and morphological characters alone are not sufficient anymore to properly 

describe the results of this process. Here we want to assess the degree of speciation in two closely 

related lianescent taxa from the tropical African genus Haumania which display distinct vegetative 

traits despite a high similarity in reproductive traits and a partial overlap in distribution area which 

might facilitate gene flow. To this end, we combined phylogenetic and phylogeographic analyses 

using nuclear (nr) and chloroplast (cp) DNA sequences in comparison to morphological species 

descriptions. The nuclear dataset unambiguously supports the morphological species concept in 

Haumania. However, the main chloroplastic haplotypes are shared between species and, although a 

geographic analysis of cpDNA diversity confirms that individuals from the same taxon are more 

related than individuals from distinct taxa, cp-haplotypes display correlated geographic 

distributions between species. Hybridization is the most plausible reason for this pattern. A 

scenario involving speciation in geographic isolation followed by range expansion is outlined. The 

study highlights the gain of information on the speciation process in Haumania by adding 

georeferenced molecular data to the morphological characteristics. It also shows that nr and cp 

sequence data might provide different but complementary information, questioning the reliability 

of the unique use of chloroplast data for species recognition by DNA barcoding. 

 

Appendix 5 Ley, A.C., Hardy, O.J. (2013) Improving AFLP analysis of large-scale 

patterns of genetic variation - a case study with the Central African lianas 

Haumania spp. (Marantaceae) showing interspecific gene flow. Molecular 

Ecology 22(7): 1984-1997. 

 
AFLP markers are often used to study patterns of population genetic variation and gene flow 

because they offer a good coverage of the nuclear genome, but the reliability of AFLP scoring is 

critical. To assess interspecific gene flow in two African rainforest liana species (Haumania 

danckelmaniana, H. liebrechtsiana) where previous evidence of chloroplast captures questioned the 

importance of hybridization and species boundaries, we developed new AFLP markers and a novel 

approach to select reliable bands from their degree of reproducibility. The latter is based on the 

estimation of the broad-sense heritability of AFLP phenotypes, an improvement over classical 

scoring error rates, which showed that the polymorphism of most AFLP bands was affected by a 

substantial nongenetic component. Therefore, using a quantitative genetics framework, we also 

modified an existing estimator of pairwise kinship coefficient between individuals correcting for 

the limited heritability of markers. Bayesian clustering confirms the recognition of the two 

Haumania species. Nevertheless, the decay of the relatedness between individuals of distinct 

species with geographic distance demonstrates that hybridization affects the nuclear genome. In 

conclusion, although we showed that AFLP markers might be substantially affected by nongenetic 

factors, their analysis using the new methods developed considerably advanced our understanding 

of the pattern of gene flow in our model species. 
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Appendix 6 Ley, A.C., Hardy, O.J. (2017) Hybridization and asymmetric introgression 

after secondary contact in two tropical African climber species Haumania 

danckelmaniana and H. liebrechtsiana (Marantaceae). International Journal of 

Plant Sciences 178(6): 421–430. 

 
Premise of research. Interspecific hybridization is frequently observed between closely 

related plant species with overlapping distribution ranges, especially in zones of secondary contact 

after isolation in different refugia. Although well studied in temperate regions, interspecific 

hybridization is little documented in tropical regions, where it may be frequent in areas with high 

species diversity. To bridge this gap, we investigate hybridization in two closely related climber 

species from the genus Haumania (Haumania danckelmaniana and Haumania liebrechtsiana) 

originating from Gabon/Cameroon and the Democratic Republic of Congo, respectively, and co-

occurring in Northern Gabon. The aim of this study was to genetically quantify and qualify the 

degree of hybridization between these species in their area of distributional overlap by including 

for the first time morphological intermediates. 

Methodology. We investigated 265 individuals from nine sites (seven sites containing both 

species) by genotyping seven microsatellites and sequencing one chloroplastic region (trnC-

petN1r). Bayesian clustering analysis and simulated genotypes allowed the assignment of sampled 

genotypes to one or the other species or their intermediates (first-generation hybrid or 

backcrosses). 

Pivotal results. We found 13% and 41% of intermediates on the basis of morphological 

versus genetic data, respectively, indicating only a partial congruence. There was an equal amount 

of backcrosses to both parental species (15%). However, a comparison at the local scale of 

microsatellites and cpDNA sequence data revealed a unidirectional introgression from H. 

liebrechtsiana into H. danckelmaniana. At the scale of the nine sites, genetic differentiation was 

much lower among H. liebrechtsiana than among H. danckelmaniana populations. 

Conclusions. These results are in line with the previously proposed phylogeographic 

scenario for the genus Haumania and the theoretical expectation of chloroplast capture when an 

expanding species (here H. liebrechtsiana) invades the range of a local species (here H. 

danckelmaniana). Because the forest flora of Central Africa has undergone repeated cycles of 

fragmentation and expansion following past climate changes, we expect that similar scenarios of 

hybridization after secondary contact may be common. 

 

Appendix 7 Ley, A.C., Hardy, O.J. (2014) Contrasting patterns of gene flow between 

sister plant species in the understorey of African moist forests - the case of 

sympatric and parapatric Marantaceae species. Molecular Phylogenetics and 

Evolution 77: 264-274. 

 
Gene flow within and between species is a fundamental process shaping the evolutionary history of 

taxa. However, the extent of hybridization and reinforcement is little documented in the tropics. 

Here we explore the pattern of gene flow between three sister species from the herbaceous genus 

Marantochloa (Marantaceae), sympatrically distributed in the understorey of the African rainforest, 

using data from the chloroplast and nuclear genomes (DNA sequences and AFLP). We found 

highly contrasting patterns: while there was no evidence of gene flow between M. congensis and 

M. monophylla, species identity between M. monophylla and M. incertifolia was maintained 

despite considerable gene flow. We hypothesize that M. incertifolia originated from an ancient 

hybridization event between M. congensis and M. monophylla, considering the current absence of 

hybridization between the two assumed parent species, the rare presence of shared haplotypes 

between all three species and the high percentage of haplotypes shared by M. incertifolia with each 

of the two parent species. This example is contrasted with two parapatrically distributed species 

from the same family in the genus Haumania forming a hybrid zone restricted to the area of 

overlap. This work illustrates the diversity of speciation/introgression patterns that can potentially 

occur in the flora of tropical Africa. 

 



                                                    

 

69 

 

Appendix 8 Ley, A.C., Heuertz, M., Hardy, O.J. (2016) The evolutionary history of 

central African rain forest plants: phylogeographic insights from sister species of 

the climber genus Haumania (Marantaceae). Journal of Biogeography. 

doi:10.1111/jbi.12902 
 
Aim We sought to test the refuge hypothesis as a major driver of genetic differentiation to explain 

the development of distinct phytogeographical domains in tropical Central African rain forest. 

To address this aim, we studied the phylogeographical pattern of a pair of sister plant species, 

Haumania danckelmaniana and H. liebrechtsiana (Marantaceae), distributed across the two 

phytogeographical domains: Lower Guinea and Congolia.  

Location Tropical Central Africa including the phytogeographical domains Lower Guinea and 

Congolia.  

Methods Seven polymorphic microsatellite loci were genotyped in a total of 513 individuals from 

both species. The dataset was analysed for population genetic structure and demographic 

change and the results compared to the geographical pattern of plastid DNA sequences from a 

previous publication and other sympatric species.  

Results Based on the microsatellite dataset, three distinct homogeneous genetic clusters were 

detected in H. danckelmaniana and two in H. liebrechtsiana. These clusters corresponded 

geographically with the patterns found in the plastid DNA sequences. Genetic diversity and 

endemism were unevenly distributed between clusters in the two species. Most clusters 

exhibited signals of population expansion.  

Main conclusions The phylogeographical data based on microsatellites and plastid DNA revealed a 

complex history involving (1) allopatric differentiation with each species originating in a 

different phytogeographical domain, potentially resulting from past forest fragmentation, 

followed by (2) population expansion and interspecific introgression, which probably occurred 

during a phase of forest expansion. Moreover, phylogeographical patterns within each species 

provided evidence of (3) past population fragmentation followed by partial population 

admixture in H. danckelmaniana, and deep differentiation between Lower Guinea and 

Congolia in H. liebrechtsiana. The observed patterns were globally consistent with the refuge 

hypothesis and the presented scenario illustrates evolutionary processes that likely have 

contributed to shaping the African phytogeographical domains.  

 

Appendix 9 Ley, A.C., Dauby, G., Köhler, J., Wypior, C., Röser, M., Hardy, O.J. (2014) 

Comparative phylogeography of eight herbs and lianas (Marantaceae) in central 

African rainforests. Frontiers in Genetics 5: article 403. doi: 

10.3389/fgene.2014.00403 
 

 Vegetation history in tropical Africa is still to date hardly known and the drivers of population 

differentiation and speciation processes are little documented. It has often been postulated that 

population fragmentations following climate changes have played a key role in shaping the 

geographic distribution patterns of genetic diversity and in driving speciation. Here we analyzed 

phylogeographic patterns (chloroplast-DNAsequences) within and between eight (sister)species of 

widespread rainforest herbs and lianas from four genera of Marantaceae (Halopegia, Haumania, 

Marantochloa, Megaphrynium), searching for concordant patterns across species and concordance 

with the Pleistocene refuge hypothesis. Using 1146 plastid DANN sequences sampled across 

African tropical lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic 

region, we analyzed intra-and interspecific patterns of genetic diversity, endemism and 

distinctiveness. Intraspecific patterns of haplotype diversity were concordant among most species 

as well as with the species-level diversity pattern of Marantaceae. Highest values were found in the 

hilly areas of Cameroon and Gabon. However, the spatial distribution of endemic haplotypes, an 

indicator for refuge areas in general, was not congruent across species. Each proposed refuge 

exhibited high values of endemism for one or a few species indicating their potential role as area of 

retraction for the respective species only. Thus, evolutionary histories seem to be diverse across 

species. In fact, areas of high diversity might have been both refuge and/or crossing zone of 

recolonization routes i.e., secondary contact zone. We hypothesize that retraction of species into 
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one or the other refuge happened by chance depending on the species’ distribution range at the 

time of climate deterioration. The idiosyncratic patterns found in Marantaceae species are similar 

to those found among tropical tree species, especially in southern LG. 


