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1. Introduction 

1.1. Zea mays (L.): Origin, domestication and actual cultivation in Central Europe 

Zea mays (family Poaceae) is the only species in the Genus Zea (Paliwal 2001). It was 

domesticated from its wild ancestors teosinte (Zea mays L. ssp. parviglumis Illtis & Doebley 

and spp. mexicana) and tripsacum between the basin of the Balsas River and the highlands 

of Mexico´s Meseta Central approximately 9,000 years ago according to the phylogenetic 

analysis of Matsuoka et al. (2002). This theory is supported by the diversity of maize in these 

regions, as well as the prevalence of ssp. mexicana growing as a weed in the corn fields of 

the Mexican highlands. Furthermore, fossil pollen and maize cobs in caves of the Mexican 

region of Puebla have been discovered along with various ceramic remains from the period 

in question (Paliwal 2001; Segovia & Alfaro 2009). However, uncertainties surrounding single 

and multiple domestication are still extensively discussed in the literature (Paliwal 2001; 

Matsuoka et al. 2002). Although some authors maintain that maize was being cultivated in 

the central Caribbean Archipelago much earlier, the consensus is that by the 11 th century 

maize was distributed across a large number of areas situated in the region (Sanoja 1989; 

Higuera-Gundy 1991 cited by Newsom 2009; Newson & Deagan 1994; Pagán Jímenez et al. 

2005; Lane et al. 2008). Here, the name “mahiz” (from the Arawak language) was given to 

the plant by the Taíno people, who inhabited the Bahamian Archipelago and the Greater 

Antilles (Rouse 1992). With the first voyage of Christopher Columbus (1492-1493), maize 

kernels were transported back to Europe, consequently being cultivated in the 16th Century in 

southern European regions (Anghiera 1907 (1st ed. 1530) cited by Dubreuil et al. 2006; 

Staller 2010). 

Thus, initially maize was most likely cultivated in warm European areas such as southern 

Spain (Andalusia) and the surrounding Mediterranean regions (Dubreuil et al. 2006). Later, 

the introduction of further Northern American maize populations was decisive for the 

adaptation and distribution of maize in other European regions as molecular data from 

Rebourg et al. (2002) and Dubreuil et al. (2006) reveal.  

The genetic variability of maize has permitted its presence in diverse conditions, reflected by 

the current large-scale cultivation of the plant. This adaptation has allowed for the 

development of varieties that can grow at lower temperatures and mature in a shorter time 

span, hence the crop can grow from temperate to tropical regions (Krishna 2013; Sood et al. 

2014). 

In Germany, the crop was initially cultivated in the southern region of Baden-Württemberg, 

where towards the end of the 19th century, the cultivated area in the region had expanded to 

approximately 2,600 ha. The introduction of modern silage preparation techniques in the first 
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half of the 20th century encouraged further production of maize, establishing its importance 

and increasing its cultivated area to 55,000 ha by the late 1960s (Zscheischler et al. 1990).  

Additional aspects that definitively promoted the cultivation of maize in Germany and other 

European countries were the introduction of new and improved sowing and harvesting 

techniques, chemical control against weeds and the genetic enhancement of varieties that 

were adapted to the different climatic regions of Germany and Europe. This has allowed for 

an increase in yields and the adaptation of the plant to different soil types (Zscheischler et al. 

1990). 

At present, maize has several uses in Europe such as food, animal feed, bioenergy and 

industrial products. This range of uses has also led to a further increase in the production of 

maize across the continent, especially outside of the traditionally largest maize growing 

countries, namely France, Romania and Italy1. Taking Germany again as an example, in 

2004 the government introduced feed-in-tariffs to promote increased maize production for 

use in biogas as alternative energy in line with the German Renewable Energy Act [German: 

Erneuerbare-Energien-Gesetz (EEG)]. This has turned Germany into one of the major 

producers of maize in Europe, augmenting its cultivated area from 1.6 million ha in 2005 to 

2.56 million ha in 20112 (DMK 2015). With an approximate cultivated area of 2.5 million ha, 

maize has now become the second most cultivated crop in Germany, surpassed only by 

wheat with 3.2 million ha (Federal Statistical Office of Germany 2015).    

By far the largest increase in cultivation has been witnessed in the Ukraine, moving from 

sixth to first among European producers since the turn of the century (see Figure 1). Despite 

maize being the fourth most cultivated crop in the Ukraine (behind wheat, barley and 

sunflower seeds), the size of the country and hence potential cultivation area is very large, 

and in recent years the production of barley has declined due to growers preferring the more 

profitable maize, with higher prices and demand on world markets (FAO 2014). Most of the 

growing regions are situated in central-northern areas of the country, which are appropriate 

for maize production due to their flat topography, good soils and abundant availability of 

water during summer (Bussay 2015). 

                                                             
1
 Compared to Germany, which only had a cultivated area 59 046 ha in 1968, France and Italy already had 1 

023800 and 967 207 ha, respectively. Data for Romania is only available from 1999 onwards, however in 1999 it 
had a cultivated area of 3 071 000 ha, making it the second largest producer in Europe at the time. 
2
 Note that in 2012, the tariff structure of the EEG was changed, offering less incentives for biogas. Maize 

production in Germany has remained relatively stable since (DMK 2015). 
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Fig. 1. Development of maize cultivation area in the main European producer countries in recent years 

(data compiled from ZMP 2008; FAO 2014; USDA 2015; State Statistics Service Ukraine 2015). 

Meanwhile, France has maintained a stable level of cultivation in recent years, while 

Romania has experienced a reduction, often being affected by drought conditions (ZMP 

2008, FAO 2014, DMK 2015). In 2012, for example, yield losses in Romania were estimated 

to be 46.1% compared to the average yield from 2009-2011 (Mateescu et al. 2013). The 

other traditional producer of maize mentioned above, Italy, has been overtaken in recent 

years by Germany and the Ukraine, with the cultivated area of maize falling from the early 

60s to around 1990 and remaining relatively stable since then. Italy, like Romania, has also 

been affected by drought over the last few decades (Diodato & Bellocchi 2008).  

Overall, the general increase in the cultivated area of maize in Europe has led to more 

intense maize cultivation in many regions, often accompanied by narrowed crop rotations. 

 

1.2. Distribution and spread of maize pathogens across continents  

Several diseases in the cultivation of maize are likely to have been present since the time 

maize was grown in its areas of origin in Mexico, where, in addition to soil exhaustion, 

abandoned milpas3 and grass invasion (Lundell 1937; Willey and Shimkin 1973; Olson 1978 

cited by Brewbaker 1979), pests and diseases have been proposed as limiting factors for 

maize cultivation in the Maya civilization (Brewbaker 1979). A number of these diseases 

were initially confined to the origin areas of their main host plants Z. mays or Sorghum spp. 

                                                             
3
  Land dedicated to the cultivation of maize, and occasionally other crops (Costa Rica, El Salvador, Guatemala, 
Honduras, Mexico, Nicaragua). 
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and as their cultivation spread across the globe, the diseases also began to appear in other 

growing areas. 

Survival techniques based on the production of a large number of airborne spores which can 

be dispersed across long distances are the most viable way through which pathogens can 

survive across regions. Especially for biotrophic fungi, the ability to travel long distances 

allows for a prolongation of their life cycle and thus find plants to infect as permanent new 

hosts (Brown et al. 2002). This is the case for maize rusts, which are also believed to have 

their origin on the American continent and occur in teosinte or Euchlanena mexicana, making 

these their first hosts. For example, the origin of Puccinia sorghi can be traced back to the 

American continent (Savile 1984) and is presently endemic in North and South America – it 

was first described in Europe in 1838 (Holland) and later in 1858 in Germany (Neuhaus 1970 

cited by Kreisel & Scholler 1994). Cammack (1959) also traces the initial appearance of the 

southern corn rust (American corn rust) produced by Puccinia polysora to the American 

continent, until it was carried to Africa in 1949 via air currents of viable uredospores. Contrary 

to this, at present Physopella zeae (tropical rust) is still confined to its regions of origin in 

Central America and has also spread somewhat in South America (Malaguti 2000; CYMMIT 

2004; Da Costa 2007).  

Another technique which has contributed to the long-distance spreading of several maize 

diseases is that of the pathogen accompanying its host plant as it has been distributed 

across continents. This has allowed certain pathogens to infect and survive as dormant 

propagules within, among other plant material, the seed tissue or by sticking to the seed coat 

(Neergaard 1969). One of the most important maize pathogens worldwide, Exserohilum 

turcicum, was confirmed as a maize and sorghum seedborne pathogen (Navi et al. 1999; De 

Rossi et al. 2012). This could explain its distribution from its traced origin in Mesoamerica or 

Central Africa (origin of the host plant Sorghum spp.) according to molecular analyses of 

populations by Borchardt et al. (1998). Several maize leaf pathogens such as Bipolaris 

zeicola and Colletotrichum graminicola have been confirmed also to be seedborne (Warren 

1977; Nelson 1982; Niaz & Dawar 2009). This mechanism of transmission could also explain 

the arrival and distribution of the maize leaf pathogen Kabatiella zeae, which was first 

described in Japan (Narita & Hiratsuka 1959), into other continents and remote areas like 

New Zealand (Reifschneider & Arny 1979). Therefore, seedborne dispersion through 

commercial seeds could also have contributed to the introduction of certain diseases into 

Europe.
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1.3. Main maize leaf diseases in Central Europe 

1.3.1. Turcicum leaf blight  

Nomenclature  

The causal agent, Exserohilum turcicum (Pass.), Leonard et Suggs (1974), teleomorph: 

Setosphaeria turcica (Lutrell) Leonard et Suggs phylogenetically belongs to the Eumycota, 

phylum Ascomycota, class Dothideomycetes, order Pleorosporales and family 

Pleorosporaceae (Mycobank 2016). The pathogen was first described as Helminthosporium 

turcicum in Italy in 1876 by Passerini. Two years later, Cooke and Ellis described the disease 

in the United States (Holliday 1980). Although the sexual stage can be obtained without 

difficulty in the laboratory via recombination of the mating types MAT1-1 and MAT1-2 (Chang 

& Fan 1986), and both of these coexist in some regions (Abadi et al. 1993), it was not 

officially reported in the field until it was discovered in 2012 in two maize fields in Thailand 

(Bunkoed et al.  2014). Because the asexual stage is present in nature much more frequently 

than the sexual stage (Borchardt et al. 1997; Bunkoed et al. 2014), and is therefore the main 

causal agent of the disease, the asexual stage was used more frequently for descriptions.  

The disease is commonly referred to as “Turcicum leaf blight” or “northern corn leaf blight”. 

The latter term was first used in the 1950s in reference to corn leaf blights in the United 

States. Although Turcicum leaf blight is found in most growing regions of the country and is 

especially prevalent in the southern part of the Corn Belt4, it can also reach northward. 

Hence, in order to distinguish it from “southern corn leaf blight” produced by Bipolaris maydis 

(teleomorph Cochliobolus heterostrophus), which is especially prevalent in southern states 

and does not spread as far north, the name “northern” was assigned to the disease (Robert 

1953; Holliday 1980).  

Distribution 

Turcicum leaf blight is one of the most important diseases affecting maize growing areas in 

both the northern and southern hemisphere. Prevalence and epidemics have been reported 

in the majority of maize growing regions in the United States and Canada (Lipps 1997; 

Tenuta and Zhu 2012; Bergstrom 2014; Wise 2015), Mexico, Ecuador, southwest Brazil, 

Argentina (Casela et al. 1998; Formento 2010; De Rossi et al. 2010; Couretot 2011; Culqui-

Recalde 2015), India (Harlapur 2005), north-eastern and northern China (Wang et al. 2014), 

Uganda, Kenya and Tanzania  (Adipala et al. 1993; Muiru 2008; Nwanosike et al. 2015), 

New Zealand and Australia (Fowler 1985; Watson & Napier 2006). In Europe, the disease is 

spread across the continent, from northern Spain and the United Kingdom (González & 

                                                             
4
 Note that while geographic depictions can differ slightly, the Corn Belt generally refers to the major corn-growing 

states in the US. These are located in the Midwest and include Illinois, Iowa, Nebraska, Minnesota, Wisconsin 
and Indiana, among others.   
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González Varela 2007; Mainka et al. 2012), to Latvia, Romania and the Caucasus 

(Jinjikhadze 2001; Borcean et al. 2012; Treikale et al. 2014). Focusing on Central European 

regions, a higher disease severity has been observed in the southern German regions of 

Bavaria and the Upper Rhein Valley, Austria (LfL 2015) and the French region of West-

Bretagne (Cassini 1973; Mainka et al. 2012).   

Epidemiology 

E. turcicum first shows a hemibiotrophic phase, germinating to penetrate the living tissue, 

invading it in the first phase of the infection and subsequently behaving as a necrotroph, 

obtaining nutrients from the necrotic tissue (Walsh et al. 2008). Optimum temperatures 

between 20 and 25°C and prolonged high humidity with dew periods lasting over seven 

hours favour fungal sporulation, which can be distinguished by dark zones on the lesions 

(Berger 1970, White 2010).  

The fungus overwinters as conidia, mycelia or chlamydospores (formed from the cells of the 

spores or from mycelial hyphae) in infected plant debris in several regions worldwide 

(Cassini 1973; Shang 1980; Levy 1984) or in host plants such as Sorghum halepense (Levy 

1984) giving rise to larger epidemics in fields where tillage is not a common practice. In some 

maize regions, e.g. Argentina, spontaneous maize plants (resistant to herbicides) that grow 

across rotations can also be an important source of inoculum (personal observation). In the 

first few months of the maize season, high humidity and adequate temperatures favour the 

initial sporulation in debris in the field. These spores then give rise to first infections. 

Thereafter, further sporulation will occur in the lesions and wind currents are the predominant 

force through which the spores are transported across fields, subsequently serving as 

inoculum for new infections (Berger 1970). The pathogen can also attack grasses such as 

Sorghum spp. (S. halepense, S. bicolour L.), Echinochloa (Echinochloa-cruss-galli) and 

teosinte (Zea mays spp. mexicana) (Bunker and Mathur 2006).  

1.3.2. Kabatiella eyespot  

Revision in the categorisation of the fungus 

The causal organism of eyespot disease, Kabatiella zeae, belongs to the genus Kabatiella 

described by Bubák and Kabát in 1907. With the first morphological observations of the 

pathogen in 1956 by Narita and Hiratsuka, it was classified within the Kabatiella Bubák 

species. Later, due to the similar in vitro behaviour of Kabatiella and Aureobasidium species 

and until new studies provided more information, Dingley (1973) considered including all the 

species in a single genus, namely Aureobasidium, belonging to the “black yeasts” fungi 

group. Fungi in this group have common morphological characteristics such as melanised 

cell walls, conidiophore-like structures and conidia enclosed in a polymeric matrix. However, 
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they may differ in terms of specialisation level, taxonomy and genetic relations (Cooke 1962; 

Sterflinger 2006). Further morphological studies by Hermanides-Nijhof (1977) also 

considered Kabatiella species to belong to the anamorph genus Aureobasidium after 

morphological comparisons with the ubiquitous fungus A. pullulans. Recently, several 

phylogenetic studies have shown the affinity of some Kabatiella species to A. pullulans, 

whereas various K. zeae strains are considerably different genetically from other 

Aureobasidium species (De Hoog et al. 1999, Bills et al. 2012). Furthermore, Zalar et al. 

(2008) emphasised that, in addition to genetic differences in some species, morphological 

distinctions such as the conidia shape (most Kabatiella species have sickle-shaped conidia, 

whereas in Aureobasidium they are normally ellipsoidal) could be observed between 

Kabatiella and Aureobasidium species. Nevertheless, the authors could not definitively 

exclude the possibility of a common grouping of both species. The reasoning behind this is 

that the studies were carried out with the saprophytic phyllosphere fungus A. pullulans, as 

opposed to the pathogen itself. Consequently, the classification of both genera is not clear to 

date and further studies need to be carried out (Bamadhaj et al. 2016).  

Although the teleomorph has yet to be observed to date, all these studies have contributed to 

the classification of the pathogen. As with other Kabatiella and related Aureobasidium 

species, it is thought to be connected to teleomorph species of Discosphaerina (De Hoog et 

al. 1999). Thus, according to Mycobank (2016), K. zeae is classified as follows: Kingdom 

Mycota, phylum Ascomycota, class Dothideomycetes, order Dothidiales and family 

Dothioraceae. 

Distribution 

Since its first description (Narita & Hiratsuka 1959), K. zeae has been reported in several 

temperate regions worldwide, including the northern Corn Belt of the United States and the 

Canadian regions of Ontario and Quebec (Arny et al. 1970; Gates & Mortimore 1969; 

Munkvold & Martison 2001; Wise 2015), China (Xu et al. 2000), Argentina (Linares & 

Martínez 1971; Formento 2010), and New Zealand (Dingley 1973), but also in tropical and 

subtropical humid regions in Brazil (Esteves 1984; Dos Santos et al. 2007). In European 

regions, despite the disease being known since the 1970s (Smiljakovic & Pencic 1971; 

Schneider & Krüger 1972), in recent years it has appeared or increased in fields in Wales, 

south and southwest England (Finch et al. 2014), Denmark (Jørgensen 2012), northern 

Germany and the Netherlands (Kropf & Schlüter 2013, Mainka et al. 2012).  

Epidemiology 

Following germination of the spores and penetration of maize leaf tissue, the mycelium 

grows within epidermal cells on the leaf and in intercellular spaces. In the tissue, pigmented 

globose cells with thick walls will be formed in clusters or stroma-like structures. From here, 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610310/#ref20
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conidiophores emerge through the stomata and produce conidia simultaneously (Narita & 

Hiratsuka 1959; Dingley 1973; Schneider and Krüger 1972). The disease is characterized by 

a short latency period ranging from seven to 10 days (Reifschneider & Arny 1980a; Munkvold 

& Martinson 2001).  

The pathogen survives in infected residues - mainly leaves (Arny et al. 1970; Chinchilla 

1987) - but the conidia may not be able to germinate in the long-term, thus playing a minimal 

role in pathogen survival (Cassini 1973; Chinchilla 1987). The formation of stromatic hyphae, 

which form a thick melanised mycelium, has been shown to be the principle means through 

which the pathogen survives (Chinchilla 1987). The conidia can be disseminated through air 

currents (Arny et al. 1970) and splashing rain (Rapilly et al. 1975), the latter probably being 

most important for secondary disease cycles in the field (Chinchilla 1987). The pathogen can 

also be transmitted via seeds (Reifschneider & Arny 1979). Generally, the disease is 

favoured by mild (14-17°C) and humid weather (Narita & Hiratsuka 1959; Arny et al. 1970).  

Besides maize, other alternative hosts have not been reported in nature but instead via 

artificial inoculations. Reifschneider and Arny (1980b) showed that other Zea spp. and  

Zea mays ssp. (Zea perennis, Zea mays ssp. mexicana, among others) can also be 

considered as host plants. However, the same authors could not confirm the role these 

plants play in the epidemiology in the field due to the absence of K. zeae in the areas in 

Mexico in which they are endemic.  

 

Fig. 2. The two main leaf diseases and their respective causal pathogens on maize in Central Europe.  

E. turcicum conidia (A) and typical symptoms on maize leaves (B). K. zeae conidia (C) and typical 

symptoms on maize leaves (D). Scale bars =25 µm (40x). 
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1.4. Maize leaf diseases of secondary importance in Central Europe 

1.4.1. Common rust  

Common maize rust is caused by the fungus Puccinia sorghi, which is classified in the 

Phylum Basidiomycota, class Pucciniomycetes, order Pucciniales (Mycobank 2016). It was 

first described by Schweinitz in 1832 (Hooker 1985), who believed it to infect sorghum. 

Evidently there was some confusion as sorghum is not a host plant, i.e. in reality the 

susceptible host is maize (Arthur & Bisby 1918). The disease has been reported in several 

regions of the world, including a wide distribution in fields throughout North America (Hooker 

1985; Pataky & Eastburn 1993; Wise 2015), Central and South America (Casela et al. 1998; 

Darino et al. 2016), Asia (Dey et al. 2015), Africa (Dunhin et al. 2004) and Europe (Mercer & 

Gilliland 1999; Pataky et al. 2001; Arvalis 2012). 

Like other rust diseases, the obligate biotrophic pathogen produces infectious uredospores, 

teliospores and basidiospores. When the plants are infected, pustules are developed on 

maize leaf surfaces. In the pustules approximately 5,000 orange to brown uredospores will 

be produced. These show a characteristic spherical to oval form (Hooker 1985; Jackson 

2008). Due to the noticeable form and shape of the pustules, their presence is the first 

indicator of the disease in maize fields. Uredinia sporulate on the upper and lower surfaces 

of the leaf. P. sorghi is characterised by the production of explosive epidemics with short 

latency periods of about five to ten days at temperatures of 15-25°C (Hooker 1985; Vitti et al. 

1995; Pataky & Tracy 1999) and is more common at a relative humidity of at least 98% 

(Hooker 1985).  

Late in the season, the pustules become brown to black, indicating that the uredospores 

have been replaced by teliospores, the next and non-infectious stage in the fungus cycle. 

The teliospores can survive the winter (Mahindapala 1978). In spring, the two haploid 

teliospores first fuse their nuclei, and the germination occurs thereafter. A basidium is formed 

through meiosis, which produces basidiospores. These can infect several Oxalis spp. - in 

Europe mainly O. corniculata and O. stricta – which serve as alternate hosts for the pathogen 

(Zogg & Scherrer 1945; Gäumann 1959; Mahindapala 1978). From basidiospores, 

spermagonia with spermatia will be formed. After fusion of spermatia with hyphae of the 

opposite mating type, aecia will be formed. These produce aecidiospores which may land on 

maize leaves, subsequently infecting them and completing the life cycle by producing 

uredospores once again (Dunhin et al. 2004). The occurrence of the aecial infection has also 

been reported in Europe (Zogg 1949). This life cycle could be absent in areas where maize is 

grown continuously. Here, infections merely occur through the uredial stage, which will then 

gradually be transferred from old to more recently planted maize during the year as in the 

tropics (Hooker 1985). The pathogen may also survive from year to year as uredospores in 
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maize debris (Kellermann 1906) or emanate from southern regions and be dispersed through 

wind or storm currents to northern regions during the season (Hooker 1985).  

1.4.2. Northern corn leaf spot  

Bipolaris zeicola was first described in 1930 by Stout as Helminthosporium zeicola. Its 

teleomorph, Cochliobolus carbonum (in reference to the burnt appearance of an infected 

ear), was discovered by Nelson in 1959. As the anamorph stage is more frequently observed 

in nature as being the main causal agent of the disease, the name Bipolaris zeicola is used 

more commonly than Cochliobolus carbonum. B. zeicola belongs to the Ascomycota, 

Dothideomycetes, order Pleosporales, family Pleosporaceae (Mycobank 2016). 

The pathogen is the causal agent of northern corn leaf spot but can also infect other 

Poaceae grasses including Sorghum spp. (Sivanesan 1987), Oryza sativa (Xiao et al. 1991), 

and other plant families (Mendes et al. 1998). B. zeicola infects maize worldwide (Sivanesan 

1987; Mendes et al. 1998; Canhua et al. 2014; Wise 2015). In Europe, the disease has been 

reported to occur in Germany, Austria, France, Serbia and Hungary (EPPO 2016; Welz & 

Geiger 1995; Stankovic et al. 2007).   

The pathogen can survive as mycelium and through formation of chlamydospores in maize 

debris in the field during winter (Nelson 1982). The pathogen invades the tissue intracellulary 

and induces lesions, which can vary from small and round-oval to lineal in shape, and 

grayish to brown in appearance, depending on the described pathogenic “races” (0 through 

4) in question. In this case, the term “race” is mainly applied based on the leaf symptoms 

produced, with race 1 being the only B. zeicola race which shows a different reaction when 

inoculated onto a set of different maize lines (Multani et al. 1998). Epidemics caused by race 

0 in the 70s can be avoided nowadays because resistance gene Hm is present in all cultivars 

(White 2010). Seed transmission is also considered to be an important infection source 

(Warham et al. 1997). Plant infection is favoured by moderate temperatures (18-26°C) and 

dew periods (Lipps & Mills 2001).   

1.4.3. Maize anthracnose   

Maize anthracnose is caused by the ascomycete Colletotrichum graminicola (teleomorph 

Glomerella graminicola D.J. Politis 1975), classified in the class Sordariomycetes, order 

Glomerellales, family Glomerellaceae (Mycobank 2016). The disease has been reported in 

various temperate, tropical and subtropical areas, but is particularly established and severe 

in warm, humid conditions (Wheeler et al. 1973; Gatch & Munkvold 2002; Jackson-Ziems et 

al. 2014; da Costa et al. 2014; Zhang et al. 2014; Wise 2015). It has also been observed in 

Europe (Sukno et al. 2014; personal observation) but in most cases with a restricted 

distribution limited to individual plants in the field.   
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C. graminicola produces a complex disease on maize plants which can involve leaf blight, die 

back, stalk rot, root rot, kernel and ear infections. The pathogen forms acervuli, which are 

composed of spores embedded in a polysaccharide protein mucilaginous matrix with black 

setae (appendages). The matrix protects against desiccation and supports germination and 

penetration of the tissue (Nicholson & Moraes 1980). The pathogen can penetrate either 

directly or indirectly through wounds. The indirect method is more efficient and in the stalk, 

for example, the initial wounds are caused by insects such as the European corn borer or 

other stalk rot diseases (Gatch & Munkvold 2002). On the plant surface, the spore 

germinates into hyphae and develops an appresorium, which allows the pathogen to 

penetrate the tissue. From the appresorium, a secondary hypha will colonise the cells, first 

through a biotrophic interaction with the host, followed by a necrotrophic stage causing 

infection (Wheeler et al. 1973; Venard & Vaillancourt 2007; Sukno et al. 2008; Behr et al. 

2010). C. graminicola can overwinter in infected maize debris as a parasite (Vizvary & 

Warren 1982, Lipps 1983) and, as recent reports have suggested, probably as microsclerotia 

in the soil as well (Sukno et al. 2008).  

C. graminicola is also known to infect other important crops such as wheat and oat (Dickson 

1956). This could lead to the assumption that crop rotation or intercropping of these crops 

with maize could lead to an increase in infections. Nevertheless, while Wheeler et al. (1973) 

reported the ability of C. graminicola maize isolates to infect members of the genus Sorghum 

such as Sorghum bicolor and Sorghum halepense, these same maize isolates did not infect 

other cereals like wheat, oat, barley or millet. The authors also reported that isolates from 

these four cereals were non-pathogenic on maize, indicating different host specificity. 
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Fig. 3. Other causal agents of maize leaf diseases present in Central Europe. P. sorghi uredospores 

(A) and initial typical brown pustules formed on maize leaves (B). B. zeicola: conidia (C) and leaf 

symptoms (D). C. gramicola: conidia (E) and leaf symptoms (F)   Scale bars =25 µm (40x). 

 

1.4.4. Phoma spp. complex 

In the literature, several Phoma spp., or other pathogens related to this genus, are 

associated with maize, whether it be in pathogenic or saprophytic form. Here, fungal 

taxonomists are still dealing with the morphological and molecular identification, and 

consequent classification (Boerema et al. 2004; Aveskamp et al. 2008; Aveskamp et al. 

2010). There are several reasons behind this complication. Firstly, Phoma comprises a large 

number of species (more than 3,000), which are classified based on their respective host 

plant and extended morphological characteristics. Secondly, these characteristics vary 

greatly with regard to in vitro culture (Aveskamp et al. 2010).  

A review on the most frequently found Phoma leaf pathogen in temperate regions, namely 

Phoma zeae-maydis, is provided below. Comparisons with other Phoma spp. present on 

maize are also summarised. 
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Yellow leaf blight 

Yellow leaf blight, produced by Phoma zeae-maydis (syn. Didymella zeae-maydis), is the 

most important Phoma leaf disease described in temperate regions (Frezzi 1972; Cassini 

1973; Jimenez-Diaz & Boothroyd 1979). The disease has been reported since the mid-late 

sixties in Ohio and Pennsylvannia, USA   (Scheifele & Nelson 1969; McFeeley 1971) and 

Ontario, Canada (Gates & Martimore 1969), making it one of the most recently discovered 

maize leaf diseases. Initially, the causal agent was depicted as a Phyllosticta species. A 

further description of the pathogen was carried out by Arny and Nelson (1971), resulting in its 

classification as Phyllosticta maydis.  

In the past, Phyllosticta was designated for those species inhabiting leaves, while Phoma 

was designated for those inhabiting stalks and roots until new criteria for their classification 

were recently introduced (Van der Aa & Vanev 2002; Boerema et al. 2004). Through these 

criteria, some Phyllosticta or Ascochyta species were reclassified in the Phoma genus 

(Aveskamp et al. 2008). In accordance with this concept and as the epithet was occupied by 

other Phoma spp. (Phoma zeae, Phoma zeicola, Ph. maydis), Punithalingam (1990) 

reclassified the species as Phoma zeae-maydis.  

De Gruyter (2002) included P. zeae-maydis in the section Macrospora, having been 

introduced by Boerema (1997). Nevertheless, Aveskamp et al. (2010) excluded the 

importance of the spore size as an informative and reliable characteristic, instead 

accommodating this species in the Phoma section Peyronellaea (anamorphic genus) based 

on its production of multicellular chlamydospores (dyctiochlamydospores) and DNA 

phylogeny. The teleomorph stage was first described as Mycosphaerella zeae-maydis in 

1973 by Mukunya & Boothroyd. Further molecular analyses carried out by Chen et al. (2015) 

establish the teleomorphic genus of the fungus as Didimella zeae maydis in an effort to 

resolve “the Phoma enigma”.  

Distribution and epidemiology 

Following overwintering in leaf debris, pseudothecia are considered to be the first source of 

inoculum at the beginning of the season, favoured by low temperatures and darkness 

(Jimenez-Diaz & Boothroyd 1979). After infection of lower leaves, the necrotic tissue 

becomes a suitable substrate for the development of further pseudothecia (Jimenez-Diaz & 

Boothroyd 1979). After formation of pycnidia and conidia, secondary infections develop, with 

these asexual stages being favoured by light and higher temperatures (optimal temperature 

24°C) (Arny & Nelson 1971; Jimenez-Diaz & Boothroyd 1979). Ascospores are carried by 

wind over long distances, infecting other fields, and conidia are disseminated through water 

splash in the local field (Munkunya & Boothroyd 1973; Jimenez-Diaz & Boothroyd 1979). 
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Other Phoma spp. on maize 

Many other Phoma spp. species related to Phoma zeae-maydis that produce maize leaf 

diseases or live saprophytically on leaves can be found in the literature. A summary is given 

in Table 1. 

Tab. 1. Some Phoma spp. reported to be isolated from maize leaves or seeds 

Phoma spp. Sexual stage Disease Interaction Reported from (Source) 

P. maydis  

P. sorghina 

Phaeosphaeria 

maydis 

Phaeosphaeria 

leaf spot 

complex 

Pathogenic Brazil (Casela et al. 1998); 

(Do Amaral et al. 2004) 

Argentina (Díaz 2011), 

United States (Carson 2005) 

P. zeae Stout Mycosphaerella 

zeae 

-- Pathogenic Czechoslovakia* (Cejp 1967 cited 

by Arny & Nelson 1971) 

Rumania (Scheifele & Nelson 

1969) 

North America (Stout 1930;  

Scheifele & Nelson 1969; 

McFeeley 1971; Arny & Nelson 

1971) 

Review: (Punithalingam 1990) 

P. maydis 

Fautrey 

Mycosphaerella 

maydis 

-- Not specified Lambotte & Fautrey (1894) 

North America (Stout 1930) 

Review: (Punithalingam 1990) 

P. pomorum -- -- Not specified Denmark (Sørensen et al. 2010) 

P. subherbarum -- -- Saprophytic 

seeds 

Canada  

(De Gruyter et al. 1993) 

 

1.5. Epidemics and potential yield losses 

Foliar diseases can have a direct influence on the amount of dry matter stored in the grain or 

in the final biomass of the plant (Shah & Dillard 2006; Couretot et al. 2012). In this context, 

different foliar maize fungal species have been reported to produce yield losses worldwide 

when high rates of severity are reached. “Helminthosporium leaf blights” (named after 

previous nomenclature) including Turcicum leaf blight, southern corn leaf blight (causal agent 

Bipolaris maydis), northern corn leaf spot and gray leaf spot (causal agent Cercospora zeae-

maydis) have been reported to cause serious problems in various maize producing areas 

worldwide (Lipps 1998; De Rossi et al. 2010; Señerez Arcibal 2013; Wise 2014; Mubeen et 

al. 2015). Nevertheless, the southern corn leaf blight seems to be less important in northern 

European regions (Jørgensen 2012), while grey leaf spot does not have a noticeable 
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relevance in Europe, presumably due to scarce information about the disease. Conversely, in 

recent years, Turcicum leaf blight has been frequently reported in many European regions. 

For example, severe epidemics were noted in 2002, 2008 and 2010 in the southern German 

region of Bavaria (Mainka et al. 2012; Urban 2012; Zellner 2012). Worldwide, the disease 

has been reported to cause severe damage in recent years and also in several following 

seasons (Wise 2013; Wise 2014; De Rossi 2015). 

Regarding northern corn leaf spot, its importance in Europe is restricted to certain regions, 

e.g. Lower Saxony (Bornemann 2015), and is not seen as a major concern for yield losses at 

present. Worldwide, while in some maize producing countries the disease is considered to 

cause significant damage only on inbreds used in hybrid seed production, with outbreaks like 

in the Corn Belt in the United States (White 2010) being an exception, in other regions, e.g. 

hilly and mountainous areas of China, it is considered an important limiting factor to corn 

production (Liu et al. 2015).  

Common rust, together with Turcicum leaf blight, is considered to be the most damaging 

foliar disease in the maize fields of several regions. It produces severe epidemics which, in 

some cases, can generate 100% yield losses (Jeffers & Chapman 1994).  

Compared to the aforementioned diseases, severe outbreaks produced by K. zeae have so 

far not been widely reported. In Europe, a severe epidemic was observed in 2011 in some 

regions of Denmark and Germany (Schleswig-Holstein and Lower Saxony), where yield 

losses varying from 10% to 30% were recorded, respectively (Hanhart 2012; Jørgensen 

2012; Kropf & Schlüter 2013). The disease has been suggested to have a similarly 

destructive potential to that of northern corn leaf spot if optimal conditions are present 

(Reifschneider 1983).  

A summary of the significant yield losses caused worldwide in recent years by key foliar 

diseases (by natural infection) of maize present in Europe is shown in Table 2.  
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Tab. 2. Recorded disease severities and correlated yield losses reported in recent years under natural 

infection. 

Maize leaf disease 

(Causal pathogen) 

Recorded disease severity  

and/or yield losses 
Source 

 

Turcicum leaf 

blight 

(E. turcicum) 

Disease severity 10-50% depending on the variety 

2008/2010  

Yield losses of about 40% recorded in Argentina. 

 

De Rossi et al. 

2010 

 

 

 
15-30% yield losses in South Africa 

Cramptom 2015 

 

 33% to 62% in the humid highlands & between 4% to 

35% in the dry, coastal lowlands in Tanzania 

Nwanosike et al.  

2015 

  

2002 – 10-30% yield losses in Germany 

 

 

Zellner 2012 

 

  

2013 -   approx. 3.36 million tonnes (1%); 

2014 -   approx. 8.9 million tonnes (2.5%) in the 

United States and Ontario (Canada). 

 

Wise 2013; 2014 

Common rust 

(P. sorghi) 
Up to 60% yield losses in India Dey et al. 2012 

  

2000 - high severity in Indiana  

 

Wise 2010 

  

100% yield losses in some Mexican field trials  

7.8 million hectares (34%) affected in subtropical-

through-highland maize ecologies worldwide  

 

Jeffers & Chapman  

1994. 

  

2013   approx. 1.34 million tonnes (<1%);  

2014 aprox. 2.79 million tonnes (<1%) in the United 

States and Ontario (Canada). 

 

Wise 2013; 2014 

 

Northern corn leaf 

spot 

(B. zeicola) 

 

2013- approx. 0.10 million tonnes (<1%);  

2014 approx. 0.21 million tonnes (<1%) yield losses 

in the United States and Ontario (Canada). 

Wise 2013; 2014  

 Major cause of great losses in Yunnan Province 

(China) 

Zhang et al. 2013 

Eyespot 

(K. zeae) 

10% at trials in Ostenfeld (Schleswig-Holstein, 

Germany) (2013) 

21% at trials in Ostenfeld with monoculture and non-

tillage (2011) 

30% in Denmark (2011) 

2013 -  approx. 0.33 million tonnes (<1%); 

2014 - approx. 0.36 million tonnes (<1%) in the 

United States and Ontario (Canada). 

Kropf & Schlüter 

2013 

 

Schlüter 2012 

 

 

Hanhart 2012 

 

 

Wise 2013; 2014 
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1.6. Fungicides as control measure 

In the effort to avoid yield losses, maintaining some maize leaf diseases under a certain 

level, i.e. a threshold through which economical damage is avoided, can be achieved via the 

use of resistant varieties (Ogliari et al. 2005; Kumar et al. 2011; Sillón 2012; Formento et al. 

2014) and phytosanitary measures such as tillage practices and crop rotation (Arny et al. 

1970; Levy 1984; Chinchilla 1987; Nyvall & Martison 1997; Dill-Mackey & Jones 2000; 

Formento et al. 2012; Draper et al. 2009). Where these measures are not sufficient or cannot 

be included as a suitable method for the management of the crop, the use of fungicides 

becomes a feasible option as part of modern and efficient maize production in order to 

control epidemics (Jurca Grigolli 2009; Couretot et al. 2012; Díaz et al. 2012). With regard to 

the maize crop, the application is based on systemic leaf compounds, which include triazoles 

as active substances from the demethylation inhibitors fungicide group (DMI) and 

strobilurines from the quinone outside inhibitors group (QoI-fungicides) (FRAC 2016). These 

compounds are summarised in Table 3.  

Tab. 3. Classification of the main active ingredients in fungicides applied to the maize crop, according 

to their mechanism of action (FRAC 2016).  

Target effect 
on fungal 
pathogen 

Target site 
and code 

Group name 
Chemical 

group 
Common Name 

 

Sterol 

biosynthesis in 

membranes 

 

C14-demethylase 

in sterol 

biosynthesis 

(erg11/cyp51) 

 

DMI fungicides 

(Demethylation  

inhibitors) 

 

 

Triazoles 

Cyproconazole 

Epoxiconazole 

Flusilazole 

Propiconazole 

Prothioconazole 

 

 

 

Respiration 

 

Complex III 

Cytochrome bc1 

(ubiquinol oxidase) 

at Qo site 

(cy b gene) 

 

 

QoI-fungicides 

(Quinone outside 

inhibitors) 

Methoxy-

acrylates 

Azoxystrobin 

Methoxy-

carbamates 

Pyraclostrobin 

Dihydro-

dioxazines 

Fluoxastrobin 

 

Triazoles belong to the DMI fungicides group and thus the biochemical action mechanism is 

based on the inhibition of the enzyme C14-demethylase. This enzyme is responsible for the 

production of ergosterol, which is a part of the fungal cell membrane (Mauler-Machnik et al. 

2002). Although the germ tube will be formed, its elongation and hyphal growth will be 
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impeded through disorders in the division and further development of the cell walls (Heitefuss 

2000; Häuser-Hahn et al. 2004).  

In strobilurin-based fungicides (QoI-fungicides), the mechanism of action implies the inhibition 

of the electron transport at the Qo-center of the cytochrome bc1 of the complex III in the 

mitochondrial membrane, interrupting the respiratory chain. Thus, several developmental 

stages of the pathogen essential for the colonization of the plant such as spore germination, 

germ-tube growth, penetration and mycelia growth will be either directly or indirectly 

interrupted (Becker et al. 1981; Bartlett et al. 2002; Fernández-Ortuño et al. 2010). 

Strobilurines show a high level of effectiveness against sporulation and spore development, 

an effect which azoles do not show (Häuser-Hahn et al. 2004). Therefore, strobilurines will 

usually be applied prior to infection or in early stages of the fungal life cycle (as a protective 

and early curative application). Strobilurines are never applied as an individual treatment but 

rather in combination with other active ingredients from other fungicide groups (Bartlett et al. 

2002).  

Triazoles and strobilurines are effective against a broad fungal spectrum, which includes 

important species from the Ascomycetes and Basidiomycetes (Bartlett et al. 2002) such as 

Helminthosporium species, K. zeae and P. sorghi in maize (Pinto 2004; Couretot et al. 2012; 

Wise 2015).  

In line with this, fungicide treatments for the management of maize leaf diseases are 

registered as a control option in maize fields of key maize producing countries like the United 

States, Argentina, Brazil and India, among others (Bradley et al. 2010; Formento 2010; 

Juliatti et al. 2013; UNL Extension 2014; Kumar et al. 2014). In Europe, they are permitted in 

some countries such as France, Hungary, Poland, United Kingdom, Austria, Germany and 

Denmark (French Ministry of Agriculture 2015; Agrinex 2015; Minrol 2016; HSE 2016; AGES 

2016; BVL 2016; SEGES 2016). In Germany, the farmer assesses the risk of disease and 

makes an independent decision on the adequacy of a fungicide treatment. If the farmer 

requires further advice, he can consult the responsible local extension service (Bornemann 

2015; Agravis 2015). The application of fungicides in maize in Germany is only permitted 

once per season (Bornemann 2015). 
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1.7. Aim of the thesis 

The primary aim of this thesis was to review the phytosanitary state of maize crops in Central 

European regions, focusing on fungal leaf diseases and their epidemiology, particularly 

addressing less-known or novel pathogenic species. To this end, a qualitative monitoring 

was carried out in different Central European regions through the collection and subsequent 

analysis of leaf samples. In regions with a higher disease pressure, the correlation between 

favourable weather conditions, development of the disease and seasonal fluctuations in 

inoculum was analysed for the main pathogens in order to gain more in-depth knowledge on 

the dynamic of these diseases in the field. This was to be achieved by using a Burkard spore 

trap in three locations. With the aim of accelerating the assessment of spore trap samples, 

the possibility of a molecular biological detection of propagules of the main leaf pathogens 

was investigated. In addition, the latent period of the disease was determined. Finally, 

studies were conducted to provide insight into whether fungicide application is necessary and 

how to determine the optimal timing of application. The suitability of fungicides for the optimal 

control of the disease was the final goal of the thesis. In this regard, the effect of different 

timing of application on infected leaf area and yield were analysed. Based on the relationship 

between infected leaf area and yield, the possibility of establishing an economic action 

threshold was investigated. 
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2. Materials and Methods 

2.1. Materials 

Chemicals  

Trisiloxan/ Emulgator (Silwet® Gold) Spiess-Urania Chemicals  

Hexane Carl Roth GmbH + Co. KG Karlsruhe 

Vaseline Ratiomed  Megro GmbH & Co. KG, Wesel 

Taq-Buffer A with MgCl2 (10x) Nippon Genetics, Dueren 

dNTPs Mix (10 mM) Bioline, Luckenwalde 

Proteinase K (20 mg/ml) AppliChem, Darmstadt 

Ribonuclease (RNAse) (100 x 4U/mg) AppliChem, Darmstadt 

Taq polymerase (5U/µl) FastGene Nippon Genetics, Dueren 

Glycoblue coprecipitant (15mg/ml) Thermofisher Scientific, Dreieich 

DNA Gel Loading Dye (6 X) 

Midori Green Advance 

Thermo Fisher Scientific, Dreieich 

Nippon Genetics, Dueren 

Thrichloromethane/Chloroform Carl Roth GmbH + Co. KG Karlsruhe 

Isoamyl alcohol AppliChem, Darmstadt 

Polyethilene glycol (PEG) 6000 AppliChem, Darmstadt 

β-Mercaptoethanol Sigma-Aldrich Chemie, Steinheim 

Phenol Carl Roth GmbH + Co. KG Karlsruhe 

Glycerol 

 

Carl Roth GmbH + Co. KG Karlsruhe 

Buffer compounds 

CTAB buffer 

(Brandfass & Karlovsky 2008) 

 

 

 

N-Cetyl-N,N,N-trimethyl-ammoniumbromid   

(CTAB) (0.02 M) 

Ethylenediaminetetraacetic acid disodium  

(Na-EDTA) (20 mM) 

Sorbitol  (0.13 M) 

 N-Lauroylsarcosin-Sodiumsalt (0.03 M) 

TRIS-HCl pH 8.0 (10 mM) 

NaCl (0.8 M) 

Polyvinylpyrroidon K30 1% (w/v) 

Merck, Darmstadt 

 

 

AppliChem, Darmstadt 

 

Merck, Darmstadt 

Merck, Darmstadt 

Applichem, Darmstadt 

Applichem, Darmstadt 

AppliChem, Darmstadt 
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DNA gel loading dye Thermofisher, Dreieich 

TE buffer 

(Brandfass & Karlovsky 2008) 

Ethylenediaminetetraacetic acid disodium  

(Na-EDTA) (100 mM, pH 8.0) 

Tris (1M, pH 8.0) 

 

 

AppliChem GmbH, Darmstadt 

 

 

AppliChem GmbH, Darmstadt 

TBE buffer  

 (TRIS-Borat-EDTA) 

AppliChem GmbH, Darmstadt 

  

2.1.1. Media  

The different solid agar media were compiled as follows (for 750ml H20dest):  

Malt agar:  

10 g maltose monohydrate 

1.5 g peptone 

15 g agar  

 

Oat agar (OA) 

15 g oat flour 

11.25 g agar 

 

Potato dextrose agar (PDA)  

22 g potato dextrose agar                                            Sigma-Aldrich Chemie, Steinheim  

Synthetic nutrient-poor agar (SNA)  

0.75 g KH2PO4 

0.75 g KNO3 

0.375 g MgSO4 

0.375 g KCl 

0.15 g glucose 

0.15 g saccharose 

11.25 g agar 
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Vegetable 8 (V8)  

1.5 g Ca CO3  

11.25 g agar 

75 ml V8 vegetable juice  

 

Yeast malt extract agar (YE+ME) 

25.2 g yeast malt extract agar                                              Sigma-Aldrich Chemie, Steinheim 

 

Water agar 0.8 % (WA) 

6 g agar 

 

K. zeae-liquid medium 

7.5 g carboxymethylcellulose (low viscosity)                       Sigma-Aldrich Chemie, Steinheim 

3.7 g maltose,  

1.1 g peptone,  

0.75 g monobasic potassium phosphate 

 

For all the media: 

Agar: Carl Roth GmbH + Co. KG, Karlsruhe. 

 

The necessary amount of nutrient medium was autoclaved with steam at 121ºC under 2 bar 

pressure for 20 min. After autoclaving, streptomycin (200 ppm) (Duchefa Biochemie, 

Haarlem) was added. 

 

2.1.2. Maize seeds  

 

 

Variety Ricardinio, certified KWS GmbH, Einbeck 
 
Variety Barros, certified 
 

 
KWS GmbH, Einbeck 
 

Variety Fernandez, certified 
 

  KWS GmbH, Einbeck 
 

Variety Kalvin, certified 
 

  Syngenta GmbH, Maintal 

Variety Ronaldinio, certified 
 

  KWS GmbH, Einbeck 

Variety NK Silotop, certified 
 

Syngenta GmbH, Maintal 
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2.2. Inventory and validation of fungal pathogens on maize leaves  

In order to reflect the actual situation of maize leaf diseases in Central Europe and due to the 

scarce information about their occurence in Central European maize fields, a qualitative 

monitoring of the occurrence of potential leaf infecting species was carried out within regions 

of Germany, the Netherlands, Czech Republic, Austria, France and Poland during the years 

2012 and 2013. The inventory and validation is based on the prevalence of the respective 

diseases and the completion of Koch´s postulates for the less known diseases to verify that 

the obtained fungal organism produces the disease. To achieve this, symptomatic leaf 

samples were collected and fungal organisms were isolated and analysed morphologically. 

For a number of isolates, pathogenicity tests were conducted by inoculating healthy plants in 

the greenhouse with spore suspensions prepared from single-spore cultures. 

Koch’s postulates were followed in order to subsequently establish the relationship between 

a disease and the organism it infects and comprise the following in vitro and in vivo methods. 

All four of the following steps must be completed for their fulfilment: 

1. The organism has to be detected in the diseased tissue.  

2. It has to be isolated and grown in pure culture. 

3. With the pure culture, the disease must be reproduced on the host plant. 

4. The pathogen has to be recovered from the inoculated plant. 

These steps were carried out one after another using the experimental setup described in the 

next sections.  

 

2.2.1. Sampling locations  

Samples of infected maize leaves were collected in 2012 and 2013 from selected fields in 

Germany (27 locations), the Netherlands (six locations), Czech Republic (six locations), 

Austria (three locations), France (two locations) and Poland (two locations) in order to 

perform a qualitative monitoring (Table 4 and Figure 4). These locations are comprised of 

breeding stations, trial locations and conventional agricultural fields. Fields belong to 

conventional farms, maize trial locations focused on fungicide application (Syngenta, 

Landwirtschaftskammern) and breeding locations (Syngenta). 
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Tab. 4. Sampled locations for the monitoring in 2012 and 2013. 

 

Code Location Country Year Variety Purpose Organisation 

    North and Centre     

12.14/13.14 Ommen Netherlands 2012/2013 -- Breeding  Syngenta 

12.15 Princepeel Netherlands 2012 -- Breeding Syngenta 

12.28 Groningen Netherlands 2012 -- Breeding Syngenta 

12.30 Biddinghausen Netherlands 2012 -- Breeding Syngenta 

12.21 Ottersum Netherlands 2012 -- Breeding Syngenta 

13.35 centre Netherlands 2013 SY Milkitop Breeding Syngenta 

12.2/13.2 Ostenfeld Germany 2012/2013 Ronaldinio Trials FH Kiel 

12.20/13.20 Nordholz Germany 2012/2013 -- Breeding Syngenta 

12.19 Cloppenburg Germany 2012 -- Breeding Syngenta 

12.23 Rade Germany 2012 Ricardinio Trial LWK SH 

12.24 Beesten Germany 2012 -- Breeding Syngenta 

13.40 Wessin Germany 2013 Ronaldinio Trial Syngenta 

13.42 Klein Marzehns  Germany 2013 Diverse Conventional -- 

13.43 Bodenwerder Germany 2013 Ronaldinio Conventional -- 

13.44 Taaken Germany 2013 Ricardinio Conventional -- 

12.27 Bad Oldesloe Germany 2012 Fernandes Trial Syngenta 

12.11 Köhn (Plön) Germany 2012 Kalvin Trial Syngenta 

12.31 Giekau Germany 2012 -- Trial Syngenta 

12.13 Stapel Germany 2012 Ricardinio Trial LWK NS 

12.12 Schleswig Germany 2012 Agro Yoko Conventional -- 

13.45 Linum  Germany 2013 Ricardinio Conventional -- 

13.47 Waake Germany 2013 -- Conventional LWK Hessen 

13.48 Göttingen Germany 2013 -- Trial Uni Göttingen 

13.49 Dewitz Germany 2013 Ronaldinio Trial BioChem agrar 

12.3 Liesborn Germany 2012 -- Breeding Syngenta 

12.25 Milte Germany 2012 Zidane/Logo Trial LWK NRW 

      South       

13.39 
Windsbach-

Untereschenbach Germany 2013 -- Trial Syngenta 

12.32 Marburg Germany 2012 -- Trial Syngenta 

12.16/13.16 Mariaporsching Germany 2012/2013 -- Trial Syngenta 

12.17 Mintraching Germany 2012 -- Breeding Syngenta 

13.36 Mittich Germany 2013 Zidane Trial Syngenta 

13.37 Hartkirchen Germany 2013 DKC4590 Trial Hetterich 

13.38 Ruhstorf (Rott) Germany 2013 Ricardinio Conventional Syngenta 

12.10/13.10 S. Peter am Hart Austria 2012/2013 -- Breeding Syngenta 

12.18 Schönering Austria 2012 -- Breeding Syngenta 

13.46 Steiermark Austria 2013 -- Trial Syngenta 

      East       

12.26 Galowo Poland 2012 -- Breeding Syngenta 

12.29 Zybiszów Poland 2012 -- Breeding Syngenta 

12.4 Nechanice C. Republic 2012 -- Breeding Syngenta 

12.5 Lysice C. Republic 2012 -- Breeding Syngenta 

12.6 Lesany C. Republic 2012 -- Breeding Syngenta 

12.7 Bylany C. Republic 2012 -- Breeding Syngenta 

12.8 Caslav C. Republic 2012 -- Breeding Syngenta 

12.9 Plana C. Republic 2012 -- Breeding Syngenta 

      West       

12.22 Moorlas France 2012 -- Breeding Syngenta 

12.34 Garlin France 2012 -- Breeding Syngenta 
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Fig. 4. Distribution of the monitoring locations in 2012 and 2013 in Germany (27 locations), the 

Netherlands (six locations), Czech Republic (six locations), Austria (three locations), France (two 

locations) and Poland (two locations). 

 

2.2.2. Isolation of fungal organisms 

Two different methods were used for the recovery. This was dependent on the capacity of 

the target pathogen to sporulate under artificial conditions and, consequently, the difficulty of 

isolating it from the infected sample in the presence of strongly sporulating saprophytes.  

a) Placement of the infected tissue on sterile filter paper or SNA.  

Samples of infected maize leaves (approx. 1-2 cm in length) exhibiting lesions were 

segmented and transferred into a glass beaker, where they were disinfected in a 2% sodium 

chloride (NaOCl) solution for 45 s and then rinsed in sterile water for another 45 s. This last 

step was repeated and finally the leaf samples were dried with absorbent sterile paper. 

Following this, sterile filter paper was moistened with sterile water. This surface was used for 

E. turcicum as it facilitates fungal sporulation and can be isolated directly from the leaf. An 

alternative was the placement of the infected tissue on SNA medium as it provides a higher 

level of humidity than filter paper and for a longer period of time. It also allows the organism 

to not only sporulate on the leaf, but also facilitate its growth and sporulation on the agar 

surface. This procedure was regularly used for K. zeae, B. zeicola, C. graminicola,  

Phoma spp. and Fusarium spp., among others.  
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b) Waring blendor technique (Arny et al. 1970, adapted from Stover & Waite 1953).  

Using this method, the samples containing lesions were also segmented into small pieces 

(approx. 1 cm in length), but in this case were merely washed in running water, dried with 

absorbent paper, transferred to sterile water in a beaker, and blended for five min. Three 

successive dilutions were performed with sterile water (1:10) and the suspensions were 

plated on to SNA Petri dishes. After settling, the excess suspension layer was discarded, 

leaving the dish in a slanted position for one hour to remove the excess liquid. The fungus 

was isolated from the developed colonies on the agar after approximately one to two days. 

This method was used in difficult cases as concerns the isolation of  

K. zeae, Phoma spp. or Fusarium spp., caused by poor sporulation and growth or a high 

abundance of saprophytes.  

c) Isolation from seeds 

A seed lot sample of the commercial variety Kalvin was received in 2012 from Ostenfeld for 

examination of seedborne fungal pathogens. From the seed lot, 200 seeds were washed in 

running water, disinfected in a 2% sodium chloride (NaOCl) solution for 45 s and then rinsed 

in sterile water for another 45 s. Under sterile conditions on the clean bench, the seeds were 

dissected into two parts and placed on water agar (1%) plates. In vitro sporulation of fungal 

organisms was observed during the next nine days. 

2.2.3. Preparation of single spore cultures 

Single cultures were obtained for a number of isolates. This was done for several purposes, 

including inoculation in the greenhouse, storage, or, as in the case of Phoma spp., further 

DNA analysis. To obtain single spore cultures, two different methods were used depending 

on the feasibility of separating single spores: 

a) Smearing out a spore 

This method consists of placing a spore on transparent and selective poor nutrient agar, SNA 

or WA, using an inoculation needle. With the help of a stereo microscope, spores were 

selected, laid separately and marked. After germination of the spores, these were then 

transferred to a second dish on a suitable solid medium and grown under optimal conditions 

(see Table 5). This method was used for organisms with relatively large and pigmented 

spores such as E. turcicum, Bipolaris spp., Alternaria spp. and Epiccocum nigrum, among 

others. 

b) Dilution plating 

In this method, spores were transferred directly from plant material or obtained colonies 

through the Waring Blendor technique onto a solid medium, where, after in vitro growth of the 
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colony (up to Ø 0.5 mm), 1-2 ml sterile water was added to the colony. The colony was 

rinsed with water and the resulting spore suspension was plated on transparent agar (SNA) 

by streaking out with a Drigalski spatula to distribute single spores. After two to three days, 

the Petri dish was checked for the formation of monosporic colonies, which, if present, were 

removed and allocated to an adequate medium for the respective fungi. This method was 

used for relative small or hyaline spores of K. zeae, C. graminicola, Phoma spp. and 

Fusarium spp.  

 

2.2.4. In vitro cultivation 

To achieve in vitro sporulation, the selected organisms for the study were cultured on 

different agar media in accordance with the requirements of each fungus (Table 5). 

 

Tab. 5. Media and conditions used for cultivating different fungi for the inventory. 

Fungus Medium Temperature Light/dark h regime 

E. turcicum V8 24°C Dark 

K. zeae PDA/MA 24°C 12h/12 h. 

B. zeicola V8 24°C UV-L or 12h/12 h. 

C. graminicola PDA 18°C-20°C UV-L 

Phoma spp. OA 20°C UV-L and dark* 

Fusarium spp. PDA/SNA 18°C-20°C UV-L/24°C 

Alternaria spp. PDA 24°C 12h/12h 

Epiccocum 

nigrum. 

WA 24°C 12h/12h 

*For morphological analyses, both were necessary for comparisons according to Boerema 

et al. (2004). 

 

2.2.5. Morphological identification of causal agents 

The morphological parameters were analysed through macro and microscopy. Images were 

taken using a DFC 240® microscope camera (Leica, Ernst Leitz Wetzlar GmbH). The 

identification of the disease was based on leaf symptoms and on the morphological features 

of the causal agent following the respective keys in Table 6. 
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Tab. 6. Literature keys for the identification of frequently found fungi on maize leaves. 

Target pathogen Key 

E. turcicum Alcorn 1988; White 2010 

B. zeicola Alcorn 1988; Stankovic 2007; White 2010 

K. zeae Narita et Hirasuka 1959; Arny et al. 1970;  

Schneider & Krüger 1972 

Puccinia spp. Savile 1984; White 2010 

C. graminicola White 2010 

Phoma spp. Stout 1930; Boerema & Dorenbosch 1973; 

Punithalingam 1990; Aveskamp et al. 2010;  

Boerema et al. 2004; qBank Database 2012-2015 

Fusarium spp. Leslie and Summerell 2006; White 2010 

  

Other and saprophytes 

(Alternaria spp., Epiccocum spp., 

Cladosporium spp. ...) 

Ellis 1971; Ellis 1976; White 2010; Watanabe 2010 

 

In contrast to other maize leaf pathogens, a precise identification of Phoma species, which 

implies the recognition of several micromorphological features, was carried out. Based on 

data from Boerema et al. (2004), Aveskamp et al. (2010), and related summaries from the Q-

Bank database, the following macroscopic and microscopic parameters were analysed to 

obtain more accurate descriptions: 

Description of the colony 

 In vitro growth rate (after seven days) 

 Colour (according to the scale of Rayner 1970) 

 Production and characterisation of mycelium   

Microscopic observations 

 Shape and size of the pycnidia (by averaging the measurements of 5-10 samples) 

 Shape and size of the conidia (by averaging the measurements of 30 samples) 

 Presence of chlamydospores/ multicellular chlamydospores (dyctiochlamydospores) 

Unless otherwise indicated, the analysis was carried out after incubation of the plates for two 

weeks in complete darkness at 20-22°C. To guard against cases where these conditions did 

not produce pycnidia, a second plate was also incubated for each isolate with a UV light 

regime of 12/12 h darkness to stimulate the formation of pycnidia.  
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Furthermore, six Phoma isolates from the CBS culture collection (CBS-KNAW Central 

Biodiversity Center, Utrecht, the Netherlands) were compared morphologically with the 

isolated specimens (see Table 7). CBS freeze-dried isolates were obtained in lyophilized 

form and revived under incubation in OA medium. The selected isolates were: Ph. glomerata,  

Ph. pomorum, Ph. sorghina, Ph. subherbarum (two isolates) and Ph. zeae-maydis. The 

selection of these CBS isolates was based on their relation to Phoma species colonising 

maize in the literature. 

Tab. 7. Isolates of Phoma species obtained from the CBS (Central Biodiversity Center, Utrecht, the 

Netherlands) for morphological comparisons with the isolated Phoma specimens in the monitoring. 

Phoma spp. (syn.) CBS Number Origin Selected after 

Ph. glomerata 

(Didymella glomerata) 
528.66 Netherlands Payak et al. 1987 

Ph. pomorum 

(Didymella pomorum) 838.84 Germany 

 

Sørensen et al. 2010 

Ph. sorghina 

(Epiccocum sorghinum) 
180.80 South Africa Do Amaral et al. 2004 

Ph. subherbarum 

(Didymella subherbarum) 
250.49 Peru De Gruyter et al. 1993 

Ph. subherbarum 

(Didymella subherbarum) 
249.49 Peru De Gruyter et al. 1993 

Ph. zeae-maydis 

(Didymella maydis) 
588.69 USA, Wisconsin Arny & Nelson 1971 

 

2.2.6. Molecular identification of Phoma spp. 

Due to the limitations of identification based on morphological characters, further molecular 

analysis were carried out for nine isolates (12.18; 12.20; 13.2P, 13.2C, 13.2B; 12.13; 12.19; 

12.36; 12.37).  

2.2.6.1. Obtaining of DNA from pure cultures  

Pure cultures of the different fungi were grown on suitable solid medium at 24°C for 2 weeks. 

Liquid cultures were inoculated with a single mycelial plug (diameter approx. 0.5 cm) in 30 ml 

of Czapek-DOX (34 g/l) in 100 ml Erlenmeyer flasks. Cultures were incubated on a shaker at 

20-22°C and 100 rpm for 14 to 21 days. After this period, the culture was harvested by 

filtration through a Büchner funnel with filter paper and using a water-jet pump. To prevent 

cross contamination, the funnel was disinfected between samples with 70% ethanol. The 

mycelium was washed with autoclaved water, freeze-dried for 48 h and stored in Falcon 

tubes with Parafilm at -20°C until DNA extraction was carried out.  
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For the DNA extraction of fungal species, the method described by Brandfass and Karlovsky 

(2008) was followed. Lyophilized dry material was ground into a fine powder with liquid 

nitrogen in a mortar. From the powdered mycelium, 30-40 mg were transferred to a 2 ml 

Eppendorf tube and kept cold in nitrogen. A 1 ml of CTAB buffer, 2 µl mercatoethanol and  

1 µl proteinase K (1:10) were added. The tubes were placed in an ultrasonic cleaner for 5 s 

followed by incubation in a heated bath for 10 min at 42°C, and then another 10 min at 65°C. 

The suspensions were emulsified with 800 µl of chloroform:isoamylalcohol mixture (24:1), 

vortexed, and then cooled for 10 min on ice. Next, the tubes were centrifuged for 15 min at 

13,000 rpm (9,500 xg) and 600 µl of the supernatant were collected and mixed with 194 µl 

PEG (30%) and 100 µl 5M NaCl. The solution was centrifuged for 15 min at 13,000 rpm 

(9,500 xg) and the supernatant was carefully discarded to avoid destroying the pellet. It was 

then washed with 800 µl ethanol (70% v/v). Thereafter, it was centrifuged for 2 min, while the 

last drops were discarded through pipetting and the sample was dried for 10 min at 30°C in a 

speed vacuum. The pellets were dissolved in 100 µl of TE buffer (1x), incubated for 30 min at 

room temperature and stored at -20°C. To remove possible RNA contamination from DNA 

templates, RNAse (1:10) was added to the samples and incubated at 37°C for 30 min. 

2.2.6.2. Assessment of the obtained DNA yield and quality from cultures 

In order to check the concentration of the obtained DNA, 7 µl of each sample were taken and 

pipetted in a microtest plate with 2 µl DNA Gel Loading Dye (6 X). The samples were loaded 

onto a 1.0 % TBE agarose gel. Electrophoresis was conducted at 3V/cm for 90 min in TBE 

buffer (0.5x), to which Midori Green was added. Finally, the samples were analysed using 

Phage Lambda DNA (Sigma-Aldrich Chemie, Steinheim) to estimate the DNA concentration 

under UV light.  

2.2.6.3. Conditions for PCR assay  

The 5.8S nrRNA gene with the two flanking internal transcribed spacers 1 and 2 were 

amplified with the generic primers ITS4 and ITS5 (White et al., 1990). Primer sets were 

obtained from Invitrogen™ Life Technologies GmbH (Darmstadt, Germany), resuspended 

with nuclease-free water and stored at -20°C.  

Tab. 8. Primers used for the amplification of the internal transcribed spacers 1 & 2.  

Primer Primer Name Primer Sequence Amplified 
fragment 

size 

Source 

5’ primer ITS 5 TCCTCCGCTTATTGATATGC 

630 bp White et al. 1990 3’ primer ITS 4 GGAAGTAAAAGTCGTAACAAG 

 



Material and Methods 

      

31 
 

Standard PCR amplification reactions (final volume of 25 µm) were performed containing 

nuclease-free water, 1 X Taq Buffer (contains a final MgCl2 concentration of 1.5 mM), 0.2 

mM of dNTPs, 1 µM of each primer, 2.5 units of Taq DNA Polymerase and 10 ng of template 

DNA. Gradient PCR reactions were performed on TProfessional basic Gradient 

Thermocycler (Biometra, Germany). To establish the melting temperature (Tm) of the specific 

primers, a range of temperatures above and below the calculated Tm (55-65°C) were tested 

simultaneously in a preliminary analysis for two isolates (12.10 & 12.18). The final selected 

assay conditions are shown in Table 9.  

Tab. 9. Universal PCR cycling assay for generic primer set ITS4 and ITS5. 

Step Temperature Time            Repetitions 

   

Initialisation 94°C 5 min 

Denaturation 94°C 1 min 

Annealing 61°C 1 min 

Elongation 72°C 1 min 

Final extension 72°C 10 min 

To avoid undesired proteins and inhibitors, PCR products were purified with the “QIAquick 

PCR Purification Kit” (Qiagen GmbH, Hilden, Germany) according to the instructions 

provided. Finally, the purified DNA was quantified through electrophoresis as described 

above. 

2.2.6.4. DNA sequencing and analysis 

DNA samples were sent for sequencing (Eurofins MWG operon, Ebersberg, Germany). The 

forward and reverse strands were sequenced with the same primers used in the PCR 

amplification (ITS 4 & ITS 5). The sequences obtained were analysed using the basic local 

alignment search tool (BLAST) of the National Center for Biotechnology Information (NCBI) 

Database5. Comparisons were carried out with those sequences registered with accession 

numbers of the Central Biodiversity Center (CBS-KNAW, Utrecht, the Netherlands). 

2.2.6.5. Identification by the Fungal Biodiversity Center (CBS-KNAW) 

For most of the Phoma isolates, DNA sequencing of the 5.8S nrRNA gene with the two 

flanking internal transcribed spacers 1 and 2 resulted in several species. In these cases, a 

concrete determination of the species was not possible for all isolates. Therefore, three 

representative isolates collected in 2012 and 2013 were sent to the CBS-KNAW for further 

identification. The procedure was based on the generation of the internal transcribed spacer 

1 and 2 regions and partial sequences of the actin and translation elongation factor 1α gene, 

and a further comparison with CBS sequence databases. 

                                                             
5
 Database can be found here: http://blast.ncbi.nlm.nih.gov/Blast.cgi 

x 36 
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2.2.7. Preservation techniques for fungal organisms 

The conservation of the isolated fungal species should not only guarantee survival, but also 

virulence and capacity to produce a large amount of spores. These are necessary 

parameters for further in vitro and in vivo studies. Freshly grown fungal colonies (1-2 weeks 

old) were used. Different methods from the literature were selected, adapted for each 

different genus, and are explained in this section. In some cases, more than one method had 

to be used when the inefficacy of certain methods was discovered as work progressed, 

obligating a change of preservation method (section 4.1.3, Discussion). Parallel to the 

methods described here, representative isolates were dispensed in storage vials, prepared 

through freeze-drying (lyophilisation) and deposited for long-term preservation at 4°C at the 

Division of Plant Pathology and Plant Protection of the University of Göttingen. 

a) Preservation with water and glycerol (25%) 

Autoclaved water and glycerol (75:25) was added to the colony of the fungus grown on solid 

agar and the colony was crushed with a sterile glass rod. In order to remove remains of 

mycelia, the suspension was poured onto a sterile cheese cloth inserted into a funnel, which 

was inside a 50 ml tube. 1 ml of the spore suspension was pipetted in 1.5 µl Eppendorf tubes 

and stored at -20°C. This method was used for Phoma spp.  

b) Preservation in silica gel granules with skim milk solution (in accordance with Perkins 

1962; Vaillancourt Laboratory 1995 modified from Tuite & Lutrell 1969) 

Due to non-survival or a low survival rate of K. zeae, B. zeicola and C. graminicola spores 

after storage with autoclaved water and glycerol (25%), this second method was used. Given 

the absence of moisture, the use of a solid medium like silica gel granules prevents all fungal 

growth and metabolism. Silica gel granules (1-2.3 mm; 10-18 mesh without indicator) were 

sterilised by heating for two hours in a drying oven at 160°C and cooled to 4°C thereafter. 

Screw cap tubes of 10 ml were filled with approx. 4 g of the sterile silica gel granules. A 7.5% 

(v:v) solution of dry powdered skim milk was prepared with autoclaved water, autoclaved and 

cooled to 4°C. 30 min before use, as well as during usage, the tubes with silica granules 

were placed in an ice bath. Freshly produced spores were collected by following the same 

procedure used for the prior method (water + glycerol), but on this occasion the culture was 

washed with the prepared 7.5% skim milk suspension. From the obtained skim milk spore 

suspension, 250 µl were pipetted into the silica granules and the mixture was placed 

immediately onto a vortex mixer adding another 250 µl of skim milk. The caps were sealed 

with Parafilm, left in an ice bath for approx. 30 min, and stored at 4°C. To check viability, a 

few silica granules from selected isolates were sprinkled onto a suitable agar medium after 
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two weeks. This sprinkling process was repeated regularly thereafter to check for viability of 

the spores.  

c) Storage on sterile filter paper (adapted from Formento 2015, pers. comm., 23 

February) 

Parallel to the silica gel method, an alternative method was used because some K. zeae and 

B. zeicola isolates could not be obtained from the silica gel granules after several months 

and sprinkles. Following the method of Formento (2015) for some fungal pathogens on 

maize leaves, initially autoclaved filter papers were placed directly on medium next to a 

growing fungal colony until they were overgrown by the mycelium of the respective fungi. 

Due to the fact that pieces of mycelium are also stored through this procedure, a second 

variant was also used. In this case, the filter papers were placed into 1.5 ml Eppendorf tubes 

(6 filter papers/tube) and autoclaved. Freshly produced spores were collected through 

suspension of the colony in autoclaved water and crushing it with a glass rod. In order to 

remove remains of mycelia, the suspension was poured onto a sterile cheese cloth inserted 

into a funnel, which was inside a 50 ml tube. From the obtained spore suspension in the 

tube, 50 µl were pipetted into the filter papers, vortexed, dried and stored at -20°C. Due to 

the capability of storing spores for a long period of time, enhanced accuracy, low material 

costs and a less time-consuming procedure, this method was also practical for common 

saprophytes like Alternaria spp. and E. nigrum.  

 

2.2.8. Production of inoculum 

Spores of the various fungal species served as inoculum for greenhouse experiments. 

Bipolaris spp., C. graminicola, Phoma spp., Fusarium spp., Alternaria spp. and E. nigrum 

isolates were grown on suitable solid medium and under optimal conditions (Table 5). The 

mycelium was suspended in a water solution with the surfactant agent Silwet® Gold 

(0.0125%), which facilitated moistening and spreading of the spore solution onto the leaf by 

reducing the surface tension. After crushing the mycelium with a glass rod, freshly produced 

spore suspensions were collected and in order to remove remains of mycelia, the 

suspension was poured onto a sterile cheese cloth inserted into a funnel, which was inside a 

50 ml tube. 

Spores were counted under the microscope (20x- 40x magnification) with a Thoma-counting 

hemacytometer for Phoma spp., and a Fuchs-Rosenthal hemacytometer for all other fungal 

organisms. Spore suspensions were adjusted to the final spore concentration shown in 

Tables 10-11 (section 2.2.9) depending on the organism and isolate.  
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Production of inoculum for K. zeae  

Due to the slow growth of some K. zeae isolates and its limited ability to produce spores on 

agar, a liquid medium known as K. zeae medium (Reifschneider and Arny 1979) was used 

first. Flasks (1 L) were filled with 500 ml of the K. zeae liquid medium and each flask was 

inoculated with four-day-old colony plugs and placed on the shaker at 100 rpm for seven to 

10 days at room temperature (approx. 18-20°C). Spore suspensions were then calculated 

and adjusted by adding water to achieve the required densities (Reifschneider and Arny 

1979).  

Due to the dissimilarity between isolates to produce spores, a modification of this method 

with an improved step provided by Algermissen (2014, pers. comm., 24 March) was used for 

the production of large and uniform amounts of K. zeae spores. Here, one agar colony plug 

was inoculated into 30 ml of Kabatiella zeae liquid medium described by Reifschneider and 

Arny (1979) and incubated for four days. From here, 400 µl of the liquid medium were 

pipetted onto malt agar plates, evenly distributed with a Drigalski spatula, and incubated at 

24°C. After four days, a high amount of K. zeae colonies with masses of spores had already 

formed in the plates. The Petri dish was suspended in a water solution with the surfactant 

agent Silwet Gold (0.0125%). After crushing the mycelium with a glass rod, freshly produced 

spore suspensions were collected and, in order to remove remains of mycelia, the 

suspension was poured onto a sterile cheese cloth inserted into a funnel, which was inside a 

50 ml tube. 

 

2.2.9. Evaluation of pathogenicity in the greenhouse 

Pathogenicity tests were carried out in the greenhouses of the Division of Plant Pathology 

and Plant Protection of the Georg-August-University Göttingen. The orientation of the 

greenhouses is north-south and the benches inside have an east-west orientation. The 

greenhouses consist of side and roof ventilation systems and can be ventilated and heated 

automatically. The day/night light regime (14/10h) was automatically controlled in the 

greenhouse in winter through sodium vapour lamps (Philips SON-T Plus 400 watt 20 klx).  

For a number of isolates of less known diseases in Central Europe, namely K. zeae,  

B. zeicola, C. graminicola, Phoma species, Fusarium spp., Alternaria spp., and E. nigrum 

(see Tables 10-11), pathogenicity tests were conducted by inoculating healthy plants with 

spore suspensions prepared from single-spore cultures in order to fulfil Koch’s postulates.  

Maize varieties Ricardinio and Barros were selected because they show a reasonable level 

of susceptibility to some maize leaf diseases. This is based on personal observations from 

field visits made during the monitoring. In the greenhouse, plants were sown (one seed/pot) 
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in pots (11x11 cm) containing a mixture made up of one part of sand, one part of compost 

and one part of standard substrate with pea and clay (Einheitserdewerke Werkverband e.V., 

Sinntal-Altengronau). The mixture was then covered with a small layer of sand. As nutrient 

fertiliser, Hakaphos® (15% N, 15% K2O, 11% P2O, 1% MgO) was applied at a concentration 

of 4 g/l.  

Maize seedlings were inoculated with spore solutions using a pump sprayer once the fifth or 

sixth leaf had unfolded (5th-6th leaf stage). This was usually four to five weeks after sowing. 

The control was inoculated with water and the surfactant agent (Silwet Gold 0.0125%). Each 

fungal isolate treatment consisted of three replications for every maize variety. The 

replications were fully randomised and placed in a humidity chamber, maintaining a high 

level of humidity and moisture by spraying the chamber and the leaves with water. After 

three days, the plants were removed and placed on greenhouse benches.  

Due to the extended range of Phoma species and current lack of knowledge about them, a 

second pathogenicity test was conducted. Plants were incubated in a climate chamber at a 

controlled temperature and relative humidity of 20°C and 90%, respectively.  
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Tab. 10. Isolates of different fungi tested for pathogenicity in the greenhouse and 

concentrations (spores/ml) used.  

Organism Isolate Location Spores/ml 

K. zeae 12.10 Braunau am Inn 5x10
5
 

 12.11 Köhn (Plön) 5x10
5
 

 12.13 Stapel 1x10
5
 

 12.14 Ommen 50x10
3
 

 12.17 Mintraching 25x10
3
 

 12.24 Beesten 5x10
5
 

 12.28 Groningen 2x10
5
-5x10

5
 

 12.30 Biddinghausen 3x10
5
 

 12.31 Giekau 3x10
5
 

Bipolaris spp. 12.2S Ostenfeld 1x10
6
 

12.7 Bylany 1x10
6
 

 12.8 Caslav 1x10
6
 

 12.9 Plana 1x10
6
 

 12.18 Schönering 1x10
6
 

 12.20 Nordholz 1x10
6
 

 12.27 Bad Oldesloe 1x10
6
 

C. graminicola 12.15 Princepeel 1x10
6
 

 12.22 Moorlas 1x10
6
 

Phoma spp. 12.2 Ostenfeld 3.8x10
6
-1x10

7
 

 13.2d Ostenfeld 1x10
7
 

 13.2b Ostenfeld 1x10
7
 

 13.2.1 Ostenfeld 1x10
7
 

 13.2P Ostenfeld 1x10
7
 

 13.2B Ostenfeld 1.1x10
6
-4.5x10

6
 

 13.2C Ostenfeld 1x10
7
 

 13.2.1 Ostenfeld 1x10
7
 

 12.10 Braunau 1x10
7
 

 12.12 Schleswig 1x10
7
 

 12.13 Stapel 1x10
7
 

 12.18 Schönering 5x10
6
-1x10

7
 

 12.19 Cloppenburg 1x10
7
 

 12.20 Nordholz 1x10
7
 

 12.23 Rade 1x10
7
 

 12.23.2 Rade 2x10
6
-4x10

6
 

 12.27 Bad Oldesloe 1x10
7
 

 12.28 Groningen 1x10
7
 

 12.31 Giekau 1x10
7
 

 13.20 Nordholz 1x10
7
 

 13.36 Mittich 1x10
7
 

 13.37 Hartkirchen 1x10
7
 

 13.47 Kassel 1x10
7
 

 13.48 Kassel 1x10
7
 

 14.51 Offenburg* 65x10
4
-2.5x10

6
 

Phoma spp. CBS Ph. Glomerata 528.66 1x10
7
 

 Ph. Pomorum 838.84 1x10
7
 

 Ph. Sorghina 180.80 6x10
4
-7x10

4
 

 Ph. Subherbarum 249.92 1x10
7
 

 Ph. Subherbarum 250.92 1x10
7
 

 Ph. zeae-maydis 588.69 17x10
4
-75x10

4
 

Alternaria spp. 14.50* Inzing 5x10
4
 

 14.51* Offenburg* 1x10
4 

Epiccocum spp. 14.51* Offenburg* 2x10
4
-6x10

4
 

* Received sample from 2014 not belonging to the monitoring of 2012/2013
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Tab. 11. Isolates of Fusarium spp. tested for pathogenicity in the greenhouse and concentrations 

(spores/ml) used.  

Organism Isolate Location Spores/ml 

Fusarium spp. 12.2S Ostenfeld 1x10
6
 

 13.2 Ostenfeld 1x10
6
 

 12.8 Caslav 1x10
7
 

 12.10 Braunau 1x10
6
-1x10

7
 

 12.12 Schleswig 1x10
6
 

 12.13 Stapel 10
5
 

 12.14 Ommen 8.5x10
5
 

 12.19 Cloppenburg 8.5x10
5
 

 12.23 Rade 1x10
6
 

 12.27 Bad Oldesloe 1x10
6
 

 12.30 Biddinghuizen 1x10
6
 

 12.31 Giekau 1x10
6
 

 

The evaluation of pathogenicity of the isolates on maize was carried out 14 days after 

inoculation, on the fourth, fifth and sixth unfolded leaves (BBCH 15-16). The visual scale 

used was adapted for each pathogen depending on the development of the lesions (Tables 

12 & 13).  

 

Tab. 12. Disease rating scale adapted for maize seedling plants inoculated with B. zeicola,  

C. graminicola and K. zeae. 

Grade Pathogen Symptoms Reaction 

0 B. zeicola, C. graminicola, 
K. zeae 

No symptoms were observed -- 

1 B. zeicola, C. graminicola, 
K. zeae 

Slight chlorosis <5% of the leaf area Slight 

2 B. zeicola, C. graminicola, 
K. zeae 

Chlorosis spreading >5% leaf area Moderate 

3 B. zeicola, C. graminicola 
K. zeae 
 

Chlorosis develops to dark spots/ necrosis  
Chlorosis develops a central brown ring  

Moderate 

4 B. zeicola, C. graminicola 
K. zeae 
 

Chlorosis expansion with dark spots/necrosis  
Chlorosis/ brown rings develop in patches  

Moderate 

5-6 B. zeicola, C. graminicola 
K.zeae 

Necrosis/ dark spots prevail  
Necrotic lesions coalesce 
Leaf begins with senescence 

Moderate- 
Severe 

7-8 B. zeicola, C. graminicola 
K.zeae 

Leaf begins with senescence 
Leaf senescence 

Severe 

8-9 B. zeicola, C. graminicola 
K.zeae 

Leaf has died Severe 
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Tab. 13. Disease rating scale for seedling plants inoculated with Phoma spp. 

Grade Symptoms Reaction 

0 No symptoms were observed -- 

1 Slight chlorosis  < 5% leaf area Slight 

2 Chlorosis spreading >5% leaf area Moderate 

3 Chlorosis develops to brown spots Moderate 

4 Spreading of the brown spots:  

- Typical spots red-brownish, dispersed;  

 (Typical early disease symptoms) >5% leaf area 

Moderate-severe 

5 Spot expansion Moderate-severe 

6 Lesions coalesce Severe 

7 Beginning of leaf senescence Severe 

8 Leaf senescence  Severe 

9 Leaf has died Severe 

 

2.2.10. Re-isolation of the pathogen from the infected tissue 

To confirm the fungal organism as the causal agent of the disease produced, the same 

fungal organism has to be recovered from the infected leaf tissue of the inoculated maize 

plant. Therefore, infected leaf samples were collected from the inoculated plant in the 

greenhouse, and disinfected and incubated in SNA agar plates at room temperature for 

sporulation. The leaf samples were examined after one to two days by using the microscope 

to confirm the presence of the pathogen.  

 

2.3. Field locations for spore trapping and fungicide application studies 

2.3.1. Locations for fungicide trials 

Fungicide trials for the main pathogen E. turcicum were carried out in 2013 in the 

municipality of Mittich (48°4485’ N 13°394013’ E) and in 2014 in the municipality of Inzing 

(48°410126’ N, 13°407447’ E), which are separated by a geodesic distance of approximately 

four kilometres. The reason for the change in the location is that after two to three years of 

designing experiments in a particular field, the intermediate pathways created for access to 

the plots (and rows) can still be distinguished, which can have a negative impact on 

subsequent trials. Both municipalities are situated in the community of Pocking, an area in 

the southeast of Bavaria (Passau district) through which the river Inn flows. This alpine 

foreland region is characterised by a humid continental climate, with cold winters and hot, 

rainy summers. The average annual precipitation in the region is 769 mm, while the average 

annual temperature is 9.2°C (1991-2015). The hottest and at the same time rainiest months 
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are June, July and August (average over 1981-2010 period). These conditions facilitate a 

natural pressure of E. turcicum in these locations. 

For the second main pathogen K. zeae, fungicide trials were conducted in 2013 and 2014 at 

the Experimental Station Lindenhof (54°318843’N, 9°801423’E), which belongs to the 

Department of Agricultural Sciences of the University of Applied Sciencies of Kiel. The 

station is located in the municipality of Ostenfeld (district of Regensburg–Eckernförde) in the 

northern region of Schleswig-Holstein. In this location, a high natural pressure of K. zeae has 

been observed in recent years. The region is characterised by mild winters and temperate 

summers. The average annual precipitation is 826 mm, while the average annual 

temperature is 8.8°C. The hottest and rainiest month is July. The area is also prone to strong 

winds. Further information about the characteristics of the locations is provided in Table 14. 

Tab. 14. Soil and geographical parameters of the trials in Bavaria and Schleswig-Holstein.  

Parameter     Location 

 Mittich Inzing Ostenfeld 

Soil order Clay-loam Sandy-loam Loamy-sand 

Soil quality index 65 65 50 

Soil type Luvisol Luvisol Luvisol 

Altitude above mean sea level 319 m 309 m 14 m 
 
Nearest geodesic distance 
to a river 

2.4 km (Inn River) 1 km (Inn River) 
- 

7.8 km (North 
Sea Canal) 

 374 m (Rott: Inn’s 
secondary river) 

4.5 km (Rott: Inn’s 
secondary river) 

30.5 km 
(Baltic Sea) 

 

 

Sowing and Field Management 

The agronomical measures for field preparation and sowing were carried out according to the 

practical standards relevant to each region by the personnel of the cooperating institutions 

(FH Kiel in Ostenfeld (Lindenhof), and Syngenta GmbH and Hetterich field trials in Inzing and 

Mittich). For each location and season, these standards are provided in detail in Table 15 

and Appendix Tables A1 and A2. In order to achieve a higher pressure of the disease, 

conservation tillage or maize cultivation in the previous season was preferred where 

possible; if, for example, other agricultural measures were not required to reduce other 

damaging factors such as the overwintering survival of the larvae of Ostrinia nubilalis in the 

southern German locations of Mittich and Inzing. 

The maize hybrids selected for the studies are varieties which are commonly used in the 

locations and surrounding region. In the southern locations, the early-maturing grain variety 

Zidane (K240) and the late-maturing variety NK Silotop (S270) were used in 2013 (Mittich) 
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and 2014 (Inzing), respectively. Regarding resistance to E. turcicum, Zidane and NK Silotop 

are classified as “susceptible” and “moderately resistant”, respectively (LWK NW 2012; 

Hiltbrunner et al. 2015). In Ostenfeld, the silage middle early-maturing varieties Ronaldinio 

(S240) and Kalvin (S200) were sown. These varieties have been observed as being 

moderately susceptible to the disease in some northern fields (Schlüter 2012; personal 

observation).  

Tab. 15. Sowing and management in test fields. 

Location Mittich (2013) Inzing (2014) Ostenfeld (2013) Ostenfeld (2014) 

Maize variety 
 

Zidane® 
 

 
NK Silotop® 

 

 
Ronaldinio® 

 

 
SY Kalvin® 

 

Sowing date 25.04.2013 22.04.2014 22.04.2013 16.05.2014 

Seeding rate 9 seeds/m
2
 9 seeds/m

2
 10 seeds/m

2
 10 seeds/m

2 

Soil preparation 
Conventional 

tillage/ plough 

Conventional 

tillage/plough 

Conventional 

tillage/plough 
Minimal tillage 

Soil preparation 
Mechanical 

method 

Rotary harrow Rotary harrow Rotary harrow Rotary harrow 

Debris 

management 

debris worked  

with flail mower 

and grubber 

debris worked  with 

flail mower and 

grubber 

Rototiller in 

autumn 

Grubber 

Rototiller in 

autumn 

Grubber 

Crop rotation 

 

Maize (2010) 

Maize (2011) 

Winter wheat-

mustard (2012) 

Maize (2013) 

Maize (2010, 2011) 

Winter wheat- under 

sown crops (2012) 

Maize (2013) 

Maize (2014) 

Maize 

(since 2007) 

Maize 

(since 2007) 
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2.3.2. Locations for spore trapping  

Spore traps were placed in the fields of the fungicide trials in Inzing in 2014 for the detection 

of E. turcicum, as well as in Lindenhof in 2013 and 2014 for K. zeae (1 spore trap/location). 

In 2015, further epidemiological studies through spore traps were suspended due to the 

absence of the fungal disease in Ostenfeld, while in Inzing the trial was damaged by drought. 

Therefore, a third location, which forms part of the “Göttinger Miniplot Soil Warming 

Experiment” (51°5578‘N, 9° 9519‘E) at the Division of Plant Pathology and Plant Protection 

at the Georg-August-University Göttingen was used to analyse the development of both 

diseases. This was done through artificial inoculation of maize plants as part of a related 

bachelor project6. In this experiment, plants were inoculated at the end of tasseling (BBCH 

59-63) and plots were covered with plastic, providing a saturated atmosphere (100% RH) to 

favour the initial establishment of the pathogen in the plant.  

This third location is characterised by moderately cold winters and temperate summers with 

rainy periods. In the summer period, both the hottest (July - average temperature of 17°C) 

and the rainiest month coincide (June - average precipitation of 81 mm)7. 

Tab. 16. Soil and geographical parameters in Göttingen 

(“Miniplot” experimental site). 

Parameter Göttingen 

Soil order Loamy- sand 

Soil quality index 80 

Altitude above 

mean sea level 
150 

Nearest geodesic 

distance to a river 

2.6 km 

(Leine) 

                                                             
6
 “Relationship between Infection and Yield Losses for E. turcicum and K. zeae”. Bachelor thesis project Jakob 

Schnackenberg. Division of Plant Pathology and Plant Protection. Georg-August-University Göttingen. 
Experimental trials from July to September 2015. 
7
 Information from Wetterstation Göttingen: http://www.wetterstation-goettingen.de/klimabericht.html 
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2.4. Epidemiological studies based on spore trapping in the field 

To investigate the dynamic of the main fungal foliar pathogens, epidemiological studies of  

E. turcicum and K. zeae were carried out based on their air dispersal pattern. Therefore, a 

Burkard 7-day spore-recording volumetric trap (Burkard Manufacturing Co. Rickmansworth, 

UK) was used to monitor the airborne inoculum.  

 

2.4.1. Trapping season 

Spore samples were collected during the maize crop season in summer and at the beginning 

of autumn when epidemics of K. zeae and E. turcicum occur and spores of both pathogens 

are released. For K. zeae in Ostenfeld, the period under investigation lasted from 16 July to 1 

October in 2013, and from 30 June to 5 October in 2014. For the examination of  

E. turcicum in Inzing, samples were collected from 8 July until 6 October 2014, with the 

exception of 23 September due to the malfunction of the trap. In Göttingen, samples from 

both pathogens were collected from 15 July until 24 September 2015, except on 29 July and 

20 August due to malfunction of the trap.  

 

2.4.2. Air sampling and analysis via microscopy 

Spore traps were placed approx. 120 m from the studied field in Inzing and approx. 10 m 

from the nearest maize field in Ostenfeld. In Göttingen, due to the space restrictions in the 

“Miniplot” site, the spore trap had to be situated at a distance of 5 m from the trial. The spore 

trap was oriented in the direction of the prevailing winds in each location. Once set up, the 

spore trap absorbs air particles (10 l min-1) at 1 m above ground level through a small orifice 

with the assistance of a motor attached to the bottom of the trap. The energy for the motor 

was provided by weekly battery changes. The absorbed spores are captured on a cellophane 

tape, the surface of which is coated with a mixture of vaseline and hexan (40:40). The tape is 

secured in a metal drum with a fixed circumference, which rotates in a 7-day cycle using a 

timer. This allows for specific measurement of the day the spores were captured on the tape, 

which was changed upon the completion of each 7-day cycle. The upper part of the spore 

trap consists of a vane, which permits the trap, and simultaneously the orifice absorbing the 

spores, to move with the wind. 

The cellophane tapes were carefully removed from the drum of the spore trap each week 

and divided into seven daily segments. Tapes for microscopy examination were stored at 

4°C to preserve spore morphology and avoid germination or degradation. Each slide 

(representing 24 hours) was mounted on microscope slides (76 x 26 mm) and the daily 
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number of spores captured was examined microscopically at 20x to 40x magnification. In 

order to obtain the most accurate results, the total number of conidia on the tape surface was 

counted.  

 

2.4.3. Spore release, development of the disease and weather conditions 

For the correlation between Kabatiella eyespot and Turcicum leaf blight disease 

development and the obtained data from the spore trap, the progression of the percentage of 

infected leaf area from the non-treated control of the fungicide trials in Ostenfeld and Inzing 

was compared.  Rating scales and number of assessments for Inzing and Ostenfeld are 

described in detail in section 2.6.2. In Göttingen, the progression of the percentage of 

infected leaf area was obtained as part of the aforementioned bachelor project (section 

2.3.2). In this location, due to the fast development of the diseases, four assessments were 

carried out: the vegetative stage (BBCH 39), end of flowering development of the grain (69-

71), end of development of the fruit (75-79), and ripening (BBCH 87-89). Spore release data 

were correlated with climatic parameters (section 2.6.4). 

 

2.5. Coupling spore trapping with PCR and qPCR assays  

After a visual count of the number of spores via microscope, the samples were extracted 

from the vaseline following the procedure for air samples published by Kaczmarek et al. 

(2009) for Leptosphaeria maculans (pathogen in oilseed rape) with some modifications. The 

detection through real time qPCR was first adapted, optimised and finally validated for the 

detection of K. zeae and E. turcicum DNA. The PCR method was used as part of the 

specificity test and to check for a high amplified quantity of organic material (see section 

2.5.6. and 2.5.8., respectively).  

 

2.5.1. DNA extractions from the spore trap tape 

Each daily section of the tape was cut into two parts and introduced into a 2 ml screw-

capped tube filled with lysing glass beads (300-400 mg). 500 µl of CTAB buffer, 2 µl 

mercaptoethanol and 1µl proteinase K (1:10) were added to the sample tubes with the beads 

and sample tapes. The mixture was prepared using the FastPrep-24 Instrument®, which 

breaks the cells down through a multidirectional, continuous beating in order to obtain their 

cellular content. The samples were set to six cycles of 30 s at a velocity of 6 m s-1 until most 

of the spore cells lyse. This step was carried out after checking for spore remains with the 

microscope. To avoid overheating of the biological material, the samples were incubated in 
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ice for 30 s between repetitions. The suspension was incubated for 30 min at 70°C (mixed for 

10 min each), emulsified with an equal volume of a chloroform:isomylalcohol mixture (24:1), 

vortexed, and chilled for 10 min on ice. Next it was centrifuged for 15 min at 12,000 rpm 

(8,050 xg) and the supernatant was collected and mixed with a double amount of absolute 

ethanol (96-99% v/v) and 0.1 volume of sodium acetate (3 M, pH 5). The solution was 

incubated for 1 h at -20°C centrifuged for 15 min at 13,000 rpm (9,500 xg) thereafter. The 

supernatant was carefully discarded to avoid destroying the pellet, which was washed with 

ice-cold ethanol (70% v/v) and 3 ul of the coprecipitant Glycoblue (1:3). It was then 

centrifuged for 2 min to separate the DNA, and the last drops were discarded by pipetting 

and the sample was dried for 10 min at 30°C in a speed vacuum. The pellets were dissolved 

in 100 ul of 1 x TE buffer, incubated for 30 min at room temperature and stored at -20°C. 

 

2.5.2. Specific primer sets for amplification  

PCR and qPCR assays were carried out with specific primers which are derived from the 

Internal Transcribed Spacer (ITS). The primer set JB 585/JB 586 for E. turcicum and JB 616/ 

JB 618 for K. zeae (Table 17) amplify a specific DNA target region within the target pathogen 

(Beck 1997). Primer sets were obtained from Invitrogen™ Life Technologies GmbH 

(Darmstadt, Germany), resuspended with nuclease-free water and stored at -20°C.  

Tab. 17. Specific primer set information used for the amplification of E. turcicum and K. zeae extracts.  

Fungal 
Organism 

Primer 
Name 

Primer Sequence 
Amplified 
fragment 

size 
Source 

 

E. turcicum  5’ primer 

 

JB 586 

 

5‘TGGCAATCAGTGCTCTGCTG3' 
 

485bp 

 

Beck 

1997 E. turcicum  3’ primer JB 595 5‘TCCGAGGTCAAAATGTGAGAG3' 

 

K. zeae        5’ primer 

 

JB 616 

 

5'TGTTGTTAAAACTACCTTGTTGC3' 455bp 

 

Beck 

1997 K.zeae         3’ primer JB 618 5' GTTTCTGTCGGCAGAAGTC3' 

 

Additionally, due to the low number of positive amplified samples for the analysis of K. zeae 

from Ostenfeld, DNA samples from this location (2013 and 2014) were checked for DNA 

quality via PCR with the generic primers ITS4 and ITS5 described in section 2.2.6.3. 

Therefore, unsuccessful DNA extraction could be excluded. 
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2.5.3. Conditions for PCR assay  

Standard PCR amplification reactions were performed as described in section 2.2.6.3. using  

thermal cycling conditions shown in Table 18. These conditions were selected according to 

the instructions provided. To establish the melting temperature (Tm) of the specific primers, a 

range of temperatures above and below the calculated Tm (55-65°C) were tested 

simultaneously in a preliminary analysis for E. turcicum and K. zeae primer sets. The 

annealing temperature was finally set after testing non-target fungal organisms. This was 

done in a way which reduced possible non-specific amplifications. The final selected assay 

conditions are shown in Table 18. To check DNA quality with the generic primers ITS4 and 

ITS5, a universal fungal PCR cycling assay established in the laboratory was used (Table 

19).  

Tab. 18. PCR conditions used for the amplification of DNA with the specific 

primer sets JB 585/JB 586 for E. turcicum and JB 616/JB 618 for K. zeae. 

Step Temperature Time        Repetitions 

   

Initialisation 94°C 5 min 

Denaturation 94°C 30 s 

Annealing E.turcicum/ K. zeae 64.°C/65.2°C 45 s 

Elongation 72°C 45 s 

Final extension 72°C 10 min 

 

Tab. 19. Universal PCR cycling assay for generic primer set ITS4 and ITS5 used to 

check DNA quality of the spore trap tape samples. 

Step Temperature Time          Repetitions 

   

Initialisation 95°C 5 min 

Denaturation 95°C 1 min 

Annealing 57°C 1 min 

Elongation 72°C 1 min 

Final extension 72°C 10 min 

 

2.5.4. Assessment of the obtained DNA yield from tapes via PCR 

In order to check the amplified DNA size through PCR, 5 µl of each sample were taken and 

pipetted in a microtest plate with 2 µl DNA Gel Loading Dye (6 X). The samples were loaded 

onto a 1% TBE agarose gel, to which Midori Green (6 %) was added. Electrophoresis was 

conducted at 3V/cm for 300 min in TBE buffer (0.5x). Finally, the samples were analysed 

using a 100 bp molecular weight marker (Nippon Genetics GmbH, Dueren) to estimate the 

concentration, and the DNA concentration was evaluated under UV light. 

x 35 

x 36 
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2.5.5. Conditions for qPCR assay 

Standard 10 µl qPCR amplification reactions were performed with the 2x SensiFAST SYBR® 

Lo-ROX Kit (5 µl) (Bioline, Luckenwalde), nuclease free water (3.2 µl), 0.4 µM of each primer 

(0.40 µl), and 10 ng of template DNA (1 µl). RT-qPCR reactions were performed on the RT- 

PCR System CFX 384 TouchTM C1000 Detection System (Bio-Rad, Hercules, CA, USA) 

using thermal cycling conditions, shown in Table 20.  

Tab. 20. qPCR cycling protocol for specific primers JB 585/JB 586 for E. turcicum and  

JB 616/JB 618 for K. zeae 

Step Temperature Time            Repetitions 

Initialisation 95°C 2 min 

Denaturation 95°C 5 sec 

Annealing 68°C 25 sec 

Elongation 72°C 30 sec 

 

If the amplifications were above the established baseline threshold and the melting 

temperature curve coincided with the pure E. turcicum melting temperature curve, samples 

were considered as positive. 

 

2.5.6.  Primer specificity evaluation 

The specificity of the selected primers was checked during the development of this method. 

This is important in order to guarantee the exclusive amplification of the targeted sequence 

of DNA from the respective pathogens E. turcicum and K. zeae. Thus, to evaluate the 

specificity of the primers used for E. turcicum and K. zeae, pure cultures of 13 other fungi 

(Table 21) were tested. These organisms were selected due to their airborne dispersal and 

presence in European maize fields, as well as in surrounding field crops, or because they are 

genetically related to the target species being investigated. The organisms were obtained 

from the samples collected during the monitoring carried out as part of this project (section 

2.2), as well as from collections of the Division of Plant Pathology and Plant Protection of the 

University of Göttingen and the CBS-KNAW in Utrecht.  

x 34 
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Tab. 21. Target and non-target fungal organisms used for PCR specificity tests with  

JB 585/JB 586 (E. turcicum) and JB 616/JB 618 (K. zeae) primer set.  

Fungal organism Obtained from Id. code Medium 

E. turcicum (target organism) Monitoring 13.10 V8 

K. zeae (target organism) Monitoring 12.31 MA 

Alternaria spp.  Monitoring 13.10 PDA 

Aspergillus spp. APP 0006 PDA 

Bipolaris sorokiniana  APP 3198 V8 

Bipolaris zeicola Monitoring 13.2 V8 

Botrytis cinerea APP -- --* 

Cladosporium spp.  Monitoring 13.10 PDA 

Epicoccum nigrum  Monitoring 13.10 SNA 

Fusarium graminearum Monitoring 12.12 PDA 

Kabatiella caulivora*** CBS-KNAW 242.64 MA 

Phoma lingam APP C40 --** 

Penicillium spp.  APP 0282 PDA 

Septoria tritici  APP 0606 YE+ME 

Trichoderma spp.  APP 0320 OA 

*Culture was obtained in frozen form from the Division of Plant Pathology and Plant Protection 

of the University of Göttingen (APP). **DNA was obtained directly from the Division of Plant 

Pathology and Plant Protection of the University of Göttingen (APP). ***only tested for K. zeae.  

 

The obtention of DNA from pure cultures of the different fungi was carried out through the 

method described in section 2.2.6.1. Further assessment through electrophoresis of the 

obtained DNA yield and quality is described in section 2.2.6.2. 

The 13 fungi species were tested by PCR under the same conditions described in section 

2.5.3, but with annealing temperatures ranging from 60 to 68°C. With the selected melting 

temperature (Tm) from the PCR assay, a range of temperatures above it were tested through 

qPCR in order to avoid possible non-target amplifications. Parallel to the check for possible 

amplifications with specific primer sets JB 585/JB 586 (E. turcicum) and JB 616/JB 618  

(K. zeae), DNA samples of the 13 fungi were checked for DNA quality via PCR with the 

generic primers ITS4 and ITS5 mentioned above. 

The qPCR assay was performed as described in section 2.5.5 with one of the non-target 

fungal organisms, namely Alternaria spp. for E.turcicum primers, and K. caulivora for K. zeae 

primers. These non-target fungal organisms were selected because they both resulted in 

more complications in terms of non-specific amplifications during the PCR test for specificity 

at lower temperatures or at the same selected annealing temperature. Through qPCR, with 

the selected primers for E. turcicum (JB 585/JB 586), dilutions of Alternaria spp. of 1, 10 and 
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100 pg µl-1 were tested, while for the selected primer of K. zeae (JB 616/JB 618) the dilutions 

were 10 fg, 1 and 10 pg µl-1. The final selected assay conditions are shown in Table 20 

above. Unexpected signals were investigated through DNA electrophoresis. 

 

2.5.7. Primer sensitivity evaluation 

To obtain quantification standard curves and determine the limit of detection through qPCR, 

a series of diluted genomic DNA standards (100 pg µl-1,10 pg µl-1, 1 pg µl-1, 100 fg µl-1, 10 fg 

µl-1,) was generated from pure mycelia of E. turcicum and K. zeae using the software Multi-

Analyst (Bio-Rad, Hercules, CA, USA).  

Furthermore, the qPCR assay was tested for detection of spore trap samples with artificially 

inoculated spore tapes. A suspension from pure E. turcicum agar cultures and autoclaved 

water was prepared. Suspension drops were pipetted onto fresh vaseline plastic tapes equal 

in size to those used in the spore trap in the field. The final number of spores per tape was 

then counted via microscope (1 to 330 spores per slide). DNA extraction from tape samples 

and evaluation through PCR and qPCR assay were carried out as described above (sections 

2.5.1 to 2.5.5). 

Due to the difficulty to detect K. zeae spores on the vaseline tape via microscope, a series of 

spore suspensions from pure K. zeae agar cultures was prepared. The dilution range 

consisted of 1,000, 500, 250, 125, 62, 31 to 15 spores in a total pipetted volume of 10 µl per 

tape. This total volume was inoculated onto the freshly prepared vaseline tapes, divided into 

two drops of 5 µl. Three repetitions were done for each sample. DNA from the vaseline tape 

was extracted from all samples following the procedure for DNA extraction described in 

section 2.5.1.  

 

2.5.8. Dilutions of DNA yield as template 

A high quantity of organic matrix material can inhibit the amplification of DNA through qPCR 

(McDewitt et al. 2007; Kaczmarek et al. 2009). Therefore, samples were first amplified 

through PCR. When amplified samples with the specific primer sets for E. turcicum or 

K. zeae showed prominent bands of DNA on agarose gel, the samples were diluted (1:4). 
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2.6. Control of the main diseases through fungicides in the field 

To evaluate fungicides as an effective method against the main leaf diseases, i.e. Turcicum 

leaf blight, common rust and Kabatiella eyespot, the development of the infected leaf area 

was analysed under the effect of different fungicide applications at different stages. 

Kabatiella eyespot was evaluated in Ostenfeld and Turcicum leaf blight in Mittich and Inzing 

in 2013 and 2014, respectively. Due to the higher pressure of P. sorghi (common rust) in 

Mittich in 2013, this disease was also evaluated.  

 

2.6.1. Treatment design and fungicide application 

The experimental units were rectangular plots with four repetitions for each treatment and 

fully randomised (Table 22). Due to the placement of the experiment and in order to 

complete the randomised block, both the number of repetitions and blocks could vary 

between four and five in Ostenfeld depending on the treatment. The individual plot 

measurements were 7 m (length) x 3 m (width) for Ostenfeld, 12 m x 3 m for Mittich, and 10 

m x 3 m for Inzing. Row spacing was 0.75 m in all locations.  

 

Tab. 22. Design of experiments for the trials in 2013 and 2014 

Location Year Treatments + Control Repetitions Blocks 

Mittich 2013 5 4 4 

Inzing 2014 6 4 4 

Ostenfeld 2013 6 5 5 

Ostenfeld 2014  5 3-5 3 

 

In 2014, three further trials were planned in the location of Ostenfeld using the variety 

Ronaldinio sown in April. These trials were excluded from further analysis because the leaf 

area infected by K. zeae was less than 1 % at the end of the season in both the treated plots 

and the untreated control. Results for the trial sown in May using the variety SY Kalvin will, 

however, be presented.  

As a representative example for the fungicide treatment trials in each location, the design of 

the experiments in Ostenfeld and Mittich in 2013 is presented in Figure 5.  
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Fig. 5. Design of the experiment in Ostenfeld (left) and Mittich (right) in 2013. Different numbers 

indicate different treatments. Each row represents a single block. P= Periphery border. 

 

Different treatments were applied at various growth stages of the plant in order to obtain 

different levels of the disease, which could then be correlated with diverse yield losses. Thus, 

this should provide more information about an adequate control schedule between early and 

late treatments. 

 

Parallel to the untreated control, treatments consisted of: 

 Propiconazole and azoxystrobin (Quilt Excel
®
), which is registered on the German 

market for foliar application on maize against Turcicum leaf blight;  

 Epoxiconazole and pyraclostrobin (Opera
®
), which is used in Denmark to control 

maize leaf diseases such as Kabatiella eyespot. In Germany, it is only applied to 

cereals.  

 Fluopyram and prothioconazole (Propulse
®
) and carbendazim and flusilazole 

(Harvesan
®
), which are registered for application to other crops like cereals (against 

Septoria spp., Blumeria graminis  and Puccinia spp.) and oilseed rape (against leaf 

and stalk diseases such as Alternaria brassicae and Sclerotinia sclerotiorum).  

 

In Mittich, applications were carried out at two different growth stages, BBCH 33 (vegetative) 

and BBCH 65 (flowering). In 2014 in Inzing, the fungicides were applied at BBCH 51 

(tasseling) and BBCH 65 (flowering). A summary of the different fungicide treatments and 

timing of application in 2013 and 2014 is shown in Tables 23 and 24. Because the seeds 

were additionally treated with the fungicide Aatiram® in Inzing in 2014, two controls, one 

without seed treatment and another with seed treatment, were arranged to detect possible 

effects of the seed treatment on the different foliar treated variants.  
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Tab. 23. Fungicide foliar treatments tested on variety Zidane in Mittich in 2013 

No. 
Active 

ingredients 
Form g/l l/ha Stage Product Producer 

1 Control - - - - - - 

2 
Propiconazole 
Azoxystrobin 

SE* 

 
11.7 
13.5 

1 32 
Quilt 

Excel® 
Syngenta 

3 
Propiconazole 
Azoxystrobin 

SE 
11.7
13.5 

1 63 
Quilt 

Excel® 
Syngenta 

4 
Epoxiconazole 
Pyraclostrobin 

SE 50 
133 

1.5 32 
Opera® BASF 

5 
Epoxiconazole  

Pyraclostrobin 
SE 

50 
133 

1.5 63 Opera® BASF 

*SE = Suspo-emulsion. 

 

Tab. 24. Fungicide foliar treatments tested on variety NK Silotop in Inzing in 2014. 

No. 
Active 

ingredients 
Form g/l l/ha Stage Product Producer 

1 Control - - - - - - 

2 
Control  

seed treatment
1
 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

3 
Propiconazole 
Azoxystrobin 

SE* 
11.7 
13.5 

1 51 
Quilt 

Excel® 
Syngenta 

 
4 

Propiconazole 
Azoxystrobin SE 

11.7 
13.5 

1 65 
Quilt 

Excel® Syngenta 

 
5 

Fluopyram 
Prothioconazole 

 
SE 

125 
125 

1 32 Propulse® BASF 

6 
Epoxiconazole  
Pyraclostrobin 

SE 50 
133 

1.5 63 Opera® BASF 

1 
For more details, see Appendix Table A1. *SE = Suspo-emulsion.  
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In Ostenfeld, treatments were applied using a wheel sprayer with a hand-held spray boom 

with flat fan nozzles (model IDK-120-025, 50 cm nozzle spacing). The application was 

calibrated to a volume of 250 l/ha at 3 bars and sprayed at about 4.5 km/h (6 s/7 m long 

plot).  

In both Mittich and Inzing, treatments were applied using a backpack sprayer with a hand-

held spray boom with flat fan nozzles (model Airmix 110-02, 50 cm nozzle spacing). The 

application was calibrated to a volume of 260 l/ha at 2.8 bars for Mittich in 2013, and 300 l/ha 

at 2.5 bars for Inzing in 2014. In both cases, the spraying rate was about 4 km/h (9-11 s/10-

12 m long plot).  

In Ostenfeld in 2013 and 2014, the mixture of propiconazole and azoxystrobin (Quilt Excel®) 

was applied at three different crop growth stages, BBCH 33 (vegetative), BBCH 55 

(appearance of the first symptoms or tasseling) and BBCH 63 (flowering). In 2013, other 

treatments were applied at BBCH 55. A summary of the different fungicide treatments and 

timing of application is shown in Tables 25 and 26. 

 

Tab. 25. Fungicide foliar treatments applied to the variety Ronaldinio in Ostenfeld in 2013. 

Nr 
Active 

ingredients 
Form g/l l/ha Stage Product Producer 

1 Control - - - - - - 

2 
Propiconazole 
Azoxystrobin 

SE* 

 
11.7 
13.5 

1 33 
Quilt 

Excel® 
Syngenta 

3 Propiconazole 
Azoxystrobin 

SE 11.7 
13.5 

1 55 Quilt 
Excel® 

Syngenta 

4 Propiconazole 
Azoxystrobin 

SE 11.7 
13.5 

1 63 Quilt 
Excel® 

Syngenta 

5 Fluopyram 
Prothioconazole 

SE 
125 
125 

1 55 Propulse® Bayer 

6 
Carbendazim 

Flusilazole 
SE 

125 
250 

0.8 55 Harvesan® DuPont 

*SE = Suspo-emulsion. 
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Tab. 26. Fungicide foliar treatments applied to variety Kalvin in Ostenfeld in 2014. 

Nr 
Active 

ingredients 
Form g/l l/ha Stage Product Producer 

1 Control 
 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

2 
Propiconazole 
Azoxystrobin 

SE* 

 
11.7 
13.5 

1 33 
Quilt 

Excel
®
 

Syngenta 

3 Propiconazole 
Azoxystrobin 

SE 11.7 
13.5 

1 55 
Quilt 

Excel
®
 

Syngenta 

4 Propiconazole 
Azoxystrobin 

SE 
11.7 
13.5 

1 63 
Quilt 

Excel
®
 

Syngenta 

*SE = Suspo-emulsion. 

 

2.6.2. Disease assessment 

Disease severity assessments began when the infected leaf area was at least sufficient to 

carry out a visual rating of the untreated control (normally at flowering, i.e. BBCH 63-65). 

Further assessments were carried out when a noticeable increase in the disease severity 

was observed in the plots, normally during the development of the grain (BBCH 71-73) and 

at ripening (BBCH 83-87). A schematic graph showing the development of the plant in 

relation to fungicide application and time of rating is exhibited in Figure 6. 

 

Fig. 6. Schedule of fungicide application and disease ratings related to maize stages in 2013 (Mittich 

and Ostenfeld) and 2014 (Inzing and Ostenfeld) trials (maize development data obtained from Hack et 

al. 1992 and Dekalb 2015). 
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In accordance with the EPPO Guidelines (2011), disease assessments were made on five 

successive plants in the centre of each of the two central rows in each plot. Five leaves, 

consisting of the main ear leaf (L0), two leaves above the main ear (L+1 & L+2), and two 

below (L-1 & L-2), were given a score based on a visual rating of the percentage of infected 

leaf area (0-50%). The visual rating was done following the keys from the EPPO Guidelines 

(2011) for the development of Kabatiella eyespot and common rust, and from the University 

of Wisconsin Extension (2011) for the development of Turcicum leaf blight (Figures 7 & 8). 

 

Fig. 7. Diagrammatic representation for rating of percentage of infected leaf area used to evaluate 

disease severity of Kabatiella eyespot and common rust based on the Ministry of Agriculture, Fisheries 

and Food (GB) (1976) and the EPPO Guidelines (2011).  

 

Fig. 8. Diagrammatic representation for rating of the percentage of infected leaf area used to evaluate 

disease severity for Turcicum leaf blight based on the University of Wisconsin Extension (Esker 2010). 
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2.6.3. Biomass and grain yield 

As the main purpose of use of maize varieties in the region is silage and biogas production, 

the amount of biomass was recorded in Ostenfeld. Harvest and preparation of the samples 

were carried out by the personnel of the cooperating institution, FH Kiel. Plants from the 

central row of each plot were harvested for quantitative recording of yield once a wet matter 

level of 33% had been reached in the plant (specified German national standard). Plants 

were dried in an oven at 105°C for two days. The total dry weight (kg/ha) of the harvested 

plants (including the ears) was then recorded.  

In the southern locations of Inzing and Mittich, grain yields were measured as maize used for 

livestock feeding is predominant in the region. The central rows of each plot were harvested 

and weighed. The harvest and preparation of the samples was completed at the facilities of 

the participating companies (Syngenta GmbH and Hetterich Field Trials). 

 

2.6.4. Correlation of disease development with weather factors 

Because the development of the foliar maize diseases is reliant on specific weather factors, 

the correlation of both is necessary for the characterisation of the development pattern of the 

disease in the field. Therefore, in order to describe these epidemics, the daily means of 

temperature (°C), relative humidity (%), precipitation (mm) and wind (m s-1) were recorded. 

For Ostenfeld (Schleswig-Holstein), the weather station was situated directly in the 

experimental fields. For Mittich and Inzing (southern Bavaria), the climatic parameters were 

obtained from the weather station of the Bavarian State Research Centre for Agriculture 

(LfL). This is situated in Bärnau (Pocking), at a geodesic distance of approx. 4 km from 

Inzing and 8 km from Mittich. 

 

2.7.  Data management and statistical analysis 

2.7.1. Epidemiological studies based on spore trapping in the field 

The number of spores was counted through microscopy and their corresponding DNA yield 

was assessed via qPCR. Given one categorical variable, the log model y= exp (a + ax), 

assuming a negative binomial distribution, was used to determine the relation between 

number of spores and DNA yield, as well as to make an inference about the model 

parameters. To facilitate reading and interpretation, the x and y axes were flipped. Analyses 

were carried out with the E. turcicum samples from sensitivity tests and samples from Mittich 

2013 and Inzing 2014 because the number of spores could be assessed via microscope. For 
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K. zeae, only the artificial spore trap samples were used as it was not possible to detect 

spores through visual assessment (microscopy).  

For the statistical analysis, the GENMOD procedure by SAS was used. Model parameters 

were tested by the corresponding Pearson's chi-squared test. In all analyses, the general 

level of significance was set to p<0.05.  

 

2.7.2. Control of the main diseases through fungicides in the field 

From the disease rating in the field, values were obtained for the main ear leaf (L0) and the 

two leaves above (L+1 & L+2) and below the main ear (L-1 & L-2).  

During leaf ripening, a distinction between senescence and pathogen damage became more 

and more difficult. Consequently, the number of observed data per treatment was different. 

This led to unequal sample sizes which require the use of weighted means [(least square 

means (LS means)] to prevent confounding of treatment effects. For every treatment and 

treatment combination the LS means were calculated by using PROC GLM or MIXED and 

MINITAB. 

The experiments were arranged in a completely randomised split-split block design. For the 

estimation of treatment effects and the comparison of means for each experiment, an 

analysis of variance (ANOVA) was conducted using GLM, MIXED and MINITAB. The same 

software was used for the regression analysis. In all statistical procedures, the residual 

analysis and appropriateness was examined using SAS. The sample means out of ten 

observations formed the ANOVA database. For these means, the Central Limit Theorem 

applies, which means no data transformation is required. To study the relation between 

infected leaf area and yield adjusted for block effects, the GLM co-variance procedure was 

employed. Treatment effects and the regression coefficients were tested by the 

corresponding F-test and the Bonferroni multiple mean comparisons method was applied to 

estimate mean differences. In all analyses, the general significance level was set to p<0.05. 

For the results obtained, the general linear model used with the following components was 

the most adequate assumption:  
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From all factors used in the above model, only the blocks which can be seen as randomly 

chosen environments are random. Treatment, leaf position and stage are fix factors since 

their levels are all chosen according to the specific research questions. In a mixed model, the 

GLM as MIXED procedure in SAS allows the hypothesis test about LS means and their 

differences for main and joint factor effects.  

Considering the fact that the treatments and severity of the diseases differed from one year 

to the other, a combination of the 2013 and 2014 data was not considered reasonable for a 

common analysis of variance. 
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3. Results  

3.1. Inventory and validation of fungal pathogens on maize leaves in Central Europe  

Knowledge about the appearance and regional distribution of maize leaf diseases and their 

respective pathogens is an indispensable prerequisite to achieve effective control. 

During 2012 and 2013, potential leaf infecting pathogens isolated from symptomatic leaves 

were identified according to different literature keys (see section 2.2.5). In the case of  

P. sorghi, the characteristic symptoms or pathogenic structures on the leaf were a clear 

signal of the presence of the pathogen in the field. This meant that a microscopic 

examination was only required in single cases. Similarly, E. turcicum was recognisable in all 

cases by the symptoms described in the literature. Typical development of the lesion was 

favoured due to the absence of resistance in the observed plant varieties.  

The determination of K. zeae, B. zeicola, C. graminicola and Phoma spp., in contrast, was 

more difficult during the monitoring as they occasionally exhibited similar symptoms in the 

initial stages of the formation of lesions on the leaf. This led to further isolation on solid media 

and in vitro observation for several isolates. 

Pathogenicity tests served to confirm the correlation between the isolated organisms and the 

disease, and were therefore conducted for less known pathogens which induce lesions such 

as K. zeae, B. zeicola, C. graminicola, Phoma spp. and Fusarium spp. Here, a series of 

isolates was tested, also serving for subsequent diagnosis on the leaf. The only exception 

was Phoma spp., for which all of the isolates were tested because it was necessary to carry 

out pathogenicity tests in order to reveal and distinguish between pathogenic and 

saprophytic Phoma species. The resulting symptoms of the disease are described in detail 

below (based on in-depth visual assessment) and are compared with the symptoms 

observed in the field.  

3.1.1. Symptoms and morphological characterisation of E. turcicum and P. sorghi 

E. turcicum  

The initial symptoms are green or yellow lesions, which develop into elliptical or cigar-shaped 

lesions of approximately 3-20 cm in length and fuse with time. After periods of high humidity 

or moisture, dark zones of fungal sporulation can be distinguished in the lesions. However, 

after long dry periods, the lesions expand without sporulation. Lower and middle leaves 

generally exhibited a higher rate of infection than the upper leaves.  
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Conidia are olive green to brown, 2-9 septa, spindle-shaped with a strongly protruding hylum. 

Their size ranged within the parameters given by De Rossi et al. (2015) (10-20 to 30-147 

µm). The conidia show mono and bipolar germination. Formation of chlamydospores and 

shorter, stroma-like mycelium cells could be observed in vitro when the plates were 

incubated at 4°C for several months. 

 

Fig. 9. E. turcicum. A. Typical symptoms on maize leaves B. Extreme leaf blight without sporulation. 

C. Conidia. D-E. Compacted mycelium and production of chlamydospore-like structures in mycelium 

and conidia. Scale bars =25 µm (40x). 

 

P. sorghi  

Brown pustules containing orange to brown uredospores develop on the surface of maize 

leaves. Due to the noticeable form and shape of the pustules, their presence was the first 

indicator of the disease in the maize field. Uredinia of P. sorghi sporulate on the upper and 

lower surfaces of the leaf. In the late season, the pustules become brown to black, indicating 

that the uredospores have been replaced by teliospores. Uredospores are orange to brown, 

with a spherical to oval form. Teliospores are smooth, oblong to ellipsoid, with two cells 

detached at the septa and with a long pedicel. The disease tends to develop on the middle 

and upper leaves of the plant.  
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Fig. 10. P. sorghi. A. Pustules on maize leaves. B. Pustules with teliospores. C. Uredospores.  

D. Teliospores (40x). 

 

3.1.2. K. zeae, B. zeicola and C. graminicola  

K. zeae 

In the field, the pathogen produces circular to oval lesions (up to 4 mm), which develop a 

narrow, yellow halo. Later, the halo will be surrounded by a brown, black or purple ring 

inducing the form of an eye, hence the name “eyespot”. The lesions can be delimited in 

patches and later fuse to form large necrotic areas. In some locations, the disease was 

restricted to the upper leaves of the plant. The symptoms can also be observed in ear husks 

and leaf sheaths. 

After incubation of the lesions in a humidity chamber, slimy masses of spores (similar to 

sporodochia) cover the lesions. In the plant tissue, dark chains of stromatic mycelium are 

formed. In some cases, these colonies can be confused with the colonies of Fusarium spp. 

on the leaf. In this case, an analysis via microscope is necessary to confirm the isolate in 

question. Conidia are hyaline, curved to falcate with pointed ends, which later can suffer 

deformations, probably due to germination of the spore. Conidia are normally non-septate, 

but one or two septa could be formed. Their size varies between 1-4 and 24-33 µm (average 

3 x 27 µm). 

According to Reifschneider & Arny (1980a), one of the most reliable parameters for the 

identification of K. zeae is its in vitro growth. Colonies show a slow-growing mycelium on malt 
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agar and PDA. It is initially characterised by a light pink or white colour and wrinkled 

mycelium, which later turns dark and coriaceous (Figure 11). A hairy mycelium develops in 

some isolates. Formation of sections with both dark and light colours frequently occurs, but 

subculturing of these results in normal colonies.  

 

 

Fig. 11. Ten-day-old colonies of K. zeae isolates on PDA. 

 

Pathogenicity tests in the greenhouse 

After inoculation in the greenhouse, both tested maize varieties presented circular spots with 

a tan centre, brown border and yellow halo. The symptoms appeared 7-10 days after 

inoculation, coalescing and developing into necrosis. In general, these symptoms coincided 

with those which developed in the field (Figure 12 A-D). Nevertheless, some atypical 

symptoms were also produced where the typical circular spots had developed in an irregular 

form. All isolates which were recovered from the lesions produced in the inoculated plants 

have the same characteristics as the initial inoculated organism and therefore fulfil Koch’s 

postulates. A summary of the pathogenicity test for all isolates is given below.  
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Fig. 12. Eyespot disease and its causal organism K. zeae. A-D. Initial and late symptoms in the field. 

E. Symptoms after artificial inoculation in the greenhouse. F-G. Conidia and disposition of the conidia 

in the mycelium. H. Sporulating colonies on the lesions.  

 

Bipolaris zeicola and Bipolaris spp.  

Different types of symptoms were observed for B. zeicola in the field. The most common 

consisted of brown elongated and irregular spots, which resemble the description for  

B. zeicola race 2 in the literature (Figure 13 A-B). Characteristic symptoms for this race were 

observed in leaves originating from Schönering (sample 12.18) and Nordholz (sample 

12.20). Other observed symptoms were the production of linear, greyish lesions along the 

leaf vein (Figure 13 C), indicating the presence of race 3 (sample 12.7, Bylany). B. zeicola 

could also be diagnosed in commercial seeds which were planted at the Ostenfeld location 

(sample 12.2S). Small necrotic lesions were observed in samples from location Bad Oldesloe 

(sample 12.27), sharing the leaves with K. zeae. Two isolates of Bipolaris spp. (sample 12.8, 

Caslav and sample 12.9, Planá) were isolated from oval to irregular-shaped lesions, tan in 

colour and a clearly defined dark border.  
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Fig. 13. B. zeicola symptoms in the field. A-B. Symptoms produced by race 2: observed in sample 

12.18, Schönering (A) and initial symptoms observed in sample 12.20, Nordholz (B). C. Symptoms 

produced by race 3 in sample 12.7, Bylany. D. Commercial seed infected with B. zeicola.  

 

In vitro sporulation of young cultures was favoured by UV light. Mycelium growth and pattern 

varied considerably among isolates after two weeks (Figure 14). Ascending white masses of 

compacted mycelium, either isolated or in groups, were also developed (Figure 15).  

 

Fig. 14. Fourteen-day old colonies of B. zeicola and Bipolaris spp. isolates on V8. 
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Fig. 15. Ascending white isolated masses of compacted mycelium typical from Bipolaris spp.  

 

Conidia of B. zeicola are olive to dark brown, slightly curved, with rounded ends and septate. 

The number of septa and size of the conidia oscillates within the range given by White 

(2010), i.e. 7-18 x 25-100µm. Other identified Bipolaris spp. spores differ from the B. zeicola 

species described, with a darker appearance when observed directly on the sample leaf and 

also when cultivated in vitro. The majority of the spores of these isolates exhibit less or, in 

some cases, no curvature compared to the spores of B. zeicola (Figure 16, E-F). Some 

spores also exhibited flat, irregular borders. Growth in agar differs greatly between the two 

isolates; isolate 12.8 shows slow growth after 14 days (2-3 cm), is dark in colour and exhibits 

formation of white buffs, as is characteristic for other Bipolaris spp. Isolate 12.9, on the other 

hand, exhibits fast growth on the medium, with a grey mycelium and formation of buffs, 

closely mirroring colonies of B. zeicola.  

 

Fig. 16. Conidia of B. zeicola (A-D). Isolate 12.2S (A) Isolate 12.7 (B) Isolate 12.18 (C) Isolate 12.27 

(D). Conidia of Bipolaris spp. (E-F). Isolate 12.8 (E) Isolate 12.9 (F).Scale bars= 25 µm 
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Pathogenicity tests in the greenhouse 

Two days after inoculation, the two maize varieties tested showed symptoms for all five 

B.zeicola isolates. The appearance and severity of these symptoms differed among isolates 

(Figure 17). Isolate 12.7 exhibited linear and yellow-brown to greyish lesions, which are the 

typical symptoms described in the literature for race 3 of B. zeicola. The symptoms were also 

similar to those found in the field. Although the two varieties exhibited chlorotic symptoms 

around the lesions, which are usually regarded as being characteristic of plant resistance, 

this did not impede the progression of the disease, which induced premature senescence 

and ultimately the death of the leaf. In fact, isolate 12.7 reached a higher level of severity 

than any of the other isolates (grade 9 for the variety Ricardinio/grade 8 for Barros). Isolate 

12.2S, originating from commercial seeds, produced very small lesions (0.5-2 cm) with a tan 

centre and marked brown border. Its development was rather slow compared to isolate 12.7, 

with the maturing of the plant occurring before further development of the disease could be 

observed. Despite this, the organism was able to produce necrosis (grade 6 for the variety 

Ricardinio/5 variety Barros).  

The symptoms observed for isolate 12.18 were similar to those of isolate 12.2S. In both 

varieties, small necrotic lesions were produced, with a subsequent fusing of the lesions 

similar to that found in the field in Schönering. This even induced the beginning of a 

premature senescence in the Ricardinio variety (grade 7). Isolate 12.20 produced tan spots 

similar to those of the isolates above, but with the formation of lesions with pronounced 

borders and spread out across the leaf. Isolate 12.27 produced necrosis with less-defined 

borders than those of isolate 12.2S, 12.18 and 12.20. In contrast to the other isolates, 

chlorotic halos were not produced. 

Of the two varieties tested, the variety Barros exhibited a higher level of resistance than 

Ricardinio for all B. zeicola isolates. For all B. zeicola isolates, the successful recovery of the 

same fungal organism from the artificially inoculated and subsequently infected tissue was 

achieved, completing Koch´s postulates. This confirms that the isolated fungal organism is 

the causal agent of the disease.  

The unidentified Bipolaris spp. isolate 12.8 produced similar initial spots (necrotic centre and 

chlorotic halo) as B. zeicola isolates 12.2S, 12.18, 12.20. For isolate 12.9, small chloroses 

were produced, which started to develop into necrosis after two weeks. It was not possible to 

observe a further development of the disease on the plant for both isolates due to the natural 

maturing of the leaf. However, the pathogen was successfully re-isolated in both cases from 

the low number of lesions that had already developed, fulfilling Koch’s postulates and 

confirming the pathogenicity of the isolates. Between the two varieties, Barros again 

exhibited a higher level of resistance than Ricardinio to the two Bipolaris spp. isolates.  
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Fig. 17. Symptoms produced by B. zeicola and Bipolaris spp. after artificial inoculation in the 

greenhouse. A. Isolate 12.20 B. Isolate 12.27 C. Isolate 12.8 D-E. Isolate 12.7 clearly reflecting the 

typical linear lesions produced by race 3.  

 

Colletotrichum graminicola  

Symptoms on maize leaves are oblong to rectangular lesions with a tan centre and red to 

reddish-brown borders (Figure 19, A-F). These develop through the deformations produced 

via the penetration of the leaf tissue by the lesions. The acervuli can be clearly observed 

within the lesions, making it one of the unequivocal parameters for the diagnosis of the 

disease in the field. After incubation of the leaves in a humidity chamber for two days, 

substantial appresorium formation could be observed.  

In vitro, the colony grows quickly under UV light conditions, completely covering the agar with 

orange masses of spores which are embedded in a mucilaginous matrix with black setae 

(acervuli) and a dark, flat mycelium. The colony therefore exhibits a dark colour with slimy, 

dotted orange groupings at the surface (Figure 18). Spores are hyaline and show a 

distinctive drop in the centre. Conidial size was within the range described by White et al. 

(1987) (5 x 30 µm). 

 

Fig. 18. Fourteen-day-old colonies of C. graminicola isolates (12.15 and 12.22) on PDA. 
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Pathogenicity tests in the greenhouse 

Both isolates, 12.22 and 12.15, produced a similar pattern of development on the two maize 

varieties tested. Chlorotic spots (1 mm) were produced two days after inoculation, developing 

into long brown and necrotic areas along the leaf, coalescing with time. In some lesions, 

acervuli could be observed. Necrotic areas were also developed in the midrib and 

progressed further from here into the surrounding middle areas of the leaf, giving the 

appearance of strangulating the leaf. Dead leaves turned a reddish-brown colour. Stalk 

discolouration and necrosis were also produced by both isolates. Both fungi could be 

recovered from the symptoms on both varieties and the corresponding colonies have the 

same features as the initially inoculated fungal pathogens, fulfilling Koch’s postulates. 

 

 

Fig. 19. C. graminicola. A-B. Symptoms in the field and presence of acervuli in the lesions.  

C-F. Symptoms after artificial inoculation in the greenhouse. G-H. in vitro observations: G. acervuli  

H. Conidia. Scale bar =25 µm. I. Formation of appressoria. 

 

The results of all isolates tested are summarised in Table 27 below. The score data refer to 

the maximum score obtained from all leaves in each variety. The respective controls (non-

inoculated) did not exhibit symptoms in any of the experiments. 



Results 

      

68 
 

Tab. 27. Summary of the isolates tested for Koch’s Postulates from the monitoring in 2012 and 2013.  

   
  Inoculation into a healthy plant 

Grade rating variety 
Ricardinio/Barros 

 

Organism Isolate Location 

Presence of the 
pathogen in 
symptomatic 

leaves 

Isolated and 
in vitro pure 

culture 

 
Leaf#4 

 
Leaf#5 

 
Leaf#6 

 
Re-isolation 

K.zeae 12.11 Köhn (Plön) √ √ 0/0             4/3             4/0   √ 

 12.13 Stapel √ √ 0/0             3/2             3/1   √ 

 12.17 Mintraching √ √ 1/1             4/3             3/3   √ 

 12.24 Beesten √ √ 4/0             5/4             5/5   √ 

 12.28 Groningen √ √ 0/0             3/4             5/5   √ 

 12.30 Biddinghausen √ √ 3/0             5/2             5/3   √ 

 12.31 Giekau √ √ 4/0             5/4             5/5   √ 

B. zeicola 12.2S* Ostenfeld √ √ 4/4             5/4 6/5  √ 

12.7 Bylany √ √ 9/8             8/8 7/7  √ 

 12.8 Caslav √ √ 1/2             4/1 2/1  √ 

 12.9 Plana √ √ 3/2             2/1 2/1  √ 

 12.18 Schönering √ √ 7/2             3/1 4/6  √ 

 12.20 Nordholz √ √ 4/3             5/3 6/4  √ 

 12.27 Bad Oldesloe √ √ 7/5             5/3 5/2  √ 

 

C. graminicola 

 

12.15 

 

Princepeel 

 
√ 

 
√ 

 
9/9            8/8 

 
7/8 

  
√ 

 12.22 Moorlas √ √ 9/9            8/8 7/7  √ 

*isolated from commercial seeds. 
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3.1.3. Symptoms and pathogenicity tests for Phoma spp. 

In order to avoid confusion in the Phoma analysis of this work, the anamorph synonym 

Phoma, e.g. Phoma zeae-maydis (current synonym Didymella maydis) will also be used.  

Lesions observed in the field resemble the descriptions provided in the literature for the 

pathogenic species on maize, Ph. zeae-maydis. These are oval to elliptical spots with a 

brown border and grey leaf centre, with a ring in the centre of the lesion. The leaf blade 

turned yellow as the lesions developed (Figure 20, A1-A3). After incubation of the lesions in 

a humidity chamber, Phoma pycnidia emerged from the lesions (Figure 20 B). In the samples 

with lesions from Ostenfeld (13.2C), in addition to pycnidia, pseudothecia resembling those 

from Mycosphaerella zeae-maydis (Didymella maydis) were observed (Figure 20, C-D). After 

cultivation on agar, instead of further pseudothecia, pycnidia related to Phoma spp. were 

produced. Nevertheless, the conidia produced in vitro are significantly smaller than those 

described for Ph. zeae-maydis. 

In some samples, more than one Phoma species was found in Phoma lesions. On some 

occasions it was also sharing the leaf sample with other fungal pathogens, as was frequently 

the case for K. zeae. A total of 21 isolates were obtained and tested for pathogenicity. For a 

better comprehension of the importance of the different isolates, a description of the obtained 

pathogenicity results is given first, followed by the respective morphological characterisation. 

 

Fig. 20. Phoma spp. A1-3. Field symptoms B. Pycnidia on/in the leaf C. Pseudothecia D. Ascospores.  
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Pathogenicity tests in the greenhouse 

Chlorotic lesions (1-2 mm) were observed in the varieties Ricardinio and Barros two to three 

days after inoculation for six isolates (12.18, 12.20, 12.23.2, 13.2P, 13.2C, 13.20). The 

chlorosis developed into round to oval lesions with an orange centre and yellow halo, turning 

into a necrotic centre, resembling the initial symptoms of the specific disease in the field 

(Figure 21). The lesions expanded along the leaf veins, coalescing in large areas which 

provide space for chlorotic zones that surrounded the lesions. From the pathogenic isolates, 

12.18 and 12.20 induced a premature death of the leaves, thus achieving the highest grade 

of virulence of all tested isolates (grade 9). 

Of the Phoma spp. isolates obtained from the CBS, only isolate 588.69, Ph. zeae-maydis 

(syn. Didymella maydis), produced lesions which tend to expand (grade 5). Isolate 180.80 

(Phoma sorghina) produced only very slight chlorosis. 

 

 

Fig. 21. Initial Phoma spp. lesions. A. Field symptoms B-C. Symptoms after artificial inoculation on 

healthy plants in the greenhouse with isolates 12.20 (B) and Phoma zeae-maydis (CBS 588.69) (C). 

 

A seventh isolate (12.3B) developed chlorosis on both maize varieties but these did not turn 

into necrosis. Isolates 13.36 and 13.37 produced very limited slight chlorosis to the upper 

leaf in the variety Ricardinio only. Based on these results, none of these isolates (13.2B, 

13.36; 13.37) could be considered as causal agents of the disease produced in the field. The 

rest of the isolates obtained during the monitoring did not exhibit any symptoms. A summary 

of the results is presented in Table 28.  

From the lesions produced by isolates 12.18, 12.20, 12.23.2, 13.2P, 13.2C, 13.20 and  

CBS 588.69, the fungal organism could be recovered from the infected tissue, resembling 

the initially inoculated conidia and therefore fulfilling Koch’s postulates. 

                               A                                  B                              C 
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Tab. 28. Summary of the Phoma isolates obtained during the monitoring in 2012 and 2013 and tested for Koch’s postulates.  

  
  Inoculation on healthy plants 

Score rating variety 
Ricardinio/Barros 

 

Isolate Location 

Presence of the 
pathogen in 
symptomatic 

leaves 

Isolated and 
in vitro pure 

culture 

 
Leaf#4 

 
Leaf#5 

 
Leaf#6 

 
Re-Isolation 

 

12.2 Ostenfeld √ √ 0/0           0/0 0/0 - 

13.2d Ostenfeld √ √ 0/0            0/0 0/0 - 

13.2P Ostenfeld √ √ 4/3            4/4 6/4 √ 

13.2B Ostenfeld √ √ 0/0            2/0 2/2 (*) 

13.2C Ostenfeld √ √ 5/5            5/5 5/5 √ 

12.10 Braunau √ √ 0/0            0/0 0/0 - 

12.13 Stapel √ √ 0/0            0/0 0/0 - 

12.18 Schönering √ √ 9/9            8/8 6/6 √ 

12.19 Cloppenburg √ √ 0/0            0/0 0/0 - 

12.20 Nordholz √ √ 9/8            7/6 6/6 √ 

12.23.1 Rade √ √ 5/5            5/5 5/5 √ 

12.23.2 Rade √ √ 0/0            0/0 0/0 - 

12.27 Bad Oldesloe √ √ 0/0            0/0 0/0 - 

12.28 Groningen √ √ 0/0            0/0 0/0 - 

12.31 Giekau √ √ 0/0            0/0 0/0 - 

* only chlorosis 

 

 

 



Results 

      

72 
 

Tab. 28. (continued) Summary of the Phoma isolates obtained during the monitoring in 2012 and 2013 and tested for Koch’s postulates.  

  
  Inoculation on healthy plants 

Score rating variety 
Ricardinio/Barros 

 

Isolate (syn.) Location 

Presence of the 
pathogen in 
symptomatic 

leaves 

Isolated and in 
vitro pure culture 

 
Leaf#4 

 
Leaf#5 

 
Leaf#6 

 
Re-

Isolation 
 

13.20 Nordholz √ √ 5/3            5/4 5/4 √ 

13.36 Mittich √ √ 0/0            0/0 0/1 - 

13.37 Hartkirchen √ √ 0/0            0/0 0/1 - 

13.47 Kassel √ √ 0/0            0/0 0/0 - 

13.48 Kassel √ √ 0/0            0/0 0/0 - 

Ph. glomerata 

(D. glomerata) 

CBS 528.66 - - 0/0            0/0 0/0 - 

Ph. pomorum 

(D. pomorum) 

CBS 838.84 - - 0/0            0/0 1/0 - 

Ph. sorghina 

(E. sorghinum) 

CBS 180.80 - - 0/0            0/0 0/1 - 

Ph. subherbarum 

(D. subherbarum) 

249.92 - - 0/0            0/0 0/0 - 

Ph. subherbarum 

(D. subherbarum) 

250.92 - - 0/0            0/0 0/0 - 

Ph. zeae-maydis 

(D. maydis) 

CBS 588.69 - - 0/1             4/3 5/2 √ 

 

For all Phoma isolates tested, the respective controls did not exhibit any symptoms in any of the experiments. 
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3.1.4. Characterisation of Phoma spp. 

The different Phoma spp. isolates are characterised by high variability in their respective in 

vitro growth, as well as morphological differentiations indicating that several Phoma species 

or strains exist. The exhaustive morphological characterisation of each isolate and the CBS 

isolates for comparison is exhibited below.  

Colony size measurements were taken after the first incubation week (dark, 20-22°C). 

Further characterisation of the colony was described after 14 days. In addition, plates were 

also cultivated under UV light. If any changes were observed in the colony growth or 

morphological features of the pycnidia and conidia, these were also noted.  

After searching for similarities using BLAST, 100% similarity was found for only two (non-

pathogenic) isolates, 12.36 and 12.37, which matched with Ph. pomorum CBS 838.84. As 

described below, morphological characters of this isolate also coincide with in vitro 

descriptions of isolates 12.36 and 12.37. For the rest of the isolates (13.2C, 13.2P, 12.18, 

12.20, 13.2B, 12.13 and 12.19), molecular analysis resulted in several Phoma species for 

each isolate (Apendix Table A3). All of these Phoma species had a similarity level of 98%-

99% with our isolates and no definitive conclusions could be drawn. Data from the obtained 

forward and reverse strands can be found for all species in the appendix.  

Further analysis by the Central Biodiversity Center (CBS-KNAW, Utrecht, the Netherlands) 

confirmed the isolates 13.2B (considered saprophytic), 12.20 (pathogenic) and 12.13 

(considered saprophytic) as three putative new species within the genus Peyronellaea (syn. 

Didymella; anamorph related to the genus Phoma).  

The Phoma spp. isolates described below are grouped according to similar in vitro 

characteristics and pathogenicity. First, six pathogenic isolates (classified as pathogenic after 

fulfilment of Koch’s postulates) are presented and described in detail, followed by those 

considered non-pathogenic.  

 

Pathogenic Phoma spp. isolates 

In general, pathogenic isolates present a slow growth rate between 24 and 38 mm after 

seven days. Moderate to abundant production of aerial mycelium floccose to woolly, green to 

olivaceous, brown or white with regular border. Chlamydospores or dictyochlamydospores 

are present in some isolates. Spore size varies within the range 4.1-7.9 x 1.5-3.2 µm.  
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Fig. 22. Phoma spp. pathogenic isolates. Fourteen-day-old colonies on OA incubated in a dark 

regime. 

 

Isolate 13.2C  

Growth rates between 35 and 39 mm after seven days. Moderate to abundant production of 

aerial mycelium floccose to woolly, green to olivaceous, brown or white with regular border.  

Size of the conidia: 4.7- 7.5 x 1.8-2.6 µm (average 6.2 x 2.2 µm). Conidia are ellipsoidal, 

single-celled, hyaline, presenting one to four polar, small to medium size guttules. Pycnidia 

are produced at a moderate rate under the mycelium layer and frequently found in the centre 

of the colony. Pycnidia are also produced in agar and more frequently in the centre of the 

colony when agar plates are incubated in UV light conditions. Pycnidia are dark brown to 

black, subglobose on agar and mostly irregular in agar, glabrous, with 

pseudoparenchymatous thick-walled cell structure. The size of pycnidia range between 50-

200 x 50-150 µm and are solitary or confluent with other pycnidia. The number (0-4) and 

form of ostioles can vary considerably, presenting slightly to conspicuously papillate forms. In 

some cases, the formation of numerous small cavities (possibly ostioles) was also observed 

when the isolate was subcultured. The pycnidia present a white matrix (in which conidia are 

embedded) with moderate production of conidia. Chlamydospores present. 

  
Fig. 23. Phoma isolate 13.2C. A. Pycnidia. B. Textura angularis (pseudoparenchymateous cell wall). 

D.Conidia. Scale bars A=50 µm; C=10 µm. 

A                                                                  B                                           C 
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Isolate 13.2P 

Growth rates of the colony between 36 and 38 mm after seven days. The production of aerial 

mycelium is moderate to abundant, usually white and wooly in appearance, developing some 

greenish/olivaceous to brown areas when cultivated in UV light conditions. The colony 

presents regular borders with scarce to moderate pycnidia production. Pycnidia under the 

mycelium layer and most commonly in the centre of the colony. Size of the conidia: 4.1-7.6 x 

2-3.2 µm (average 6 x 2.6 µm). Conidia are ellipsoidal to oblong, single-celled, hyaline, 

presenting one to five mostly polar, medium-sized guttules. Pycnidia are brown to black, 

globose to subglobose, glabrous, normally with a pseudoparenchymatous thick wall. In every 

pycnidium, a unique, slightly papillate ostiole was observed. In some cases, however, it was 

either difficult to recognize or absent entirely. The size of the pycnidia varies within the range 

of 125-300 x 125-300 µm. The pycnidia present a white-yellowish colour matrix with 

moderate production of conidia, or an absence thereof. Formation of light and dark brown 

chlamydospores and dictyochlamydospores.  

   

Fig. 24. Phoma isolate 13.2P. A. Pycnidia on the agar medium surface. C. Conidia. D. 

Dictyochlamydospores. Scale bars B=10 µm. 

 

Isolate 12.18 

The diameter of the colony ranged from 29 to 30 mm after seven days with regular border. 

Moderate production of concentrical zones of floccose to wooly, white, brown, green to 

olivaceous aerial mycelium which can develop felty areas near the colony centre with an 

abundant presence of pycnidia. Under UV light conditions, the wooly white and brown 

mycelium could be produced in sectors. Size of the conidia: 3.7-6.1 x 1.5- 2.3 µm (average: 5 

x 2 µm). Conidia are ellipsoidal, single-celled, hyaline, presenting one to four polar, small-

medium size guttules. Pycnidia are produced at a moderate rate and are brown to black in 

colour, globose and subglobose in the agar, taking an irregular form once situated on the 

agar. The pycnidia surface is glabrous, with pseudoparenchymatous thick-walled cell 

structure. Solitary and confluent pycnidia fall within the range of 50-100 x 50-100 µm and 

A                                                          B                                                      C 
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present one slightly papillate ostiole. The pycnidia present a white matrix with moderate 

production of conidia. 

 

Fig. 25. Phoma isolate 12.18. A. Pycnidia in/on the agar medium surface. B. Pycnidia. C. Spores. 

Scale bars B=50 µm C=10 µm. 

 

Isolate 12.20  

According to the CBS analysis: Peyronellaea new species. (syn. Didymella spp.). The colony 

showed regular growth, varying between 24 and 28 mm after seven days Moderate 

production of concentrical zones of flat/effuse to floccose white and brown aerial mycelium. 

Size of the conidia: 4.5-7.9 x 1.6-3.9 µm (average 6.1 x 2.7 µm). Conidia are ellipsoidal, 

single-celled, hyaline, presenting one to four polar, medium-large size guttules. Under UV 

light conditions, the concentric zones remain predominantly different tones of dark to pale 

brown colours. Pycnidia production varies from scarce to moderate and is situated under the 

mycelium layer. The pycnidia are dark brown to black, globose on agar, subglobose in agar, 

with pseudoparenchymatous cell structure. Pycnidia are either solitary or confluent and their 

size ranges between 75-200 x 50-150 µm. Pycnidia mostly present one ostiole, which varies 

in form from slightly to conspicuously papillate. White matrix present with moderate 

production of conidia.  

 

Fig. 26. Phoma isolate 12.20. A. Pycnidia in/on the agar medium surface. B. Pycnidia. C. Spores. 

Scale bars B=100 µm; C=10 µm. 

 

A                                                                 B                                                 C 

A                                                                         B                                             C 
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Isolate 13.20 

Growth rates of the colony ranged between 37 and 38 mm after seven days with a regular 

border. Abundant production of whitish wooly mycelium with some green olivaceous to grey 

areas scattered in the mycelium or in the margin zone. Size of the conidia: 4.3-7.7 x 1.8-2.9 

µm (average 5.7 x 2.4 µm). Conidia are ellipsoidal to oblong, single-celled, hyaline, 

presenting none to three polar, small-medium size guttules. Pycnidia are scarcely to 

moderately produced under the mycelium layer, mostly on the agar surface. Pycnidia are 

brown, globose to subglobose, solitary and confluent, glabrous with a 

pseudoparenchymatous thick wall. A single, slightly papillate ostiole was observed for each 

pycnidia. The size of the pycnidia varies within the range of 100-250 x 100-300 µm. The 

pycnidia present a white matrix, with moderate production of conidia.  

  

Fig. 27. Phoma isolate 13.20. A. Pycnidia on the agar medium surface. B. Pycnidia. C. Conidia. 

Scale bars B=100 µm; C=10 µm. 

 

Non-pathogenic Phoma spp. isolates 

Here, only a few representative isolates are presented. Descriptions of further non-

pathogenic isolates can be found in the appendix.  

In general, non-pathogenic Phoma spp. isolates present a faster growth than the pathogenic 

Phoma spp. isolates, which, with the exception of isolate 13.2B and 12.10 (range 35-43) 

oscillate between 45-75 mm after seven days. With the exception of isolate 13.2B 

(11.9 x 3.9 µm), spore size varies within the range 2.9-6.3 x 1.3-3.1 µm.  

 

Isolate 13.2B 

According to the CBS analysis: Peyronellaea new putative species. 

The colony showed regular growth, varying between 35 and 38 mm after seven days. There 

was scarce production of brown, flat to effuse aerial mycelium, which can develop some 

white floccose areas in the centre of the colony. Under UV light conditions, mycelium 

production is inhibited, producing only pycnidia. Size of the conidia: 9.9-11.9 x 3.3-4.3 µm 

A                                                          B                                                   C 
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(average 11.9 x 3.9 µm). Conidia are variable, ellipsoidal to allantoid, single-celled, hyaline, 

with one to five polar and apolar, medium-size guttules. Pycnidia are dark brown, produced 

on the agar surface, moderately and mostly solitary. Globose, subglobose and irregular 

pycnidial forms were observed. The pycnidia surface is pilose with a pseudoparenchymatous 

thick wall. The pycnidia size falls within the range of 200-500 x 100-400 µm. Although in 

some cases several ostioles per pycnidia could be observed, the pycnidia regularly present 

only one, slightly papillate ostiole, from which a white colour matrix emerges with moderate 

production of conidia. Chlamydospores were present.  

 

 

Fig. 28. Phoma isolate 13.2B, origin: Ostenfeld. A. In vitro growth on OA after fourteen days. Dark 

conditions (A1). UV light regime (A2). B. Pycnidia on the agar medium surface. C1-2. Pycnidia. D. 

Conidia. E. Chlamydospores. Scale bars C1-2=100 µm; D=10 µm.  

A1                                                           A2                       

 B                              C                                          D                                               E 
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Fig. 29. Non-pathogenic Phoma spp. isolates. Fourteen-day-old colonies on OA.  

 

Isolate 12.13  

According to the CBS analysis: Peyronellaea new putative species. (syn. Didymella spp.). 

Colony size 70-75 mm in diameter after seven days, with a regular border. Scarce production 

of aerial mycelium, which is salmon and flat/effuse to scattered. Mycelium is immersed, dark 

brown or red/vinaceous. Size of the conidia: 2.9-5.2 x 1.2- 2.0 µm (average 3.4 x 1.6 µm). 

Conidia are ellipsoidal, single-celled, hyaline, presenting either one or no guttule, which is 

polar and small in size. Large spores could also be observed but were unusual. Pycnidia are 

produced in abundance and homogeneously distributed on the plate, situated on the agar 

surface and also in the agar. Pycnidia are brown, globose to irregular, glabrous or with 

hyphal outgrowths, with pseudoparenchymatous cell wall structure. The size of the pycnidia 

ranges between 75-300 x 75-200 µm and are either solitary or confluent with other pycnidia. 

Pycnidia mostly present a single ostiole, while in some cases it is absent. If present, it is 

conspicuously papillated and so-called ‘necks” are also formed. Pycnidia present a rosy buff, 

white conidial matrix. Conidia are produced in abundance and extruded in cirri.  
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Fig. 30. Phoma isolate 12.13. A1-2. Pycnidia on the agar medium surface with white conidial matrix. 

B-C. Irregular pycnidia. D. Conidia. Scale bars C=100 µm; D=10 µm.  

 

Isolate 12.19 

Colony diameters after seven days: 65 and 72 mm with a regular border. Immersed mycelia 

are flat, red vinaceous to brown. Aerial mycelium brown, flat to effuse with some scattered 

areas of effuse mycelium. Size of the conidia: 3.3-4.7 x 1.5-1.9 µm (average 3.9 x 1.7 µm). 

Large spores could also be observed but were unusual.  Conidia are ellipsoidal, single-

celled, hyaline, presenting one to three polar and small guttules. Pycnidia are produced in 

abundance and mostly at the margin of the colony situated on the agar surface and also in 

the agar. Pycnidia are brown to black, globose, subglobose and flask-shaped, glabrous or 

with hyphal outgrowths, with a pseudoparenchymatous cell wall structure. The size of the 

pycnidia ranges between 75-150 x 75-200 µm and are located solitarily or in confluence with 

other pycnidia. Pycnidia mostly present, with or without ostiole, predominantly slightly or non-

papillate. Conidial matrix whitish to yellow, containing conidia in abundance.  

   

Fig. 31. Phoma isolate 12.19. A. Pycnidia on the agar medium surface. B. Pycnidia. C. Conidia. Scale 

bars B=50 µm; C=10 µm. 

A                                                                      B                                                   C 

A                                                    B                                     C                             D 
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Isolate 13.36 

According to data from the DNA sequencing and molecular analysis: Phoma pomorum (syn. 

Didymella pomorum). Growth rates of the colony between 54 and 58 mm after seven days 

with regular border. Moderate to abundant production of green/olivaceous buff, floccose to 

wooly aerial mycelium with some floccose white tufts. Under UV light, the colony develops a 

felty black centre. Size of the conidia: 3.8-6.5 x 1.6-2.3 µm (average 4.6 x 2 µm). Conidia are 

ellipsoidal single-celled, hyaline, presenting two to three polar, small-sized guttules. Pycnidia 

are produced in abundance both on and in medium. Pycnidia are brown to black, globose to 

subglobose, solitary and confluent, glabrous with pseudoparenchymatous wall. Size of the 

pycnidia varies within the range of 50-200 x 50-200 µm. Absent or single, slightly to 

conspicuously papillate ostiole. The pycnidia present a hyaline-pinkish matrix with abundant 

production of conidia.  

 

 

Fig. 32. Phoma isolate 13.36. A. In vitro growth on OA after fourteen days (dark conditions).  

B. Pycnidia on the agar medium surface. C. Conidia. D. Dyctiochlamydospores. E. Chlamydospores. 

Scale bars C-D=10 µm.  

 

A                                                   B 

                           C                                         D                                          E    



Results 

      

82 
 

Phoma spp. obtained from the CBS 

 

Fig. 33: Fourteen-day-old Phoma spp. isolates obtained from the CBS on OA.  

588.89 Ph. zeae-maydis 180.80 Ph. sorghina 528.66 Ph. glomerata 249.92-250.92 Ph. subherbarum. 

838.84 Ph. pomorum. 

 

Phoma zeae-maydis CBS 588.69 (syn. Didymella maydis) 

Growth rates of the colony between 32 and 34 mm after seven days with regular border. 

Scarce to moderate production of whitish, green/olivaceous flocosse mycelium with black 

felty centre and yellow border. Size of the conidia: 10.7-16.5 x 3.7-4.8 µm (average 13.5 x 

4.1 µm). Conidia are distinctively larger than those of all the other Phoma isolates presented. 

Conidia are ellipsoidal, mostly single-celled but single septa can be developed. Conidia are 

hyaline, presenting one to five polar and apolar, large guttules. Pycnidia are produced 

moderately under the mycelium layer, mostly on the agar surface. Pycnidia are brown, 

globose to subglobose and distribution is predominantly solitary. Pycnidium surface glabrous 

or with hyphal outgrowths with pseudoparenchymatous wall. Pycnidia do not have ostioles or 

if present, it is single and non-papillate. Size of the pycnidia varies within the range of 180-

250 x 150-250 µm. The pycnidia present a white matrix with scarce to abundant production 

of conidia.  

Fig. 34.  Phoma zeae-maydis (CBS 588.69). A. Pycnidia on the agar medium surface. B. Pycnidia.  

C. Conidia. Scale bars B= 100 µm; C= 10 µm.  
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Phoma glomerata CBS 528.66 (syn. Didymella glomerata) 

Growth rates of the colony between 50 and 54 mm after seven days with regular border. 

Moderate to abundant production of white, green/olivaceous flocosse and wooly aerial 

mycelium. Under UV light, the mycelium tends to be more floccose. The pattern of in vitro 

growth varies greatly, but green/olivaceous flocosse mycelium remains permanent. Size of 

the conidia: 4.3-6.6 x 2-2.9 µm (average 5.4 x 2.6 µm). Conidia are ellipsoidal to clavate, 

single-celled, hyaline, presenting one to two polar, medium-sized guttules. Brown to black 

pycnidia are produced in abundance on the medium, subglobose, both solitary and confluent, 

glabrous or with hyphal outgrowths and with pseudoparenchymatous wall. A single, slightly 

to conspicuously papillate ostiole was observed most of the time for every pycnidium. The 

pycnidia present a white to rosy buff matrix, with abundant production of conidia.  

 

Fig. 35.  Phoma glomerata (CBS 528.66) A. Pycnidia on the agar medium surface. B. Conidia.  

Scale bar=10 µm.  

 

Phoma pomorum CBS 838.84 (syn. Didymella pomorum) 

Growth rates of the colony between 50 and 54 mm after seven days with regular border. 

Moderate to abundant production of white, brown, yellow buff flat/effuse aerial mycelium. 

Size of the conidia: 4.1-5.9 x 1.9-3.1 µm (average 5 x 2.5 µm). Large conidia were also 

observed. Conidia are ellipsoidal to oblong, single-celled, hyaline, presenting one to two 

polar, small-medium sized guttules. Pycnidia are produced in masses and are submerged in 

the medium where only their pinkish orange matrix emerges from the agar. Pycnidia are pale 

brown, subglobose, solitary and confluent, glabrous or with brown hyphal outgrowths, with 

pseudoparenchymatous wall. It seems to be that pycnidia only have a single, slightly 

papillate ostiollum (or this is absent).  

           A                                                      B                                          
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Fig. 36.  Phoma pomorum (CBS 838.84). A. Conidial matrix (pycnidia submerged in the agar medium 

surface). B. Conidia. C. Chlamydospores. Scale bars B-C=10 µm.  

 

Phoma sorghina CBS 180.80 (syn. Epiccocum sorghinum) 

Growth rates of the colony between 45 and 49 mm after seven days with regular border. 

Scarce to moderate production of white, grey, blue cyan floccose or wooly aerial mycelium 

under dark conditions, whereas a UV light regime inhibits its production and favours the 

development of salmon-orange pigments in the medium. Size of the conidia: 4.5-7.6 x 2.7-

3.9 µm (average 6 x 3.2 µm). Conidia are ellipsoidal to ovoid, single-celled, hyaline, 

presenting none to two polar, small-sized guttules. Pycnidia are mostly produced on the 

medium and distinctly scattered in the mycelium. Conidial matrix frequently absent, but if 

present, hyaline to white, while in mature pycnidia orange-brown and normally only when 

wall is fractured. Pycnidia are black and vary from globose to subglobose. Pycnidia are 

mostly solitary but also confluent in some cases. Pycnidia size ranges from 50-100 x 50-125 

µm. The surface is normally glabrous with pseudoparenchymatous wall. Pycnidia have one 

to three ostioles and these are slightly to conspicuously papillated. Conidia extruded in cirri 

can frequently be observed.  

 

Fig. 37. Phoma sorghina (CBS 180.80). A. Pycnidia on the agar medium surface and scattered on the 

mycelium. B. Pycnidia C. Conidia. Scale bars B=50 µm; C=10 µm.  

                                    A                                     B                                                           C 

                   A                                                               B                                           C 
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Phoma subherbarum 249.49 (syn. Didymella subherbarum) 

Colony diameter after seven days about 50 and 55 mm with regular border. Aerial mycelium 

is white to salmon, flat to effuse and scattered. Immersed mycelium brown. Brown to 

red/vinaceous pigments are produced in the medium. Size of the conidia: 2.7-4.9 x 1.4-2.4 

µm (average 4 x 2 µm). Conidia are ellipsoidal, single-celled, hyaline, either with or without 

one or two polar, small guttules. Pycnidia are produced in abundance and evenly distributed 

on the plate, on the surface and in the medium. Pycnidia are either solitary or fuse with other 

pycnidia. The characteristical shape is mostly subglobose and irregular, with glabrous 

surface and pseudoparenchymatous wall. Size of the pycnidia falls within the range of 50-

250 x 50-250 µm. Pycnidia present with one to four, slightly to conspicuously papillate 

ostioles with possible development of ‘necks’. Micropycnidia also present. Conidial matrix 

initially hyaline and later becomes white to pinkish, containing conidia in abundance.  

 

Fig. 38. Phoma subherbarum (CBS 249.49). A. Pycnidia on the agar medium surface.  

B. Pycnidia C. Conidia Scale bars B=100 µm; C=10 µm.  

 

Phoma subherbarum 250.92 (Syn. Didymella subherbarum) 

Colony diameter after seven days 61 and 65 mm with regular border. In vitro growth 

resembles isolate CBS 249.92 (also Ph. subherbarum), but the colour spectrum is lighter 

with white, flat, scattered aerial mycelium, with immersed light brown and salmon pigments in 

the agar. Size of the conidia: 2.9-4.8 x 1.2-2.0 µm (average 3.9 x 1.8 µm). Conidia are 

ellipsoidal, single-celled, hyaline, either without or with one or two small guttules, normally 

polar. Pycnidia are produced in abundance, both on the surface and in the agar. Pycnidia are 

brown to black, mostly solitary and globose to subglobose. Pycnidia have a glabrous surface 

or with hyphal outgrowths and pseudoparenchymatous cell wall. Size of the pycnidia falls 

within the range of 100-150 x 100-150 µm. Pycnidia present one to two non- papillate 

ostioles. Conidial matrix white, yellow or pinkish containing conidia in abundance.  

 

 

 

 

 

A                                        B                                                          C 
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Fig. 39. Phoma subherbarum (CBS 250.92). A. Conidial matrix and pycnidia on/in agar medium 

surface. B. Pycnidia. C. Conidia. Scale bars B=50 µm; C=10 µm.  

 

3.1.5. Characterisation of Fusarium spp. and pathogenicity tests  

Fusarium spp. were frequently found in the infected leaf samples, together with other fungal 

organisms. Testing for the Koch’s postulates becomes necessary for two reasons: first, to 

confirm or reject Fusarium species as symptomatic pathogens producing leaf spots, and 

second, to accurately associate less known pathogenic fungal organisms (such as those 

belonging to the Phoma spp.) when Fusarium was also present in the same lesions.  

Fusarium symptoms were observed in the field in corn husks, leaf sheaths, stalks and ears 

(Figure 40). On the leaf, the pathogen was normally sharing lesions with another pathogen. 

In total, 21 Fusarium isolates were obtained (Table 29 and Figure 41).  

Due to the secondary role of the pathogen in producing foliar maize spot diseases, the 

identification in this work, if possible, was only carried out through morphological 

observations. From the 21 isolates, 12 could be identified. These belong to four species:  

F. graminearum, F. avenaceum, F. cerealis and F. proliferatum.  

In the greenhouse, inoculations of healthy plants were carried out for 12 Fusarium spp. 

isolates (see Table 29). None of the isolates could produce any symptoms after spraying 

spore suspensions onto healthy leaves of the plant. Thus, Fusarium spp. could not be 

confirmed as main leaf pathogens which produce symptomatic spots on maize leaves. 

 

A                                                         B                                         C 
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Fig. 40. Fusarium spp. symptoms observed in the field on: A-B. Stalk. C. Ear kernels. D. Corn husks.  

E. Leaf sheaths. F. Presence in maize debris (Giberella zeae).  

 

Tab. 29. Fusarium spp. isolates obtained from the monitoring in 

2012 and 2013.  

Location                       Fusarium spp. Substrate 

12.2* F. graminearum Seeds 

13.2 F. graminearum Stalk debris 

12.8* Fusarium spp. Leaf 

12.10* Fusarium spp. Leaf 

12.12* F. graminearum Leaf 

12.13* F. graminearum Leaf shead 

12.14* Fusarium spp. Leaf shead 

12.19* F. avenaceum Leaf shead 

12.23* Fusarium spp. Leaf shead 

12.23b Fusarium spp. Leaf 

12.27* F. avenaceum Leaf 

12.30* Fusarium spp. Leaf 

12.31* F. avenaceum Leaf 

13.18 Fusarium spp. Leaf 

13.20 F. avenaceum Leaf 

13.42 Fusarium spp. Leaf 

13.43 Fusarium spp. Leaf 

13.47 Fusarium spp. Corn husk 

13.47b Fusarium spp. Corn husk 

13.47c Fusarium spp. Leaf 

13.47d F. graminearum Leaf 

*isolate tested for pathogenicity
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Fig. 41. Fourteen-day-old colonies of Fusarium spp. isolated from maize samples during the monitoring 2012 and 2013. 
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3.1.6. Testing of further organisms 

Following the same procedure used for all fungi species tested, two isolates of Alternaria 

spp. and one of Epiccocum nigrum were evaluated. None of the isolates produced symptoms 

on the inoculated plants. Consequently, these fungal species could not be classified as 

causal agents of maize leaf spots. 

 

3.1.7. Summary of the inventory  

This summary is based on observations both in the field and the laboratory, as well as the 

results obtained after Koch’s postulates. Therefore, tested and non-tested isolates are 

included in this section. Table 30 below provides a regional overview of the final results of 

the monitoring carried out in 2012 and 2013 for numerous fungal leaf diseases. Other 

pathogens observed like Ustilago maydis and Sclerophthora macrospora or Septoria spp. 

are also mentioned.  
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Tab. 30. Summary of the monitoring of maize leaf diseases in Central Europe during the 2012 and 2013 seasons. 

Code 
location 

Location Season E. turcicum K. zeae P. sorghi B. zeicola C. graminicola 
Phoma  

spp* 
Fusarium spp.* Others 

North 

12.2 Ostenfeld 2012  X  X  Xs Xs  

12.11 Köhn (Plön) 2012  X       

12.12 Schleswig 2012      Xs Xs  

12.13 Stapel 2012  X    Xs Xs  

12.20 Nordholz 2012  X  X X X   

12.23 Rade 2012  X    X/Xs   

12.27 Bad Oldesloe 2012    X  Xs Xs  

12.31 Giekau 2012  X    X/Xs   

13.2 Ostenfeld 2013  X  X  X   

13.20 Nordholz 2013  X   X X  U.maydis 

13.40 Wessin 2013  X  X  Xs   

13.44 Taaken 2013         

13.49 Dewitz 2013         
North-West 

12.19 Cloppenburg 2012 X X    Xs Xs  

12.24 Beesten 2012 X X       

12.14 Ommen 2012 X X X    Xs 
S. 

macrospora 

12.15 Princepeel 2012 X  X X X    

12.21 Ottersum 2012 X X X      

12.28 Groningen 2012 X X    Xs  Septoria spp. 

12.30 Biddinghuizen 2012 X X  X    Septoria spp. 

13.14 Ommen 2013 X X       

* X: pathogenic isolates producing symptoms. Xs: isolates considered saprophytes or not producing symptoms on maize leaves after Koch’s postulates. 
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Tab. 30. (continued) Summary of the monitoring of maize leaf diseases in Central Europe during the 2012 and 2013 seasons. 

 
Code  

location 
Location Season E. turcicum K. zeae P. sorghi B. zeicola C. graminicola 

Phoma 
spp* 

Fusarium spp. Others 

Central 

12.3 Liesborn 2012 X     Xs  U. maydis 

12.25 Milte 2012 X X       

12.33 Springe 2012   X      

13.42 K. Marzehns 2013         

13.43 Bodenwerder 2013         

13.45 Linum 2013    X     

13.47 Waake 2013      X   

13.48 Göttingen 2013  X    Xs  U. maydis 

East 

12.4 Nechanice 2012   X      

12.5 Lysice 2012 X  X    Xs U. maydis 

12.6 Lesany 2012 X      Xs  

12.7 Bylany 2012    X   Xs Bipolaris spp. 

12.8 Caslav 2012       Xs Bipolaris spp. 

12.9 Plana 2012         

12.26 Galowo 2012    X     

12.29 Zybiszów 2012   X     P. polysora 

* X: pathogenic isolates producing symptoms. Xs: isolates considered saprophytes or not producing symptoms on maize leaves after Koch’s postulates. 
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Tab. 30. (continued) Summary of the monitoring of maize leaf diseases in Central Europe during the 2012 and 2013 seasons. 

Code location Location Season E. turcicum K. zeae P. sorghi B. zeicola C. graminicola 
Phoma 

spp* 
Fusarium spp. Others 

South 

12.10 Braunau 2012 X X X   Xs X  

12.16 Mariaporsching 2012 X        

12.17 Mintraching 2012 X X       

12.18 Schönering 2012 X X  X  X   

12.32 Marburg 2013 X  X      

13.10 Braunau 2013 X   X     

13.39 Windsbach 2012         

13.36 Mittich 2013 X X X   Xs  S. macrospora 

13.37 Hartkirchen 2013 X   X  Xs   

13.38 Ruhstorf (Rott) 2013 X        

13.41 Mariaporsching 2013         

13.46 Steiermark 2013         

South-West 

12.22 Moorlas 2012 X    X    

12.34 Garlin 2012 X        

* X: pathogenic isolates producing symptoms. Xs: isolates considered saprophytes or not producing symptoms on maize leaves after Koch’s postulates.. 
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3.1.8. Distribution and prevalence of fungal pathogens occurring on maize leaves  

In this section, the prevalence and distribution (Table 31 & Figure 42) of the pathogens which 

are considered the most common causal agents of symptoms on maize leaves, i.e. E. 

turcicum, K. zeae, P. sorghi, C. graminicola, Phoma spp., are presented according to the 

data from the monitoring. Note that only the pathogenic Phoma isolates are included on the 

map. 

 

E. turcicum 

The pathogen was diagnosed in 18 locations in 2012 and only six in 2013, representing a 

prevalence of 54% and 32%, respectively. It was frequently observed in the central and 

eastern regions of the Czech Republic and also in the Netherlands. Although the pathogen is 

also frequently found in the north-western part of Lower Saxony, it is endemic in southern 

parts of Germany and northern Austria – in these regions, a higher disease pressure was 

observed for both years.  

 

P. sorghi 

Although the pathogen was diagnosed in various areas of the Netherlands and central 

Germany, southern Germany is the main region in which the pathogen is widespread across 

fields. In total, the pathogen was diagnosed in nine locations in 2012 and one location in 

2013, which corresponds to a prevalence of 27% of all studied locations in 2012, falling to 

5% in 2013. After E. turcicum, P. sorghi can be considered the second most important 

disease in southern Germany.  

 

K. zeae 

The presence of the pathogen was confirmed in a total of 16 locations in 2012 (48%) and six 

locations in 2013 (32%). While it was found on just a few plants in the southern German and 

northern Austrian locations, it was particularly widespread in fields of the Netherlands and 

northern Germany (northern and western Lower Saxony and Schleswig-Holstein).  

 

B. zeicola 

The pathogen was distributed across various regions. It was observed in both the southern 

and northern regions, as well in the west (north-western Germany) and east (Czech 

Republic). There was no dominant region for the disease, but a higher prevalence was 

observed in the northern German location of Nordholz. Prevalence ranged from 30% in 2012 

to 26% in 2013.  
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C. graminicola 

The pathogen was only identified on isolated plants in north-western Germany, the 

Netherlands, and France. It was diagnosed in three locations in 2012, representing 9% 

prevalence, falling to 5% in 2013 when it was only diagnosed in a single location.  

 

Phoma spp. 

Pathogenic Phoma species were identified in the northern German locations of Ostenfeld 

(2012 and 2013), Rade (2012), Nordholz (2012 and 2013), as well as in Waake in central 

Germany (2013) and in Schönering (northern Austria). In total, it was identified in three 

locations in 2012 and two locations in 2013. Non-pathogenic Phoma species are generally 

distributed across all the studied regions. In 2012, non-pathogenic Phoma species were 

isolated from 13 locations in 2012 and four locations in 2013, which represents a prevalence 

of 30% and 21%, respectively.  

 

Tab. 31. Prevalence of maize leaf diseases according to the 2012 and 2013 monitoring.  

Disease 
Turcicum 
leaf blight 

Kabatiella 
eyespot 

Brown 
spot 

Common 
rust 

Anthracnose 
Phoma 
spp.* 

Causal 

Agent 
E. turcicum K. zeae B. zeicola P. sorghi C. graminicola NP P 

2012        

Locations 18 16 10 9 3 10 3 

Prevalence 
(100%=33) 

54% 48% 30% 27% 9% 30% 9% 

2013        

Locations 6 6 5 1 1 4 2 

Prevalence 
(100%=19) 

32% 32% 26% 5% 5% 21% 16% 

*NP: non pathogenic. P: pathogenic. 
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Fig. 42. Distribution of fungal pathogens on maize leaves in Central Europe from the samples 

collected in 2012 and 2013. Main foliar diseases, K. zeae, E. turcicum and P. sorghi, are shown above 

and of secondary importance, B. zeicola, Bipolaris spp. Phoma spp. and C. graminicola, are shown 

below. Principle regions of distribution are circled. 
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3.2. Meteorological conditions 

In order to compare the development of the epidemic in the field, it is important to analyse 

the weather conditions which prevailed from the first appearance of the symptoms in the 

middle of the season to the late growing season stages. Weather conditions varied in both 

locations markedly from one year to another.  

 

3.2.1. Mittich and Inzing  

Figure 43 depicts the relationship between temperature (daily average), precipitation and 

relative humidity for the years in which trials were conducted, 2013 and 2014.  

 

 
 
Fig. 43. Weather conditions in the region of Mittich in 2013 (above) and Inzing in 2014 (below). 

▌ Precipitation ▬ Temperature (daily average) ▬ Relative humidity.
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In 2013 (Figure 43, above), it is clear that there was very little precipitation in July, with some 

more frequent rain falling towards the end of the month. In August, there was a day of very 

heavy rain in the first week and some accumulation of precipitation towards the end of the 

month. Although a slightly higher quantity of precipitation was recorded in August than in 

September, it rained more frequently in September, i.e. on more days. In comparison, 

precipitation in 2014 was higher but still with frequent dry intercalary periods. This was 

especially noticeable in July and August, where several events of precipitation are evident.  

Regarding temperatures in 2013, in July they initially rose slowly (from 15.8°C to 20.8°C), 

with a slight decrease around the middle of the month (20.5°C to 16.1°C) and a constant rise 

(peak temperature 26.8°C) until a few days before the end of the month. At the beginning of 

August, the temperatures rose again (21.4°C to 25.5°C), slowly falling from the second week 

onwards (lowest temperature 15.0°C), while in September the temperature was stable until a 

notable decrease in the second week (19.1°C to 10.9°C). In 2014, there was some 

fluctuation in July, with a clear increase in the initial days of the month (14.5°C to 22.9°C) 

and a sharp fall at the end of the first week (22.9°C to 13.0°C). Thereafter, there was a 

constant increase in the temperature until another decrease occurred (22.7°C to 17.6°C), 

coinciding with two days of very heavy rain on 21 and 22 July. The temperatures in August 

were more constant, in particular after they dropped in the second week (21.9°C to 13.4°C). 

September was less consistent, with higher temperatures initially, a decrease in the second 

week (18.2°C to 12.5°C), followed by an increase in the middle of the month and a second 

drop in temperature (18.1°C to 9.5°C). Overall, the average temperature in September 2014 

was slightly higher than in 2013, while for July and August it was lower than 2013 (see Table 

32). 

To gain a greater overview of the weather patterns either side of 2013 and 2014 and make 

subsequent comparisons with past years, Table 32 displays the average temperatures and 

levels of precipitation for July, August and September from 2010 to 2015. The starting year is 

2010 due to the epidemic of Turcicum leaf blight which occurred in this season (Urban 2012).
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Tab. 32. Overview of weather conditions for the region of the locations of Mittich 

and Inzing from 2010 to 2015. 

Mittich/ 

Inzing region 

July 

(vegetative to 

reproductive 

phase) 

August 

(reproductive phase 

to development of 

the fruit) 

September 

(fruit 

development 

to ripening) 

Temperature    

2010 20.6 17.8 12.9 

2011 16.8 18.7 14.7 

2012 19.0 18.9 14.2 

2013 20.3 18.7 13.7 

2014 19.2 16.7 14.8 

2015 21.5 21.1 13.7 

Long-term 

average 

(1981-2010) 

18.7 18.1 13.9 

Precipitation    

2010 190.8 146.7 36.1 

2011 172.3 66.8 71.3 

2012 78.9 88.9 66.4 

2013 23.7 89.3 73.6 

2014 105.3 127.5 69.6 

2015 42.0 20.6 47.4 

Long-term 

average 

(1981-2010) 

112.0 109.0 72.0 

 

For the southern German locations of Mittich and Inzing, it is clear that the temperatures 

varied from 2010 to 2015, especially in July and August. Here, the average monthly 

temperatures ranged from 16.8°C (2011) to 21.5°C (2015) and 16.7°C (2014) to 21.1°C 

(2015) in July and August, respectively. The levels of precipitation also varied greatly 

between 2010 and 2015. This was noticeable in July and August, ranging from a low of 23.7 

mm (2013) to a high of 190.8 mm (2010) in July, and 20.6 mm (2015) and 146.7 (2010) in 

August. In September, while the average temperature and precipitation was more stable from 

2010-2015, there was some variation (especially in 2010). Despite this variation, clear 

patterns still emerge. It is noteworthy that 2010-2015 were relatively warm and dry seasons 

compared to the long-term average (1981 to 2010). In fact, only six (July 2011, August 2010, 

August 2014, September 2010, September 2013 and September 2015) of the 18 months fell 

below the corresponding long-term average temperature, while only five (July 2010, July 
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2011, August 2010, August 2014, September 2013) of the 18 months had a higher level of 

precipitation than the corresponding long-term average. 2010 stands out here, however, with 

very high levels of precipitation.  

 

3.2.2. Ostenfeld  

Figure 44 depicts the relationship between temperature (daily average), precipitation and 

relative humidity for the years in which trials were conducted, 2013 and 2014.  

 

 

Fig. 44. Weather conditions in Ostenfeld in 2013 (above) and 2014 (below). ▌Precipitation 

 ▬ Temperature (daily average) ▬ Relative humidity. 

 

In Ostenfeld, there was minimal precipitation in both July 2013 and 2014. While some rainfall 

occurred around the middle of the month in August 2013, a dry period thereafter meant that 

the level of precipitation was much lower than in August 2014. In contrast, precipitation was 

more frequent in September 2013 compared to September 2014 (with a clear, isolated peak 

on 14 September). 
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Regarding the temperature in 2013, in July the temperatures were relatively constant, slowly 

rising (peak 22.5°C) until a slight drop occurred at the end of the month (22.5°C to 17.8°C). 

At the beginning of August there was a sharp rise (25.4°C) and subsequent fall (18.3°C) in 

the temperature, with a relatively constant trend thereafter. The temperatures in September, 

on the other hand, fluctuated frequently, with several notable increases and decreases within 

a few days (high 20.8°C; low 9.6°C), and a slight downward trend overall. In 2014, there was 

a sharp increase in the temperature at the start of July (12.9°C to 21.7°C) and overall it was 

a warmer month compared to 2013. August 2014, on the other hand, was cooler than in 

2013, with a relatively constant downward trend (high 22.9°C; low 11.9°C) until an increase 

in the temperature at the end of the month (11.9°C to 16.8°C). As in 2013, temperatures in 

September 2014 fluctuated but were more consistently warm.  

To gain a greater overview of the weather patterns either side of 2013 and 2014 and make 

subsequent comparisons, Table 33 displays the average temperatures and level of 

precipitation for August, July and August from 2011-2015. The starting year is 2011 due to 

the epidemic of Kabatiella eyespot which occurred in this season in Schleswig-Holstein 

(Urban 2012; Schlüter 2011).  

 

Tab. 33.  Overview of weather conditions in Ostenfeld from 2011 to 2015. 

Ostenfeld region 

 
July 

(vegetative to 
reproductive 

phase) 
 

August 
(reproductive phase to 

development of the fruit) 

 
September 

(development of 
the fruit to 
ripening) 

Temperature (°C)    

2011 16.4 16.5 14.5 

2012 16.4 17.2 13.4 

2013 18.1 17.5 13.1 

2014 19.8 16.1 15.5 

2015 16.8 18.2 13.0 

Long-term average 

(1981-2010) 
17.3 16.9 13.5 

Precipitation (mm)    

2011 110.7 244.8 107.2 

2012 145.5 60.2 63 

2013 55.4 44.9 70.1 

2014 33.9 111.8 48.8 

2015 186.6 56.5 76.2 

Long-term average 

(1981-2010) 
84.0 82.0 76.0 
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There is notable variation in the temperature and level of precipitation. Regarding the 

temperature, there were noticeable differences for all months, with lows and highs ranging 

from 16.4°C to 19.8°C (July), 16.5°C and 18.2°C (August), and 13.0°C and 15.5°C 

(September). Precipitation levels also exhibited noticeable differences, with distinctly dry 

months in July (2013 and 2014), as well as very wet months (2012 and 2015). August 2011 

was an unusually wet month compared to August 2012-2015, while September was relatively 

stable in comparison. In contrast to Mittich and Inzing, no clear patterns emerge with respect 

to the long-term average. Eight (seven) of the 15 months analysed were below (above) the 

long-term average for temperature, while this was also the case for precipitation (eight below 

average / seven above average). 

 

3.2.3. Göttingen  

For this location, only the weather records for 2015 are presented (Table 34 and Figure 45) 

as the experiment consisted of a single artifical inoculation in that year. The region is not 

characterised by the presence of maize leaf diseases, thus reducing the likelihood of 

possible inoculum. Comparisons with previous years are therefore not justified here.  

 

Tab. 34. Summary of the weather data for the Göttingen “Miniplot” site. 

Göttingen 
“Miniplot” 

 
July* 

(vegetative to 
reproductive phase) 

 
August* 

(reproductive phase to 
development of the fruit) 

September* 
(development of the 

fruit to ripening) 

 
Temperature 

   

2015 18.7°C 20.2°C 14.0 °C 
 

Precipitation 
 

50 
 

69 
 

58 
2015    

*Data registered during the experiment from 13.July (artificial inoculation) until 29 September (harvest). 

 

The average temperature during the vegetative to reproductive phase of the plant was 

18.7°C. The end of July and beginning of August was characterised by a dry and warm 

period with isolated rain showers. In the middle of August, there was a decrease in the 

temperatures and some heavy rain was recorded. Although a higher quantity of precipitation 

was recorded in August than in September, it rained more frequently in September, i.e. on 

more days.  
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Fig. 45. Weather conditions in the “Miniplot” in Göttingen in 2015. ▌ Precipitation ▬ Temperature 

 ▬ Relative humidity. 

 

3.3. Epidemiological studies based on spore trapping in the field 

3.3.1. Seasonal incidence of airborne conidia of E. turcicum  

The seasonal incidence of conidia of E. turcicum was investigated through the use of 

Burkard spore traps during the 2014 season in Inzing (natural inoculum) and 2015 season in 

Göttingen (artificial inoculum). The evaluation of the samples, initially through microscopy, is 

presented in this section. Different patterns of E. turcicum conidial release and dispersal 

were considered according to previous reports for E. turcicum (Casselman & Berger 1970; 

Leach 1975; Leach et al. 1977; Bleicher & Balmer 1993; Rapilly 1991), i.e. those influenced 

by wind, rain, variations in relative humidity (henceforth RH) and temperature. Further 

estimations of latent periods based on the data obtained from the spore trap and the 

correlation with weather conditions are discussed in detail in section 4.3.1. 

 

3.3.1.1. Inzing 2014 

A total of 90 tapes were collected in 2014 for Inzing. From the collected samples, 69% 

presented E. turcicum conidia through microscopic assessment.  

First conidia were detected on 8 July (first day of monitoring), when the plants were at the 

beginning of tassel emergence (BBCH 51). The following two months (middle of July until 

end of August) did not present any noticeable conidia release (mostly 0-2 conidia; max. 7 

conidia) and therefore are not presented here in detail. These low amounts of conidia 

coincided with low precipitation and low humidity during July and August. However, at the 

end of July (30-31) and beginning of August (1-5), a combination of moderate temperatures 

(18-21°C) and six rainy days with three days (30, 31 July, 5 August) of high RH were 
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recorded (>90% average RH per day). For instance, on 30 July, 18 h of 100% RH were 

registered. Shortly thereafter, the first lesions (minimal) in the location were detected on 7 

August (<1% infected leaf area). Trapped conidia remained at low levels. 

Two periods of notable (10 and 17-18 September) and two of abundant (24-26 September 

and 3-4 October) conidia release were considered for detailed analysis and are therefore 

shown in detail in Figure 46. 

 

Fig. 46. Fluctuation of conidia release (     ) for the sampling period in Inzing in 2014 with development 

of the percentage of infected leaf area (----) and periods of notable (points 1 & 2) and abundant 

conidia release (points 3 & 4). ).*= missing data 

Weather data for Inzing in 2014 and correlation with the trapped number of spores are shown 

in Figure 47. At the end of August and beginning of September, a period of frequent rain 

(about 8 days) including five days of high humidity (>93%) was recorded. On several days of 

this period (26, 30 August and 2 September), at least 14 h of 100% RH occurred. Thereafter, 

a first notable peak of conidia release was registered on 10 September, albeit with a 

relatively low quantity of spores (21 spores). Strong winds with accompanying rain and an 

increase in the RH coincided on the preceding day of conidial release. On the following days 

(11-14 September), a decrease in the temperatures was observed (range 12-16°C), 

coinciding with a four-day period of rainfall and high humidity (16-23 h of 100% RH were 

recorded daily). On these days, only a few spores were trapped despite high wind velocities 

also being recorded (3.1 to 3.7 m s-1 on 12-13 September). A slight increase in the infected 

leaf area was noted on these days (Figure 46). On 17-18 September, a noticeable (low) 

conidia release was detected (15 and 18 conidia per day, respectively). This coincided with a 

strong decrease in the RH on 17 September (avg. 73%), followed by an increase in wind on 

18 September, where the maximum peak was registered. In the late season, a relatively 

warm (17-18°C) period spanning three days (17-19 September) occurred. The end of this 

three-day period coincided with a noticeable amount of precipitation, which continued until 23 

September and was accompanied by two days of high humidity (15 and 19 h of 100% RH, 

respectively).  

* 
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Fig. 47. Fluctuation of conidia release and weather conditions in Inzing in summer 2014: Average 

temperature and precipitation (above), wind velocity (centre) and average relative humidity (below). 

*=missing data. 

 

* 

* 

* 
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First peaks of abundant conidia release were recorded during a three-day period on 24, 25 

and 26 September, presenting 72, 248 and 127 conidia per tape, respectively. On the day of 

the maximum registered peak of the season, i.e. 25 September, a violent increase in the RH 

(100% for 14 h) occurred in combination with rain and wind. These enhancing factors (high 

humidity and rain) for conidia release and further infection were prolonged until 26 

September. An increase in the temperature (up to 15°C), coinciding with a four-day period of 

high humidity (>93-99% RH), occurred from 30 September to 3 October - 14-21 h of 100% 

RH were recorded daily. A slight increase in the number of trapped spores was observed, 

with a clear increase on 3 and 4 October (153 and 159 spores, respectively). On 3 and 4 

October, a violent decrease in the relative humidity accompanied by wind coincided with 

these peaks of conidial release. An increase in the infected leaf area (approx. 3% on 

average) was recorded after these periods (Figure 46).  

 

3.3.1.2. Göttingen 2015 

Seasonal fluctuations of airborne conidia were studied in Göttingen in 2015 after artificial 

inoculation of the plants through spraying with spore suspensions (13 and 24 July).  

E. turcicum conidia were recorded on 68% of the samples through microscopy.  

With the exception of the first two days after inoculation - when plants were covered with 

plastic for 48 h and  a saturated atmosphere (100% RH) is therefore assumed - the structure 

of the data for Göttingen did not allow for an accurate calculation of the number of hours with 

100% RH. Hence, a day characterised by high RH is considered to have an average of at 

least 90%.  

First chlorotic lesions were observed 24 hours after artificial inoculation. On 16 July, three 

days after artificial inoculation, first conidia were detected when the plants were, on average, 

at the beginning of the flowering stage (BBCH 59-63). These initial and inconsiderable 

quantities of conidia (1-4 per day) on the days thereafter were directly related to the sprayed 

inoculum (artificial inoculation) and not as a result of their own sporulation on the leaf tissue 

after an established process of infection. Two periods of moderate conidia release and four 

main periods of abundant conidia release were considered for detailed analysis. These are 

depicted in detail in Figure 48.  
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Fig. 48. Fluctuation of conidia release (      ) for the sampling period in Göttingen in 2015 with 

development of the percentage of infected leaf area and periods of notable (point 1) and abundant 

conidia release (points 2, 3, 4, 5).*= missing data 

 

First typical cigar-shaped lesions on the leaves were recorded, on average, 12 days after the 

formation of the first chlorotic symptoms. Extended lesions on the leaves were observed 

during the dry, warm period at the end of July and beginning of August. At this stage, an 

infected leaf area of approximately 8% was recorded. No sporulation was observed on the 

lesions. On 11 August, a high amount of rain was recorded (18 mm). The first peak of 

notable conidia release was detected on 13 August (44 conidia) and coincided with rain and 

strong wind gusts (max. 4.1 m s-1). A three-day period (16, 17 and 18 August) of high 

humidity (≥90-95%) and rain (26 mm) was recorded, with a decrease in the temperature to 

around 15-18°C. On these days, sporulation could be observed on the lesions.  

During this period and the succeeding days (16-24 August), abundant amounts of conidia 

could be counted daily, with a maximum peak of 411 spores on 23 August. Rain and an 

increase in RH were correlated with conidia release on the preceding days (16-21 August), 

while strong winds coincided with the release and dissemination on 22 August. On 23 

August, conidia release was accompanied by an increase in wind speed (avg 1.16 m s -1; 

max. 4.4 m s-1) and a drastic decrease in RH (average 60%). 

The 23 August almost remains directly connected to the second abundant peak of conidial 

release, which commenced only four days afterwards and is reflected by an ascending curve 

of daily conidia release from 27 August to 2 September. This period of conidial release 

corresponds to the fluctuations in the RH, as shown by Figure 49. For example, the 

maximum peak (310 conidia) occurred on a day of high humidity (>90%). Despite an 

increase in the RH during this period, it failed to reach 90% and only a single rainy day was 

recorded. The constant conidial release coincided with a combination of rain and an increase 

in humidity during these days. Furthermore, wind (0.3 to 2.7 m s-1) also strongly promoted 

* 
* 
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conidial release, particularly for the dispersal of conidia on 31 August and 1 September. In 

the following days, unfavourable weather conditions of frequently low humidity dominated, 

coinciding with a low conidial release plateau. During this period, the leaf blight lesions 

continued to expand with sporulation, reaching an infected leaf area of 30% (rated on 28 

August). The next period of abundant conidia release occurred from 12 to 15 September, 

where maximum peaks of 457 and 533 conidia were registered on 12 and 13 September, 

respectively. On 12 September, a slight decrease in the RH coincided with spore release. On 

13 and 14 September, wind, or wind combined with rain, corresponded with the peaks of 

spore release and dispersal. An increase in the RH (>90%) was also observed. From 13 to 

17 September, frequent rain and one day of high humidity (>90%) occurred. Days of strong 

wind and high humidity occurred on the days thereafter, e.g. 17, 19 and 21 September, yet 

very few conidia (between 4 and 62) were recorded. An abundant peak of spore release (497 

conidia) occurred on 22 September, attributable to the heavy rain as the wind speed was 

relatively low. After this period of high spore release, an infected leaf area of 46% was 

recorded. 
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Fig. 49. Seasonal fluctuations in conidia number and weather conditions in Göttingen in summer 2015: 

average temperature and precipitation (above), wind velocity (centre) and average relative humidity 

(below). ).*= missing data 

 

 

* 

* 

* 
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3.3.1.3. Comparisons based on climatic conditions, development of Turcicum leaf 

blight and spore release between Inzing 2014 and Göttingen 2015 

Based on the observations obtained from the spore release pattern, an outline of the different 

climatic conditions which enhance the development and further sporulation until the spore 

release described above in Inzing and Göttingen are summarised in Table 35. The latent 

periods described became shorter after successive infection periods when the disease was 

established in the field and the disease pressure was higher. Further considerations for the 

length of the latent period are discussed in section 4.3.1.   

 

 Tab. 35. Overview of the decisive climatic conditions enhancing the development of the disease, 

including sporulation and further conidial release in Inzing in 2014 compared with Göttingen in 2015. 

Phenomen 
Environmental conditions enhancing the development  

of Turcicum leaf blight related to the spore release 

 
Inzing 

Göttingen 

(artificial inoculation) 

Infection 

+ sporulation 

Low sporulation (early season):  

 successive periods of  96-100% RH  

(at least 17 hours) 

 18-21°C 

Massive sporulation (late season): 

 successive periods of 100% RH 

(periods ranging between 69 to 121 

hours) accompanied by rainy periods 

(>4 days) 

 9-18°C 

Infection:  

 at least 24 hours of 100% RH 

 

 

Sporulation: 

 Low:  18 mm precipitation 

 High: ±3 days ≥ 90-95% RH  

 26 mm precipitation 

 15-18°C 

Lesion expansion  Low-moderate  Outstanding 

 Favoured by a warm period of 

28-30°C for lesion expansion 

after establishment of the 

infection 

Latent period 
 7-14 days  6-14 days 

Spore release  

coincided with 

 Drastic increase and decrease in RH 

 Wind and/or rain 

 Drastic increase and decrease 

in RH 

 Wind and/or rain 

Spore spread  Wind and/or rain  Wind and/or rain 
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3.3.2. Correlation of microscope counts and DNA yield for E. turcicum  

Samples from Inzing and Göttingen were analysed via qPCR assay to evaluate DNA yields 

of E. turcicum. Both molecular methods were evaluated and compared with the data 

obtained from the traditional method of visual light microscopy (section 3.3.1). 

3.3.2.1. Inzing  

From the 90 samples obtained in Inzing, positive amplifications were obtained through qPCR 

with the E. turcicum specific primer pair in 51% of the samples. An overview of the monitored 

season in Inzing in 2014, with results from the qPCR assay compared to those of the visual 

microscopy, is depicted in Figure 50.  

  

Fig. 50. Seasonal fluctuations in conidia number of E. turcicum assessed via microscope and DNA 

amount assessed via qPCR on spore trap tapes in Inzing 2014.  

 

Through visual microscopy, the first E. turcicum conidia were detected on 8 July (2 conidia). 

First detections through qPCR assay occurred two days later on 10 July (3.04 pg), where 

seven conidia were counted by microscopy. Higher conidia quantities (x>10) were regularly 

amplified through both methods. A low number of conidia (0<x≤10) were counted through 

microscopic assessment in 48% of the samples (43/90), whereas only 47% (20/43) of these 

samples were positive via qPCR assay. This was the case on 8 August, for example, where 

six conidia were counted but no amplification was achieved through qPCR. 

On the contrary, there were also samples for which DNA amplifications were registered via 

qPCR assay despite the fact that no spores were visually detected through microscopy. An 

example here is 2 September, where an amplification of 7.8 pg DNA was quantified via 

qPCR yet no spores were visualised through microscopy. Of the 29 samples (32% of total) in 

which no spores were registered through microscopy, positive amplifications via qPCR assay 

were obtained for eight of them (28%).  
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The first notable peak of conidial release determined through microscopic counts on 10 

September (21 spores) coincides with the first notable DNA yield determined via qPCR 

assay (87 pg). The highest peak achieved during the season was recorded on 25 September 

through microscopy (248 conidia), whereas the maximum amplification of DNA occurred on 

26 September (127 conidia).  

The third seasonal fluctuation in spore numbers was recorded on 3 and 4 October for both 

methods. While the highest number of conidia was recorded by microscopy on 3 October, 

the highest DNA yield was detected on 4 October (495 pg).  

According to the log linear model used (see section 2.7.1), we can assume a significant 

(p<0.05) relation between DNA yield and the number of spores for the samples from Inzing 

2014. At levels of up to 250 pg, it seems that the relation follows a more linear pattern, i.e. up 

to about 85 spores (Figure 51). The average DNA yield (28.3 pg) obtained corresponds to 24 

spores, i.e. 1.15 pg/ spore.  

 

 

Fig. 51. Relation between number of E. turcicum spores estimated through microscopic counts and 

DNA yield assessed via qPCR samples (p<0.05) for Inzing 2014. Red crosses (+) are observed pairs 

of  DNA concentration (qPCR) and the corresponding number of spores for each individual sample. 

Blue triangles (Δ) are the estimates of DNA concentration and number of spores according to the 

model equation. 
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3.3.2.2. Göttingen  

From the 70 samples obtained in Göttingen, positive amplifications were obtained through 

qPCR with the E. turcicum specific primer pair in 67% of the samples.  

Higher conidia quantities (x>10) were regularly amplified through both methods. The only 

exception was two days (15 and 16 September) for which no DNA amplification was 

achieved via qPCR. Low numbers (0<x≤10) of conidia were observed through microscopic 

counts in 27% of the samples (24/70), while E. turcicum DNA (determined via qPCR) was 

only detected on 42% (10/24) of these samples. Of the 12 samples (17% of total) in which no 

spores were registered through microscopy, positive amplifications via qPCR assay were 

obtained for five of them (42%). For example, on 15 August an amplification of 31 pg DNA 

was quantified via qPCR yet no spores were visualised through microscopy.  

An overview of the complete monitored season in Göttingen in 2015 is provided in Figure 52. 

The first important spore release of the season occurred on 13 August with 44 spores, 

corresponding to 240 pg DNA obtained via qPCR. Thereafter, four periods of abundant 

sporulation were observed by microscopy: 17 to 23 August, 27 August to 2 September, 12 to 

15 September and 22 September. These four seasonal fluctuations coincide with the periods 

for which DNA amplification was successful via qPCR assay. 

 

Fig. 52. Seasonal fluctuations in conidia number of E. turcicum assessed via microscope and DNA 

amount assessed via qPCR on tapes in Göttingen in 2015.  

During the first and second periods of abundant conidial release, the highest DNA 

amplifications were detected on 17 August (662 pg) and 23 August (1768 pg), coinciding with 

the highest peaks of conidia (122 and 411 per day, respectively) observed on these days by 

microscopy.  

For the third seasonal fluctuation (12-14 September), the highest peak of DNA amplification 

was observed on 12 September via qPCR assay, while one day later (13 September) the 

highest peak of spore release was recorded by microscopy. For the fourth seasonal 
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fluctuation, a one-day peak on 22 September was recorded via both visual assessment and 

qPCR.  

According to the log linear model used (see section 2.7.1), we can assume a significant 

relation between DNA yield and the number of spores for the samples from Göttingen 2015. 

At levels of up to 1165 pg, it seems that the relation follows a more linear pattern, i.e. up to 

about 175 spores (Figure 53). The average DNA content (353.67 pg) obtained corresponds 

to 78 spores, i.e. 4.6 pg/ spore.  

 

Fig. 53. Relation between number of E. turcicum spores estimated through microscopic counts and 

DNA yield assessed via qPCR samples (p<0.05) for Göttingen 2015. Red crosses (+) are observed 

pairs of DNA concentration (qPCR) and the corresponding number of spores for each individual 

sample. Blue triangles (Δ) are the estimates of DNA concentration and number of spores according to 

the model equation.  
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3.3.3. Seasonal incidence of inoculum of K. zeae analysed via qPCR  

In Ostenfeld, a total of 77 tapes were collected in 2013 and 84 tapes in 2014. In Göttingen, 

the same samples analysed for E. turcicum (70 tapes) were also analysed for the presence 

of K. zeae conidia. 

Tapes from Göttingen in 2015 and Ostenfeld in 2013 were analysed through light microscopy 

for K. zeae conidia but it was not possible to distinguish them from the numerous conidia of 

other fungi registered daily on the vaseline tape samples. Therefore, only a range of tapes 

from Ostenfeld in 2014 were analysed to check for K. zeae spores but the same difficulties 

as in 2013 were encountered. Consequently, it was not possible to confirm the spore release 

of K. zeae through light microscopy for any of the examined locations. Thus, only results 

from the molecular analysis via qPCR, if successful, can be directly correlated with the 

development of K. zeae in the field.  

 

3.3.3.1.  Ostenfeld  

In 2014, it was not possible to detect DNA from the tape samples via qPCR. The infected leaf 

area produced by Kabatiella eyespot remained under 1% until the beginning of September 

(BBCH 75-79; fruit development) and a maximum infected leaf area of 3.7% was recorded 

for the untreated control at the end of the season.  

As shown in Figure 54, in 2013, only three DNA amplifications (4% of total samples) were 

recorded via qPCR (16, 17, 28 September). DNA yields were lower than 1 pg day-1. The 

three peaks of DNA amplification were detected when periods of frequent rain (at least 2-3 

days) occurred on the days prior to the amplified peak. During August, while some periods of 

high humidity and rain could have favoured sporulation, long periods of low humidity, a lack 

of precipitation and moderate temperatures (17-18°C) could have simultaneously had a 

counteracting effect. Symptoms of Kabatiella eyespot were only observable in some plants, 

scattered inconsistently across the field, and DNA amplifications were not registered.  

In the late season, the onset of cold weather was registered around 7 September. During this 

month, the average temperature decreased to 13.1°C. On 11 September, a slight increase in 

the infected leaf area (1.3%) compared with the first assessment at the beginning of August 

(0.3%) could be recorded in the untreated control. Thereafter, on 16 and 17 September, first 

peaks of DNA amplification were recorded, coinciding with a four-day rainy period. On 28 

September, a low peak of DNA amplification was recorded after a four-day period of rain. By 

2 October, when plants were at the ripening stage (BBCH 83-85), the infected leaf area in 

the control had developed to 5.9%.  



Results 

      

115 
 

 

Fig. 54. Seasonal fluctuations of K.zeae DNA yield and weather conditions in Ostenfeld in summer 

2013: average temperature and precipitation (above), average relative humidity (centre) and wind 

velocity (below). 
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3.3.3.2.  Göttingen  

In Göttingen in 2015, DNA amplifications were only registered on 14 September (2 pg) 

(Figure 55). 

First lesions of Kabatiella eyespot were observed in the location seven days after inoculation 

(on 20 July) and by the end of July the disease was widely distributed among plants. It was 

not possible to observe sporulation on the leaves without incubating leaf samples in 

conditions of high humidity in the laboratory. After a warm and dry period (until the beginning 

of August), favourable weather conditions of heavy rainfall occurred in the middle and at the 

end of August. A slight increase in the infected leaf area was registered on 28 August (6% 

infection), but concentrations of K. zeae had yet to be amplified via qPCR. A further decrease 

in the average temperature, starting from 2 September until 6 September, was recorded (15 

to 11°C). Although high temperatures and low levels of humidity were recorded on 7 

September, cool temperatures (11-13°C) were predominant on the days immediately 

thereafter (8-12 September). On 14 September, the first amplification of K. zeae DNA yield 

was registered (2 pg). This occurred within a period of frequent rain. Strong rain and wind are 

correlated with spore release and dispersal on 14 September. A further decrease in the 

average temperature combined with frequent periods of rain favoured the development of the 

disease, which translated into an infected leaf area of 20% at the end of September. Further 

amplification of DNA of K. zeae DNA were not registered via qPCR. 
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Fig. 55. Seasonal fluctuations of K.zeae DNA yield and weather conditions in Göttingen in summer 

2015: average temperature and precipitation (above), average relative humidity (centre) and wind 

velocity (below). 
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3.3.4. Detection through qPCR and sensitivity 

In order to test sensitivity of the qPCR method, a range of annealing temperatures (64-68°C) 

was tested, starting with the established temperature from the PCR assay (see section 

2.5.7). The E. turcicum primer set could amplify E. turcicum DNA at the minimum level of 10 

fg µl-1, even at the highest tested annealing temperature of 68°C. Considered positive 

samples for K. zeae DNA could be detected at the minimum level of 100 fg µl-1 at melting 

temperatures ranging from 64-68°C. Ct value (cycle threshold) for the lowest detected 

standard concentration of E. turcicum (10 fg µl-1) was, on average, close to 33. Ct value for 

the lowest detected standard concentration K. zeae (100 fg µl-1) was close to 31. 

Analysing the obtained melting curve (Tm), amplifications of E. turcicum resulted in a narrow 

symmetric single melting point curve, obtained at 86.5 °C (Figure 56, left). K. zeae DNA 

amplifications resulted in two individual melting phases, one at 89°C and another close to 

85°C (Figure 56, right).  

 

 

 
Fig. 56. Melting curves obtained via qPCR method. Narrow symmetric single melting point curve 

obtained at 86.5°C for E. turcicum (left). Double melting curve obtained for K. zeae at 85°C and 89°C 

(right).  

 

A second experiment was conducted directly from artificial spore trap tapes, which were 

analysed for the lowest detectable quantities of conidia.  

For E. turcicum, the qPCR method could detect a minimum of two to four conidia (0.06-0.1 

pg µl-1), which corresponds to 6-10 pg of DNA per sample (a sample corresponds to 100 µl 

TE). For K. zeae, DNA amplifications from artificial spore trap tapes amplified via qPCR were 

considered to be positive at a minimum of 125 conidia. 

Furthermore, with the artificial spore trap tapes, the relation between the number of spores 

counted through microscopy and those obtained via qPCR was evaluated.  
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According to the log linear model used (see section 2.7.1), we can assume a significant 

relation (p<0.05) between DNA yield and the number of spores. At levels of up to 600 pg, it 

seems that the relation follows a more linear pattern, i.e. up to about 300 spores (Figure 57). 

The average DNA content (178.4 pg) obtained corresponds to 144 spores, i.e. 1.24 pg/spore.  

 

 
Fig. 57. Relation between number of E. turcicum spores estimated through microscopic counts and 

DNA yield assessed via qPCR samples (p<0.05) with artificial spore trap tapes. Red crosses (+) are 

observed pairs of DNA concentration (qPCR) and the corresponding number of spores for each 

individual sample (for range of 1-330 spores). Blue triangles (Δ) are the estimates of DNA 

concentration and number of spores according to the model equation. 

 

For K. zeae, according to the log linear model used (see section 2.5.7), we can assume a 

significant relation between the number of K. zeae conidia in the range of 125-1000 and DNA 

yield. At levels of up to 1.55 pg, it seems that the relation follows a more linear pattern, i.e. up 

to about 719 spores (Figure 58). On average, the DNA content obtained (1.18 pg) 

corresponds to 606 spores, i.e. 0.002 pg/ spore.  
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Fig. 58. Relation between number of K. zeae spores estimated through microscopic counts and DNA 

yield assessed via qPCR samples (p<0.05) with artificial spore trap samples. Red crosses (+) are 

observed pairs of DNA concentration (qPCR) and the corresponding number of spores for each 

individual sample (for range of 125-1000 spores; only positive samples according to the melting curve 

and the threshold were considered). Blue triangles (Δ) are the estimates of DNA concentration and 

number of spores according to the model equation.  

 

3.3.5. Evaluation of specificity  

With the purpose of testing the applicability of the protocol under natural conditions in the 

field, the specificity of the primers JB585/586 for E. turcicum and JB616/JB618 for K. zeae 

DNA was tested through PCR and qPCR. 

Primer sets JB585/JB586 for E. turcicum and JB616/JB618 for K. zeae were tested against a 

collection of 13 other fungi through PCR (Table 36). These organisms were selected due to 

their airborne dispersal and presence in European maize fields, as well as in surrounding 

field crops, or because they are genetically related to the target species being investigated. 

The specificity test through PCR for the E. turcicum specific primer set resulted in 

amplifications of the target organism E. turcicum and none of the 13 fungal non-target 

species when the annealing temperature was increased from 55°C to 64°C. Primer set 

JB616/JB618 selected for amplification of K. zeae DNA revealed additional amplifications of 

the genetically related species K. caulivora at all annealing temperatures tested (55°C-65°C), 

but not for the rest of the tested species. In this case, using higher annealing temperatures 

did not help to improve specificity through PCR. This was because the amplification of the  

K. zeae diagnostic amplicon was negatively affected. 
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Tab. 36. Evaluation of specificity of E. turcicum and K. zeae primer sets using different non-target 

fungal organisms.  

 
Fungal organism 

 

Amplicon with 
universal 
primers 

ITS4/ITS5 
57°C 

Amplicon with  
E. turcicum  
primer set 

JB585/JB586 
64°C 

Amplicon 
with K. zeae 
primer set 

JB616/JB618 
65°C 

E. turcicum (target organism) + + - 
K. zeae (target organism) + - + 
Alternaria spp.  + - - 
Aspergillus spp. + - - 
Bipolaris sorokiniana  + - - 
Bipolaris zeicola + - - 
Botrytis cinerea + - - 
Cladosporium spp.  + - - 
Epicoccum nigrum  + - - 
Fusarium graminearum + - - 
Kabatiella caulivora + n.t. + 
Phoma lingam + - - 
Penicillium spp.  + - - 
Septoria tritici  + - - 
Trichoderma spp.  + - - 

n.t.: non tested 

 

Based on the results of the specificity test through PCR, specificity tests were also carried 

out via qPCR. Through PCR, the selected primer set JB585/JB586 for amplification of  

E. turcicum DNA also amplified the non-target fungi Alternaria spp. at lower annealing 

temperatures than 64°C. Therefore, Alternaria spp. was selected for further specificity tests 

through qPCR. Positive samples were considered to be those exceeding the established 

threshold and coinciding with the melting temperature curve of E. turcicum amplifications.  

Through qPCR, at 64°C (selected annealing temperature for PCR), non-specific amplification 

of DNA of Alternaria spp. was observed. In an effort to increase specificity of amplification, a 

progressive increase in the annealing temperature (64-68°C) was tested for three different 

Alternaria spp. concentrations (1, 10 and 100 pg µl-1). When testing the highest concentrated 

samples (100 pg µl-1), positive amplifications were obtained (corresponding to 0.06 pg of the 

target E. turcicum DNA standard curve). To confirm these non-specific amplifications as 

positive, Alternaria spp. reaction products were electrophoresed on agarose gel. These 

corresponded to a single band amplified at the same specific size of the target  

E. turcicum amplicon (485 bp). 

Consequently, the primer set JB585/JB586 can not be considered 100% specific for  

E. turcicum amplifications. 

Specificity tests through qPCR with the selected K. zeae JB616/JB618 primer set were 

carried out testing the closely related fungus K. caulivora. This fungus, in addition to K. zeae, 

was amplified through PCR at all tested annealing temperatures (55-65°C). Through qPCR, 
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three different K. caulivora DNA concentrations were tested (0.01, 1 and 10 pg µl-1). The test 

resulted in non-specific DNA amplification of K. caulivora DNA at the previously established 

temperature of 65°C through PCR. A further increase in the annealing temperature (65-68°C) 

through qPCR resulted in non-specific amplifications, even at the highest annealing 

temperature of 68°C for concentrations of 1 and 10 pg (corresponding to 0.04 and 0.28 pg of 

the target K. zeae DNA standard curve, respectively). The non-specific amplification products 

of K. caulivora DNA also correspond to the two individual melting phases (at 89°C and 

another close to 85 °C) observed for K. zeae. 

Consequently, the primer set JB585/JB586 can not be considered 100% specific for  

K. zeae amplifications.  
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3.4. Evaluation of disease control through fungicides 

The development of the disease and the response of the plant to various fungicide 

compounds and differences in timing of application were evaluated in four field experiments 

in 2013 and 2014 under conditions of natural inoculum.  

In 2013, Turcicum leaf blight and common rust were analysed in Mittich. In 2014 in Inzing, 

only Turcicum leaf blight could be assessed due to the low pressure of common rust in the 

location. In Ostenfeld, the development of Kabatiella eyespot could be evaluated in 2013 and 

2014. 

Results for the development of the diseases across the season are exhibited together with 

the performance of the fungicide treatments applied at different stages. The development of 

the disease on the leaves of the plant (L-2, L-1, L0, L+1, L+2) is also presented in order to 

provide detailed information about the effect that the pathogen had on each one of these 

leaves in the respective location. This parameter provides information on the dynamic of the 

pathogen. This is important in the context of fungicide management in order to know which 

zones of the plant are most vulnerable and consequently need to be treated.  

An estimation of the destructive potential of the diseases was then carried out by comparing 

the final yield of the non-treated control and treated plots. Here, yield reduction was 

calculated for each percentage point increase in the disease.  

 

3.4.1. Turcicum leaf blight and common rust in Mittich 2013 

The first disease assessment was performed on 31 July (BBCH 65: flowering), 28 days after 

the first fungicide application and 8 days after the penultimate treatment. On this date, the 

first scattered lesions were observed in the location. Following this assessment, the 

dispersion of the disease in the field was inhibited, delaying the second disease assessment 

until an increase in the infected leaf area could be observed in the field. This ocurred on 5 

September (BBCH 75-79: fruit development), 35 days after the first assessment. However, at 

this stage significant differences in the infected leaf area among the non-treated control and 

treated plots could not be observed. Twenty days after the second assessment, the final 

disease assessment was performed (25 September; BBCH 85: ripening of the plant). At this 

time, both early (at BBCH 32: stem elongation) and late fungicide applications (BBCH 63: 

flowering) had a significant positive effect with respect to the non-treated control (8% infected 

leaf area).  

The mixture of epoxiconazole + pyraclostrobin applied at both stages, early (BBCH 32: stem 

elongation) and late (BBCH 63: flowering), showed a higher efficacy (4.6% and 4.7% 

reduction in infected leaf area, respectively) compared to the mixture propiconazole + 
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azoxystrobin (3.0% and 3.6% reduction in infected leaf area, respectively). Concerning the 

timing of applications using the same fungicide treatment, no significant differences were 

observed for either mixture.  

 

 

Fig. 59. Mittich 2013. E. turcicum infected leaf area on maize variety Zidane at three growth stages – 

flowering, fruit development, ripening. Comparison of control and different fungicide applications at 

different times. 32 (BBCH) = applied at vegetative stage (early application). 63 (BBCH) = applied at 

flowering (late application). PROP= propiconazole; AZO= azoxystrobin; EPO= epoxiconazole; PYR= 

pyraclostrobin; Least significance difference (LSD) according to Bonferroni test: LSD= 1.47 (p<0.05); 

LSD= 1.64 (p<0.01).  

 

Focusing on the development of the disease in the plant (LS means of each leaf position 

from all treatments and the non-treated control), leaves L0, L-1 and L+1 showed a higher 

infected leaf area (Figure 58). The ear leaf (L0) showed the highest infected area (6.2%), 

followed by the leaves L-1 (5.0%) and L+1 (5.7%). Differences among these three leaves 

were not significant. The upper leaf L+2 (4.3%) and the lower leaf L-2 (3.1%) showed the 

lowest infected area. The upper (L+2) and the lower leaf (L-2) differ significantly (p<0.05 

respectively) from L+1, L0 and L-1.  
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Fig. 60. Mittich 2013. E. turcicum infected leaf area on maize variety Zidane according to the leaf 

position on the plant at three growth stages - flowering, fruit development, ripening. L0= main ear leaf; 

L-1 and L-2= two leaves below main ear leaf; L+1 and L+2= two leaves above main ear. Data 

obtained from control and different fungicide applications sprayed at different times. Least significance 

difference (LSD) according to Bonferroni test: LSD= 1.31 (p<0.05); LSD= 1.47 (p<0.01).  

 

Below, Figure 61 shows that although the first pustules of common rust were observed at the 

end of July, lesions around the pustules were not observed until the second assessment (5 

September), and these represented less than 1% of the infected leaf area. In the next two 

weeks, the infected leaf area increased to around 5.8% in the non-treated control, whereas in 

the treated plots it remained below 3%. All treatments differed significantly from the non-

treated control (p<0.01). Comparing the fungicide treatments, these had no significant effect 

when applied at the vegetative stage (BBCH 32). When applied at flowering (BBCH 63), 

however, propiconazole + azoxystrobin provided significant disease control (4.6% reduction 

in infected leaf area; p<0.01) compared to epoxiconazole + pyraclostrobin (2.9% reduction in 

infected leaf area). Within the same treatment, significant differences between early and late 

application could only be observed for the treatment propiconazole + azoxystrobin, where a 

late application was more effective.  
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Fig. 61. Mittich 2013. P. sorghi infected leaf area on maize variety Zidane at three growth stages – 

flowering, fruit development, ripening. Comparison of control and different fungicide applications at 

different times. 32 (BBCH) = applied at vegetative stage (early application). 63 (BBCH) = applied at 

flowering (late application). PROP= propiconazole; AZO= azoxystrobin; EPO= epoxiconazole; PYR= 

pyraclostrobin; Least significance difference (LSD) according to Bonferroni test: LSD= 0.95 (p<0.05); 

LSD=1.06 (p<0.01). 

Conclusions on the distribution of the infected leaf area on the plant (Figure 62) could only be 

drawn from observations made in the final rating on 25 September (BBCH 85). There is a 

slight upward trend from the lower leaves L-2 (1.3% infected leaf area) and L-1 (1.6%) to the 

ear leaf (2.3%) and upper leaves L+1 (4%) and L+ 2 (5.6%). A significant difference between 

the lower leaves (L-1 and L-2) and the upper leaves (L+1 and L+2) was observed (p<0.01).  

 

Fig. 62. Mittich 2013. P. sorghi infected leaf area on maize variety Zidane according  to the leaf 

position on the plant at three growth stages - flowering, fruit development, ripening. L0= main ear leaf; 

L-1 and L-2= two leaves below main ear leaf; L+1 and L+2= two leaves above main ear. Data 

obtained from control and different fungicide applications sprayed at different times. Least significance 

difference (LSD) according to Bonferroni test: LSD= 0.87 (p<0.05); LSD= 0.98 (p<0.01). 
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3.4.2. Turcicum leaf blight in Inzing 2014 

First Turcicum leaf blight symptoms were visible during the first rating on 7 August (BBCH 

71: fruit development). Nevertheless, the disease did not develop further and in the second 

assessment on 12 September, the infected leaf area was lower than 1% in both non-treated 

and treated plots. At this time, the maize plants were at the end of the fruit development. On 

8 October, an increase in the infected leaf area was observed, ranging from 2.4% to 2.8% in 

the non-treated controls (with and without seed treatment, respectively). LSD analysis did not 

show significant effects between the non-treated controls. 

The mixture propiconazole + azoxystrobin at early application (BBCH 51: pre tassel, 10 July) 

showed a lower, statistically significant (p<0.05) infected leaf area (1.2%) in relation to the 

non-treated controls. This significant difference did not hold for the late application (1.4%) on 

23 July (BBCH 65: flowering). Fluopyram + prothioconazole and epoxiconazole + 

pyraclostrobin, both applied at early stage BBCH 51, did not significantly reduce the infected 

leaf area with respect to the non-treated plots (1.4% & 2.4%, respectively).  

 

 

Fig. 63. Inzing 2014. E. turcicum infected leaf area on maize variety NK Silotop at three growth stages 

– flowering, fruit development, ripening. Comparison of control and different fungicide applications at 

different times. 51 (BBCH)= applied at tasseling (middle-late application); 65 (BBCH)= applied at 

flowering (late application). ST= applied seed treatment; PROP= propiconazole; AZO= azoxystrobin; 

FLUO= fluopyram; EPO= epoxiconazole; PYR= pyraclostrobin. Least significance difference (LSD) 

according to Bonferroni test: LSD= 1.1 (p<0.05); LSD=1.22 (p<0.01). 
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In the last assessment on 8 October, the highest levels of severity were observed on the 

upper leaf L+1 (3.3%), followed by leaves L0 (3.0%) and L+2 (2.9%) (Figure 64). Lower 

leaves, L-1 and L-2, registered an infected leaf area of less than 1%. Separating the middle 

(L0) and upper leaves (L+1 and L+2) from the lower leaves (L-1 and L-2) provided a 

statistically significant difference.  

 

Fig. 64. Inzing 2014. E. turcicum infected leaf area on maize variety NK Silotop according to the leaf 

position on the plant at three growth stages - flowering, fruit development, ripening. L0= main ear leaf; 

L-1 and L-2= two leaves below main ear leaf; L+1 and L+2= two leaves above main ear. Data 

obtained from control and different fungicide applications sprayed at different times. Least significance 

difference (LSD) according to Bonferroni test: LSD= 0.96 (p<0.05); LSD= 1.08 (p<0.01). 

3.4.3. Kabatiella eyespot in Ostenfeld 2013 and 2014 

In 2013, the first disease assessment was performed on 7 August (BBCH 63: flowering). At 

this time, the first symptoms of Kabatiella eyespot were widespread in the location but 

without significant differences among treated and non-treated plots according to the LSD test 

as shown in Figure 65. In the second assessment, performed on 11 September (BBCH 79: 

end of the fruit development), a slightly higher infected leaf area (1.3%) was recorded in the 

non-treated variant, while the treated plots remained at an infected leaf area of less than 1% 

(Figure 63). Nevertheless, the differences here were not significant. A third assessment was 

carried out on 2 October (BBCH 83-85: ripening). At this point, the infected leaf area showed 

differences among treatments, with the control reaching the highest value of 5.9%. This was 

significantly different to all treatments (p<0.01). Among treated variants, the early season 

application (BBCH 33: vegetative stage) was not as effective as later applications at 

tasseling (BBCH 55) and flowering (BBCH 63). The early season application (BBCH 33: 

vegetative stage) reduced the infected leaf area by 2.5%, whereas later applications at 
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flowering (BBCH 55) and tasseling (BBCH 63) reduced the infected leaf area by 4.3% and 

5.3%, respectively. 

 

Fig. 65. Ostenfeld 2013. K. zeae infected leaf area on maize variety Ronaldinio at three growth stages 

– flowering, fruit development, ripening. Comparison of control and different fungicide applications at 

different times. 33 (BBCH)= applied at vegetative stage (early application); 55 (BBCH)= applied at 

tasseling (middle-late application); 63 (BBCH)= applied at flowering (late application). PROP= 

propiconazole; AZO= azoxystrobin; FLUO= fluopyram; PROT= prothioconazole CAR= carbendazim 

FLUS= flusilazole. Least significance difference (LSD) according to Bonferroni test: LSD= 1.1 

(p<0.05); LSD= 1.22 (p<0.01). 

 

As shown in Figure 66, in the first and second assessments on 7 August (BBCH 63: 

flowering) and 11 September (BBCH 79: end of the fruit development), respectively, the 

infected leaf area remained under 1% and did not differ significantly among leaf positions. 

The infected leaf area was slightly higher in the lower leaves (L-2 & L-1). By the last 

assessment on 2 October, the disease had spread to the upper leaves L+1 and L+2. These 

leaves exhibited a slightly higher infected leaf area (2.4-3.2%). The infected leaf area on the 

upper leaf L+2 was significantly different from leaf L-2, L-1, L0 (p<0.01) and L+1 (p<0.05). 
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Fig. 66. Ostenfeld 2013. K. zeae infected leaf area on maize variety Ronaldinio according to the leaf 

position on the plant at three growth stages - flowering, fruit development, ripening. L0= main ear leaf; 

L-1 and L-2= two leaves below main ear leaf; L+1 and L+2= two leaves above main ear. Data 

obtained from control and different fungicide applications sprayed at different times. Least significance 

difference (LSD) according to Bonferroni test: LSD= 0.79 (p<0.05); LSD= 0.89 (p<0.01). 

 

In 2014, in the first and second disease assessments on 12 August (BBCH 65; flowering) 

and 4 September (BBCH 75, fruit development), respectively, the infected leaf area produced 

by Kabatiella eyespot remained under 1% for all treatments and significant differences 

among treated variants and the non-treated control were still not observable, as shown in 

Figure 67. After two weeks, on 17 September (BBCH 85: beginning of the ripening), an 

infected leaf area of 3.7% was achieved in the non-treated control. Compared to the non-

treated control, all the applied treatments significantly reduced the infected leaf area but no 

significant differences were obtained among different treatments. Large differences between 

repetitions (blocks) were recorded, reflected by the large LSD range.  
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Fig. 67. Ostenfeld 2014. K. zeae infected leaf area on maize variety Kalvin at three growth stages – 

flowering, fruit development, ripening. Comparison of control and different fungicide applications at 

different times. 32 (BBCH)= applied at vegetative stage (early application); 55 (BBCH)= applied at 

tasseling (middle-late application); 63 (BBCH)= applied at flowering (late application). PROP= 

propiconazole; AZO= azoxystrobin; Least significance difference (LSD) according to Bonferroni test: 

LSD= 2.64 (p<0.05); LSD= 2.98 (p<0.01). 

 

Although no significant differences were observed at the three assessed stages across the 

season, the disease was slightly more prevalent in the ear and upper leaves in the final 

disease assessment (Figure 68). 

 

 

Fig. 68. Ostenfeld 2014. K. zeae infected leaf area on maize variety Kalvin according to the leaf 

position on the plant at three growth stages - flowering, fruit development, ripening. L0= main ear leaf; 

L-1 and L-2= two leaves below main ear leaf; L+1 and L+2= two leaves above main ear. Data 

obtained from control and different fungicide applications sprayed at different times. Least significance 

difference (LSD) according to Bonferroni test: LSD= 1.40 (p<0.05); LSD= 1.57 (p<0.01). 
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3.4.4. Effect of fungicide treatments on yield in Mittich 2013 and Inzing 2014 

In 2013 in Mittich, although significant differences were observed in the infected leaf area 

among treated and non-treated plots, none of the fungicides provided significant benefits to 

the yield compared with the non-treated control (Figure 69). Although statistically non-

significant, all treatments had a slightly positive effect on yield compared to the non-treated 

control, except for epoxiconazole + pyraclostrobin applied at BBCH 32, which had a lower 

yield than the control. High data variation was observed among repetitions within the same 

treatment. 

 

Fig. 69.  Mittich 2013. Mean maize grain yield of variety Zidane. Comparison of control and different 

fungicide applications sprayed at different times to control Turcicum leaf blight. PROP = 

propiconazole; AZO= azoxystrobin; EPO= epoxiconazole; PYR= pyraclostrobin; 32 (BBCH)= applied 

at vegetative stage (early application). 63 (BBCH)= applied at flowering (late application). Error bars 

(p<0.05) represent the Bonferroni’s standard error. 

 

In 2014, no significant difference between the control with and without seed treatment was 

observed (Figure 70). Furthermore, no significant effects were observed between the two 

non-treated variants (control, control + seed treatment) and all fungicide applications. 

Nevertheless, the application of propiconazole + azoxystrobin at flowering (BBCH 65) 

obtained a significantly higher yield compared to the non-treated control without seed 

treatment, increasing the average grain yield by approx. 15 dt/ha. 
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Fig. 70. Inzing 2014. Mean maize grain yield of variety NK Silotop. Comparison of control and different 

fungicide applications sprayed at different times to control Turcicum Leaf Blight. ST= applied seed 

treatment; PROP= propiconazole; AZO= azoxystrobin; FLUO= fluopyram; EPO= epoxiconazole; 

PYR= pyraclostrobin. 51 (BBCH) = applied at tasseling (middle-late application); 65 (BBCH)= applied 

at flowering (late application). Error bars (p<0.05) represent the Bonferroni’s standard error. 

 

3.4.5. Effect of fungicide treatments on yield in Ostenfeld 2013 and 2014 

In 2013 in Ostenfeld, fungicide treatments applied at tasseling (BBCH 55) and flowering 

(BBCH 63) resulted in higher yields compared with the non-treated control (Figure 71). With 

respect to the control (192.8 dt/ha), propiconazole + azoxystrobin applied at flowering 

provided the highest yield (213 dt/ha), with an approximate increase of 20 dt/ha (10%). 

Conversely, the same mixture (propiconazole + azoxystrobin) applied at the vegetative stage 

(BBCH 55) yielded 12 dt/ha less (201 dt/ha). No increase in yield with respect to the control 

was observed when propiconazole + azoxystrobin was applied at the early vegetative stage 

BBCH 33. Fluopyram + protioconazole and carboxamin + flusilazole, both applied at  

BBCH 55, increased the yield by approx. 7 dt/ha (4%) and 14 dt/ha (7%), respectively. 

Significant effects among treatments and with respect to the control were not observed. High 

data variation was observed among repetitions within the same treatment. 
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Fig. 71. Ostenfeld 2013. Mean maize grain yield of variety Ronaldinio. Comparison of control and 

different fungicide applications sprayed at different times to control Kabatiella eyespot. PROP= 

propiconazole; AZO= azoxystrobin; FLUO= fluopyram; PROT= prothioconazole CAR=carbendazim 

FLUS= flusilazole. 33 (BBCH)= applied at vegetative stage (early application); 55 (BBCH)= applied at 

tasseling (middle-late application); 63 (BBCH)= applied at flowering (late application). Error bars 

(p<0.05) represent the Bonferroni’s standard error. 

In 2014, biomass yield in the non-treated control was not significantly different from the 

fungicide treatments (Figure 72). An increase in the yield (3 dt/ha) was only obtained with the 

application of propiconazole + azoxystrobin applied at BBCH 55 (219 dt/ha).   

 

Fig. 72. Ostenfeld 2014. Mean maize grain yield of variety Kalvin. Comparison of control and different 

fungicide applications sprayed at different times to control to control Kabatiella eyespot. PROP= 

propiconazole; AZO= azoxystrobin. 32 (BBCH) = applied at vegetative stage (early application); 55 

(BBCH)= applied at tasseling (middle-late application); 63 (BBCH)= applied at flowering (late 

application). Error bars (p<0.05) represent the Bonferroni’s standard error.  
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3.4.6. Statistical correlation between yield and disease 

Inzing 2014 

The data for Inzing 2014 (Figure 73) showed a significant negative effect of the infected leaf 

area on yield (p<0.05). The negative regression reveals that for each percentage point 

increase in the infected leaf area, a yield loss of 1.59 dt/ha occurs, on average. The 95% CI 

indicates that the yield reduction could fall within the range of -0.02 to -3.15 dt/ha.  

 

Fig. 73. Relationship between yield and infected leaf area with Turcicum leaf blight on maize variety 

NK Silotop in Inzing 2014. *Linear model significant (p<0.05). ▬ = regression (144.8 -1.59x). ▬ = 95% 

confidence limits. •= observations (n=24) from yield (y) and corresponding percentage of leaf area 

infected (x) per plot in the trial.  

Mittich 2013 

Although common rust was also present, only the effect of the Turcicum leaf blight was 

considered for the regression analysis for yield losses (Figure 74). The reasoning here is that 

the formation of Turcicum leaf blight lesions on the leaf was much greater and common rust 

was of secondary importance in terms of damage. Although a similar infected leaf area was 

recorded for both diseases in accordance with the different scales used to carry out the 

rating in the field, 6% of common rust is not comparable to 6% of Turcicum leaf blight due to 

the large difference in the size of the lesions. Nevertheless, a negative relationship between 

yield and infected leaf area could not be confirmed, possibly due to the high yield data 

variation. The regression coefficient of 0.2 implies the infected leaves actually had a positive 

effect on yield. This is counterintuitive. However, taking the lower 95% CI limit of the 

regression coefficient “– 1.95 (red dotted line)”, we might assume a negative influence.  
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Fig. 74. Relationship between yield and infected leaf area with Turcicum leaf blight on maize variety 

Zidane in Mittich 2013. ns= linear model was not significant. •••= regression (114.12 + 0.20x). 

 •••= lower limit of confidence interval (95%), which shows a negative influence •= computed 

observations (n=19) from yield (y) and corresponding percentage of leaf area infected (x) per plot in 

the trial. 

Ostenfeld 2013 

The tendency of a negative relation between yield and infected leaf area was found (Figure 

75). The regression coefficient, with a p-value of 0.15, carries a certainty of 85%, but not 

95%. At this lower level of significance, there might be a certain degree of yield loss 

occurring between the range of 1.18 and 2.8 dt/ha per percentage point of infected leaf area. 

The red dotted line indicates the upper 95 % CI limit of the regression coefficient.  
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Fig. 75. Relationship between yield and infected leaf area with Kabatiella eyespot on maize variety 

Ronaldinio in Ostenfeld 2013. ns= linear model not significant. •••=regression (204.39 -1.18x) •••= 

upper limit of confidence interval (95%), which shows a negative influence •= computed observations 

(n=20) from yield (y) and corresponding percentage of leaf area infected (x) per plot in the trial. 

Ostenfeld 2014 

The number of data and their distribution do not permit a conclusion to be drawn about the 

relation between yield and infected leaf area. According to the linear regression, the disease 

did not have any influence on yield. The obtained certainty of p>0.2 for the regression 

coefficient and the corresponding CI limit states that there was no effect of diseased leaves 

on the yield.  

 

Fig. 76. Relationship between yield and infected leaf area with Kabatiella Eyespot on maize variety 

Ronaldinio in Ostenfeld 2013. ns= linear model not significant. •••=obtained regression (216.9 + 1.11x) 

•••= upper limit of confidence interval (95%), which shows a negative influence •= computed 

observations (n=15) from yield (y) and corresponding percentage of leaf area infected (x) in the trial. 
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3.4.7. Theoretical thresholds 

As part of the control strategy with fungicides, economic damage thresholds are used to 

establish the lowest severity level of the disease (% infected leaf area) that will cause 

economic damage, i.e. the point at which the cost of fungicide application is equal to the 

expected economic loss caused by the respective leaf disease at a certain percentage of 

infected leaf area. Thus, if the economic losses associated with a certain percentage of 

infected leaf area are higher than the cost of fungicide application, an application would be 

economically justified. As shown above, a negative correlation between disease and yield 

only occurred in Inzing in 2014 for E. turcicum and in Ostenfeld in 2013 for K. zeae, of which 

only Inzing 2014 was statistically significant (p>0.05). Therefore, the economic threshold was 

only calculated for these two experiments. Data for the calculation are summarised in Table 

37. 

Tab. 37.  Data for calculation of economic thresholds for fungicide application  

Price of silage maize* 
32 €/t 

Price of grain maize* 160 €/t 

Cost of fungicide application** 67.5 €/ha 

Loss per 1% infected leaf area of E. turcicum 1.59-3.15 dt/ha (0.159-0.315 t/ha) 

Loss per 1% infected leaf area of K. zeae 1.18-2.80 dt/ha (0.118-0.280 t/ha) 

* Maize price in regions with high technological production (actual market rate April 2016) 

** Fungicide application Quilt Excel (azoxystrobin + propiconazole)= 52 €/ha.  

   Agricultural labour costs: 13.50 €/ha. (Tractor, sprayer and driver remunerations) 

    Fuel: 2 €/ha (Agricultural Chamber Nordrhein-Westfalen 2015). 

 

In order to calculate the threshold, the average and maximum possible yield losses (dt/ha) 

obtained from the confidence intervals in the regression analysis for Inzing 2014 and 

Ostenfeld 2013 were taken. The average and maximum values allowed a calculation of two 

possible thresholds, where the maximum represents the upper limit of the confidence 

interval, i.e. the highest value within a range of possible outcomes. It should be noted that 

taking the minimum value (lower limit) for yield losses, i.e. the lowest value within a range of 

possible outcomes, would lead to yield losses which are equal or very close to zero. This 

would imply that no fungicide application is necessary and does not allow a threshold to be 

calculated.   

These average and maximum values for yield losses were converted into t/ha and multiplied 

by the product price in order to estimate the monetary loss per 1% of infected leaf area. Note 

that the product price depends on the type of maize used in the respective locations, i.e. 
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grain maize in Inzing (E. turcicum) and silage maize in Ostenfeld (K. zeae). The costs of 

fungicide application (67.50 €/ha) were divided by the above value to determine the 

economic threshold (as percentage of infected leaf area). Table 38 presents the thresholds 

calculated for E. turcicum and K. zeae in Mittich 2014 and Ostenfeld 2013, respectively.                

Tab. 38. Economic thresholds for fungicide application (percentage of leaf area infected) 

according to the potential yield losses (t/ha) (average and maximum value) obtained from 

calculated confidence intervals in the regressions in section 3.4.6.  

 
E. turcicum (Inzing 2014) K. zeae (Ostenfeld 2013) 

Average potential yield loss 0.159 t/ha  0.118 t/ha  

Threshold 2-3% (2.6%) 17% 

   Maximum potential yield loss 0.315 t/ha  0.280 t/ha  

Threshold 1% 7% 

 

With regard to the average yield loss levels for E. turcicum in 2014, the economic threshold 

was 2-3%, while for the maximum possible yield loss the threshold is only 1%. Taking the 

average yield loss, this means that a fungicide application would be economically beneficial 

at an infected leaf area of >2.6% for E. turcicum. For the average yield loss level of K. zeae, 

the economic threshold was 17%, while for the maximum possible yield loss the threshold is 

only 7%. Note that the threshold would increase for E. turcicum if the significantly lower price 

for silage maize (32 €/t) compared to grain maize (160 €/t) was taken, and vice versa for K. 

zeae. However, due to the fact that the regressions were run in accordance with the type of 

maize used in the respective locations, calculating alternative thresholds would not be 

accurate.  
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4. Discussion 

Despite the increase in the acreage of maize in Central Europe in recent years, there 

continues to be a lack of knowledge about associated fungal pathogens and their increasing 

presence in the region’s maize fields. A monitoring of fungal maize leaf diseases in selected 

Central European regions was therefore deemed necessary to gain a greater understanding 

of the occurrence and severity of these diseases and the climatic conditions that determine 

their epidemiological pattern. 

Based on the level of severity and the timing of the appearance of the disease, decisions can 

be made about the application of fungicides. As results in this work and related studies have 

confirmed, diseases such as Kabatiella eyespot and Turcicum leaf blight have the potential 

to cause yield losses. In this case, the application of fungicides can be an effective control 

method. The possible reasons for differences among variants of treated and untreated plots 

in the field trials carried out in this work are discussed here, as well as decisions regarding 

timing of application and the suitability of fungicide applications in relation to disease 

severity. The potential economic benefits of fungicide application and the calculation of 

thresholds are also evaluated. Of course, decisions regarding fungicide application should be 

considered within an integrated management of the disease, where decisive epidemiological 

factors such as inoculum pressure correlated with climatic conditions in the field need to be 

considered. This is discussed based on the results obtained via spore trapping in three 

locations. Potential latent periods are also looked at in greater depth in this context.    

 

4.1. Occurrence of leaf pathogens on maize in Central Europe  

4.1.1. Monitoring and prevalence of diseases in 2012 and 2013 

Main diseases E. turcicum and K. zeae 

The maize leaf spot pathogens Exserohilum turcicum and Kabatiella zeae dominated across 

the different monitored regions and are the causal agents of the Turcicum leaf blight and 

Kabatiella eyespot.  

E. turcicum is described in the literature to be most damaging at temperatures varying 

between 18 and 27°C, with an optimum of 20-25°C (Berger 1970, White 2010). This 

correlates with the observations made during the monitoring in 2012 and 2013, where the 

main regions in which E. turcicum is widespread are situated in southern Germany (Bavaria, 

alpine foreland), northern Austria (alpine foreland) and southern France8. In these regions, 

                                                             
8
 Southern France was not visited but information was obtained via observations from Mainka (2012, pers. 

comm., September). 
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higher temperatures are recorded in summer compared with northern regions of Germany 

(Schleswig-Holstein, northern part of Lower Saxony), where plants infected with E. turcicum 

were scattered.  

The other main pathogen, K. zeae, was found to be widespread in northern regions of 

Germany (Schleswig-Holstein, northern part of Lower Saxony) and the Netherlands due to it 

being favoured by lower temperatures (14-17°C) (Reifschneider & Arny 1980a). Thus, the 

temperature is the decisive factor which separates the regional occurrence of these two main 

pathogens. Both pathogens also need extended periods of high humidity for their 

development, and while it is of secondary importance in relation to the temperature, it 

remains essential.  

The interaction between climatic conditions and E. turcicum and K. zeae will be analysed in 

greater depth in section 4.3. 

Phoma spp.  

Several pathogenic and saprophytic Phoma species, or other pathogens related to this 

genus, can occur on maize. In this work, morphological analyses revealed different Phoma 

species. Further molecular analysis could not provide sufficient information to confirm the 

species of most of the obtained isolates. Furthermore, three representative isolates, 13.2B 

(considered saprophytic), 12.20 (pathogenic) and 12.13 (saprophytic) were sent to the CBS-

KNAW Fungal Diversity Center in Utrecht for molecular analysis. Following these analyses 

and comparisons with internal sequence databases, the three isolates were confirmed as 

three putative new species within the genus Peyronellaea (syn. Didymella; anamorph related 

to the genus Phoma). 

Prior to this, a first attempt to accurately identify these species turned out to be difficult due to 

the numerous micromorphological characters of Phoma species which had to be taken into 

account. A comparison of these morphological features with descriptions in the literature was 

not very helpful either. This is probably because Phoma species tend to vary greatly among 

different in vitro growth conditions (Aveskamp et al. 2010), making morphological 

comparisons extremely difficult for some species. 

Pathogenic Phoma spp.  

The lesions formed by the pathogenic isolates analysed in this work were very similar to 

those described for Ph. zeae-maydis in the literature (Arny & Nelson 1971; Punithalingam 

1990; White 2010) and those produced by the isolate Ph. zeae-maydis (CBS 586.95) in the 

greenhouse after spray inoculations. Nevertheless, micromorphological observations 

revealed differences between Ph. zeae-maydis (CBS 586.95) and the pathogenic isolates 

obtained during the monitoring.  
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In Phoma spp., conidial shape and size are considered to be two of the most useful 

parameters for identification up to species level (Aveskamp et al. 2008). The size of the 

spores of Ph. zeae-maydis (CBS 586.95) is much larger when compared with other species. 

In fact, until reclassification by Aveskamp et al. (2010) and Chen et al. (2015), it was 

classified within Phoma section Macrospora. Species included in this section are 

characterised by the production of large conidia, both in vivo and in vitro (Boerema et al. 

2004). According to the first description of Ph. zeae-maydis by Arny & Nelson (1971) (at the 

time as Phyllosticta maydis), while the spore size could vary considerably between 8-20 x 3-

7.5 µm, most spores fell within the range of 12-15 x 4-6 µm. These measurements clearly 

represent larger conidia than those of the pathogenic strains isolated in this work (4.1-7.9 x 

1.5-3.2 µm).  

Variations in morphological characters can occur in Phoma spp., depending on the in vitro 

culture conditions (Boerema et al. 2004). Therefore, in vivo descriptions may resemble the 

initial morphology of fungi more accurately. Due to the large amount of Phoma isolates 

obtained during the monitoring and the extensive descriptions required for identification, an in 

vivo description was impractical. Thus, whether or not a variation in spore size could have 

occurred was not investigated further. Nevertheless, the in vitro descriptions for the 

pathogenic reference isolate Ph. zeae-maydis (CBS 586.95) coincided with those described 

in the literature in vivo by Arny & Nelson (1971) and by Punithalingam (1990). This is an 

indication that conidia of Ph. zeae-maydis also remain characteristically large under in vitro 

conditions.  

Further Phoma species occurring on maize for which a smaller conidia size is reported are 

not extensively described in the literature. One of these species, Phoma zeae (described as 

Phyllosticta zeae), was described by Stout (1930) from samples collected in Illinois (USA). 

The size for conidia of Ph. zeae (4.5-7.5 x 2-3.5 µm) described by Stout (1930) matches 

those obtained from our isolates. On the contrary, the shape of the conidia differs. Although 

pathogenicity tests are not reported, the symptoms described by Stout (1930) are similar to 

those described for Ph. zeae-maydis. This species has also been reported in the Czech 

Republic (Saccas 1952, Cejp 1967 cited by Arny & Nelson 1971) and Romania (cited by 

Scheifele & Nelson 1971). McFeeley (1971) and Frezzi (1972) also considered Ph. zeae (at 

that time Phyllosticta zeae) as causal agent of the yellow leaf blight on maize in Ohio, USA 

and Argentina, respectively. However, Frezzi (1972) mentions that although descriptions of 

the lesions and other observations coincided with those described by Stout (1930) for  

Ph. zeae, the spores were larger in size (8 8 to 16.5 x 3,5 to 8.5 µm). Thus, this report still 

causes some confusion. It is therefore possible that the Phoma described by Frezzi (1972) 

was, in fact, the new pathogen Ph. zeae-maydis described by Arny and Nelson (1971) 

months earlier, which had a greater conidial size. A further mention about the presence of 
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Phyllosticta zeae G.L. Stout (later classified in the genus Phoma) was recently updated in a 

checklist of Phyllosticta species in China (Zhang et al. 2015). The descriptions and size of 

the conidia for the specimen studied (4 to 7 x 2 to 2.6 µm) were similar to our isolates. 

A further Phoma species reported on maize by Stout (1930), which is also similar in shape 

and size to some of the isolated samples in this work, is Ph. zeicola (Ellis & Everh.). 

Unfortunately, only descriptions for the size and shape are given by the author (similar to 

those described for Ph. zeae). Further comparisons were therefore not possible. Confirming 

whether the pathogenic Phoma isolates correspond to the description of Ph. zeae or  

Ph. zeicola will be difficult to prove because specimens of these species are not easily 

accessible and DNA sequences are not available in the sequence databases.  

In the monitoring, pseudothecia resembling those from Mycosphaerella zeae-maydis. (syn. 

Didymella maydis) described by Mukunya & Boothroyd (1973) were also found in one 

location. This teleomorph corresponds with the anamorph Ph. zeae-maydis. This fact would 

support the initial hypothesis that the pathogen corresponds to Ph. zeae-maydis, although 

molecular analysis contradicted this. 

Other related teleomorphs for similar Phoma species on maize have been also reported in 

the literature such as M. zeicola, (Stout 1930), M. maydis (Pass.) Lobik, and M. zeae (Sacc.) 

(Mukunya & Boothroyd 1973).  

Additional pathogenic Phoma-related species reported on maize such as the possible 

disease complex Phaeosphaeria maydis and Ph. sorghina (syn. Epiccocum sorghinum) were 

disregarded. These differ from the descriptions of symptoms and morphological 

characteristics given in this work and are mostly reported in tropical regions (Do Amaral 

2004; Gonçalves et al. 2013).  

Non-pathogenic Phoma species 

In this work, Phoma species which were considered non-pathogenic on maize such as  

Ph. pomorum (syn. Didymella pomorum), Ph. subherbarum (syn. D. subherbarum),  

Ph. glomerata (syn. D. glomerata) and Ph. tropica (syn. Allophoma tropica) are also reported 

to be present on maize (Payak et al. 1987; De Gruyter et al. 1993; Demirci & Kordali 2000; 

Cervelatti et al. 2002; Sørensen et al. 2010). While the representative isolate 12.13 (this also 

implies isolates similar to 12.13) is very similar to Ph. subherbarum, this species is only 

reported in North and South America. Furthermore, the analyses by the CBS confirmed that 

isolate 12.13 does not correspond to either of these species or any of the others mentioned.  

Isolates 12.36 and 12.37 show very similar in vitro characters to Phoma pomorum isolate 

CBS (838.84). This coincides with the molecular analysis carried out in this work, where both 
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isolates (12.36 and 12.37) showed 100% similarity with Phoma pomorum. Phoma pomorum 

was reported to be isolated from Danish maize by Sørensen et al. (2010). 

Due to the high diversity of Phoma species occurring on maize confirmed in this work, further 

phylogenetic and possibly in vivo morphological analyses are required. These are necessary 

in order to discover related species of the putative new species and clarify the Phoma 

complex (Didymella complex) of unidentified pathogenic and saprophytic species occurring in 

maize. This clarification could be helpful in understanding more about the phytosanitary state 

of maize in Central European regions, the importance of the Phoma spp., and comparisons 

with other maize-growing regions worldwide.  

Bipolaris zeicola  

The pathogen was found on a scattering of plants in northern and southern locations. Due to 

limited distribution of the pathogen across all locations, it was not possible to establish a 

primary region of occurrence. A race 3 isolate was found in central Czech Republic 

(characterised by a warm and dry climate in summer). Other isolates which produced similar 

spots to those described for race 2 were found in several locations with differing climatic 

conditions, e.g. southern and northern Germany and the Netherlands.  

According to the literature, optimal temperatures favouring race 3 are generally cool, 

evidenced by several reports from regions with cool and mild temperatures in the summer 

(White 2010; Liu et al. 2015). In contrast, races 1 and 2 favour warm conditions (White 

2010). This could not be confirmed, however, as race 2 was found in several locations with 

differing climatic conditions such as southern and northern Germany and the Netherlands.  

Unlike other races or pathotypes of B. zeicola, the virulence and increased prevalence of 

race 3 has been observed in temperate regions (Xiao et al. 1992; Welz et al. 1993; Zitter 

2012), as well as recently being considered an important limiting factor to corn production in 

hilly and mountainous areas of China (Liu et al. 2015). This race produces host-selective 

toxins called BZR-cotoxins I-IV, which facilitate the colonisation of the plant tissue and make 

it the determinant factor of virulence and host selectivity (Xiao et al. 1992).  B. zeicola race 3 

is also reported to be of pathogenic importance in rice plantations (Xiao et al. 1991), which is 

another example of the importance of its virulence.  

The importance of race 3 in the literature coincides with the results of the pathogenicity test 

in the greenhouse, where the isolate described as race 3 showed the highest virulence of all 

isolates tested. It was able to cover large areas of the leaf tissue with long lesions, which led 

to an early ripening of the leaves that other isolates could not produce.  
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B. zeicola is considered to behave more prevalently as necrotroph than other Bipolaris spp., 

sporulating abundantly until maturing of the leaf tissue (White 2010). This could also explain 

the importance of the pathogen as a saprophyte but not as a main pathogen in the regions.  

Two other Bipolaris spp. were found in leaves originating from the Czech Republic. These 

could not be classified as B. zeicola because their morphological characteristics differed in 

vivo and in vitro. Some authors (Hooker et al. 1973; Levic & Pencic 1980) have reported that 

the medium could have an effect on the conidial morphology of new pathotypes of B. zeicola, 

and atypical conidia of B. zeicola could be formed in agar. In this study, spores were similar 

when isolated from initial leaves and the in vitro medium. These Bipolaris spp. isolates were 

able to infect maize leaves and produce some tiny chlorotic spots which developed into 

lesions. In terms of virulence, however, these isolates were less virulent than the isolates 

confirmed as B. zeicola. Therefore, the behaviour of these Bipolaris spp. could be 

predominantly saprophytic and remain less virulent than B. zeicola. Further comparisons 

between these Bipolaris spp. and B. zeicola with different hybrid varieties and lines of maize 

under controlled climatic conditions are necessary to confirm this. 

A confirmation of the species of these two isolates was not possible through morphological 

analysis. Besides B. zeicola, several Bipolaris spp. are reported to be pathogenic on maize. 

Parallel to B. zeicola, the most important is B. maydis (White 2010; Singh & Srivastava 

2012). Based on the descriptions for B. maydis by White (2010), this possibility was 

disregarded due to the clearly distinguishable leaf symptoms of Bipolaris maydis (elongated 

or oval, pale lesions delimited along the veins) and its morphology (increased width and 

length of up to 160 µm) and more pronounced curvature compared to B. zeicola, which 

sometimes stretches out towards the bottom, resembling a long tail. The unidentified conidia 

are smaller and darker than B. zeicola and mostly not curved.  

Other Bipolaris spp. which are less frequent, but also described in the literature as producers 

of typical spot blotch symptoms on maize leaves, are B. spicifera (Mendes et al. 1998; Li et 

al. 2016) and B. sorokiniana (Iftikhar et al. 2009). Although the spores of  

B. spicifera are smaller (15-32 x 9.9 -12.4) (Li et al. 2016) than those of B. zeicola (25-100 x 

7-18 µm) (White 2010) and lighter in colour towards the terminal cells, resembling the 

unidentified isolates, other parameters such as three-septate, rounded ends and clustering of 

the conidia (resembling the form of a bottlebrush) in B. specifera (Navi et al. 1999) exclude 

this pathogen as a causal agent. B. sorokiniana, in contrast, exhibits more similar 

characteristics to both unidentified isolates (12.8 and 12.9), including curved or straight, 

conidia shape, black and bright to brown olivaceous in colour, with a characteristically 

spindle-shaped form, terminal and subhyaline cells (Warham et al. 1997).  
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Further morphological and pathological comparisons with confirmed B. sorokiniana isolates 

from the same regions, but possibly isolated from different crops, could provide more 

information. Nevertheless, the possibility of other Bipolaris species affecting maize leaves 

cannot be ruled out. Due to the high number of Bipolaris spp. described in the literature, 

molecular analysis could more accurately identify the species.  

P. sorghi 

During the monitoring, P. sorghi was observed in Holland, central Germany and Eastern 

Europe (Poland, Czech Republic), but the primary locations affected were situated in 

southern Bavaria. The affinity of the pathogen to moderate-high temperatures and high 

humidity, also necessary at night, could explain the higher prevalence in the southeast of 

Bavaria (Passau district). Summers are moderately warm (19°C avg.) and rainy, with 

frequent periods of dew formation at night and in the morning. 

In the literature, a range of temperatures is described for the development of common rust, 

but sporulation of P. sorghi is higher at 20-25°C than at lower temperatures of around 15°C, 

and more common at a relative humidity of at least 98% (Hooker 1985). Night temperatures 

are also important for the development of the disease because low temperatures (approx. 

8°C) prolong the latent period (Headrick & Pataky 1986).  

C. graminicola  

In the monitoring, C. graminicola was found in southern France, where average temperatures 

in the summer of 2012 (July, August, September) varied between 19 and 22°C (max. 

average of 24-28°C)9, explaining the presence of the pathogen in accordance with the 

literature. Nevertheless, the pathogen was also found in northern areas of Lower Saxony 

(Nordholz) and Holland (Princepeel), where, on average, moderate temperatures of 14 to 

18°C (max. average 19 to 24°C)10 are assumed to retard the development of the disease. 

These unfavourable climatic conditions could explain the limited presence of the pathogen in 

the locations. 

Although the fungal pathogen C. graminicola has been reported in various temperate, 

tropical and subtropical areas, it is particularly established and severe in warm, humid 

conditions (Wheeler et al. 1973; Gatch & Munkvold 2002; Jackson-Ziems et al. 2014; Da 

Costa et al. 2014; Zhang et al. 2014; Wise 2015). Furthermore, high temperatures (30°C) are 

considered optimal for lesion elongation and dew periods (Leonard & Thompson 1976; White 

2010).  

                                                             
9-10Data obtained from climatic database of Syngenta GmbH. 
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After pathogenicity tests in the greenhouse in this work, the ability to infect both varieties of 

maize in only a few days (lesions observed after five to seven days), the high virulence, and 

the ability to produce stalk rot (also in the greenhouse) showed that C. graminicola could be 

one of the most devastating maize leaf pathogens if optimal conditions of high temperatures 

are present. 

The pathogen is usually easy to recognise due to the acervuli produced on the leaves. These 

structures are reported to be produced on infected maize residues in the field (Bergstrom & 

Nicholson 1999). Nevertheless, other fungal organisms like Menispora ciliata Corda also 

colonise debris (CBS 2015), producing similar acervuli. This was observed in maize debris in 

the northern location of Ostenfeld. This could lead to a false identification of the pathogen in 

the debris. 

Fusarium spp. 

Fusarium species are described as frequently occurring pathogens in maize, primarily 

causing stalk and ear rots, reducing yield and producing mycotoxins (Bottalico 1998; D’Mello 

et al. 1999; De Venter 2000; Munkvold et al. 2000, 2003; Desjardins 2006; White 2010; 

Eckard et al. 2011; Antonissen et al. 2014). However, infection on maize leaves producing 

symptomatic foliar spots or lesions is less common.  

In this work, the isolates were obtained from leaf lesions produced by other pathogens or 

from Fusarium lesions produced on stalk and corn husks (tan spots with black border and 

pink to white sporulation in the centre, necrosis on the leaf sheath) or from maize residues 

from the previous season. Although the spraying of spore suspensions on the leaves did not 

produce any symptoms for any of the isolates tested in this work, some evidence that the 

pathogen can produce lesions on maize leaves is available in the literature. 

Moya-Elizondo et al. (2013) reported F. sporotrichoides to cause circular, white to brown 

spots and necrotic tissue on the margins and tips of leaves in maize fields in Chile. In order 

to fulfil Koch’s postulates, the author inoculated the leaves of healthy plants through spraying 

of spore suspensions and was able to confirm the capability of one Fusarium species to 

colonise the inner maize leaf tissue and produce lesions.  

Further studies evaluating the role of Fusarium spp. on maize leaves were carried out by 

Nguyen (2014), who tested different leaf inoculation methods. The author showed that while 

coating fungal inoculum of several Fusarium species on the fourth leaf did not produce 

symptoms, dropping of inoculum into the whorl, combined with coating of the developed 

fourth leaf produced symptoms on the new emerging leaves (6th and 7th). The capacity of the 

pathogen to penetrate unfolded leaves of the whorl was also described by Schieber and 

Müller (1968) in plants infected with F. moniliforme. In their experiments, plants developed 
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water-soaked spots with brown border, inhibiting further opening of the unfolded leaves and 

a downward turning of the leaf tip very similar to those described by Nguyen (2014). This is 

possibly due to accumulated water in the whorl leaves of the plant, favouring the infection. 

Therefore, the inability to produce lesions on leaves could be more influenced by non-optimal 

conditions (e.g. low humidity) than the  inability of the pathogen to infect different structures 

per se. Non-optimal conditions would restrict the colonisation of certain tissues, thus allowing 

the plant more time to respond (Oren et al. 2003). 

Other fungi colonising maize leaves 

Two of the most frequently found fungi in maize leaf microflora in all the sampled locations 

were species belonging to the Alternaria genus and Epiccocum nigrum. Both of these are 

also reported in the literature as belonging to the most frequent fungi isolated from maize 

leaves and kernels, along with Cladosporium and Fusarium species (Müller 1991; Fisher et 

al. 1992; Broggi et al. 2007; Remesova et al. 2007; Gonçalves et al. 2013).  

In this work, one E. nigrum isolate and two Alternaria spp. isolates were tested through 

inoculation on maize leaves and no symptoms were produced. Thus, the fungi could not be 

considered capable of infecting healthy leaves.  

While E. nigrum is considered to be an endophyte in several crops besides maize 

(Remesova et al 2007; Martini et al. 2009; Favaro et al. 2011), there is a lack of reliable 

evidence that it plays a parasitic role on maize leaves (Yoshizawa et al. 1994). The Alternaria 

species A. alternata and A. tenuissima have been reported as the most frequent on maize 

leaves (Müller 1991). A. alternata is considered a “weak pathogen” of maize, which is only 

capable of producing leaf blight after injury in optimal temperatures (20°C) in the absence of 

prolonged dry periods (>24 hours) and during senescence (Trainor & Martinson 1981). This 

is also likely to be the case for E. nigrum, which is mainly considered an endophyte and can 

also colonise the maize tissue under certain conditions of wounding. 

Disease incidence in 2012 and 2013 

In the monitoring results, it is notable that disease incidence in 2013 was higher compared to 

2012. Looking at the weather data in more detail provides further insight into the reasons for 

this occurrence. Here, the weather data for the respective northern and southern German 

locations will be taken as representative as the vast majority of samples originated from here 

(especially in 2013). This allows for an in-depth comparison between the two years. 

Furthermore, the northern and southern German locations exhibited the highest pressure for 

the respective diseases that frequently occur in these regions (i.e. Turcicum leaf blight and 

common rust in the south, and Kabatiella eyespot in the north).  
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Looking first at the weather data for the Mittich/Inzing region (southern Germany), it 

immediately becomes apparent that a severe lack of precipitation in July 2013 appears to 

have inhibited the development of the diseases during the vegetative to reproductive stage of 

the plant. This value of 23.7 mm was considerably lower than in July 2012 (78.9 mm). 

Furthermore, while E. turcicum and P. sorghi theoretically flourish at higher temperatures 

(20-25°C), a 1.3°C temperature difference between July 2012 (19°C) and July 2013 (20.3°C) 

could also have played a role, albeit a less important one.  

Regarding the northern region and taking the weather data for Ostenfeld (northern Germany) 

as a reference, the severe reduction in precipitation in July 2013 (55.4 mm) compared to July 

2012 (145.5 mm) again appears to have inhibited the development of the pathogen K. zeae. 

Additionally, July 2013 was considerably warmer (18.1°C) than July 2012 (16.4°C). This, 

along with the low level of precipitation, is likely to have greatly inhibited the development of 

K. zeae as it is a pathogen which thrives in lower temperatures (14-17°C) (Reifschneider & 

Arny 1980).  

 

4.1.2. Aspects of isolation and inoculum production  

The maize leaves presented a rich fungal spectrum, which, in some cases, made the 

targeted isolation of certain pathogens difficult. K. zeae, for example, occasionally required 

several isolation techniques. Of these, the Waring Blendor technique is a reliable option 

when there is a small amount of lesions on the leaf. This was the case as the pathogen had 

not colonised the leaf tissue to a sufficient extent to provoke slimy masses of sporulation on 

the leaf surface. Also, due to the slow growth of K. zeae and the production of short 

conidiophores, saprophytes can easily grow in abundance over K. zeae colonies, rendering 

the isolation of the pathogen difficult. The Waring Blendor technique allows the pathogen to 

grow separately from other fungi in agar medium in the first days. By contrast, pathogens 

belonging to the Helminthosporium species such as E. turcicum and Bipolaris spp. have their 

conidia attached to long conidiophores. This separates the pathogen from saprophytes that 

could potentially inhibit sporulation and thus its isolation. 

Another difficulty was that some fungi hardly sporulated in vitro. Phoma species and  

C. graminicola are able to produce pycnidia after various subcultures on solid medium. 

However, other organisms like E. turcicum lost their ability to sporulate after subcultures. 

This, in addition to the loss of pathogenicity during subsequent subcultures, has been 

reported for E. turcicum by several authors (Robert 1952; Hooker 1973; Chang & Fan 1986).  

Some K. zeae isolates presented low sporulation on agar and also in the liquid medium for 

spore production described by Reifschneider (1979). To date, the modification and 

completion of this latter method by Algermissen (2014, pers. comm., 24 March) is the most 
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successful (lower quantities of required materials, economical, reliability) for the production of 

spores in vitro.  

Another aspect to clarify with respect to the in vitro growth of K. zeae is that although the 

formation of sectors with both dark and light colours frequently occurs, subcultures of these 

sectors resulted in normal colonies, indicating the absence of mutations (Chinchilla 1985). 

The darkening of an initially light-coloured colony was also observed on the leaves after 

incubation in a humidity chamber. According to the descriptions of Dingley (1973), the 

pigmentation of the colony is also observed on leaf samples when it grows within epidermal 

cells. 

 

4.1.3. Preservation techniques 

The preservation of the isolated fungal species should guarantee not only their survival, but 

also maintain virulence and capacity to sporulate. 

A simple method like autoclaved water and glycerol guarantees survival, virulence and 

capacity to sporulate for several years for Phoma spp. Nevertheless, for the rest of the fungi 

isolated and analysed (K. zeae, Bipolaris spp., C. graminicola, Fusarium spp.), this method 

did not ensure their survival. Consequently, an additional method based on preservation in 

silica gel granules with a skim milk solution (Perkins 1962; Vaillancourt Laboratory 1995 

modified from Tuite & Lutrell 1969) was used for K. zeae, C. graminicola and Bipolaris spp. 

This method allows for the preservation of the fungal organisms within a solid medium, 

inhibiting the further development of the spores and therefore degradations or possible 

mutations produced in liquid medium. Nonetheless, some K. zeae and Bipolaris spp. could 

not be obtained from the silica gel granules after several months. This was probably due to 

the low survival rate of the species or, alternatively, because only a proportion of the 

granules were impregnated with the spore suspension. Thus, for the purpose of further 

selection and incubation on solid medium, the filter paper method described by Formento 

(2015) was more accurate when it came to identifying the part of the material in which the 

spores were situated. The continuous difficulties involved with storage reflect the specificity 

and difficulty of selecting the correct preservation method for any of the fungi. The simple 

method of fungal preservation in water is not recommended for any of these organisms. This 

contrasts with the scarce information for K. zeae in the literature, where preservation in water 

at 4°C should be a suitable method (Camochena 2009). A further step of testing the 

virulence before and after storage over several years should help establish the most 

adequate method for the preservation of each organism.  
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4.2.  Development of E. turcicum and K. zeae across seasons (2011-2014)  

The development of the associated disease is dependent on a combination of several 

climatic conditions, namely temperature, precipitation and humidity. None of these should be 

looked at in isolation, but rather in combination with the other factors to ascertain the reason 

for lower or higher prevalence of a disease.  

K. zeae is favoured by mild (14-17°C) and humid weather (Narita & Hiratsuka 1959; Arny et 

al. 1970). Besides the temperature, long periods of high humidity favour the infection and 

sporulation (Narita & Hiratsuka 1959; Arny et al. 1970). If we compare this to the results in 

this work, several conclusions can be drawn. As observed during the monitoring in 2012 and 

2013, K. zeae was also the most prevalent pathogen in the Ostenfeld fungicide trials in 

seasons 2013 and 2014. Nevertheless, the disease pressure was lower than in 2012 and 

especially 2011, where an epidemic outbreak occurred11. In line with the literature, it can be 

assumed that this noted outbreak in 2011 was caused by lower temperatures in July (16.4°C) 

and extremely high levels of precipitation in both July and August (355.5 mm in total) 

compared to 2013 (100.3 mm) and  2014 (145.7 mm). While the disease established itself in 

the field to a certain extent in 2012, where the average temperature for July was identical 

and precipitation was actually higher (145.5 mm as opposed to 110.7 mm in 2011), the lack 

of subsequent precipitation in August (60.2 mm) might not have favoured further 

development of the disease as did the high level of precipitation in 2011 (244.8 mm). Slightly 

higher temperatures in August 2012 (17.2°C) compared to 2011 (16.5°C) may also have 

played a role here. In 2015, the situation was rather similar; while in July a higher level of 

precipitation was recorded (186.6 mm) than in 2011 (110.7 mm), the level fell drastically in 

August (56.5 mm) compared to 2011 (244.8 mm). Furthermore, the average temperatures in 

July 2011 and July 2015 only varied slightly, while the average temperature in August 2015 

(18.2°C) was higher than in August 2011 (16.5°C). Despite 2012 and 2015 following a similar 

pattern when compared to 2011, the warmer conditions in August 2015 (avg. temperature 

18.2°C) inhibited the development of the disease to a much larger extent than they did in 

August 201212 (avg. temperature 17.2°C). This, coupled with the possibility of accumulation 

of inoculum in 2013 and 2014 being insufficient for the initial appearance (and subsequent 

establishment) of the disease in the field in the early season, led to the absence of K. zeae in 

2015. In this context, the reverse applies to 2012, where the epidemic in 2011 seemingly 

provided high amounts of inoculum for 2012. In fact, it is possible that the presence of 

sufficient inoculum in 2012 (and the absence thereof in 2015) could have played a more 

important role than the aforementioned temperature difference in August.  

                                                             
11

 2011 observations: Prof. Schlüter and Dr. Ute Kropf, personal communication, FH Kiel Ostenfeld (Lindenhof) 
trial location 
12

 2012: own observations made during monitoring (without rating data).    
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With regard to E. turcicum, the temperatures at which the pathogen is favoured can range 

from 15 to 30°C, with an optimum between 20 and 25°C (Casselman & Berger 1970; 

Malaguti & Subero 1971, Berger 1973; Levy & Cohen 1983; Díaz et al. 2012; De Rossi et al. 

2015). As is the case for other pathogens like K. zeae, the interaction of the temperature with 

other climatic factors such as precipitation and humidity needs to be considered (Berger 

1970; Levy & Cohen 1983). For example, in 2010, where an outbreak was recorded in the 

studied location of Mittich in southern Germany (Urban 2012), the average temperature in 

July (16.8°) was significantly lower than in subsequent years (19°C to 21°C from 2012 to 

2015), as well as the long-term average (18.7°C). Initially, this may seem counterintuitive as 

E. turcicum is generally favoured by higher temperatures. However, precipitation in July 2010 

was significantly higher (172 mm) than in all other years and the long-term average (112 

mm). Rain and high humidity (>90%) is considered to play a decisive role in the development 

of epidemics of E. turcicum, whereas the extended range of temperatures (15 to 30°C) 

probably plays a secondary role if inoculum is present in the location (Berger 1973; Levy & 

Cohen 1983). In line with this, although the average temperature (19.2°C) and precipitation 

(105.3 mm) were optimal in July 2014, for example, further development of the disease was 

probably principally inhibited by infrequent rain, and secondly by comparatively low 

temperatures in August (16.7°C)  

 

4.3. Epidemiological studies through spore trapping 

Management of fungal maize leaf diseases is based on the use of resistant varieties, tillage 

practices, crop rotation and, in recent years, application of fungicides. The latter should be 

regarded as a last option when the other measures are not sufficient or cannot be included 

as a suitable method for management of the crop. According to Van der Plank (1963), the 

application of fungicides should be part of an integrated management, in which the 

epidemiology determines the adequate strategy.  

The method of estimation for the latent periods for E. turcicum in Inzing and Göttingen is 

discussed in detail in this section. No latent periods could be determined for K. zeae in either 

location and will be discussed separately in section 4.3.2. 

 

4.3.1. Estimation of the latent period of E. turcicum 

Analysis of weather factors (humidity and temperature), increases in the infected leaf area, 

and spore release revealed a correlation among these variables for E. turcicum in Inzing 

(2014) and Göttingen (2015). In general, forecasting of weather conditions combined with 

spore trapping can be effective in predicting when the pathogen is present and when the 
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prerequisite conditions for an epidemic are met. In this way, a fungicide application can be 

made at the appropriate time (Manners 1993).  

Among other factors, the appropriate time for application is correlated with the development 

of the pathogen based on its latent period. This latent period comprises the time from when 

the spore lands on the leaf surface to the manifestation of symptoms and sporulation (Rapilly 

1991). This latent period should provide the time frame on which the application of fungicides 

can be based. This should not be confused with the incubation period, which comprises the 

period (days) from infection until the manifestation of the first symptoms.  

Despite some differences in the development of Turcicum leaf blight and the origin of 

inoculum (natural vs. artificial), the latent periods estimated for E. turcicum turned out to be 

very similar for both locations.  

Analysis of the latent period through spore trapping is based on the time of spore release 

(detachment of a spore or related propagule from the parent tissue), which can be correlated 

with weather conditions. Spore release is based on two mechanisms, passive and active. 

When the spore is attached to a conidiophore, the active mechanism is predominantly 

caused by extreme variations in relative humidity, which permits separation of the spore from 

its supporting tissue (in this case the conidiophore). This is produced by a gaseous phase in 

the lower part of the conidiophores, which first bends and then quickly straightens when the 

bubble reaches the top of the conidiophore (Rapilly 1991). Although this detachment 

mechanism is also considered for E. turcicum in the literature (Meredith 1963; Leach et al 

1976), the mechanism of passive force based on wind, humidity and rain is much more 

relevant for the spore release and dispersal. These climatic conditions ensure the 

dissemination of inoculum across larger distances (Casselman & Berger 1970; Rapilly 1991). 

In this work, wind or rain were generally clear causes of spore release. In some cases, 

however, the decrease or increase in humidity was notable and this option was also 

considered.  

The calculation of latent periods is not without its difficulties. Complications exist when 

lesions increase in size and the area of spore production expands (Van der Plank 1967). 

This was the case for E. turcicum in our trials. Nonetheless, while the expansion of the lesion 

provides large potential areas of inoculum, this inoculum is not responsible for the lesion 

itself; thus it cannot be directly considered for the calculation of the latent period. Therefore, 

according to the concept proposed by Van der Plank (1967): 

 A lesion must be considered as a whole which can be traced back to the spore from 

 which it started; and one must measure the latent period of all parts of the lesion from 

 a single zero time: the time the lesion started from the spore (1967; p. 84). 
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The concept of latent periods provided by van der Plank (1967) was also applied to the 

results in this work - the first day of spore release in the infection period under consideration 

is probably closer to the day of first sporulation (i.e. the initial detection of spores) than the 

highest peak of spore release.  

Favourable conditions for the development of E. turcicum were considered to be high relative 

humidity (henceforth RH) of 100%, frequent rain (Berger 1970; Casselman and Berger 1970; 

Leach et al. 1976) and temperatures in the range of 15°C-25°C (Casselman & Berger 1970; 

Malaguti & Subero 1971, Berger 1972; Levy & Cohen 1983; Diaz et al. 2012; De Rossi et al. 

2015).  

Inzing 

In Inzing, although notable precipitation was registered in July, this was only concentrated on 

a few days. A favourable day for the development of Turcicum leaf blight in the field occurred 

on 22 July, when 17 hours of 100% RH occurred. On these days, while some spores were 

trapped, no lesions were observed in the trial. The existence of inoculum, which probably 

originated from other fields in the region, revealed the presence of the pathogen in the area. 

Nevertheless, due to the constantly low number of spores registered in the subsequent 

weeks, it is likely that weather conditions were not favourable enough to maintain the chain 

of secondary re-infections.  

Several authors state that germination, penetration and infection could occur within five to 18 

hours at a temperature range of 15-30°C. However, if the latent period is considered 

(infection and sporulation) the complete cycle will take longer. A minimum of 11-14 hours of 

dew is required for abundant sporulation, which is responsible for epidemic outbreaks 

(Berger 1973; Levy & Cohen 1983). Therefore, it is likely that several favourable days have 

to pass during summer in order for these requirements to be met. 

At the beginning of August, the first scattered lesions with sporulation were observed in the 

field. These lesions appeared after a prolonged, relatively favourable period for infection at 

the end of July and beginning of August. This consisted of several days of high humidity and 

rainfall. Although this fulfilled the requirements for further development of the disease, further 

infection cycles are required to provoke higher infection rates and abundant spore release. 

This was reflected by the low disease severity observed in the location (<1%) and the low 

quantity of trapped conidia. Considering the days which elapsed between the favourable 

conditions for infection (starting from 30 July) and the first symptoms of the disease in the 

field with sporulation (approx. 7 August), eight days elapsed. This could represent the first 

latent period diagnosed in the season although the spore trap could not confirm an increase 

in sporulation during this period (see Figure 77, point A). Furthermore, on proceeding days, a 
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dry and warm period (max. 26-30°C) probably inhibited further possibilities for additional 

sporulation during the following weeks. This was correlated with the low number of trapped 

spores. 

 

Fig. 77. Fluctuation of trapped conidia of E. turcicum during the sampling period in Inzing 2014. 

 A-H: Periods of spore release discussed in this section correlated with latent periods. 

With the onset of the late season, favourable conditions of high humidity and moderate 

temperatures were more regularly recorded and spore release was detected at a high 

incidence. Peaks of spore release occurred after rainy periods, combined with at least 29 

hours of 100% RH. For example, after a notable period of favourable weather conditions 

from 28 August to 2 September, the number of trapped spores progressively increased 

during the following days. This culminated in a single, albeit small, peak on 10 September, 

probably favoured by heavy rainfall on the preceding day. From the day when the most 

favourable conditions for sporulation were recorded (30 August – Figure 77, point B) to the 

peak on 10 September (Figure 77, point C), 11 days elapsed. These 11 days could represent 

the latent period, with some slight variation possible with regard to the actual point of spore 

release. This could have occurred between the 9 and 10 September (10-11 days), or even 

slightly earlier. Considering that the release of spores into the atmosphere is dependent on 

favourable weather conditions, the recorded spore release can be separated from the point 

at which spore formation occurred by several days (Casselman & Berger 1970). At this time, 

the infected leaf area was still lower than 1%. 

The spore release on the 9-10 September coincided directly with a period of high humidity 

from 11 to 14 September, where 87 hours of 100% RH greatly favoured germination and 

infection. While, in theory, this prolonged period of high humidity was almost certainly 

sufficient for high rates of infection and further sporulation, this process could have been 

inhibited by the coinciding low temperatures (avg. 12-16°C). This was reflected by the low 

number of trapped conidia (Figure 77, point D). Levy and Cohen (1980) maintain that at low 

temperatures, the length of the sporulation period could be prolonged for E. turcicum by 
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several days. Consequently, the increase in the amount of trapped conidia 14 days later (24-

26 September) should be considered.  

Nevertheless, another option would be to consider the small peak of spore release on 18 

September (Figure 77, point E). Assuming that these spores originated from the first 

sporulation of the lesions, the period between 11 September (first day of favourable 

conditions for infection) and the day of slight spore release (18 September) could be 

considered as the latent period, i.e. approx. seven days. In this case, the peaks of abundant 

sporulation from 24 to 26 September (Figure 77, point F) would not be a result of a first 

sporulation but rather of massive sporulation in existing lesions, i.e. lesions which had 

already formed beforehand caused by prior spore release. The abundant sporulation was 

evidently favoured by the relatively warm (15-18°C) temperatures and high humidity on 

preceding days (19-23 September).  

Thus, it is possible that the peaks of abundant spore release on 24 to 26 September 

represent the closest period to sporulation. In this case, 13 days elapsed from the first day of 

favourable conditions on 11 September to the first release of spores on 24 September. 

These 13 days (as opposed to seven) could instead be considered as the latent period. This 

would also be supported by the fact that favourable conditions for spore release occurred on 

the days before (19 to 23 September) and an increase in spore numbers was not registered 

until 24 September.  

From the 24-26 September, masses of spores were again deposited on the leaves, and the 

cycle of infection was repeated once again. On the days following the peak to the 1-2 

October, a progressive increase in the number of spores was observed (Figure 77, point G). 

In this case, an accurate analysis of the subsequent latent period becomes difficult because 

some older lesions could have sporulated again under favourable conditions, overlapping 

with spore release from new lesions. Based on the fact that new lesions were observed on 

the days immediately thereafter, the spores detected at the beginning of the new release 

period can be considered the first spores produced after a latent period of seven to eight 

days, which culminated in an abundant spore release on 3 and 4 October (Figure 77, point 

H). These last infection periods were reflected by an increase in the infected leaf area (3%). 

Göttingen 

In Göttingen, the Turcicum leaf blight epidemic followed a different pattern than in Inzing. 

This was due to the artificial conditions that provoked a much earlier epidemic than in Inzing 

under natural conditions. 

Following artificial inoculation of the plants at the end of tasseling (BBCH 59-63), plots were 

covered with plastic, providing a saturated atmosphere (100% RH) to favour the first 
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establishment of the pathogen in the plant. After 24 hours, the first small chlorotic spots were 

visible on the plant, confirming the successful germination and penetration of the pathogen in 

the leaf tissue. By contrast, in Inzing in 2014, the establishment of the first natural inoculum 

of E. turcicum took several weeks due to the low quantities of inoculum and absence of rain 

and favourable RH (100%) over prolonged periods.  

Once the pathogen had been established on the leaf, the plastic cover was removed (after 

two days) and the subsequent development of the fungus occurred under natural climatic 

conditions. Following the removal of the plastic cover, first conidia were trapped. However, 

these initial and inconsiderable quantities of conidia (1-4) were directly related to the sprayed 

inoculum. First lesions were observed after, on average, 12 days and were produced by the 

initially induced establishment of the pathogen. Thus, this time can be considered as the 

incubation period (time from germination to lesion formation) but not the latent period.  

A dry and warm period occurred at the end of July and beginning of August. The existing 

lesions expanded markedly, covering large areas of the leaves (8% avg. infected leaf area). 

However, at this stage, sporulation in the lesions was still not observed. This mechanism of 

prominent expansion of lesions was described by Bergamin Filho & Amorim (1996), and is a 

variation of the classical concept for epidemics described by Van der Plank (1963). The 

theory put forward by Bergamin Filho & Amorim (1996) is based on differences in infection 

cycles between tropical and temperate pathosystems. Temperate pathosystems present a 

clockwise infection chain with so-called “sites”, i.e. potential areas of infection. These are 

defined as “healthy sites, latently infected sites (both with no symptoms), lesions (infectious 

sites), removed lesions (non-infectious sites)” (Van der Plank 1963, cited in Kranz 2003, 

p.63).  

The tropical pathosystem defined by Bergamin Filho and Amorim (1996) provides an 

alternative method of infection, namely an anti-clockwise infection chain. This is based on a 

high rate of lesion expansion, which allows the pathogen to counteract the unfavourable 

conditions in tropical climates. Through this mechanism, the infected sites can generate new 

infectious sites without the need for production of new spores. This mechanism has been 

observed for E. turcicum by several other authors (Berger 1970; Vitti et al. 1995; Bergamin 

Filho & Amorim 1996; De Rossi 2015). According to Vitti et al. (1995), the increase in the 

lesions could reach a rate of >43 mm2 day-1. A prominent manifestation of this mechanism 

was also observed personally during visits to various maize growing regions of Argentina in 

2015 in the scope of this work. Here, plants presented lesions which were expanded across 

the length the leaf. In this case, the establishment of the pathogen in the early season was 

probably favoured by high amounts of rainfall which occurred in 2015 (caused by the “El 

Niño” weather phenomenon), with interjecting periods of dry and warm weather.  
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In Göttingen, favourable conditions for the first stages of infection were artificially provoked. 

In Inzing, the high humidity and precipitation (as well as sufficient inoculum) required for the 

initial establishment of E. turcicum was absent, reflected by the scarcity of lesions. This 

counteracted the warm and dry weather which could have favoured the enlargement of 

lesions at the beginning of the season. Given the fact that high levels of humidity and dew 

are generally rare in the early season in the region of Inzing, it can be surmised that it is 

unlikely the mechanism described above plays an important role here.  

After the dry and warm period at the end of July and beginning of August which promoted the 

enlargement of the lesions in Göttingen, favourable conditions increased during the middle of 

August. This was confirmed by the sporulation observed on the leaf lesions in the trial on 17-

18 August. It is likely, however, that some lesions were already sporulating as the first peak 

of notable conidia release was detected on 13 August (see Figure 78, point A). Considering 

the concept of latent periods, which end upon the commencement of sporulation, in this case 

it took around 30 days (13 July to 13 August) due to the aforementioned dry and warm 

period.  The subsequent amounts of conidia which could be counted daily from 16-22 August 

(Figure 78, point B) are probably attributable to the continuous, abundant sporulation on the 

large blighted leaf area. This was caused by high RH (90-100%) and a high amount of 

precipitation. The highest peak of the season (recorded on 23 August – Figure 78, point C) is 

probably attributable to the favourable temperature and RH which occurred during the 

previous days, leading to a massive sporulation of the blighted area. 

 

 

Fig. 78. Fluctuation of trapped conidia of E. turcicum during the sampling period in Göttingen 2015. 

A-I: Periods of spore release discussed in this section correlated with latent periods. 

Towards the end of August and at the beginning of September (27 August- 2 September), 

the daily conidial release corresponded with the fluctuations in the relative humidity, although 

only one day reached the minimum level of 90% RH (daily average) required for sporulation. 

Nonetheless, it is possible that dew periods in the subsequent days of at least 5-9 hours (at 



Discussion 

      

159 

night) were sufficient for sporulation in this case. As Levy and Pataky (1992) argue, if the 

hours of 100% RH are not sufficient for the development of the conidia, the subsequent 

morning dew permits the completion of the formation of these conidia.  

The peaks produced in the middle of August (Figure 78, points A & B) could be considered to 

be the first outbreak of the epidemic which led to the subsequent cycle of infection 

commencing on 27 August (Figure 78, point D). The peak on 27 August is the first of an 

ascending curve and could be considered a direct product of the latent period, which 

probably commenced with the first sporulation between 13-16 August, i.e. 11-14 days. The 

culmination of the curve in a peak of abundant sporulation (1 September – Figure 78, point 

E) can be considered the result of substantial secondary sporulation on expanded lesions 

after a period in which RH increased. 

From this period to the next notable spore release, an ascending curve similar to that of the 

last two periods of spore release was not observed. This was probably attributable to 

unfavourable weather conditions of frequently low humidity, coinciding with a plateau in 

conidial release (Figure 78, point F). The fourth peak of abundant conidial release on 12-13 

September (Figure 78, point G) coincided with a five-day period of favourable conditions. In 

this case, different possibilities exist for this massive sporulation. The peak could be the 

product of new lesions formed, for example, as a result of the spore release on 1 September 

(11-day latent period). In contrast, the peak could also be a product of massive sporulation 

on the older lesions, produced by an overlapping of these preceding infection cycles.  

In the fifth period of spore release, a similar pattern to that of the second and third periods 

was observed, i.e. an ascending curve of spore release. Initially low spore release from 18-

21 September (Figure 78, point H) was followed by a sharp peak of abundant spore release 

on 22 September (Figure 78, point I). This is in line with the hypothesis outlined above: the 

initial release of spores is the product of first sporulation after lesion formation, while the 

large peak represents secondary spores produced in abundance on the previously formed 

lesions. In this case, six to 10 days elapsed from the last period of abundant release (12 

September) to the next (18-22 September).  

 

Comparison of spore release pattern from Inzing and Göttingen 

The latent periods ranged from seven to 13 days for Inzing and six to 14 days for Göttingen. 

This is more or less in line with the literature, which states a latent period for  

E. turcicum of eight to 14 days that can vary depending on the maize cultivars or climatic 

conditions (Malaguti & Subero 1971, De Rossi et al. 2015, Diaz et al. 2012). It is possible 

that the six or seven-day latent periods estimated in some cases are too short and the actual 



Discussion 

      

160 

time frame was closer to the maximum range calculated, e.g. 10 days (12-22 September) as 

opposed to 6 days (12-18 September) in Göttingen.  

In both locations, the initial sporulation and subsequent spore release occurred after a long 

period of unfavourable weather conditions. The development of the disease in Inzing was 

especially retarded, with the first noticeable spore release not registered until September. In 

Göttingen, on the other hand, the first noticeable spore release occurred in the middle of 

August and a pronounced second mechanism of lesion expansion compensated for the 

unfavourable conditions. Furthermore, in Göttingen the artificial inoculation was carried out at 

a time (mid-July) when natural inoculum is usually not present at such a high level. This 

resulted in an infected leaf area of 46% by the end of the season, as opposed to only 2.8% in 

Inzing under natural conditions.  

As discussed in the introduction to this section, latent periods can vary by several days 

depending on the estimation method used. Complications also exist when lesions increase in 

size and the zone of spore production expands (Van der Plank 1967), which was especially 

pronounced in Göttingen. 

A number of other factors can also have an impact on the latent period. Carson (2005) found 

that varieties resistant to Turcicum leaf blight tend to be effective in prolonging latent periods. 

The opposite also applies: susceptible varieties advance the development of the disease, 

providing more inoculum and shortening the latent periods (Rapilly 1991). This argument can 

be tentatively applied to Göttingen as the variety used was susceptible and in the last 

infection cycle, the final latent period (six to 10 days) was shorter than in the first infection 

cycles (11-14 days). In this context, the length of the latent period is linked to partial 

resistance (Carson 2005). Furthermore, the latent period can also depend on variations in 

the resistance of the plant between the early and late stages (Kranz 2003).  

Climatic conditions can also have a large impact on the latent period. This is one of the most 

plausible explanations for the shorter latent periods at the end of the season in both Inzing 

and Göttingen, where more favourable weather conditions such as 100% RH and dew 

periods for the pathogen occurred. Related to this, the duration of the incubation and latent 

periods of necrotrophic fungal pathogens can also be affected by the concentration of 

inoculum present (Rapilly 1991). The author presents the case of Dreschlera teres on barley, 

which is also considered within the “Helminthosporium complex”, where higher 

concentrations of inoculum are correlated with shorter latent periods, and vice versa. This is 

in line with our results in Göttingen and Inzing, where higher concentrations of inoculum in 

the late season coincided with shorter latent periods.  

With regards to the pathogen itself, the parasitic fitness could also play a role in the higher 

concentration of the spores. In a study by Levy (1991), isolates from different regions varied 
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in infection efficiency, sporulation and lesion size. While the development of Turcicum leaf 

blight in Inzing was limited to the natural inoculum in the region, in Göttingen different 

isolates (of different races) from several European regions (southern and western France, 

Hungary and Germany)13 were inoculated. These pathogens had diverse levels of 

aggressiveness and the purpose of their combined use as inoculum was an attempt to 

achieve compatible interaction between the plant and the pathogen, as well as the 

adaptation of the pathogen to various conditions based on their origin. This might be another 

explanation for the larger amount of spores registered by the spore trap compared with 

Inzing under natural inoculum. 

Overall, it is difficult to attribute the length of the latent period for E. turcicum to one single 

factor. Factors such as variety susceptibility, inoculum concentration and favourable climatic 

conditions all have an influence in this regard. The method of evaluation can also have an 

impact, and further studies could be carried out by focusing on newly formed lesions instead 

of the evaluation of the whole blighted area.  

Based on the data obtained, spore trapping helped to understand the development of the 

disease across the season. As part of an integrated pest management, in combination with 

weather forecasting, spore trapping can be very useful in evaluating inoculum pressure 

during the season. This could help to decide whether a fungicide application to control 

Turcicum leaf blight is required and even the timing of the application. 

 

4.3.2. Interpretation of K. zeae results 

In contrast to E. turcicum, spore trapping did not reveal fluctuations within a season in 

Ostenfeld in 2013 and 2014 (natural inoculum) or in Göttingen in 2015 (artificial inoculation). 

Conidia of K. zeae are hyaline, normally non-septate and relatively small in size (average 3 x 

27 µm). These characteristics hindered the recognition of spores among the mass of other 

material and spores found on the spore trap samples. This was even the case on the artificial 

spore trap tapes as the spores blended in with the vaseline on the tape.  

In this case, DNA detection techniques become crucial. The protocol to extract DNA from the 

sampling tape followed in this work is based on the method described by Kaczmarek et al. 

(2009). The author also encountered difficulties with L. maculans and L. biglobosa as it was 

impossible to distinguish between trapped ascospores of the two species by microscopy. 

                                                             
13

 These isolates were obtained from a monitoring of E. turcicum races carried out in 2012 as part of the doctoral 
project of Hendrik Hanekamp (“Population structure of the pathogen Exserohilum turcicum and spatial efficacy of 
race specific resistances“) at the Division of Plant Pathology and Plant Protection, Georg-August-University, 
Göttingen. 
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Nevertheless, the analysis through qPCR could not reveal seasonal fluctuations of K. zeae in 

any of the locations analysed. This failure in the detection of K. zeae through spore trapping 

and analysis of DNA from the samples via qPCR could be a result of an insufficiently 

optimised qPCR method. For possible future development of the qPCR method, further 

analyses are required in order to improve detection by testing possible inhibitions in the 

presence of non-target DNA and investigating the irregularity of the the melting curve of 

amplification. Furthermore, non-specific amplifications should also be considered. In this 

work, non-specific amplifications of the genetically related fungi K. caulivora DNA were 

obtained with the selected primers for K. zeae. Nevertheless, this may not affect the 

specificity of the test to a large degree because the pathogen is mostly described as infecting 

red clover (this is assuming that its presence is relatively low in maize fields). Nevertheless, 

other genetically related fungi to K. zeae, such as Aerobasidium pullulans, which is a 

ubiquitous fungus, should be tested. 

On the other hand, the low levels of the disease observed in Ostenfeld during the 2013 and 

2014 seasons could reflect a lack of inoculum in the field. The subsequently low number of  

K. zeae spores was probably insufficient for detection, both via microscopy and qPCR. 

Similar levels of disease to Ostenfeld in 2013 were registered in Göttingen at the end of 

August. This equally explains the absence of peaks in spore release in Göttingen. However, 

with the onset of the late season, a decrease in temperature favoured the development of the 

disease, with an infected leaf area of 20% being reached in Göttingen. This sharp increase in 

the infected leaf area was probable caused by two days of rain on 13 and 14 September, 

providing sufficient inoculum to be detected by the spore trap. In fact, this was the only point 

at which a positive amplification via qPCR assay was registered at this location. 

Nevertheless, the failure of the spore trap to detect inoculum could explain a decisive factor 

related to the development of epidemics of K. zeae, i.e. the primary transport mechanism is 

based on rain and not wind. While some authors (Arny et al. 1970; Smiljakovic & Pencic 

1971) refer to the possible distribution and dispersal of the pathogen via air currents, this 

theory has never been tested scientifically. This probably reflects the difficulty of analysing 

the infection cycle of K. zeae focusing solely on wind dispersal. Rapilly et al. (1975) studied 

the dispersion of K. zeae spores via splashing produced by rain and sprinkler irrigation. This 

was achieved by using a device designed for the collection of water and estimating the time 

at which the pathogen sporulated based on the number of spores collected per ml of water. 

To our knowledge, this is the only report that analysed the sporulation and dispersal of  

K. zeae with quantifiable data.  

Rapilly et al. (1975) concluded that K. zeae can sporulate in high quantities on a water film 

on the leaf. However, the sporulation of K. zeae appeared to be inhibited by the sensibility of 
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the spores to conditions of high UV radiation and desiccation. The impact of a droplet of 

water onto the colony of a fungus ensures the dispersion of numerous pathogens, in 

particular those in which the conidia are produced on short conidiophores or are integrated in 

a mucilaginous matrix (Rapilly 1991). This is explained by the spreading of the water soluble 

substances of the mucilaginous matrix with the film of water which is formed. However, 

successive impacts of droplets of water lead to an exhaustion of the fructification. While the 

conidia attached to long conidiophores are exhausted faster (reflected during the first 

impacts), as is the case with species of the Helminthosporium complex (e.g. E. turcicum) 

Rapilly et al. (1975) found that this exhaustion process through rain is almost impossible in 

the case of K. zeae colonies. This is due to the abundant sporulative capacity of K. zeae and 

the short period of time necessary for the formation of new spores (5-6 hours). Observations 

made in the field also lend support to the theory that K. zeae largely depends on droplets of 

water for its dispersion. In the field, the disease is usually unevenly distributed, probably 

because the droplets of water are distributed from one plant to another when there is contact 

between their respective leaves. This uneven distribution pattern could be observed in both 

Ostenfeld and Göttingen, especially when the first infections occurred. 

An optimised qPCR assay might demonstrate the importance of wind in K. zeae epidemics, 

rejecting or accepting its role in the dispersal of the pathogen. 

 

4.3.3. Further considerations for qPCR and PCR assays 

The possibility of a molecular biological detection of E. turcicum propagules was investigated 

in order to accelerate the assessment. Molecular methods based on spore detection have 

been described in the literature for maize leaf pathogens such as P. polysora and P. sorghi 

(Crouch & Szabo 2006), as well as for several fungal pathogens of other crops (Kaczmarek 

et al. 2009, Rogers et al. 2009; Vogelzang 2011, Meitz-Hopkins et al. 2014). 

Performance conditions, limit of detection, specificity and reference microscopy were 

evaluated. The qPCR method permitted the detection and quantification of E. turcicum DNA 

and the data from the qPCR assay were positively correlated with the spore counts for 

seasonal fluctuation of conidial release by visual microscopy. The qPCR assay offered the 

detection of E. turcicum DNA at quantities of picograms. Nevertheless, lower concentrations 

were not always amplified. This was the case for several samples from Göttingen. 

Some samples in which no spores were counted through microscopy were positive via 

qPCR, and vice versa. Nevertheless, most of these samples had low numbers of conidia 

(0<x≤10). Possible explanations for this discrepancy could be a visual limitation in 

recognising the presence of a spore due to it being degraded, in the early formation stages 
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(where the septa are not yet formed), or hidden under other biological material on the tape. 

False amplification of non-target pathogens or material could be also discussed. In this work,  

non-specific Alternaria spp. amplifications were obtained. Nevertheless, extremely high 

amounts of DNA (100 pg µl-1) need to be present to obtain positive amplifications. Such high 

amounts of DNA are improbable, however. On the other hand, although a specific test with 

13 other fungi was carried out, the possibility that other fungi or biological material were 

amplified cannot be ruled out. 

Regarding some samples in which spores were counted through microscopy but not 

detected through qPCR, possible inhibitions through other material not tested in this work 

could have limited further detections, such as high amounts of non-target DNA. These 

negative results mostly occurred for samples with a low number of spores. One exception 

was a sample with 152 spores counted through microscopy resulting in no amplification via 

qPCR. This was probably due to errors during the extraction method: as spore trap tapes 

were measured daily and one spore trap was situated in each location, only one sample per 

day was available for further analysis. Daily repetitions did not exist in this case.  

According to the correlation between DNA yield and number of spores obtained from 

samples from Inzing and the artificial spore trap tapes, it was estimated that each spore 

contains about 1.15 - 1.24 pg DNA, whereas the same correlation resulted in 4.6 pg per 

spore for samples from Göttingen. This discrepancy could be explained by the presence of 

other inoculum (e.g. conidiophores) which was not counted by visual microscopy. This is 

most likely due to the close proximity of the spore trap to the plants. This was especially 

noticeable in Göttingen, where large amounts of similar conidiophores to those described for  

E. turcicum were observed on the tapes. This could have lead to a higher DNA yield (conidia 

and conidiophores) than that calculated for one spore through qPCR.  

The most important purpose of the qPCR test, i.e. to differentiate between seasonal 

fluctuations of spore release, was achieved. Further optimisation of the method could 

improve its reliability. Therefore, the adapted protocol from Kaczmarek et al. (2009) could 

support integrated pest management programs by saving time and effort in the monitoring of 

the E.turcicum inoculum pressure. This would be more efficient for future modelling and 

forecasting of Turcicum leaf blight. 

 

4.4. Application of fungicides 

Management of fungal maize leaf diseases is based on the use of resistant varieties, tillage 

practices, crop rotation and, in recent years, application of fungicides. The latter should be 

regarded as a feasible option when the other measures are not sufficient or cannot be 

included as a suitable method for management of the crop.  
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To date, a lack of knowledge and information about the dynamic of the disease correlated 

with the use of fungicides on maize leads to confusion among organisations and farmers with 

regard to their correct use in Germany. Two foliar fungicides composed of mixes of QoI and 

DMI fungicide compounds were permitted in 2014. Nevertheless, their application in maize 

fields remains uncommon due to several factors limiting the necessity for their use: I) in 

some areas, the disease pressure is too low to benefit from an application, II) it is not defined 

at which level of disease severity the fungicide should be applied (thresholds are not 

defined), III) lack of knowledge about the dynamic of the diseases (latency period and further 

development mechanisms), which is important for the timing of application, and IV) the 

efficacy against different target diseases has not been sufficiently tested.  

The fact that severe epidemics occur only sporadically, e.g. 2010 for Turcicum leaf blight and 

2011 for Kabatiella eyespot (Urban 2012), makes it difficult to gain sufficient knowledge 

about the dynamic of the diseases in the field, and, in turn, the optimal management of these 

diseases through fungicides.  

 

4.4.1. Fungicide effects on infected leaf area 

In Mittich in 2013, foliar fungicides significantly (statistically) decreased the infected leaf area 

caused by Turcicum leaf blight and common rust compared with the untreated control. This 

reduction ranged between 3% and 4.7% for Turcicum leaf blight and 2.9% and 4.6% for 

common rust, demonstrating that the different applications were similarly effective against 

both pathogens.  

The literature indicates that when a fungicide is applied to a plant infected with common rust, 

the pustules are eradicated and new infectious areas can no longer be produced (Berger et 

al. 1997). In contrast, Turcicum leaf blight is characterised by a fifteen-fold faster lesion 

expansion rate than common rust (Bergamin & Amorim 1996). Thus, combating the disease 

through fungicides may be much more difficult, or in some cases ineffective, once it is 

established in the field (Diaz et al. 2012; Couretot et al. 2013).  

In the trials in Mittich, however, Turcicum leaf blight had yet to develop to a significant level in 

the field (less than 1%) when the fungicide was applied. This is likely to be the reason that a 

similar reduction in infected leaf area could be achieved for both Turcicum leaf blight and 

common rust. 

In contrast to 2013, in 2014 only Turcicum leaf blight was assessed, while pressure of 

common rust was low. Here, a less consistent protection effect between treated and non-

treated plots was observed, probably due to the low level of Turcicum leaf blight in the field. 

Only one treatment significantly reduced the infected leaf area (1.2% reduction) compared 

with the untreated plots.  
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For Kabatiella eyespot, statistically significant differences between treated and untreated 

plots were observed in Ostenfeld in 2013 and 2014 in terms of infected leaf area. This is in 

line with trials carried out in Denmark, which have found fungicides to be very effective 

against Kabatiella eyespot, especially at higher levels of disease severity. Treatment is not 

necessary every year, however (Jørgensen 2012).  

 

4.4.2. Disease development  

Protection of leaves that contribute most to the corn cob filling needs to be taken into account 

when applying foliar fungicides to maize. Pataky (1992) reported that leaves L-1, L0 and L+1 

are an important production source for assimilates, which explain 30% of the corn cob filling. 

The author also noted that when severity in the upper 75% of the canopy was less than 8%, 

yield was not affected. This could explain the lack of a positive yield response in Inzing in 

2014, where the highest levels of infected leaf area with Turcicum leaf blight were registered 

on the upper leaves of the plant, probably due to the late appearance of the disease. This 

can also be applied to Ostenfeld, where in both 2013 and 2014, Kabatiella eyespot was 

registered at higher levels on the upper leaves. Nevertheless, this hypothesis does not 

explain the results from Mittich in 2013, where the most affected leaves were situated in the 

middle of the plant (L-1; L0; L+1).  

Common rust was also present in Mittich but the higher levels of infected leaf area (6%) were 

registered in the upper canopy. Therefore, due to the lower damage to the leaves and its 

location in the upper canopy, common rust was of secondary importance in terms of having a 

negative effect on yield in 2013 compared to Turcicum leaf blight. As explained in section 

3.4.1, while common rust had a similar infected leaf area, the differences between the rating 

scales and the size of the lesions mean that the same percentage of common rust is not 

identical to Turcicum leaf blight. Adding the percentage of infected leaf area of both diseases 

together is a highly questionable method due to this discrepancy. In this case, a so-called 

“green rating” (a rating exposing the leaf area that is still not infected) may have been the 

most reliable option. Green ratings are commonly used when various diseases are present in 

the field as it is difficult to differentiate between the damage produced by each respective 

disease. However, green ratings fail to recognise the importance of the different foliar 

diseases on maize and the efficacy of fungicides against each specific disease. Furthermore, 

if the capacity of all foliar diseases to infect the leaf area were to be treated the same, the 

potential yield losses caused by each disease would be indeterminable, thus making it 

impossible to establish specific thresholds for each disease. This complicates the issue of 

finding a sustainable strategy for managing foliar diseases. Nevertheless, green ratings are 
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very reliable when other external factors, e.g. a “greening effect”, have to be evaluated. This 

will be explained in more depth below.  

 

4.4.3. Timing of application 

The efficacy of a fungicide depends to a large extent on the timing of application (Munkvold 

1997; Ward et al. 1997). If severe defoliation is produced by the disease before or during the 

grain-filling period (two-three weeks after pollination, BBCH 71-87), the reduced 

photosynthetic area will translate into a reduction in the supply and assimilation of nutrients 

to the cell. This leads to a subsequent reduction in the grain yield (Tuleen & Frederiksen 

1977; Agrios 2004). Therefore, fungicide application should provide a control effect during 

this critical period. Therefore, the most important stage in this context could be considered 

from tasseling to flowering (BBCH 65). Early applications reduce an initial early appearance 

of the pathogen, avoiding infections in the early stages where the plant tends to be more 

susceptible. An early application may also inhibit further infections which could continue to 

develop until the aforementioned critical stages.  

Among treatments analysed in this work, no significant differences were observed between 

different timings of application for Turcicum leaf blight in 2013 and 2014. By contrast, 

significant disease control of common rust was observed when propiconazole + azoxystrobin 

was applied at flowering (BBCH 63). Regarding Kabatiella eyespot, a significantly superior 

level of control was only achieved in 2013 when treatments were applied at mid-late stages, 

i.e. from tasseling to flowering (BBCH 55 to 63). This result was achieved despite a relatively 

low severity of the disease in the untreated control (5.9%). Significant differences among 

timings of application could not be observed in 2014, however, probably due to the lower 

level of the disease (3.7%) compared to 2013. Urban (2012) investigated the effect of 

fungicides with early and late applications against Turcicum leaf blight and Kabatiella 

eyespot during the 2010 and 2011 seasons in the same regions as those studied in this 

work. For Turcicum leaf blight, significant differences between early and late applications 

could only be confirmed in 2010, when the disease severity was high (44%, non-treated 

control). The disease severity in 2011 (7%) reported by Urban (2012) was similar to that of 

2013 (8%) and was not sufficient for differences to be registered among application timings. 

Similarly, Urban (2012) could only confirm significant differences among application timings 

when a high level of Kabatiella eyespot was recorded (2011, 19.8%).  

It is important to note that the residual period for fungicides (i.e. the amount of time it 

provides control) is approximately 14-21 days. Most of the fungicides used in these trials 

contained two active ingredients, one of which was a triazole and the other a strobilurine. 
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While strobilurines offer protective control against sporulation, germination and penetration, 

propiconazoles offer curative protection.  

Taking into account the latent periods for E. turcicum estimated in this work for 2013 (see 

section 4.3.1) and those provided in the literature (De Rossi et al. 2015), the first infection by 

the pathogen could have commenced 10-14 days prior to the first observation of the 

symptoms in the field (31 July). This date falls within the time range in which the fungicide 

applied at an early stage was still effective (application 3 July, growth stage: stem 

elongantion of the plant, BBCH 32). This would explain the efficacy reflected by the final 

results and implies that the early application was successful in providing effective protection 

against the initial cycles of infection. Nevertheless, this can be difficult to achieve as there is 

a progressive loss of efficacy of the fungicide, i.e. it is less effective 20-21 days after 

application compared to the days immediately following the application. Considering a 

window of efficacy of approx. 21 days, an early application on 3 July would imply a loss of 

efficacy around 24 July. Thus, while this was sufficient to cover the initial infection caused by 

primary inoculum, secondary infections (re-infection) which occurred in Mittich after this date 

would no longer have been controlled. Thus, while the late application would not have 

controlled against the initial infection cycle, this was probably compensated for by controlling 

these secondary infections. Unfortunately, this could not be confirmed in 2013 as there was 

no significant difference between early and late applications, likely owing to the low severity 

of the disease.  

In general, however, secondary infections are considered more damaging in these regions 

as the diseases are favoured by more optimal conditions in the late season (higher humidity, 

moderate temperatures). Therefore, a late application should be more effective in seasons 

where the level of disease severity is sufficiently high. As stated above, the results for 2013 

and 2014 in Mittich/Inzing and Ostenfeld were not convincing in this regard. However, Urban 

(2012) found that late applications (BBCH 51/55) were responsible for a significant reduction 

in the infected leaf area of Turcicum leaf blight in 2010 and Kabatiella eyespot in 2011, years 

in which the respective disease pressure was high.  

 

4.4.4. Disease yield loss relationships  

Although the infected leaf area was significantly reduced through a fungicide application in 

2013 and 2014 for Kabatiella eyespot, as well as in 2013 for Turcicum leaf blight and 

common rust, this did not convert into a significant benefit in yield (in terms of biomass or 

grain production). Wise and Mueller (2011) maintain that the efficacy of a fungicide is 

dependent on the severity of the disease that is present in the field, with a low disease 

severity resulting in inconsistent yield responses. Nevertheless, this unpredictable correlation 
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has also been reported in some cases for high disease pressure. Bradley and Ames (2010), 

for example, found significant differences between treated and non-treated plots in terms of 

disease severity but without significant differences in yield for grey leaf spot (Cercospora 

zeae-maydis). The authors concluded that this could have been due to the high disease 

severity which was also present in the treated plots due to a late fungicide application.  

In the trials conducted in Mittich and Ostenfeld, the lack of a positive yield response to a 

fungicide application may instead be related to the late occurrence of the disease. A 

noticeable increase in the infected leaf area only occurred when the plant was in the ripening 

stage and grain and biomass yield had almost formed (BBCH 85). This infers that although a 

statistically significant reduction in the infected leaf area was recorded at the end of 

September, this is not necessarily a driving factor or representative for yield losses. Despite 

a significant impact on the infected leaf area, Jørgensen et al. (2015) also reported no 

significant yield increases from fungicide treatments due to the minor severity and late arrival 

of the diseases in maize fields in Denmark. Thus, at late stages of plant development, the 

outbreak of the disease has to be severe enough to have a significant impact on yield. This is 

also supported by Urban (2012), who found that the outbreak of Turcicum leaf blight which 

occurred in the late season (BBCH 85-89) in 2010 led to significant losses in grain yield. For 

Kabatiella eyespot, the level of infected leaf area recorded at the end of September (≤6%) in 

our trials in 2013 and 2014 were recorded by Urban (2012) one month earlier in 2011, with a 

noticeable increase in the infected leaf area in September resulting in significant yield losses. 

Another explanation for the results of our trials could be closely related to the resistance of 

the respective hybrid used. Hybrids with moderate resistance against Turcicum leaf blight, as 

was the case for the variety NK Silotop in 2014, can counteract the impact of the disease to a 

greater extent. Although higher levels of disease severity were registered in the untreated 

control compared to the treated plots, yield was not significantly affected. This explanation is 

less plausible for Inzing in 2013 as the sown variety, Zidane, is classified as susceptible. In 

this case, however, the low levels of disease are unlikely to have been sufficient to have a 

significant negative effect on yield, even with a susceptible hybrid. This reasoning also 

applies to the tested varieties in Ostenfeld in 2013 and 2014, Ronaldinio and Kalvin, which 

are considered moderately susceptible to Kabatiella eyespot (levels of resistance in 

commercial hybrids are not published). Significant yield losses were not observed here 

either. Despite the inconsistency of these results, likely owing to the aforementioned low 

disease severity, the importance of hybrids and variation in their susceptibility to leaf 

diseases should not be underestimated. Several authors report significant differences in 

performance among hybrids with respect to resistance levels for Turcicum leaf blight 

(Guiomar 2011; Khot et al. 2006). Furthermore, information about the susceptibility of the 

regional varieties sown is frequently provided by the regional body responsible for plant 
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protection and private companies (Hiltbrunner et al. 2015). For Kabatiella eyespot, significant 

differences in disease severity have also been reported among different maize hybrids 

(Prończuk 2004; Formento et al. 2014). 

An additional reason for the inconsistencies between infected leaf area and yield response in 

our trials is related to the high variation in the data among repetitions of the same treatment. 

Although repetitions were analysed separately in the linear regression, the high variation in 

the data did not allow a significant negative relationship between yield and infected leaf area 

to be established in three of the four field trials.  The trial in which a significant negative 

correlation was obtained (Inzing 2014) presented relatively harmonious results for repetitions 

of the same treatment, with lower standard deviations than the other trials in general. Thus, 

despite the fact that disease pressure was lower in 2014, a negative correlation between 

yield and infected leaf area could be determined due to the consistency of the data. At the 

same time, the high data variation could be due to external factors. In a field trial, these can 

include the soil, water supply and fertilisation, factors which can never be completely uniform 

(Schuster and Geidel 1978). In addition, for the trials in Ostenfeld, the distribution of 

Kabatiella eyespot in the field was inconsistent. This was especially evident in 2014, where 

certain areas of the trial were more infected than others. This was caused by external factors 

unrelated to the effect of the fungicide.  

For example, higher levels of humidity may have been concentrated in certain zones of the 

trial due to its north-south orientation. Due to the height of the maize plant, prolonged 

radiation (from higher exposure to sunlight) in the first blocks of repetitions (southern end of 

the trial) would have caused a lower level of humidity. As a result, the plants dried out at a 

quicker rate than in other areas of the trial. In these blocks, the severity of the disease was 

noticeably lower. Thus, the orientation of field trials could be an important factor.  

Finally, a potential, so-called “greening effect” could also have had an influence on the 

correlation. In addition to the control of pathogens through inactivation, fungicides from the 

strobilurine and triazole groups have secondary effects, stimulating physiological activity in 

the plants to which they are applied. The “greening effect” refers to an increase in 

photosynthetic activity through the higher production of chlorophyll, retarding the senescence 

of the plant and producing a higher yield (Gerhard & Habermeyer 1998; Bryson et al. 2000; 

Venancio et al. 2003; Häuser-Hahn et al. 2004). While an inhibition of the ethylene 

biosynthesis is reported for triazoles, which leads to a delayed senescence (Siefer & 

Grossmann 1996), strobilurins improve nitrogen metabolism, maintaining the green leaf area 

for longer (Häuser-Hahn et al. 2004). 

A potential example of the above phenomenon is the trial in Ostenfeld in 2013. Here, two 

treatments applied at the vegetative stage (BBCH 55), namely fluopyram + prothioconazole 
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and carbendazim + fluxilazole, provided a better control against Kabatiella eyespot than 

propiconazole + azoxystrobin applied at flowering (BBCH 63) in terms of infected leaf area, 

yet propiconazole + azoxystrobin provided a yield increase which was 6 dt/ha higher, on 

average. A delay in the ripening could be observed in Inzing in 2014, where plots sprayed 

with propiconazole + azoxystrobin applied at flowering (BBCH 65) were notably greener than 

the other plots (Figure 79). Nonetheless, the infected leaf area recorded for all plots (non-

treated and treated) was similar. This result could not be methodically confirmed because 

quantitative data on the green leaf area (green leaf area rating) were not registered.  

 

 

Fig. 79. Mittich 2013. Example of greening effect observed between non-treated control and treated 

with propiconazole + azoxystrobin applied at flowering (BBCH 63). 

 

4.4.5. Economic thresholds 

There is a lack of consensus in the literature with regard to economic thresholds and their 

reliability in the decision-making process of applying fungicides to control maize leaf 

diseases. To date there are no clear thresholds established for individual diseases (Wise and 

Mueller 2011), making it difficult to quantitatively determine a level of disease severity at 

which fungicide application is profitable (Munkvold et al. 2001). For example, while Paul et al. 

(2011) established a difference between severity levels above and below 5% in relation to 

economic benefits of application, the authors themselves maintained that the results were 

unclear in terms of establishing fungicide thresholds. Studies such as these, however, may 

be useful for further research on calculating thresholds. In Europe, despite some studies on 

the relationship between yield and fungicide application, no thresholds have been developed 



Discussion 

      

172 

due to the variation in the severity of diseases like Turcicum leaf blight and Kabatiella 

eyespot across seasons, as well as the lack of research on fungicide application in general 

(Jørgensen 2012). Some research on thresholds has been done in other countries such as 

Argentina, establishing disease levels of 1.5% for common rust (P. sorghi) for a late 

application (Carmona et al. 2011), while an application is recommended for Turcicum leaf 

blight at a level of 1-5% (De Rossi 2015). In this case, the low thresholds are due to the 

optimal climatic conditions (e.g. high humidity) which exist in certain regions of Argentina for 

the development of foliar diseases, as well as favourable agricultural measures (e.g. non-

tillage, late sowing) (Diaz et al. 2012, Couretot et al. 2013).  

Smith (2015) maintains that while a threshold can be a useful tool in order to understand the 

disease levels which could be considered severe, the decision whether or not apply a 

fungicide is dependent on a number of other factors. These include an analysis of the 

symptoms in the field, susceptibility of the variety to the disease, prevailing weather 

conditions and history of the disease in the specific location. For Turcicum leaf blight, 

analysis of the initial symptoms is most important in the lower leaves as the disease can be 

passed on to the ear leaves, which have the largest impact on yield. For Kabatiella eyespot, 

on the other hand, Smith (2015) argues that management of the disease should involve the 

use of resistant varieties and tillage (debris management). Significant yield losses are only 

likely if the disease reaches levels above 50% and fungicide application may not be cost 

effective if no other diseases are present. Robertson et al. (2007) state that fungicide 

applications were rare until 2007 due to a lack of profitability, finding that the use of resistant 

hybrids was an effective control method for Grey leaf spot and common rust.  

The overwhelming consensus is that while fungicide applications on maize are effective in 

increasing yields, this does not mean that there will always be a clear economic benefit. For 

example, while there was a positive impact on yield for approximately 80% of 472 fungicide 

treatments analysed in the US from 2008-2010, only 48% of these treatments resulted in a 

positive economic benefit (Wise and Mueller 2011). Robertson et al. (2007) report similar 

results, with a positive impact on yield for 77% of the studied locations, yet only a positive 

economic benefit in 27% of the locations. As stated in section 3.4.7 regarding the calculation 

of the threshold, the decision to apply a fungicide is dependent on whether the improvement 

in yield and associated monetary benefit is sufficient to offset the costs of the fungicide 

product and its application (Liu et al. 2015). The price of maize also has to be taken into 

account here. As the maize price decreases, the threshold increases, and vice versa. For 

example, taking the average yield loss of 0.118 t/ha for K. zeae from our calculations in 

section 3.4.7, the threshold at a silage maize price of €32/t was 17%, while it would rise to 

19% at a maize price of €30/t. On the other hand, an increase in the maize price to €36/t 

would reduce the threshold to 15%. This is intuitive - if the price the farmer is receiving for his 
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maize is higher, he can justify the expense of a fungicide application at lower levels of 

disease severity. In fact, fungicide use on hybrid maize has risen in the US in recent years 

due to, among other factors, an increase in the market price of maize (Wise and Mueller 

2011). As an example, while Liu et al. (2015) found that fungicide applications provided an 

overall economic benefit, this result was sensitive to the maize price used. The price (grain 

maize) used for their calculations was an average price over a number of years (2009-2012) 

and was higher ($5.24 / bushel)14 than recent US market prices (approx. $4 / bushel)15. At 

this recent market price, the application of one of the fungicides used in their study would no 

longer have been economically beneficial.  

This lack of a clear economic benefit is especially noticeable at lower severity levels of the 

disease. For an analysis of fungicide trials in 14 US states from 2002-2009, Paul et al. (2011) 

concluded that there was a higher probability of a fungicide application having a positive 

economic effect when disease severity was greater than 5% (the diseases present were grey 

leaf spot, Turcicum leaf blight and common rust). Based on their results, a fungicide 

application when disease severity was low (<5%) could not be recommended as the 

probability of a fungicide application returning an economic benefit was less than 50%. In 

addition, application at higher disease levels was economically beneficial if the maize price 

was relatively high, application costs were low, and it could be determined with some 

certainty that yields would be low without treatment. Furthermore, studies conducted in 2009 

and 2010 found that only 3% of fungicide treatments resulted in a significant yield gain when 

the disease severity of Turcicum leaf blight was, on average, less than 1% and no other 

disease was present (Wise and Mueller 2011). 

The above is pertinent for the fungicide trials carried out in 2013 and 2014 in Ostenfeld and 

Mittich/Inzing. As the disease pressure was low in both locations, it was only possible to 

obtain a negative correlation between disease and yield in Inzing 2014 (E. turcicum) and 

Ostenfeld (K. zeae), of which only Inzing 2014 was statistically significant. Consequently, it is 

debatable whether these were ideal years to draw conclusions about the suitability of a 

fungicide application from an economic perspective, as well as the accuracy of the 

associated thresholds calculated.  

It is also argued that the decision to apply fungicides is made with factors other than 

combating fungal diseases in mind, e.g. the increase in photosynthetic activity through 

production of higher chlorophyll content, the so-called “greening effect”. This is known to 

delay the senescence of the plant and produce higher yields (Venancio et al. 2003; Häuser-

                                                             
14

 This corresponds to a price of $206.29 per ton (price per bushel x 39.36825 = metric ton price; CME Group 
2014).  
15

 This corresponds to a price of $157.47 per ton (CME Group 2014). Price used for calculations in this work 
(grain maize) was €160.  
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Hahn et al. 2004). While it has been established that this can increase yields, it does not 

necessarily provide an economic benefit. The delayed senescence can lead to a later 

harvest date, which is problematic when harvesting large fields and can also become an 

issue if bad weather in the late season has an adverse effect on the harvest. Furthermore, 

the delayed senescence may require the harvesting of maize with high moisture content, 

which can have a negative economic impact due to drying costs (Wise and Mueller 2011). 

The benefit of the “greening effect” will depend on whether the associated monetary gain 

from the increase in yield is sufficient to cover the cost of fungicide application. 

To conclude, while there is a relatively clear positive relationship between yield and fungicide 

applications, the economic benefit of an application is significantly less obvious, especially at 

low disease levels. The use of economic thresholds to justify the application of fungicides 

needs to be considered with caution, with a lack of specific thresholds for individual diseases 

to date (Wise and Mueller 2011). Furthermore, overemphasis on economic thresholds may 

understate the importance of factors such as variety susceptibility, cultural practices (e.g. 

tillage) and climatic conditions. In the European context, while there is some research on the 

relationship between fungicide application and yield losses, there is a distinct lack of 

information on the economic decision-making process and thresholds related to the 

application of fungicides. Future research is needed here in order to gain a greater 

understanding of these relationships.  
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4.4.6. Recommendations for application of fungicides on maize 

Based on the points discussed above and the results in this study and related literature, a 

number of recommendations with regard to effective fungicide application can be made for 

the analysed regions (southern and northern Germany): 

1) The use of resistant varieties and phytosanitary measures (tillage practices, crop 

rotation) are effective methods to control the development of Turcicum leaf blight and 

Kabatiella eyespot. If these measures are not sufficient or cannot be incorporated into 

the management of maize, the use of fungicides becomes a feasible option. 

 

2) If a resistant variety is being used, it is recommended to wait until early flowering to 

ascertain whether the disease has developed to a sufficient level to apply a fungicide. 

Hence, end of July is a key date in which to make an application decision (middle-late 

application).  

 

3) In most cases, an early application can be omitted as a viable option in southern and 

northern Germany. However, an application at flowering is more complicated due to the 

increased height of the plants.  

 

4) An increase in infected leaf area in the late season (September) only produces 

significant yield losses in severe cases. Currently, the likelihood of this occurring in 

Germany is relatively low.  

 

5) Compared to Turcicum leaf blight, the infected leaf area of Kabatiella eyespot will need 

to be considerably higher to cause yield losses as the lesions are noticeably smaller and 

cause less damage to the leaf.  

 

6) The potential yield benefits of a fungicide application do not necessarily convert into 

economic profit. This will depend on additional costs associated with application 

compared to the monetary gain from yield increase (dependent on the maize price).  

 

7) It is difficult to establish economic thresholds for individual maize leaf diseases due to a 

number of factors which vary on a case-by-case basis such as hybrid susceptibility, level 

of inoculum and climatic conditions. This illustrates the importance of a regional warning 

service such as those in several regions in Germany. The use of spore traps could be 

useful here to determine whether a fungicide application is necessary in the region and, 

if so, the optimal timing of application based on spore dispersal/inoculum pressure.  
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Summary 

In the last decade, there has been a progressive increase in the acreage of maize in Central 

Europe due to its high yield and diverse uses such as food, feed and bio-energy. This has 

led to more intense maize cultivation in many regions with narrowed crop rotations, 

coinciding with an increased presence of certain maize leaf diseases. The knowledge about 

the occurrence and significance of fungal pathogens and their epidemic development in 

maize fields in Central Europe is however still limited. In order to gain a broader overview of 

the phytosanitary state of maize crops in Central Europe, a qualitative monitoring of 

potentially leaf infecting pathogens in maize was carried out in selected fields in Germany, 

the Netherlands, Czech Republic, Austria, France and Poland in 2012 and 2013. Fungal 

isolates obtained from collected leaf samples were analysed morphologically. For a number 

of isolates, pathogenicity tests were conducted in the greenhouse by inoculating healthy 

plants with spore suspensions prepared from single-spore cultures in order to fulfil Koch’s 

postulates. The studies revealed that seven isolates of Kabatiella zeae (Kabatiella eyespot), 

five isolates of Bipolaris zeicola (northern corn leaf spot), two unidentified isolates of Bipolaris 

spp., two isolates of Colletotrichum graminicola (anthracnose) and six isolates of Phoma spp. 

(Phoma leaf spot) fulfilled Koch´s postulates. The resulting disease symptoms were 

described in detail. For three representative Phoma isolates (one pathogenic, two 

saprophytic) which could not be clearly identified through morphological analysis, a 

taxonomical assignment was carried out by the CBS-KNAW Fungal Biodiversity Centre 

(Utrecht, the Netherlands). Following this analysis and comparisons with internal sequence 

databases, the three isolates were confirmed as putative new species within the genus 

Peyronellaea. Turcicum leaf blight and Kabatiella eyespot were confirmed as the most 

important diseases in the monitored regions. In 2012 and 2013, a higher pressure of 

Turcicum leaf blight was observed in southern regions of Germany (Bavaria, alpine foreland) 

and northern Austria (alpine foreland). K. zeae was particularly widespread in fields of the 

Netherlands and northern Germany (northern and western Lower Saxony and Schleswig-

Holstein). The importance of common rust was also confirmed in southern Germany.  

The application of fungicides is considered an effective control method against the most 

common leaf diseases Turcicum leaf blight (causal agent E. turcicum), common rust (causal 

agent P. sorghi), and Kabatiella eyespot (K. zeae). Thus, a second part of the project 

involved an analysis of the impact of various fungicide compounds: propiconazole + 

axoxystrobin (Quilt Excel®), epoxiconazole + pyraclostrobin (Opera®), fluopyram + 

prothioconazole (Propulse®) and carbendazim + flusilazole (Harvesan®). These were tested 

under conditions of natural infection in two regions in Germany where the diseases are 

prevalent, namely Mittich (2013) and Inzing (2014) in southern Germany and Ostenfeld 

(2013 and 2014) in Northern Germany. For Turcicum leaf blight in (Mittich and Inzing), 
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statistically significant differences in disease severity between treated and untreated plots 

were only registered in 2013. A statistically significant reduction of the infected leaf area was 

also observed for common rust. In 2014, probably due to the low level of disease pressure in 

the field, only one treatment (epoxiconazole + pyraclostrobin), applied at the early stage, 

significantly reduced infected leaf area compared with the untreated control. Among 

treatments, timing of application did not produce significant differences in infected leaf area 

in both years. For Kabatiella eyespot in Ostenfeld, significant differences among all variants 

of treated fungicide plots and untreated plots were registered in 2013 and 2014. Although 

significant differences among timing of application was not registered in both years, a 

tendency for optimal application at middle to late stages of maize plants was observed in 

2013, i.e. tasseling to flowering (BBCH 51-BBCH 65). Statistically significant differences in 

infected leaf area between treated and untreated plots did not translate into significant 

positive yield responses. This was probably due to the low level of diseases in both years 

and the high variation in data among repetitions.  

In addition, linear regressions were run to determine the relationship between infected leaf 

area and yield losses. A significant negative correlation between infected leaf area and yield 

was only observed for Turcicum leaf blight in Inzing in 2014. Based on the regression 

equations, economic thresholds were calculated to evaluate the minimum percentage of 

infected leaf area which is necessary for a fungicide application to have a monetary benefit. 

These results were discussed with regard to published thresholds and should be interpreted 

with caution due to the difficulty of obtaining accurate thresholds for individual diseases. This 

is especially pertinent at low levels of disease severity, which prevailed in the trials.  

Spore dispersion patterns were analysed using a Burkard spore trap in Inzing in 2014  

(E. turcicum, natural infection), Ostenfeld in 2013 and 2014 (K. zeae, natural infection) and 

Göttingen in 2015 (E. turcicum und K. zeae, artificial inoculation). For E. turcicum, the daily 

amount of spores was examined via microscopy and real-time qPCR. The number of spores 

counted on tapes through microscopy was, on average, positively correlated with the DNA 

yields obtained from tapes and analysed with qPCR. Hence, qPCR is a reliable alternative to 

microscopic assessment for the evaluation of inoculum pressure and dispersal. On the 

contrary, the detection of K. zeae presented difficulties via microscopy and qPCR, hampering 

further analysis.  

For E. turcicum, the data obtained from the spore trap correlated with disease development 

in the field and favourable weather conditions. Moderate temperatures and high humidity 

favoured sporulation in Inzing, while in Göttingen high temperatures and dry weather 

promoted the expansion of lesions on the leaves. Based on the results of spore trapping in 

Inzing and Göttingen and the estimation of the latent period, the epidemic of  

E. turcicum was analysed in detail. Despite differences in the development of Turcicum leaf 
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blight and the origin of the inoculum (natural vs. artificial), the latent periods estimated for  

E. turcicum turned out to be very similar in both locations (6/7-14 days) and similar to those 

calculated in the literature (8-14 days). Furthermore, the latent period was shorter at the end 

of the season, possibly due to the increased concentration of inoculum as the season 

progressed.  

Overall, the spore trap helped in gaining a more in-depth understanding of the development 

of Turcicum leaf blight throughout the season. Thus, spore trapping can be very useful in 

evaluating inoculum pressure during the season as part of an integrated pest management. 

This could help to decide whether a fungicide application to control the disease is required 

and, if so, the optimal timing of application.  
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Appendix 

Tab. A1. Phytosanitary measures in field trials of 2013 and 2014. 

 
Field trial/season 

 

 
Mittich (2013) 

 

 
Inzing (2014) 

 

 
Ostenfeld (2013) 

 

 
Ostenfeld (2014) 

 

Seed treatment 
 

Insecticides 
Fungicides 

 
 

Mesurol FLO 500 FS 
Aatiram 65 FS 

 
 

Mesurol FLO 500 FS 
Aatiram 65 FS  

+ Maxim Quattro
1 

 
Mesurol FLO 500 FS 

TMTD 
 

 

Herbicides 

 

 

Laudis® OD 

2 L/ha 

 

17.05.2013 

 

Terano® WG 

0,7 kg/ha 

25 g/kg Metosulam 

600g/kg Flufenacet 

25.04.2014 

 

Calaris® SC 

0,75 l/ha 

70g/l   Mesotrione 

330g/l Terbuthylazin 

BBCH 11-12; 17.05.2013 

 

Calaris® SC 

0,5 l/ha 

70g/l   Mesotrione 

330g/l Terbuthylazin 

16.05.2014 

 Gardo Gold® SC 3 L/ha 

312,5g/l Metolachlor 

 187g/l Terbuthylazin 

17.05.2013 

Gardo Gold® SC 2 L/ha 

312,5g/l Metolachlor 

187g/l Terbuthylazin 

25.04.2014 

Dual-S-Gold® EC 1 L/ha 

915g/l  S-metolachlor 

BBCH 11-12; 17.05.2013 

Dual-S-Gold® EC 1 L/ha 

915g/l  S-metolachlor 

16.05.2014 

  

 

 

 

Trend® 90 SL (adjuvant) 0,3 L/ha 

BBCH 11-12; 17.05.2013 

Milagro Forte® OD 0,2 L/ha 

60g/l Nicosulfuron 

16.05.2014 

   Peak® WG 16g/ha 

750g/kg Prosulfuron 

BBCH 11-12 

17.05.2013 

Peak® WG 16g/ha 

750g/kg Prosulfuron 

BBCH 15-16 

10.06.2014 

1
Maxim Quattro: Thiabendazole + metalaxyl-M, fluodioxonil and azoxystrobin. Seed- and soil-borne diseases protection (providing good effect against Fusarium 

species)  
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Tab. A2. Sowing and management in field trials of 2013 and 2014. 

 
Fertilisers 

 

 
Mittich  
( 2013) 

 
Inzing  
(2014) 

 
Ostenfeld 

(2013) 

  
Ostenfeld 

(2014) 

Fertilisers 
I 

Liquid 
manure 
9 m

3
/ha 

 (45 kg N/ha) 
25.04.2013 

Liquid 
manure 
25 m

3/
ha 

(45 kg N/ha) 
20.03.2014 

 
Alzon 46 

(64 kg N/ha) 
141 kg/ha 
2.04.2014 

NP 
20+20+0+4 
22.04.2013 

Others: 
 

Excello Basis 
2.65% Cu; 3% Zn 

0.18% Fe; 0.16% Mn 
0.04% B; 53% 

CaCO3 
27% MgCO3 

 
1.20 dt/ha 

22.04.2016 

 
NP 

20+20+0+4 
 

1.50 dt/ha 
 
 

16.05.2014 

 

Fertilisers 

II 

 

 

NP 

Underground 

1.) 30 kg/ha 

27.04.2013/ 

 

2.) 108 kg/ha 

15.05.2013 

 

NPMg  

40+10+10 

187 kg/ha 

21.04.2014 

 

 

NPK 

15+9+20+2+4 

23.04.2013 

 

Others: 

Kieserit granulate 

25% MgO;  

20% S 

 

1.60 dt/ha 

23.04.2016 

 

NPK 

17+6+18+2

+6 

7.65 dt/ha 

19.05.2014 

 

 

Other Non-pathogenic Phoma Isolates 

Isolate 13.2d 

Growth rates of the colony between 53 and 59 mm in size (fast growing) after seven days, 

with a regular border. Production of aerial mycelium absent or scarce with flat/effuse and 

scattered, white to salmon areas. Pycnidia are produced in abundance and homogeneously 

distributed on the plate, situated on/ in the medium, either solitary or coalescing with other 

pycnidia. Pycnidia are cream to dark brown, pyriform and flask-shaped, with one to two 

conspicuous papillate ostioles and 75-200 x 100-400 µm in diameter. They are glabrous, in 

some cases developing hyphal outgrowths, with pseudoparenchymatous cell wall structure. 

Conidial matrix rosy-white-yellow and abundant. Conidia are extruded in very typical cirri. 

Conidia are ellipsoidal, single-celled, hyaline, typically biguttulate with small, polar guttules. 

Conidia size: 3-4.2 x 1.3-2 µm (average 3.56 x 1.55 µm). 
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Fig. A1. Isolate 13.2a. A. Pycnidia on the agar medium surface. B. Globose to subglobose pycnidia. 

C. Irregular pycnidia. D. Conidia. Scale bars B-C=100 µm; C=10 µm. 

 

Isolate 12.27  

Growth rates of the colony between 49 and 52 mm after seven days with a regular border 

regular border. Aerial mycelium, sparse, in some cases absent, white, effuse and scattered 

in some areas. Mycelium are immersed and brown. Pycnidia are produced in abundance and 

evenly distributed on the plate, both on/in the medium. Pycnidia are brown to black, globose 

to subglobose, glabrous or with hyphal outgrowths, with pseudoparenchymatous cell wall 

structure. Size of the pycnidia range between 50-125 x 75-150 µm and are either solitary or 

confluent with other pycnidia. Pycnidia with a single ostiole, non or slightly papillate. Conidial 

matrix white, containing conidia in abundance. Conidia are ellipsoidal, single-celled, hyaline, 

non- or biguttulate with polar and medium-sized guttules. Size of the conidia: 3.4-4.7 x 1.3-

1.9 µm (average 3.8 x 1.6 µm) with a few large conidia. 

 

      

Fig. A2.  Isolate 12.27. A. Pycnidia on the agar medium surface. B. Pycnidia. C. Conidia. Scale bars 

C=25 µm; D=10 µm.  

 

Isolate 12.28  

Growth rates between 45 and 47 mm after seven days with a regular border. Aerial mycelium 

sparse, white or salmon, flat to effuse. Immersed mycelium salmon. Pycnidia are produced in 

abundance, evenly distributed on the plate and disposed on both the agar surface and in the 

agar. Pycnidia are brown to black, globose to subglobose, glabrous, with 

pseudoparenchymatous cell wall structure. Size of the pycnidia within the range of 75-150 x 

A                                        B                                         C                                   D 

A                                                       B                                                              C 
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75-150 µm either solitary or confluent with other pycnidia. Presence of mycropycnidia. 

Pycnidia present a single, slightly papillate ostiole. In some cases, ‘necks’ were developed.  

Conidial matrix whitish to yellow containing conidia in abundance. Conidia are ellipsoidal, 

single-celled, hyaline, non- mono- or biguttulate, polar and small-medium size guttules. Size 

of the conidia:  3.1-4.6 x 1.5-2.4 µm (average: 3.9 x 1.7 µm). Chlamydospores present.  

 

    

Fig. A3.  Isolate 12.28. A. Pycnidia and conidial matrix on the agar medium surface. B. Presence of 

mycropycnidia structures within pycnidia. C. Mycropycnidium. D. Conidia. Scale bar=10 µm.  

 

Isolate 12.31 

Growth rates between 49 and 52 mm after seven days with a regular border. Aerial 

mycelium, sparse, white, flat to effuse. Immersed mycelium salmon. Pycnidia are produced 

in a noticeably large quantity compared with other similar isolates. Pycnidia are 

homogenously distributed on the plate and located on both the surface of the medium and in 

the medium. Pycnidia are black, with globose, subglobose and irregular shape, glabrous, 

with pseudoparenchymatous cell wall structure. Size of the pycnidia falls within the range of 

75-200 x 75-200 µm, either solitary or confluent with other pycnidia. Pycnidia present one or 

two slightly papillate ostioles. ‘Necks’ also frequently developed. Conidial matrix whitish to 

yellow, containing conidia in abundance. Conidia are ellipsoidal, single-celled, hyaline, non- 

mono- or biguttulate with polar and medium-sized guttules. Size of the conidia: 3.1-6.3 x 1.3-

2 µm (average 3.90 x 1.73 µm). Large conidia were also observed.  

 

Fig. A4.  Isolate 12.31. A. Pycnidia on the agar medium surface. B. Conidia.Scale bar=10 µm.  

 

A                                              B                                        C                                      D 

A                                                            B                        
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Isolate 13.37 

According to the obtained data from the DNA sequencing: Phoma pomorum (syn. Didymella 

pomorum). Growth rates between 45 and 51 mm after seven days with a regular border. 

Moderate to abundant production of green/olivaceous buff, dark cyan floccose to wooly aerial 

mycelium with floccose white tufts. Under UV light, the culture develops a felty black centre 

and more frequently compacted white, grey, green/olivaceous aerial mycelium. Pycnidia are 

produced in abundance both on and in medium. Pycnidia are brown to black, globose to 

subglobose, solitary and confluent, glabrous with pseudoparenchymatous wall. Single and 

multiple ostioles could be developed from a single pycnidia. The pycnidia present a hyaline-

pinkish matrix with abundant production of conidia. Conidia are ellipsoidal single-celled, 

hyaline, with two to four polar, small-sized guttules. Size of the conidia: 3.8-6 x 1.9-3.1 µm 

(average 5 x 2.5 µm). Identified as Ph. pomorum according to morphological 

characterisation. 

 

 

Fig. A5.  Isolate 13.37. A. Pycnidia on the agar medium surface. B. Conidia. Scale bar =10 µm.  

 

Isolate 13.47 

Growth rates between 65 and 70 mm after seven days with regular border. Aerial mycelium 

sparse, and in some cases absent, white effuse and scattered in some areas. Immersed 

mycelium brown. Pycnidia are produced in abundance, evenly distributed on the plate and 

disposed both on and in the medium. Pycnidia are solitary or confluent, brown to black, 

globose to subglobose and glabrous. The cell wall structure could not be clearly defined. 

Size of the pycnidia falls within the range of 75-200 x 100-200 µm. Pycnidia present 1 to 3, 

slightly to conspicuously papillate ostioles with possible development of ‘necks’. Conidial 

matrix hyaline to pinkish, containing conidia in abundance. Conidia are ellipsoidal, single-

celled, hyaline, either without or with one to two guttules polar and small in size. Size of the 

conidia: 3.4- 4.6 x 1.4-2.3 µm (average 3.9 x 1.8 µm).  

 

                               A                                          B               
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Fig. A6.  Isolate 13.47. A. Pycnidia on agar medium surface. B. Pycnidia. C. Conidia.  

Scale bar= 10 µm.  

 

Isolate 13.48 

Growth rates between 60 and 73 mm after seven days with a regular border. Aerial mycelium 

sparse, and in some cases absent, white effuse and scattered in some areas. Immersed 

mycelium, brown to red/vinaceous. Pycnidia are produced in abundance, evenly distributed 

on the plate and disposed on and in the medium. Pycnidia are solitary, confluent or in chains, 

brown to black, globose to subglobose, glabrous and with pseudoparenchymatous cell wall 

structure. The size of the pycnidia range between 100-200 x 125-250 µm. Pycnidia present 

one to three, slightly to conspicuously papillate ostioles. Conidial matrix hyaline to pinkish, 

containing conidia in abundance. Conidia are ellipsoidal, single-celled, hyaline, either without 

guttules or one to two polar small guttules. Size of the conidia: 2.7- 4.1 x 1.5- 2.2 µm 

(average 3.5 x 1.7 µm). Large spores were also present.  

 

 

Fig. A7.  Isolate 13.48. A. Pycnidia on the agar medium surface. B. Conidia. Scale bar= 10 µm.  

 

Isolate 12.10  

Growth rates between 39 and 43 mm after seven days, regular, presenting a scarce 

production of grey to brown flat/effuse, felty immersed dark mycelium, as well as black 

pycnidia which are produced in abundance. Both give the impression of dark discolouration 

of the agar medium. Pycnidia are globose to subglobose, glabrous, in some cases 

developing hyphal outgrowths, with pseudoparenchymatous cell wall structure. Size of the 

pycnidia ranges from 50-125 x 45-150 µm, either solitary or confluent with other pycnidia. In 

A                                                                  B                                                            C 

                                                           A                                                                      B                                    



Appendix 

      

210 

every pycnidium, a single, slightly papillate ostiole was observed. Pycnidia present a white 

matrix with moderate production of conidia. Conidia are ellipsoidal to irregular, single-celled, 

hyaline, presenting one to five polar, small-sized guttules. Size of the conidia: 2.8-4.6 x 1.3-2 

µm. Large spores were also observed.  

 

                                                                                       
 

Fig. A8. Isolate 12.10. A. Pycnidia on the agar medium surface. B. Pycnidia. C. Conidia. D. 

Chlamydospores (63x). Scale bars B=50 µm; C=10 µm.  

 

 

Fig. A9. Length of several Phoma and Didymella isolates investigated in this work. Red columns 

represent pathogenic isolates after pathogenicity tests. Blue columns represent isolates considered 

non-pathogenic after pathogenicity tests.  

 

A                                                           B                               C                                    D 
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Tab. A3.: results obtained from NCBI database using BLAST analysis based on ITS 4 and ITS 5 

sequences.  

Isolate 
Some of the resulted CBS species  

from BLAST 
Score Query 

covery 
E. 

number 
% 

similarity 

12.18 Didymella heteroderae CBS 109.92 835 87% 0.0 98% 

 Phoma pomorum CBS 838.84 835 87% 0.0 98% 

 Didymella maydis CBS 588.69 824 87% 0.0 97% 

12.20 Didymella heteroderae CBS 109.92 880 86% 0.0 99% 

 Didymella nigricans CBS 444.81 876 88% 0.0 99% 

 Didymella subherbarum CBS 305.79 876 88% 0.0 99% 

 Didymella maydis CBS 588.69 857 88% 0.0 99% 
13.2C Didymella pinodella CBS 110.32 905 98% 0.0 99% 

 Didymella heteroderae CBS 109.92 878 94% 0.0 99% 

 Didymella nigricans CBS 444.81 874 94% 0.0 99% 

 Didymella subherbarum CBS 305.79 874 94% 0.0 99% 

 Phoma aliena CBS 379.93  872 94% 0.0 99% 

 Didymella maydis 857 94% 0.0 99% 

13.2P Didymella heteroderae CBS 109.92 880 86% 0.0 99% 

 Didymella nigricans CBS 444.81 876 86% 0.0 99% 

 Didymella subherbarum CBS 305.79 876 86% 0.0 99% 

 Didymella maydis 857 86% 0.0 99% 

13.2B Didymella pinodella CBS 110.32 963 99% 0.0 99% 

 Phoma macrostoma var. incolorata CBS 300.36 937 95% 0.0 99% 

 Didymella subherbarum CBS 305.79 893 89% 0.0 99% 

 Phoma pomorum CBS 838.84 891 89% 0.0 99% 

 Didymella dimorpha  885 89% 0.0 99% 

 Didymella americana 885 89% 0.0 99% 

12.13 Didymella protuberans CBS 381.96 891 88% 0.0 99% 

 Didymella dimorpha CBS 346.82 891 88% 0.0 99% 
 Didymella pinodella CBS 318.90 880 88% 0.0 99% 

 Didymella subherbarum CBS 250.92 880 88% 0.0 99% 

12.19 Didymella pinodella CBS 110.32 1000 98% 0.0 99% 

 Didymella protuberans CBS 381.96 891 87% 0.0 99% 

 Didymella dimorpha CBS 346.82 891 87% 0.0 99% 

 Didimella subherbarum CBS 305.79 885 87% 0.0 99% 

 Didymella maydis 874 87% 0.0 99% 

12.36 Phoma pomorum CBS 838.84 896 88% 0.0 100% 

 Didymella pinodella CBS 110.32 977 100% 0.0 99% 

12.37 Phoma pomorum CBS 838.84 896 88% 0.0 100% 

 Didymella pinodella CBS 110.32 976 88% 0.0 99% 
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Phoma sequences forward + reverse primers 

Isolate 13.2B 

AAAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAAGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTTACC

CATGTCTTTTGAGTACCTTCGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCAGCG

TCTGAAAAAAACTTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGAT

AAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCC

TGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGCGTAGACTCGCCTCAAAAC

AATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATT

TTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATTTAA 

Isolate 13.2C only forward 

ATGTCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACCTTCTGTTTCCTCGGCGGGTCC

GCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAGTTACAACTTTCAACAACGG

ATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAAT

CTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGT

GTTGGGTGTTTGTCTCGCCTCTGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTAC

ATCTCGCGCTTTGCATTCAGAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGC

TGAACTTAAGCATATCAAATG 

Isolate 13.2P  

TTGGAAAGTAAAAAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGC

TATCTCTTACCCATGTCTTTTGAGTACCTTCTGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAATTTAAACCATTTGCAG

TTGCAATCAGCGTCTGAAAAAAATTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAG

CGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCA

TGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGTGTAGAC

TCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCATTCAGAACGACGACGTC

CAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAAA 

Isolate 12.13 

AAAAGCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTTACC

CATGTCTTTTGAGTACCTTCGTTTCCTCGGCGGGTTCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCAGCG

TCTGAAAAAACTTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATA

AGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCT

GTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGCGTAGACTCGCCTCAAAAC

AATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCAGAACGACGACGTCCAAAAGTACATT

TTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATACTAA 

Isolate 12.18 

AAAAAACGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTTAC

CCATGTCTTTTGAGTACCTTCTGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCAG

CGTCTGAAAAAAATTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA

TAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGC

CTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGTGTAGACTCGCCTCAAAA

CAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGTTTTTTTTTGACGACGTCCAAAAGTACATTT

TTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCATAAGCCG 

Isolate 12.19 

TAAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTT

ACCCATGTCTTTTGAGTACCTTCGTTTCCTCGGCGGGTTCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCA

GCGTCTGAAAAAACTTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCG

ATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATG

CCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGCGTAGACTCGCCTCAA

AACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCAGAACGACGACGTCCAAAAGTAC

ATTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAAAAAT 

Isolate 12.20 

AAAAAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTTA

CCCATGTCTTTTGAGTACCTTCTGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCA

GCGTCTGAAAAAAATTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCG

ATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATG
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CCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGTGTAGACTCGCCTCAAA

ACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCATTCAGAACGACGACGTCCAAAAGTACA

TTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAAGGG 

Isolate 12.36 

TAAAAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTTA

CCCATGTCTTTTGAGTACCTTCGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCAG

CGTCTGAAAAAACTTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA

TAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGC

CTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGCGTAGACTCGCCTCAAAA

CAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACAT

TTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATACAA 

Isolate 12.37 

TAAAAAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTGTAGGCTTTGCCTGCTATCTCTT

ACCCATGTCTTTTGAGTACCTTCGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAATTTAAACCATTTGCAGTTGCAATCA

GCGTCTGAAAAAACTTAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCG

ATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATG

CCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTCTGCGCGTAGACTCGCCTCAA

AACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTAC

ATTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATACAAG 
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