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Abstract

In lazy functional programming modularity is often achieved by using intermediate data
structures to combine separate parts of a program. Each intermediate data structure is
produced by one part and consumed by another one. Deforestation optimises a functional
program by transformation into a program which does not produce such intermediate data
structures. In this thesis we present a new method for deforestation, which combines
a known method, short cut deforestation, with a new analysis that is based on type
inference.

Short cut deforestation eliminates an intermediate list by a single, local transformation.
In return, short cut deforestation expects both producer and consumer of the intermediate
list in a certain form. Whereas the required form of the consumer is generally considered
desirable in a well-structured program anyway, the required form of the producer is only
a crutch to enable deforestation. Hence only the list-producing functions of the standard
libraries were defined in the desired form and short cut deforestation has been confined
to compositions of these functions.

Here, we present an algorithm which transforms an arbitrary producer into the re-
quired form. Starting from the observation that short cut deforestation is based on a
parametricity theorem of the second-order typed λ-calculus, we show how the construc-
tion of the required form can be reduced to a type inference problem. Typability for the
second-order typed λ-calculus is undecidable, but we only need to solve a partial type
inference problem. For this problem we develop an algorithm based on the well-known
Hindley-Milner type inference algorithm.

The transformation of a producer often requires inlining of some function definitions.
Type inference even indicates which function definitions need to be inlined. However, only
limited inlining across module boundaries is practically feasible. Therefore, we extend the
previously developed algorithm to split a function definition into a worker definition and
a wrapper definition. We only need to inline the small wrapper definition, which transfers
all information required for deforestation.

The flexibility of type inference allows us to remove intermediate lists which original
short cut deforestation cannot remove, even with hand-crafted producers. In contrast
to most previous work on deforestation, we give a detailed proof of completeness and
semantic correctness of our transformation.
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Chapter 1

Introduction

A primary feature of a good programming language for productive software development
is that it supports writing of highly modular programs. A small program module which
is weakly coupled with other modules can be both coded and debugged quickly. Fur-
thermore, it can be reused in several different contexts. Even a complex task should be
performed by a small module which uses other small modules.

1.1 Intermediate Data Structures for Modularity

In functional programming functions are the basic modules from which programs are built.
A powerful form of modularity is based on the use of intermediate data structures. Two
separately defined functions can be glued together by an intermediate data structure that
is produced by one function and consumed by the other. For example, the function any,
which tests whether any element of a list xs satisfies a given predicate p, may be defined
as follows in Haskell [PH+99]:

any :: (a -> Bool) -> [a] -> Bool

any p xs = or (map p xs)

The function map applies p to all elements of xs yielding a list of boolean values. The
function or combines these boolean values with the logical or operation (||). So we
defined any by gluing together the producer map p xs and the consumer or by an
intermediate list.

We survey some more examples. A function anyTree shall test whether any element
of a tree satisfies a given predicate. We can define this function by composing any with a
general purpose function treeToList which simply produces a list of all elements stored
in a tree.

anyTree :: (a -> Bool) -> Tree a -> Bool

anyTree p xs = any p (treeToList xs)

A list is also a suitable intermediate data structure for defining the factorial function:
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factorial :: Int -> Int

factorial n = prod [1..n]

The expression [1..n] produces the list of all integers from 1 to n and the function prod

computes the product of the list elements. On a larger scale, intermediate data structures
may be used to glue together the phases of a compiler. For example, the lexical analysis
phase produces a list of symbols which is consumed by the parser.

In his seminal paper “Why Functional Programming Matters” [Hug89] John Hughes
points out that lazy functional languages make modularity through intermediate data
structures practicable (see also [ASS96]). Functional programming languages can be clas-
sified as either eager or lazy, according to their order of evaluation. Like in standard
imperative languages, in functional languages with eager evaluation, such as Scheme

[KCR98] and ML [MTHM97], the arguments to a function are evaluated before the func-
tion is called. In contrast, in lazy languages, such as Haskell and Clean [Pv98],
arguments to a function are evaluated in a demand-driven fashion. The arguments are
initially passed in unevaluated form and are evaluated only when (and if) the computation
needs the result to continue.

Considering our definition of any we note that with eager evaluation the whole inter-
mediate boolean list is produced before it is consumed by the function or.

any (> 2) [1,2,3,4,5,6,7,8,9,10]
 

or (map (> 2) [1,2,3,4,5,6,7,8,9,10])
 

or [False, False, True, True, True, True, True, True, True, True]
 

True

In languages with eager evaluation intermediate data structures often require large
space.

In contrast, lazy evaluation ensures that the boolean list is produced one cell at a time.
Such a cell is immediately consumed by or and becomes garbage, which can be reclaimed
automatically. Hence the function any can run in constant space. Furthermore, when or

comes across the value True, the production of the list is aborted. Thus the termination
condition is separated from the “loop body”.

any (> 2) [1,2,3,4,5,6,7,8,9,10]
 

or (map (> 2) [1,2,3,4,5,6,7,8,9,10])
 

or (False : (map (> 2) [2,3,4,5,6,7,8,9,10]))
 

or (map (> 2) [2,3,4,5,6,7,8,9,10])
 

or (False : (map (> 2) [3,4,5,6,7,8,9,10]))
 

or (map (> 2) [3,4,5,6,7,8,9,10])
 

or (True : (map (> 2) [4,5,6,7,8,9,10]))
 

True

We can see from the discussion why the use of intermediate data structures as glue
has become popular in lazy functional programming.

1.2 Deforestation

Nonetheless this modular programming style does not come for free. Each list cell has to
be allocated, filled, taken apart and finally garbage collected. The following monolithic
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definition of any is more efficient than the modular one, because it does not construct an
intermediate list.

any p [] = False

any p (x:xs) = p x || any p xs

It is the aim of deforestation algorithms to transform automatically a modular func-
tional program which uses intermediate data structures as glue into another one which
does not produce these intermediate data structures. We say that the producer and the
consumer of a data structure are fused.

Besides removing the costs of an intermediate data structure, deforestation also brings
together subexpressions of producer and consumer which previously were separated by the
intermediate data structure. Thus new opportunities for further optimising transforma-
tions arise. In the deforested example program, the compiler might inline the definition of
(||) and with a few simple transformations obtain the slightly more efficient definition:

any p [] = False

any p (x:xs) = if (p x) then True else (any p xs)

This definition directly uses the primitive if-then-else construct instead of calling the
function (||).

Deforestation may also be applied to languages with eager evaluation. For these
languages deforestation makes modularity through intermediate data structures consid-
erably more attractive. However, in eager languages deforestation usually changes the
space complexity and may even turn a non-terminating program into a terminating one.
As an example of the latter phenomenon note that eager evaluation of the expression

any (\x -> 1/x > 0.5) [1,0]

successfully terminates for a deforested definition of any, but not for the modular defini-
tion. In the latter case a runtime error is caused by a division by zero. Hence it seems
vital to explicitly mark all compositions of functions that have to be deforested. In the
end this marking means that the program is no longer written in an eager language but
a language with a complex mix of eager and lazy evaluation.

The deforestation method which we present in this thesis only depends on the syntax
and type system of the programming language. So it can be applied to both lazy and
eager functional languages. However, we prove its correctness and discuss its effect on
efficiency only for a lazy language.

Deforestation is related to the optimisation of nested queries in data base query lan-
guages. Some functional deforestation techniques have been transferred successfully to
this area [Feg93].

1.3 Short Cut Deforestation

Although there is an extensive literature on various deforestation methods, their im-
plementation in real compilers proved to be difficult. Therefore, a simple deforestation
method, called cheap or short cut deforestation, was developed [GLP93, GP94, Gil96].

The fundamental idea of short cut deforestation is to restrict deforestation to inter-
mediate lists which are consumed by the function foldr. Lists are the most common
intermediate data structures in functional programs. The higher-order function foldr
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uniformly replaces in a list all occurrences of the constructor (:) by a given function ⊕
and the empty list constructor [] by a given constant n:1

foldr (⊕) n [x1, x2, x3, . . . , xk] = x1⊕ (x2⊕ (x3⊕ (. . . (xk ⊕ n). . . )))

So if foldr replaces the list constructors in a list which is produced by a term MPat
runtime, then short cut deforestation simply replaces the list constructors already at
compile time. However, the näıve transformation rule

foldr M(:) M[] MP  MP[M(:)/(:),M[]/[]]

which replaces all list constructors in MP is wrong. Consider MP = (map p [1,2]). Here
the constructors in [1,2] are not to be replaced but those in the definition of map, which
is not even part of MP.

Therefore, we need the producer MP in a form such that the constructors which con-
struct the intermediate list are explicit and can be replaced easily. The convenient solution
is to have the producer in the form (\v(:) v[] ->M ′) (:) [] where the abstracted vari-
ables v(:) and v[] mark the positions of the intermediate list constructors (:) and [].
Then fusion is performed by the simple rule:

foldr M(:)M[] ((\v(:) v[] ->M ′) (:) [])  (\v(:) v[] ->M ′) M(:)M[]

The rule removes the intermediate list constructors. Subsequent reduction steps put
the consumer components M(:) and M[] into the places which were before held by the
constructors. We call \v(:) v[] ->M ′ producer skeleton, because it is equal to the
producer MP except that the constructors of the result list are abstracted.

We observe that in general the types of M(:) and M[] are different from the types
of (:) and []. Hence, for this transformation to be type correct, the producer skeleton
must be polymorphic. So we finally formulate short cut fusion as follows: Let A be a type
and c be a type variable. If the expression P has the type (A -> c -> c) -> c -> c ,
then we may apply the transformation

foldr M(:)M[] (P (:) [])  P M(:)M[]

Usually, the producer skeleton P has the form \v(:) v[] ->M ′, but this is not required
for the semantic correctness of the transformation. Strikingly, the polymorphic type
of P already guarantees the correctness. Intuitively, P can only construct its result of
type c from its two arguments, because only these have matching types. Formally, the
transformation is an instance of a parametricity or free theorem [Wad89, Pit00].

The original short cut deforestation method requires a list producer to be defined ex-
plicitly in terms of a polymorphic producer skeleton. To easily recognise the producer
skeleton and to ensure that it has the required polymorphic type, a special function build

with a second-order type is introduced:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

The local quantification of the type variable b in the type of build ensures that the
argument of build is of the desired polymorphic type. Standard Haskell does not
have second-order types. Hence, a compiler needs to be extended to support the function
build. With build the short cut fusion rule can be written as follows:

1Note that [x1, x2, x3, . . . , xk] is only syntactic sugar for x1:(x2:(x3:(. . . (xk:[])). . . ).
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foldr M(:)M[] (build P)  P M(:)M[]

This transformation rule can easily be implemented in a compiler, hence the names
cheap or short cut deforestation. The idea is that the compiler writer defines all list-
manipulating functions in the standard libraries, which are used extensively by program-
mers, in terms of build and foldr.

1.4 Type Inference Identifies List Constructors

Originally, the second-order type of build confined deforestation to producers which
are defined in terms of list-producing functions from the standard library. Today, the
Glasgow Haskell compiler has an extended type system which permits the programmer
to use functions such as build. However, asking the programmer to supply list producers
in build form runs contrary to the aim of writing clear and concise programs. The
simplicity of a list producer would be lost as the following definition of the function map

demonstrates:

map :: (a -> b) -> [a] -> [b]

map f xs = build (\v(:) v[] -> foldr (v(:) . f) v[] xs)

Whereas foldr abstracts a common recursion scheme and hence its use for defining list
consumers is generally considered as good modular programming style, build is only a
crutch to enable deforestation.

In this thesis we present a new method for automatically transforming an arbitrary
list-producing expression into the form that is required by the short cut fusion rule. The
starting-point for our method is the observation that the correctness of the short cut fusion
rule solely depends on the polymorphic type of the producer skeleton. So we reduce the
problem of deriving the required form of the producer to a type inference problem.

We can obtain a polymorphic producer skeleton from a producer MP by the following
generate-and-test method: First, we replace in MP some occurrences of the constructor
(:) by a variable v(:) and some occurrences of the constructor [] by a variable v[]. We
obtain an expression M ′. Next we type check the expression \v(:) v[] -> M ′. If it has
the polymorphic type (A -> c -> c) -> c -> c for some type A and type variable c,
then we have abstracted exactly those constructors which construct the result list and
thus we have found the producer skeleton. Otherwise, we try a different replacement of
(:)s and []s. If no replacement gives the desired type, then no short cut deforestation
takes place.

Obviously, this method is prohibitively expensive. Fortunately, we can determine the
list constructors that need to be replaced in one pass, if we use an algorithm which infers
a most general, a principal typing. At the heart of our list abstraction algorithm,
which transforms a producer into the required form, is a type inference algorithm, which
is based on the well-known Hindley-Milner type inference algorithm.

The example producer (map p [1,2]) already demonstrated that the constructors
of a result list need not occur in the producer itself: The producer may call a function,
such as map, which constructs the result. So to abstract the result list constructors from
a producer, inlining of some function definitions is unavoidable. Nicely, type inference
can even indicate which function definitions need to be inlined. Nonetheless inlining is a
problem in practice, because extensive inlining across module boundaries would defeat the
idea of separate compilation. Hence we develop a worker/wrapper scheme. We split
every definition of a list-producing function into a definition of a worker and a definition of
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a wrapper. The definition of the wrapper is small and non-recursive. Because it contains
all the constructors of the result list, only the wrapper definition needs to be inlined to
enable deforestation. This split of a producer definition into a worker and a wrapper
definition is performed by an algorithm which is based on our type-inference based list
abstraction algorithm.

Altogether we obtain a new, type-inference based short cut deforestation algorithm
which is more flexible than the original one. It can fuse foldr consumers with nearly
arbitrary producers, especially user-defined producers. It can even remove some interme-
diate lists which the original short cut deforestation algorithm cannot remove, even with
hand-crafted producers in build form.

We formally present our improved short cut deforestation for a small functional lan-
guage with second-order types which we name F. On the one hand F is small enough
for complete formal descriptions and proofs. On the other hand, most programs of a
modern functional programming language such as Haskell can be translated into F.
In fact, F is only a slightly simplified version of the intermediate language used inside
the Glasgow Haskell compiler [PS98, GHC]. The Glasgow Haskell compiler is a highly
optimising compiler for Haskell which itself is written in Haskell. It was designed
for being easily extensible by further optimisation phases [Par94, Chi97] . Hence using F

will also simplify a future implementation of our deforestation method. For a prototype
implementation of our central list abstraction algorithm we reused data structures and
some basic functions from the Glasgow Haskell compiler.

We already presented the idea of using type-inference for deforestation in [Chi99] and
the worker/wrapper scheme in [Chi00].

1.5 Structure of the Thesis

In Chapter 2 we define the language F. We define its syntax, type system and seman-
tics. We also define the notion of a correctness-preserving transformation rule and study
the transformation rules on which our deforestation transformation is based. Finally, we
present a cost model which serves as foundation for arguments about how a transfor-
mation modifies the performance of a program. In Chapter 3 we explain informally by
examples how our new deforestation algorithm works, especially the type-inference based
list abstraction method and the worker/wrapper scheme. Chapter 4 contains the central
contributions of the thesis. We formally describe our list abstraction algorithm including
the new type inference algorithm and prove its completeness and semantic correctness.
In Chapter 5 we describe the complete deforestation algorithm. We both analyse and
practically measure its effect on programs. Subsequently we discuss in Chapter 6 several
ideas for further improving and extending our deforestation algorithm. In Chapter 7 we
present the major methods which have been proposed for deforestation and relate them to
our method. We conclude in Chapter 8 with some general thoughts about deforestation
and the prospects of type inference as analysis for program transformations.



Chapter 2

The Functional Language F

For the definition of our deforestation method we introduce a small functional language
which we name F. The language is essentially the second-order typed λ-calculus [Gir72,
Rey74, Bar92], also named system F, augmented with recursion and constructor-based
data types. We need second-order types to express the short cut fusion rule, recursion to
make the language Turing-complete and realistic and constructor-based data structures,
because we want to remove intermediate lists. Many Haskell programs can be translated
directly into F programs. F is a slightly simplified version of the intermediate language
on which all optimising transformations in the Glasgow Haskell compiler are performed
[PS98, GHC]. To keep the language simple we do not introduce any primitive types
with primitive functions. In principle, finite data types such as characters (Char) and
bounded numbers (Int) can be implemented as algebraic data types with many data
constructors. Furthermore, F does not support higher-order types beyond second-order
and Haskell-like type synonyms.

2.1 Syntax

F is an extension of the Church-style second-order typed λ-calculus, that is, terms contain
some type information [Bar92]. Thus the type of a term is unique and can easily be
determined. The abstract syntax of types is defined in Figure 2.1 and the syntax of
terms is defined in Figure 2.2. The definition of types is based on an infinite set of
type variables and a (usually finite) set of type constructors (e.g., Bool, Int, Tree).
Similarly, the definition of terms is based on an infinite set of term variables and a
(usually finite) set of data constructors (e.g., True, 42, Leaf).

Note that we often draw a line over a meta-variable to abbreviate a sequence of meta-
variables. For example, we write τ for τ1 . . . τk and even {τ} for {τ1, . . . , τk}. This informal
but helpful abbreviation leaves implicit the index of the upper bound of the sequence.

Informally, the intended meaning of terms and types is as follows. λx : τ.M is a
function that maps the variable x of type τ to M , which usually uses x. Its type is a
function type τ → ρ. M N is the function M applied to the argument N . let {xi : τi =
Mi}ki=1 in N defines variables xi by terms Mi. These xi can be used in N and also in the
Mi; that is, mutually recursive definitions are possible. The elements of all data types are
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Type variables α, β, γ, δ
Type constructors T

Types τ, ρ, ν ::= T τ data type
| α variable
| τ1 → τ2 function type
| ∀α.τ universal type

Figure 2.1: Types of F

Term variables x, y, z
Data constructors c

Terms M,N,O, P ::= x variable
| λx : τ.M term abstraction
| M N term application
| let {xi : τi = Mi}ki=1 in N mutual recursion
| c data constructor
| case M of {ci xi 7→ Ni}ki=1 data destruction
| λα.M type abstraction
| M τ type application

Figure 2.2: Terms of F

constructed by data constructors c. Because data types can be polymorphic, a data type
T τ consists of a type constructor T applied to some types τ . case M of {ci xi 7→ Ni}ki=1

tests for the top constructor of the value of M . It yields the value of the Ni corresponding
to the constructor found. Furthermore, Ni may use the arguments xi of the constructor.
Church-style polymorphism means that polymorphism is not only visible in the types but
also in the terms of the language. The polymorphic term λα.M maps the type variable
α to M . Its type is a universal type ∀α.τ . M τ is the instantiation of the polymorphic
term M to the type τ .

In addition to the context free definition of the syntax we demand that the variables
defined in a let construct are distinct, the variables within a pattern c x of a case

construct are distinct and the constructors in a case construct are distinct.
By expression we refer to both types and terms. The meta-variable e is used to

denote an expression. Similarly, we use the meta-variable a for a variable that may be
either a type or a term variable.

In examples we use round brackets ( and ) to resolve ambiguities. On the other hand
we often use Haskell-like indentation instead of curly brackets for writing the sets in
let and case constructs. Here is an example for a term:

let not : Bool→Bool

= λb:Bool. case b of

True 7→ False

False7→ True

id : ∀α.α→α
= λα. λx:α. x
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in id Bool (not True)

To reduce the number of round brackets we use the following conventions:

M e1 e2 abbreviates (M e1) e2

λx : τ.M e abbreviates λx : τ. (M e)
λα.M e abbreviates λα. (M e)

let {xi : τi = Mi}ki=1 in N e abbreviates let {xi : τi = Mi}ki=1 in (N e)

As the preceding example demonstrates we use the same symbols α, β, γ and δ as type
variables as we do for meta-variables ranging over type variables. For type constructors,
term variables and data constructors we use the same syntax as Haskell, that is, with
a few exceptions type constructors are words starting with a capital letter (e.g., Bool),
term variables are words starting with a lower-case letter (e.g., not, b, id) and data
constructors are words starting with a capital letter (e.g., True, False).

Central to this thesis is obviously the list type. We chose to use the same notation
for the list type constructor and its data constructors as in Haskell, although this
unfortunately leads to an ambiguity. The expression [] τ can be interpreted both as the
type of lists with elements of type τ and as the application of the empty list constructor
to the type τ . We usually write [τ] for the former but never use this abbreviation for
the latter. Sometimes the context is needed to resolve the ambiguity. Besides the data
constructor of the empty list [] there is also the data constructor (:) that puts a list
element in front of a list. In case patterns we use the list constructor (:) as infix
operator, that is, we write y:ys instead of (:) y ys. We can do this, because in case

patterns even polymorphic constructors do not have type arguments. For example:

let head : ∀α.[α]→ α
= λα. λxs:[α]. case xs of { y:ys 7→ y }

in head Int ((:) Int 1 ([] Int))

A program in a functional language typically consists of some definitions together with
a term to be evaluated modulo the given definitions. In F a program is just a term which
usually uses the let construct for definitions. Nonetheless, we will sometimes consider a
definition separately. For example, a definition of the function that maps a function on
all elements of a list is:

map : ∀α.∀β.(α→β)→[α]→[β]
= λα. λβ. λf:α→ β. λxs:[α]. case xs of

[] 7→ [] β
y:ys 7→ (:) β (f y) (map α β f ys)

As in Haskell we use (,) both as tuple type constructor and as tuple data construc-
tor. However, we usually write (τ1,τ2) for the tuple type (,) τ1 τ2 but never do so for the
tuple data constructor:

fst : ∀α.∀β.(α,β)→ α
= λα. λβ. λp:(α,β). case p of { (x,y) 7→ x }

swap : ∀α.∀β.(α,β)→(β,α)
= λα. λβ. λp:(α,β). case p of { (x,y) 7→ (,) β α y x }
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Note that we did not define any names or symbols for the sets of type variables, type
constructors, types, term variables, term constructors and terms. Instead, we fixed a set
of meta-variables for elements of every set, for example M , N and O for terms. We use
such conventions throughout the thesis, so that without futher comment it is always clear
over which set any meta-variable ranges. To have an unbounded number of meta-variables
we use indices, for example M1 and N3.

2.2 Substitutions and Renaming of Bound Variables

Type variables are placeholders for types and term variables are placeholders for terms.
Many operations on types and terms are based on substituting some types or terms for
some variables.

Our language F has binding constructs for both type variables and term variables. In
types, universal quantification is a variable binding construct. In terms, term and type
abstraction, definition in a let construct and destruction in a case construct are variable
binding constructs. Hence we have to distinguish between bound and free variables of an
expression.

The set of bound variables, bound(e), and the set of free variables, free(e), of an
expression e are defined in Figure 2.3.

A type is closed if it has no free (type) variables and a term is closed if it has no
free (term and type) variables. Otherwise an expression is called open. A closed term is
an F-program.

2.2.1 Substitutions

A substitution, denoted by σ, is a mapping from variables to expressions such that a
type variable is mapped to a type and a term variable is mapped to a term. Furthermore,
we require that the domain of a substitution σ,

dom(σ) := {a | σ(a) 6= a}

is finite. Hence we can write [e1/a1, . . . , ek/ak] or just [e/a] for the substitution σ with
dom(σ) ⊆ {a1, . . . , ak} and σ(a1) = e1, . . . , σ(ak) = ek.

We define the bound and free variables of a substitution and the set of variables
which are modified, that is influenced, by a substitution:

bound(σ) :=
⋃
{bound(σ(γ)) | γ ∈ dom(σ)}

free(σ) :=
⋃
{free(σ(γ)) | γ ∈ dom(σ)}

mod(σ) := dom(σ) ∪ free(σ)

It is well known that the definition of applying a substitution to an expression where
the expression contains variable binders needs care to avoid confusion between free and
bound variables [Bar81, FH88]. Bound variables shall not be replaced by a substitu-
tion and free variables that are introduced by a substitution shall not be bound by a
binding construct of the expression. To ensure these properties we rename bound vari-
ables appropriately. Figure 2.4 shows our adaption of Curry’s definition of substitution
application [CF58]. Here eσ1σ2 abbreviates (eσ1)σ2.

In the definition for the first interesting case, (∀α.τ )σ, we note the rather vague re-
quirement that β shall be a “new” type variable. Such a “new” type variable may in fact
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bound(α) := ∅
bound(∀α.τ ) := {α} ∪ bound(τ)

bound(τ1 → τ2) := bound(τ1) ∪ bound(τ2)

bound(T τ1..τk) := bound(τ1) ∪ . . . ∪ bound(τk)

bound(x) := ∅
bound(λx : τ.M) := {x} ∪ bound(τ) ∪ bound(M)

bound(M N) := bound(M) ∪ bound(N)

bound(let {xi : τi = Mi}ki=1 in N) :=
k⋃
i=1

(bound(τi) ∪ bound(Mi) ∪ {xi}) ∪ bound(N)

bound(c) := ∅

bound(case M of {ci xi 7→ Ni}ki=1) := bound(M) ∪
k⋃
i=1

(bound(Ni) ∪ {xi})

bound(λα.M) := {α} ∪ bound(M)

bound(M τ) := bound(M) ∪ bound(τ)

free(α) := {α}
free(∀α.τ ) := free(τ) \ {α}

free(τ1 → τ2) := free(τ1) ∪ free(τ2)

free(T τ1..τk) := free(τ1) ∪ . . . ∪ free(τk)

free(x) := {x}
free(λx : τ.M) := (free(τ) ∪ free(M)) \ {x}

free(M N) := free(M) ∪ free(N)

free(let {xi : τi = Mi}ki=1 in N) := (
k⋃
i=1

(free(τi) ∪ free(Mi)) ∪ free(N)) \ {xi}ki=1

free(c) := ∅

free(case M of {ci xi 7→ Ni}ki=1) := free(M) ∪
k⋃
i=1

(free(Ni) \ {xi})

free(λα.M) := free(M) \ {α}
free(M τ) := free(M) ∪ free(τ)

Figure 2.3: Bound and free variables of an expression

be a type variable that already appears in some expression. By “new” we mean that we
do not care which type variable is chosen, as long as it fulfills the given condition. Our
algorithms and proofs only rely on this partial definition. Such use of “new” variables is
common in the definition of type inference algorithms (see e.g. [DM82, LY98]). To have
a complete definition we could fix a “new” variable for example by demanding that the



12 2.2. Substitutions and Renaming of Bound Variables

ασ := σ(α)

(∀α.τ )σ := ∀β.(τ [β/α]σ)

where β new with β /∈ free(∀α.τ ) ∪mod(σ)

(T τ1..τk)σ := T (τ1σ)..(τkσ)

(τ1 → τ2)σ := (τ1σ)→ (τ2σ)

xσ := σ(x)

(λx : τ.M)σ := λy : (τσ).(M [y/x]σ)

where y new with y /∈ free(λx : τ.M) ∪mod(σ)

(M N)σ := (Mσ) (Nσ)

(let {xi : τi = Mi}ki=1 in N)σ := let {yi : τiσ = Mi[y/x]σ}ki=1 in (N [y/x]σ)

where for all i ∈ {1..k}, yi new and distinct with

yi /∈ free(let {xi : τi = Mi}ki=1 in N) ∪mod(σ)

cσ := c

(case M of {ci xi 7→ Ni}ki=1)σ := case Mσ of {ci yi 7→ Ni[yi/xi]σ}ki=1

where for all i ∈ {1..k}, yi are new and distinct with

yi ∩ (free(Ni) \ {xi} ∪mod(σ)) = ∅

(λα.M)σ := λβ.(M [β/α]σ)

where β new with β /∈ free(λα.M) ∪mod(σ)

(M τ)σ := (Mσ) (τσ)

Figure 2.4: Application of a substitution to a term

set of all variables is totally ordered and the new variable is the least variable for which
the given condition holds. Alternatively, all functions that need “new” variables could
pass around an infinite set of variables that have not yet been used. An implementation
in an imperative programming language would probably use a global variable supply in-
stead of passing around a set. We do not want to commit ourselves to any of the many
different options for implementing the creation of “new” variables. Furthermore, most
implementations would obfuscate the definition or algorithm of interest.

Finally, we define composition of two substitutions σ1 and σ2:

σ1σ2(a) := (σ1(a))σ2

So a(σ1σ2) = (aσ1)σ2.
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e1 R e2

e2 R e1

symmetry
e1 R e2 e2 R e3

e1 R e3

transitivity

α R α

τ R ρ

∀α.τ R ∀α.ρ
τ1 R ρ1 . . . τk R ρk

T τ1 . . . τk R T ρ1 . . . ρk

τ1 R ρ1 τ2 R ρ2

τ1→τ2 R ρ1→ρ2

x R x

τ R ρ M R N

λx : τ.M R λx : ρ.N

M1 R N1 M2 R N2

M1 M2 R N1 N2

∀i ∈ {1..k} τi R ρi Mi R Ni M R N

let {xi : τi = Mi}ki=1 in M R let {xi : ρi = Ni}ki=1 in N

c R c

M R N ∀i ∈ {1..k} Mi R Ni

case M of {ci xi 7→Mi}ki=1 R case N of {ci xi 7→ Ni}ki=1

M R N

λα.M R λα.N

M R N τ R ρ

M τ R N ρ

Figure 2.5: Defining properties of a congruence R on expressions

2.2.2 Renaming of Bound Variables

In our definition of substitution application we were able to rename bound variables,
because the choice of name of a bound variable will prove to be irrelevant in all our
uses of terms and types. In the literature it is common to identify expressions that
differ only in bound variables already at the syntactical level [Bar81, Pit97], that is, a
term actually represents an equivalence class of terms. However, we do not take this
approach. First, this approach is very hard to make rigorous. Whereas the set of free
variables of an expression is invariant under renaming, the set of bound variables is not. In
inductive proofs expressions are taken apart and thus bound variables are turned into free
variables and vice versa. Second, the algorithms, especially the type inference algorithm,
that we present in this thesis have to work on concrete expressions. Meta-languages for
comfortable inductive definitions on syntax with binding constructs are still subject of
research [GP99, PG00].

In the semantics of terms, which we define in Section 2.4 and Section 2.6, terms that
differ only in bound variables are equal. However, we do not define any semantics of types
that would give a congruence on types with an analogous property. Nonetheless we want
that for example any term of type ∀α.[α]→ α also has type ∀β.[β]→ β. Hence, for the
type system, which we define in the next section, we have to make renaming of bound
type variables explicit.

A relation R on expressions is a congruence, if all properties expressed as rules1 in
Figure 2.5 hold. We define a congruence ≡, called α-congruence, on expressions which
relates expressions that differ only in the names of bound type variables. Let ≡ be the

1In this thesis we often use rules to state properties and to define relations. Appendix A explains their
meaning.
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least congruence on expressions which fulfills the following two rules:

β /∈ free(τ)

∀α.τ ≡ ∀β.τ [β/α]

β /∈ free(M)

λα.M ≡ λβ.M [β/α]

We note that the definition of ≡ and of substitution application fit well together,
because substitution on expressions determines well-defined substitution on ≡-equivalence
classes:

Lemma 2.1 (Substitution application and ≡)

e ≡ e′ τ ≡ τ ′

e[τ/α] ≡ e′[τ ′/α]

e1 ≡ e′1 e2 ≡ e′2
e1[e2/x] ≡ e′1[e′2/x] �

Proof See [CF58], Section 3.E, Theorem 2(a). �

When two universal types are equal up to renaming of bound type variables their
bodies need not to be equal, but a similar property holds:

Lemma 2.2 (Equality up to renaming of universal types)

∀α.τ ≡ ∀β.ρ γ /∈ free(∀α.τ ) ∪ free(∀β.ρ)

τ [γ/α] ≡ ρ[γ/β] �

Proof By induction on the rules that define ≡, using Lemma 2.1. �

If the variables modified by a substitution and the bound variables of an expression
are disjoint, then we can push the substitution freely into the expression.

Lemma 2.3 (Pushing a substitution over a variable binding)

α /∈ mod(σ)

(∀α.τ )σ ≡ ∀α.(τσ)

α /∈ mod(σ)

(λα.M)σ ≡ λα.(Mσ) �

Proof Follows directly from the definitions of substitution application and of ≡. �

Finally, we can exchange substitutions under a certain condition.

Lemma 2.4 (Exchange of substitutions)

α /∈ mod(σ)

e[ρ/α]σ ≡ eσ[ρσ/α] �

Proof See [CF58], Section 3.E, Theorem 2(c). �

2.3 Type System

F is a typed language, in the sense that we only consider a term to be well formed if it
can be assigned a type, given an assignment of types to the free term variables occurring
in the term. A typing is a judgement of the form

Γ ` M : τ

meaning that M has type τ in the typing environment Γ. A typing environment Γ is a
finite partial mapping from term variables to types. With dom(Γ) we denote the domain
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Γ(x) = τ

Γ ` x : τ
var

Γ + {x : τ1} ` M : τ2

Γ ` λx : τ1.M : τ1 → τ2

term abs

Γ ` M : τ1 → τ2 Γ ` N : τ1

Γ ` M N : τ2

term app

∀i ∈ {1..k} Γ + {xj : τj}kj=1 ` Mi : τi Γ + {xj : τj}kj=1 ` N : τ

Γ ` let {xi : τi = Mi}ki=1 in N : τ
let

∆(c) = τ

Γ ` c : τ
cons

Γ ` M : T ρ ∀i ∈ {1..k} ` ci : ∀α.ρi→T α Γ + {xi : ρi[ρ/α]} ` Ni : τ

Γ ` case M of {ci xi 7→ Ni}ki=1 : τ
case

Γ ` M : τ α /∈ freeTy(Γ)

Γ ` λα.M : ∀α.τ
type abs

Γ ` M : ∀α.τ
Γ ` M ρ : τ [ρ/α]

type app

Γ ` M : τ M ≡M ′

Γ ` M ′ : τ
term rename

Γ ` M : τ τ ≡ τ ′

Γ ` M : τ ′
type rename

Figure 2.6: Type system

of definition of the mapping Γ. A typing environment is needed to determine the types
of the free variables of M . We write it as a set of tuples x : τ . The operator + combines
two typing environments by giving precedence to the second argument:

(Γ1 + Γ2)(x) :=

{
Γ2(x) , if x ∈ dom(Γ2)

Γ1(x) , otherwise

The sets of bound and free type variables of a typing environment and application of a
type substitution to a typing environment are given by

bound(Γ) :=
⋃
{bound(Γ(x)) | x ∈ dom(Γ)}

free(Γ) :=
⋃
{free(Γ(x)) | x ∈ dom(Γ)}

Γσ := {x : (τσ) | Γ(x) = τ}

Sometimes we are interested only in free type variables or only in free term variables. We
define

freeTy(X) := {a | a ∈ free(X) and a is a type variable}
freeTerm(X) := {a | a ∈ free(X) and a is a term variable}
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for all terms, substitutions and typing environments X.
The syntax of F does not contain definitions of data types such as

data Tree a = Leaf | Node a (Tree a) (Tree a)

as Haskell does. Instead, we assume the existence of a global data typing environ-
ment ∆ that assigns closed types of the form ∀α.ρ→ T α to data constructors. Note
that ∀α.ρ → T α is an abbreviation for ∀α1. . . .∀αl.ρ1 → . . . → ρk → T α1..αl, that is,
∀α1. . . .∀αl.T α1..αl in the case k = 0. The data typing environment implicitly defines all
data types. For example,

{Leaf:∀α.Tree α, Node:∀α.α→Tree α→Tree α→Tree α}

defines a binary tree data type that corresponds to the given Haskell data type. It is
not necessary but more convenient to have ∆ separate from Γ. In the examples in this
thesis we assume that the data typing environment is defined as follows:

∆ := {False:Bool, True:Bool,
0:Int, 1:Int, . . . ,
(:):∀α.α→[α]→[α], []:∀α.[α],
(,):∀α.∀β.α→ β →(α,β),
Leaf:∀α.Tree α, Node:∀α.α→Tree α→Tree α→Tree α}

The type system of F, that is the set of valid typings, is defined by the typing rules
given in Figure 2.6.

Note that the asymmetric definition of + ensures correct term variable scoping in
the term abs, let and case rule, so that for example ∅ ` λx:Bool. λx:Int. x :
Bool→Int→Int is valid. The condition α /∈ freeTy(Γ) in the type abs rule is nec-
essary because of the dependency of terms on types. Without this condition we could
derive that the term (λα. λx:α. λα.x) Int 1 Bool has type Bool. This typing is un-
sound, because the term evaluates to 1 as we will see in the next section. The condition
assures that only the typing ∅ ` (λα. λx:α. λα.x) Int 1 Bool : Int can be derived.

We need the type rename rule for example to be able to apply a term of type
(∀α.[α]→Int)→Bool to a term of type ∀β.[β]→Int. We need the term rename

rule for example to derive a type for the term λα. let x:[α] = [] α in λα.x as the
following derivation demonstrates:

∆([]) = ∀α.[α]
{x:[α]} ` [] : ∀α.[α]

cons

{x:[α]} ` [] α : [α]
type app

{x:[α]}(x) = [α]

{x:[α]} ` x : [α]
var

{x:[α]} ` λβ.x : ∀β.[α]
type abs

{x:[α]} ` λα.x : ∀β.[α]
term rename

∅ ` let x:[α] = [] α in λα.x : ∀β.[α]
let

∅ ` λα. let x:[α] = [] α in λα.x : ∀α.∀β.[α]
type abs

The term rename and the type rename rule raise the question why there is no
similar rule for renaming the bound type variables in the typing environment. The reason
is, that such a rule is already derivable from the given type system. Defining renaming
on typing environments in the obvious way by stating that Γ ≡ Γ′ if dom(Γ) = dom(Γ′)
and for all x ∈ dom(Γ), Γ(x) ≡ Γ′(x) holds, we obtain:

Lemma 2.5 (Environment renaming)

Γ ` M : τ Γ ≡ Γ′

Γ′ ` M : τ �
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Proof By induction on the typing rules. Whenever the typing environment is accessed
by the var rule, the bound variables of the type can be renamed by a subsequent appli-
cation of the type rename rule. �

We write ` M : τ for ∅ ` M : τ , if both M and τ are closed. Note that even if τ is
closed, then M may nonetheless contain free type variables. We say that M has a type
or that M is well-typed, if there exist Γ and τ such that Γ ` M : τ holds.

With the rules we can show that the terms and definitions given in Section 2.1 are
well-typed, for example:

` let head:∀α.[α]→ α = . . . in head Int ((:) Int 1 ([] Int)) : Int

{map:∀α.∀β.(α→β)→[α]→[β]}
` λα. λβ. λf:α→ β. λxs:[α]. case xs of

[] 7→ [] β
y:ys 7→ (:) β (f y) (map α β f ys)

: ∀α.∀β.(α→β)→[α]→[β]

The standard properties of the second-order typed λ-calculus [Bar92] also hold for F:

Lemma 2.6 (Properties of the type system)

1. Typing environment

Γ′ ⊇ Γ Γ ` M : τ

Γ′ ` M : τ

Γ ` M : τ

freeTerm(M) ⊆ dom(Γ)

Γ′ + Γ ` M : τ freeTerm(M) ⊆ dom(Γ)

Γ ` M : τ

2. Typability of subterms: If M has a type, then every subterm of M has a type.

3. Substitution properties:

Γ ` M : τ

Γ[ρ/α] ` M [ρ/α] : τ [ρ/α]

Γ + {x : ρ} ` M : τ Γ ` N : ρ

Γ ` M [N/x] : τ

4. Uniqueness of types:
Γ ` M : τ1 Γ ` M : τ2

τ1 ≡ τ2
�

Proof By induction on the typing rules. �

Lemma 2.7 (Free type variables in a typing)

Γ ` M : τ

freeTy(τ) ⊆ freeTy(Γ) ∪ freeTy(M) �

Proof Suppose α ∈ freeTy(τ) \ (freeTy(Γ) ∪ freeTy(M)). Let β be a new type variable
with β /∈ freeTy(τ)∪freeTy(Γ)∪freeTy(M). With Lemma 2.6 follows Γ[β/α] ` M [β/α] :
τ [β/α]. Hence we have Γ ` M : τ [β/α] with τ [β/α] 6≡ τ which contradicts the uniqueness
of types stated in Lemma 2.6. So no such α exists and the property holds. �
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λx : τ.M ⇓ λx : τ.M
term abs

M ⇓ λx : τ.O O[N/x] ⇓ V
M N ⇓ V

term abs app

N [let {xi : τi = Mi}ki=1 in M1 / x1, . . . , let {xi : τi = Mi}ki=1 in Mk / xk] ⇓ V
let {xi : τi = Mi}ki=1 in N ⇓ V

let

c ⇓ c
cons

M ⇓ c e′

M e ⇓ c e′ e
cons app

j ∈ {1..k} M ⇓ cj τ O Nj[O/xj] ⇓ V
case M of {ci xi 7→ Ni}ki=1 ⇓ V

case

λα.M ⇓ λα.M
type abs

M ⇓ λα.N N [τ/α] ⇓ V
M τ ⇓ V

type abs app

Figure 2.7: Evaluation of closed terms

2.4 Evaluation of Programs

We define the meaning of an F-program, that is, a closed term, by a big step, also called
natural operational semantics [Gun92]. This operational semantics is much simpler than
a denotational semantics could be. To denotationally describe the impredicative polymor-
phism of F rather complex domains would be required, for example partial equivalence
relations of domains for an untyped λ-calculus [Gun92, Mit96]. In contrast, an operational
semantics just relates terms. Furthermore, an operational semantics is more suitable for
our purposes. Many program transformations are directly related to the operational se-
mantics of a language, because they do at compile time what is otherwise done at runtime
(partial evaluation).

We give a semantics to an F-program by defining to which value it evaluates. A value
or weak head normal form is a closed term of the following form:

V ::= c τ M | λx : τ.M | λα.M

The evaluation relation takes the form

M ⇓ V

meaning that the closed term M evaluates to the value V . The relation is defined by the
rules given in Figure 2.7. The rules formalise the intuitive semantics given in Section 2.1.
The term abs app and the cons app rule show that F has a non-strict semantics2. An
argument is passed unevaluated to the body of a λ-abstraction, respectively a construc-
tor, in term application. The let rule exposes the only disadvantage of an operational
semantics. In a denotational semantics we could define the recursion simply by using a
fixpoint operator of the meta-language. Here we have to unroll the recursive definitions.

2We formalise the sharing aspect of lazy evaluation in Section 2.9.
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It may seem inconsistent that in the case rule the tested term is evaluated to a construc-
tor that is applied to types and terms but in a pattern a constructor occurs only with
term variables as arguments. However, a case destructs values not types, and hence only
term variables are replaced during evaluation.

Note that there is no one-to-one relationship between syntactic constructs and evalu-
ation rules. The term abs app rule can be used for a term application and the type

abs app rule can be used for a type application, but the cons app rule can be used for
both kinds of applications. However, all three rules demand for the evaluation of M e that
M is evaluated. The value of M determines which app rule has to be used. Hence the
evaluation rules provide a simple, deterministic algorithm for evaluating a closed term.

Already the derivation tree for the evaluation of a simple term exceeds the width of
the page:

λb:Bool. . . . ⇓ λb:Bool. . . .

True ⇓ True False ⇓ False
case True of {True 7→False, False7→True} ⇓ False

(λb:Bool. case b of {True 7→False, False7→True}) True ⇓ False

Hence, and to stress the sequential nature of evaluation, we use Launchbury’s [Lau93]
vertical notation for derivation trees of evaluation:

Instead of
derivation1 . . . derivationk

M ⇓ V
we write

M
[derivation1

...
[derivationk
V

and we abbreviate trivial derivation trees
derivation1 . . . derivationk

V ⇓ V
by [V .

With this notation our example looks as follows:

(λb:Bool. case b of {True7→False, False7→True}) True

[λb:Bool. case b of {True7→False, False7→True}
case True of {True7→False, False7→True}
[True

[False

False

False

Here is a longer evaluation derivation:
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let head : ∀α.[α]→α
=λα.λxs:[α].case xs of {y:ys7→y}

in head Int ((:) Int 1 ([] Int))

(let head:. . . = . . . in λα.λxs:[α].case xs of {y:ys7→y})
Int ((:) Int 1 ([] Int))

(let head:. . . = . . . in λα.λxs:[α].case xs of {y:ys7→y})
Intlet head:. . . = . . . in λα.λxs:[α].case xs of {y:ys7→y}
[λα.λxs:[α].case xs of {y:ys7→y}
λα.λxs:[α].case xs of {y:ys7→y}
[λxs:[Int].case xs of {y:ys7→y}
λxs:[Int].case xs of {y:ys7→y}
case (:) Int 1 ([] Int) of {y:ys7→y}
[(:) Int 1 ([] Int)

[1

1

1

1

Figure 2.8 shows an even longer example, although with many details elided. The
result is a value, but the constructor arguments are not.

Lemma 2.8 (Properties of Evaluation) Evaluation is deterministic and preserves
typing, that is

M ⇓ V M ⇓ V ′

V = V ′
M ⇓ V ` M : τ

` V : τ

Proof By induction on the evaluation rules. We assume that the choice of new variables
in substitutions is deterministic. �

Note that the preservation of typing does not imply that well-typed programs cannot
“go wrong” [Mil78]. In fact, the term

let head : ∀α.[α]→α
= λα.λxs:[α].case xs of {y:ys7→y}

in head ([] Int)

does not evaluate to a value, because the definition of head has no pattern that matches
the empty list. We say that a term M converges, written M ⇓, if there exists a value V
with M ⇓ V , and M diverges, written M ⇑, if there exists no such value. The other cause
for divergence besides an “error” is that evaluation of a term might require an infinite
derivation tree due to unbound recursion. Because safety of the type system is of no direct
concern in this thesis, we neither define a notion of “error” to distinguish it from unbound
recursion nor prove the absense of “errors” for well-typed terms. An incomplete pattern
in a case construct is the only possible cause for an “error” in F and could syntactically
be avoided.

In the following we will sometimes use the polymorphic term ⊥ which diverges for all
type arguments:

⊥ : ∀α. α
= λα. let {x : α = x} in x
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let map:∀α.∀β.(α→β)→[α]→[β]
= λα. λβ. λf:α→β. λxs:[α]. case xs of {

[] 7→[] β
y:ys7→(:) β (f y) (map α β f ys)}

in map Int Int (λz:Int.z) ((:) Int 1 ([] Int))

(let . . . in λα. λβ. λf:α→β. λxs:[α]. case xs of

{[]7→[] β, y:ys7→(:) β (f y) (map α β f ys)} )

Int Int (λz:Int.z) ((:) Int 1 ([] Int))

(let . . . in λα. λβ. λf:α→β. λxs:[α]. case xs of

{[]7→[] β, y:ys7→(:) β (f y) (map α β f ys)} )

Int Int (λz:Int.z)

(let . . . in λα. λβ. λf:α→β. λxs:[α]. case xs of

{[]7→[] β, y:ys7→(:) β (f y) (map α β f ys)} )

Int Int

(let . . . in λα. λβ. λf:α→β. λxs:[α]. case xs of

{[]7→[] β, y:ys7→(:) β (f y) (map α β f ys)} )

Int

let . . . in λα. λβ. λf:α→β. λxs:[α]. case xs of

{[]7→[] β, y:ys7→(:) β (f y) (map α β f ys)}λα. λβ. λf:α→β. λxs:[α]. case xs of {
[] 7→[] β
y:ys7→(:) β (f y) ((let . . . in λα. . . . ) α β f ys)}

λα. λβ. λf:α→β. λxs:[α]. case xs of {
[] 7→[] β
y:ys7→(:) β (f y) ((let . . . in λα . . . ) α β f ys)}

[. . .
λβ. λf:Int→β. λxs:[Int]. case xs of {

[] 7→[] β
y:ys7→(:) β (f y) ((let . . . in λα . . . ) Int β f ys)}

[. . .
λf:Int→Int. λxs:[Int]. case xs of {

[] 7→[] Int

y:ys7→(:) Int (f y) ((let . . . in λα . . . ) Int Int f ys)}
[. . .
λxs:[Int]. case xs of {
[] 7→[] Int

y:ys7→(:) Int ((λz:Int.z) y) ((let . . . inλα . . . ) Int Int (λz:Int.z) ys)}
case ((:) Int 1 ([] Int)) of {
[] 7→[] Int

y:ys7→(:) Int ((λz:Int.z) y) ((let . . . inλα . . . ) Int Int (λz:Int.z) ys)}
[((:) Int 1 ([] Int))

[. . .
(:) Int ((λz:Int.z) 1) ((let . . . inλα. . . . ) Int Int (λz:Int.z) ([] Int))}

(:) Int ((λz:Int.z) 1) ((let . . . inλα. . . . ) Int Int (λz:Int.z) ([] Int))}
(:) Int ((λz:Int.z) 1) ((let . . . inλα . . . ) Int Int (λz:Int.z) ([] Int))}

Figure 2.8: Example evaluation derivation
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2.5 Program Transformations

A program transformation is a function that for a given program yields a new program.
Using a semantic-preserving program transformation as a compiler optimisation is a well-
established technique [ASU86], which has been put into practice especially in the area
of functional programming languages [PS98]. Most program transformations can further-
more be broken down into simpler transformations that change only small local parts of
a program. We call these simple transformations transformation rules.

We are interested in transformations of F-programs that preserve typing and semantics
and improve a program. In this and the following sections we define and study the
transformation rules from which our deforestation transformation is built.

An example for a transformation rule is the β-reduction rule

(λx : τ.M)N
β
 M [N/x]

Basically, a transformation rule is a binary relation  on terms. Applying a trans-
formation rule to a program means replacing a subterm M1 of the program by M2 where
M1  M2.

We want to type a transformation rule. The need is not obvious for the β-reduction
rule. If a program is well-typed, then all its subterms including those of the form (λx :
τ.M)N are well-typed (Lemma 2.6). If (λx : τ.M)N is well-typed, then is M [N/x]
(cf. Lemma 2.8). Under these conditions we can show that replacing (λx : τ.M)N by
M [N/x] gives a well-typed program. However, already applying the inverse rule, that
is, β-expansion, causes a problem. How do we obtain the τ in (λx : τ.M)N from the
term M [N/x]? β-expansion does not preserve typing for an arbitrary τ . Finally, for the
short cut fusion rule, which lies at the heart of short cut deforestation, the typing of its
components is vital for its semantic correctness.

Because the term relations we are interested in usually relate terms with free variables,
the term relations must also contain a typing environment.

Definition 2.9 A (well-typed) term relation is a relation R on typing environments,
terms and types with

R ⊆ {(Γ,M,N, τ) | Γ ` M : τ and Γ ` N : τ}

We write Γ ` M RN : τ for (Γ,M,N, τ) ∈ R and Γ ` M 6RN : τ for (Γ,M,N, τ) /∈ R
As for typings, we write ` M RN : τ when M , N and τ contain no free term and type
variables.

If R and R′ are term relations, then

R is reflexive iff
Γ ` M RM : τ

R is symmetric iff
Γ ` M RN : τ

Γ ` N RM : τ

R is transitive iff
Γ ` M RN : τ Γ ` N RO : τ

Γ ` M RO : τ

R implies R′ iff R ⊆ R′ , that is,
Γ ` M RN : τ

Γ ` M R′N : τ
�
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We include the type in the relation for convenience and because it stresses the con-
nection with typings. According to Lemma 2.6 the type τ is determined uniquely up to
renaming of bound variables by Γ and and one of M and N .

A transformation rule is nothing but a well-typed term relation. For example, the
β-reduction rule is formally defined as follows:

Γ + {x : τ} ` M : ρ Γ ` N : τ

Γ ` (λx : τ.M)N
β
 M [N/x] : ρ

We still have to define application of a transformation rule. In contrast to term rewrit-
ing systems [DJ90, Klo92], F has variable binding constructs. When a transformation rule
is applied to a program, the free variables of the subterms that are to be exchanged are
bound in the program, for example:

λy:Int. (λx:Int.x) y
β
 λy:Int. y

Hence we define the contextual closure RC of a term relation R by the rules given
in Figure 2.9. RC contains R and closes it under all term constructs. Contextual closure
involves capture of free variables. Because the rules are obtained mechanically from the
type system rules in Figure 2.6, the contextual closure of a well-typed term relation is
also a well-typed term relation. A transformation rule determines a transformation by its
contextual closure. So formally:

` λy:Int. (λx:Int.x) y
β
 

C

λy:Int. y : Int→Int

In the literature it is more common to use the notion of a context to formalise exchang-
ing of a subterm in a program. The idea is that a context is a term with an occurrence of a
hole [·] at a position where the syntax of terms permits a term variable. C[M ] is the term
obtained from the context C by replacing the hole by the term M . In contrast to normal
substitution this context substitution may involve capture of free variables. For example,
C = λx.[·] is a context and C[x] = λx.x. Typing a context and assuring that substituting
a term of the right type gives again a well-typed term is complicated. A typed version of
Pitt’s second-order representation of contexts [Pit94, San98] could be used, but context
closure is a more tractable notion.

2.6 Contextual Equivalence

A program transformation should not change the program’s observable result. Hence we
define the notion of contextual (also called observational) equivalence for F [Pit97, Pit00].
Loosely speaking, two terms M and N are contextually equivalent if any occurrence of
M in a complete program can be replaced by N without affecting the observable result
of executing the program.

We have to specify what the observable results of an F-program are. We decide
that the top constructor of a data value, to which a program of data type evaluates, is
observable. Furthermore, for a program of function type it is observable if it converges.
We will motivate this decision after the formal definition of contextual equivalence.

Definition 2.10 Let Γ be a typing environment, M and M ′ terms and τ a type with
Γ ` M : τ and Γ ` M ′ : τ . We write

Γ ` M ∼=ctx M ′ : τ
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Γ ` M RM ′ : τ

Γ′ + Γ ` M RC M ′ : τ
include

Γ(x) = τ

Γ ` xRC x : τ
var

Γ + {x : τ1} ` M RC M ′ : τ2

Γ ` λx : τ1.M RC λx : τ1.M ′ : τ1 → τ2

term abs

Γ ` M RC M ′ : τ1 → τ2 Γ ` N RC N ′ : τ1

Γ ` M N RC M ′N ′ : τ2

term app

∀i ∈ {1..k} Γ + {xj : τj}kj=1 ` MiR
C M ′

i : τi Γ + {xj : τj}kj=1 ` N RC N ′ : τ

Γ ` let {xi : τi = Mi}ki=1 in N RC let {xi : τi = M ′
i}ki=1 in N ′ : τ

let

∆(c) = τ

Γ ` cRC c : τ
cons

Γ ` M RC M ′ : T ρ
∀i ∈ {1..k} ∆(ci) = ∀α.ρi → T α Γ + {xi : ρi[ρ/α]} ` NiR

C N ′i : τ

Γ ` case M of {ci xi 7→ Ni}ki=1 R
C case M ′ of {ci xi 7→ N ′i}ki=1 : τ

case

Γ ` M RC M ′ : τ α /∈ freeTy(Γ)

Γ ` λα.M RC λα.M ′ : ∀α.τ
type abs

Γ ` M RC M ′ : ∀α.τ
Γ ` M ρ RC M ′ ρ : τ [ρ/α]

type app

Figure 2.9: Contextual closure

iff the singleton term relation R = {(Γ,M,M ′, τ)} satisfies

` N RC N ′ : T ρ

N ⇓ c ρO ⇔ N ′ ⇓ c ρO′
and

` N RC N ′ : ρ1 → ρ2

N ⇓ ⇔ N ′⇓

We call the term relation ∼=ctx contextual equivalence. �

So two terms are contextually equivalent iff all term pairs in their contextual closure
have the same observable behaviour.

Our choice of observable behaviour is determined by the observable behaviour of
Haskell programs. In Haskell, a program, that is, the function main, must be of type
IO (), the input/output monad. However, to keep F simple, we did not add monadic
input/output to it (see [Gor94b] for a formal descriptions of how we could do so). It is
important that the output operations of Haskell can only output values of a data type,
that is, constructors, not type abstractions λα.M or term abstractions λx : τ.M . F-terms
are only evaluated to weak head normal form. Hence we only compare the top construc-
tors of data values, not their possibly unevaluated arguments. This comparison of top
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constructors suffices, because we quantify over all program pairs in the contextual closure.
For example, to show that the two terms (:) Int 1 ([] Int) and (:) Int 2 ([] Int)

are not contextually equivalent, we only have to find a pair of programs in the contextual
closure of its singleton relation that show different observable behaviour:

case (:) Int 1 ([] Int) of {(:) x xs 7→ x} ⇓ 1

case (:) Int 2 ([] Int) of {(:) x xs 7→ x} ⇓ 2

The output of a Haskell program is also determined by its input. The necessary
quantification over all input is also modelled by the quantification over all program pairs
in the contextual closure. In fact, because of this quantification over all program pairs we
do not even need to compare the constructors of data values:

Lemma 2.11 (Characterisation of contextual equivalence by convergence) Let
Γ be a typing environment, M and M ′ terms and τ a type with Γ ` M : τ and
Γ ` M ′ : τ . Then

Γ ` M ∼=ctx M ′ : τ

iff the singleton term relation R = {(Γ,M,M ′, τ)} satisfies

` N RC N ′ : ρ ρ is function or data type

N ⇓ ⇔ N ′⇓ �

Proof Obviously contextual equivalence implies the alternative definition. We only need
to prove that also for data types a test of convergence suffices.

Let ` N RC N ′ : T τ with N ⇓ c τ O and N ′ ⇓ c′ τ O′ and c 6= c′. Let

P := case N of {c x 7→ c τ x, c′ x 7→ ⊥ (T τ)}
P ′ := case N ′ of {c x 7→ c τ x, c′ x 7→ ⊥ (T τ)}

Then ` P RC P ′ : T τ , but P ⇓ and P ′⇑. So observation of constructors can be reduced
to observation of convergence. �

Our decision that convergence at function type is also observable is motivated by the
Haskell function

seq :: a -> b -> b

This function evaluates its first argument to a value (weak head normal form) and then
returns its second argument. The function enables the programmer to enforce strictness,
for example to improve the efficiency of a program. Because a term seq M True yields
True if and only if evaluation of M converges and M may be of functional type, we
can indirectly observe convergence at functional types in Haskell. Hence we also observe
convergence at functional types in our definition of contextual equivalence. As noted in
Section 5 of [Pit97], this gives the same contextual equivalence relation as if we added
seq to F and just observed constructors. The convergence test at functional type implies
Γ ` ⊥ (τ1 → τ2) 6∼=ctx λx:τ1.⊥ τ2 : τ1 → τ2. Note, however, that the Haskell type
system does not permit an argument of seq to be of a universally quantified type. So,
convergence at universally quantified type is not observable in Haskell and hence we have
Γ ` ⊥ (∀α.τ ) ∼=ctx λα.⊥ τ : ∀α.τ .

Corollary 2.12 Contextual equivalence is reflexive, symmetric and transitive. �

Proof By induction on the contextual closure rules. �
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2.7 Kleene Equivalence

To establish that two terms are not contextually equivalent is usually quite easy. As
demonstrated in the previous section, one just has to find a pair of programs of data
or function type in the contextual closure that show different convergence behaviour. In
contrast, establishing that a contextual equivalence does hold is much harder. The prob-
lem lies in the quantification over all pairs of programs in the definition of contextual
equivalence. A straightforward induction on the contextual closure rules is not possi-
ble, because evaluation of a term usually involves evaluation of larger terms (cf. [Pit97]).
Fortunately, a much more tractable characterisation of contextual equivalence has been
found. Co-inductive techniques based on the notion of (bi)similarity have been trans-
ferred from concurrency theory to functional programming. Contextual equivalence can
be characterised as a largest bisimulation. However, this theory is too extensive to be
presented here. For an overview the reader is referred to [Pit97, Gor94a, Las98]. Here we
only use some results of the theory.

Definition 2.13 Kleene equivalence, ∼=kl, is a term relation on closed terms defined
by the rule:

∀V M ⇓ V ⇔M ′ ⇓ V ` M : τ ` M ′ : τ

` M ∼=kl M ′ : τ �

Kleene equivalence is only defined for closed terms, because we defined evaluation only
for closed terms. However, we extend Kleene equivalence to open terms of open types by
comparing all closed instances.

Definition 2.14 We extend Kleene equivalence as defined by the previous definition by
closing it under the following rule:

∀N ∀ρ ` N : τ ` M [N/x][ρ/α] ∼=kl M ′[N/x][ρ/α] : ν

{x : τ} ` M ∼=kl M ′ : ν �

Lemma 2.15 Kleene equivalence implies contextual equivalence, that is ∼=kl⊆∼=ctx. �

Proof See [Pit97], Proposition 3.9, or [Las98], Proposition 4.3.1. �

Note that Kleene equivalence does not coincide with contextual equivalence. For
example, the terms (:) Int 1 ([] Int) and (:) Int ((λx:Int.x) 1) ([] Int) are
contextually equivalent but obviously not Kleene equivalent.
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Lemma 2.16 The following equivalences hold:

Γ + {x : ρ} ` M : τ Γ ` N : ρ

Γ ` (λx.M)N ∼=ctx M [N/x] : τ
term application

Γ ` M : τ

Γ ` (λα.M) ρ ∼=ctx M [ρ/α] : τ [ρ/α]
type application

Γ + {y : τj} ` let {xi : τi = Mi}ki=1 in N : τ y /∈ {xi}ki=1

Γ` let {xi : τi = Mi}ki=1 in N [xj/y]
∼=ctx let {xi : τi = Mi}ki=1 in N [let {xi : τi = Mi}ki=1 in Mj / y]
: τ

inlining3

Γ ` let {xi : τi = Mi}ki=1 in N : τ {xi}ki=1 ∩ free(N) = ∅
Γ` let {xi : τi = Mi}ki=1 in N
∼=ctx N
: τ

let elimination

�

Proof For every term relation given above the closed instances of related terms evaluate
to the same value. Then contextual equivalence follows with Lemma 2.15. �

We call both the use of the term application and of the type application relation
from left to right β-reduction. By inlining we often refer to a combination of the
actual inlining relation with subsequent β-reduction. After inlining of all occurrences of
a variable let elimination is sensible.

2.8 The Short Cut Fusion Rule

For the definition of the short cut fusion rule types are vital.

Definition 2.17 The short cut fusion rule
fusion
 is defined as follows:

Γ ` M(:) : τ1 → τ2 → τ2 Γ ` M[] : τ2

Γ ` P : ∀γ.(τ1 → γ → γ)→ γ → γ

Γ ` foldr τ1 τ2 M(:) M[] (P [τ1] ((:) τ1) ([] τ1))
fusion
 P τ2 M

(:) M[]

The idea of the short cut fusion rule is that because of its polymorphic type the
producer skeleton P constructs its result only with its two arguments (and these two
arguments are not used for any other purpose). It is vital that we demand in the definition
that P has type ∀γ.(τ1 → γ → γ) → γ → γ. This typing would not follow if we just
demanded that left and right side of the rule are well-formed terms of the same type.
Dropping the condition on the type of P would for example admit for τ2 = [τ1] the
producer skeleton

P : ∀γ.(τ1 →[τ1]→[τ1])→[τ1]→[τ1]

= λγ. λc:τ1 →[τ1]→[τ1]. λn:[τ1]. [] τ1

3Usually “inlining” only refers to the substitution of right hand sides of definitions for variables, not
complete recursive definitions. Here we use the term in a more liberal sense which is sometimes referred
to as “specialisation”.
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which obviously does not use its arguments to construct its result.
As it stands the short cut fusion rule is neither well-typed nor does it imply contextual

equivalence. This is because foldr is an arbitrary free variable in the rule whereas for
well-typedness and our informal correctness argument we assumed it to be defined as
follows:

foldr : ∀α.∀β.(α→ β → β)→ β → [α]→ β
= λα.λβ.λc:α→ β → β.λn:β.λxs:[α]. case xs of

[] 7→ n

y:ys 7→ c y (foldr α β c n ys)

With this definition contextual equivalence holds:

Γ ` M(:) : τ1 → τ2 → τ2 Γ ` M[] : τ2

Γ ` P : ∀γ.(τ1 → γ → γ)→ γ → γ

Γ` (let foldr . . . in foldr) τ1 τ2 M(:) M[] (P [τ1] ((:) τ1) ([] τ1))
∼=ctx P τ2 M

(:) M[]

: τ2

(∗)

We can apply the short cut fusion rule nonetheless, because in Haskell foldr is
predefined in all programs (cf. Lemma 2.16 about inlining). We do however have to take
care that the variable foldr is not a locally defined variable that happens to have the
same name and hides “our” foldr.

We do not give a proof here that (∗) holds but just refer to relevant work. The two
sides of (∗) are not Kleene equivalent. Nor is the mentioned bisimulation characterisation
useful for proving contextual equivalence of the two sides. However, as stated already in
the introduction, the contextual equivalence of the two sides is a direct consequence of
the so called free theorem of the polymorphic type of the producer skeleton.

Reynolds was the first to show that the second-order typed λ-calculus is parametric,
which intuitively means that the semantics of different instances of a polymorphic term
are closely related [Rey83, MR92]. Later Wadler noticed that parametricity implies that
for every type there exists a semantic equivalence theorem that holds for every term of
this type [Wad89]. For a monomorphic type this theorem is trivial, but not so for a
polymorphic type. For these theorems Wadler coined the term theorems for free.

Reynold’s proof is based on a simple set theoretical model of the second-order λ-
calculus that was later proved not to exist [Rey84]. Wadler uses a complex denotational
model. Pitts gives a detailed proof of parametricity for contextual equivalence [Pit00].
Furthermore, he uses a second-order typed λ-calculus with recursion and a list data type,
which is very similar to F. The only technical problem in applying his proofs to F is that
F permits contravariant data types (see Chapter 6). Pitt’s theory is only applicable to
languages with covariant data types and he only gives hints on how this restriction could
be overcome. However, just defining all notions necessary to state parametricity would
require a chapter of its own. The central theme of this thesis is not the fusion rule but
how a producer can be transformed so that the short cut fusion rule can be applied. The
short cut fusion rule itself is already known from [Gil96, GLP93], where also an informal
proof of its correctness based on Wadler’s free theorems is given.

2.9 A Cost Model

The purpose of deforestation is to reduce the costs of a program. There are various kinds of
costs. A simple kind of cost is the program size. The size of a term is a good approximation
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of the final program code size. The effect of a transformation rule on the size of a term
is easy to determine. Small program code size is seldom an important aim in practice —
in fact, most program transformations trade program size for reduction of other costs —
but it should not be neglected. Repeated application of transformation rules may easily
lead to an exponential growth of the program, so that even the compiler itself can no
longer handle the program. Deforestation methods based on unfold/fold transformations
are known to suffer from the large scale inlining they perform (cf. Section 7.3).

Here we are mainly interested in the time and space costs of a running program.
Obviously, a complete analysis of the effect of a transformation on these costs is impossible.
As a first step the relationship with all other transformations that are performed by a
compiler would need to be analysed. However, even hardware details such as the size of
the processor cache and the word size of the processor influences time and space costs.
Despite the impossiblity of a complete cost analysis we need some description of the most
relevant properties of program execution as a guide for the design of a transformation.
For this purpose our operational evaluation semantics is not sufficient. It defines the
observable property of lazy evaluation, namely non-strictness, but it does not describe
one important implementation aspect of laziness: sharing. Laziness does not only require
that a function argument is only evaluated if it is needed for obtaining the result, but
furthermore, that such a function argument is evaluated at most once. The following
example demonstrates that our evaluation semantics duplicates unevaluated arguments
and thus also duplicates their evaluation:

(λx:Bool. case x of {True7→x}) ((λy:Bool.y) True)

[λx:Bool. case x of {True7→x}

case ((λy:Bool.y) True) of {True7→((λy:Bool.y) True)}
(λy:Bool.y) True

[λy:Bool.y
[True

True

 first evaluation


(λy:Bool.y) True

[λy:Bool.y
[True

True

 second evaluation

True

True

Abstract machines that describe the implementation of lazy functional languages also
describe sharing. However, there exists a large number of different abstract machines
for lazy evaluation, for example the G-machine [Joh84], the STG-machine [Pey92], the
TIM [FW87] and TIGRE [KL89]. More importantly, abstract machines are already too
detailed for reasoning about them.

2.9.1 A Semantics for Lazy Evaluation

John Launchbury defined a natural operational semantics for lazy evaluation [Lau93] that
lies midway between our evaluation semantics and an operational semantics of an abstract
machine. This semantics has been adopted by a number of researchers as the formal
definition of lazy evaluation [TWM95, SP97, WP99, MS99, GS99]. Similar semantics had
been independently developed for PCF [SI96] and Clean [BS98]. Furthermore, Sestoft
formally derived a simple abstract machine from this lazy semantics [Ses97]. Hence we
adopt this semantics of lazy evaluation here as well.
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G-terms A,B ::= x | λx.A | Ax | let {xi = Ai}ki=1 in B |
c | case A of {ci xi 7→ Bi}ki=1

G-values Z ::= λx.A | c x

Figure 2.10: Syntax of untyped terms

x∗ := x

(λx : τ.M)∗ := λx.(M∗)

(M N)∗ :=


M∗ x , if N = x
let x = N∗ in (M∗)x , otherwise,

where x does not occur free in N or M

(let {xi : τi = Mi}ki=1 in N)∗ := let {xi = M∗
i }ki=1 in N∗

c∗ := c

(case M of {ci xi 7→ Ni}ki=1)∗ := case M∗ of {ci xi 7→ N∗i }ki=1

(λα.M)∗ := M∗

(M τ)∗ := M∗

Figure 2.11: Translation from F-terms to G-terms

Φ : λx.A W Φ : λx.A
abs

Φ : A W Ψ : λy.B Ψ : B[x/y] W Ω : Z

Φ : Ax W Ω : Z
abs app

Φ : Φ(x) W Ψ : Z

Φ : x W Ψ[x 7→ Z] : Z
var

∃y Φ + {yi 7→ Ai[y/x]}ki=1 : B[y/x] W Ψ : Z

Φ : let {xi = Ai}ki=1 in B W Ψ : Z
let

Φ : c W Φ : c
cons

Φ : A W Ψ : c y

Φ : Ax W Ψ : c y x
cons app

j ∈ {1..k} Φ : A W Ψ : cj y Ψ : Bj[y/xj] W Ω : Z

Φ : case A of {ci xi 7→ Bi}ki=1 W Ω : Z
case

Figure 2.12: Lazy Evaluation

We define lazy evaluation for a language G, whose syntax is given in Figure 2.10. The
language is untyped, because types are not needed for evaluation. Besides types, the only
difference in syntax between G and F is that in G the argument in an application has
to be a variable. This restriction considerably simplifies the lazy evaluation semantics,
because the semantics only has to assure that let-defined variables are shared. The
syntax assures that the argument in every application is let-defined. G-values directly
correspond to F-values, except that no type application exists and that all arguments of
a data constructor have to be variables. Figure 2.11 gives a translation from F-terms into
G-terms that drops all type information and introduces let constructs where necessary.
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To express sharing the semantics for lazy evaluation operates on graphs instead of
terms. For graphs a machine-oriented representation is chosen. A graph Φ : A consists
of a heap Φ and a G-term A. The term component represents the top of the graph and
the heap contains possibly shared parts. A heap, denoted by Φ, Ψ or Ω, is a partial
mapping from variables to G-terms. We write it as a set of tuples x 7→ A. By domain of
a heap we mean the domain of the mapping. The operator + combines two heaps under
the assumption that their domains are disjoint. We only consider closed graphs, that is,
graphs where the free variables of the term and of all terms in the heap are a subset of
the domain of the heap. So a closed graph represents a closed term with shared subterms.
For example,

{z7→(λy:Bool.y) t, t7→True} : case z of {True 7→ z}

may be graphically visualised as

case z of {True 7→ z}

(λy:Bool.y) t

True

and represents the term

case (λy:Bool.y) True of {True 7→ (λy:Bool.y) True}

In Figure 2.12 the semantics of lazy evaluation is given. Similar to the definition of
evaluation in Section 2.4 we define a lazy evaluation relation

Φ : A W Ψ : Z

meaning that the graph Φ : A evaluates to the graph Ψ : Z. We write Φ : A W , if there
exists a graph Ψ : Z with Φ : A W Ψ : Z. The rules abs, cons and cons app directly
correspond to their F-counterpart. The rules abs app and case are slightly simpler,
because we only substitute variables for variables. Thus the duplication of subterms that
happens during the evaluation of F-terms is avoided. The central parts of lazy evaluation
are the let and the var rule. The let rule just adds new variable bindings to the heap.
Thus the definition bodies of the let construct are shared. Recursive definitions create
cyclic graphs. Finally, the var rule assures that a term in the heap is evaluated at most
once. To evaluate a variable x, its corresponding term in the heap is evaluated. Because
we only consider closed graphs, the variable x must be in the domain of the heap. The
resulting graph is also the result of evaluating x. However, by Ψ[x 7→ Z] we mean that
the heap is updated to map x to the value Z. Hence another evaluation of x will directly
yield Z without any further evaluation.

As an example consider the term that demonstrated the lack of sharing in the evalu-
ation semantics of F-terms.

((λx:Bool. case x of {True7→x}) ((λy:Bool.y) True))∗

= let z = (let t = True in (λy:Bool.y) t)

in (λx:Bool. case x of {True7→x}) z

For lazy evaluation we use the same vertical notation as for evaluation.
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{} : let z = (let t = True in (λy:Bool.y) t)

in (λx:Bool. case x of {True7→x}) z

{z7→let t = True in (λy:Bool.y) t} : (λx:Bool. case x of {True7→x}) z

[ " : λx:Bool. case x of {True7→x}

" : case z of {True7→z}

" : z

" : let t = True in (λy:Bool.y) t
{. . . , t7→True} : (λy:Bool.y) t

[ " : λy:Bool.y " : t

[ " : True

" : True

" : True

" : True

{z7→True, . . . } : True



evaluation

 " : z

[ " : True

" : True

 no repeated evaluation, only look up

" : True

" : True

{z7→True, t7→True} : True

Note that the computation is longer than for the unshared evaluation semantics, be-
cause the lazy semantics describes evaluation at a higher level of detail.

The two semantics agree in the following sense. The translation ∗ from F-terms into G-
terms is adequate, that is, evaluation of an F-term and lazy evaluation of its translation
have the same convergence behaviour:

` M : τ τ not a universal type

M ⇓ ⇔ {} : M∗ W

Because of the quantification over all F-terms this implies especially

` M : T τ

M ⇓ c τ N ⇒ ∃Ψ, x {} : M∗ W Ψ : c x
and

` M : T τ

{} : M∗ W Ψ : c x ⇒ ∃N M ⇓ c τ N

It would be too much here to extend the translation ∗ to a binary relation between
F-terms and graphs and prove that the relation is a bisimulation. The adequacy result
indirectly follows from [Abr90], where the agreement between a natural evaluation seman-
tics and a denotational semantics is proved, and [Lau93], where the agreement between
this denotational semantics and his lazy evaluation semantics is proved.

Our lazy evaluation semantics differs from Launchbury’s in two respects. First, Launch-
bury requires all bound variable to be distinct and renames variables in the var rule. We
do not require distinct bound variables and rename variables in the let rule, as sug-
gested in [Ses97]. The introduction of new variables in the let rule is closer to an actual
implementation. Second, in Launchbury’s var rule the reference to x is omitted in the
heap during the evaluation of Φ(x). This omission models the so-called “black-holing”
in implementations of lazy languages [Pey92]. Mainly it enables the garbage collector
to recognise more parts of the heap as garbage. We left this detail out for the sake of
simplicity.
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2.9.2 Improvement

The lazy evaluation semantics is well suited to determine and compare costs of evaluation.
The number of high-level steps to evaluate a program P , that is, the size of the derivation
tree of {} : P ∗ W Φ : Z, is an abstract measure for the runtime of P . Because the heap is
modelled by the semantics, the number of heap cells that are allocated during evaluation
can be determined. Note that the size of the heap is not a measure of the space costs,
because parts of the heap may be garbage, that is, they are no longer reachable from the
term component of the graph. The lazy evaluation semantics can be extended to identify
garbage and even perform garbage collection ([Lau93], Section 6.2).

We say that a transformation rule Γ ` M  M ′ : τ is improving, if for all pro-
grams P and P ′ in its contextual closure P ′ has lower evaluation costs than P . Thus
improvement is described similarly to contextual equivalence, but it is more complex,
because the lazy evaluation semantics is more complex. This notion of improvement has
been formally defined for runtime in [MS99] and for space in [GS99]. Unfortunately, the
theories developed there are still too weak to prove improvement for many of the trans-
formation rules used in our deforestation algorithm, especially inlining and the fusion
rule. Nonetheless, the lazy evaluation semantics and improvement serve as background
for intuitive arguments about the effect of a transformation. Furthermore, they are a
good basis to show that certain transformation rules could worsen performance. In gen-
eral inlining may increase evaluation costs by duplicating evaluation. However, inlining
improves runtime performance for example if the inlined definition body is a value or the
variable whose definition body is inlined is used at most once [PM99].





Chapter 3

Type-Inference Based Deforestation

In this chapter we explain how our new deforestation algorithm works. We mostly use
examples to illustrate the working of the algorithm and discuss certain design decisions.
The central part of the deforestation algorithm, the list abstraction algorithm, will be
presented fully and formally and proved to be complete and correct in the following
chapter. The remaining part of the deforestation algorithm is quite simple and is a
combination of several well-known transformations, such as inlining, whose correctness
we have proved in the previous chapter.

3.1 List Abstraction through Type Inference

We deforest a program with the short cut fusion rule

Γ ` M(:) : τ1 → τ2 → τ2 Γ ` M[] : τ2

Γ ` P : ∀γ.(τ1 → γ → γ)→ γ → γ

Γ ` foldr τ1 τ2 M(:) M[] (P [τ1] ((:) τ1) ([] τ1))
fusion
 P τ2 M

(:) M[]

that we discussed in Section 2.8. Our deforestation algorithm searches for terms of the
form foldr τ1 τ2 M(:) M[] MP and then tries to transform the producer MP into the
form P [τ1] ((:) τ1) ([] τ1) with Γ ` P : ∀γ.(τ1 → γ → γ)→ γ → γ to subsequently
apply the fusion rule. To obtain the polymorphic producer skeleton P the transformation
abstracts from the producer MP the list type [τ1] and the constructors (:) τ1 and [] τ1

that construct the result list. We call this transformation list abstraction.

3.1.1 Basic List Abstraction

The following term produces a list of type [Int]:

let mapInt : (Int→Int)→[Int]→[Int]

= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ []

y:ys 7→ (f y) : (mapInt f ys)

in mapInt inc [1,2]
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For the moment we only consider monomorphic list constructors

∆ = {(:):Int→[Int]→[Int], []:[Int], . . . }

and a monomorphic version of map for type Int. Furthermore we assume that the defini-
tion of mapInt is part of the producer. We will lift these restrictions step by step in the
following sections. We start list abstraction with the typing of the producer:

{inc:Int→Int}
` let mapInt : (Int→Int)→[Int]→[Int]

= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ []

y:ys 7→ (:) (f y) (mapInt f ys)

in mapInt inc ((:) 1 ((:) 2 []))

: [Int]

We replace the list constructor (:), respectively [], at every occurrence by a new
variable v(:), respectively v[] (except for patterns in case constructs, because these do
not construct but destruct a list). Furthermore, the types in the term and in the typing
environment have to be modified. To use the existing ones as far as possible, we only
replace the list type [Int] at every occurrence by a new type variable γ. Furthermore,
we add v(:) : Int→ γ → γ, respectively v[] : γ, to the typing environment, where γ is a
new type variable for every variable v(:), respectively v[].

{inc:Int→Int, v(:)1 :Int→ γ1 → γ1, v(:)2 :Int→ γ2 → γ2,
v(:)3 :Int→ γ3 → γ3, v[]1 :γ4, v[]2 :γ5}
` let mapInt : (Int→Int)→ γ6 → γ7

= λf:Int→Int.λxs:γ8. case xs of

[] 7→ v[]1

y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc (v(:)2 1 (v(:)3 2 v[]2 ))

This typing environment and term with type variables do not form a valid typing
for any type. They are the input to a type inference algorithm that we will present
in Section 4.3.5. The type inference algorithm replaces some of the new type variables
γ1, . . . , γ8 and determines a type to obtain again a valid typing. More precisely, the type
inference algorithm determines a principal typing, that is, the most general instance of the
input that gives a valid typing. Note that type inference cannot fail, because the typing
we start with is valid. In the worst case the type inference algorithm yields the typing of
the original producer. We just try to find a more general typing. For our example the
type inference algorithm yields the valid typing:

{inc:Int→Int, v(:)1 :Int→ γ → γ, v(:)2 :Int→[Int]→[Int],
v(:)3 :Int→[Int]→[Int], v[]1 :γ, v[]2 :[Int]}
` let mapInt : (Int→Int)→ [Int]→ γ

= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ v[]1

y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc (v(:)2 1 (v(:)3 2 v[]2 ))

: γ
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The type of the term is a type variable γ and nothing other than the v(:)i ’s and the
v[]i ’s has γ in its type. Hence list abstraction is possible: The typing environment tells us
that v(:)1 and v[]1 construct values of type γ, so they construct the result of the producer.
In contrast v(:)2 , v(:)3 , and v[]2 have the types of normal list constructors. Hence they
construct lists that are internal to the producer. So we reinstantiate v(:)2 , v(:)3 , and v[]2 to
normal list constructors and abstract the type variable γ and the variables v(:)1 and v[]1

to obtain the producer skeleton of the required type:

{inc:Int→Int}
` λγ. λv(:)1 :Int→ γ → γ.λv[]1 :γ.

let mapInt : (Int→Int)→ [Int]→ γ
= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ v[]1

y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc ((:) 1 ((:) 2 []))

: ∀γ.(Int→ γ → γ)→ γ → γ

The complete producer can be written as

(λγ. λv(:)1 :Int→ γ → γ.λv[]1 :γ. let . . . in . . . ) [Int] (:) []

In this list abstracted form it is suitable for short cut fusion with a foldr consumer.

3.1.2 Polymorphic List Constructors

Until now we assumed that we only have lists over Ints. In reality, lists are polymorphic,
that is, ∆((:)) = ∀α.α→[α]→[α] and ∆([]) = ∀α.[α]. So the typing we start with
looks as follows:

{inc:Int→Int}
` let mapInt : (Int→Int)→[Int]→[Int]

= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ [] Int

y:ys 7→ (:) Int (f y) (mapInt f ys)

in mapInt inc ((:) Int 1 ((:) Int 2 ([] Int)))

: [Int]

We want to abstract the list of type [Int]. Therefore, we replace every list constructor
application (:) Int, respectively [] Int, by a different variable v(:), respectively v[].
Then we continue just as described in the previous section.

After type inference we naturally have to replace again those variables v(:) and v[]

that are not abstracted by list constructor applications (:) Int, respectively [] Int. We
obtain a producer skeleton of the required type

{inc:Int→Int}
` λγ. λv(:)1 :Int→ γ → γ.λv[]1 :γ.

let mapInt : (Int→Int)→[Int]→ γ
= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ v[]1

y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc ((:) Int 1 ((:) Int 2 ([] Int)))

: ∀γ.(Int→ γ → γ)→ γ → γ
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and the complete producer looks as follows:

(λγ. λv(:)1 :Int→ γ → γ.λv[]1 :γ. let . . . in . . . ) [Int] ((:) Int) ([] Int)

Note that in contrast to the list constructors (:) and [] the abstracted variables v(:)1

and v[]1 must have a monomorphic type, because the terms M(:) and M[] of a consumer
foldr τ1 τ2 M(:) M[] are monomorphic.

3.2 Inlining of Definitions

In practice the definition of mapInt will not be part of the producer. The producer will
just be mapInt inc [1,2], from which it is impossible to abstract the list constructors
that construct the result list, because they are not part of the term. Hence we may have
to inline definitions of variables such as mapInt, that is, make them part of the producer.

3.2.1 Determination of Variables that Need to be Inlined

Rather nicely, instead of having to use some heuristics for inlining, we can use the typing
environment of a principal typing to determine exactly those variables whose definitions
need to be inlined to enable list abstraction. Note that it is important not just to inline
the right hand side of a recursive definition but the whole recursive definition.

We consider the producer mapInt inc [1,2]. So we start with its typing:

{inc:Int→Int, mapInt:(Int→Int)→[Int]→[Int]}
` mapInt inc ((:) Int 1 ((:) Int 2 ([] Int)))

: [Int]

Before type inference we replace the type [Int] at every occurrence by a new type
variable, not only in the term but also in the types of all inlinable variables in the typing
environment.

{inc:Int→Int, mapInt:(Int→Int)→ γ1 → γ2,
v(:)1 :Int→ γ3 → γ3, v(:)2 :Int→ γ4 → γ4, v[]1 :γ5}
` mapInt inc (v(:)1 1 (v(:)2 2 v[]1 ))

The type inference algorithm gives us the principal typing

{inc:Int→Int, mapInt:(Int→Int)→ γ1 → γ2,
v(:)1 :Int→ γ1 → γ1, v(:)2 :Int→ γ1 → γ1, v[]1 :γ1}
` mapInt inc (v(:)1 1 (v(:)2 2 v[]1 ))

: γ2

The type of the term is a type variable γ2. However, we cannot abstract γ2, because
it appears in the typing environment in the type of a variable other than the v(:)i ’s and
the v[]i ’s. The type variable γ2 also occurs in the type of mapInt. This occurrence of γ2

signifies that the definition of mapInt needs to be inlined.
We do not even have to repeat the whole substitution and type inference process for the

extended producer, that is, the producer with the definition of mapInt inlined. Instead we
can continue processing the right hand side of mapInt inside the extended producer. We
just have to unify the resulting type of the right hand side with (Int→Int)→ γ1→ γ2.
Thus we can inline definitions and process them until either the type of the extended
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producer becomes [Int] and list abstraction fails, or it is a type variable that appears
in no type of a variable of the typing environment, except those of the v(:)i and v[]i of
course. Subsequently, all processed (potentially mutually recursive) definitions are put
into a single let binding. For our example the output coincides modulo variable names
with the output from the previous section. Note that only the definition of mapInt is
inlined, not the definition of inc.

To ensure that code explosion never happens, an implementation of inlining will prob-
ably abandon list constructor abstraction when the inlined code exceeds a predefined
size.

3.2.2 Instantiation of Polymorphism

There is one limitation still present in our example. The producer should use the poly-
morphic function map instead of mapInt.

{inc:Int→Int, map:∀α.∀β.(α→β)→[α]→[β]}
` map Int Int inc ((:) Int 1 ((:) Int 2 ([] Int)))

: [Int]

On this input our current list abstraction algorithm fails. In the type of map no type
[Int] occurs that could be replaced by a new type variable and thus type inference will
assign the producer the type [Int] instead of a type variable. Replacing the types [α]
and [β] by type variables and abstracting these type variables later is not semantically
sound, because α and β are bound locally.

The solution is to instantiate polymorphic list manipulating functions that are used in
the producer as far as possible before applying the list abstraction algorithm as described
before. So in the producer we replace map Int Int by a new variable mapInt Int. We
obtain a definition for mapInt Int by dropping the abstraction from α and β in the definition
of map and replacing both α and β by Int. Thus we reach the same situation as in the
previous subsection and can abstract the produced list successfully.

In the general case we may have instantiated polymorphic variables that we did not
inline later. These instantiations have to be undone.

The instantiation method may seem restrictive, but note that the translation of a
Hindley-Milner typed program into our second-order typed language F yields a program
where only definition bodies in let constructs are type-abstracted and term variables of
polymorphic type occur only in type applications. Programs in the intermediate language
of the Glasgow Haskell compiler are nearly completely in this form, because the Haskell
type systems is based on the Hindley-Milner type system.

More examples and information about about how type-inference based inlining can be
implemented efficiently are given in [Chi99]. We do not go into these details here, because
in the next section we will present a better alternative to inlining.

3.3 The Worker/Wrapper Scheme

It is neat that the algorithm determines exactly the functions that need to be inlined,
but nonetheless inlining causes problems in practice. Extensive inlining across module
boundaries would defeat the idea of separate compilation. Furthermore, we noted in Sec-
tion 2.9.2 that inlining may also decrease performance and in practice “inlining is a black
art, full of delicate compromises that work together to give good performance without
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unnecessary code bloat” [PM99]. It is best implemented as a separate optimisation pass.
Consequently, we would like to use our list abstraction algorithm without it having to
perform inlining itself.

To be able to abstract the result list from a producer without using inlining, all list
constructors that construct the result list already have to be present in the producer.
Therefore we use a so called worker/wrapper scheme as it is used inside the Glasgow
Haskell compiler for transferring strictness information [PL91] and has been proposed by
Gill for short cut deforestation (see Section 7.1.1). The idea is to automatically split every
definition of a function that produces a list into a definition of a worker and a definition
of a wrapper. The definition of the worker is obtained from the original definition by
abstracting the result list type and its list constructors. The definition of the wrapper,
which calls the worker, contains all the list constructors that construct the result list. For
example, we split the definition of the function mapInt

mapInt : (Int→Int)→[Int]→[Int]

= λf:Int→Int.
foldr Int [Int] (λu:Int. λw:[Int]. (:) Int (f u) w) ([] Int)

into definitions of a worker mapIntW and a wrapper mapInt:

mapIntW : ∀γ. (Int→ γ → γ)→ γ → (Int→Int)→[Int]→ γ
= λγ. λv(:):Int→ γ → γ. λv[]:γ. λf:Int→Int.

foldr Int γ (λu:Int. λw:γ. v(:) (f u) w) v[]

mapInt : (Int→Int)→[Int]→[Int]

= mapW [Int] ((:) Int) ([] Int)

Just as easily we split the definition of the polymorphic function map

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. λf:α→ β.

foldr α [β] (λu:α. λw:[β]. (:) β (f u) w) ([] β)

into definitions of a worker mapW and a wrapper map:

mapW : ∀α.∀β.∀γ. (β → γ → γ)→ γ → (α→ β)→[α]→ γ
= λα. λβ. λγ. λv(:):β → γ → γ. λv[]:γ. λf:α→ β.

foldr α γ (λu:α. λw:γ. v(:) (f u) w) v[]

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. mapW α β [β] ((:) β) ([] β)

For deforestation we only need to inline the wrapper. Consider for example deforesta-
tion of the body of the definition of any as defined in the introduction:

or (map τ Bool p xs)

 {inlining of or and map}
foldr Bool Bool (||) False

(mapW τ Bool [Bool] ((:) Bool) ([] Bool) p xs)

 {list abstraction of the producer}
foldr Bool Bool (||) False

((λγ. λv(:):β→γ→γ. λv[]:γ. mapW τ Bool γ v(:) v[] p xs)

[Bool] ((:) Bool) ([] Bool))

 {fusion and subsequent β-reduction}
mapW τ Bool Bool (||) False p xs
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It is left to the standard inliner to determine whether mapW is inlined. Across module
boundaries or if its definition is large, a worker may not be inlined. This does not influence
deforestation.

Note that in the definition of the worker mapW we insert the new λ-abstractions be-
tween the type abstractions and the term abstractions. We cannot insert the new term
abstractions in front of the original type abstractions, because the list type [β], from
which we abstract, contains the type variable β which is bound in the type of the func-
tion. To insert the new abstractions in front of the original term abstractions has a minor
advantage: The wrapper can be inlined and β-reduced even at call sites where it is only
partially applied, because its definition partially applies the worker.

After we have discussed the list abstraction algorithm in detail in Chapter 4, we will
discuss in Chapter 5 how a definition of a function that produces a list can be split
fully automatically into a definition of a worker and a wrapper. In the remainder of this
chapter we give examples of the expressive power of the worker/wrapper scheme and how
it enables deforestation.

3.3.1 Functions that Produce Several Lists

A worker even can abstract from several lists. For example the definition of the function
unzip, which produces two lists, can be split into the following worker and wrapper
definitions:

unzipW : ∀α.∀β.∀γ.∀δ.(α→γ→γ)→γ→(β→δ→δ)→δ→[(α,β)]→(γ,δ)
= λα. λβ. λγ. λδ. λv(:)1 :α→γ→γ. λv[]1 :γ. λv(:)2 :β→δ→δ. λv[]2 :δ.

foldr (α,β) (γ,δ)
(λx:(α,β).λy:(γ,δ).case x of

(u,w) 7→ case y of

(us,ws) 7→ (,) γ δ (v(:)1 u us) (v(:)2 w ws) )

((,) γ δ v[]1 v[]2 )

unzip : ∀α.∀β.[(α,β)]→([α],[β])
= λα.λβ. unzipW α β [α] [β] ((:)α) ([]α) ((:) β) ([] β)

The subsequent transformations demonstrate how the wrapper enables deforestation
without requiring inlining of the larger worker:

foldr τ1 τ3 M(:) M[] (fst [τ1] [τ2] (unzip τ1 τ2 zs))

 {inlining of the wrapper unzip}
foldr τ1 τ3 M(:) M[]

(fst [τ1] [τ2]

(unzipW τ1 τ2 [τ1] [τ2] ((:) τ1) ([] τ1) ((:) τ2) ([] τ2) zs))

 {list abstraction of the producer}
foldr τ1 τ3 M(:) M[]

((λγ. λv(:):τ1→γ→γ. λv[]:γ. fst γ [τ2]

(unzipW τ1 τ2 γ [τ2] v(:) v[] ((:) τ2) ([] τ2) zs))

[τ1] ((:) τ1) ([] τ1))

 {fusion and subsequent β-reduction}
fst τ3 [τ2] (unzipW τ1 τ2 τ3 [τ2] M(:) M[] ((:) τ2) ([] τ2) zs)

Original short cut deforestation cannot handle producers of several lists and hence
cannot fuse the producer fst [Bool] [Char] (unzip Bool Char zs) with any consumer
(see Section 7.1.2).
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We still cannot fuse if both result lists of unzip are consumed, but see Section 6.2 for
an extension that can also handle that case.

3.3.2 List Concatenation

The list append function (++) is notorious for being difficult to fuse with (cf. Chapter 7),
because the term (++) τ xs ys does not produce the whole result list itself. Only xs is
copied but not ys. However, we can easily define a worker for (++) by abstracting not
just the result list but simultaneously the type of the second argument:

appW : ∀α.∀γ.(α→γ→γ)→ γ → [α]→ γ → γ
= λα. λγ. λv(:):α→γ→γ. λv[]:γ. λxs:[α]. λys:γ. foldr α γ v(:) ys xs

(++) : ∀α.[α]→ [α]→ [α]
= λα. appW α [α] ((:) α) ([] α)

Note that the variable v[], which abstracts the empty list, is not used in the body of
the worker appW. Hence we do not need it and we can define worker and wrapper simply
as:

appW : ∀α.∀γ.(α→γ→γ)→ [α]→ γ → γ
= λα. λγ. λv(:):α→γ→γ. λxs:[α]. λys:γ. foldr α γ v(:) ys xs

(++) : ∀α.[α]→ [α]→ [α]
= λα. appW α [α] ((:) α)

The type of appW implies that we can only abstract the result list constructors from
an application of (++), if we can abstract the result list constructors from its second
argument. We believe that this will seldom restrict deforestation in practice. For example
the definition

concat : ∀α.[[α]]→ [α]
= λα. foldr [α] [α] ((++) α) ([] α)

can be split into a worker and a wrapper definition thanks to the wrapper appW:

concatW : ∀α.∀γ.(α→γ→γ)→ γ → [[α]]→ γ
= λα. λγ. λv(:):α→γ→γ. λv[]:γ. foldr [α] γ (appW α γ v(:)) v[]

concat : ∀α.[[α]]→ [α]
= λα. concatW α [α] ((:) α) ([] α)

3.3.3 Recursively Defined Producers

In all previous examples recursion was hidden by foldr. Nonetheless recursively defined
producers can be split into workers and wrappers just as easily. Consider the recursively
defined function tails which returns the list of all final segments of xs, longest first:

tails : ∀α.[α]→ [[α]]
= λα. λxs:[α]. case xs of

[] 7→ (:) [α] ([]α) ([] [α])
y:ys 7→ (:) [α] xs (tails α ys)
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It can be split into definitions of a worker tailsW and a wrapper tails:

tailsW : ∀α.∀γ.([α]→γ→γ)→ γ → [α]→ γ
= λα. λγ. λc:[α]→γ→γ. λn:γ. λxs:[α]. case xs of

[] 7→ c ([]α) n

y:ys 7→ c xs (tailsW α γ c n ys)

tails : ∀α.[α]→ [[α]]
= λα. tailsW α [[α]] ((:) [α]) ([] [α])

Note that to abstract the list the recursive call in the definition of the worker must be
to the worker itself, not to the wrapper. It is possible to avoid passing α, γ, c and n in
the recursive call, as we will discuss in Section 5.1.2, but for the following examples that
optimisation is undesirable.

3.4 Functions that Consume their Own Result

There are definitions of list functions that consume their own result. The most simple
example is the definition of the function that reverses a list in quadratic time:

reverse : ∀α.[α]→ [α]
= λα. λxs:[α]. case xs of

[] 7→ [] α
y:ys 7→ (++) α (reverse α ys) ((:) α y ([] α))

This definition can be split into the following worker and wrapper:

reverseW : ∀α.∀γ.(α→ γ → γ)→ γ → [α]→ γ
= λα. λγ. λv(:):α→ γ → γ. λv[]:γ. λxs:[α]. case xs of

[] 7→ v[]

y:ys 7→ appW α γ v(:)

(reverseW α [α] ((:)α) ([]α) ys) (v(:) y v[])

reverse : ∀α.[α]→ [α]
= λα. reverseW α [α] ((:) α) ([] α)

In this definition of reverseW the worker appW can be inlined and β-reduced, giving

reverseW : ∀α.∀γ.(α→ γ → γ)→ γ → [α]→ γ
= λα. λγ. λv(:):α→ γ → γ. λv[]:γ. λxs:[α]. case xs of

[] 7→ v[]

y:ys 7→ foldr α γ v(:) (v(:) y v[])

(reverseW α [α] ((:)α) ([]α) ys)

So we have a foldr consumer of the producer (reverseW α [α] ((:)α) ([]α) ys). We
apply list abstraction to the producer to obtain

reverseW : ∀α.∀γ.(α→ γ → γ)→ γ → [α]→ γ
= λα. λγ. λv(:):α→ γ → γ. λv[]:γ. λxs:[α]. case xs of

[] 7→ v[]

y:ys 7→ foldr α γ v(:) (v(:) y v[])

((λδ. λv(:)2 : α→δ→δ. λv[]2 : δ. reverseW α δ v(:)2 v[]2 ys)

[α] ((:) α) ([] α))
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Finally short cut fusion and subsequent β-reduction yields

reverseW : ∀α.∀γ.(α→ γ → γ)→ γ → [α]→ γ
= λα. λγ. λv(:):α→ γ → γ. λv[]:γ. λxs:[α]. case xs of

[] 7→ v[]

y:ys 7→ reverseW α γ v(:) (v(:) y v[]) ys

The deforested version performs list reversal in linear time. The worker argument that
abstracts the list constructor [] is used as an accumulator.

The type inference based method of inlining definitions which we discussed in Sec-
tion 3.2 cannot achieve this transformation of the quadratic version into the linear ver-
sion. To abstract the intermediate list, that algorithm would need to inline the definition
of reverse. Then the intermediate list would be eliminated successfully, but the inlined
definition of reverse would contain a new starting point for deforestation which would
lead to new inlining of reverse . . . The quadratic version produces at runtime an inter-
mediate list between each recursive call. To remove all these intermediate lists through a
finite amount of transformation a worker/wrapper scheme is required.

Gill noted this fact first in his thesis [Gil96], giving a similar example: a function
which traverses a tree to collect all node entries in a list. A straightforward quadratic
time definition can be split into a polymorphically recursive worker and a wrapper and
then be deforested to obtain a linear time definition which uses an accumulating argument.

3.4.1 A larger example: inits

A different, fascinating example is the definition of the function inits, which determines
the list of initial segments of a list with the shortest first.

inits: ∀α.[α]→ [[α]]
= λα. λxs:[α].

case xs of

[] 7→ (:) [α] ([] α) ([] [α])
y:ys 7→ (:) [α] ([] α) (map [α] [α] ((:) α y)

(inits α ys))

The definition is split into the following worker and wrapper definitions:

initsW: ∀α.∀γ.∀δ.(α→γ→γ)→ γ → (γ→δ→δ)→ δ → [α]→ δ
= λα. λγ. λδ. λv(:)1 :α→γ→γ.λv[]1 :γ.λv(:)2 :γ→δ→δ.λv[]2 :δ.λxs:[α].

case xs of

[] 7→ v(:)2 v[]1 v[]2

y:ys 7→ v(:)2 v[]1 (mapW γ γ δ v(:)2 v[]2 (v(:)1 y)

(initsW α γ [γ] v(:)1 v[]1 ((:) γ) ([] γ) ys))

inits: ∀α.[α]→ [[α]]
= λα. initsW α [α] [[α]] ((:)α) ([]α) ((:) [α]) ([] [α])

Note that both (nested) result lists are abstracted. In this definition of initsW the worker
mapW can be inlined and β-reduced, giving

initsW: ∀α.∀γ.∀δ.(α→γ→γ)→ γ → (γ→δ→δ)→ δ → [α]→ δ
= λα. λγ. λδ. λv(:)1 :α→γ→γ.λv[]1 :γ.λv(:)2 :γ→δ→δ.λv[]2 :δ.λxs:[α].

case xs of
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[] 7→ v(:)2 v[]1 v[]2

y:ys 7→ v(:)2 v[]1 (foldr γ δ (λu:γ. λw:δ. v(:)2 (v(:)1 y u) w) v[]2

(initsW α γ [γ] v(:)1 v[]1 ((:) γ) ([] γ) ys))

So we have a foldr consumer of the producer (initsW . . . ). We apply list abstraction
to the producer to obtain

initsW: ∀α.∀γ.∀δ.(α→γ→γ)→ γ → (γ→δ→δ)→ δ → [α]→ δ
= λα. λγ. λδ. λv(:)1 :α→γ→γ.λv[]1 :γ.λv(:)2 :γ→δ→δ.λv[]2 :δ.λxs:[α].

case xs of

[] 7→ v(:)2 v[]1 v[]2

y:ys 7→ v(:)2 v[]1 (foldr γ δ (λu:γ. λw:δ. v(:)2 (v(:)1 y u) w) v[]2

((λδ′. λv(:)3 : γ→δ′→δ′. λv[]3 : δ′.
initsW α γ δ′ v(:)1 v[]1 v(:)3 v[]3 ys)

[γ] ((:) γ) ([] γ))

Finally short cut fusion and subsequent β-reduction yields

initsW: ∀α.∀γ.∀δ.(α→γ→γ)→ γ → (γ→δ→δ)→ δ → [α]→ δ
= λα. λγ. λδ. λv(:)1 :α→γ→γ.λv[]1 :γ.λv(:)2 :γ→δ→δ.λv[]2 :δ.λxs:[α].

case xs of

[] 7→ v(:)2 v[]1 v[]2

y:ys 7→ v(:)2 v[]1 (initsW α γ δ v(:)1 v[]1

(λu:γ.λw:δ. v(:)2 (v(:)1 y u) w) v[]2 ys)

The definition of the n-queens function which we consider in Section 5.3 is another
example in the same spirit.

3.4.2 Deforestation Changes Complexity

Deforestation of the definition of reverse changes its complexity from quadratic to linear
time. In case of the definition of inits, the change of complexity is more subtle. Both
the original definition and the deforested definition take quadratic time to produce their
complete result. However, to produce only the outer list of the result, with unevaluated list
elements, the original definition still takes quadratic time whereas the deforested version
only needs linear time.

A recursively defined function that consumes its own result with foldr will nearly
always enable deforestation that changes the asymptotic time complexity of the definition.
This power is, however, a double-edged sword. A small syntactic change of a program
(cf. next section) may cause deforestation to be no longer applicable, and thus change the
asymptotic complexity of the program. It may hence be argued that such far-reaching
modifications should be left to the programmer.

3.4.3 Inaccessible Recursive Arguments

Unfortunately, a function may consume its own result but not be defined recursively. For
example, the function reverse should actually be defined in terms of foldr, to enable
short cut deforestation with reverse as consumer.

reverse: ∀α.[α]→ [α]
= λα. foldr α [α]

(λy:α.λr:[α]. (++) α r ((:) α y ([]α))) ([] α)
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It is impossible to abstract the result list from this definition. No matter which list
constructors and list types we abstract, the resulting term is never well-typed. Our
list abstraction algorithm, which abstracts as many lists as possible, just returns the
unchanged definition body. The cause of the problem is that the recursion argument r

must be a list, because it is consumed by (++).
To enable list abstraction we have to rewrite the definition, turning r into a function

with a list type and its constructors as arguments:

reverse: ∀α.[α]→ [α]
= λα. foldr α [α]

(λy:α.λr:(α→[α]→[α])→[α]→[α].
(++) α (r ((:)α) ([]α)) ((:)α y ([]α)))

(λc:α→ [α]→ [α].λn:[α]. n)
((:) α)
([] α)

From this definition our list abstraction algorithm can abstract the result list and
thus split the definition into a worker and a wrapper. It is, however, unclear when and
how such restructuring to lift a list type to a function type can be done in general. Our
deforestation algorithm only tries to abstract list types and list constructors. It does not
perform any further restructuring of a definition. Hence it cannot deforest the first foldr
definition of reverse.



Chapter 4

List Abstraction And Type Inference

In the preceding chapter we informally introduced the idea of list abstraction through
type inference. List abstraction prepares a list-producing term for fusion with a foldr

consumer by the short cut fusion rule. Furthermore, we saw in the preceeding chapter
how useful it is to split the definition of a list-producing function into a definition of a
worker and a definition of a wrapper. We will see in Chapter 5 how easily we obtain these
two definitions from the list abstracted form of the original definition body. The only
necessary extension is that for the worker/wrapper split we have to abstract not only one
but as many lists as possible from a term. Here we describe this abstraction in detail.

The list abstraction algorithm processes a producer in three phases. In the first phase
all list types are replaced by type variables and all list data constructors are replaced by
term variables, to which we will also refer as constructor variables. The result of the first
phase is the input to the second phase, the type inference phase. Type inference replaces
some of the type variables so that the typing is again derivable from the type inference
rules, that is, the term is well-typed in the typing environment. Type inference cannot
fail, because the original producer is well-typed. In the third phase some type variables
are reinstantiated to list types, some constructor variables are reinstantiated to list data
constructors and the remaining type and constructor variables are being abstracted.

4.1 The Instance Substitution

The central data structure of the list abstraction algorithm is a substitution η. It mem-
orises for every new type variable the list type for which it was substituted in the first
phase. For example, for a term λx:[Int]. case x of {[]7→x} the first phase will return
the modified term λx:γ1. case x of {[]7→x} and the substitution η = [[Int]/γ1]. We
call this substitution η instance substitution. The importance of having the information
that the instance substitution contains will become clear in the course of this chapter.

As just defined the instance substitution is not uniquely determined by a term. For ex-
ample, for the term λx:[[Int]]. case x of {[]7→x} the list replacement phase will re-
turn the modified term λx:γ. case x of {[]7→x}. A fitting instance substitution would
be η1 = [[[Int]]/γ] but also the substitution η2 = [[γ′]/γ, [Int]/γ′]. Note that apply-
ing η2 to the modified term only yields λx:[γ′]. case x of {[]7→x}. However, applying
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η2 to this term then yields again the input term λx:[[Int]]. case x of {[]7→x}. For
the list abstraction algorithm η2 is preferable to η1. The substitution η2 describes list
replacement in more detail and may lead to the abstraction of more lists. So the element
types of the list types of an instance substitution should not contain any list types.

The previous example also demonstrates that for an instance substitution η the sets
dom(η) and free(η) may overlap. However, η is always acyclic.

Definition 4.1 A substitution σ is acyclic, if there exists no set {γ1, . . . , γk} ⊆ dom(σ)
with γ2 ∈ free(σ(γ1)), . . . , γk ∈ free(σ(γk−1)), γ1 ∈ free(σ(γk)). Especially, there exists no
γ ∈ dom(σ) with γ ∈ free(σ(γ)). �

Definition 4.2 A type substitution η is an instance substitution, if η(γ) = [τγ] for
all γ ∈ dom(η) and some types τγ, and η is acyclic. �

In the remainder of this chapter the meta-variable η always denotes an instance sub-
stitution. As demonstrated by the last example we have to apply η several times, that is,
we have to apply its compositional closure:

Definition 4.3 The compositional closure of an acyclic substitution σ is the sub-
stitution σ∞ given by

σ∞(γ) := (σ(γ))σ∞

for all γ ∈ dom(σ∞) := dom(σ). �

For example, [[γ′]/γ, [Int]/γ′]∞ = [[[Int]]/γ, [Int]/γ′]. Because σ is acyclic, its
compositional closure is well-defined. In fact, for every acyclic σ there exists a natural
number k with σ∞ = σσ . . . σ︸ ︷︷ ︸

k

.

The Typing Environment for Constructor Variables

Besides replacing list types by type variables and constructing an instance substitution the
first phase also replaces every list constructor application (:) τ and [] τ for any type τ by
a new term variable, called constructor variable. It proves to be technically convenient
not to explicitly add these constructor variables to the typing environment. Instead it
suffices to demand that every constructor variable is associated with a different type
variable. To describe this association we index constructor variables by type variables:
For any type variable γ the meta-variable v(:)γ denotes a constructor variable that replaces
an application of the constructor (:) and v[]γ denotes a constructor variable that replaces
an application of the constructor []. The typing environment for the constructor variables
is determined by an instance substitution η:

Definition 4.4 The typing environment for constructor variables determined by
an instance substitution η, written tyEnv(η), is defined by

tyEnv(η) := {v(:)γ :τγ→γ→γ, v[]γ :γ | η(γ) = [τγ], γ ∈ dom(η)} �

For example,

tyEnv([[γ′]/γ, [Int]/γ′]) = {v(:)γ :γ′→γ→γ, v[]γ :γ, v(:)γ′ :Int→γ′→γ′, v[]γ′ :γ
′}
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4.2 List Replacement Phase

In the first phase of list abstraction every list type is replaced by a new type variable,
every list constructor application (:) τ is replaced by a new constructor variable v(:)γ ,
every list constructor application [] τ is replaced by a new constructor variable v[]γ and
an instance substitution, which records all these replacements, is constructed.

4.2.1 Locally Bound Type Variables

To be precise, not every list type and list constructor is replaced. Consider the input term
λα. λxs:[α]. xs. It would be incorrect of the list replacement algorithm to replace the
list type [α] by a type variable γ, that is, return an instance substitution η = [[α]/γ]
and a term λα. λxs:γ. xs. The problem is that we do not regain the original input when
we apply η∞. We have

(λα. λxs:γ. xs)η∞ = λβ. λxs:[α]. xs

for a new type variable β, because α is free in η∞(γ) = [α] and hence the λ-bound type
variable α is renamed. So the cause of this problem is that the list type [α] contains a
type variable that is bound within the term. Such list types and similarly list constructors
of such list types cannot be abstracted and hence are not replaced by the list replacement
algorithm.

Note that list abstraction is not hindered by type variables that are bound outside the
term that shall be transformed by list abstraction. So for the input term λxs:[α]. xs
the list replacement algorithm returns the instance substitution η = [[α]/γ] and the term
λxs:γ. xs.

4.2.2 The List Replacement Algorithm

The list replacement algorithm R is defined in Figure 4.1. Its method of working is
straightforward. It recursively traverses the whole input term including its embedded
types. It introduces a new type variable for every list type that it replaces. We assume
that the set of these new type variables is disjoint from the set of all (free or bound) type
variables of the complete term that is list abstracted. Similarly we assume that for every
type variable γ the constructor variable v(:)γ and the constructor variable v[]γ is a new
term variable and that the set of these constructor variables is disjoint from the set of all
term variables that occur in the complete term that is list abstracted.

The purpose of the first argument of R, a set of variables, is to collect all locally bound
type variables during the recursive descent of the algorithm. So the list replacement
algorithm starts with an empty set as first argument. Using this set the algorithm can
easily check for each list type that it comes across if it is correct to replace it; similarly
the set is used in the replacement of list constructors.

Note that the algorithm R, when coming across a list type [τ], first recursively
transforms τ which yields a type τ ′ and then replaces the list type [τ ′], if possible. The
same order is chosen in the case of list constructor applications. This order assures for
example, that for a nested type [[Int]] the algorithm yields ([[Int]/γ1, [γ1]/γ2], γ2)
instead of the more restrictive ([[[Int]]/γ1], γ1). Together with the fact that every list
type and constructor is replaced by a new variable this assures that the replacement
algorithm returns the most general instance substitution that is possible. In the three
replacement cases the order in which the instance substitution is constructed is important,
whereas in all other cases it is irrelevant, because the domains and sets of free type
variables of the respective partial instance substitutions are disjoint.
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R(V, (:) τ) :=

{
(η[[τ ′]/γ], v(:)γ ) , if free(τ ′) ∩ V = ∅
(η, (:) τ ′) , otherwise

where (η, τ ′) := R(V, τ)
γ a new type variable

R(V, [] τ) :=

{
(η[[τ ′]/γ], v[]γ ) , if free(τ ′) ∩ V = ∅
(η, [] τ ′) , otherwise

where (η, τ ′) := R(V, τ)
γ a new type variable

R(V, x) := ([ ], x)

R(V, λx : τ.M) := (ητηM , λx : τ ′.M ′)

where (ητ , τ
′) := R(V, τ)

(ηM ,M
′) := R(V,M)

R(V,M1 M2) := (η1η2,M
′
1 M

′
2) where (ηi,M

′
i) := R(V,Mi)

R(V, let {xi : τi = Mi}ki=1 in N) := (ηη1 . . . ηkη
′
1 . . . η

′
k, let {xi : τ ′i = M ′

i}ki=1 in N ′)

where (η,N ′) := R(V,N)
(ηi, τ

′
i) := R(V, τi)

(η′i,M
′
i) := R(V,Mi)

R(V, c) := ([ ], c)

R(V, case M of {ci xi → Ni}ki=1) := (ηη1 . . . ηk, case M ′ of {ci xi → N ′i}ki=1)

where (η,M ′) := R(V,M)
(ηi, N

′
i) := R(V,Ni)

R(V, λα.M) := (η, λα.M ′) where (η,M ′) := R(V ∪ {α},M)

R(V,M τ) := (ηMητ ,M
′ τ ′) , if M 6= (:) and M 6= []

where (ηM ,M
′) := R(V,M)

(ητ , τ
′) := R(V, τ)

R(V, [τ]) :=

{
(η[[τ ′]/γ], γ) , if free(τ ′) ∩ V = ∅
(η, [τ ′]) , otherwise

where (η, τ ′) := R(V, τ)
γ a new type variable

R(V, T τ1 . . . τn) := (η1 . . . ηn, T τ
′
1 . . . τ

′
n) , if T 6= []

where (ηi, τ
′
i) := R(V, τi)

R(V, τ1 → τ2) := (η1η2, τ
′
1 → τ ′2) where (ηi, τ

′
i) := R(V, τi)

R(V, ∀α.τ ) := (η,∀α.τ ′) where (η, τ ′) := R(V ∪ {α}, τ)

R(V, α) := ([ ], α)

Figure 4.1: List replacement algorithm
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4.2.3 Properties of the List Replacement Algorithm

We have to prove for the complete list abstraction algorithm that it terminates, that
its result is well-typed and that its result is contextually equivalent to its input. These
proofs are simple when we can refer to respective proofs for all algorithms that form the
list abstraction algorithm. Naturally every component algorithm also fulfils some unique
property. For the list replacement algorithm we have to show that it really constructs an
instance substitution.

Lemma 4.5

(N, η) = R(V,M)

η is an instance substitution �

Proof Obviously η substitutes lists for variables. It can be proved by induction on M
that η is acyclic. The general idea in all induction steps is that the new η equals η1η2

where η1 and η2 are acyclic and dom(η2)∩ (dom(η1)∪ free(η1)) = ∅. Hence η is acyclic. �

The following lemma states that the first argument of R, the set of variables, fulfils
its purpose.

Lemma 4.6 R(V,M) does not replace types that contain variables from the set V :

(η,N) = R(V,M)

free(η) ∩ V = ∅ �

Proof Straightforward by structural induction on the term M . �

Also the rather obvious property of termination has to be stated.

Lemma 4.7 (Termination) R(V,M) terminates for every set of type variables V and
every term M . �

Proof Trivial, because R(V,M) is defined inductively over the term M . �

Reinstantiation

It must be possible to use the instance substitution to regain the input of the list replace-
ment algorithm R. We split the reinstantiation property into two lemmas.

Lemma 4.8 (Reinstantiation of types)

(η, ρ′) = R(V, ρ)

ρ′η∞ = ρ �

Proof Structural induction on the type ρ analogously to the proof of Lemma 4.11. �

In terms also the constructors have to be reinstantiated. The instance substitution η
determines how they are reinstantiated:

Definition 4.9 The constructor instantiation substitution determined by a substi-
tution η, written instCons(η), is defined by

instCons(η) := [(:) τ/v(:)γ , [] τ/v[]γ | η(γ) = [τ], γ ∈ dom(η)] �
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Because terms also contain types we combine the two substitutions.

Definition 4.10 The instantiation substitution determined by a substitution η, writ-
ten inst(η), is defined by

inst(η) := η instCons(η) �

Lemma 4.11 (Reinstantiation of terms)

(η,N) = R(V,M)

N inst(η∞) = M �

Proof Structural induction on the term M . We only prove three cases here. The proofs
for the other cases are similar.

Case (:) τ .
Let (η, τ ′) := R(V, τ) and γ be a new type variable.

Case free(τ ′) ∩ V = ∅.

v(:)γ inst((η[[τ ′]/γ])∞)

= {γ /∈ dom(η) ∪ freeTy(η), because γ is new}
v(:)γ inst(η∞[[τ ′η∞]/γ])

= {η∞[[τ ′η∞]/γ](γ) = [τ ′η∞]}
(:) (τ ′η∞)

= {Lemma 4.8}
(:) τ

Otherwise

((:) τ ′) inst(η∞)
=

(:) (τ ′ inst(η∞))

= {Lemma 4.8}
(:) τ

Case M1 M2.
Let (η1,M

′
1) := R(V,M1) and (η2,M

′
2) := R(V,M2).

(M ′
1 M

′
2) inst(η∞)

=
(M ′

1 inst(η∞)) (M ′
2 inst(η∞))

=
(M ′

1 inst((η1η2)∞)) (M ′
2 inst((η1η2)∞))

= {dom(η1) and dom(η2) are new type variables}
(M ′

1 inst(η∞1 η
∞
2 )) (M ′

2 inst(η∞1 η
∞
2 ))

= {dom(η∞1 ) and dom(η∞2 ) are new type variables}
(M ′

1 inst(η∞1 )) (M ′
2 inst(η∞2 ))

= {induction hypothesis}
M1 M2
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Case λα.M .
Let (η,M ′) := R(V ∪ {α},M).

(λα.M ′) inst(η∞)

= {α /∈ free(η∞) = free(inst(η∞)) according to Lemma 4.6}
λα.(M ′ inst(η∞))

= {induction hypothesis}
λα.M

�

Well-typed Instance

The result of the replacement algorithm is generally not well-typed, that is, for (η,N) :=
R(V,M) generally exists no type ρ so that

Γ + tyEnv(η) ` N : ρ

is valid. However, only instantiating the type variables, hence leaving the constructor
variables unchanged, suffices to obtain a valid typing. This property is important, because
it assures that the input to the type inference algorithm is typeable and type inference
must hence succeed.

Lemma 4.12 (Well-typedness)

(η,N) = R(V,M) Γ ` M : ρ

Γ + tyEnv(η)η∞ ` Nη∞ : ρ �

Proof Structural induction on the term M . We only prove three cases here. The proofs
for the other cases are similar.

Case (:) τ .
Let (η, τ ′) := R(V, τ) and γ be a new type variable.

Case free(τ ′) ∩ V = ∅.
According to the typing rules Γ ` (:) τ : τ→[τ]→[τ]. Hence we know for
the premise that ρ = τ→[τ]→[τ].

tyEnv(η[[τ ′]/γ])(η[[τ ′]/γ])∞(v(:)γ )
=

(τ ′→γ→γ)(η[[τ ′]/γ])∞

= {γ /∈ dom(η) ∪ freeTy(η), because γ is new}
(τ ′→γ→γ)η∞[[τ ′η∞]/γ]

= {γ /∈ dom(η) ∪ freeTy(η)}
τ ′η∞→[τ ′η∞]→[τ ′η∞]

= {Lemma 4.8}
τ→[τ]→[τ]

=
ρ

Otherwise
According to Lemma 4.8 we have ((:) τ ′)η∞ = (:) τ . So the conclusion
follows with the extensibility of typing environments of Lemma 2.6 from the
premise Γ ` (:) τ : ρ.
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Case M1 M2.
Let (η1,M

′
1) := R(V,M1) and (η2,M

′
2) := R(V,M2).

From the premise Γ ` M1 M2 : ρ and the typing rules it follows that Γ ` M1 :
ρ′→ρ and Γ ` M2 : ρ′ for some type ρ′.

According to the induction hypothesis

Γ + tyEnv(η1)η∞1 ` M ′
1η
∞
1 : ρ′→ρ

Γ + tyEnv(η2)η∞2 ` M ′
2η
∞
2 : ρ′

are valid. Because dom(η1)∩ (dom(η2)∪ freeTy(η2)) = ∅ and dom(η2)∩ (dom(η1)∪
freeTy(η1)) = ∅,

tyEnv(η1)η∞1 + tyEnv(η2)η∞2 = tyEnv(η1η2)(η1η2)∞

holds. According to Lemma 2.6 the typing environments of the preceding typings
can be extended, and with the typing rule term app it follows

Γ + tyEnv(η1η2)(η1η2)∞ ` (M ′
1η
∞
1 ) (M ′

2η
∞
2 ) : ρ

Again because dom(η1) ∩ (dom(η2) ∪ freeTy(η2)) = ∅ and dom(η2) ∩ (dom(η1) ∪
freeTy(η1)) = ∅,

(M ′
1η
∞
1 ) (M ′

2η
∞
2 ) = (M ′

1 M
′
2)(η1η2)∞

holds. Hence the conclusion of the lemma holds.

Case λα.M .
Let (η,M ′) := R(V ∪ {α},M).

From the premise Γ ` λα.M : ρ and the typing rules it follows that Γ ` M : ρ′

with ρ = ∀α.ρ′ and α /∈ freeTy(Γ).

According to the induction hypothesis

Γ + tyEnv(η)η∞ ` M ′η∞ : ρ′

holds. From Lemma 4.6 it follows that α /∈ freeTy(η) = freeTy(tyEnv(η)η∞).
Therefore we can construct with the typing rule type abs the valid typing

Γ + tyEnv(η)η∞ ` λα. (M ′η∞) : ∀α.ρ′

Again because α /∈ freeTy(η), we have λα. (M ′η∞) = (λα.M)η∞. Hence the con-
clusion of the lemma holds. �

4.3 Type Inference Phase

The second phase of list substitution consists of applying a type inference algorithm. At
first, the fact that typeability for the second-order typed λ-calculus is undecidable [Wel94]
seems to pose a problem. However, for our purposes a partial type inference algorithm
that only instantiates some type variables and makes use of the existing type annotations
of the program suffices.

The idea is that the algorithm gets a term together with a typing environment for its
free term variables as input and then replaces some of the type variables in the term and
the typing environment to obtain a valid typing. That is, for an input Γ ` M it yields a
type substitution σ and a type τ such that Γσ ` Mσ : τσ. The substitution σ holds the
information required for list abstraction whereas the type τ will only be needed in the
recursive definition of the type inference algorithm itself.
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Definition 4.13 A tuple of a type substitution and a type (σ, τ) is a typing for a
typing environment and a term Γ `M , if Γσ ` Mσ : τσ. �

Although the type inference algorithm yields a tuple (σ, τ) and all subsequent algo-
rithms will work on the substitution component σ, we usually give Γσ ` Mσ : τσ as
result of type inference, because it is easier to read.

For example, for the typing environment and term

∅ ` λx:Int.λxs:[Int]. (:) Int x xs

the list replacement algorithm yields

([[Int]/γ1, [Int]/γ2], λx:Int.λxs:γ1. v
(:)
γ2

x xs)

The types of the constructor variable is determined by the typing environment

tyEnv([[Int]/γ1, [Int]/γ2]) = {v(:)γ1
:Int→γ1→γ1, v

[]
γ1

:γ1, v
(:)
γ2

:Int→γ2→γ2, v
[]
γ2

:γ2}

The fact that the typing environment contains superfluous constructor variables which do
not occur in the term λx:Int.λxs:γ1. v

(:)
γ2

x xs, is unimportant.

Naturally, the type inference algorithm takes the instance substitution as input instead
of the explicit typing environment for constructor variables, but for the moment we ignore
this as we already did in the previous chapter. So the input of the type inference algorithm
is:

∅+ tyEnv([[Int]/γ1, [γ1]/γ2]) ` λx:Int.λxs:γ1. v
(:)
γ2

x xs

The type inference algorithm yields the valid typing

([γ2/γ1], Int→γ1→γ2)

So

(∅+ tyEnv([[Int]/γ1, [Int]/γ2])) [γ2/γ1]
` (λx:Int.λxs:γ1. v

(:)
γ2

x xs) [γ2/γ1]
: (Int→γ1→γ2) [γ2/γ1]

that is,

{v(:)γ1
:Int→γ2→γ2, v

[]
γ1

:γ2, v(:)γ2
:Int→γ2→γ2, v[]γ2

:γ2}
` λx:Int.λxs:γ2. v

(:)
γ2

x xs

: Int→γ2→γ2

According to the type substitution property of Lemma 2.6 we can apply any type
substitution σ′ to a typing Γσ ` Mσ : τσ and obtain a (possibly different) typing Γσσ′ `
Mσσ′ : τσσ′. So for the preceding example ([[Int]/γ1, [Int]/γ2], Int→[Int]→[Int]) is
also a valid typing.

Definition 4.14 A substitution σ is more general than a substitution σ̂, written σ �α
σ̂, if there exists a substitution σ′ with σσ′ ≡ σ̂. Alternatively we say that σ̂ extends σ.

�
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A typing (σ̃, τ̃) for a typing environment and a term Γ ` M is a principal typing1

for Γ `M , if for all typings (σ̂, τ̂) of Γ `M , σ̃ �α σ̂ and there exists a type substitution
σ with τ̃ σ̃σ ≡ τ̂ σ̂. For reasons that we discuss in Section 4.3.3 the type inference phase
will not always compute a principal typing but something closely related.

We distinguish those type variables that are introduced by the list replacement algo-
rithm R , to which we refer as type inference variables, from all other type variables.
In the whole type inference phase we replace only type inference variables. All other type
variables, which are bound somewhere in the program by type abstraction or universal
quantification, are treated like constants. To avoid extension of the syntax of F we do not
formally introduce type inference variables as a new category of variables. Instead, the
list substitution η that is constructed by the list replacement algorithm R comes in handy
for the first time. Its domain, dom(η), contains exactly the type variables introduced by
R, that is, dom(η) is the set of type inference variables.

4.3.1 Idempotent Substitutions

Consider the environment and term

∅ ` λx:γ1.λy:γ2. case x of {[]7→y}

([[Int]/γ1, γ1/γ2], [Int]→ γ1→ γ1) is a typing for it. It is however pointless that γ2 is
replaced by γ1. In general the substitution of a typing has to replace type variables by
other type variables, but if a type variable is replaced, then it should disappear completely.
In other words, it should be idempotent:

Definition 4.15 A substitution σ is idempotent, if σσ = σ. �

All parts of the type inference algorithm and also of the third phase yield only idem-
potent substitutions provided the substitutions they get as input are idempotent. This
invariant simplifies both algorithms and proofs. In the following we give several properties
of idempotent substitutions that we will use later.

Lemma 4.16 (Characterisation of idempotent substitutions)

σ idempotent⇐⇒ dom(σ) ∩ free(σ) = ∅ �

Proof Trivial. �

Lemma 4.17 (Extension of idempotent substitution)

σ �α ρ σ idempotent

σρ ≡ ρ �

Proof Simple, see [Ede85]. �

Lemma 4.18 (Preservation of idempotency)

σ idempotent γ /∈ dom(σ) γ /∈ free(τ) dom(σ) ∩ free(τ) = ∅
σ[τ/γ] idempotent �

1[Jim96] distinguishes between a principal type property and a principal typing property. Given a
typing environment and a term its principal type is a type that “represents” all valid types for this
typing environment and term. Given only a term, a principal typing is a typing environment and a
type that “represent” all valid typings for this term. Type inference algorithms for the Hindley-Milner
type system determine principal types [Mil78, DM82]. The Hindley-Milner type system does not have
principal typings in any sensible way. Our definition of principal typing differs from both definitions of
Jim. Here a typing environment and a term with partial type information are given.
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Proof We show that the domain and the set of free variables of σ[τ/γ] are disjoint.

dom(σ[τ/γ]) ∩ free(σ[τ/γ])

⊆ {equal only if γ 6= τ}
(dom(σ) ∪ {γ}) ∩ free(σ[τ/γ])

= {premise: γ /∈ dom(σ)}
(dom(σ) ∪ {γ}) ∩ ((free(σ) \ {γ}) ∪ free(τ))

=
(dom(σ) ∩ (free(σ) \ {γ})) ∪ ({γ} ∩ (free(σ) \ {γ})) ∪ (dom(σ) ∩ free(τ))
∪({γ} ∩ free(τ))

= {premise: γ /∈ free(τ)}
(dom(σ) ∩ (free(σ) \ {γ})) ∪ ({γ} ∩ (free(σ) \ {γ})) ∪ (dom(σ) ∩ free(τ))

= {premise: dom(σ) ∪ free(τ) = ∅}
(dom(σ) ∩ (free(σ) \ {γ})) ∪ ({γ} ∩ (free(σ) \ {γ}))

=
(dom(σ) ∩ (free(σ) \ {γ}))

= {premise: σ idempotent}
∅

�

Corollary 4.19 (Preservation of idempotency)

σ idempotent γ /∈ dom(σ) γ /∈ free(τσ)

σ[τσ/γ] idempotent �

Proof We know that σ is idempotent, γ /∈ dom(σ), γ /∈ free(τσ) and

dom(σ) ∩ free(τσ)
⊆

dom(σ) ∩ free(σ)

= {σ idempotent}
∅

Hence the conclusion follows with Lemma 4.18. �

Lemma 4.20 (Extension of substitution)

σσ̂ ≡ σ̂ γσ̂ ≡ τ σ̂

σ[τ/γ]σ̂ ≡ σ̂ �

Proof We show that [τ/γ]σ̂ ≡ σ̂ by case analysis:

Case γ.
γ[τ/γ]σ̂ = τ σ̂ ≡ γσ̂.

Case α 6= γ.
α[τ/γ]σ̂ = ασ̂.

So σ[τ/γ]σ̂ ≡ σσ̂ ≡ σ̂. �

Lemma 4.21 (Equality of idempotent substitutions)

σ idempotent σ �α σ′ dom(σ) = dom(σ′)

σ ≡ σ′ �
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Proof Let γ ∈ dom(σ) = dom(σ′).

γσ

≡ { free(γσ) ∩ dom(σ′) = free(γσ) ∩ dom(σ) ⊆ free(σ) ∩ dom(σ) = ∅}
γσσ′

≡ {σσ′ ≡ σ′}
γσ′

�

Lemma 4.22 (Inclusion of modified variables)

σσ′ ≡ σ′

mod(σ) ⊆ mod(σ′) �

Proof

mod(σ)
=

dom(σ) ∪ free(σ)

⊆ {σ �α σ′}
dom(σ′) ∪ free(σ)

=
dom(σ′) ∪ (free(σ) \ dom(σ′))

⊆
dom(σ′) ∪ free(σσ′)

= {σσ′ ≡ σ′}
dom(σ′) ∪ free(σ′)

=
mod(σ′)

�

4.3.2 The Unification Algorithm U
At the heart of the type inference algorithm lies a unification algorithm, which combines
typings of subterms.

Definition 4.23 A type substitution σ is a unifier of an equation τ1
.
= τ2, that is, of the

two types τ1 and τ2, if τ1σ ≡ τ2σ. Moreover, σ̃ is a most general unifier for τ1
.
= τ2, if

it is a unifier for τ1
.
= τ2 and for every unifier σ̂ for τ1

.
= τ2 we have σ̃ �α σ̂. �

Many algorithms for computing a most general unifier are known [Rob65, MM82,
Mit96]. Unfortunately, we need to define our own unification algorithm, because we
distinguish between type inference variables and “normal” type variables and F contains
type variable binders, that is, type abstraction in terms and universal quantification in
types. Nonetheless, we do not have to invent a completely different algorithm or enter
the realms of higher-order unification, which is undecidable [Gol81, BS94]. According to
the definition of R, the set of type inference variables dom(η) is disjoint from the set of
all bound type variables. Hence abstracted and universally quantified variables are not
to be replaced by the unification algorithm and universal quantification itself need not be
handled differently from other syntactic constructs such as function or data type.

Because the input of the type inference algorithm is typeable, all inputs of the unifi-
cation algorithm must be unifiable by a substitution which only replaces type inference
variables. Based on this knowledge we can drop several tests in our unification algorithm,
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Structural calls:

UV (T τ1..τk
.
= T ρ1..ρk, σ) := UV (τ1

.
= ρ1,UV (τ2

.
= ρ2, ..UV (τk

.
= ρk, σ)..))

(= σ, if k = 0)

UV (τ1 → τ2
.
= ρ1 → ρ2, σ) := UV (τ1

.
= ρ1,UV (τ2

.
= ρ2, σ))

UV (∀α.τ .
= ∀β.ρ, σ) := UV (τ

.
= ρ, σ)

UV (α
.
= β, σ) := σ , if α /∈ V and β /∈ V

Substitution calls:

UV (γ
.
= τ, σ) := UV (σ(γ)

.
= τ, σ) , if γ ∈ dom(σ)

UV (τ
.
= γ, σ) := UV (τ

.
= σ(γ), σ) , if γ ∈ dom(σ)

Unification calls:

UV (γ
.
= τ, σ) := σ[τσ/γ] , if γ ∈ V \ dom(σ)

UV (τ
.
= γ, σ) := σ[τσ/γ] , if γ ∈ V \ dom(σ)

Figure 4.2: Definition of the unification algorithm U

U{γ}(∀α.(α,[Int])→[Int]
.
= ∀β.(β,γ)→γ, [ ])

=
U{γ}((α,[Int])→[Int]

.
= (β,γ)→γ, [ ])

=
U{γ}((α,[Int])

.
= (β,γ),U{γ}([Int]

.
= γ, [ ]))

=
U{γ}((α,[Int])

.
= (β,γ), [[Int]/γ])

=
U{γ}(α

.
= β,U{γ}([Int]

.
= γ, [[Int]/γ])

=
U{γ}(α

.
= β,U{γ}([Int]

.
= [Int], [[Int]/γ])

=
U{γ}(α

.
= β,U{γ}(Int

.
= Int, [[Int]/γ])

=
U{γ}(α

.
= β, [[Int]/γ])

=
[[Int]/γ]

Figure 4.3: An example computation of U

so that it is simpler than standard unification algorithms. Note that the following ar-
guments assume that the input is unifiable by a substitution which only replaces type
inference variables. Our algorithm yields wrong results for other inputs; it may not even
terminate then.

The unification algorithm U is given in Figure 4.2. Its first argument V is the set of
type inference variables, that is, the type inference algorithm will call U with V = dom(η).
Besides two types τ and ρ, the algorithm also gets an idempotent substitution σ as
input. The algorithm computes a unifier σ̃ of τσ

.
= ρσ which is not necessarily a most

general unifier but which is more general than all unifiers σ̂ of τσ
.
= ρσ that extend σ.

UV (τ
.
= ρ, [ ]) computes the most general unifier of τ

.
= ρ.
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Basically the unification algorithm works by stepwise extension of the original input
substitution and threading of this substitution through the whole computation. If, for
example, both types are function types, then it unifies the two result types and the two
argument types. The substitution obtained from the first unification call is passed as input
to the second unification call. So instead of applying this substitution to the two type
arguments of the second unification call, as is done by standard unification algorithms,
we pass this information separately. We chose to formulate U with this additional input
substitution, because it makes the definition of the unification and of the type inference
algorithm more readable. Furthermore, it already suggests an efficient implementation
method (cf. Section 4.5). For data types and universal types it works similarly. In
general the unification algorithm recursively traverses both type arguments in parallel.
The interesting cases are those where one of the types is a type variable.

If both types are type variables that are not in V , that is, are not type inference
variables, we do not have to extend the substitution, because according to our assumption
the input of U is unifiable. However, if this is in a recursive call of U , then the two type
variables need not to be equal. The reason is that in the unification of two universal
types the algorithm completely ignores the bound type variables. Sure, according to our
assumption the two universal types must be unifiable, but to make them syntactically
equal it usually would be necessary to rename one of the bound variables. This renaming
would also change the type variable in the body of the type. The unification algorithm
does not perform this renaming and hence does not require two type variables which
are not type inference variables to be equal for successful unification. To be precise, we
assume the input of U to be unifiable modulo renaming of some variables. However, the
details of how this works are given in the proof of Lemma 4.24. The central point is
that U can handle unification up to renaming of bound type variables without needing to
perform any renaming.

If one of the two type arguments of U is a type variable in V , that is, a type infer-
ence variable, then we have to distinguish two cases. If the variable is in the domain
of the current substitution, then we apply the substitution at this point and continue
unification. So we see that by passing the substitution as a separate argument we only
defer the substitution. As the proof of Lemma 4.24 will show, infinite repetition of this
situation, which would lead to non-termination, cannot happen , because the substitution
is idempotent. If one of the two type arguments of U is a type inference variable that is
not in the domain of the current substitution, then the unification algorithm extends the
current substitution by substituting the other type argument for the type variable. Note
that the occur check of standard unification algorithms is not necessary here, because we
assume that the input of U is unifiable.

The algorithm U is non-deterministic in that some arguments match more than one
case of the definition. For example, for γ1

.
= γ2 with γ1, γ2 ∈ V \ dom(σ), γ1 may be

replaced by γ2 or γ2 by γ1. However, it follows from Lemma 4.24 that in any case the
result is a unifier with the desired properties.

Note that the definition of U covers all possible arguments, because we assume that
the input is unifiable. We cannot have a mismatch of arguments, that is, for example one
type is a data type and the other one a function type. Also we assume for the input of U
that dom(σ) ⊆ V and the algorithm preserves this invariant.

The example in Figure 4.3 illustrates how U works.

Finally, the following lemma states exactly under which conditions U computes a
unifier and in which respect it is most general. Note that the result of U is computed
independently of the unifier σ̂. So the result is more general than any unifier σ̂ which
fulfils the given premises. For any sets V1 and V2 we abbreviate the proposition V1∩V2 = ∅
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by V1 #V2.

Lemma 4.24 (Most general unifier)

τ σ̂ ≡ ρσ̂ σ idempotent σ �α σ̂ dom(σ̂) ⊆ V
V # bound(τ) V # bound(ρ) V # bound(σ)

∃σ̃ σ̃ = UV (τ
.
= ρ, σ) τ σ̃ ≡ ρσ̃ σ̃ idempotent σ �α σ̃ �α σ̂ V # bound(σ̃) �

Proof We have to strengthen the property for an inductive proof. We prove the follow-
ing:

ςl variable renaming ςr variable renaming
free(ςl) # free(σ̂) free(ςr) # free(σ̂) V # mod(ςl) V # mod(ςr)

τςlσ̂ ≡ ρςrσ̂ σ idempotent σ �α σ̂ dom(σ̂) ⊆ V
V # bound(τ) V # bound(ρ) V # bound(σ)

∃σ̃ σ̃ = UV (τ
.
= ρ, σ) τςlσ̃ ≡ ρςrσ̃ σ̃ idempotent σ �α σ̃ �α σ̂ V # bound(σ̃)

where a variable renaming is a substitution which maps variables only to variables.

For a fixed set V let the degree of τ
.
= ρ and σ be the triple (m,n, o) where m =

|V \ dom(σ)|, that is, the number of variables in V which are not replaced by σ, and n is
the size of τσ and ρσ, that is, the number of occurrences of type constructors, →, ∀ and
variables in it, and o is given by:

o :=


2 , if τ ∈ dom(σ) and ρ ∈ dom(σ)

1 , if either τ ∈ dom(σ) or ρ ∈ dom(σ)

0 , otherwise

We say that (m,n, o) is smaller than (m′, n′, o′) if either m < m′, or m = m′ and n < n′,
or m = m′ and n = n′ and o < o′ (cf. [Mit96], Proof of Lemma 11.2.4).

We prove by induction on the degree of τ
.
= ρ and σ:

Case UV (T τ1..τk
.
= T ρ1..ρk, σ) = UV (τ1

.
= ρ1,UV (τ2

.
= ρ2, ..UV (τk

.
= ρk, σ)..)).

Similar to the next case.

Case UV (τ1 → τ2
.
= ρ1 → ρ2, σ) = UV (τ1

.
= ρ1,UV (τ2, ρ2, σ)).

From (τ1→τ2)ςlσ̂ ≡ (ρ1→ρ2)ςrσ̂ it follows τ2ςlσ̂ ≡ ρ2ςrσ̂. The degree of τ2
.
= ρ2 and

σ is obviously smaller than the degree of τ1 → τ2
.
= ρ1 → ρ2 and σ.

Hence by induction hypothesis there exists an idempotent σ′ = UV (τ2
.
= ρ2, σ) with

τ2ςlσ
′ =ς ρ2ςrσ

′ and σ �α σ′ �α σ̂ and V # bound(σ′).

From (τ1 → τ2)ςlσ̂ ≡ (ρ1 → ρ2)ςrσ̂ also it follows τ1ςlσ̂ ≡ ρ1ςrσ̂. If τ1ςlσ
′ ≡ τ1ςlσ

and ρ1ςrσ
′ ≡ ρ1ςrσ, then the degree of τ1

.
= ρ1 and σ′ is smaller than the degree of

τ1 → τ2
.
= ρ1 → ρ2 and σ. Otherwise σ 6≡ σ′ and hence according to Lemma 4.21

dom(σ) ⊂ dom(σ′). So in this case the first component of the degree is reduced.

Hence by induction hypothesis there exists an idempotent σ̃ = UV (τ1
.
= ρ1, σ

′) with
τ1ςlσ̃ ≡ ρ1ςlσ̃ and σ′ �α σ̃ �α σ̂ and V # bound(σ̃).
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So we have σ �α σ′ �α σ̃ and

(τ1→τ2)ςlσ̃
=
τ1ςlσ̃→τ2ςlσ̃

≡ {σ′ idempotent and σ′ �α σ̃; Lemma 4.17}
τ1ςlσ̃→τ2ςlσ

′σ̃

≡ {τ1ςlσ̃ ≡ ρ1ςrσ̃ and τ2ςlσ
′ ≡ ρ2ςrσ

′}
ρ1ςrσ̃→ρ2ςrσ

′σ̃

≡ {σ′ idempotent and σ′ �α σ̃; Lemma 4.17}
ρ1ςrσ̃→ρ2ςrσ̃

=
(ρ1→ρ2)ςrσ̃

Case UV (∀α.τ .
= ∀β.ρ, σ) = UV (τ

.
= ρ, σ).

Let γ be a type variable with γ /∈ V ∪mod(σ̂)∪mod(ςl)∪mod(ςr)∪ free(τ)∪ free(ρ).
We have

∀γ.(τ [γ/α]ςlσ̂)

= {γ /∈ mod(σ̂) ∪mod(ςl) and Lemma 2.3}
(∀γ.τ [γ/α])ςlσ̂

≡ {γ /∈ free(τ), Definition of ≡}
(∀α.τ )ςlσ̂

≡ {premise}
(∀β.ρ)ςrσ̂

≡ {γ /∈ free(ρ), Definition of ≡}
(∀γ.ρ[γ/β])ςrσ̂

= {γ /∈ mod(σ̂) ∪mod(ςr) and Lemma 2.3}
∀γ.(ρ[γ/β]ςrσ̂)

So τ [γ/α]ςlσ̂ ≡ ρ[γ/β]ςrσ̂.

With Lemma 4.22 it follows that mod(σ) ⊆ mod(σ̂) and hence (∀α.τ )σ = ∀γ.(τ [γ/α]σ)
and (∀β.ρ)σ = ∀γ.(ρ[γ/β]σ). Because α, β, γ /∈ dom(σ) ⊆ V , τ [γ/α]σ and τσ have
the same size and also ρ[γ/β]σ and ρσ. Therefore the size of τσ and ρσ is smaller
than the size of (∀α.τ )σ and (∀β.ρ)σ. So the degree of τ

.
= ρ and σ is smaller than

the degree of ∀α.τ .
= ∀β.ρ and σ.

Hence by induction hypothesis there exists an idempotent σ̃ = UV (τ
.
= ρ, σ) with

τ [γ/α]ςlσ̃ ≡ ρ[γ/β]ςrσ̃ and σ �α σ̃ �α σ̂ and V # bound(σ̃).
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With Lemma 4.22 it follows that mod(σ̃) ⊆ mod(σ̂). So

(∀α.τ )ςlσ̃

≡ {γ /∈ free(τ), Definition of ≡}
(∀γ.τ [γ/α])ςlσ̃

= {γ /∈ mod(ςl) ∪mod(σ̃) and Lemma 2.3}
∀γ.(τ [γ/α]ςlσ̃)

≡ {τ [γ/α]ςlσ̃ ≡ ρ[γ/β]ςrσ̃}
∀γ.(ρ[γ/β]ςrσ̃)

= {γ /∈ mod(ςr) ∪mod(σ̃) and Lemma 2.3}
(∀γ.ρ[γ/β])ςrσ̃

≡ {γ /∈ free(ρ), Definition of ≡}
(∀β.ρ)ςrσ̃

Case UV (α
.
= β, σ) = σ where α /∈ V and β /∈ V .

With V # mod(ςl) and V # mod(ςr) it follows αςl /∈ V and βςr /∈ V . Note that we
have dom(σ) ⊆ dom(σ̂) ⊆ V . So

αςlσ

= {αςl /∈ dom(σ)}
αςl

= {αςl /∈ dom(σ̂)}
αςlσ̂

≡ {premise: αςlσ̂ ≡ βςrσ̂}
βςrσ̂

= {βςr /∈ dom(σ̂)}
βςr

= {βςr /∈ dom(σ)}
βςrσ

Hence all conclusions hold for σ̃ = σ.

Case UV (γ
.
= τ, σ) = UV (σ(γ)

.
= τ, σ) where γ ∈ dom(σ).

σ(γ)σ̂
=
γσσ̂

≡ {σ idempotent and σ �α σ̂; Lemma 4.17}
γσ̂

= {γ /∈ dom(ςl), because γ ∈ dom(σ) ⊆ V but V # mod(ςl)}
γςlσ̂

≡ {premise}
τςrσ̂

We have V # bound(σ(γ)), because V # bound(σ). The substitution σ is unchanged
and the size of γσ and σ(γ)σ = γσ are equal, but the third component of the degree
is smaller in the recursive call.
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Hence by induction hypothesis there exists an idempotent σ̃ = UV (σ(γ)
.
= τ, σ) with

σ(γ)σ̃ ≡ τςrσ̃ and σ �α σ̃ �α σ̂ and V # bound(σ̃).

Finally, it follows

γςlσ̃

= {γ /∈ dom(ςl), because γ ∈ dom(σ) ⊆ V but V # mod(ςl)}
γσ̃

≡ {σ idempotent and σ �α σ̃; Lemma 4.17}
γσσ̃

≡
τςrσ̃

Case UV (τ
.
= γ, σ) = UV (τ

.
= σ(γ), σ) where γ ∈ dom(σ).

Similar to the previous case.

Case UV (γ
.
= τ, σ) = σ[τσ/γ] where γ ∈ V \ dom(σ).

Because σ̃ = σ[τσ/γ], σ �α σ̃ holds, we have

γσ̂

= {γ /∈ dom(ςl), because γ ∈ dom(σ) ⊆ V but V # mod(ςl)}
γςlσ̂

≡ {premise}
τςrσ̂

Suppose τςr 6= τ . Then there exists α ∈ free(τ) ∩ dom(ςr). With dom(σ̂) ⊆ V and
V # mod(ςr) it follows αςr /∈ dom(σ̂) and hence αςr ∈ free(τςrσ̂). However, with
γσ̂ ≡ τςrσ̂ it follows αςr ∈ free(σ̂). This contradicts free(ςr) # free(σ̂). So τςr = τ
and γσ̂ ≡ τ σ̂.

Case γ /∈ free(τσ).
According to Corollary 4.19, σ̃ is idempotent. Also V # bound(σ̃), because
V # bound(σ) and V # bound(τ). Finally

γςlσ̃

= {γ /∈ dom(ςl), because γ ∈ dom(σ) ⊆ V but V # mod(ςl)}
γσ̃

=
γσ[τσ/γ]

= {γ /∈ dom(σ)}
γ[τσ/γ]

=
τσ

= {γ /∈ free(τσ)}
τσ[τσ/γ]

=
τ σ̃

= {τ = τςr}
τςrσ̃
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Case γ ∈ free(τσ).
We have γσ̂ ≡ τ σ̂ ≡ τσσ̂. Considering the size of the two sides of the equation
we see that together with γ ∈ free(τσ) it follows that γ = τσ.

Hence σ̃ = σ[τσ/γ] = σ is obviously idempotent and we have γσ̃ = γσ[τσ/γ] =
τσ = τ σ̃.

Case UV (γ
.
= τ, σ) = σ[τσ/γ] where γ ∈ V \ dom(σ).

Similar to the previous case.

Otherwise
None of the equations that define U applies. This cannot occur because of the
premise τςlσ̂ =ς ρςrσ̂. �

4.3.3 Consistency of Types of Constructor Variables

In Chapter 3 we illustrated at the hand of several examples how type inference enables
list abstraction. There is however a problem that we have not mentioned yet. Consider
list abstracting the well-typed term

{xs:[[Int]]} ` (:) [Int] ([] Int) xs : [[Int]]

The first phase of list replacement gives (ignoring for the moment that it yields an instance
substitution which indirectly defines the types of the constructor variables):

{xs:[[Int]], v(:)γ2
:γ1→γ2→γ2, v

[]
γ3

:γ3} ` v(:)γ2
v[]γ3

xs

Subsequently, type inference yields the principal typing

{xs:[[Int]], v(:)γ2
:γ1→[[Int]]→[[Int]], v[]γ3

:γ1} ` v(:)γ2
v[]γ3

xs : [[Int]]

This typing is too general for our purposes. In the third phase we should reinstantiate
v(:)γ2

to (:) [Int], because γ2 was replaced by [[Int]]. We cannot do so, because the
type of the first argument of v(:)γ2

is γ1 instead of the expected [Int].
This too general result of the type inference algorithm is caused by the too general

input to the type inference algorithm. In the first phase we replace a constructor appli-
cation (:) τ of type τ→[τ]→[τ] by a variable v(:)γ of type τ→γ→γ. This type does
not relate the types τ and γ in any way. Hence, if τ also contains some type variable γ′,
the type inference algorithm may instantiate γ′ independently of how it instantiates γ.

This problem of too general types of constructor variables manifests itself also in
another situation. Consider the well-typed term

` (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])) : [[Int]]

The first phase of list replacement gives

{v(:)γ2
:γ1→γ2→γ2, v(:)γ4

:γ3→γ4→γ4, v[]γ5
:γ5, v[]γ6

:γ6, v[]γ7
:γ7}

` v(:)γ2
v[]γ5

(v(:)γ4
v[]γ6

v[]γ7
)

Subsequently, type inference yields the principal typing

{v(:)γ2
:γ1→γ2→γ2, v(:)γ4

:γ3→γ2→γ2, v[]γ5
:γ1, v[]γ6

:γ3, v[]γ7
:γ2}

` v(:)γ2
v[]γ5

(v(:)γ4
v[]γ6

v[]γ7
)

: γ2
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This typing is too general, because both v(:)γ2
and v(:)γ4

construct values of type γ2, but
v(:)γ2

requires an element of type γ1 as first argument whereas v(:)γ4
requires an element of

type γ2. Hence we are not able to merge v(:)γ2
and v(:)γ4

into a single constructor variable
in the third phase of list abstraction. We would like to obtain the typing

{v(:)γ2
:γ1→γ2→γ2, v(:)γ4

:γ1→γ2→γ2, v[]γ5
:γ1, v[]γ6

:γ1, v[]γ7
:γ2}

` v(:)γ2
v[]γ5

(v(:)γ4
v[]γ6

v[]γ7
)

: γ2

In [Chi99] we did not have the described problem, because we abstracted only a single
list from a producer. The list replacement algorithm needed only to replace all list types
[τ] and all constructor applications (:) τ and [] τ for a single fixed type τ . Because
only nested lists expose the missing constraints in the types of constructor variables, the
problem did not occur. However, to perform a worker/wrapper split we have to be able
to abstract from several lists. Hence the list replacement algorithm replaces all list types
[τ] and all constructor applications (:) τ and [] τ for (nearly) all types τ . Then nested
lists lead to the problem.

From the two examples we learn that for a typing to be usable in the third phase, its
typing environment should be consistent in the following sense.

Definition 4.25 A typing environment Γ is consistent, if for all constructor variables
v(:)1 and v(:)2

Γ(v(:)1 ) = τ→τ ′→τ ′ τ ′ not a variable

[τ] = τ ′
and

Γ(v(:)1 ) = τ1→γ→γ Γ(v(:)2 ) = τ2→γ→γ

τ1 = τ2

�

Our type inference algorithm does not yield a typing environment but a substitution
σ (and a type). The types of the constructor variables are then determined by

tyEnv(η)σ
=
{v(:)γ :τγ→γ→γ, v[]γ :γ | η(γ) = [τγ], γ ∈ dom(η)}σ

=
{v(:)γ :τγσ→γσ→γσ, v[]γ :γσ | η(γ) = [τγ], γ ∈ dom(η)}

where η is the instance substitution from the list replacement phase. Hence we reformulate
consistency as a property of substitutions:

Definition 4.26 A substitution σ is consistent with an instance substitution η, if the
following three properties hold:

σ(γ) not a variable

σ(γ) = η(γ)σ
(1)

σ(γ) = γ′

η(γ)σ = η(γ′)σ
(2)

σ � η∞ (3)

A typing (σ, τ) is consistent with an instance substitution η, if σ is consistent with η.

�
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We added property (3) to the definition of consistency, because it simplifies some
proofs. We know that the input of the type inference algorithm is typeable with η∞ and
want to find a more general typing. Hence we are only interested in typings with σ � η∞

anyway.

Corollary 4.27

σ idempotent σ consistent with η

ση∞ = η∞ �

Proof Follows with Lemma 4.17 from property (3) of Definition 4.26. �

Lemma 4.28 For any instance substitution η its compositional closure η∞ is consistent
with η. �

Proof Straightforward. �

As desired, the consistency of the substitution implies the consistency of the typing
environment:

Lemma 4.29 (Consistency)

σ consistent with η

tyEnv(η)σ consistent �

Proof Follows directly from the definitions of tyEnv(η) and consistency. Property (1)
of consistency of σ with η implies the first property of the consistency of tyEnv(η)σ and
property (2) of consistency of σ with η implies the second property of the consistency of
tyEnv(η)σ. �

To illustrate the relationship between consistency of substitutions with an instance
substitution and the consistency of a typing environment we consider again the typing

{xs:[[Int]]} ` (:) [Int] ([] Int) xs : [[Int]]

The list replacement phase returns the term v(:)γ2
v[]γ3

xs and the instance substitution

η = [[Int]/γ1, [γ1]/γ2, [Int]/γ3]

This instance substitution η determines the following typing environment for the con-
structor variables:

tyEnv(η)

= {v(:)γ1
:Int→γ1→γ1, v

(:)
γ2

:γ1→γ2→γ2, v
(:)
γ3

:Int→γ3→γ3, v
[]
γ1

:γ1, v
[]
γ2

:γ2, v
[]
γ3

:γ3}

Finally, the principal typing of

{xs:[[Int]]}+ tyEnv(η) ` v(:)γ2
v[]γ3

xs

that is consistent with η is

([[Int]/γ1, [[Int]]/γ2, [Int]/γ3], [[Int]])
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Note that the substitution must replace γ1 by [Int] to fulfil property (1) of consistency.
Applying the substitution to tyEnv(η) yields

{v(:)γ1
:Int→[Int]→[Int], v(:)γ2

:[Int]→[[Int]]→[[Int]],

v(:)γ3
:Int→[Int]→[Int], v[]γ1

:[Int], v[]γ2
:[[Int]], v[]γ3

:[Int]}

which is obviously a consistent typing environment.
To obtain a consistent typing for the third phase of list abstraction we post-process

the possibly inconsistent result of type inference with an algorithm that we will describe
in Section 4.3.6. However, we will already take advantage of the fact that we are only
interested in consistent typings in our type inference algorithm, as we will explain in
Section 4.3.5. We shortly discuss alternative approaches to ensuring consistency in Sec-
tion 4.6.

4.3.4 Towards a Type Inference Algorithm

We want to define our type inference algorithm inductively over the input term. Unfortu-
nately the type system of F as defined in Figure 2.6 is non-deterministic in that a typing
can be proved by several derivation trees. For example, the following two derivation trees
prove the same typing:

{x:∀α.α}(x) = ∀α.α
{x:∀α.α} ` x : ∀α.α

var

` λx:∀α.α.x : (∀α.α)→(∀α.α)
term abs

` λx:∀α.α.x : (∀α.α)→(∀β.β)
ty. ren.

{x:∀α.α}(x) = ∀α.α
{x:∀α.α} ` x : ∀α.α

var

{x:∀α.α} ` x : ∀β.β
type rename

` λx:∀α.α.x : (∀α.α)→(∀β.β)
t. abs

The cause of this non-determinism are the type rename and term rename rule,
which are applicable to terms of any form. However, these two rules do not change the
form of terms either. Hence, although, for example, the last rule used in the derivation
of a typing Γ ` λx : τ1.M : τ may not be the term abs rule, we can argue that there
exists a type τ2 such that Γ + {x : τ1} ` M : τ2 is valid and τ ≡ τ1 → τ2.

For every term form we can find such a generation property, which is basically the
inverse of the appropriate typing rule except that types are only compared modulo re-
naming.

The only problematic case is type abstraction. A valid typing Γ ` λα.M : τ does
not imply that there exists a type τ̂ such that Γ ` M : τ̂ is valid and τ ≡ ∀α.τ̂ . For
example, there is a derivation tree

{x:α}(x) = α

{x:α} ` x : α
var

{x:α} ` λβ.x : ∀β.α
type abs

{x:α} ` λα.x : ∀β.α
term rename

and {x:α} ` x : α is valid, but ∀β.α 6≡ ∀α.α. Because of the term rename rule
the type variable in the abstraction (λα) need not coincide with the type variable in the
universal quantification (∀β). It is, however, the case that a valid typing Γ ` λα.M : τ
implies that there exists a type τ̂ and a type variable β such that Γ ` M [β/α] : τ̂ is
valid and τ ≡ ∀β.τ̂ . The existence of such a type variable β is still not sufficient for the
definition of the type inference algorithm, because the algorithm must know for which
type variable β it shall infer the typing of Γ and M [β/α]. Fortunately it is easy to prove
that any type variable β that is not free in the typing environment Γ or the term λα.M
does the job.
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Γ ` x : τ

Γ(x) ≡ τ
g-var

Γ ` λx : τ1.M : τ

∃τ2 τ ≡ τ1 → τ2 Γ + {x : τ1} ` M : τ2

g-term abs

Γ ` M1 M2 : τ

∃τ2 Γ ` M1 : τ2 → τ Γ ` M2 : τ2

g-term app

Γ ` let {xi : τi = Mi}ki=1 in N : τ

∀i ∈ {1..k} Γ + {xj : τj}kj=1 ` Mi : τi Γ + {xj : τj}kj=1 ` N : τ
g-let

Γ ` c : τ

∆(c) ≡ τ
g-cons

Γ ` case M of {ci xi 7→ Ni}ki=1 : τ

Γ ` M : T ρ ∀i ∈ {1..k} ` ci : ∀α.ρi→T α Γ + {xi : ρi[ρ/α]} ` Ni : τ
g-case

Γ ` λα.M : τ β /∈ freeTy(Γ) ∪ freeTy(λα.M)

∃τ̂ τ ≡ ∀β.τ̂ Γ ` M [β/α] : τ̂
g-type abs

Γ ` M ρ : τ

∃α, τ̂ τ ≡ τ̂ [ρ/α] Γ ` M : ∀α.τ̂
g-type app

Figure 4.4: Generation of typings

Lemma 4.30 (Generation of typings) The properties in Figure 4.4, which state how
terms of a certain form get typed, hold. �

Proof We give proofs for some of the properties.

Case g-term abs.
From

Γ ` λx : τ1.M : τ

follows with the type inference rules the existence of τ ′1, M ′ and τ ′ such that τ ′1 ≡ τ1

and M ′ ≡M and

Γ ` λx : τ ′1.M
′ : τ ′

is derivable by the term abs rule. Hence exists τ2 with τ ′ = τ ′1→τ2 and

Γ + x : τ ′1 ` M ′ : τ2

With the env rename rule of Lemma 2.5 and the term rename rule it follows

Γ + x : τ1 ` M : τ2

Finally τ ≡ τ ′ = τ ′1→τ2 ≡ τ1→τ2.
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Case g-type abs.
From

Γ ` λα.M : τ

follows with the type inference rules the existence of γ, M ′ and τ ′ such that γ /∈
free(λα.M), λα.M ≡ λγ.M ′[γ/α] and

Γ ` λγ.M ′[γ/α] : τ ′

is derivable by the type abs rule. Hence exists τ̂ ′ with τ ′ = ∀γ.τ̂ ′ and

Γ ` M ′[γ/α] : τ̂ ′

and γ /∈ free(Γ).

With the substitution property of Lemma 2.6 we obtain

Γ[β/γ] ` M ′[γ/α][β/γ] : τ̂ ′[β/γ]

Using the term rename rule we obtain

Γ[β/γ] ` M [γ/α][β/γ] : τ̂ ′[β/γ]

We let τ̂ = τ̂ ′[β/γ] and with γ /∈ free(Γ) and γ /∈ free(λα.M) it follows

Γ ` M [β/α] : τ̂

From Γ ` λα.M : ∀γ.τ̂ ′, β /∈ free(Γ) and β /∈ free(λα.M) follows according to
Lemma 2.7, β /∈ free(∀γ.τ̂ ′).

Hence τ ≡ τ ′ = ∀γ.τ̂ ′ ≡ ∀β.τ̂ ′[β/γ] = ∀β.τ̂ .

Case g-type app.
From

Γ ` M ρ : τ

follows with the type inference rules the existence of M ′, ρ′ and τ ′ such that M ′ ≡M
and ρ′ ≡ ρ and

Γ ` M ′ ρ′ : τ ′

is derivable by the type app rule. Hence exist α and τ̂ with τ ′ = τ̂ [ρ′/α] and

Γ ` M ′ : ∀α.τ̂

With the term rename rule it follows

Γ ` M : ∀α.τ̂

and finally τ ′ = τ̂ [ρ′/α] ≡ τ̂ [ρ/α]. �
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4.3.5 The Type Inference Algorithm T

The starting point for the development of our type inference algorithm T was Milner’s
type inference algorithm W for the Hindley-Milner type system [Mil78, DM82]. We
formulated the generation lemma mainly to find out how to handle type abstraction
and type application, which do not occur in the Hindley-Milner type system. In fact,
algorithm W can also be considered as based on the appropriate generation lemma for
the Hindley-Milner type system.

Note that in contrast to W the terms that are input to our type inference algorithm
contain type annotations. These types and the types in the typing environment contain
type inference variables which are to be replaced to obtain a valid typing. Furthermore, the
type inference algorithm will only be applied to input which is typeable by a substitution
which only substitutes list types. Finally, we are only interested in typings which are
consistent. All these properties together permit us to define a type inference algorithm
that is simpler thanW in many aspects. The most obvious simplification is that our type
inference algorithm does not need to create any new type inference variables. The type
inference variables that occur in the input are sufficient.

Our type inference algorithm T is given in Figure 4.5. Its first argument is the instance
substitution η. It is needed for the typing of constructor variables, its domain is needed
for unification, and type inference of the case construct is simplified by using η. Besides a
typing environment Γ and a term M , the algorithm also gets an idempotent substitution
σ as input. Its purpose is the same as in the unification algorithm. The type inference
algorithm works by stepwise extension of σ to obtain a typing for Γσ and Mσ. The
use of this separate substitution makes the algorithm more readable and is close to our
implementation. The algorithm returns a valid typing, that is, a substitution σ̃ and a
type τ̃ such that (Γ + tyEnv(η))σ̃ ` Mσ̃ : τ̃ σ̃.

The type inference algorithm is defined inductively over the form of the input term
and recursively traverses the input term. The result of the algorithm for constructor
variables, term variables and data constructors is directly determined by the typing en-
vironment for constructor variables tyEnv(η), the typing environment Γ and the data
typing environment ∆, respectively.

To determine the typing of a term abstraction λx : τ1.M , the algorithm recursively
determines the typing of the abstraction body M . Note that the typing environment has
to be extended by a type for the abstracted term variable, which is directly obtained from
the type annotation of the term abstraction x : τ .

To determine the typing of a term application M1 M2, the algorithm recursively de-
termines the typings of its subterms M1 and M2. Because the input of the algorithm is
typeable by a substitution that only substitutes list types, the typing of M1 must contain
a function type τ ′2→ τ1. Its argument type τ ′2 and the inferred type of the argument M2

finally have to be unified, because they have to agree.

The type system of F has explicit type abstraction and hence no type generalisation
step (type closure) at the let construct, as the Hindley-Milner type system has. So our
type inference algorithm is closer to Hindley’s original type inference algorithm [Hin69]
than to the Hindley-Milner type inference algorithm. For the let construct the definition
of T is simply a combination of its definition for term application and term abstraction.

The definition of T for the case construct is best explained at the hand of an exam-
ple. Consider the typing environment and term ∅ ` λx:[α]. case x of {y:ys 7→ y}.
For this input R yields ([[α]/τ1], λx:τ1. case x of {y:ys 7→ y}). The type inference
algorithm determines that the variable x, which is scrutinised in the case construct, has
type τ1. Furthermore, the pattern y:ys conveys the information that the type of x must
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Tη(Γ, v(:)γ , σ) := (σ, τγ→γ→γ) where [τγ] = η(γ)

Tη(Γ, v[]γ , σ) := (σ, γ)

Tη(Γ, x, σ) := (σ,Γ(x)) , if x not a constructor variable

Tη(Γ, λx : τ1.M, σ) := let (σ̃, τ2) := Tη(Γ + {x : τ1},M, σ)
in (σ̃, τ1 → τ2)

Tη(Γ,M1 M2, σ) := let (σ1, τ
′
2 → τ1) := Tη(Γ,M1, σ)

(σ2, τ2) := Tη(Γ,M2, σ1)
in (Udom(η)(τ

′
2
.
= τ2, σ2), τ1)

Tη(Γ, let {xi : τi = Mi}ki=1 in N, σ) := let (σ0, τ) := Tη(Γ + {xi : τi}ki=1, N, σ)
(σ1, τ

′
1) := Tη(Γ + {xi : τi}ki=1,M1, σ0)

...
...

(σk, τ
′
k) := Tη(Γ + {xi : τi}ki=1,Mk, σk−1)

in (Udom(η)(τ1
.
= τ ′1, ..Udom(η)(τk

.
= τ ′k, σk)..), τ)

Tη(Γ, c, σ) := (σ,∆(c))

Tη(Γ, case M of {ci xi 7→ Ni}ki=1, σ) := let ∀α.ρi → C α := ∆(ci) ∀i = 1..k
(σ′0, τ

′) := Tη(Γ,M, σ)

(σ0, C τ) :=


(σ′0[γησ′0/γ], γησ′0)

, if τ ′ = γ ∈ dom(η)
(σ′0, τ

′) , otherwise
(σ1, τ1) := Tη(Γ + {x1 : ρ1[τ/α]}, N1, σ0)

...
...

(σk, τk) := Tη(Γ + {xk : ρk[τ/α]}, Nk, σk−1)
in (Udom(η)(τ1

.
= τ2, ..Udom(η)(τk−1

.
= τk, σk)..), τk)

Tη(Γ, λα.M, σ) := let β new with
β /∈ free(Γ) ∪ free(λα.M) ∪mod(η)
(σ̃, τ) := Tη(Γ,M [β/α], σ)

in (σ̃, ∀β.τ)

Tη(Γ,M ρ, σ) := let (σ̃, ∀α.τ ) := Tη(Γ,M, σ)
in (σ̃, subsdom(η)(τ, [ρ/α]))

Figure 4.5: Type inference algorithm

be a list type. However, how shall the algorithm know the type of the list elements? We
could define T so that it introduces a new type variable τ2 for the list elements. Then it
would infer the principal typing ([[γ2]/γ1], [γ2]→γ2) However, we are not interested in
the fact that the term is polymorphic in the list argument type. We only want to know
about polymorphism in list types to abstract them. Formally, we are only interested in



Chapter 4. List Abstraction And Type Inference 73

typings whose substitutions are consistent with the instance substitution [[α]/τ1]. So,
because γ1 has to be replaced by a list because of the pattern y:ys, we can replace it
by τ1[[α]/τ1] = [α] and obtain the principal consistent typing ([[α]/γ1], [α]→α). In
general, we use the instance substitution η when we have to replace a type inference vari-
able during type inference of a case construct, because thus we avoid the introduction
of a new type inference variable and because we are only interested in consistent typings
anyway.

The definition of T for type abstraction follows from the Generation Lemma 4.30.
Note that the new variable β is not a type inference variable, that is, β is never replaced
by unification.

The definition of T for a type application M ρ also follows from the Generation
Lemma 4.30. Because the input of the algorithm is typeable by a substitution that
only substitutes list types, the inferred typing of M must contain a universal type ∀α.τ .
To obtain the result type, α has to be replaced by ρ, but note that this substitution is not
part of the substitution of the typing. The type variable α is not a type inference variable.
To use our unification algorithm U we have to preserve the invariant that the set of type
inference variables dom(η) is disjoint from the set of all bound type variables occurring
in the processed typing environment and term. Hence we use a slightly modified version
of substitution that never introduces a type inference variable as new variable:

Definition 4.31 (Application of a substitution excluding some new variables)

subsV (α, σ) := σ(α)

subsV (∀α.τ, σ) := ∀β. subsV (τ, [β/α]σ)

where β new with β /∈ V ∪ free(∀α.τ ) ∪mod(σ)

subsV (T τ1..τk, σ) := T (subsV (τ1, σ))..(subsV (τk, σ))

subsV (τ1 → τ2, σ) := (subsV (τ1, σ))→ (subsV (τ2, σ))

�

Lemma 4.32 (Properties of subs)

subsV (τ, σ) ≡ τσ
V # bound(τ) V # bound(σ)

V # bound(subsV (τ, σ)) �

Proof Both by induction on τ . �

To illustrate how the type inference algorithm works, Figure 4.6 shows intermediate
steps of the computation of

Tη({zs:[β]}, (λα.λx:α.x) γ zs, [ ]) = ([[β]/γ], γ)

with η = [[β]/γ].

Finally, the following lemma states exactly under which conditions T computes a
typing and in which respect it is principal (most general). Note that the result of T
is computed independently of the typing (σ̂, τ̂). So the result is more general than any
typing (σ̂, τ̂) that fulfils the given premises.
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Tη({zs:[β]}, (λα.λx:α.x) γ zs, [ ])
=

let (σ1, τ
′
2→τ1) := Tη({zs:[β]}, (λα.λx:α.x) γ, [ ])

(σ2, τ2) := Tη({zs:[β]}, zs, σ1)
in (U{γ}(τ ′2

.
= τ2, σ2), τ1)

=
let (σ1, τ

′
2→τ1) := let (σ̃, ∀α.τ ) := Tη({zs:[β]}, λα.λx:α.x, [ ])

in (σ̃, subs{γ}(τ, [γ/α]))
(σ2, τ2) := Tη({zs:[β]}, zs, σ1)

in (U{γ}(τ ′2
.
= τ2, σ2), τ1)

=
let (σ1, τ

′
2→τ1) := let (σ̃, ∀α.τ ) := let (σ̃, τ) := let (σ̃, τ2) := Tη({zs:[β], x:δ}, x, [ ])

in (σ̃, δ→τ2)
in (σ̃, ∀δ.τ)

in (σ̃, subs{γ}(τ, [γ/α]))
(σ2, τ2) := Tη({zs:[β]}, zs, σ1)

in (U{γ}(τ ′2
.
= τ2, σ2), τ1)

=
let (σ1, τ

′
2→τ1) := let (σ̃, ∀α.τ ) := let (σ̃, τ) := ([ ], δ→δ)

in (σ̃, ∀δ.τ)
in (σ̃, subs{γ}(τ, [γ/α]))

(σ2, τ2) := Tη({zs:[β]}, zs, σ1)
in (U{γ}(τ ′2

.
= τ2, σ2), τ1)

=
let (σ1, τ

′
2→τ1) := let (σ̃, ∀α.τ ) := ([ ],∀δ.δ→δ)

in (σ̃, subs{γ}(τ, [γ/α]))
(σ2, τ2) := Tη({zs:[β]}, zs, σ1)

in (U{γ}(τ ′2
.
= τ2, σ2), τ1)

=
let (σ1, τ

′
2→τ1) := ([ ], subs{γ}(δ→δ, [γ/δ]))

(σ2, τ2) := Tη({zs:[β]}, zs, σ1)
in (U{γ}(τ ′2

.
= τ2, σ2), τ1)

=
let (σ1, τ

′
2→τ1) := ([ ], γ→γ)

(σ2, τ2) := Tη({zs:[β]}, zs, σ1)
in (U{γ}(τ ′2

.
= τ2, σ2), τ1)

=
let (σ2, τ2) := Tη({zs:[β]}, zs, [ ])
in (U{γ}(γ

.
= τ2, σ2), γ)

=
let (σ2, τ2) := ([ ], [β])
in (U{γ}(γ

.
= τ2, σ2), γ)

=
(U{γ}(γ

.
= [β], [ ]), γ)

=
([[β]/γ], γ)

Figure 4.6: An example computation of T
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Lemma 4.33 (Principal Typing)

(Γ + tyEnv(η))σ̂ ` Mσ̂ : τ̂ σ �α σ̂ σ idempotent
σ̂ consistent with η dom(σ̂) ⊆ V V = dom(η) V # bound(η)
V # bound(∆) V # bound(Γ) V # bound(M) V # bound(σ)

∃(σ̃, τ̃)
(σ̃, τ̃) = Tη(Γ,M, σ) (Γ + tyEnv(η))σ̃ ` Mσ̃ : τ̃ σ̃ τ̃ σ̂ ≡ τ̂
σ �α σ̃ �α σ̂ σ̃ idempotent V # bound(τ̃) V # bound(σ̃) �

Proof We prove by structural induction on the term M .

Case v(:)γ .
From

(Γ + tyEnv(η))σ̂ ` v(:)γ σ̂ : τ̂

it follows with property g-var that ((Γ + tyEnv(η))σ̂)(v(:)γ ) ≡ τ̂ .

So τ̂ ≡ (τγ→γ→γ)σ̂ where [τγ] = η(γ). Then the var rule assures that

(Γ + tyEnv(η))σ ` v(:)γ σ : (τγ→γ→γ)σ

Finally V # bound(η) implies V # bound(τγ→γ→γ). Hence all conclusions hold
for (σ, τγ→γ→γ).

Case v[]γ .
Similar to the previous case.

Case x.
From

(Γ + tyEnv(η))σ̂ ` xσ̂ : τ̂

it follows with property g-var that ((Γ + tyEnv(η))σ̂)(x) ≡ τ̂ , that is, Γσ̂(x) ≡ τ̂ .
So x ∈ dom(Γ) and hence the var rule assures that

(Γ + tyEnv(η))σ ` xσ : (Γ(x))σ

Finally V # bound(Γ) implies V # bound(Γ(x)). Hence all conclusions hold for
(σ,Γ(x)).

Case λx : τ1.M .
From

(Γ + tyEnv(η))σ̂ ` (λx : τ1.M)σ̂ : τ̂

it follows

(Γ + tyEnv(η))σ̂ ` λx : τ1σ̂.Mσ̂ : τ̂

and hence with property g-term abs the existence of τ̂2 with τ̂ ≡ τ1σ̂→ τ̂2 and

(Γ + {x:τ1}+ tyEnv(η))σ̂ ` Mσ̂ : τ̂2

V # bound(λx : τ1.M) implies V # bound(M) and V # bound(τ1). The latter to-
gether with V # bound(Γ) implies V # bound(Γ + {x:τ1}).
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Hence by induction hypothesis there exists (σ̃, τ2) = Tη(Γ + {x:τ1},M, σ) with

(Γ + {x:τ1}+ tyEnv(η))σ̃ ` Mσ̃ : τ2σ̃

and σ �α σ̃ �α σ̂ and σ̃ is idempotent and V # bound(τ2) and V # bound(σ̃). With
the term abs rule it follows

(Γ + tyEnv(η))σ̃ ` λx : (τ1σ̃).(Mσ̃) : τ1σ̃→τ2σ̃

that is,

(Γ + tyEnv(η))σ̃ ` (λx : τ1.M)σ̃ : (τ1→τ2)σ̃

Furthermore, (τ1→ τ2)σ̂ = τ1σ̂→ τ2σ̂ ≡ τ1σ̂→ τ̂2 ≡ τ̂ σ̂. Finally, V # bound(τ1) and
V # bound(τ2) imply V # bound(τ1→τ2).

Hence all conclusions hold for (σ̃, τ1→τ2).

Case M1 M2.
From

(Γ + tyEnv(η))σ̂ ` (M1 M2)σ̂ : τ̂

it follows

(Γ + tyEnv(η))σ̂ ` (M1σ̂) (M2σ̂) : τ̂

and hence with property g-term app the existence of τ̂2 with

(Γ + tyEnv(η))σ̂ `M1σ̂ : τ̂2→ τ̂ and

(Γ + tyEnv(η))σ̂ `M2σ̂ : τ̂2

From V # bound(M1 M2) it follows V # bound(M1) and V # bound(M2).

Hence by induction hypothesis there exists (σ1, τ̃1) = Tη(Γ,M1, σ) with

(Γ + tyEnv(η))σ1 ` M1σ1 : τ̃1σ1

and τ̃1σ̂ ≡ τ̂2→ τ̂ and σ �α σ1 �α σ̂ and σ1 idempotent and V # bound(τ̃1) and
V # bound(σ1).

Suppose τ̃1 is a variable. Because σ̂ �α η∞ and τ̃1σ̂ ≡ τ̂2→ τ̂ , η∞(τ̃1) must be a
function type. However, this contradicts with the fact that η substitutes list types.
So τ̃1 is not a variable and there exist τ ′2 and τ1 with τ ′2→τ1 = τ̃1.

By induction hypothesis there exists (σ2, τ2) = Tη(Γ,M2, σ1) with

(Γ + tyEnv(η))σ2 ` M2σ2 : τ2σ2

and τ2σ̂ ≡ τ̂2 and σ1 �α σ2 �α σ̂ and σ2 idempotent and V # bound(τ2) and
V # bound(σ2).

From τ ′2σ̂→ τ1σ̂ = (τ ′2→ τ1)σ̂ = τ̃1σ̂ ≡ τ̂2→ τ̂ ≡ τ2σ̂→ τ̂ it follows τ ′2σ̂ ≡ τ2σ̂ and
τ1σ̂ ≡ τ . Also V # bound(τ̃1) together with τ̃1 = τ ′2→τ1 imply V # bound(τ ′2).

Hence according to Lemma 4.24 there exists a most general unifier, that is, there
exists an idempotent σ̃ = Udom η(τ

′
2
.
= τ2, σ2) with τ ′2σ̃ = τ2σ̃ and σ2 �α σ̃ �α σ̂ and

V # bound(σ̃).
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With σ1 �α σ2 �α σ̃ and Lemma 2.6 it follows

(Γ + tyEnv(η))σ̃ `M1σ̃ : (τ ′2→τ1)σ̃ and

(Γ + tyEnv(η))σ̃ `M2σ̃ : τ2σ̃

Then the term app rule and τ ′2σ̃ = τ2σ̃ give us

(Γ + tyEnv(η))σ̃ ` (M1σ̃) (M2σ̃) : τ1σ̃

that is,

(Γ + tyEnv(η))σ̃ ` (M1 M2)σ̃ : τ1σ̃

Hence all conclusions hold for (σ̃, τ1).

Case let {xi : τi = Mi}ki=1 in N .
Similar to the case λx : τ1.M .

Case c.
Similar to the case x. Note that V # bound(∆(c)), because V # bound(∆).

Case case M of {ci xi 7→ Ni}ki=1.
Similar to the case λx : τ1.M . To justify the use of η in the determination of the
type of the scrutinised term we need that σ̂ is consistent with η.

Case λα.M .
From σ̂ �α η∞ it follows mod(σ̂) ⊆ mod(η∞) = mod(η). Together with β /∈
free(Γ) ∪mod(η) it follows β /∈ free((Γ + tyEnv(η))σ̂.

From

(Γ + tyEnv(η))σ̂ ` (λα.M)σ̂ : τ̂

it follows with β /∈ free(λα.M) and β /∈ mod(σ̂) ⊆ mod(η)

(Γ + tyEnv(η))σ̂ ` λβ.M [β/α]σ̂ : τ̂

Hence property g-type abs assures the existence of τ̂ ′ with τ̂ ≡ ∀β.τ̂ ′ and

(Γ + tyEnv(η))σ̂ ` M [β/α]σ̂[β/β] : τ̂ ′

that is,

(Γ + tyEnv(η))σ̂ ` M [β/α]σ̂ : τ̂ ′

From V # bound(λα.M) it follows V # bound(M [β/α]).

Hence by induction hypothesis there exists (σ̃, τ) = Tη(Γ,M [β/α], σ) with

(Γ + tyEnv(η))σ̃ ` M [β/α]σ̃ : τ σ̃

and τ σ̂ ≡ τ̂ ′ and σ �α σ̃ �α σ̂ and σ̃ is idempotent and V # bound(τ) and
V # bound(σ̃).

From σ̃ �α σ̂ �α η∞ it follows mod(σ̃) ⊆ mod(η∞) = mod(η). Together with
β /∈ free(Γ) ∪mod(η) it follows β /∈ free((Γ + tyEnv(η))σ̃.
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Hence the type abs rule gives us

(Γ + tyEnv(η))σ̃ ` λβ.M [β/α]σ̃ : ∀β.τ σ̃

Using the rename rule with

λβ.M [β/α]σ̃

≡ {Lemma 2.3; β /∈ mod(σ̃) ⊆ mod(η)}
(λβ.M [β/α])σ̃

≡ {Definition of ≡; β /∈ free(λα.M)}
(λα.M)σ̃

and
∀β.τ σ̃

≡ {Lemma 2.3; β /∈ mod(σ̃) ⊆ mod(η)}
(∀β.τ)σ̃

we obtain

(Γ + tyEnv(η))σ̃ ` (λα.M)σ̃ : (∀β.τ)σ̃

Therefore
(∀β.τ)σ̂

≡ {Lemma 2.3; β /∈ mod(σ̂) ⊆ mod(η)}
∀β.τ σ̂

≡
∀β.τ̂ ′

≡ {Definition of τ̂ ′}
τ̂

Finally, β /∈ V and V # bound(τ) gives us V # bound(∀β.τ).

Case M ρ.
From

(Γ + tyEnv(η))σ̂ ` (M ρ)σ̂ : τ̂

it follows

(Γ + tyEnv(η))σ̂ ` (Mσ̂) (ρσ̂) : τ̂

and hence with property g-type app the existence of γ and τ̂ ′ with τ̂ ≡ τ̂ ′[ρσ̂/γ]
and

(Γ + tyEnv(η))σ̂ ` Mσ̂ : ∀γ.τ̂ ′

Hence by induction hypothesis there exists (σ̃, τ ′) = Tη(Γ,M, σ) with

(Γ + tyEnv(η))σ̃ ` Mσ̃ : τ ′σ̃

and τ ′σ̂ ≡ ∀γ.τ̂ ′ and σ �α σ̃ �α σ̂ and σ̃ is idempotent and V # bound(σ̃) and
V # bound(τ ′).
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Suppose τ ′ is a variable. Because σ̂ �α η∞ and τ ′σ̂ ≡ ∀γ.τ̂ ′, η∞(τ ′) must be a
universal type. However, this contradicts with the fact that η substitutes list types.
So τ ′ is not a variable and there exist α and τ with τ ′ = ∀α.τ .

So

(Γ + tyEnv(η))σ̃ ` Mσ̃ : (∀α.τ )σ̃

Let β be new with β /∈ free(∀α.τ ) ∪mod(σ̂) ∪ free(τ̂ ′).

With

(∀α.τ )σ̃

≡ {Definition of ≡; β /∈ free(∀α.τ )}
(∀β.τ [β/α])σ̃

≡ {Lemma 2.3; β /∈ mod(σ̃) ⊆ mod(σ̂)}
∀β.τ [β/α]σ̃

and the type rename rule we obtain

(Γ + tyEnv(η))σ̃ ` Mσ̃ : ∀β.τ [β/α]σ̃

Then the type app rule gives us

(Γ + tyEnv(η))σ̃ ` (Mσ̃) (ρσ̃) : τ [β/α]σ̃[ρσ̃/β]

Together with

τ [β/α]σ̃[ρσ̃/β]

≡ {Lemma 2.4; β /∈ mod(σ̃) ⊆ mod(σ̂)}
τ [β/α][ρ/β]σ̃

≡ {β = α or β /∈ free(τ), because β /∈ free(∀α.τ )}
τ [ρ/α]σ̃

≡ {Lemma 4.32}
subsdom(η)(τ, [ρ/α])

and the type rename rule we obtain

(Γ + tyEnv(η))σ̃ ` (Mσ̃) (ρσ̃) : subsdom(η)(τ, [ρ/α])σ̃

that is,

(Γ + tyEnv(η))σ̃ ` (M ρ)σ̃ : subsdom(η)(τ, [ρ/α])σ̃
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Cη(γ, σ) :=

{
Udom(η)(γ

′η
.
= γη, σ) , if exists γ′ with γσ = γ′

Udom(η)(γ
.
= γη, σ) , otherwise

Cη(∅, σ) := σ

Cη(V ∪̇{γ}, σ) := Cη(V, Cη(γ, σ))

Cη(σ) := let σ0 := σ
σi+1 := Cη(dom(η), σi) for all natural numbers i
j the least natural number with σj = σj+1

in σj

Figure 4.7: Consistency closure algorithm C

Furthermore,

subsdom(η)(τ, [ρ/α])σ̂

≡ {Lemma 4.32}
(τ [ρ/α])σ̂

≡ {β = α or β /∈ free(τ), because β /∈ free(∀α.τ )}
τ [β/α][ρ/β]σ̂

≡ {Lemma 2.4; β /∈ mod(σ̂)}
τ [β/α]σ̂[ρσ̂/β]

≡
{

Lemma 2.2; for any δ /∈ free(∀α.τ )
∀δ.τ [δ/α]σ̂ ≡ (∀α.τ )σ̂ ≡ ∀γ.τ̂ ′

}
τ̂ ′[β/γ][ρσ̂/β]

≡ {β /∈ free(τ̂ ′)}
τ̂ ′[ρσ̂/γ]

≡
τ̂

Finally, V # bound(τ ′) implies V # bound(τ). Also V # bound(ρ). So Lemma 4.32
assures V # bound(subsV (τ, [ρ/α])). �

4.3.6 The Consistency Closure Algorithm C
As we discussed in Section 4.3.3, we have to post-process the result of type inference to
ensure that we only obtain typings that are consistent with the instance substitution η.
The algorithm for ensuring consistency, the consistency closure algorithm C, is defined in
Figure 4.7.
Cη(γ, σ) computes an extension of σ which is consistent with η with respect to the

variable γ, assuming that σ �α η∞ holds. We obtain the definition of Cη(γ, σ) directly
from the properties of a consistent substitution as given in Definition 4.26. In practice we
may define Cη(γ, σ) := σ in case of γσ = γ to avoid unnecessary computation.
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Cη(V, σ) extends σ by ensuring consistency iteratively with respect to every variable
γ ∈ V . Note that Cη(γ, σ) is consistent with respect to the variable γ, but may not be
consistent with respect to a variable γ′ for which σ is consistent. That is, consistency
closure for one variable may destroy consistency for another. For example [γ4/γ1] is
consistent with the instance substitution

η = [[γ2]/γ1, [γ3]/γ2, [Int]/γ3, [γ5]/γ4, [γ6]/γ5, [Int]/γ6]

for all type inference variables but γ1. However, [γ4/γ1, γ5/γ2] = Cη(γ1, [γ4/γ1]) is con-
sistent with respect to γ1 but not with respect to γ2. Hence we define the consistency
closure of a substitution σ, Cη(σ), by iteration until the substitution is consistent with
respect to all type inference variables. Alternatively we could obtain a total order on type
inference variables from the acyclic instance substitution η, such that if a substitution is
closed under consistency with respect to the type inference variables in the determined
order, no iteration is necessary. However, in practice the improvement in performance is
probably small, so that it is not worth the additional complexity.

The algorithm C is nondeterministic, because the variables in dom(η) can be processed
in any order. However, from Lemma 4.36 it follows that the result is unique up to variable
renaming.

The consistency closure algorithm obviously yields a consistent substitution.

Lemma 4.34 (Consistency)

σ = Cη(σ) σ idempotent σ �α η∞
dom(η) # bound(η) dom(η) # bound(σ)

σ consistent with η �

Proof According to the definition of C we have σ = Cη(dom(η), σ) and furthermore
σ = Cη(γ, σ) for all γ ∈ dom(η). The other premises assure that the premises of the
unification Lemma 4.24 hold.

Case γσ = γ′.
According to the definition of C we have σ = Udom(η)(γ

′η
.
= γη, σ). With Lemma 4.24

it follows γ′ησ ≡ γησ.

Case γσ not a variable.
According to the definition of C we have σ = Udom(η)(γ

.
= γη, σ). With Lemma 4.24

it follows γσ̃ ≡ γησ̃.

For γ /∈ dom(η) the consistency constraints trivially hold. �

Because the definition of the consistency closure algorithm is based on the algorithm
U , which determines a most general unifier, C yields a most general consistent extension.

Lemma 4.35 (Most general consistent extension)

σ̃ = Cη(γ, σ) γ ∈ dom(η)
σ �α σ̂ σ̂ consistent with η σ idempotent

dom(η) # bound(η) dom(η) # bound(σ)

σ̃ �α σ̂ �

Proof Case ∃γ′ with γσ = γ′.
With the definition of C it follows σ̃ = Udom(η)(γ

′η
.
= γη, σ̃). The premises of the

unification Lemma 4.24 are fulfilled. We have γσ̂ = γσσ̂ = γ′σ̂.
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Case ∃γ′′ with γ′σ̂ = γ′′.
The consistency of σ̂ with η implies γ′ησ̂ = γ′′ησ̂ = γησ̂. With Lemma 4.24
follows the existence of σ̃ with σ̃ �α σ̂.

Case γ′σ̂ not a variable.
Then γσ̂ is not a variable either. The consistency of σ̂ with η implies γσ̂ = γησ̂
and γ′σ̂ = γ′ησ̂. Together these equations give γησ̂ = γ′ησ̂. With Lemma 4.24
follows the existence of σ̃ with σ̃ �α σ̂.

Case γσ not a variable.
With the definition of C it follows σ̃ = Udom(η)(γ

.
= γη, σ̃). The premises of the

unification Lemma 4.24 are fulfilled. Because γσσ̂ = γσ̂ is not a variable and σ̂ is
consistent with η, we have γσ̂ = γησ̂. Then Lemma 4.24 assures the existence of σ̃
with σ̃ �α σ̂. �

Lemma 4.36 (Most general consistent extension)

σ �α σ̂ σ̂ consistent with η σ idempotent
dom(η) # bound(η) dom(η) # bound(σ)

∃σ̃ σ̃ = Cη(σ) σ̃ idempotent σ̃ consistent with η
σ �α σ̃ �α σ̂ dom(η) # bound(σ̃) �

Proof Lemma 4.24 assures that all calls of the unification algorithm terminate. Further-
more, the lemma assures that σ0 �α σ1 �α σ2 �α . . . , especially dom(σ0) ⊆ dom(σ1) ⊆
dom(σ2) ⊆ . . . . Also dom(σi) ⊆ dom(η) holds for all natural numbers i and we know that
dom(η) is finite. Hence there exists a natural number j with dom(σj) = dom(σj+1) and
with Lemma 4.21 it follows σj = σj+1. So C terminates.

Lemma 4.35 assures σ̃ �α σ̂, Lemma 4.34 assures that σ̃ is consistent with η, and the
remaining conclusions follow again from Lemma 4.24. �

4.3.7 Principal Consistent Typing

Finally, we combine the type inference algorithm and the consistency closure algorithm:

CT η(Γ,M) := let (σ, τ) := Tη(Γ,M, [ ]) in (Cη(σ), τ)

The algorithm CT computes a principal consistent typing:

Lemma 4.37 (Principal consistent typing)

(Γ + tyEnv(η))σ̂ ` Mσ̂ : τ̂ σ̂ consistent with η dom(σ̂) ⊆ V V = dom(η)
V # bound(η) V # bound(∆) V # bound(Γ) V # bound(M)

∃(σ̃, τ̃)
(σ̃, τ̃) = CT η(Γ,M) (Γ + tyEnv(η))σ̃ ` Mσ̃ : τ̃ σ̃ τ̃ σ̂ ≡ τ̂

σ̃ consistent with η σ̃ �α σ̂ σ̃ idempotent �

Proof Follows from Lemma 4.33 and Lemma 4.36. �

We revisit the two examples from Section 4.3.3. Consider the well-typed term

{xs:[[Int]]} ` (:) [Int] ([] Int) xs : [[Int]]
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The list replacement algorithm yields

R(∅, (:) [Int] ([] Int) xs) = ([[Int]/γ1, [γ1]/γ2, [Int]/γ3]︸ ︷︷ ︸
η

, v(:)γ2
v[]γ3

xs)

and then we obtain the consistent principal typing

CT η({xs:[[Int]]}, v(:)γ2
v[]γ3

xs)
=

let (σ, τ) := Tη({xs:[[Int]]}, v(:)γ2
v[]γ3

xs, [ ]) in (Cη(σ), τ)
=

(Cη([γ1/γ3, [[Int]]/γ2], γ2)
=

([[Int]/γ3, [Int]/γ1, [[Int]]/γ2], γ2)

because
Cη({γ1, γ2}, [γ1/γ3, [[Int]]/γ2])

=
Cη({γ2}, Cη(γ1, [γ1/γ3, [[Int]]/γ2])

=
Cη({γ2}, [γ1/γ3, [[Int]]/γ2])

=
U{γ1,γ2}(γ2

.
= [γ1], [γ1/γ3, [[Int]]/γ2])

=
[[Int]/γ3, [Int]/γ1, [[Int]]/γ2]

Similarly for the well-typed term

` (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])) : [[Int]]

the list replacement algorithm yields

R(∅, (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])))
=

(

η︷ ︸︸ ︷
[[Int]/γ1, [γ1]/γ2, [Int]/γ3, [γ3]/γ4, [Int]/γ5, [Int]/γ6, [γ8]/γ7, [Int]/γ8]
,v(:)γ2

v[]γ5
(v(:)γ4

v[]γ6
v[]γ7

))

and then we obtain the consistent principal typing

CT η(∅, v(:)γ2
v[]γ5

(v(:)γ4
v[]γ6

v[]γ7
))

=
let (σ, τ) := Tη(∅, v(:)γ2

v[]γ5
(v(:)γ4

v[]γ6
v[]γ7

), [ ]) in (Cη(σ), τ)
=

(Cη([γ2/γ4, γ1/γ5, γ3/γ6, γ2/γ7]), γ2)
=

([γ1/γ3, γ2/γ4, γ1/γ5, γ1/γ6, γ2/γ7, γ1/γ8], γ2)

because

Cη({γ1, . . . , γ8}, [γ2/γ4, γ1/γ5, γ3/γ6, γ2/γ7])
=
Cη({γ1, . . . , γ6}, Cη(γ7, [γ2/γ4, γ1/γ5, γ3/γ6, γ2/γ7]))

=
Cη({γ1, . . . , γ6},Udom(η)([γ1]

.
= [γ8], [γ2/γ4, γ1/γ5, γ3/γ6, γ2/γ7]))

=
Cη(γ4, [γ2/γ4, γ1/γ5, γ3/γ6, γ2/γ7, γ1/γ8])

=
Udom(η)([γ1]

.
= [γ3], [γ2/γ4, γ1/γ5, γ3/γ6, γ2/γ7, γ1/γ8])

=
[γ1/γ3, γ2/γ4, γ1/γ5, γ1/γ6, γ2/γ7, γ1/γ8]

The following two properties are rather straightforward but they are important for the
correctness of the complete list abstraction algorithm.
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Lemma 4.38 (Instantiability)

(σ̃, τ̃) = CT η(Γ,M)
(Γ + tyEnv(η))σ̂ ` Mσ̂ : τ̂ σ̂ consistent with η dom(σ̂) ⊆ V V = dom(η)

V # bound(η) V # bound(∆) V # bound(Γ) V # bound(M)

Mσ̃ inst(η∞) ≡M inst(η∞) �

Proof

Mσ̃ inst(η∞)

= {Definition of inst(η∞)}
Mσ̃η∞ instCons η∞

≡ {σ̃ is idempotent and σ̃ �α η∞ according to Lemma 4.37}
Mη∞ instCons η∞

= {Definition of inst(η∞)}
M inst(η∞)

�

Lemma 4.39 (Typing)

(σ̃, τ̃) = CT η(Γ,M) Γ + tyEnv(η)η∞ ` Mη∞ : τ̂
V = dom(η) V # free(Γ)

V # bound(η) V # bound(∆) V # bound(Γ) V # bound(M)

Γ + tyEnv(η)σ̃ ` Mσ̃ : τ σ̃ τ̃η∞ ≡ τ̂ �

Proof Follows from Lemma 4.37, because η∞ is consistent with η. �

4.4 Instantiation of Variables and Abstraction Phase

With the principal consistent typing we can build the list abstracted term. The typing
determines which constructor variables have to be reinstantiated to list constructors and
which are to be abstracted. However, first we may have to instantiate some type inference
variables.

4.4.1 Superfluous Type Inference Variables

Consider the well-typed term

∅ ` case ([] Int, [] Int) of (x,y) 7→ x : [Int]

List replacement gives

{v[]γ1
:γ1, v

[]
γ2

:γ2} ` case (v[]γ1
, v[]γ2

) of (x,y) 7→ x

and the type inference algorithm CT does not substitute any type inference variable so
that

{v[]γ1
:γ1, v

[]
γ2

:γ2} ` case (v[]γ1
, v[]γ2

) of (x,y) 7→ x : γ1

is the principal consistent typing. Then list abstraction as discussed in Chapter 3 would
construct
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λγ1. λγ2. λv
[]
γ1

: γ1. λv
[]
γ2

:γ2. case (v[]γ1
, v[]γ2

) of (x,y) 7→ x

However, this term is unnecessarily complicated and large. The type inference variable
γ2 does not occur in the type γ1 of case (v[]γ1

, v[]γ2
) of (x,y) 7→ x. Abstracting γ2

would not improve deforestation but only increase the size of a program. The type
inference variable γ2 is superfluous. Hence we instantiate it to the type [Int] and have
list abstraction return the following term:

λγ1. λv
[]
γ1

: γ1. case (v[]γ1
, [] Int) of (x,y) 7→ x

The situation is similar to the Hindley-Milner type system where the type generalisa-
tion step at let bindings, the only source of universal types, only generalises over type
variables that occur in the type [Mil78, DM82].

Unfortunately a type inference variable γ ∈ dom(η) is not necessarily superfluous with
respect to a typing (σ, τ) if it does not occur in the type τσ.

Consider the the well-typed term

` (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])) : [[Int]]

As we saw in Section 4.3.7 the list replacement and the subsequent type inference phase
give the principal consistent typing

{v(:)γ2
:γ1→γ2→γ2, v

(:)
γ4

:γ1→γ2→γ2, v
[]
γ5

:γ1, v
[]
γ6

:γ1, v
[]
γ7

:γ2}
` v(:)γ2

v[]γ5
(v(:)γ4

v[]γ6
v[]γ7

)
: γ2

The type inference variable γ1 does not occur in the inferred type γ2. However, γ1

replaces the element type of the list type that γ2 replaces. For the construction of most
general workers we want to abstract nested lists, as we did in Chapter 3. When we
abstract from the type inference variable γ2 we also abstract from its constructor variable
v(:)γ2

in whose type γ1 appears.
The set of superfluous type inference variables of an instance substitution with respect

to a typing (σ, τ) is the largest subset of dom(η)\free(τσ) such that the set is disjoint with
free(η(γ′)) for all type inference variables γ′ ∈ dom(η) that are not in the set. Note that
the last sentence implicitly defines a monotonic function of which the set of superfluous
type inference variables is the largest fixpoint.

However, only for constructing a worker we are interested in abstracting as many lists
as possible. If we perform list abstraction of a producer to apply the short cut fusion rule,
then we have to abstract only the produced list, to fit the form of the fusion rule. So in
that case all type inference variables except for τσ, which hopefully is a type inference
variable, are superfluous with respect to a typing (σ, τ).

We instantiate a superfluous type inference variable γ ∈ dom(η)\dom(σ) by extending
the substitution by [γησ/γ]. That is, instantiating the typing (σ, τ) for a superfluous
variable γ yields (σ[γησ/γ], τ). Note that here again we need the instance substitution η.

By instantiating superfluous type inference variables we obviously loose the principal-
ity property of the typing. However, all other properties of the substitution are preserved
as the subsequent lemmas prove.

Lemma 4.40

σ is idempotent γ /∈ dom(σ) σ �α η∞

γ /∈ free(γησ) �
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Proof Because σ �α η∞ and σ is idempotent, we have ση∞ ≡ η∞. Hence γη∞ ≡
γηη∞ ≡ (γησ)η∞. Because η is a list substitution, γησ is not a variable. So, just
considering the size of the types it is clear that the last equation can only hold if γ /∈
free(γησ). �

Lemma 4.41 (Preservation of idempotency)

σ is idempotent σ consistent with η γ /∈ dom(σ)

σ[γησ/γ] idempotent �

Proof From Lemma 4.40 and Corollary 4.19. �

Lemma 4.42 (Preservation of consistency)

σ consistent with η γ /∈ dom(σ)

σ[γησ/γ] consistent with η �

Proof Case γ′σ[γησ/γ] = γ′′.
Because η substitutes lists we have γ′σ = γ′′. With the consistency of σ it follows
γ′ησ ≡ γ′′ησ and hence γ′ησ[γησ/γ] ≡ γ′′ησ[γησ/γ].

Case γ′σ[γησ/γ] not a variable.

Case γ′σ not a variable.
With the consistency of σ it follows γ′σ ≡ γ′ησ and hence γ′σ[γησ/γ] ≡
γ′ησ[γησ/γ].

Case γ′σ = γ.

γ′σ[γησ/γ]
=
γ[γησ/γ]

=
γησ

= {γ /∈ free(γησ) according to Lemma 4.40}
γησ[γησ/γ]

≡ {σ consistent with η and γ′σ = γ}
γ′ησ[γησ/γ]

�

Lemma 4.43 (Preservation of instantiability)

σ idempotent σ consistent with η

σ[γησ/γ]η∞ = η∞ �

Proof Because σ is idempotent and σ �α η∞ we have ση∞ = η∞ and furthermore
γη∞ = γηη∞ = γη(ση∞) = (γησ)η∞. Hence the conclusion follows with Lemma 4.20. �

With inst(η∞) = η∞ instCons(η∞) it immediately follows

σ idempotent σ consistent with η

Mσ[γησ/γ] inst(η∞) = Mσ inst(η∞)

Lemma 4.44 (Preservation of typing)

Γ + tyEnv(η)σ ` Mσ : τσ γ /∈ free(Γ)

Γ + tyEnv(η)σ[γησ/γ] ` Mσ[γησ/γ] : τσ[γησ/γ] �

Proof Follows from the substitution property of Lemma 2.6. �
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4.4.2 Instantiation of Constructor Variables

The list replacement algorithm replaces all list constructors by constructor variables. Now
some constructor variables have to be reinstantiated to the original list constructors.

Let (σ, τ) be the typing computed by the type inference phase and η be the instance
substitution computed by the list replacement algorithm. The types of the constructor
variables are given by the typing environment tyEnv(η)σ. If tyEnv(η)σ(v(:)γ ) = τ →
[τ]→[τ], then v(:)γ is reinstantiated to (:) τ , and if tyEnv(η)σ(v[]γ ) = [τ], then v[]γ is
reinstantiated to [] τ . Using

tyEnv(η)σ = {v(:)γ :τγσ→γσ→γσ, v[]γ :γσ | η(γ) = [τγ], γ ∈ dom(η)}

and the fact that the typing (σ, τ) is consistent, we can reformulate instantiation as follows:
If σ(γ) = [τ], then v(:)γ is reinstantiated to (:) τ and v[]γ is reinstantiated to [] τ . So
reinstantiation of constructor variables is performed by the substitution instCons(σ).

For the example term

case (v[]γ1
, v[]γ2

) of (x,y) 7→ x

from the preceeding section we have — after instantiation of superfluous type inference
variables — the typing ([[Int]/γ2], γ1). So instantiation of constructor variables gives:

(case (v[]γ1
, v[]γ2

) of (x,y) 7→ x) instCons([[Int]/γ2])
=

(case (v[]γ1
, v[]γ2

) of (x,y) 7→ x)[(:) Int/v(:)γ2
, [] Int/v[]γ2

]
=

(case (v[]γ1
, [] Int) of (x,y) 7→ x)

The following two lemmas state properties that are essential for the correctness of the
complete list abstraction algorithm.

Lemma 4.45 (Preservation of instantiability)

σ idempotent σ consistent with η

instCons(σ) inst(η∞) = inst(η∞) �

Proof First, both sides have the same domain

dom(instCons(σ) inst(η∞)) = dom(instCons(σ)) ∪ dom(inst(η∞)) = dom(inst(η∞))

because σ � η∞. Second, both sides agree on type variables γ ∈ dom(inst(η∞)):

γ instCons(σ) inst(η∞) = γη∞ = γ inst(η∞)

Finally, we show that both sides agree on term variables vcγ ∈ dom(inst(η∞)).

Case σ(γ) = [τ].

Because σ is consistent with η, we have [τ]η∞ = γση∞ = γη∞ =: [τ ′]. So:

vcγ instCons(σ) inst(η∞) = c τ inst(η∞) = c (τη∞) = c τ ′ = vcγ inst(η∞)

Case σ(γ) 6= [τ].

Hence vcγ /∈ dom(instCons(σ)). Then vcγ instCons(σ) inst(η∞) = vcγ inst(η∞). �
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Lemma 4.46 (Preservation of typing) Instantiation of superfluous constructor vari-
ables preserves typing.

σ consistent with η Γ + tyEnv(η)σ ` M : τ

Γ + tyEnv(η)σ ` M instCons(σ) : τ �

Proof We have to verify that for every replaced variable vcγ its replacement c τ has the
same type. Then the substitution preserves typing according to Lemma 2.6.

A variable vcγ is replaced by c τ , if σ(γ) = [τ] for some τ .

Case c = [].

We have tyEnv(η)σ(v[]γ ) = γσ and Γ + tyEnv(η)σ ` [] τ : [τ]. According to
assumption γσ = [τ].

Case c = (:).

We have tyEnv(η)σ(v(:)γ ) = (τ ′→γ→γ)σ = (τ ′σ)→[τ]→[τ] where [τ ′] := η(γ).
On the other hand Γ+tyEnv(η)σ ` (:) τ : τ→[τ]→[τ]. Because σ is consistent
with η, we have [τ] = σ(γ) = η(γ)σ = [τ ′]σ. Thus τ = τ ′σ and both types agree.

�

4.4.3 Merge of Constructor Variables

The list replacement algorithm replaces every occurrence of a list constructor by a different
constructor variable. Now we have to identify all constructor variables which construct
values of the same type and merge them, that is, replace them by the same constructor
variable.

Consider for example the term

v(:)γ2
v[]γ5

(v(:)γ4
v[]γ6

v[]γ7
)

and the typing

([γ1/γ3, γ2/γ4, γ1/γ5, γ1/γ6, γ2/γ7, γ1/γ8], γ2)

According to the typing v(:)γ2
, v(:)γ4

and v[]γ7
construct values of the same type γ2. Hence we

replace v(:)γ4
by v(:)γ2

and for simplicity also v[]γ7
by v[]γ2

. Similarly we see from the typing
that v[]γ5

and v[]γ6
construct values of type γ1. Hence we replace both constructor variables

by v[]γ1
.

In general, when we have a typing (σ, τ) we merge the constructor variables of a term
by applying the substitution merge(σ):

Definition 4.47

merge(σ) := [v(:)γ′ /v
(:)
γ , v[]γ′ /v

[]
γ | σ(γ) = γ′] �

As discussed we obtain for the example:

v(:)γ2
v[]γ5

(v(:)γ4
v[]γ6

v[]γ7
) merge([γ1/γ3, γ2/γ4, γ1/γ5, γ1/γ6, γ2/γ7, γ1/γ8])

=
v(:)γ2

v[]γ5
(v(:)γ4

v[]γ6
v[]γ7

)[v(:)γ1
/v(:)γ3

, v[]γ1
/v[]γ3

, . . . , v(:)γ1
/v(:)γ8

, v[]γ1
/v[]γ8

]
=
v(:)γ2

v[]γ1
(v(:)γ2

v[]γ1
v[]γ2

)

Finally, we have to prove again two properties for the correctness of the complete list
abstraction algorithm.
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Lemma 4.48 (Preservation of instantiability)

σ idempotent σ consistent with η

merge(σ) inst(η∞) = inst(η∞)

Proof First, both sides have the same domain

dom(merge(σ) inst(η∞)) = dom(merge(σ)) ∪ dom(inst(η∞)) = dom(inst(η∞))

because σ � η∞. Second, because dom(merge(σ)) contains no type variables, both sides
agree on type variables. Finally, both sides agree on term variables vcγ of their common
domain:

Case σ(γ) = γ′.

With
η∞(γ)

=
γη∞

= {σ idempotent and σ �α η∞}
γση∞

= {assumption: σ(γ) = γ′}
γ′η∞

=
η∞(γ′)

it follows

vcγ merge(σ) inst(η∞) = vcγ′ inst(η∞) = c (η∞(γ′)) = c (η∞(γ)) = vcγ inst(η∞)

Case σ(γ) 6= γ′.

Hence vcγ /∈ dom(merge(σ)). Then vcγ merge(σ) inst(η∞) = vcγ inst(η∞). �

Lemma 4.49 (Preservation of typing)

σ idempotent σ consistent with η Γ + tyEnv(η)σ ` M : τ

Γ + tyEnv(η)σ ` M merge(σ) : τ

Proof We have to verify that for every replaced variable vcγ its replacement vcγ′ has the
same type. Then the substitution preserves typing according to Lemma 2.6.

A variable vcγ is replaced by vcγ′ , if σ(γ) = γ′ for some γ′. Because σ is idempotent, we
have γ′σ = γσσ = γσ.

Case c = [].

We have tyEnv(η)σ(v[]γ ) = γσ and Γ + tyEnv(η)σ ` v[]γ′ : γ′σ.

Case c = (:).

We have tyEnv(η)σ(v(:)γ ) = (τ→γ→γ)σ = (τσ)→(γσ)→(γσ) where [τ] := η(γ).

On the other hand Γ + tyEnv(η)σ ` v(:)γ′ : (τ ′→ γ′→ γ′)σ where [τ ′] := η(γ′).
Because σ is consistent with η, we have [τ]σ = η(γ)σ = η(γ′)σ = [τ ′]σ. Thus
τσ = τ ′σ and both types agree. �
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A(Γ,M) := let (M̃, η) := R(∅,M)

(σ̃, τ) := CT η(Γ, M̃)
σ := σ̃[γ̂1ησ̃/γ̂1] . . .
{γ1, . . . , γk} := dom(η) \ dom(σ)
σ′ := σ instCons(σ) merge(σ)

F := freeTerm(M̃σ′)
{v(:)γ′1

, . . . , v(:)γ′m
} := {v(:)γ | γ ∈ dom(η)} ∩ F

{v[]γ′′1 , . . . , v
[]
γ′′n
} := {v[]γ | γ ∈ dom(η)} ∩ F

[τi] := γ′iησ ∀1 ≤ i ≤ m
[τ ′i] := η∞(γ′i) ∀1 ≤ i ≤ m
[τ ′′i ] := η∞(γ′′i ) ∀1 ≤ i ≤ n

in (λγ1. . . . λγk.
λv(:)γ′1

: τ1 → γ′1 → γ′1. . . . λv
(:)
γ′m

: τm → γ′m → γ′m.

λv[]γ′′1
: γ′′1 . . . . λv

[]
γ′′n

: γ′′n. M̃σ′)

η∞(γ1) . . . η∞(γk) ((:) τ ′1) . . . ((:) τ ′m) ([] τ ′′1 ) . . . ([] τ ′′n)

Figure 4.8: List abstraction algorithm

4.4.4 Abstraction

Finally, the list abstracted form has to be constructed. We do not formulate this as a
separate algorithm, but define the complete list abstraction algorithm A in Figure 4.8.

First, the list replacement algorithm replaces all list constructors by constructor vari-
ables and list types by type inference variables. Subsequently, the type inference algorithm
determines a principal consistent typing (σ̃, τ). Note that the type component τ is not
used in the algorithm. It is only useful for proving the correctness of A. Next, superfluous
type inference variables γ̂1, . . . are instantiated as discussed in Section 4.4.1, giving us a
substitution σ. We do not specify which type inference variables are superfluous, because
that depends on whether we perform list abstraction for the short cut fusion rule or for a
worker/wrapper split. The list abstraction algorithm has to abstract those type inference
variables γ1, . . . , γk that are not replaced by σ. We extend σ to instantiate some construc-
tor variables by instCons(σ) and merge the others by merge(σ). We do not abstract all
type constructor variables for the types γ1, . . . , γk but only those that occur in the term
M̃σ. Note that {γ′1, . . . , γ′m} ⊆ {γ1, . . . , γk} and {γ′′1 , . . . , γ′′n} ⊆ {γ1, . . . , γk}. Finally,
the instance substitution η is used to provide all type arguments. Stretching our overline
notation for abbreviating sequences we can say that the result is of the form

(λγ. λv(:) : τ→γ→γ. λv[] : γ.M) [τγ] ((:) τγ) ([] τγ)

For example, for the well-typed term

` (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])) : [[Int]]

we have seen in the previous sections how the instance substitution

[[Int]/γ1, [γ1]/γ2, [Int]/γ3, [γ3]/γ4, [Int]/γ5, [Int]/γ6, [γ8]/γ7, [Int]/γ8]

the principal consistent typing

([γ1/γ3, γ2/γ4, γ1/γ5, γ1/γ6, γ2/γ7, γ1/γ8], γ2)
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and the term

v(:)γ2
v[]γ1

(v(:)γ2
v[]γ1

v[]γ2
)

are constructed. So

A(∅, (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])))
=

(λγ1. λγ2. λv
(:)
γ2

: γ1→γ2→γ2. λv
[]
γ1

: γ1. λv
[]
γ2
. v(:)γ2

v[]γ1
(v(:)γ2

v[]γ1
v[]γ2

))

[Int] [[Int]] ((:) [Int]) ([] Int) ([] [Int])

4.5 Properties and Implementation

The correctness of the list abstraction algorithm A can easily be proved from the correct-
ness of the various component algorithms:

Lemma 4.50 (Termination)

Γ ` M : τ

A(Γ,M) terminates �

Proof Follows from Lemma 4.7 and Lemma 4.37. �

Lemma 4.51 (Well-typedness)

Γ ` M : τ

Γ ` A(Γ,M) : τ �

Proof Follows from Lemmas 4.12, 4.37, 4.44, 4.46 and 4.49 and the type abs and term

abs rule. �

Lemma 4.52 (Correctness)

Γ ` M : τ

Γ ` M ∼=ctx A(Γ,M) : τ �

Proof From Lemmas 4.11, 4.38, 4.43, 4.45 and 4.48 it follows that A(Γ,M) can be
β-reduced in several steps to M . Together with Lemma 4.51, Lemma 2.16 implies that
both terms are contextually equivalent. �

The list abstraction algorithm is complete in the sense that it can abstract a list from
a term if this is possible at all. The list replacement algorithm replaces every occurrence
of a list type and a list constructor by a different variable. The type inference algorithm
determines the principal consistent typing of this term (Lemma 4.37). Thus it determines
which variables have to be list types and list constructors and hence cannot be abstracted
and which variables can be free and hence be abstracted. Naturally it depends on the
choice of type variables that are instantiated in the third phase, which of the lists that
can be abstracted are finally abstracted. It depends on the purpose of list abstraction,
that is, if we use it for preparing a producer for fusion or for the worker/wrapper split,
which lists it is desirable to abstract.

The list abstraction algorithm is also efficient. It only consists of several traversals of
the (modified) input term. The unification algorithm can work in linear time, if types
are represented by directed acyclic graphs [PW78]. Then the type inference algorithm
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and hence the whole list abstraction algorithm also works in linear time. Note that it
does not affect our type inference algorithm that Hindley-Milner type inference requires
exponential time in the worst case (Section 11.3.5 of [Mit96]). The Hindley-Milner type
inference algorithm is only exponential in the nesting depth of let definitions, because
of its type generalisation step at let definitions, but otherwise it is linear. Our algorithm
does not have this type generalisation step.

We implemented a prototype of the list abstraction algorithm in Haskell. The trans-
lation of the formal description of the algorithm into Haskell was straightforward and
the prototype was successfully applied to several examples. To enable a later integration
the implementation uses mostly the same data structures as are used in the Glasgow
Haskell compiler. Instead of passing explicit substitutions we implemented type inference
variables as updateable references (IORefs, cf. [LP94]) just as the type inference pass of
the Glasgow Haskell compiler does. This choice leads to the mentioned efficient implemen-
tation of unification. Note that the list abstraction algorithm does not need the inferred
substitution itself but only the result of applying it to the term and instance substitution
which are computed by list replacement.

4.6 Alternative List Abstraction Algorithms

In [Chi99] we presented a different type inference algorithm which is based on the algo-
rithmM [LY98] for the Hindley-Milner system instead of the algorithmW . M takes not
only a typing environment and a term as argument but also a type and returns only a
substitution. The idea is that it takes a typing that contains type variables and returns
the most general substitution that yields a valid typing. When abstracting a list producer
a type inference algorithm based onM can notice early if abstraction from the list type is
impossible. It can then abort the list abstraction algorithm and thus save time. However,
when abstracting from several lists, as is necessary for the worker/wrapper split, this trick
is no longer applicable. We prefer the algorithm T presented here also, because it has
the nice property of not requiring any new type inference variables, in contrast to the
algorithm presented in [Chi99].

The main problem we had to solve in this chapter was to assure that at the beginning
of the third phase the list abstraction algorithm has a consistent typing of constructor
variables. We chose to post-process the possibly inconsistent result of type inference with
the algorithm C. However, we can also assure consistency differently.

On the one hand we could modify the type inference algorithm, strictly speaking
the unification algorithm, such that it always yields the most general consistent typing.
Whenever the unification algorithm would bind a variable, it would subsequently perform
a unification with the list substitution η to ensure consistency. However, this algorithm
would be less modular and more difficult to prove correct. It is even doubtful that an
improvement in performance would be gained.

On the other hand we could give the type inference algorithm a different input, in
which the types of the constructor variables express the required relation between a list
type and its element type. A list type [τ] is related to its element type τ simply by the
fact that the list type [τ] = [] τ consists of the list type constructor [] being applied
to the element type τ . So to preserve this relationship in the input to the type inference
algorithm we can use type constructor variables that only replace list type constructors
[], not whole list types.

To outline the idea we reconsider the example from the beginning of the chapter:

` (:) [Int] ([] Int) ((:) [Int] ([] Int) ([] [Int])) : [[Int]]
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List replacement gives

{v(:)1 :∀α. α→π1 α→π1 α, v(:)2 :∀α. α→π2 α→π2 α,
v[]1 :∀α. π3 α, v[]2 :∀α. π4 α, v[]3 :∀α. π5 α}
` v(:)1 (π6 Int) (v[]1 Int) (v(:)2 (π7 Int) (v[]2 Int) (v[]3 (π8 Int))

Here the πi are type constructor variables. Note that we replace list constructors (:) and
[] by constructor variables, not applications of list constructors, that is, (:) τ and [] τ .
Hence the constructor variables have polymorphic types, just as the list constructors.

Subsequently, a type inference algorithm that instantiates type constructor variables
instead of type variables yields the valid typing

{v(:)1 :∀α. α→π1 α→π1 α, v(:)2 :∀α. α→π1 α→π1 α,
v[]1 :∀α. π2 α, v[]2 :∀α. π2 α, v[]3 :∀α. π1 α}
` v(:)1 (π2 Int) (v[]1 Int) (v(:)2 (π2 Int) (v[]2 Int) (v[]3 (π1 Int)))

: π1 (π2 Int)

So the typing correctly states that two lists can be abstracted. In the third phase con-
structor variables of the same type are merged. (If there were constructor variables of
type ∀α. α→ [α]→ [α], respectively ∀α. [α], they would be reinstantiated to the list
constructors (:), respectively []).

{v(:)1 :∀α. α→π1 α→π1 α, v[]1 :∀α. π2 α, v[]3 :∀α. π1 α}
` v(:)1 (π2 Int) (v[]1 Int) (v(:)1 (π2 Int) (v[]2 Int) (v[]3 (π1 Int)))

: π1 (π2 Int)

Afterwards, we still need a fourth phase which transforms type constructor variables
into type variables. This phase also replaces applications of constructor variables by
constructor variables.

{v(:)1 :γ2→γ1→γ1, v[]1 :γ2, v[]3 :γ1}
` v(:)1 v[]1 (v(:)1 v[]1 v[]3 )

: γ1

Finally, we transform this typing into list abstracted form:

(λγ1. λγ2. λv
(:)
1 : γ2→γ1→γ1. λv

[]
1 : γ2. λv

[]
3 : γ1. v

(:)
1 v[]1 (v(:)1 v[]1 v[]3 ) )

[[Int]] [Int] ((:) [Int]) ([] Int) ([] [Int])

Note that for this final step we need to know which list variable γ abstracts which list
type [τ]. So in the fourth phase some list substitution like η∞ must be constructed.

This list abstraction algorithm based on type constructor variables looks more elegant
than the one we presented in the previous sections of this chapter. It only requires a
simple type inference algorithm without any post-processing to ensure consistency. This
algorithm might be more suitable for some extensions discussed in Chapter 6. However,
the algorithm is also more complex. Especially, it requires the notion of type construc-
tor variable and a fourth phase which transforms type constructor variables into type
variables.





Chapter 5

The Deforestation Algorithm

After having illustrated our deforestation method at the hand of examples in Chapter 3
and having studied type-inference based list abstraction in detail in Chapter 4 we here
finally present our deforestation algorithm. We discuss both its correctness and its effect
on the performance of programs. To quantify the improvement that can be gained by our
deforestation method we finally measure its effect on the well-known n-queens program.

5.1 The Worker/Wrapper Split Algorithm

For the worker/wrapper scheme each definition of a list-producing function has to be
split into a worker and a wrapper definition. This is straightforward for non-recursive
definitions but unfortunately not so for recursive ones.

5.1.1 Non-Recursive Definitions

For a non-recursive definition nearly the whole worker/wrapper split is performed by the
list abstraction algorithm.

Suppose we have the non-recursive definition of a list-producing function f

f : ∀α.τ
= λα.M

where M is a term abstraction. Remember that we insert the new λ-abstractions be-
tween the type abstractions and the term abstractions (Section 3.3). We apply the list
abstraction algorithm to the term M and obtain

f = λα. (λγ. λv(:)γ : τ→γ→γ. λv[]γ : γ.M ′) [τγ] ((:) τγ) ([] τγ)

Then we use type application expansion

f = λα. (λα. λγ. λv(:)γ : τ→γ→γ. λv[]γ : γ.M ′) α [τγ] ((:) τγ) ([] τγ)

and inverse inlining and let elimination (cf. Section 2.7) to obtain the worker and wrapper
definition:
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fW : ∀α.∀γ.τγ→γ→γ → γ → τ ′

= λα. λγ. λv(:)γ : τγ→γ→γ. λv[]γ : γ.M ′

f : ∀α.τ
= λα. fW α [τγ] ((:) τγ) ([] τγ)

Here τ ′ is the type of M ′ in its typing environment. Because of the type annotations in
F this type can easily be obtained from M ′ with the type rules. Alternatively, we could
extend the list abstraction algorithm to return τ ′.

If the list abstraction algorithm cannot abstract any list, then no worker/wrapper split
takes place.

From the correctness of the list abstraction algorithm, Lemma 4.52, and from the
correctness of the small transformations that we performed, Lemma 2.16, follows the
semantic correctness of the worker/wrapper split.

For example, consider the well-known non-recursive definition of map:

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. λf:α→ β.

foldr α [β] (λu:α. λw:[β]. (:) β (f u) w) ([] β)

With the list abstraction algorithm we obtain the following definition:

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. (λγ. λv(:):β → γ → γ. λv[]:γ. λf:α→ β.

foldr α γ (λu:α. λw:γ. v(:) (f u) w) v[]) [β] ((:) β) ([] β)

Then we use type application expansion

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. (λα. λβ. λγ. λv(:):β → γ → γ. λv[]:γ. λf:α→ β.

foldr α γ (λu:α. λw:γ. v(:) (f u) w) v[]) α β [β] ((:) β) ([] β)

and inverse inlining and let elimination to obtain the worker and wrapper definitions
which we already know:

mapW : ∀α.∀β.∀γ. (β → γ → γ)→ γ → (α→ β)→[α]→ γ
= λα. λβ. λγ. λv(:):β → γ → γ. λv[]:γ. λf:α→ β.

foldr α γ (λu:α. λw:γ. v(:) (f u) w) v[]

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. mapW α β [β] ((:) β) ([] β)

Similarly the worker/wrapper split for the definitions of (++), concat and unzip of
Section 3.3 are performed.

5.1.2 Recursive Definitions

Consider the recursive definition of the function enumFrom, which produces an infinite list
of increasing integers.

enumFrom : Int→Int

= λl:Int. (:) Int l (enumFrom (l+1))

We can rewrite it as
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enumFrom : Int→Int

= let go : Int→Int

= λl:Int. (:) Int l (go (l+1))

in go

The new definition of enumFrom is not recursive and we can hence apply the worker/wrapper
split algorithm that we described in the previous section.

With the list abstraction algorithm we obtain the definition

enumFrom : Int→Int

= (λγ. λv(:):Int→γ→γ. let go : Int→Int

= λl:Int. v(:) l (go (l+1))

in go )

[Int] ((:) Int)

and subsequently we apply inverse inlining and let elimination to obtain the worker and
wrapper definition

enumFromW : ∀γ.(Int→γ→γ)→Int→γ
= λγ. λv(:):Int→γ→γ. let go : Int→Int

= λl:Int. v(:) l (go (l+1))

in go

enumFrom : Int→Int

= enumFromW [Int] ((:) Int)

The definition of the worker enumFromW is unusual. From the discussion in Chapter 3
we would expect the definition

enumFromW : ∀γ.(Int→γ→γ)→Int→γ
= λγ. λv(:):Int→γ→γ. λl:Int. v(:) l (enumFromW v(:) (l+1))

However, the definition that we derived is preferable. Passing the additional argument
v(:) in all recursive calls is costly. Actually, this is less so because of the additional term
application reduction in every recursive call but mostly, because the size of a heap cell for
an unevaluated term is proportional to the number of its free variables. So a heap cell for
enumFromW v(:) (l+1) requires more space than a heap cell for go (l+1). In our cost
model (Section 2.9) we did not consider the size of heap cells. In Section 7.1 of [San95]
this effect on costs is discussed together with the presentation of the static argument
transformation. An argument in a recursive function definition is static, if it is passed
unchanged in all recursive calls. The static argument transformation transforms the latter
definition of enumFromW into the former.

In general, let

f : ∀α.τ
= λα.M

be a recursive definition such that f occurs in M only in the form f α. Then we apply
the static argument transformation for the static type arguments α, that is, we rewrite
the definition as

f : ∀α.τ
= λα.let go : τ = M ′ in go
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where M ′ is obtained from M by replacing all occurrences of f α by the term variable
go. The new definition of f is not recursive and we can hence apply the worker/wrapper
split algorithm of the previous section.

We split the definition of enumFrom by this algorithm. As a second, more complex
example we split the recursive definition of the function tails from Section 3.3.3.

tails : ∀α.[α]→ [[α]]
= λα. λxs:[α]. case xs of

[] 7→ (:) [α] ([]α) ([] [α])
y:ys 7→ (:) [α] xs (tails α ys)

First, we apply the static argument transformation to obtain

tails : ∀α.[α]→ [[α]]
= λα. let go : [α]→[[α]]

= λxs:[α]. case xs of

[] 7→ (:) [α] ([]α) ([] [α])
y:ys 7→ (:) [α] xs (go ys)

in go

and, second, we split this non-recursive definition into a worker and a wrapper definition:

tailsW : ∀α.∀γ.([α]→γ→γ)→ γ →[α]→ γ
= λα. λγ. λv(:):[α]→γ→γ. λv[]:γ.

let go : [α]→ γ
= λxs:[α]. case xs of

[] 7→ v(:) ([]α) v[]

y:ys 7→ v(:) xs (go ys)

in go

tails : ∀α.[α]→ [[α]]
= λα. tailsW α [[α]] ((:) [α]) ([] [α])

In [Chi00] we proposed a slightly different method for splitting recursive definitions
such as the ones considered here. This method, which was inspired by how type inference
algorithms for the Hindley-Milner type system handle the let construct, however, requires
an extension of the list abstraction algorithm.

5.1.3 Polymorphic Recursion

The algorithm which we just described is only applicable to definitions which are not poly-
morphically recursive. A definition is polymorphically recursive if its type arguments
are not static, that is, a recursive call uses type arguments which differ from the abstracted
type variables. Polymorphically recursive definitions are rare in Haskell. Unfortunately,
the algorithm which we just described also cannot achieve the worker/wrapper split of the
definition of reverse which we described in Section 3.4. The definition of reverse is not
polymorphically recursive, but the definition of its worker reverseW (see the definition
before deforestation inside the worker in Section 3.4). Obviously, functions that consume
their own result need such polymorphically recursive worker definitions.

Typeability in the Hindley-Milner type system with polymorphic recursion is only
semi-decidable [Hen93, KTU93], that is, there are algorithms which do infer the most
general type of a term within the Hindley-Milner type system with polymorphic recursion
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if it is typeable. However, if the term is not typeable, then these algorithms may diverge.
Fortunately, the input of the worker/wrapper split algorithm is typeable, we only try to
find a more general type than we have.

To derive a possibly polymorphically recursive worker definition, we build on Mycroft’s
extension of the Hindley-Milner type inference algorithm [Myc84]. We start with the most
general worker type possible, which is obtained from the original type by replacing every
list type by a new type variable and abstracting the list type and its list constructors.

reverseW0 : ∀α.∀γ1.∀γ2.(α→γ1→γ1)→γ1→(α→γ2→γ2)→γ2→(γ1→γ2)

We define a well-typed wrapper for this hypothetical worker:

reverse0 = λα. reverseW0 α [α] [α] ((:)α) ([]α) ((:)α) ([]α)

Then we replace in the original definition body of reverse (without λα.) all occurrences
of reverse by this wrapper:

λxs:[α]. case xs of

[] 7→ [] α
y:ys 7→ appW α [α] ((:) α)

(reverseW0 α [α] [α] ((:)α) ([]α) ((:)α) ([]α) ys)

((:) α y ([]α))

So we have a term with a typing environment for all its free variables; to reverseW

it assigns the most general worker type, which we just constructed. For this term list
abstraction yields:

(λγ. λv(:) : α→γ→γ. λv[] : γ.
λxs:[α]. case xs of

[] 7→ v[]

y:ys 7→ appW α γ v(:)

(reverseW0 α [α] [α] ((:)α) ([]α) ((:)α) ([]α) ys)

(v(:) y v[]) )

[α] ((:) α) ([] α)

Now we can construct the following first approximation of a worker definition:

reverseW1 : ∀α.∀γ.(α→ γ → γ)→ γ → [α]→ γ
= λα. λγ. λv(:):α→ γ → γ. λv[]:γ. λxs:[α]. case xs of

[] 7→ v[]

y:ys7→ appW α γ v(:)

(reverseW0 α [α] [α] ((:)α) ([]α) ((:)α) ([]α) ys)
(v(:) y v[])

Subsequently we repeat these steps, this time under the assumption that reverseW1 has
the type ∀α.∀γ.(α→γ→γ)→ γ → [α]→ γ. So the well-typed wrapper for the worker
reverseW1 is

reverse1 = λα. reverseW1 α [α] ((:)α) ([]α)

the input to the list abstraction algorithm is

λxs:[α]. case xs of

[] 7→ [] α
y:ys 7→ appW α [α] ((:) α)

(reverseW1 α [α] ((:)α) ([]α) ys)

((:) α y ([]α))
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and its result

(λγ. λv(:) : α→γ→γ. λv[] : γ.
λxs:[α]. case xs of

[] 7→ v[]

y:ys 7→ appW α γ v(:)

(reverseW1 α [α] ((:)α) ([]α) ys)

(v(:) y v[]) )

[α] ((:) α) ([] α)

From this we can construct the second approximation of a worker definition:

reverseW2 : ∀α.∀γ.(α→ γ → γ)→ γ → [α]→ γ
= λα. λγ. λv(:):α→ γ → γ. λv[]:γ. λxs:[α]. case xs of

[] 7→ v[]

y:ys7→ appW α γ v(:)

(reverseW1 α [α] ((:)α) ([]α) ys)

(v(:) y v[])

The whole process iterates until the derived worker type is stable, that is input and
output type are identical. For our example the second iteration already yields the same
worker type as the first. So the definitions of reverseW2 and reverse1 are the definitions
of the worker and wrapper of the definition of reverse.

In general, the worker/wrapper split stops latest after n+ 1 iterations, where n is the
number of list types in the type of the original function. This follows analogously to the
syntactic completeness in [Myc84]. Whereas intuitively the semantic correctness of the
result of this extended worker/wrapper split algorithm is clear, a formal proof is hard. We
believe that correctness can be proved with the techniques presented in [San96b, San97].

As we discussed in Section 3.4.2, it is debatable if deforestation of recursively defined
functions that consume their own results is desirable. Depending on our decision we
may either use the worker/wrapper split algorithm described in this section or the one
described in the previous section.

If we use the algorithm described in this section, then it is useful to subsequently apply
the static argument transformation. As we saw in the preceding section, the static argu-
ment transformation improves the definitions of workers which are not polymorphically
recursive, such as enumFromW and tailsW.

5.1.4 Traversal Order

The worker/wrapper split algorithm splits each let-defined block of mutually recursive
definitions separately. In the example of concat in Section 3.3.2 the split was only possible
after the wrapper of (++) had been inlined. Hence the split algorithm must traverse the
program in top-down order and inline wrappers in the remaining program directly after
they were derived.

Additionally, definitions can be nested, that is, the definition body of a let construct
can contain another let construct. Here the inner definitions have to be split first. Their
wrappers can then be inlined in the body of the outer definition and thus enable the
abstraction of more lists from the outer definition.
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5.2 The Complete Deforestation Algorithm

First, our worker/wrapper split algorithm splits all definitions of list-producing functions
of a program into worker and wrapper definitions. The wrapper definitions are non-
recursive and small enough to be inlined unconditionally everywhere, also across module
boundaries. They transfer the information needed for list abstraction in the split algorithm
and the actual deforestation algorithm.

The actual deforestation algorithm searches for occurrences of full applications of
foldr, that is foldr τ1 τ2 M(:) M[] MP, abstracts the result list from the producer
MP and then, if successful, directly applies the short cut fusion rule.

For example, suppose it finds the following potentially fusible term:

. . .
foldr Bool Bool (&&) True

(fst [Bool] [Char] (unzipW Bool Char [Bool] [Char]

((:) Bool) ([] Bool) ((:) Char) ([] Char) zs))

. . .

List abstraction of the producer is successful and gives:

. . .
foldr Bool Bool (&&) True

((λγ.λv(:):Bool→ γ → γ.λv[]:γ.
(fst γ [Char] (unzipW Bool Char γ [Char]

v(:) v[] ((:) Char) ([] Char) zs)) )

[Bool] ((:) Bool) ([] Bool) )

. . .

Then the short cut fusion rule is applied:

. . .
(λγ.λv(:):Bool→ γ → γ.λv[]:γ.
(fst γ [Char] (unzipW Bool Char γ [Char]

v(:) v[] ((:) Char) ([] Char) zs)) )

Bool (&&) True

. . .

Further optimisations may be obtained by a subsequent standard simplification pass which
performs β-reduction.

. . .
fst Bool [Char] (unzipW Bool Char Bool [Char]

(&&) True ((:) Char) ([] Char) zs)

. . .

In principle, the list abstraction algorithm could directly replace the right list con-
structors by M(:) and M[], thereby avoiding completely the explicit construction of the
λ-abstraction and subsequent β-reduction. However, the modular separation of the two
tasks is desirable, because the worker/wrapper split algorithm uses the same list abstrac-
tion algorithm. An optimising compiler will be able to perform β-reduction anyway.

Similarly, we separate the worker/wrapper split algorithm from the actual deforesta-
tion algorithm. Deforestation brings together subterms of producer and consumer which
previously were separated by the intermediate list. This may lead to new deforestation
opportunities and hence it may be useful to repeat the actual deforestation algorithm
several times, whereas the worker/wrapper split is only performed once.
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5.2.1 Avoiding Inefficient Workers

As Gill already noticed [Gil96], there is a substantial performance difference between
calling a function as originally defined (for example map τ ′ τ) and calling a worker with
list constructors as arguments (for example mapW τ ′ τ [τ] ((:) τ) ([] τ)). The latter
call is considerably more expensive.

In our worker/wrapper split algorithm we demanded that in a definition

f : ∀α.τ
= λα.M

which we want to split into a worker and a wrapper definition the term M is a term
application. Thus it is a value and not a term that may be evaluated once to a value that
is then shared between all uses of the function f .1 The definition body of the wrapper

f : ∀α.τ
= λα. fW α [τγ] ((:) τγ) ([] τγ)

is not a value but an application that evaluates to the value M . So we know that eval-
uation of f requires only a few steps. These evaluation steps are duplicated when the
wrapper f is inlined. Furthermore, workers have additional arguments for the abstracted
list constructors. We already discussed in Section 5.1.2 how the static argument transfor-
mation can move these arguments out of the recursion. Only to polymorphically recursive
workers, that is, workers of functions that recursively consume their own result, this trans-
formation is not applicable. Finally, because the list constructors are abstracted, they can
only be accessed in the worker by the var rule, whereas they are directly present in the
original unsplit definition.

So a worker/wrapper split decreases performance. The effect can only be made good by
deforestation. Hence a worker should never be called when it is not used for deforestation,
that is, when it has only list types and list constructors as arguments.

A simple solution is to replace after deforestation all calls to workers that still have
only list types and list constructors as arguments by calls to more efficiently defined
functions. This could be the original, unsplit definition of the function. Better may be a
version of the worker that is specialised to the list types and list constructors. Thus this
definition can profit from any optimisations, especially deforestation, that were performed
inside the worker definition. Note that we only derive one specialised definition for every
worker.

Alternatively, we could change the deforestation algorithm so that it only replaces the
call to a list producer by a wrapper, if this is necessary to enable deforestation. Basically,
we could use our type-inference based method of Section 3.2 for detecting functions that
need to be inlined to inline wrappers only where necessary.

The worker/wrapper scheme increases code size through the introduction of wrapper
and worker definitions. However, this increase is naturally bounded in contrast to the
code increase that is caused by our original list abstraction algorithm with inlining. Note
that the definitions of workers that are not needed for deforestation can be removed by
standard dead code elimination after worker specialisation has been performed.

5.2.2 Consumers in foldr form

The Haskell prelude, the library of standard functions that are available in any Haskell

program [PH+99], contains many functions that consume lists. Several of these are de-
1Note that in discussions of the effect on program performance we have to ignore type abstractions

and applications, because they disappear during the translation into the language G of our cost model.
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fined in terms of foldr. [GLP93, GP94, Gil96] also give definitions in terms of foldr for
many others, which we do not list again here. However, besides foldr the prelude also
contains a few other higher-order functions that consume lists, namely foldl, foldr1 and
foldl1. The function foldl uses an accumulating parameter to combine all elements of
a list.

foldl : ∀α.∀β.(β→α→β)→ β →[α]→ β
= λα.λβ.λc:β→α→β.λn:β.λxs:[α]. case xs of

[] 7→ n

y:ys 7→ foldl α β c (c n y) ys

Many list-consuming functions are naturally defined in term of foldl, for example the
linear version of reverse:

reverse : ∀α.[α]→[α]
= λα. foldl α [α] (λys:[α].λy:α. (:) α y ys) ([] α)

As shown in [Gil96], foldl can be expressed in terms of foldr:

foldl : ∀α.∀β.(β→α→β)→ β →[α]→ β
= λα.λβ.λc:β→α→β.λn:β.λxs:[α].

foldr α (β→β) (λy:α.λfys:β→β.λn:β. fys (f n y))

(λn:β. n) xs n

For every element of the list xs this definition allocates a term of functional type (β → β)
on the heap. All these intermediate functions are composed so that the term foldr

. . . xs produces a function that is finally applied to n. So the definition of foldl in
terms of foldr is less efficient then the direct definition given before. Therefore the
definition in terms of foldr should not be chosen as standard definition of foldl in
the Haskell prelude. Instead, the deforestation algorithm searches for applications of
foldl just as it searches for applications of foldr. If list abstraction of the list argument
is successful, then the definition of foldl in terms of foldr is used to fuse consumer and
producer. Because this definition introduces intermediate functions but fusion removes
the intermediate list, the whole transformation keeps execution costs constant. It is
nonetheless useful to perform this transformation, because subterms of producer and
consumer that previously were separated by the intermediate list are brought together
and thus new opportunities for other optimising transformations arise.

The higher-order functions foldl1 and foldr1 are only defined for non-empty argu-
ment lists. Besides the definitions in the Haskell report [PH+99], there also exist the
following equivalent definitions. Note that fold is not a standard function.

foldl1 : ∀α.(α→α→α)→[α]→ α
= λα.λc:α→α→α.λxs:[α]. case xs of

y:ys7→ foldl α c y ys

foldr1 : ∀α.(α→α→α)→[α]→ α
= λα.λc:α→α→α.λxs:[α]. case xs of

y:ys7→ fold α c y ys

fold : ∀α.(α→α→α)→ α→[α]→ α
= λα.λc:α→α→α.λn:α.λxs:[α]. case xs of

[] 7→ n

y:ys 7→ c n (fold α c y ys)



104 5.2. The Complete Deforestation Algorithm

We do not define foldl1 and foldr1 directly in terms of foldr. However, their definitions
use foldl, respectively fold, which can be defined in terms of foldr. The definitions of
foldl1 and foldr1 have to be removed by other transformations than fusion.

fold : ∀α.(α→α→α)→ α→[α]→ α
= λα.λc:α→α→α.λn:α.λxs:[α].

foldr α (α→α) (λy:α.λfys:α→α.λn:α. f n (fys y))

(λn:α. n) xs n

So besides foldr the deforestation algorithm knows foldl and fold. If their list
arguments can be list abstracted, then their definitions in terms of foldr are used for
fusion.

Contextual equality of the original definitions and the definitions in terms of foldr

can be proved by giving appropriate bisimulations, which we mentioned in Section 2.7.

5.2.3 Improvement by Short Cut Deforestation

To illustrate how short cut deforestation improves performance we compare the evaluation
steps of a term with intermediate list and its deforested counterpart. We consider a
simplified version of the definition body of the function any, which we discussed in the
introduction. The following F-program combines the elements of a constant boolean list
with the logical or operator.

let foldr : ∀α.∀β.(α→ β → β)→ β → [α]→ β
= λα.λβ.λc:α→ β → β.λn:β.λxs:[α]. case xs of

[] 7→ n

y:ys 7→ c y (foldr α β c n ys)

(||) : Bool→Bool→Bool

= λx:Bool.λy:Bool. case x of

True 7→ True

False7→ y

in foldr Bool Bool (||) False ((:) Bool False ((:) Bool True ([] Bool)))

Our short cut deforestation method transforms this F-program into the following F-
program:

let (||) : Bool→Bool→Bool

= λx:Bool.λy:Bool. case x of

True 7→ True

False7→ y

in (||) False ((||) True False)

We translate both programs by ∗ into a corresponding G-program (cf. Section 2.9.1).
To avoid some trivial evaluation steps we simplify the let structure of the G-terms.
Figure 5.1 shows the evaluation of the G-term of the original F-program and Figure 5.2
shows the evaluation of the G-term of the deforested F-program. We note that the
evaluation of the original program causes the allocation of an intermediate list on the
heap. The evaluation of the deforested program takes fewer steps, mainly because no
such intermediate list is allocated.

Naturally, further optimisations are desirable. For example, the allocation of the
boolean value of the result, which occurs in both cases, could be avoided by a transfor-
mation that uses the fact that (||) is strict. However, in the case of the original program
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{} : let true = True

false = False

foldr = λc.λn.λxs. case xs of

{[] 7→ n, y:ys 7→ let z = foldr c n ys in c y z}
(||) = λx.λy. case x of {True 7→ True, False 7→ y}

in let us = (let vs = (let zs = [] in (:) true zs) in (:) false vs)

in foldr (||) false us

{true7→True, false7→False, foldr7→. . . , (||)7→. . . }
: let us =. . . in foldr (||) false us

{. . . , us7→let vs = . . . in (:) false vs} : foldr (||) false us " : foldr (||) false
...

" : λxs.case xs of {[]7→false,y:ys7→let z = . . . in (||) y z}

" : case us of {[]7→false,y:ys7→let z = . . . in (||) y z} " : us
...

{. . . , us7→(:) false vs, vs7→let zs = [] in (:) true zs} : (:) false vs

" : let z = foldr (||) false vs in (||) false z

{ . . . , z7→foldr (||) false vs} : (||) false z " : (||) false
...

" : λy.case false of {True7→True, False7→y}

" : case false of {True7→True, False7→z} " : false
...

" : False

" : z
" : foldr (||) false vs

... reduces to (||) true z’ which reduces to True

{true7→True, false7→False, foldr7→. . . , (||)7→. . . ,
us7→(:) false vs, vs7→(:) true zs, zs7→[],

z7→foldr (||) false vs, z’7→foldr (||) false zs} : True
{. . . , z7→True} : True
" : True

" : True

" : True

" : True

" : True

" : True

{true7→True, false7→False, foldr7→. . . , (||)7→. . . ,
us7→(:) false vs, vs7→(:) true zs, zs7→[],

z7→True, z’7→foldr (||) false zs} : True

Figure 5.1: Evaluation derivation of program with intermediate list
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{} : let true = True

false = False

(||) = λx.λy. case x of {True 7→ True, False 7→ y}
in let z = or true false in or false z

{true7→True, false7→False, (||)7→λx.λy.case x of {True7→True, False7→y}}
: let z = or true false in or false z

{. . . , z7→or true false} : or false z " : or false
...

" : λy. case false of {True7→True, False7→y}

" : case false of {True7→True, False7→z} " : false

[ " : False

" : False

" : z

" : or true false " : or true
...

" : λy. case true of {True7→True, False7→y}
" : case true of {True7→True, False7→false} " : true

[ " : True

" : True

[ " : True

" : True

" : True

{. . . ,z7→True} : True
" : True

" : True

" : True

{true7→True, false7→False, (||)7→λx.λy.case x of {True7→True, False7→y},
z7→True} : True

Figure 5.2: Evaluation derivation of the deforested program



Chapter 5. The Deforestation Algorithm 107

such a transformation would be much more difficult, because the unwanted heap cells are
allocated by the definition of foldr. The strictness transformation implemented in the
Glasgow Haskell compiler [PL91] is only able to improve the deforested program.

5.2.4 No Duplication of Evaluation — Linearity is Irrelevant

Unfold/fold deforestation methods, which we will discuss in Section 7.3, have to take
care to not to duplicate evaluation of some terms and thus increase costs. Consider the
following consumer. It is defined in Haskell, because we only argue informally in this
section.

mkTree :: [a] -> Tree a

mkTree [] = Leaf

mkTree (x:xs) = Node x (mkTree xs) (mkTree xs)

For example, mkTree [4,2] yields Node 4 (Node 2 Leaf Leaf) (Node 2 Leaf Leaf).
The consumer traverses parts of its argument several times to produce its complete result.
Our lazy evaluation semantics shows that in mkTree P the producer P , which may be
expensive to evaluate, is shared and hence nonetheless only evaluated once.

Näıve deforestation of mkTree P leads to a term in which the remaining part of the
producer is evaluated as often as the list is traversed in the original term. So deforestation
may lead to an exponential increase of costs. Hence unfold/fold deforestation algorithms
usually require their input to be linear, that is, every variable occurs at most once in a
definition body.

For short cut deforestation we need mkTree to be defined in terms of foldr. As
intermediate step we define

mkTree [] = Leaf

mkTree (x:xs) = let r = mkTree xs in Node x r r

and then obtain

mkTree = foldr (\x r -> Node x r r) Leaf

If the list abstraction algorithm successfully processes the producer P , then the short cut
fusion rule removes the intermediate list. There is no duplication of evaluation, because
a foldr consumer only traverses its list argument once. This property of foldr ensures
that we do not have to worry about linearity and possible duplication of evaluation. So
the important point is that we have the consumer in foldr form.

To stress this point, we consider the following definition with a nested recursive call:

f :: [a] -> [a] -> [a]

f [] zs = zs

f (x:xs) zs = f xs (x : f xs zs)

For example, f [1,2,3] [] yields [3,2,3,1,3,2,3]. We first transform this definition
into

f [] = \zs -> zs

f (x:xs) = \zs -> let r = f xs in r (x : r zs)

to finally obtain

f = foldr (\x r -> \zs -> r (x : r zs)) (\zs -> zs)
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In both examples the definition that we gave as intermediate step differs from the
original definition just in that respect that the list argument is traversed only once. We
performed a kind of common subexpression elimination to obtain this form. Although
common subexpression elimination has the beneficial effect of avoiding repeated compu-
tation, it may unfortunately unboundedly increase space usage and thus indirectly also
garbage collection time [Chi98]. This problem does not concern us, because our defor-
estation method expects consumers to be already in foldr form. However, deforestation
methods that automatically transform a general recursive definition into foldr form, such
as warm fusion (Section 7.1.3) and hylomorphism fusion (Section 7.2), have to take care
that they do not increase space and runtime costs by common subexpression elimination.

5.3 Measuring an Example: Queens

To quantify the improvement that can be gained by our deforestation method we measure
its effect on the well-known n-queens program, using the Glasgow Haskell compiler [GHC].

A solution to the n-queens problem is a placement of n queens on an n×n chessboard
so that no two queens hold each other in check. The Haskell program in Figure 5.3
computes all solutions to the ten queens problem. It was adapted from [BW87], Section
6.5.1, and was already used in [GLP93, Gil96] to measure the effect of the original short
cut deforestation algorithm. Ten instead of the traditional eight queens were chosen to
increase the runtime and thus obtain reliable timings. Because printing all solutions to
the ten queens problem would mean that I/O takes up most of the time, evaluation is
simply forced by adding up all positions.

The original queens program uses list comprehensions. These are a powerful form of
syntactic sugar. There are well-known techniques for translating list comprehensions into
recursive functions such that only one list cell is constructed for each element of the result
[Aug87, Wad87]. However, as discussed in [GLP93, Gil96], a good deforestation method
makes these sophisticated translation techniques for list comprehensions unnecessary. In
the Haskell report [PH+99] the semantics of list comprehensions is given by a straight-
forward translation. This translation introduces intermediate lists that will be removed
by deforestation. Applying the translation to the original program of Figure 5.3 gives the
program in Figure 5.4.

The desugared queens program directly or indirectly uses many standard list functions.
The definitions of all standard list functions that are relevant for deforestation are listed
in Appendix B. Our deforestation algorithm splits the definitions of all list-producing
functions into worker and wrapper definitions and performs inlining of consumers and
deforestation. Figure 5.5 gives the result of applying our deforestation algorithm to the
desugared queens program. This deforested program contains only those transformed
standard list functions which are used by queens and safe and which were not inlined.
Appendix B additionally lists the split and deforested versions of all other standard list
functions. Note that for example the definitions of concatMapW and enumFromToW were
deforested.

First, deforestation removes all the intermediate lists that were introduced by the
desugaring of list comprehensions. In the definition of queensW we note additionally, that
the list [1..10] is no longer constructed. Furthermore, the original definition of queens
recursively consumes its own result. All intermediate lists arising from this recursive con-
sumption are removed, similarly to the example inits which we discussed in Section 3.4.1.
The worker queensW abstracts both nested result lists. However, only the abstraction of
the outer list is used for deforestation; queensW is always called with (:) and [] as first
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main = (print . sum . concat . queens) 10

queens :: Int -> [[Int]]

queens 0 = [[]]

queens m = [p ++ [n] | p <- queens (m-1), n <- [1..10], safe p n]

safe :: [Int] -> Int -> Bool

safe p n = and [(j /= n) && (i+j /= m+n) && (i-j /= m-n)

|(i,j) <- zip [1..] p]

where

m = length p + 1

Figure 5.3: Original queens program

main = (print . sum . concat . queens) 10

queens :: Int -> [[Int]]

queens 0 = [[]]

queens m = concatMap

(\p -> concatMap

(\n -> if safe p n then [p ++ [n]] else [])

(enumFromTo 1 10))

(queens (m-1))

safe :: [Int] -> Int -> Bool

safe p n = and

(concatMap (\(i,j) -> [(j /= n) && (i+j /= m+n) && (i-j /= m-n)])

(zip (enumFrom 1) p))

where

m = length p + 1

Figure 5.4: Queens with list comprehension desugared according to Haskell report

arguments. It seems desirable to find a method for removing this unnecessary abstrac-
tion. In this example it hardly matters, because queensW is only called 10 times, but in
general unnecessary abstraction may decrease performance considerably. Note that the
list of queen positions p is not removed by deforestation. It cannot be removed, because
it is consumed twice, by safe and appW. If this were not the case, then the fact that
p is λ-bound would still make list abstraction and thus fusion impossible. Similarly, p
is consumed twice in the definition of safe, by zipW and length. The function zip,
respectively zipW, consumes two lists. It is well known for not being suitable for short
cut deforestation, see the discussion in [Gil96]. Hence it is not fused with the producer
enumFrom 1. So in the definition of safe only the list consumed by and is removed by
deforestation, besides the list introduced by desugaring of the list comprehension. Finally,
some intermediate lists in the definition of main are removed.

In general we note that the deforested program is considerably less readable than the
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main = print

((queensW (:) [] (appW (\y fys n -> fys $! (n+y))) id 10) 0)

queensW :: (Int -> c -> c) -> c -> (c -> d -> d) -> d -> Int -> d

queensW c1 n1 c2 n2 0 = c2 n1 n2

queensW c1 n1 c2 n2 m =

queensW (:) []

(\p ws -> enumFromToW (\l zs -> if safe p l

then c2 (appW c1 p (c1 l n1)) zs

else zs ) ws 1 10)

n2 (m-1)

queens :: Int -> [[Int]]

queens = queensW (:) [] (:) []

safe :: [Int] -> Int -> Bool

safe p n =

zipW (\(i,j) zs -> ((j /= n) && (i+j /= m+n) && (i-j /= m-n)) && zs)

True (enumFrom 1) p

where

m = length p + 1

appW :: (a -> c -> c) -> [a] -> c -> c

appW c xs ys = foldr c ys xs

zipW :: ((a,b) -> c -> c) -> c -> [a] -> [b] -> c

zipW c n xs ys = go xs ys

where

go (x:xs) (y:ys) = c (x,y) (go xs ys)

go _ _ = n

enumFromW :: (Int -> c -> c) -> Int -> c

enumFromW c l = go l

where

go l = l ‘c‘ (go $! (l+1))

enumFrom :: Int -> [Int]

enumFrom = enumFromW (:)

enumFromToW :: (Int -> c -> c) -> c -> Int -> Int -> c

enumFromToW c n l m =

enumFromW (\x fxs -> if (<= m) x then x ‘c‘ fxs else n) l

Figure 5.5: Queens after type-inference based short cut deforestation
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main = (print . sum . concat . queens) 10

queens :: Int -> [[Int]]

queens 0 = [[]]

queens m =

foldr (\p ws ->

foldr (\n zs -> if safe p n then (:) (p ++ [n]) zs else zs) ws

(enumFromTo 1 10))

[]

(queens (m-1))

safe :: [Int] -> Int -> Bool

safe p n = and

(foldr (\(i,j) zs -> (:) ((j /= n) && (i+j /= m+n) && (i-j /= m-n)) zs)

[] (zip (enumFrom 1) p))

where

m = length p + 1

Figure 5.6: Queens with list comprehension desugared according to Ghc

original program. Especially the working of queensW is far from obvious.

To obtain the program of Figure 5.5 from the program of Figure 5.4 we have to
apply η-expansion three times, that is, replace a term M by \x -> M x for a variable
x which does not occur in M . η-expansion is applied to the three anonymous functions
\p -> . . . , \n -> . . . and \(i,j) -> . . . which are introduced by the desugaring of list
comprehensions. To avoid having to use η-expansion later, the desugaring translation
itself should perform it. In fact, the Glasgow Haskell compiler uses a slightly different
translation scheme for list comprehensions which translates the program of Figure 5.3
into the program given in Figure 5.6. Deforestation of this program does not require
η-expansion and gives the program of Figure 5.5 as result as well.

We measured2 the performance of the four versions of the queens program on a Linux
PC with a 500 MHz Pentium III and 256 MB Ram with version 4.06 of the Glasgow Haskell
compiler and maximal optimisations (-O2). This version of the Glasgow Haskell compiler
has already a form of short cut deforestation built-in. Many standard list functions are
defined in terms of foldr and build and the compiler applies the foldr/build fusion
rule (see Section 7.1). To measure the performance of our programs without this built-
in deforestation, we hide all the standard list functions3, which are defined in terms of
foldr and build, and give our own definitions instead, as listed in Appendix B. Thus
the special function build does not occur in our programs. Hence the compiler cannot
apply the foldr/build fusion rule. When compiling the original queens program with
list comprehensions it is not possible to avoid the built-in deforestation transformation
completely, because the compiler internally translates list comprehensions into foldrs and
builds. So for this program we do not hide the definitions of the standard list functions

2by using the option +RTS -s -RTS that any program compiled by the Glasgow Haskell compiler
understands

3by using import Prelude hiding (sum, concat, map, . . . )
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megabytes runtime
program version allocated in

in the heap seconds
list comprehensions desugared (Haskell report), Fig. 5.4 205.78 1.71
list comprehensions desugared (Ghc), Fig. 5.6 98.48 1.01
original with built-in short cut deforestation, Fig. 5.3 33.41 0.57
deforested by type-inference based deforestation, Fig. 5.5 22,43 0.51

Figure 5.7: Effect of deforestation on heap allocation and runtime

at all but measure the full effect of the built-in short cut deforestation of the Glasgow
Haskell compiler.

We measured both the runtime and the number of bytes allocated on the heap. Note
that this is the total number of bytes allocated during the program run. The runtime
system automatically chooses a heap size of 1 or 2 megabytes and at any given point
of time only a few kilobytes of these are live, that is not garbage. Figure 5.7 gives
the results of our measurements. These show clearly the costs of intermediate lists and
the improvement that deforestation can achieve. The program of Figure 5.6, where list
comprehensions were desugared according to the method used by the Glasgow Haskell
compiler, uses fewer intermediate lists than the program of Figure 5.4 and hence it is
faster and allocates fewer bytes on the heap. Built-in short cut deforestation and our
deforestation method give similar results, because the program only uses standard list
functions, for which the Glasgow Haskell compiler has definitions in terms of foldr and
build. The Glasgow Haskell compiler only cannot deforest user defined list producers.
Our deforestation method still gives better results for the queens program. This is prob-
ably due to the worker/wrapper split of the definition of queens and the removal of the
intermediate lists between recursive calls, a transformation that is not performed by the
Glasgow Haskell compiler (cf. Section 7.1.4).

Figure 5.8 gives the results of some further measurements which we made to eval-
uate our worker/wrapper scheme. To obtain the deforested program of Figure 5.5 we
applied the static argument transformation to the definitions of the workers splitW and
enumFromW (cf. Section 5.1.2). Unfortunately, version 4.06 of the Glasgow Haskell com-
piler does not perform this transformation. To see the effect of this transformation we

megabytes runtime
program version allocated in

in the heap seconds
deforested without static argument transformation 68.53 0.79
only worker/wrapper split (Haskell report) 210.76 1.77
desugared with non-inlinable producers (Haskell report) 190.42 1.79
deforested with non-inlinable workers (Haskell report) 72.42 0.92

Figure 5.8: Heap allocation and runtime for different workers and wrappers
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measured the performance of a deforested program which differs only from the program
of Figure 5.5 in that the following definitions with static arguments are used:

zipW :: ((a,b) -> c -> c) -> c -> [a] -> [b] -> c

zipW c n (x:xs) (y:ys) = c (x,y) (zipW c n xs ys)

zipW c n _ _ = n

enumFromW :: (Int -> c -> c) -> Int -> c

enumFromW c l = l ‘c‘ (enumFromW c $! (l+1))

This version uses substantially more heap and also more time, thus substantiating our
arguments in favour of the static argument transformation in Section 5.1.2.

We stated in Section 5.2.1 that worker definitions are less efficient than their corre-
sponding original function definitions. So we measured the performance of the program
that is obtained from applying only the worker/wrapper split algorithm but not the actual
deforestation algorithm to the desugared program of Figure 5.4. This program is given in
Appendix B. The program runs only slightly slower with slightly more heap allocation.
So this example suggests that the inefficiency introduced by the worker/wrapper split
might not be problematic.

Finally we investigate the effect of inlining. Because all function definitions are in a
single module, the compiler can inline any definition. The idea of the worker/wrapper
scheme is to enable deforestation across module boundaries without large-scale inlining;
only the small wrappers need to be inlined. So we forbid the compiler to inline4 the work-
ers concatW, mapW, concatMapW, appW, zipW, enumFromW, enumFromToW and takeWhileW.
Our example is artificial in that respect that the worker definitions are so small that the
Glasgow Haskell compiler would normally inline them even across module boundaries.
For a fair comparison we also measure the performance of a version of the desugared pro-
gram of Figure 5.4, where the corresponding list-producing functions are non inlinable.
Comparing the results of the desugared program with and without inlining we see that
inlining increases space usage but decreases runtime slightly. For the deforested versions
inlining makes a considerable difference. The version without inlining requires consider-
ably more space and time than the version with inlining. Nonetheless the version without
inlining still performs much better than the non-deforested version. So it is sensible to
use workers and wrappers to enable deforestation where otherwise no deforestation would
be possible. However, a non-inlined worker does not bring together subterms of pro-
ducer and consumer to enable the application of further optimising transformations. The
measurements show that this second effect of deforestation can be substantial.

4by using the NOINLINE pragma of the Glasgow Haskell compiler





Chapter 6

Extensions

In this chapter we present several ideas for improving and extending our deforestation
algorithm. First, we discuss a worker/wrapper scheme for definitions of list-consuming
functions. This scheme enables deforestation without requiring inlining of possibly large
producer definitions. Subsequently, we generalise the short cut fusion rule so that it no
longer requires that the list argument of a foldr contains the constructors which construct
the list. Afterwards, we make several suggestions for improving the efficiency, that is, the
runtime of our deforestation algorithm. Finally, we demonstrate that our type-inference
based deforestation method is not limited to lists but can easily be extended to other
recursive data types.

We are less formal in this chapter and hence use Haskell in all examples for better
readability.

6.1 A Worker/Wrapper Scheme for Consumers

To enable deforestation without requiring large-scale inlining we developed a scheme that
splits a definition of a list producer into a definition of a worker and a definition of a wrap-
per. The wrapper contains all the list constructors that are needed for list abstraction.
Dually, the consumer must be a foldr and hence sufficient inlining must be performed in
the consumer to expose the foldr. If the consumer is a function with a large definition,
then this is a problem. So a worker/wrapper scheme for list consumers is desirable, a
scheme which splits the definition of a consumer into a small wrapper definition which
contains the foldr and a large worker definition, which resembles the original definition.

We have two different worker/wrapper schemes for consumers. The first is the more
obvious one, whereas the second fits better into our deforestation method. In both schemes
the worker definitions are less efficient than the original definitions. Hence it has to be en-
sured that they are only used when they enable fusion, analogously to the worker/wrapper
scheme for producers.
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6.1.1 Scheme A

First, the arguments of the foldr of the consumer may be so large that it is desirable
to separate them from the consumer. In that case we may define new functions for the
arguments, so that the foldr of the consumer only has these small function calls as
arguments. For a simple example consider the definition

map :: (a -> b) -> [a] -> [b]

map f xs = foldr (\x fxs -> f x : fxs) [] xs

Suppose the term (\x fxs -> f x : fxs) is too large for inlining. Then we define a
new function mapF and redefine map as follows:

mapF :: (a -> b) -> a -> [b] -> [b]

mapF f = \x fxs -> f x : fxs

map :: (a -> b) -> [a] -> [b]

map f xs = foldr (mapF f) [] xs

Second, there may be a large context around the foldr in the definition of the con-
sumer. Then we can define a new function to abstract this context. For example, consider
the definition

foo :: Bool -> (a -> b) -> [a] -> [b]

foo b f xs = if b then foldr (mapF f) [] xs else []

Suppose the context of foldr is too large for inlining. Then we split this definition as
follows:

cont :: Bool -> [b] -> [b]

cont b y = if b then y else []

foo :: Bool -> (a -> b) -> [a] -> [b]

foo b f xs = cont b (foldr (mapF f) [] xs)

The two transformations do not require any type-based analysis but can be performed
directly on the syntactic structure.

6.1.2 Scheme B

The basic idea of an alternative worker/wrapper scheme for consumers is to transform a
function that consumes a list with foldr so that it consumes a polymorphic list producer
instead. We illustrate this again at the hand of the definition of the function map.

map :: (a -> b) -> [a] -> [b]

map f xs = foldr (\x fxs -> f x : fxs) [] xs

It is split into the definition of a worker

mapW :: (a -> b) -> (forall c. (a -> c -> c) -> c -> c) -> [b]

mapW f g = g (\x fxs -> f x : fxs) []

and the definition of a wrapper

map :: (a -> b) -> [a] -> [b]

map f xs = mapW f (\v(:) v[] -> foldr v(:) v[] xs)
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We can easily fuse this consumer wrapper with a list abstracted producer:

map (+1) (enumFrom 1)

 {inlining and β-reduction of wrappers}
mapW (+1) (\v(:) v[] -> foldr v(:) v[] (enumFromW (:) 1))

 {list abstraction and short cut fusion}
mapW (+1) (\v(:) v[] -> enumFromW v(:) 1))

It is still a problem that inlining and β-reduction must replace the variable xs in the
definition of the wrapper map by the producer enumFromW (:) 1. A standard inliner will
refuse to do so, because xs is within the scope of a λ-abstraction (\v(:) v[] -> . . . ) and
hence in general inlining the producer could duplicate computation (cf. Section 2.9.2).
The inliner would need to know that the λ-abstraction is only used once.

The worker/wrapper split could be performed by a modified version of our type-
inference based list abstraction algorithm. Instead of abstracting list constructors it would
abstract occurrences of foldr. This is also advantageous, because for functions that are
both consumers and producers the worker/wrapper scheme for consumers and producers
have to be combined.

6.2 Deforestation Beyond Arguments of foldr

Our deforestation algorithm searches for terms of the form foldr M(:) M[] MP, applies
list abstraction to MP and, if successful, applies the short cut fusion rule. List abstraction
cannot succeed, if MP is a variable or the program only contains the partial application
foldr M(:) M[]. This restriction is sometimes unfortunate, as the following examples
demonstrate.

Our deforestation algorithm successfully deforests the term or (fst unzip xs). How-
ever, the compiler may inline the small definition of fst and simplify the term to obtain
case unzip xs of (vs,ws) -> or vs. Here the argument of or is just a variable and
hence or cannot be fused with its argument.

A monadic function may produce a list that is consumed by foldr, but the monadic
producer can never be the argument of a foldr. Consider the term

getLine >>= putStr

which reads a list of characters from standard input and subsequently writes it to standard
output. The functions putStr and getLine can be defined as follows:

putStr :: [Char] -> IO ()

putStr = foldr (\c r -> putChar c >> r) (return ())

getLine :: IO [Char]

getLine = do c <- getChar

if c == ’\n’ then return [] else

do s <- getLine

return (c:s)

The definition of the producer getLine can be split into a worker and a wrapper:

getLineW :: (Char -> c -> c) -> c -> IO c

getLineW v(:) v[] = do c <- getChar
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if c == ’\n’ then return v[] else

do s <- getLine

return (v(:) c s)

getLine :: IO [Char]

getLine = getLineW (:) []

Nonetheless the term getLine >>= putStr cannot be deforested, because getLine is not
an argument of putStr.

The solution is to abstract the intermediate list and foldr with its first two arguments
from a term which we want to deforest. We use the following, generalised short cut fusion
rule1:

M :: (A -> c -> c) -> c -> (c -> B) -> C c /∈ free(C)

M (:) [] (foldr M(:) M[])  M M(:) M[] id

Here A, B and C are types and c a type variable, so that the term M is polymorphic.
The fusion rule is the parametricity theorem of the polymorphic type.

With this generalised fusion rule we can deforest our example terms as follows:

case unzip xs of (vs,ws) -> or vs

 {inlining}
case unzipW (:) [] (:) [] xs of (vs,ws) -> foldr (||) False vs

 {type-inference based abstraction}
(\v(:) v[] f -> case unzipW v(:) v[] (:) [] xs of (vs,ws) -> f vs)

(:) [] (foldr (||) False)

 {generalised fusion rule and β-reduction}
case unzipW (||) False (:) [] xs of (vs,ws) -> vs

Similarly:

getLine >>= putStr

 {inlining}
getLineW (:) [] >>= foldr (\c r -> putChar c >> r) (return ())

 {type-inference based abstraction}
(\v(:) v[] f -> getLineW v(:) v[] >>= f)

(:) [] (foldr (\c r -> putChar c >> r) (return ()))

 {generalised fusion rule and β-reduction}
(getLineW (\c r -> putChar c >> r) (return ()) >>= id)

In the latter example getLineW constructs an I/O action instead of a list of characters.
A limitation for the generalised short cut fusion rule is that we can only abstract

foldr M(:) M[] from a term M , if no free variable of M(:) and M[] is bound in M .

6.3 More Efficient Algorithms

First, the efficiency of the type inference algorithm can be improved. In fact, in [Chi99]
we used a different type inference algorithm based on the algorithm M [LY98] for the

1Here, where we use Haskell instead of F, we informally ignore free variables and their types.
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Hindley-Milner type system. This type inference algorithm permits the optimisation that
type inference notices early if the desired polymorphic type cannot be inferred and then
may abort the whole type inference process. Unfortunately, this optimisation cannot be
used for the worker/wrapper split algorithm. We did not want to have two different type
inference algorithms, one for abstracting from a single list and that may fail early, and
one for all other occasions. It may be possible to integrate the two algorithms to have the
best of both.

More importantly, the worker/wrapper split algorithm is not as efficient as it could
be. The list abstraction algorithm traverses a whole definition body once. Even if we
ignore polymorphic recursion, if n let definitions are nested, then the body of the inner
definition is traversed n times, leading to quadratic complexity. However, as stated in
Section 4.3.5, the list abstraction algorithm uses a modified version of the Hindley-Milner
type inference algorithm. The abstraction of list types corresponds to the generalisation
step of the Hindley-Milner algorithm. The list abstraction algorithm just additionally
abstracts list constructors and inserts both type and term abstractions into the program.
The Hindley-Milner algorithm recursively traverses a program only once. So it should be
possible to integrate explicit type and term abstraction at let definitions into this type
inference algorithm to obtain a single pass worker/wrapper split algorithm. Note that this
further step towards the Hindley-Milner algorithm would not lead to the same worst case
exponential time complexity. The inferred type annotations can only be smaller than the
type annotations of the original list-producing term. Hence the resulting algorithm would
only require linear time. To deal with polymorphic recursion as well, the type inference
algorithm of Emms and Leiß, which integrates semiunification into the Hindley-Milner
algorithm, may provide a good basis [EL99].

6.4 Other Data Types than Lists

Our type-inference based deforestation method is not specific to lists but can be used
for nearly arbitrary recursive data types. For fusion we basically only need a kind of
foldr for the new data type, a so called catamorphism. In Section 7.2 we give a formal
definition of a catamorphism. The intuitive idea is that it uniformly replaces every data
constructor of the data type by a given term. Consider for example the type of arbitrarily
branching trees:

data RoseTree a = Node a [RoseTree a]

Its catamorphism foldRT is defined as follows:

foldRT :: (a -> [b] -> b) -> RoseTree a -> b

foldRT vNode (Node x ts) = vNode x (map (foldRT vNode) ts)

The programmer could explicitly use this catamorphism and inform the compiler about it
through a specific directive. Alternatively, an algorithm like warm fusion (cf. Section 7.1.3)
could transform a generally recursive definition into catamorphism form automatically.

The short cut fusion rule for the data type RoseTree a is:

MP:: (A -> [c] -> c) -> c

foldRT MNode (MP Node)  MP MNode

The rule is an instance of the parametricity theorem of the type (A -> [c] -> c) ->

c. As an aside note that ∀γ.(A → [γ] → γ) → γ is the canonical encoding of the data
type RoseTree A in the second-order λ-calculus, just as ∀γ.(A → γ → γ) → γ → γ is
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the canonical encoding of the data type [A] and the function build A, which is used in
the original short cut deforestation method, is the isomorphism from the former type to
the latter (cf. [Pit00]).

It is straightforward to transform our list abstraction algorithm into a rose tree ab-
straction algorithm. Similarly our worker/wrapper scheme can be adapted to rose trees.
In fact, a single worker can abstract from data constructors and types for several differ-
ent data types simultaneously. We can even handle mutually recursive data types. The
catamorphisms of a set of mutually recursive data types are mutually recursive.

However, all the above is limited to regular, covariant algebraic data types. An alge-
braic data type is called regular, if all recursive calls in the body are of the form of the
head of the definition. A counter-example is

data Twist a b = Nil | Cons a (Twist b a)

A data type is called contravariant, if some recursive call appears in a contravariant
position of the body, that is, more or less as the first argument of the function type
constructor:

data Infinite a = I (Infinite a -> a)

Catamorphisms for contravariant and mixedvariant types are more complex than for
covariant ones and for non-regular types a general definition is unknown [MH95, FS96].
Nonetheless these limitations are mild, because nearly all types which appear in practice
are regular and covariant. Note however that the validity of parametricity theorems has
only been proved for languages with only regular, covariant algebraic data types [Pit00].
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Other Deforestation Methods

An enormous number of deforestation methods have been developed. Here we give an
overview, concentrating on the methods that have received most attention. We relate
them to our deforestation method and note that some of them could also be improved by
a type-inference based analysis. We start with short cut deforestation.

7.1 Short Cut Deforestation

The fundamental idea of short cut deforestation is that the uniform replacement of the
constructors (:) and [] by a foldr consumer can already be performed at compile time.
Our own deforestation method performs short cut deforestation. However, whereas we
transform the producer into the required list abstracted form by a type-inference based
algorithm, the original short cut deforestation method [GLP93, GP94, Gil96] requires that
the producer is already in list abstracted from. A special function build is used both to
easily recognise the producer and to enforce the type requirement of the short cut fusion
rule:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

With build the short cut fusion rule can be written as follows:

foldr M(:)M[] (build P)  P M(:)M[]

The compiler writer defines all list-manipulating functions in the standard libraries in
terms of foldr and build.

Gill implemented short cut deforestation in the Glasgow Haskell compiler and mea-
sured speed ups of 43 % for the 10 queens program and of 3 % on average for a large
number of programs that were written without deforestation in mind [Gil96].

7.1.1 Gill’s Worker/Wrapper Scheme

In the last chapter of his thesis [Gil96] Gill also proposes a worker/wrapper scheme. It
enables short cut fusion with user-defined producers without requiring large scale inlining.
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The prerequisite is that these producers are defined in terms of standard list functions or
producers which themselves are directly or indirectly defined only in terms of standard list
functions. Our own worker/wrapper scheme is based on Gill’s scheme. Whereas we move
all data constructors which construct a result list to the wrapper, so that they are visible
at the deforestation site, Gill has to make build visible at the deforestation site. Note
that for the foldr/build fusion rule it is only necessary that the producer is in build

form, the argument of build is of no interest but is just rearranged by the transformation.
So, for example, the definition of map in build form

map f xs = build (\v(:) v[] -> foldr (v(:) . f) v[] xs)

is split up as follows:

mapW :: (a -> b) -> [a] -> (b -> c -> c) -> c -> c

mapW f xs v(:) v[] = foldr (v(:) . f) v[] xs

map f xs = build (mapW f xs)

When build is inlined in these definitions, the similarity to our worker/wrapper
scheme becomes obvious. Gill does not suggest to apply the worker/wrapper split to
the definitions of the standard list functions such as map, which are always inlined, but
to user-defined list-producing functions. Gill also demonstrates how the worker/wrapper
scheme enables removal of lists that exist between recursive calls of a single function (cf.
Section 3.4)

7.1.2 Limitations of build

Besides the restriction of the original short cut deforestation method to producers which
are defined in terms of standard list-producing functions the use of build has also some
other disadvantages.

In Section 3.3.2 we showed how our method can split the definition of the list append
function (++) into a worker and a wrapper and fuse a consumers with a producer that
uses (++). However, because a term M1 ++ M2 does not produce the whole resulting
list itself — only the list produced by M1 is copied but not the one produced by M2 —
(++) cannot be expressed in terms of build. Modifying the definition of (++) to copy
as well the list which is produced by M2, as done in [GLP93] and also [LS95, TM95],
runs contrary to our aim of eliminating data structures. Hence Gill defines a further
second-order typed function augment to solve this problem [Gil96]:

augment :: (forall b. (a -> b -> b) -> b -> b) -> [a] -> [a]

augment g xs = g (:) xs

Similar to the foldr/build fusion rule there exists a foldr/augment fusion rule:

foldr M(:) M[] (augment P M)  P M(:) (foldr M(:) M[] M)

The function (++) can be defined in terms of augment

(++) :: [a] -> [a] -> [a]

xs ++ ys = augment (\v(:) v[] -> foldr v(:) v[] xs) ys

and hence be fused with a foldr consumer. The function build can be defined in terms
of augment
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build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = augment g []

and the foldr/build fusion rule is just an instance of the foldr/augment fusion rule.
Probably all realistic list producers can be defined in terms of augment.

The function build (and similarly augment) can only wrap a producer that returns
a single list. Hence, for example, the function unzip cannot be expressed in terms of
build. Therefore, the original short cut deforestation algorithm cannot split its definition
into a worker and a wrapper and fuse the producer fst (unzip Bool Char zs) with a
consumer as we did in Section 3.3.1. Similarly, it is not possible to abstract nested result
lists with build as we did in Section 3.4.1 for the function inits with our worker/wrapper
scheme. Not even the definition (cf. Section 3.3.2)

concat : ∀α.[[α]]→ [α]
= λα. foldr [α] [α] (appW α [α] ((:) α)) ([] α)

can directly be expressed in terms of build. It first needs to be transformed into

concat : ∀α.[[α]]→ [α]
= λα. λxs. foldr [α] [α] (appW α [α] ((:) α)) ([] α) xs

Finally, because of build, in Gill’s scheme a wrapper cannot be inlined when it is only
partially applied. In contrast we inlined in Section 3.3.2 the partially applied wrapper
(++) in the definition of concat to derive its worker definition.

Altogether we see that list abstraction provides the means for simpler and more flexible
deforestation. It is not possible to usefully combine build and type-inference based list
abstraction. For example, from the producer build (mapW f xs) no list constructors
can be abstracted, because they are hidden by build. We would need to inline build to
proceed with list abstraction.

7.1.3 Warm Fusion

Warm fusion [LS95] transforms a generally recursive definition into build/foldr form,
that is, it automatically derives a definition in terms of both build and foldr, if the
function is both a list producer and a list consumer. Its basic idea for transforming an
arbitrary list producer M into build form is to rewrite it as

build (\c n -> foldr c n M)

and push the foldr into theM , hoping that it cancels with builds in there. If it does, then
the build form is used for fusion, otherwise the transformation is abandoned. Similarly,
to transform the definition of a list-consuming function

foo xs = M [xs]

into foldr form, the transformation rewrites it as

foo xs = M [foldr (:) [] xs]

and then tries to fuse the function body M with the foldr. All this pushing and fusing of
foldr is performed by term rewriting, where in the case of transforming a consumer into
foldr form the rule set grows and shrinks dynamically. This later transformation is based
on the fusion theorem of catamorphisms [MFP91]. The approach is not limited to lists,
but works for a large class of data structures (cf. Section 7.2 and Section 6.4). However,
warm fusion is rather expensive and poses substantial problems for an implementation
[NP98].
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7.1.4 Short Cut Fusion in the Glasgow Haskell compiler

The current version 4.06 of the Glasgow Haskell compiler [GHC] basically performs Gill’s
original short cut deforestation without any worker/wrapper scheme. The major problem
with Gill’s implementation of short cut deforestation was that the foldr/build form is
good for enabling short cut fusion, but itself very inefficient1. If a foldr or a build is not
used for fusion, then it must be inlined. By an elaborate set of rewriting rules and a two
phase inlining system the current implementation ensures, that, if a foldr/build form
of a function is not used for fusion, then it is replaced by a more efficient direct definition
of the function.

7.2 Hylomorphism Fusion

Hylomorphisms enable the description of “regular” producers besides “regular” consumers
such as foldr in a single form. In Section 6.4 we already demonstrated how the recursion
pattern of foldr can be generalised to other data types. Unfortunately, fusion of the
function foldRT with a producer of type RoseTree a requires a new fusion rule. Already
the type of foldRT is quite different from the type of foldr. It is possible to give a single
definition for foldr, foldRT and respective functions for other data types, if we use a
uniform way to define recursive data types.

Category theory is required for a formal definition of hylomorphisms fusion. Here we
completely avoid category theory. Instead we just illustrate the idea of hylomorphisms
fusion at the hand of Haskell programs, similarly to [Jon95, MH95].

We only have a single recursive data type which constructs the fixpoint of a unary
type constructor:

newtype Rec f = In (f (Rec f))

The constructor In converts a term of type f (Rec f) into a term of type Rec f. We
define the inverse function out as follows:

out :: Rec f -> f (Rec f)

out (In x) = x

To define a recursive data type we first define a non-recursive data type with an additional
argument:2

data NatF r = Zero | Succ r

data ListF a r = Nil | Cons a r

data RoseTreeF a r = Node a [r]

From a parameterised non-recursive data type we easily obtain the desired recursive data
type:

type Nat = Rec NatF

type List a = Rec (List a)

type RoseTree a = Rec (RoseTree a)

1Personal communication with Simon Peyton Jones
2In the definition of RoseTreeF we use the standard Haskell list type [r] to keep the presentation

simple. Naturally we could use the type List r, which we are about to define, instead.



Chapter 7. Other Deforestation Methods 125

The elements of the data types are slightly unusual. For example, Nat has the elements In
Zero, In (Succ (In Zero)), In (Succ (In (Succ (In Zero)))),. . . . Similarly, List
Bool has for example the elements In Nil and In (Cons True (In Nil)).

After we have defined recursive data types in a uniform way we now come to the
definition of recursive functions over these data types. First we note that the non-recursive
data types have at least one argument, the argument that is used to introduce recursion.
So there is a natural definition of the function fmap for these data types:

instance Functor NatF where

fmap f Zero = Zero

fmap f (Succ r) = Succ (f r)

instance Functor (ListF a) where

fmap f Nil = Nil

fmap f (Cons x r) = Cons x (f r)

instance Functor (RoseTree a) where

fmap f (Node x rs) = Node x (map f rs)

The function foldr uniformly replaces the list constructors (:) and [] by two given
terms. Its generalisation, the catamorphism, replaces the constructor In by a function
phi of the same type:

cata :: Functor f => (f a -> a) -> Rec f -> a

cata phi = phi . fmap (cata phi) . out

It works by removing the constructor In by out, applying itself recursively by fmap and
finally applying phi. For example:

and :: List Bool -> Bool

and = cata (\fa -> case fa of

Nil -> True

Cons x r -> x && r)

map :: (a -> b) -> (List a -> List b)

map f = cata (\fa -> case fa of

Nil -> Nil

Cons x r -> Cons (f x) r)

To be precise, not the function cata is a catamorphism, but any function that can be
defined in the form cata φ for some term φ of functional type. For catamorphisms a
generalisation of the short cut fusion rule holds, the so-called acid rain rule:

MP:: (F c -> c) -> B -> c

(cata φ) . (MP In)  MP φ

The acid rain rule states that instead of first producing a value of type Rec F and sub-
sequently replacing all data constructors In by φ, the producer skeleton MP can directly
construct the result with φ. Note that the producer skeleton MP must be polymorphic in
the type variable c. φ is a term of type F A -> A, A and B are types and F is a type
constructor for which an instance of the class Functor exists.

Because the constructor In and the function out are inverses of each other, the defi-
nition of a dual to a catamorphism, called anamorphism, suggests itself:
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ana :: Functor f => (a -> f a) -> a -> Rec f

ana psi = In . fmap (ana psi) . psi

Whereas a catamorphism destructs a value of a recursive data type in a uniform way, an
anamorphism constructs a value of a recursive data type in a uniform way. For example:

enumFrom :: Int -> List Int

enumFrom = ana (\n -> Cons n (n+1))

map :: (a -> b) -> (List a -> List b)

map f = ana (\la -> case la of

Nil -> Nil

Cons x r -> Cons (f x) r)

The function ana is a generalisation of the rarely used Haskell list function unfoldr:

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]

unfoldr f b = case f b of

Nothing -> []

Just (a,b) -> a : unfoldr f b

Also for catamorphisms a dual acid rain rule exists:

MC:: (c -> F c) -> c -> B

(MC out) . (ana ψ)  MC ψ

Instead of consuming a value of type Rec F that is constructed uniformly with the func-
tion ψ :: A -> F A, the consumer skeleton MC can directly consume the value of type
A with ψ.

So for deforestation function definitions should be transformed into catamorphism
or anamorphism form. However, many functions, such as map, can be defined as either
catamorphisms or anamorphisms. Hence the hylomorphism is introduced, which is
simply the composition of a catamorphism with an anamorphism:

hylo :: Functor f => (f b -> b) -> (a -> f a) -> (a -> b)

hylo phi psi = cata phi . ana psi

The composition of catamorphism and anamorphism can be fused by either of the two
acid rain rules, giving the following direct definition of hylomorphisms:

hylo :: Functor f => (f b -> b) -> (a -> f a) -> (a -> b)

hylo phi psi = phi . fmap (hylo phi psi) . psi

From this definition it becomes obvious that catamorphisms and anamorphisms are just
special cases of hylomorphisms:

cata phi = hylo phi out

ana psi = hylo In psi

The problem that a function such as map can be defined as hylomorphism in at least
two different ways persists. The solution is the hylomorphism in triplet form. A
polymorphic function that could be part of either the φ of the catamorphism or the ψ of
the anamorphism is separated out as third argument:
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hyloT :: (Functor f, Functor g) =>

(g b -> b) -> (forall c. f c -> g c) -> (a -> f a) -> (a -> b)

hyloT phi eta psi = phi . eta . fmap (hylo phi psi) . psi

or equivalently

hyloT phi eta psi = phi . fmap (hylo phi psi) . eta . psi

Note that these two definitions are only equivalent because eta is polymorphic. The
representation as hylomorphism in triplet form is more flexible, because it permits phi

and psi to have types with different type constructors g and f. Naturally, the introduction
of eta increases the number of possibilities for representing a function as hylomorphism.
However, the idea is that “as much as possible” is shifted into this middle argument. So
the canonical hylomorphism representation of map is the following:

map :: (a -> b) -> (List a -> List b)

map f = hylo In eta out

where

eta = \la -> case la of

Nil -> Nil

Cons x r -> Cons (f x) r

The acid rain rules can be formulated directly for hylomorphisms:

MP:: (F c -> c) -> B -> c

(hylo φ η out) . (MP In)  MP (φ . η)

MC:: (c -> F c) -> c -> B

(MC out) . (hylo In η ψ)  MC (η .ψ)
(∗)

So the previously given definition for map is suitable for both fusion with a producer and
a consumer.

Hylomorphism fusion methods assume that all functions that may be fused are in
hylomorphism form. Hence the acid rain rules are specialised as follows:

τ :: (F c -> c) -> G c -> c

(hylo φ η1 out) . (hylo (τ In) η2 ψ)  hylo (τ (φ . η1)) η2 ψ

σ :: (c -> F c) -> c -> G c

(hylo φ η1 (σ out)) . (hylo In η2 ψ)  hylo φ η1 (σ (η2 .ψ))

Hylomorphisms were first introduced in [MFP91], where recursion schemes and alge-
braic laws that are well-known for lists are generalised to a large class of recursive data
types. Subsequently [TM95] developed the hylomorphism fusion method. [Jür99, Jür00]
studies the category theoretical foundations of hylomorphism fusion. A programmer
cannot be expected to program in terms of hylomorphisms. Hence [HIT96] presents
algorithms for transforming generally recursive definitions into hylomorphisms and re-
structuring them so that the acid rain rules can be applied. The authors implemented
their algorithms in an experimental system called HYLO [OHIT97]. They extended hy-
lomorphisms to handle functions such as zip which induct over multiple data structures
[HIT97, IHT98]. The authors see hylomorphisms as a suitable representation for per-
forming various other transformations [THT98], for example for automatic parallelisation
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[HTC98]. The HYLO algorithms were implemented by Tüffers in the Glasgow Haskell
compiler and found to be able to transform most definitions of real world programs into
hylomorphisms [Tüf98]. Recently the HYLO algorithms were implemented in the pH
compiler [Sch00], a compiler for a parallel variant of Haskell [NAH+95].

Because hylomorphisms do not occur in normal programs and already data types are
not defined in terms of Rec, hylomorphism fusion methods require complex program trans-
formations. These transformations may degrade the performance of a program. So we
note that the algorithm for deriving a hylomorphism implicitly performs some common
subexpression elimination. For example, in Section 4.3 of [OHIT97] the definition of a
function foo with two identical recursive calls foo as is transformed into a hylomorphism
in which the computation of the recursive calls is shared. Common subexpression elimi-
nation avoids repeated computation but may unboundedly increase space usage and thus
indirectly also garbage collection time [Chi98].

Our idea of using type inference to identify data constructors in a producer could also
be applied to hylomorphism fusion. A type inference algorithm similar to ours could be
used for deriving the polymorphic functions τ and σ that are needed for the acid rain
rules. This algorithm would be more general than the current syntax based one and
permit fusion of hylomorphisms with terms that are not in hylomorphism form, using the
more general version (∗) of the acid rain rules.

7.3 Unfold-Fold Transformations

A completely different family of deforestation methods is based on Burstall and Darling-
ton’s unfold/fold transformation system [BD77]. These methods are not concerned with
any specific recursion schemes. Instead they transform a term by a number of rewriting
steps, most of which resemble the usual evaluation rules of the operational semantics.
Central steps are the unfolding of recursive definitions and the creation of new recursive
definitions, called folding.

We illustrate the idea of these methods at the hand of an example. Let a program
contain the following recursive definitions:

or :: [Bool] -> Bool

or = \us -> case us of

[] -> True

v:vs -> v || or vs

map :: (a -> b) -> [a] -> [b]

map = \f ws -> case ws of

[] -> []

y:ys -> f x : map f ys

Note that these definitions do not use any higher-order function such as foldr that
encapsulates a recursion scheme. The term or (map p xs) constructs an intermediate
list at runtime. The term is deforested by the steps given in Figure 7.1.

The most difficult step is obviously the folding step at the end. If unfolding and evalu-
ation continued with the subterm or (map p ys), then the deforestation transformation
would never terminate. The transformation system has to recognise that or (map p ys)

is, except for the argument ys, the same as the term it started with. Hence it can create
a new recursive definition and thus terminate the deforestation process.
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or (map p xs)

 {unfolding of definition of or}
(\us -> case us of {[] -> True; v:vs -> v || or vs})
(map p xs)

 {evaluation}
case (map p xs) of

[] -> True

v:vs -> v || or vs

 {unfolding of definition of map}
case (\f ws -> case ws of {[] -> []; y:ys -> f y : map f ys}) p xs of

[] -> True

v:vs -> v || or vs

 {evaluation}
case (case xs of {[] -> []; y:ys -> p y : map p ys}) of

[] -> True

v:vs -> v || or vs

 {case of case transformation}
case xs of

[] -> case [] of {[] -> True; v:vs -> v || or vs}
y:ys -> case (p y : map p ys) of {[] -> True; v:vs -> v || or vs}

 {evaluation}
case xs of

[] -> True

y:ys -> p y || or (map p ys)

 {folding with a new definition g}
g p xs

where

g = \p xs -> case xs of

[] -> True

y:ys -> p y || g p ys)

Figure 7.1: Steps of unfold/fold deforestation of or (map p xs)

Short cut deforestation and hylomorphism fusion are based on fusion of a data struc-
ture consumer with a data structure producer. In contrast, unfold/fold based deforestation
methods always transform a whole term; consumers and producers are not identified.

Unfold/fold based deforestation was introduced by Wadler [Wad88, Wad90], who also
coined the term deforestation, and is based on his earlier work on listlessness [Wad84,
Wad85]. Although he suggests extensions, he defines the system only for a subset of a
first-order functional language. Subsequently the system was extended first to full first-
order languages [HJ92, CK95] and then to higher-order languages [MW92, Mar95, Chi92,
Chi94, Ham96, SS98].

The transformation steps of unfold/fold deforestation perform call-by-name evaluation
and hence may duplicate terms that have to be evaluated. We already discussed this issue
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in Section 5.2.4 to show that this is not a problem for short cut deforestation. The main
problem of unfold/fold deforestation is to ensure that the transformation terminates on
any input program. This has become the main topic of research on deforestation [FW88,
Sør94, Sei96, SS97, SS98]. [Ham96] relates several deforestation techniques. [SGJ94]
compares deforestation with other partial evaluation transformations. [San96a] gives the
first proof of semantic correctness of unfold/fold based deforestation. It is also a good
introduction to this deforestation method. It has not yet been formally proved that
unfold/fold deforestation always improves the performance of a program, but because of
the similarity of most transformation steps to well-known evaluation rules a proof seems
feasible.

A prototype of Wadler’s original system was implemented in [Dav87]. Later, Marlow
extended the Glasgow Haskell compiler by higher-order deforestation. The implementa-
tion was, however, not generally useable, because it could not control inlining to avoid
code explosion [Mar95]. The only implementation of unfold/fold deforestation in a real
compiler that we are aware of is for the strict functional-logic languages Mercury [Tay98].
However, it does not perform any deforestation across module boundaries and its effect
on real programs has not yet been investigated.

7.4 Attribute Grammar Composition

Attribute grammars extend context-free grammars by a set of attributes for every
symbol and a set of rules for determining theses attributes for every grammar production.
They are mostly used in the design and implementation of compilers [ASU86]. Because
of their similarity to functional languages they are sometimes considered as a functional
programming paradigm [Joh87]. Similar to functional languages the question arises if two
attribute grammars can be transformed into a single attribute grammar that computes
the same function as the composition of the two original grammars. Such composition
techniques for certain classes of attribute grammars are presented in [Gan83, Gie88].
[CDPR97] compares these composition techniques with various deforestation techniques
for functional programs and [CDPR99] discusses how functional programs can be trans-
lated into attribute grammars, these be composed, and finally the result be retranslated
into a functional program.

There exist various modifications and extensions of the attribute grammar formal-
ism. Attributed tree transducers abstract from the language production aspect of a
context-free grammar and just describe functions that map trees to trees instead. Macro
tree transducers extend the limited recursion scheme of attribute grammars and macro
attributed tree transducers [KV94] are an integration of attributed tree transducers
and macro tree transducers. The set of functions definable by any of these formalisms
is not closed under composition but with some additional restrictions various composi-
tion techniques have been developed [Rou70, Fül81, EV85, FV98]. [Küh98] transfers the
composition of attributed tree transducers to functional programs. [Küh99] compares
Wadler’s unfold/fold deforestation technique with composition techniques for macro tree
transducers and [Höf99] extends this comparison to nonlinear programs.

The various composition methods rely on the restricted recursion schemes of the for-
malisms. It remains to be seen if the methods can be generalised to arbitrary functional
programs or suggest improvements to the standard methods.
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7.5 Further Methods

The short cut fusion rule and its generalisations to other data types, the acid rain rules,
are parametricity theorems of a polymorphic producer (or consumer in case of the anamor-
phism fusion rule). However, foldr and cata are polymorphic themselves. The catamor-
phism fusion rule is the parametricity theorem of catamorphisms [MFP91, MH95]:

h strict h .φ = φ′ . (fmap h)

h . (cata φ)  cata φ′

The application of this rule to deforestation is studied in [SF93, FSZ94] and also warm
fusion uses it.

[Feg96] describes an even more ambitious method of deriving a polymorphic skeleton
from a recursive definition and using its parametricity theorem for fusion. The sketched
algorithms are still far from an implementation. A type-inference based algorithm may
be suitable for deriving the desired polymorphic recursion skeletons.

Gill lists several more deforestation methods, especially for lists, in his thesis [Gil96].

Generally deforestation methods can be divided into two classes. First, there are the
unfold/fold based deforestation methods. Second, there are methods such as short cut
deforestation which abandon the treatment of generally recursive definitions in favour of
some “regular” forms of recursion. These methods use fusion laws based on parametricity
theorems. Authors take different points of view on how the “regular” forms of recursion are
obtained, if they need to be provided by the programmer or are automatically inferred from
arbitrary recursive programs by another transformation. The composition methods of
attribute grammars and related formalisms are on the borderline of the two deforestation
classes. However, because they rely on the restricted recursion schemes of the formalisms
they resemble more the “regular” recursion methods than the unfold/fold deforestation
methods.
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Conclusions

The starting-point of this thesis was the observation that the short cut fusion rule for
removing an intermediate list is a parametricity theorem. If we abstract the list construc-
tors (:) and [] from a list producer so that the remaining producer skeleton has a given
polymorphic type, then we can apply the short cut fusion rule, which can fuse any list
consumer in foldr form with the producer. The producer skeleton must be polymorphic
to ensure type-correctness of the transformation. Conversely, the polymorphic type of
the producer skeleton already guarantees that we have abstracted exactly the construc-
tors which construct the intermediate list and hence the transformation is semantically
correct. So we use a type inference algorithm to determine the occurrences of list con-
structors which have to be abstracted to obtain the polymorphic producer skeleton. On
the basis of the well-known Hindley-Milner type inference algorithm we developed a suit-
able type inference algorithm. It is at the heart of the list abstraction algorithm which
yields the polymorphic producer skeleton and which we have presented in Chapter 4. The
original short cut deforestation algorithm can only apply the short cut fusion rule when
the producer is already given in terms of its polymorphic producer skeleton. The special
second-order typed function build is used to mark a polymorphic producer skeleton. As
we argued in the introduction, no programmer should be required to use build. Therefore
the short cut deforestation algorithm currently implemented in the Glasgow Haskell com-
piler restricts deforestation to list-producing functions from the standard libraries, which
are defined in terms of build by the compiler writer. Our new type-inference based al-
gorithm for deriving the polymorphic producer skeleton renders hand made polymorphic
producer skeletons unnecessary. Thus we can apply short cut fusion also to user defined
list producers.

To enable deforestation across module boundaries without large-scale inlining we
adapted Gill’s worker/wrapper scheme to our buildless setting. The benefit of not need-
ing build showed up. Our worker/wrapper scheme is more flexible in that it can handle
list-producing functions which cannot be defined in terms of build, as we discussed in Sec-
tion 7.1.2. For example, we can handle producers of several lists and partial list producers
such as (++). We gave algorithms to automatically split a recursive function definition
into a worker definition and a wrapper definition. These algorithms are based again on
the list abstraction algorithm. Altogether we have defined a new short cut deforestation
algorithm based on type inference.
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From the principal typing property of the type inference algorithm we were able to de-
duce in Section 4.5 the completeness of our list abstraction algorithm. Whereas all purely
syntax-directed deforestation methods raise the question of when and how often they are
successful, we know that, if a list can be abstracted from a producer by abstracting its list
constructors, then our list abstraction algorithm will abstract it. Hence our deforestation
algorithm can fuse a foldr consumer with nearly any producer. The main reason why
list constructors might not be abstractable from a producer is that the list constructors
do not occur in the producer expression but in the definition of a function which is called
by the producer. The worker/wrapper scheme ensures that these list constructors are
moved to the producer and hence list abstraction becomes possible. In Section 3.4.3 we
gave an example for a producer which cannot be list abstracted, because it recursively
consumes its own result but is not recursively defined. This producer would require some
substantial transformation, which we do not perform, before its result list constructors
could be abstracted.

The major advantage of our deforestation method compared to other methods such as
warm fusion, hylomorphism fusion and unfold/fold deforestation (Chapter 7) is that it is
simple, nearly as simple as the more restrictive original short cut deforestation method.
Our type inference algorithm is more simple than the well-known Hindley-Milner type in-
ference algorithm and most other parts of our deforestation algorithm are straightforward.
The simplicity has several consequences:

• We were able to give a complete formal proof of the semantic correctness of our list
abstraction algorithm (Chapter 4) and most of the remaining parts of the deforesta-
tion algorithm.

• Its simplicity also makes it easier to ensure that the transformation always improves
the performance of a program. We both discussed the effect of the transformation
at the hand of a formal cost model and measured it. In contrast, the effect of warm
fusion and hylomorphism fusion on program performance has not been studied.
Already our simple worker/wrapper split has a small negative effect on program
performance. We detected that the hylomorphism derivation algorithm uses com-
mon subexpression elimination, which may degrade performance. Hence it seems
unlikely that complex transformations such as warm fusion and hylomorphism fu-
sion do not sometimes degrade performance. A formal proof of improvement of our
algorithm could give more insights but will still require substantial research into
appropriate proof methods. Even then measurements are important, if only to vali-
date the appropriateness of the cost model. Our measurements already suggest that
the size of heap cells, which our cost model abstracts from, is relevant in practice.

• Our deforestation algorithm is also transparent [Mar95], that is, the programmer
can easily determine from the source program where deforestation will be applicable.
Our deforestation algorithm requires the consumer of an intermediate list to be
defined in terms of foldr. It can handle nearly any producer. In our experience
a programmer can usually see when a producer cannot be list abstracted without
having to go through the details of type inference.

• Our deforestation algorithm is efficient. We noted in Section 4.5 that the list abstrac-
tion algorithm can be implemented to work in linear time. We noted in Section 6.3
that the worker/wrapper split algorithm has a higher complexity. However, on the
one hand we do not believe that the worst case occurs in practice and on the other
hand we suggested a path to a more efficient algorithm by integrating type inference
and worker/wrapper split.
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• Compared to other deforestation methods our deforestation algorithm is simple to
implement. We derived the prototype implementation of the list abstraction algo-
rithm in a straightforward way from the formal description. Because we concen-
trated on the theoretical foundations of the deforestation algorithm, especially its
completeness and correctness, a full implementation was unfortunately outside the
scope of the thesis.

The measurements of Section 5.3 suggest that the secondary effect of deforestation,
that is, enabling further optimisations, is important. So workers should be inlined as
far as possible. To ensure this the ability of our type-inference based method to clearly
indicate which definitions need to be inlined, a control which has been much searched for
in deforestation [Mar95, NP98], may be useful. In general, an optimising compiler of a
high-level programming language has to undo the abstractions of a program. Hence it
has to avoid unnecessary inlining but nonetheless transform a modular, concise program
into efficient, longer code.

We presented our deforestation method for the second-order typed language F, be-
cause it is small and similar to the intermediate language of the Glasgow Haskell compiler.
However, the full second-order type system is not necessary for our list abstraction al-
gorithm. The parametricity theorems and hence the short cut fusion rule are valid for
any subsystem. The list abstraction algorithm just requires the possibility to abstract
type variables, not necessarily even explicitly in the term language. Because short cut
deforestation is a local transformation, it is also desirable that all let-defined variables
have an explicit type annotation. Then the typing environment of a term can be con-
structed without type inference of the whole program. So also a Hindley-Milner typed
language can be used. The deforestation algorithm could be directly defined for Haskell

programs. We used that in the queens example in Section 5.3. Only the class system and
naturally the size of the language will complicate the algorithm.

In Chapter 6 we suggested several directions for future extensions of our deforestation
method. So we noted that our list abstraction algorithm is not specific to lists but can
be used for nearly arbitrary recursive data types. Our work started with the observation
that the short cut fusion rule is the parametricity theorem of the polymorphic type of
the producer skeleton. There are also many other parametricity theorems which might be
exploited for type-inference based program transformations. Hylomorphism fusion uses
two parametricity theorems. [Feg96] suggests to derive a polymorphic skeleton from a
recursive definition and use its parametricity theorem for fusion. The transformation
system in [TH98] is based on the parametricity theorem of the fixpoint combinator.

From a wider perspective we can say that we used type inference as an analysis which
steers the deforestation transformation. In recent years an increasing number of type
systems (including type and effect systems) have been developed for various kinds of
program analysis [NNH99]. These systems use type systems to describe properties by
syntactic objects, relate them to program expressions by structural rules and use inference
algorithms based on unification or constraint solving for analysis. However, they are
non-standard type systems, that is, their types do not coincide with the types of the
programming language. Here we showed that standard polymorphic type systems can be
applied to infer useful information about a program. We believe that there are many other
possible applications of polymorphic type inference to program analysis. List abstraction
can be seen as based on exchanging the standard representation of a list type [τ] by a
representation as a function of type ∀γ.(τ → γ→ γ)→ γ→ γ. A wrapper converts the
latter into the former. It would be worthwhile to enquire how close the relationship of
our work to representation analysis is. In [Hal94] Hindley-Milner type inference is used to
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choose efficient representations of lists. In general, type inference determines some kind
of data flow. Hence a strand of future research could be to examine the relationship of
polymorphic type inference to data and control flow analysis.
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Appendix A

Rules

In this thesis we often use rules to state propositions and to define relations.
A rule consists of a number of premise propositions Ai above a horizontal line and a

single conclusion proposition B below the line:

A1 A2 . . . An

B

In principle it is just a more convenient form to write the proposition

∀x1, . . . , xk A1 ∧ A2 ∧ . . . ∧ An ⇒ B

where the universally quantified meta-variables x1, . . . xk are all the meta-variables that
occur free in A1, . . . , An and B. We use naming conventions for meta-variables to specify
over which sets the variables are quantified. For example, l,m and n are natural numbers.
The premise of a rule may be empty, thus expressing an axiom ∀x1, . . . , xk B.

Additionally, rules are understood as syntactic objects that are used to syntactically
construct proofs of properties. A proof or derivation is a tree of properties with leaves
at the top and a root at the bottom, where each property is obtained from the ones
immediately above it by some rule. For example the rules

n ≤ n+ 1
and

l ≤ m m ≤ n

l ≤ n

can be used to construct the derivation

1 ≤ 2 2 ≤ 3
1 ≤ 3

We say that the root property 1 ≤ 3 is derived from the rules.
Furthermore, we use rules to define sets, especially relations. A set R is (inductively)

defined by a set or system of rules. These rules define R by defining all valid judge-
ments x ∈ R. A judgement is valid, if it can be derived from the rules of the system.
For example, the two rules given before define the canonical order ≤ on natural numbers.
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A rule system to define a set R contains R only in judgements x ∈ R, not for example
in a proposition x /∈ R. Thus it is assured that the set R is well-defined. R can be
characterised as the least set for which all the rules of the system hold.

We can prove by rule induction that a property holds for all elements of a set that
we defined through a rule system. Rule induction means that we show for all rules that if
the property holds for all elements of R mentioned in the premise judgements then it also
holds for the element mentioned in the conclusion judgement. This proof method can be
understood as an induction on the depth of the derivation of a judgement. We loosely
speak of “induction on the rules”.

More detailed descriptions of the use of rules for type systems are given in [Car97] and
for operational semantics in [Hen90, Win93].



Appendix B

Standard List Functions Used in the
Program Queens

The following definitions of standard list functions were used to measure the performance
of the queens program without deforestation.

sum :: [Int] -> Int

sum = foldl’ (+) 0

concat :: [[a]] -> [a]

concat = foldr (++) []

map :: (a -> b) -> [a] -> [b]

map f = foldr ((:) . f) []

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap f = concat . map f

(++) :: [a] -> [a] -> [a]

xs ++ ys = foldr (:) ys xs

and :: [Bool] -> Bool

and = foldr (&&) True

zip :: [a] -> [b] -> [(a,b)]

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip _ _ = []

enumFrom :: Int -> [Int]

enumFrom l = l : (enumFrom $! (l+1))

enumFromTo :: Int -> Int -> [Int]

enumFromTo l m = takeWhile (<= m) (enumFrom l)
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takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p = foldr (\x fxs -> if p x then x:fxs else []) []

foldl’ :: (a -> b -> a) -> a -> [b] -> a

foldl’ f a [] = a

foldl’ f a (x:xs) = (foldl’ f $! f a x) xs

Next the result of applying our deforestation algorithm to the definitions is shown. The
definitions of all list-producing functions are split into worker and wrapper definitions. In
the definitions of concapMap and enumFromTo deforestation removes an intermediate list.
The static argument transformation performed in the definitions of zipW and enumFromW

is discussed in Section 5.1.2.

sum :: [Int] -> Int

sum = foldl’ (+) 0

concatW :: (a -> c -> c) -> c -> [[a]] -> c

concatW c n = foldr (appW c) n

concat :: [[a]] -> [a]

concat = concatW (:) []

mapW :: (b -> c -> c) -> c -> (a -> b) -> [a] -> c

mapW c n f = foldr (c . f) n

map :: (a -> b) -> [a] -> [b]

map = mapW (:) []

concatMapW :: (b -> c -> c) -> c -> (a -> [b]) -> [a] -> c

concatMapW c n f xs = mapW (appW c) n f xs

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap = concatMapW (:) []

appW :: (a -> c -> c) -> [a] -> c -> c

appW c xs ys = foldr c ys xs

(++) :: [a] -> [a] -> [a]

(++) = appW (:)

and :: [Bool] -> Bool

and = foldr (&&) True

zipW :: ((a,b) -> c -> c) -> c -> [a] -> [b] -> c

zipW c n xs ys = go xs ys

where

go (x:xs) (y:ys) = c (x,y) (go xs ys)

go _ _ = n

zip :: [a] -> [b] -> [(a,b)]
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zip = zipW (:) []

enumFromW :: (Int -> c -> c) -> Int -> c

enumFromW c l = go l

where

go l = l ‘c‘ (go $! (l+1))

enumFrom :: Int -> [Int]

enumFrom = enumFromW (:)

enumFromToW :: (Int -> c -> c) -> c -> Int -> Int -> c

enumFromToW c n l m =

enumFromW (\x fxs -> if (<= m) x then x ‘c‘ fxs else n) l

enumFromTo :: Int -> Int -> [Int]

enumFromTo = enumFromToW (:) []

takeWhileW :: (a -> c -> c) -> c -> (a -> Bool) -> [a] -> c

takeWhileW c n p = foldr (\x fxs -> if p x then x ‘c‘ fxs else n) n

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile = takeWhileW (:) []

foldl’ :: (a -> b -> a) -> a -> [b] -> a

foldl’ f a [] = a

foldl’ f a (x:xs) = (foldl’ f $! f a x) xs

The following program is the result of applying only the worker/wrapper split algo-
rithm to the program of Figure 5.4. So it represents an intermediate step between that
program and the deforested program of Figure 5.5.

main = (print . sum . concatW (:) [] . queensW (:) [] (:) []) 10

queensW :: (Int -> c -> c) -> c -> (c -> d -> d) -> d -> Int -> d

queensW c1 n1 c2 n2 0 = c2 n1 n2

queensW c1 n1 c2 n2 m =

concatMapW c2 n2

(\p -> concatMapW (:) []

(\l -> if safe p l then [appW c1 p (c1 l n1)] else [])

(enumFromToW (:) [] 1 10))

(queensW (:) [] (:) [] (m-1))

queens :: Int -> [[Int]]

queens = queensW (:) [] (:) []

safe :: [Int] -> Int -> Bool

safe p n = and

(concatMapW (:) [] (\(i,j)-> [(j /= n) && (i+j /= m+n) && (i-j /= m-n)])

(zipW (:) [] (enumFromW (:) 1) p))

where

m = length p + 1
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sum :: [Int] -> Int

sum = foldl’ (+) 0

concatW :: (a -> c -> c) -> c -> [[a]] -> c

concatW c n = foldr (appW c) n

concat :: [[a]] -> [a]

concat = concatW (:) []

mapW :: (b -> c -> c) -> c -> (a -> b) -> [a] -> c

mapW c n f = foldr (c . f) n

map :: (a -> b) -> [a] -> [b]

map = mapW (:) []

concatMapW :: (b -> c -> c) -> c -> (a -> [b]) -> [a] -> c

concatMapW c n f = concatW c n . mapW (:) [] f

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap = concatMapW (:) []

appW :: (a -> c -> c) -> [a] -> c -> c

appW c xs ys = foldr c ys xs

(++) :: [a] -> [a] -> [a]

(++) = appW (:)

and :: [Bool] -> Bool

and = foldr (&&) True

zipW :: ((a,b) -> c -> c) -> c -> [a] -> [b] -> c

zipW c n xs ys = go xs ys

where

go (x:xs) (y:ys) = c (x,y) (go xs ys)

go _ _ = n

zip :: [a] -> [b] -> [(a,b)]

zip = zipW (:) []

enumFromW :: (Int -> c -> c) -> Int -> c

enumFromW c l = go l

where

go l = l ‘c‘ (go $! (l+1))

enumFrom :: Int -> [Int]

enumFrom = enumFromW (:)

enumFromToW :: (Int -> c -> c) -> c -> Int -> Int -> c

enumFromToW c n l m = takeWhileW c n (<= m) (enumFromW (:) l)
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enumFromTo :: Int -> Int -> [Int]

enumFromTo = enumFromToW (:) []

takeWhileW :: (a -> c -> c) -> c -> (a -> Bool) -> [a] -> c

takeWhileW c n p = foldr (\x fxs -> if p x then x ‘c‘ fxs else n) n

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile = takeWhileW (:) []

foldl’ :: (a -> b -> a) -> a -> [b] -> a

foldl’ f a [] = a

foldl’ f a (x:xs) = (foldl’ f $! f a x) xs
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